
CERIAS Tech Report 2007-28

SATISFIABILITY AND RESILIENCY IN WORKFLOW SYSTEMS

by Qihua Wang and Ninghui Li

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

Satisfiability and Resiliency in Workflow Systems

Qihua Wang Ninghui Li

{wangq, ninghui}@cs.purdue.edu

Center for Education and Research in Information Assurance and Security

and Department of Computer Science

Purdue University

Abstract

We propose the role-and-relation-based access control (R2BAC) model for workflow systems. In R2BAC, in addition to a

user’s role memberships, the user’s relationships with other users help determine whether the user is allowed to perform a

certain step in a workflow. For example, a constraint may require that two steps must not be performed by users who have

a conflict of interest. We also study the workflow satisfiability problem, which asks whether a set of users can complete a

workflow. We show that the problem is NP-complete for R2BAC, and is NP-complete for any workflow model that supports

certain simple types of constraints (e.g., constraints that state certain two steps must be performed by two different users). Af-

ter that, we apply tools from parameterized complexity theory to better understand the complexities of this problem. We show

that the problem is fixed-parameter tractable when the only relations used are = and 6=, and is fixed-parameter intractable

when user-defined binary relations can be used. Finally, we study the resiliency problem in workflow systems, which asks

whether a workflow can be completed even if a number of users may be absent. We formally define three levels of resiliency in

workflow systems, namely, static resiliency, decremental resiliency and dynamic resiliency, and study computational problems

related to these notions of resiliency.

1 Introduction

Workflow systems are used in numerous domains, including production, purchase order processing, and various manage-

ment tasks. Workflow authorization systems have gained popularity in the research community [1, 3, 5, 10, 11]. A workflow

divides a task into a set of well-defined sub-tasks (called steps in the paper). Security policies in workflow systems are

usually specified using authorization constraints. One may specify, for each step, which users are authorized to perform

it. In addition, one may specify the constraints between users who perform different steps in the workflow. For example,

one may require that two steps must be performed by different users for the purpose of separation of duty [4]. Oftentimes,

constraints in workflow authorization systems need to refer to relationships among users. For example, the rationale under a

separation of duty policy that requires 2 users to perform the task is that this deters and controls fraud, as the collusion of 2
users are required for a fraud to occur. However, when two users are close relatives, then collusion is much more likely. To

achieve the objective of deterring and controlling fraud, the policy should require that two different steps in a workflow must

be performed by users who are not in conflict of interest with each other. In different environments, the conflict-of-interest

relation need to be defined differently. For instance, inside an organization’s system, relationships such as close relatives

(e.g., spouses and parent-child) can be maintained and users who are close relatives may be considered to be in conflict of

interest. In a peer-review setting, conflict of interest may be based on past collaborations, common institutions, etc. For

another example, one university may have a policy that a graduate student’s study plan must be first approved by the student’s

advisor and then by the graduate officer in the student’s department. To specify such a constraint, one needs to define and

refer to the advisor-student binary relation.

In this paper, we introduce the role-and-relation-based access control (R2BAC) model for workflow systems. The model

is role-based in the sense that individual steps of a workflow are authorized for roles. The model is relation-based in the sense

that user-defined binary relations can be used to specify constraints and an authorized user is prevented from performing

a step unless the user satisfies these constraints. R2BAC is a natural step beyond Role-Based Access Control (RBAC) [9],

1

especially in the setting of workflows. As a role defines a set of users, which can be viewed as a unary relation among the set

of all users, a binary relation is the natural next step.

One fundamental problem in any workflow authorization systems is the workflow satisfiability problem (WSP), which

asks whether a workflow can be completed in a certain system configuration. We show that WSP is NP-complete in R2BAC.

Furthermore, we show that the intractability is inherent in any workflow authorization systems that support some simple

kinds of constraints. In particular, we show that WSP is NP-hard in any workflow system that supports either constraints

that require two steps must be performed by different users or constraints that require one step must be performed by a user

who also performs at least one of several other steps. Such intractability results are somewhat surprising and discouraging,

because the constraints involved are simple and natural. It is also unsatisfying as such results do not shed light on the

computation cost one has to pay by introducing additional expressive features such as user-defined binary relations, since the

complexity of WSP is NP-complete with or without them. Finally, the practical significance of such intractability results is

unclear, as in real-world workflow systems, the number of steps should be small.

To address these issues, we apply tools from parameterized complexity [6] to WSP. Parameterized complexity is a measure

of computational complexity of problems with multiple input parameters. Parameterized complexity enables us to perform

finer-grained study on the computational complexity of WSP. We show that if only equality and inequality relations are used

and the number of steps in the workflow is treated as a parameter, WSP is fixed-parameter tractable. More specifically, the

problem can be solved in O(f(k)n), where f is a function, k is the number of steps in the workflow, and n is the size of the

problem. As the number of steps is relatively small in practice, this result shows that it is possible to solve WSP efficiently,

when only equality and inequality relations are used. Also, we show that if user-defined relations are allowed, WSP is fixed-

parameter intractable. More specifically, WSP is W [1]-hard and is in the complexity class W [2]; both of W [1] and W [2] are

parameterized complexity classes within NP. This illustrates that while supporting user-defined binary relations increases

the expressive power, it also introduces a computational cost. We note that a naive algorithm solving WSP in R2BAC takes

time O(knk+1), which may be acceptable when k is small. The complexity O(knk+1) is not considered fixed-parameter

tractable because one cannot separate n and k in the complexity to the form of f(k)nα, where f(k) is independent of n and

α is a constant independent of k. We also note that it is also possible to develop algorithms with heuristic optimizations that

can solve WSP efficiently for practical instances; the study of such algorithms is beyond the scope of this paper.

In many situations, it is not enough to ensure that a workflow can be completed in the current system configuration. In

particular, when the workflow is designed to complete a critical task, it is necessary to make sure that the workflow can be

completed even if certain users become absent in emergency situations. In other words, resiliency is important in workflow

systems. The notion of resiliency policies in access control has been recently introduced [8]. Unlike traditional security

policies about access control, which focus on ensuring that access is properly restricted so that users who should not have

access do not get access, resiliency policies aim at ensuring that access is properly enabled so that the system is resilient to

the absence of users. The goal of resiliency policies is to guarantee that even if a number of users become absent in certain

emergent situation, the remaining users can still finish the crucial tasks. An example resiliency policy is as follows: Upon the

absence of up to four users, there must still exist three mutually disjoint sets of users such that the users in each set together

have all permissions to carry out a critical task. Such a policy would be needed when one needs to be able to send up to three

teams of users to different sites to perform a certain task, perhaps in response to some emergent events.

A challenging problem with both theoretical and practical interest is resiliency in workflow systems. Resiliency in work-

flow systems differs from the resiliency policies proposed in [8] in two aspects. First, due to the existence of authorization

constraints, even if a set of users together are authorized to perform all steps in a workflow, it is still possible that they cannot

complete the task. Second, as a workflow consists of a sequence of steps and finishing all these steps may take a relatively

long time, it is possible that certain users become absent at some point and come back later. In other words, the set of

available users may change during the execution of a workflow. Therefore, more refined notions of resiliency for workflow

systems are needed. In this paper, we introduce three levels of resiliency in workflow systems and study the complexity of

checking resiliency.

The contributions of this paper are as follows:

• We propose the role-and-relation-based access control (R2BAC) model for workflow systems. R2BAC naturally extends

RBAC to use binary relations to specify authorization constraints and capture many security requirements commonly

encountered in workflows.

• We show that WSP in R2BAC is NP-complete in general. We also show that WSP remains NP-hard for any work-

flow model that supports one of two simple kinds of constraints. Such results are inherent to features of workflow

authorization systems and are independent from specific modeling approaches.

2

• We apply tools from the parameterized complexity theory to WSP and show that it is fixed-parameter tractable when

only equality and inequality relations are allowed. However, when user-defined binary relations can be used, WSP

becomes fixed-parameter intractable. This clearly illustrates the computational cost incurred by having user-defined

binary relations and gives algorithmic insights and ideas about solving WSP in the fixed-parameter tractable (but

NP-complete) case.

To the best of our knowledge, this paper is the first to use parameterized complexity in access control policy analysis.

As a number of policy analysis problems in access control have been shown to be NP-complete, we believe that

parameterized complexity theory can be fruitfully applied to these problems to shed insight on the causes of hardness

in these problems as well as to give new algorithmic insights.

• We formally define three levels of resiliency in workflow systems. In static resiliency, up to t users are absent before

the execution of an instance of a workflow. We show that checking whether a set of users is statically resilient for a

workflow is NP-hard and is in coNP
NP, a complexity class in the Polynomial Hierarchy. In decremental resiliency,

users may become absent during the execution of an instance of a workflow, absent users will never come back for the

same workflow instance, and at most t users may be absent in the end. Dynamic resiliency differs from decremental

resiliency in that absent users may come back later and work on the same workflow instance, and at most t users may

be absent at any given point of time. We show that checking whether a set of users is decremental resilient or dynamic

resilient for a workflow is PSPACE-complete.

The remainder of the paper is organized as follows. We introduce the R2BAC model in Section 2. After that, we study the

workflow satisfiability problem in Section 3 and study parameterized complexity of the problem in Section 4. We then define

and study resiliency problems in workflow systems in Section 5. We discuss related work in Section 6. Finally, we conclude

and discuss open problems in Section 7.

2 The Role-and-Relation-Based Access Control Model for Workflow Systems

In this section, we introduce the Role-and-Relation-Based Access Control (R2BAC) model for workflow systems. We start

with a motivating example.

Example 1. In an academic institution, submitting a grant proposal to an outside sponsor via the sponsor program services

(SPS) is modeled as a workflow with five steps1 (see Figure 1).

1. Preparation: A faculty member prepares a proposal and sends it to the business office of his or her department.

2. Budget: An account clerk prepares the budget, checks the proposal, and submits it to the SPS office.

3. Expert Review: A regulation expert in the SPS office reviews the proposal to check whether the proposal satisfies

various regulations, e.g., those governing export control and human subject research.

4. Account Review: An account manager reviews the proposal and the budget.

5. Submission: An account manager submits the proposal to the outside sponsor.

In the workflow, steps expert review and account review may be performed concurrently while all other steps

must be carried out sequentially. The step preparation can be performed by any personnel who can serve as a primary

investigator, while the step budget must be carried out by an account clerk. A regulation expert is authorized to review the

proposal in the step expert review. The privilege to perform steps account review and submission is granted

to account managers.

The workflow has the following constraints.

1. Steps preparation, budget, expert review and account review must be performed by four different

users.

2. The account clerk who signs the proposal must be in the same department as the faculty member who prepares the

proposal.

3. The persons who review the proposal must not have a conflict of interest with the one submitting the proposal.

4. The account manager who reviews the proposal is responsible to submit it to the outside sponsor.

1This is a simplified version of the process in the authors’ institution, which also requires signatures of the department head and the dean’s office.

3

 Prepare budget
(Account Clerk) (Faculty)

Prepare proposal Submit proposal
(Account Manager)

 Account review
(Account Manager)

 (Expert)
Expert review

Figure 1. A workflow for grant proposal submission to outside sponsor via the sponsor program

services (SPS).

In the above, Constraint 2 reflects certain procedural and duty requirements, while Constraint 1 enforces the principle of

separation of duty. Constraint 3 follows the spirit of separation of duty and goes beyond that. Rather than simply requiring

that the two steps must be performed by different people, the constraint requires that the people who perform the two steps

must not have a conflict of interest. Constraint 4 enforces a binding-of-duty policy [5] by requiring two tasks be performed

by the same user.

As security and practical requirements vary from tasks to tasks, the specification of constraints plays a crucial role in the

expression of workflow. As demonstrated in Example 1, binary relations play an important role in expressing authorization

constraints. Most existing workflow authorization models support only a few pre-defined binary relations, which limits the

expressive power of these models. For example, the model proposed in [10] supports only six pre-defined binary relations

{=, 6=, <,≤, >,≥} between users and roles. Hence, there is no way to express relations like “in the same department” or

“is a family member”. The model in [5] supports user-defined relations. Our role-and-relation-based access control (R2BAC)

model for workflow systems extends the model in [5] by explicitly combining roles and relations and by supporting more

sophisticated forms of constraints using these relations.

We now introduce formal definitions for R2BAC. Note that U , R and B are names of all possible users, roles and binary

relations in the system, respectively.

Definition 1 (Configuration). A configuration is given by a tuple 〈U,UR, B〉, where U ⊆ U is a set of users, UR ⊆ U×R is

the user-role membership relation and B = {ρ1, · · · , ρm} ⊆ B is a set of binary relations such that ρi ⊆ U ×U (i ∈ [1,m]).

For convenience, we assume that when ρ is in B, ρ is also in B, and (u1, u2) ∈ ρ if and only if (u1, u2) 6∈ ρ. Also, ρ is the

same as ρ. Furthermore, we assume that B contains two predefined binary relations “=” and “ 6=”, which denote equality and

inequality, respectively.

A configuration 〈U,UR, B〉 defines the environment in which a workflow is to be run. In particular, B should define all

the binary relations that appear in any constraint in workflows to be run in the environment.

Definition 2 (Workflow and Constraints). A workflow is represented as a tuple 〈S,¹,SA, C〉, where S is a set of steps,

¹⊆ S × S defines a partial order among steps in S, SA ⊆ R× S, and C is a set of constraints, each of which takes one of

the following forms:

1. 〈ρ(s1, s2)〉: the user who performs s1 and the user who perform s2 must satisfy the binary relation ρ.

2. 〈ρ(∃X, s)〉: there exists a step s′ ∈ X such that 〈ρ(s′, s)〉 holds, i.e., the user who performs s′ and the user who

performs s satisfy ρ.

3. 〈ρ(s, ∃X)〉: there exists a step s′ ∈ X such that 〈ρ(s, s′)〉 holds.

4. 〈ρ(∀X, s)〉: for each step s′ ∈ X , 〈ρ(s′, s)〉 must hold.

5. 〈ρ(s, ∀X)〉: for each step s′ ∈ X , 〈ρ(s, s′)〉 must hold.

Intuitively, in a workflow 〈S,¹,SA, C〉, that si ¹ sj (i 6= j) indicates that step si must be performed before step sj .
Steps si and sj may be performed concurrently, if neither si ¹ sj nor sj ¹ si. SA is called role-step authorization and

(r, s) ∈ SA indicates that members of role r is authorized to perform step s.

4

Example 2. Consider the workflow for submitting a grant proposal in Example 1. Let sprepare, sbudget, sxp review, sac review
and ssubmit denote the five steps in the workflow. The constraints of the workflow can be represented in tuple-based specifi-

cation as follows.

1. 〈6= (sbudget, sprepare)〉,
〈6= (sxp review, ∀{sprepare, sbudget})〉,
〈6= (sac review, ∀{sprepare, sbudget, sxp review})〉

These require that the first four steps in the workflow must be performed by four different users.

2. 〈ρsame dept(sbudget, sprepare)〉

(ux, uy) ∈ ρsame dept when ux and uy are in the same department. The constraint requires that the person who signs

the proposal must be in the same department as the person who prepares it.

3. 〈ρconflict interest(∀{sxp review, sac review}, sprepare)〉

(ux, uy) ∈ ρconflict interest when ux and uy have a conflict of interest. The constraint requires that the person who

reviews the proposal must not have a conflict of interest with the person who prepares it.

4. 〈= (ssubmit, sac review)〉

The constraint requires that account review and submission must be performed by the same person.

Definition 3 (Plans and Partial Plans). A plan P for workflow W = 〈S,¹,SA, C〉 is a subset of U × S such that, for every

step si ∈ S, there is exactly one tuple (ua, si) in P , where ua ∈ U .

A partial plan PP for W is a subset of U × S such that, for every step si ∈ S, there is at most one tuple (ua, si) in PP ,

where ua ∈ U . And (ua, si) ∈ PP implies that, for every sj ¹ si, there exists ub ∈ U such that (ub, sj) ∈ PP .

Intuitively, a plan assigns exactly one user to every step in a workflow, while a partial plan does this for only a portion of

the steps in the workflow. Furthermore, if a step is in a partial plan, then its prerequisite steps must also be in the partial plan.

Definition 4 (Valid Plan). Given a workflow W = 〈S,¹,SA, C〉, and a configuration Γ = 〈U,UR, B〉, we say that a user u
is an authorized user of a step s ∈ S under Γ if and only if there exists a role r such that (u, r) ∈ UR and (r, s) ∈ SA.

We say that a plan P is valid for W under Γ if and only if for every (u, s) ∈ P , u is an authorized user of s, and no

constraint in C is violated. We say that W is satisfiable under Γ if and only if there exists a plan P that is valid for W under

Γ.

Note that there can be multiple valid plans for a workflow W under a configuration. In fact, it is the existence of multiple

valid plans that makes it possible for W to be completed even if a number of users are absent. In situations where the

configuration changes during the execution of a workflow instance (e.g. users become absent), we will have to change our

plan at runtime and thus constraints need to be checked at runtime as well. If a constraint c contains ∀, then it is checked

whenever a step restricted by c is to be executed. Other kinds of constraints are checked before the last step restricted by the

constraint is to be executed.

Definition 5 (Valid Partial Plan). Given a workflow 〈S,¹,SA, C〉 and a configuration 〈U,UR, B〉, let s1, · · · , sm be a

sequence of steps such that si 6¹ sj when i > j. A partial plan PP is valid with respect to the sequence s1, · · · , si if it

assigns one user to each step in s1, · · · , si and no constraint that is checked before the execution of si is violated by PP .

3 The Workflow Satisfiability Problem

One fundamental problem in workflow authorization systems is the Workflow Satisfiability Problem (WSP), which checks

whether a workflow W is satisfiable under a configuration Γ. Note that, given configuration 〈U,UR, B〉, checking whether

W is satisfiable under Γ is equivalent to checking whether there is a valid plan for W under Γ. In this section, we study the

computational complexity of WSP.

5

3.1 Computational Complexity of WSP for R2BAC

Theorem 1. WSP is NP-complete in R2BAC.

The proof of Theorem 1 consists of two parts. The first part is Lemma 2, which shows that WSP is in NP in R2BAC. In

the second part, Lemma 3 and Lemma 4 show that WSP is NP-hard in two restricted cases. Proofs for these lemmas are in

Appendix A.

Lemma 2. WSP is in NP in R2BAC.

Intuitively, a nondeterministic Turing can guess a plan and check whether the plan is valid in polynomial time.

Lemma 3. WSP is NP-hard in R2BAC, if the workflow uses constraints of the form 〈6= (s1, s2)〉.

In the proof of the above lemma (in Appendix A), we use a reduction from the NP-complete GRAPH K-COLORABILITY

problem. In the reduction, vertices in a graph are mapped to steps in the workflow, while colors are mapped to users. In the

GRAPH K-COLORABILITY problem, the number of vertices is normally much larger than the number of colors. Hence, the

number of steps in the constructed workflow is much larger than the number of users, which is rarely the case in practice. Such

a phenomenon indicates that classical complexity framework is inadequate to study the complexity of WSP in a real-word

setting. This motivates us to apply the tool of parameterized complexity to perform finer-grained study of the complexity of

WSP, which will be discussed in Section 4.

Lemma 4. WSP is NP-hard in R2BAC, if the workflow uses constraints of the form 〈= (s, ∃X)〉.

The proof of this lemma uses a reduction from the NP-complete HITTING SET problem to WSP.

Although WSP is intractable in general in R2BAC, the problem is in P for certain special cases. Lemma 5 states a tractable

case for WSP.

Lemma 5. WSP is in P in R2BAC, if the workflow only has constraints in the forms of 〈= (s1, s2)〉, 〈= (s, ∀X)〉 or

〈= (∀X, s)〉.

3.2 The Inherent Complexity of Workflow Systems

In Section 3.1, we show that WSP is NP-hard in R2BAC in general. In this section, we stress that the intractability of WSP

is inherent to certain fundamental features of workflow authorization systems and independent from modeling approaches.

We say that a workflow system supports the feature of user-step authorization if it allows one to specify (either directly or

indirectly) which users are allowed to perform which steps in the workflow. User-step authorization is probably the most

fundamental feature and almost all workflow systems found in existing literatures support such feature. A user-inequality

constraint states that certain two steps cannot be performed by the same user, i.e., 〈6= (s1, s2)〉 in R2BAC. An existence-

equality constraint states that a certain step must be performed by a user who performs at least one step in a given set of

steps, i.e., 〈= (s, ∃X)〉 in R2BAC.

Theorem 6. Checking whether a set of users can complete a workflow is NP-hard for any workflow system that supports

user-step authorization and user-inequality constraints.

Proof. The reduction from GRAPH K-COLORABILITY in the proof of Lemma 3 only makes use of user-step authorization

and user-inequality constraints offered by R2BAC. Therefore, the reduction also applies to the satisfiability problem for any

workflow system that supports these two features.

Note that user-inequality constraints are widely used in existing literatures to enforce separation of duty in workflow

systems. Many workflow models [3, 10, 5] support such type of constraints.

Theorem 7. Checking whether a set of users can complete a workflow is NP-hard for any workflow system that supports

user-step authorization and existence-equality constraints.

Proof. The reduction from HITTING SET in the proof of Lemma 4 only makes use of user-step authorization and existence-

equality constraints offered by R2BAC. Therefore, the reduction also applies to the satisfiability problem for any workflow

system that supports these two features.

Note that existence-equality constraints are a natural way to enforce the general form of binding of duty policies, which

require a step be performed by one of those users who have performed some prerequisite steps.

6

4 Beyond Intractability of WSP

In Section 3, we have shown that WSP is NP-complete in R2BAC for the general case as well as the two special cases

where only a simple form of constraints are used. Such results are, however, unsatisfying, as they do not shed light on

the computation cost associated with introducing additional expressive features such as user-defined binary relations, since

the complexity of WSP is NP-complete in all the three cases. Such a phenomenon indicates that classical computational

complexity does not precisely capture the computational difficulty of different cases of WSP. Furthermore, the practical

significance of such intractability results is unclear. The input to WSP consists of many aspects, such as the number of steps

in the workflow, the number of constraints and the number of users in the configuration etc. In practice, some aspects of

the input will not take a large value. For instance, even though the number of users may be large, the number of steps in

the workflow is expected to be small. An interesting question arises is whether WSP can be solved efficiently given the

restriction that the number of steps is small.

To address these issues, we apply tools from the theory of parameterized complexity [6] to WSP.

4.1 Why Parameterized Complexity?

Parameterized complexity is a measure of complexity of problems with multiple input parameters. The theory of parame-

terized complexity was developed in the 1990s by Rod Downey and Michael Fellows. It is motivated, among other things, by

the observation that there exist hard problems that (most likely) require exponential runtime when complexity is measured in

terms of the input size only, but that are computable in a time that is polynomial in the input size and exponential in a (small)

parameter k. Hence, if k is fixed at a small value, such problems can still be considered ‘tractable’ despite their traditional

classification as ‘intractable’.

In classical complexity, a decision problem is specified by two items of information: (1) the input to the problem, and (2)

the question to be answered. In parameterized complexity, there are three parts of a problem specification: (1) the input to

the problem, (2) the aspects of the input that constitute the parameter, and (3) the question to be answered. Normally, the

parameter is selected because it is likely to be confined to a small range in practice. The parameter provides a systematic way

of specifying restrictions of the input instances. Some NP-hard problems can be solved by algorithms that are exponential

only in a fixed parameter while polynomial in the size of the input. Such an algorithm is called a fixed-parameter tractable

algorithm. More specifically, an algorithm for solving a problem is a fixed-parameter tractable algorithm, if when given any

input instance of the problem with parameter k, the algorithm takes time O(f(k)nα), where n is the size of the input, k is

the parameter, α is a constant (independent of k), and f is an arbitrary function.

If a problem has a fixed-parameter tractable algorithm, then we say that it is a fixed-parameter tractable problem and

belongs to the class FPT. For example, the NP-complete VERTEX COVER asks, given a graph G and an integer k, whether

there is a size-k set V ′ of vertices, such that every edge in G is adjacent to at least one vertex in V ′. This problem is in

FPT when taking k as the parameter, as there exists a simple algorithm with running time of O(2kn), where n is the size

of G. Note that not all intractable problems are in FPT. For instance, the NP-complete DOMINATING SET problem is

fixed-parameter intractable. Given a graph G and an integer k, DOMINATING SET asks whether there is a size-k set V ′ of

vertices such that every vertex in G is either in V ′ or is connected to a vertex in V ′ by an edge. For DOMINATING SET,

there is no significant alternative to trying all size-k subsets of vertices in G and there are O(nk) such subsets, where n is the

number of vertices.

Finally, we would like to point out that a problem in FPT does not necessarily mean that it can be efficiently solved as

long as the parameter is small. Note that f(k) may be a function that grows very fast over k. For instance, an O(kk
k

n)
algorithm is not practical even if k is as small as 5, just as we cannot claim that a problem in P can be solved efficiently when

the best algorithm takes time O(n100). However, showing that a problem is in FPT has significant impact as experiences

have shown that improvement on fixed-parameter tractable algorithms are oftentimes possible. For instance, when VERTEX

COVER was first observed to be solvable in O(f(k)n3), f(k) was such a function that the algorithm is utterly impractical

even for k = 1. An O(2kn) algorithm was proposed later, and then an algorithm with running time O(kn + (4/3)kk2)
was revealed. Right now, VERTEX COVER is well-solved for input of any size, as long as the parameter value is k ≤ 60.

Parameterized complexity offers a fresh angle into designing algorithms for such problems.

In this paper, we only study which subcases of WSP are in FPT and which are not. Improvement on the fixed-parameter

tractable algorithms for the FPT cases is beyond the scope of this paper.

7

4.2 Fixed Parameter Tractable Cases of WSP

As the number of steps in a workflow is likely to be small in practice, we select the number of steps as the parameter

for WSP. We first show that a special case of WSP in which only the 6= relation is allowed is in FPT. The proof gives a

fixed-parameter tractable algorithm and illustrates the intuition why this problem is in FPT.

Lemma 8. WSP in R2BAC is in FPT, if 6= is the only binary relation used by constraints in the workflow. In particular,

given a workflow W and a configuration Γ, WSP can be solved in time O(kk+1n), where k is the number of steps in W and

n is the size of the entire input to the problem.

Proof. A constraint using binary relation 6= requires a certain step to be performed by a user who does not perform certain

other step(s). Since there are k steps in W , if step s is authorized to no less than k users in U , then we can always find an

authorized user of s, who is not assigned to any other steps in W . In other words, we only need to consider those steps that

are authorized to less than k users in U , and there are at most k such steps. We construct partial plans for these steps by trying

all combinations of authorized users and there are no more than kk such combinations. Verifying whether a plan is valid can

be done in O(kn), as there are O(n) constraints and each constraints restricts at most k steps. Therefore, checking whether

U can complete W can be done in time O(kk+1n).

Theorem 9. WSP is in FPT in R2BAC, if = and 6= are the only binary relations used by constraints in the workflow.

This Theorem subsumes Lemma 8. Proof of this theorem is given in Appendix B. The proof uses Lemma 8.

4.3 WSP is Fixed Parameterized Intractable in General

A natural question to ask is whether WSP is still in FPT when user-defined binary relations are allowed in the workflow.

We show that the answer is “no”. Similar to proving a problem is intractable in classical complexity framework, we prove

that a problem is fixed-parameter intractable by reducing another fixed-parameter intractable problem to the target problem.

To preserve fixed-parameter tractability, we need to use a kind of reduction different from the classical ones used in NP-

completeness proofs. We say that L reduces to L′ by a fixed-parameter reduction if given an instance 〈x, k〉 for L, one can

compute an instance 〈x′ = g1(〈x, k〉), k′ = g2(k)〉 in time O(f(k)|x|α) such that 〈x, k〉 ∈ L if and only if 〈x′, k′〉 ∈ L′,
where g1 and g2 are two functions and α is a constant. Note that many classical reductions are not fixed-parameter reduction

as they do not carry enough structure, and lead to lose of control for the parameter.

Under parameterized complexity, each problem falls somewhere in the hierarchy: P ⊆ FPT ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆
W [P] ⊆ NP. If a problem is W [1]-hard, then it is believed to be fixed-parameter intractable. To understand the classes

W [t], we can start by viewing a 3CNF formula as a (boolean) decision circuit, consisting of one input for each variable

and structurally a large and gate taking inputs from a number of small or gates. (Some wires in the circuit may include a

negation.) The or gates are small in that each of them takes 3 inputs, and the and gate is large in that it takes an unbounded

number of inputs. The weft of a decision circuit is the maximum number of large gates on any path from the input variable

to the output line. The weighted satisfiability problem for decision circuits asks whether a decision circuit has a weight k
satisfying assignment (i.e., a satisfying assignment in which at most k variables are assigned true). The class W [t] includes

all problems that are fixed parameter reducible to the weighted satisfiability problem for decision circuits of weft t.
The following theorem states that WSP is fixed-parameter intractable in R2BAC when user-defined binary relations are

allowed in the workflow.

Theorem 10. WSP is W [1]-hard in R2BAC if user-defined binary relations are used in constraints.

The proof to the above theorem is given in Appendix B. In the proof, we reduce the W [1]-complete INDEPENDENT SET

problem to WSP.

We conclude from Theorem 9 and Theorem 10 that supporting user-defined binary relations introduces additional com-

plexity to WSP in R2BAC. Parameterized complexity reveals such a fact that is hidden by classical complexity framework

and allows us to better understand the source of complexity of WSP in R2BAC. We point out that a naive algorithm solving

WSP for R2BAC, which enumerates all possible plans and verifies each of them, takes time O(knk+1), which may be ac-

ceptable when k is small. We also note that it is possible to develop algorithms with heuristic optimizations that can solve

WSP efficiently for practical instances; the study of such algorithms is beyond the scope of this paper.

Finally, we provide an upperbound for WSP in R2BAC in the parameterized complexity framework. The proof to Theo-

rem 11 is given in Appendix B.

8

Theorem 11. WSP in R2BAC is in W [2].

It remains open whether WSP is W [1]-complete or W [2]-complete.

5 Resiliency in Workflow Systems

We have studied the workflow satisfiability problem (WSP) in previous sections. In many situations, it is not enough to

ensure that a workflow is satisfiable in the current system configuration. In particular, when the workflow is designed to

complete a critical task, it is necessary to guarantee that even if certain users are absent unexpectedly, the workflow can still

be completed. Resiliency is a property of those system configurations that can satisfy the workflow even with absence of

some users.

In this section, we define and study resiliency in workflow systems. The workflow model we use is R2BAC. Before giving

formal definitions of resiliency in workflow systems, let us consider several possible scenarios.

1. The execution of instances of a workflow is done in a relatively short period of time, say within fifteen minutes.

Although it is possible that certain users are absent before the execution of a workflow instance, it is unlikely that

available users become absent during the execution of the workflow instance. In other words, the set of users who are

available for a workflow instance is stable.

2. The execution of instances of a workflow takes a relatively long period of time, say within one day. Some users may

not come to work on the day when a workflow instance is executed. Furthermore, some users may have to leave at

some point (e.g. between the execution of two steps) before the workflow instance is completed and will not come

back to work until the next day. In such a situation, the set of users available to the workflow instance becomes smaller

and smaller over time. Such a scenario would also be possible in potentially hazardous situations such as battlefield

and fire-fighting.

3. The execution of instances of a workflow takes a long period of time. For example, only a single step of the workflow

is performed each day. Since the set of users who come to work may differ from day to day, the set of available users

may differ from step to step.

We capture the above three scenarios by proposing three levels of resiliency in workflow systems. They are static (level-1)

resiliency, decremental (level-2) resiliency and dynamic (level-3) resiliency. In static resiliency, a number of users are absent

before the execution of a workflow instance, while remaining users will not be absent during the execution; in decremental

resiliency, users may be absent before or during the execution of a workflow instance, and absent users will not become

available again; in dynamic resiliency, users may be absent before or during the execution of a workflow instance and absent

users may become available again. In all cases, we assume that the number of absent users at any point is bounded by a

parameter t. We now give formal definitions of the three levels of resiliency.

Definition 6 (Static Resiliency). Given a workflow W and an integer t ≥ 0, a configuration 〈U,UR, B〉 is statically resilient

for W up to t absent users if and only if for every size-t subset U ′ of U , W is satisfiable under 〈(U − U ′),UR, B〉.

Intuitively, a configuration is statically resilient for a workflow if the workflow is still satisfiable after removing t users

from the configuration.

Definition 7 (Decremental Resiliency). Given a workflow W = 〈S,¹,SA, C〉 and an integer t, a configuration 〈U,UR, B〉
is decrementally resilient for W up to t absent users, if and only if Player 1 can always win the following two-person game

when playing optimally.

Initialization: PP ← ∅, U0 ← U , S0 ← S, t0 ← t and i← 1.

Round i of the Game:

1. Player 2 selects a set U ′i−1 such that |U ′i−1| ≤ ti−1.

Ui ← (Ui−1 − U
′

i−1) and ti ← (ti−1 − |U
′

i−1|).

2. Player 1 selects a step sai ∈ Si−1 such that ∀sb(sb ≺ sai ⇒ sb 6∈ Si−1).

Player 1 selects a user u ∈ Ui.

PP ← PP ∪ {(u, sai)} and

Si ← (Si−1 − {sai}).

If PP is not a valid partial plan with respect to the sequence sa1
, · · · , sai , then Player 1 loses.

9

3. If Si = ∅, then Player 1 wins; otherwise, let i← (i+ 1) and the game goes on to the next round.

In each round, Player 2 may remove a certain number of users and then Player 1 has to pick a remaining step that is ready

to be performed and assign an available user to it. The total number of users Player 2 may remove throughout the game is

bounded by t. A configuration is decrementally resilient for a workflow if there is always a way to complete the workflow no

matter when and which users are removed, as long as the total number of absent users is bounded by t.
Also, in Definition 7, we assume that Player 1 plays optimally, which implies that in each round, Player 1 has to consider

not only the next step but also all future steps.

Example 3. There is a workflow W = 〈S,¹,SA, C〉 and a configuration 〈U,UR, B〉, where S = {s1, s2}, s1 ¹ s2,

C = {〈6= (s1, s2)〉}, SA = {(r1, s1), (r2, s2)}, and UR = {(Alice, r1), (Alice, r2), (Bob, r1), (Carl , r2)}. All users in

U = {Alice,Bob,Carl} are available before the execution of s1. Consider the following two choices of user assignment for

s1.

1. Alice is assigned to perform s1: If Carl becomes absent after the execution of s1, then Alice is the only user authorized

to perform s2. However, assigning Alice to s2 violates the constraint 〈6= (s1, s2)〉. That is to say, the remaining users

cannot complete the workflow.

2. Bob is assigned to perform s1: In this case, no matter which single user becomes absent after the execution of s1, we

can always find an authorized user (either Alice or Carl) to perform s2 without violating the constraint 〈6= (s1, s2)〉.

Thus it is clear that having Bob perform s1 is a better choice than having Alice with respect to resiliency. Actually, it can be

proved that this configuration is decrementally resilient for W up to one absent user.

Definition 8 (Dynamic Resiliency). Given a workflow W = 〈S,¹,SA, C〉 and an integer t, a configuration 〈U,UR, B〉 is

dynamically resilient for W up to t absent users, if and only if Player 1 can always win the following two-person game when

playing optimally.

Initialization: PP ← ∅, S0 ← S and i← 1.

Round i of the Game:

1. Player 2 selects a set U ′i−1 of up to t users.

Ui ← (U − U ′i−1).

2. Player 1 selects a step sai ∈ Si−1 such that ∀sb(sb ≺ sai ⇒ sb 6∈ Si−1).

Player 1 selects a user u ∈ Ui.

PP ← PP ∪ {(u, sai)} and

Si ← (Si−1 − {sai}).

If PP is not a valid partial plan with respect to the sequence sa1
, · · · , sai , then Player 1 loses.

3. If Si = ∅, then Player 1 wins; otherwise, let i← (i+ 1) and the game goes on to the next round.

Intuitively, Player 2 may temporarily remove up to t users from the configuration at the beginning of each round. Then,

Player 1 has to select a remaining step that is ready to be performed and assign an available user to it. After that, the

configuration is restored and the next round of the game starts.

The following theorem states a relationship among the three levels of resiliency in workflow systems: dynamic (level-3)

resiliency is stronger than decremental (level-2) resiliency, which is in turn stronger than static (level-1) resiliency.

Theorem 12. Given a workflow W , a configuration Γ and an integer t, the following are true.

• If Γ is dynamically resilient for W up to t absent users, then it is also decrementally resilient for W up to t absent

users.

• If Γ is decrementally resilient for W up to t absent users, then it is also statically resilient for W up to t absent users.

But the reverse of either of the above statements is not true.

Proof. The game defining dynamic resiliency allows Player 2 to play any strategy he/she can in the game defining decre-

mental resiliency. The same relation holds between the game defining decremental resiliency and the game defining static

resiliency. Therefore, the theorem holds.

10

5.1 Computational Complexities of Checking Resiliency

Theorem 13. Checking whether a configuration Γ is statically resilient for a workflow W up to t users, which is called the

Static Resiliency Checking Problem (SRCP), is NP-hard and is in coNP
NP.

Proof. When t = 0, SRCP degenerates to WSP. Since WSP is NP-complete, SRCP is NP-hard.

Next, we prove that the problem is in coNP
NP. From Lemma 2, checking whether a workflow is satisfiable under

a configuration 〈U,UR, B〉 is in NP. We now construct a nondeterministic oracle Turing machine M that decides the

complement of the problem. Assume that M has access to an NP oracle N which checks whether a workflow is satisfiable

under a configuration. M nondeterministically selects a set U ′ of t users and asks N whether the workflow is satisfiable

under 〈(U −U ′),UR, B〉. If the answer is “yes”, M returns “no”; otherwise, M returns “yes”. In this case, M returns “yes”

if and only if the answer to the SRCP instance is “no”. In general, SRCP is in coNP
NP.

It remains open whether SRCP is coNP
NP-complete or not. Readers who are familiar with computational complexity

theory will recognize that coNP
NP is a complexity class in the Polynomial Hierarchy. (See Appendix C for a brief introduc-

tion to the Polynomial Hierarchy.) Because the Polynomial Hierarchy collapses when P = NP, showing that an NP-hard

decision problem is in the Polynomial Hierarchy, although is not equivalent to showing that the problem is NP-complete,

has the same consequence: the problem can be solved in polynomial time if and only if P =NP.

Theorem 14. Checking whether a configuration Γ is decremental resilient for a workflow W up to t users, which is called

the Decremental Resiliency Checking Problem (CRCP), is PSPACE-complete.

Theorem 15. Checking whether a configuration Γ is dynamically resilient for a workflow W up to t users, which is called

the Dynamic Resiliency Checking Problem (DRCP), is PSPACE-complete.

Please refer to Appendix D for proofs of Theorem 14 and 15. In the proofs, we reduce the PSPACE-complete QUAN-

TIFIED SATISFIABILITY problem to CRCP or DRCP. Intuitively, we use user-step assignments in workflow to simulate truth

assignments for boolean variables.

Note that given a workflow W = 〈S,¹,SA, C〉, there may not exist a set of users that is decrementally or dynamically

resilient for W even just up to one absent user, when the equality relation is used. For instance, assume that S = {s1, s2},
s1 ¹ s2 and C = {〈= (s1, s2)〉}. Constraint 〈= (s1, s2)〉 requires s1 and s2 be performed by the same user. (Such

constraints appear in [5] under the name binding-of-duty constraints.) If the user who executed s1 becomes absent before the

execution of s2, then there is no way to finish the workflow without violating the constraint no matter which users remain

available. This illustrate that bind-of-duty constraints can make it difficult to achieve decremental or dynamic resiliency. This

problem can be addressed either by not using such constraints in settings where such resiliency is desirable, or by introducing

concepts such as delegation, where one user can act on behalf of another user in the user’s absence. The study of using

delegation for resiliency is interesting future work.

6 Related Work

Bertino et al. [3] introduced a language to express workflow authorization constraints as clauses in a logic programming

language. The language supports a number of predefined relations for constraint specification. Bertino et al. [3] also proposed

searching algorithms to assign users to complete a workflow. This work does not support user-defined binary relations,

nor does it formally study computational complexity of the workflow satisfiability problem. Tan et al. [10] studied the

consistency of authorization constraints in workflow systems. The model in [10] supports six predefined binary relations:

{=, 6=, <,≤, >,≥}, but not user-defined relations. Atluri and Huang [1] proposed a workflow authorization model that

focuses on temporal authorization. This model does not support constraints about users performing different steps in a task.

Atluri and Warner [2] proposed a model that supports conditional delegation in workflow systems. Delegation is a potential

mechanism to achieve resiliency. In this paper, we consider resiliency without using delegation. We plan to extend our

definitions on resiliency to take delegation into account and study how to use delegation to achieve resiliency in workflow

systems. Furthermore, in [11], Warner and Atluri considered authorization constraints that span multiple instances of a

workflow. Their model supports predefined relations with emphasis on inter-instance constraints. Inter-instance problems

in workflow systems is an interesting research area. The models in [2, 11] do not support user-defined relations. Finally,

Kang et al. [7] investigated access control mechanisms for inter-organizational workflow. Their workflow model authorizes

steps to roles and supports dynamic constraints. However, they do not explicitly point out how constraints are specified and

11

what kinds of constraints are supported besides separation of duty. Their paper mainly focuses on infrastructure design and

implementation.

The workflow authorization model proposed by Crampton [5] is probably the one that is most closely related to R2BAC.

The model in [5] supports user-defined binary relations; however, it does not support quantifiers in constraints, so that

constraints of the form 〈ρ(∃X, s)〉 cannot be expressed in that model. Crampton [5] also studied the workflow satisfiability

problem and presented a polynomial time algorithm for their model. However, the algorithm is incorrect.2 Each constraint

in [5] relates two steps in an workflow. The algorithm (Figure 2 in [5]) tries to gradually reduce the set of users that can be

applied to each step. One first calculates the set of authorized users for each individual step, and then for each constraint that

involves steps s1 and s2, one remove from the sets for steps s1 and s2 those users that cannot be paired with a user satisfying

the constraint. If no set can be reduced further and no set is empty, the algorithm declares that a workflow is satisfiable.

The problem with this algorithm is that, while it ensures that each individual constraint can be satisfied, it does not ensure

the combination of them can. For a counter example, consider a workflow with 4 steps and 3 users, where every user is

authorized to perform every step. The constraints are such that no two steps can be performed by the same user. Obviously, a

valid execution assignment would not exist. However, the algorithm would return true. As we have pointed out in Theorem 6,

the workflow satisfiability problem is NP-hard in general for any workflow model that supports user-inequality constraints.

Since the model in [5] supports such type of constraints, a polynomial time algorithm for the satisfiability problem in their

model could not exist.

None of the work mentioned above have given the computational complexity results of the Workflow Satisfiability Prob-

lem, whereas we give a clear characterization using parameterized complexity. Also, the resiliency problem in workflow has

not been studied before in the literature.

The concept of resiliency policies in access control is first formally proposed by Li et al. [8]. To our knowledge, this paper

is the first to define and study resiliency problems in workflow systems. There are major difference between resiliency in

workflow systems and the resiliency policies proposed in [8], and we have discussed the differences in Section 1.

7 Conclusion and Future Work

We have proposed a role-and-relation-based model (R2BAC) for workflow systems, and have shown that the workflow

satisfiability problem in R2BAC is NP-complete. We have also shown that the problem remains intractable for any workflow

model that supports certain simple types of constraints such as user-inequality constraints and existence-equality constraints.

We then apply tools from parameterized complexity to better understand the complexities of the problem. Furthermore, we

have formally defined three levels of resiliency in workflow systems, namely, static resiliency, decremental resiliency and

dynamic resiliency. We have also shown that checking whether a system configuration is statically resilient for a workflow is

NP-hard and is in the Polynomial Hierarchy, and the same problems for decremental resiliency and dynamic resiliency are

PSPACE-complete.

To our knowledge, this paper is the first to apply parameterized complexity theory to computational problems on access

control policy analysis. As a number of policy analysis problems in access control have been shown to be NP-complete,

we believe that parameterized complexity theory can be fruitfully applied to these problems to shed insight on the causes of

hardness in these problems as well as to give new algorithmic insights.

For the Workflow Satisfiability Problem, one future direction is to improve the fixed-parameter tractable algorithm de-

scribed in Section 4.2, and another direction is to design and implement algorithms that can solve general case of the problem

efficiently in practice. Resiliency is a relatively new concept in access control, and there are a number of interesting resiliency-

related research topics. One open problem is how to efficiently generate optimal strategies to achieve decremental or dynamic

resiliency in workflow systems. We believe that planning techniques developed in the artificial intelligence community will

prove useful. Another direction is to study resiliency in workflow systems where multiple instances of the same workflow

may be executed concurrently. Finally, it would be interesting to study how to design and specify delegation policies to

achieve resiliency in workflow systems.

References

[1] V. Atluri and W. Huang. An authorization model for workflows. In Proceedings of the 4th European Symposium on

Research in Computer Security (ESORICS), pages 44–64, 1996.

2We have verified the bug with the author of [5].

12

[2] V. Atluri and J. Warner. Supporting conditional delegation in secure workflow management systems. In SACMAT ’05:

Proceedings of the tenth ACM symposium on Access control models and technologies, pages 49–58, New York, NY,

USA, 2005. ACM Press.

[3] E. Bertino, E. Ferrari, and V. Atluri. The specification and enforcement of authorization constraints in workflow man-

agement systems. ACM Transactions on Information and System Security, 2(1):65–104, Feb. 1999.

[4] D. D. Clark and D. R. Wilson. A comparision of commercial and military computer security policies. In Proceedings

of the 1987 IEEE Symposium on Security and Privacy, pages 184–194. IEEE Computer Society Press, May 1987.

[5] J. Crampton. A reference monitor for workflow systems with constrained task execution. In Proceedings of the Tenth

ACM Symposium on Access Control Models and Technologies (SACMAT 2005), pages 38–47, Stockholm, Sweden, June

2005.

[6] R. Downey and M. Fellows. Parameterized Complexity. Springer, 1999.

[7] M. H. Kang, J. S. Park, and J. N. Froscher. Access control mechanisms for inter-organizational workflow. pages 66–74,

2001.

[8] N. Li, M. V. Tripunitara, and Q. Wang. Resiliency policies in access control. In Proc. ACM Conference on Computer

and Communications Security (CCS), Nov. 2006.

[9] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access control models. IEEE Computer,

29(2):38–47, February 1996.

[10] K. Tan, J. Crampton, and C. Gunter. The consistency of task-based authorization constraints in workflow systems. In

Proceedings of the 17th IEEE Computer Security Foundations Workshop (CSFW), pages 155–169, 2004.

[11] J. Warner and V. Atluri. Inter-instance authorization constraints for secure workflow management. In Proc. ACM

Symposium on Access Control Models and Technologies (SACMAT), pages 190–199, 2006.

A Proofs in Section 3.1

Proof to Lemma 2: WSP is in NP in R2BAC.

Proof. The length of a plan is bounded by the number of steps in the workflow. Given a plan for a workflow, checking

whether a user is authorized to perform a step can be done in linear time. Also, checking whether a constraint is satisfied

by the plan can be done in polynomial time. Hence, checking whether a plan is valid is in P. A nondeterministic Turing

machine can thus guess a plan and check whether it is valid in polynomial time.

Proof to Lemma 3: WSP is NP-hard in R2BAC, if the workflow uses constraints of the form 〈6= (s1, s2)〉.

Proof. To prove the problem is NP-hard, we reduce the NP-complete GRAPH K-COLORABILITY problem to this problem.

In the GRAPH K-COLORABILITY problem, we are given a graph G(V,E) and an integer k, and asked whether we can assign

no more than k colors to vertices in V such that every vertex has one color and vertices ni and nj have different colors

whenever (ni, nj) ∈ E.

Given a graph G(V,E), we construct a workflow W = 〈S,¹,SA, C〉 and a configuration Γ = 〈U,UR, B〉 such that

there is a one-to-one correspondence between steps in S and vertices in V . Let U = {u1, · · · , uk}, where each ui ∈ U
corresponds to a color. Construct UR and SA in such a way that every user in U is authorized to perform every step in S. For

every (ni, nj) ∈ E, construct a constraint 〈6= (si, sj)〉, which requires that si and sj must be performed by different users.

If G is k-colorable, then we can construct a plan P such that sj is performed by ui if and only if nj is assigned the ith color.

Since no pair of adjacent vertices have the same color, no pair of steps restricted by a constraint is assigned to the same user

in P . Hence, P satisfies all constraints and is a valid plan. Similarly, if there is a valid plan P for W in Γ, we can find a way

to color G with no more than k colors according to P . In general, G is k-colorable if and only if W is satisfiable.

Proof to Lemma 4: WSP is NP-hard in R2BAC, if the workflow uses constraints of the form 〈= (s, ∃X)〉.

13

Proof. To prove the problem is NP-hard, we reduce the NP-complete HITTING SET problem to this problem. In the

HITTING SET problem, we are given a set Z and a family F = {Z1, · · · , Zm} of subsets of Z and asked whether there exists

a size-k subset H of Z such that, for every Zi ∈ F , H ∩ Zi 6= ∅.
We construct a workflow W = 〈S ∪ A,¹,SA, C〉 and a configuration Γ = 〈U,UR, B〉 such that the answer to the

HITTING SET problem is “yes” if and only if W is satisfiable under Γ. Let U = {ui | ei ∈ Z} be a set of users. Let

S = {s1, · · · , sk} be a set of k steps. Construct UR and SA in such a way that every step in S is authorized to all users

in U . Furthermore, let A = {a1, · · · , am} be a set of m steps and S ∩ A = ∅. Construct UR and SA in such a way

that ui is authorized to perform aj if and only if ei ∈ Zj . Construct a set C = {c1, · · · , cm} of m constraints, where

ci = 〈= (ai, ∃S)〉.
On the one hand, assume that P is a valid plan. Let H = {ei | ∃sj (ui, sj) ∈ P}. For every ai ∈ A, let uj be the user

such that (uj , ai) ∈ P . P being valid indicates that uj is authorized to perform ai. From our construction, we have ej ∈ Zi.
Furthermore, for every i ∈ [1,m], 〈= (ai, ∃S)〉 being satisfied indicates that there exists sl ∈ S such that (uj , sl) ∈ P . And

(uj , sl) ∈ P indicates that ej ∈ H . Therefore, we have H ∩Zi = ej . In general, for every Zi ∈ F , H ∩Zi 6= ∅. The answer

to the HITTING SET problem is “yes”.

On the other hand, assume that the answer to the HITTING SET problem is “yes”. We now construct a plan P that satisfies

the workflow. Without loss of generality, assume that H = {e1, · · · , ek}. We initialize P to ∅ and add (ui, si) to P for every

i ∈ [1, k]. Recall that si is authorized to every user in U . For every Zj ∈ F , add (ui, aj) to P when H ∩ Zj = ei. ei ∈ Zj
implies that ui is authorized to perform aj . Furthermore, for every cj ∈ C, (ui, aj) ∈ P and (ui, si) ∈ P indicate that cj is

satisfied. Therefore, P is a valid plan.

Proof to Lemma 5: WSP is in P in R2BAC, if the workflow only has constraints in the forms of 〈= (s1, s2)〉, 〈= (s, ∀X)〉
or 〈= (∀X, s)〉.

Proof. As “=” is transitive, constraint 〈= (∀X, s)〉 can be equivalently rewritten as 〈= (s, ∀X)〉. Furthermore, constraint

〈= (s1, s2)〉 can be equivalently rewritten as 〈= (s1, ∀{s2})〉. Therefore, we just need to consider constraints in the form of

〈= (s, ∀X)〉.
Given a constraint c = 〈= (s, ∀X)〉, let ST (c) = {s} ∪ X be the set of steps restricted by c. c requires that all steps

in ST (c) be performed by the same users. If there exist two constraints c1 and c2 such that ST (c1) ∩ ST (c2) 6= ∅, we can

replace c1 and c2 with a third constraint that requires all steps in ST (c1) ∪ ST (c2) be performed by the same user. Without

loss of generality, we assume that for every pair of constraints (c1, c2) in the workflow, we have ST (c1) ∩ ST (c2) = ∅. In

this case, we may assign users to steps in ST (c1) independently from steps in ST (c2). Given a step s, let AU(s) be the set

of users authorized to perform step s. Assume that ST (c1) = {s0, s1, · · · , sm}. Steps in ST (c1) can only be performed by

a user in U ′ = AU(s0)∩AU(s1)∩ · · · ∩AU(sm). If U ′ = ∅, then c1 cannot be satisfied. Therefore, to check whether W is

satisfiable, we just need to compute set intersection for every constraint inW . And set intersection can be done in polynomial

time.

B Proofs in Section 4

Proof to Theorem 9: WSP is in FPT in R2BAC, if = and 6= are the only binary relations used by constraints in the workflow.

Proof. Given a workflow W = 〈S,¹,SA, C〉 and a configuration Γ = 〈U,UR, B〉, let k be the number of steps in W . The

description of the algorithm is as follow.

1. For every step si ∈ S, compute the set AU(si) of users authorized to perform si according to UR and SA.

2. Process every constraint c in the form of 〈= (s1, s2)〉 and 〈= (s, ∀X)〉. Let ST (c) be the set of steps appearing in c.
Without loss of generality, assume that ST (c) = {s1, · · · , sm}. Let U ′ =

⋂m

j=1 AU(sj) be the set of users who are

authorized to perform all steps in ST (c). If U ′ = ∅, then c is not satisfiable and neither nor W . Otherwise, for every

si ∈ ST (c), AU(si) is set to be U ′.

3. Let C ′ be the set of all constraints in C that are in the form of 〈= (s, ∃X)〉. We construct a search tree as follow.

Label the root of the tree with C ′ and UA = {AU(si) | si ∈ S}. Choose a constraint c from C ′. Without loss of

generality, assume that c = 〈= (s0, ∃{s1, · · · , sm})〉 (m ≤ k−1). s0 must be performed by the same user as s1, or s2,

· · · , or sm. We create m children of the root corresponding to these m possibilities. Let U0,1 = AU(s0) ∩AU(s1). If

U0,1 = ∅, then the first child of the root is marked as “invalid” and will not be further processed, since it is impossible

14

to find a user who is authorized to perform both s0 and s1. Otherwise, the first child is labeled with C ′ − {c} and

UA1, where UA1 is the same as UA except that AU(s0) and AU(s1) are set to be U0,1. Intuitively, the set of

constraints labeling a node represents the remaining constraints, while the set UA labeling a node represents the user-

step authorization that satisfies those constraints that have been processed. The other m − 1 children of the root are

processed similarly. We then recursively process the children of the children of the root and so on until all nodes in the

tree have been processed. We then say that the search tree is fully-developed.

In a fully-developed search tree, a leave node that is not marked as “invalid” (in this case, it must have been labeled with

an empty set of constraints) is called “alive”. If there is no “alive” leave node in the search tree, then it is impossible to

satisfy all constraints in C ′ and thus W is not satisfiable.

Note that there are no more than k2k−1 different constraints in the form of 〈= (s, ∃X)〉 as s and X can take at most

k and 2k−1 different values, respectively 3. Therefore, the depth of the fully-developed search tree is no more than

k2k−1. Furthermore, the number of children of each node is bounded by k − 1. Hence, the size of the fully-developed

search tree is bounded by (k−1)k2k−1

. Processing each node in the search tree involves computing no more than k−1
intersections and can be done in O(kn).

4. For each “alive” leave node v in the search tree, we check whether all constraints using 6= can be satisfied with the

user-step authorization UA labeling v. According to Lemma 8, this can be done in O(kk+1n), where n is the size of

the entire input to the problem.

In general, the above algorithm finishes inO(f(k)n) where f(k) = kk+1(k−1)k2k−1

. Hence, the problem is in FPT.

Proof to Theorem 10: WSP is W [1]-hard in R2BAC if user-defined binary relations are used in constraints.

Proof. A constraint 〈ρ(s1, s2)〉 can be equivalently represented as 〈ρ(s1, ∀{s2})〉 or 〈ρ(s1, ∃{s2})〉. Hence, we just need to

prove that WSP is W [1]-hard even if the workflow only has constraints in the form of 〈ρ(s1, s2)〉.
We reduce INDEPENDENT SET to WSP. In INDEPENDENT SET, we need to determine whether there is a size-k indepen-

dent set in graph G(V,E). An independent set of G is a set of vertices V ′ such that V ′ ⊆ V and no pair of vertices in V ′ are

adjacent to each other in G. INDEPENDENT SET with parameter k is W [1]-complete.

Given an integer k and a graph G(V,E) where V = {v1, · · · , vm}, we construct a workflow W = 〈S,¹,SA, C〉 and a

configuration Γ = 〈U,UR, B〉, where U = {u1, · · · , um}. There is a one-to-one correspondence between users in U and

vertices in V . S = {s1, · · · , sk} and s1 ¹ · · · ¹ sk. Let UR = {(ui, r) | i ∈ [1,m]} and SA = {(r, si) | i ∈ [1, k]}. In

other words, every user in U is authorized to perform every step in S. B contains one binary relation ρ, and ρ = {(ui, uj) |
i 6= j ∧ (vi, vj) 6∈ E}. Intuitively, (ui, uj) ∈ ρ if and only if ui 6= uj and the vertices corresponding to the two users are not

adjacent to each other in G. For every i ∈ [2, k], we construct i − 1 constraints ci,1, · · · , ci,i−1 such that ci,j = 〈ρ(si, sj)〉
where j ∈ [1, i− 1].

Next, we show that G has a size-k independent set if and only if W is satisfiable under Γ.

On the one hand, without loss of generality, assume that {v1, · · · , vk} is an independent set of G. By definition of

independent set, we have (vi, vj) 6∈ E, for any i, j ∈ [1, k] and i 6= j. We construct a plan P = {(ui, si) | i ∈ [1, k]}. For

any i, j ∈ [1, k] and i 6= j, (vi, vj) 6∈ E implies that (ui, uj) ∈ ρ. Therefore, no constraint is violated by P and P is a valid

plan.

On the other hand, assume that there is a valid plan P for W . From the construction of ρ, the k steps in W must be

performed by k different users. Without loss of generality, assume that P = {(ui, si) | i ∈ [1, k]}. Since no constraint is

violated by P , we have (ui, uj) ∈ ρ for any i, j ∈ [1, k] and i < j. Let V ′ = {v1, · · · , vk}. For any pair of vertices (vi, vj)
where i, j ∈ [1, k] and i < j, (ui, uj) ∈ ρ implies that (vi, vj) 6∈ E. Hence, V ′ is a size-k independent set of G.

Finally, we show that the above reduction is a fixed-parameter reduction. In our reduction, the parameter k of the IN-

DEPENDENT SET instance has the same value as the number of steps in the corresponding WSP instance. Furthermore, the

number m of users in the workflow is the same as the number of vertices in the graph. ρ can be generated in quadratic time

to the size of G. There are no more than k2/2 constraints in the workflow, and UR contains m items while SA contains k
items. In general, the WSP instance can be generated from the INDEPENDENT SET instance in O(n2 + k2), where n is the

size of graph G. Hence, the reduction is a fixed-parameter reduction.

Proof to Theorem 11:WSP in R2BAC is in W [2].

3The 2
k−1 upper-bound is loose and can be improved, but it suffices to prove the result we want.

15

Proof. We can reduce WSP to the weighted satisfiability problem of decision circuits of weft 2 (denoted as WCS[2]). In the

following, we encode an WSP instance into a boolean expression that can be represented as a decision circuit of weft 2. And

the answer to the WSP instance is “yes” if and only if the answer to the WCS[2] instance is “yes”.

Given a workflowW = 〈S,¹,SA, C〉 and a configuration Γ = 〈U,UR, B〉, let S = {s1, · · · , sk} andU = {u1, · · · , un}.
We construct kn variables vi,j where i ∈ [1, k] and j ∈ [1, n]. Intuitively, setting vi,j to true corresponds to assigning user

uj to si.
Let AU(s) be the set of authorized users for step s. For every si ∈ S, we construct a clause Hsi =

∨
uj∈AU(si)

vi,j ,
which indicates that si must be performed by an authorized user. The length of such a clause is no more than n and there are

k such clauses. Note that a weight-k truth assignment satisfying these k clauses must set exactly one vi,j to true for every

i ∈ [1, k], which indicates that every step is assigned to exactly one user.

For every constraint c ∈ C, we construct clauses for c as follows. Given a set F = {f1, · · · , fm} of clauses, we define∨
F as f1 ∨ · · · ∨ fm and

∧
F as f1 ∧ · · · ∧ fm.

• When c = 〈ρ(si1 , si2)〉: Let F = {vi1,j1 ∧ vi2,j2 | uj1 ∈ AU(si1)∧ uj2 ∈ AU(si2)∧ (uj1 , uj2) ∈ ρ}. We construct a

clause Hc =
∨
F , which indicates that si1 and si2 must be performed by a pair of authorized users that satisfies ρ.

• When c = 〈ρ(s, ∃X)〉: Without loss of generality, assume that c = 〈ρ(s0, ∃{s1, · · · , sm})〉. For every i ∈ [1,m], let

Fi = {v0,j1 ∧vi,j2 | uj1 ∈ AU(s0)∧uj2 ∈ AU(si)∧(uj1 , uj2) ∈ ρ}. We construct a clause Hc =
∨
F1∨· · ·∨

∨
Fm,

where
∨
Fi indicates that s0 and si must be performed by a pair of authorized users that satisfies ρ.

• When c = 〈ρ(s, ∀X)〉: Without loss of generality, assume that c = 〈ρ(s0, ∀{s1, · · · , sm})〉. For every i ∈ [1,m], let

Fi = {v0,j1 ∧vi,j2 | uj1 ∈ AU(s0)∧uj2 ∈ AU(si)∧(uj1 , uj2) ∈ ρ}. We construct a clause Hc =
∨
F1∧· · ·∧

∨
Fm,

where
∨
Fi indicates that s0 and si must be performed by a pair of authorized users that satisfies ρ.

Let F = {Hsi | si ∈ S} ∪ {Hc | c ∈ C}. H =
∧
F is a clause encoding the WSP instance in the sense that H has a

weight-k satisfying truth assignment if and only if W is satisfiable under Γ. H can be represented by a decision circuit using

a large “∧” gate that connects a number of large “∨” gates that connect either a number of variables or a number of small

“∧” gates, each of which connects two variables. The decision circuit is thus a weft 2 decision circuit.

In the above reduction, the number of step in the WSP instance is the same as the weight k of the corresponding WCS[2]
instance. There are k Hs clauses, each of which has length no more than n, where n is the size of the WSP instance. And

there are n Hc clauses, each of which has length no more than kn2. Hence, the construction of the decision circuit can be

done in O(kn3). Therefore, the above reduction is a fixed-parameter reduction and WSP is in W [2].

C Background on Oracle Turing Machines and Polynomial Hierarchy

Oracle Turing Machines An oracle Turing machine, with oracle L, is denoted as ML. L is a language. ML can use

the oracle to determine whether a string is in L or not in one step. More precisely, ML is a two-tape deterministic Turing

machine. The extra tape is called the oracle tape. ML has three additional states: q? (the query state), and qyes and qno (the

answer states). The computation of ML proceeds like in any ordinary Turing machine, except for transitions from q?. When

ML enters q?, it checks whether the contents of the oracle tape are in L. If so, ML moves to qyes . Otherwise, ML moves to

qno . In other words, ML is given the ability to “instantaneously” determine whether a particular string is in L or not.

Polynomial Hierarchy The polynomial hierarchy provides a more detailed way of classifying NP-hard decision problems.

The complexity classes in this hierarchy are denoted by ΣkP,ΠkP,∆kP, where k is a nonnegative integer. They are defined

as follows:

Σ0P = Π0P = ∆0P = P,

and for all k ≥ 0,

∆k+1P = P
ΣkP,

Σk+1P = NP
ΣkP,

Πk+1P = co-Σk+1P = coNP
ΣkP.

Some classes in the hierarchy are

∆1P = P , Σ1P = NP , Π1P = coNP,

∆2P = P
NP, Σ2P = NP

NP,

Π2P = coNP
NP.

16

D Proofs in Section 5.1

Proof to Theorem 14: CRCP is PSPACE-complete.

Proof. The two-person game of decremental resiliency has the following two properties, which indicates that it can be solved

in PSPACE.

1. The number of rounds is bounded by a polynomial in the size of the input. In particular, the game must come to a

conclusion after at most k rounds, where k is the number of steps in the workflow.

2. Given an intermediate state, which consists of a partial plan, the set of remaining users and the set of unfinished steps,

there is a polynomial-space algorithm that constructs all possible combinations of actions of the two users in the next

round, and determines if the game is over.

To show PSPACE-hardness, we reduce the PSPACE-complete QUANTIFIED SATISFIABILITY (or QSAT) problem to

CRCP. In the QSAT, we are given a boolean expression φ in conjunction normal form (CNF), with boolean variables

x1, · · · , xm. Is it true that there is a truth value for x1 such that for both truth value of x2 there exists a truth value for x3,

and so on up to xm, φ is satisfied by the overall truth assignment? In other words,

∃x1
∀x2
∃x3
· · ·Qxmφ?

where Q is “exists” if m is odd, or “for all” if m is even. Without loss of generality, we assume that m is odd.

The QSAT problem can be modeled as a two-person game, in which Player 1 and Player 2 control the truth assignment

of variables in {xi | i ∈ [1,m] ∧ i is odd} and {xj | j ∈ [1,m] ∧ j is even}, respectively. Player 1 tries to satisfy φ, while

Player 2 tries to prevent this.

Given a QSAT instance ∃x1
∀x2
∃x3
· · · ∃xmφ where φ = φ1 ∧ · · · ∧ φk, we construct a CRCP instance. The detailed

construction of the CRCP instance is given in Figure 2.

Next, we prove that the answer to the CRCP instance is “yes” if and only if the answer to the QSAT instance is “yes”.

In the constructed workflow W = 〈S,¹,SA, C〉, S consists of three parts A, B and D. Steps in A determine truth values

of variables x1, · · · , xm. Intuitively, assigning user ui (or vi) to ai represents setting xi to “true” (or “false”). Steps in B
correspond to the k clauses in φ. Steps in D are used to restrict the behaviors of the two players.

We need to to prove the following four claims.

1. For every even number i ∈ [1,m], Player 2 should remove either ui or vi right after the execution of ai−1. In other

words, Player 2 controls the user-step assignment for steps in {ai | ai ∈ A ∧ i is even}.

2. For every step ai ∈ A, Player 1 should assign either ui or vi to ai, when Player 2 plays optimally.

3. If Player 1 plays optimally, then steps in D can always be completed.

4. If both players play optimally, all steps in B can be completed if and only if the truth assignment of boolean variables

x1, · · · , xm corresponding to the user-step assignment of steps in A satisfies φ.

If Claim 1 and Claim 2 are true, then Player 1 and Player 2 control the truth assignment of variables in {xi | i ∈
[1,m]∧ i is odd} and {xj | j ∈ [1,m]∧ j is even}, respectively. If Claim 3 and Claim 4 are true, then the workflow instance

can be completed if and only if φ is satisfied by the truth assignment. In general, the answer to the CRCP instance is “yes” if

and only if the answer to the QSAT instance is “yes”.

The proofs to the four claims are listed as follows.

Proof to Claim 1: First of all, since the total number of absent users is bounded by t, Player 2 should not remove any of

those users with t + 1 copies. Users in {ui, vi | i ∈ [1,m] ∧ i is even} are unique and are the only users with less than than

t+ 1 copies.

Secondly, given an even number i, if Player 2 removes both ui and vi, then there must exist an even number j ∈ [1,m]
such that both uj and vj are available throughout the game, as Player 2 can remove at most (m − 1)/2 users. In this case,

Player 1 can assign u′ to all remaining even steps in A as well as all steps in B, and then assign uj to d1 and vj to d2. Such

an assignment complete the workflow without violating any constraint. Player 1 wins. Therefore, Player 2 should remove

either ui or vi for every even number i.
Finally, we would like to point out that Player 2 should remove ui or vi before the execution of ai, where i is a even

number. If Player 2 does this after the execution of ai, then Player 1 gains advantage by being able to choose between ui and

vi for ai. However, removing ui or vi after ai does not affect future user-step assignment, as it is pi and qi rather than ui and

vi that will be performing steps in B.

17

Proof to Claim 2: The statement is true when i is odd, since ui and vi are the only users authorized to perform ai. In the

following, we only discuss the case when i is even.

From Claim 1, when Player 2 plays optimally, he/she removes either ui or vi for every even number i ∈ [1,m]. Given an

even number i, without loss of generality, assume that Player 2 removes ui. In this case, Player 1 may either assign vi or u′

to ai. If, by contradiction, Player 1 assigns u′ to ai, then according to constraint 〈ρ1(d1, ∀Aeven)〉, Player 1 cannot assign

v′ to d1 as (v′, u′) ∈ ρ1. Thus, Player 1 has to choose a certain uj or vj for d1, where j is even. By the time d1 is to be

executed, either uj or vj must have been removed by Player 2. Without loss of generality, assume that uj is available and is

thus assigned to d1. According to 〈ρ2(d2, d1)〉, Player 1 has to assign vj to d2, but vj is not available. Hence, d2 cannot be

completed and Player 1 losses. Therefore, Player 1 must not assign u′ to ai when Player 2 plays optimally. The only choice

for Player 1 is to assign vi to ai.

Proof to Claim 3: We have shown that if Player 2 does not follow the strategy in Claim 1, then Player 1 can complete all

steps in the workflow. When both players play optimally, according to Claim 1 and Claim 2, only users in {ui, vi | i ∈ [1,m]}
are assigned to steps in A. In this case, Player 1 can assign v′ to d1 and u′ to d2 without violating any constraints.

Proof to Claim 4: From Claim 1 and Claim 2, when both players play optimally, only users in {ui, vi | i ∈ [1,m]} are

assigned to steps inA. For any bj ∈ B, according to constraint 〈ρ0(bj , ∃A)〉, u′ cannot be assigned to bj , as (u′, ui), (u
′, vi) 6∈

ρ0. Furthermore, pi and qi correspond to ui and vi respectively according to ρ0. From the construction of SA and UR, pi
(or qi) is authorized to perform bj if and only if setting xi to true (or false) satisfies clause φj . Hence, Player 1 can assign a

user to bj if and only if the truth assignment determined by the user-step assignment of steps in A satisfies φj . In general, all

steps in B can be completed if and only if φj is satisfied for every j ∈ [1, k], which indicates that φ is satisfied.

Proof to Theorem 15: DRCP is PSPACE-complete.

Proof. The proof that DRCP is in PSPACE is similar to the case of CRCP. In the following, we only prove that the problem

is PSPACE-hard.

We reduce the PSPACE-complete QUANTIFIED SATISFIABILITY (or QSAT) problem to DRCP. Given a QSAT in-

stance ∃x1
∀x2
∃x3
· · · ∃xmφ where φ = φ1 ∧ · · · ∧φk, we construct a DRCP instance. The detailed construction of the DRCP

instance is given in Figure 3.

We need to prove that the answer to the DRCP instance is “yes” if and only if the answer to the QSAT instance is “yes”.

In the constructed workflow W = 〈S,¹,SA, C〉, S consists of two parts A and B. Steps in A determine truth values of

variables x1, · · · , xm. Intuitively, assigning user ui (or vi) to ai represents setting xi to “true” (or “false”). Steps in B
correspond to the k clauses in φ.

First of all, it is clear that Player 2 should remove one user in each round. However, since there are two copies of ui and vi
for odd number i ∈ [1,m], and two copies of pj and qj for j ∈ [1, k], Player 2’s action only affects the user-step assignment

of ai for even number i ∈ [1,m]. Therefore, Player 1 and Player 2 has control over the user-step assignment of odd number

steps in A and even number steps in A, respectively. A user-step assignment for steps in A represents a truth assignment for

variables x1, · · · , xm.

Secondly, according to relation ρ, pi and qi correspond to ui and vi respectively. According to the construction of SA and

UR, pi (or qi) is authorized to perform bj if and only if setting xi to true (or false) satisfies clause φj . Due to the constraint

〈ρ(bj , ∃A)〉, Player 1 can assign a user to bj if and only if the truth assignment determined by user-step assignment in A
satisfies φj . Therefore, Player 1 can complete all steps in B if and only if the truth assignment satisfies φ.

In general, Player 1 can always win the game if and only if the answer to the QSAT instance is “yes”.

18

Input:

∃x1
∀x2
∃x3
· · · ∃xmφ, where φ = φ1 ∧ · · · ∧ φk

Output:

A workflow W = 〈S,¹,SA, C〉, an integer t = (m− 1)/2, a configuration Γ = 〈U,UR, {ρ0, ρ1, ρ2}〉

Construction of W and Γ:

• Steps and Step-Authorization:

S = A ∪B ∪D

We have A = {a1, · · · , am}, B = {b1, · · · , bk}, D = {d1, d2}, and a1 ¹ · · · ¹ am ¹ d1 ¹ d2 ¹ b1 ¹ · · · ¹ bk

SA = {(rai , ai) | ai ∈ A} ∪ {(rbi , bi) | bi ∈ B} ∪ {(rd1
, d1), (rd2

, d2)}

• Configuration:

U = {ui, vi, pi, qi | i ∈ [1,m]} ∪ {u′, v′}

For every odd number i in [1,m], there are t + 1 copies of ui and vi. For every j ∈ [1,m], there are t + 1 copies of pj and

qj . There are t+ 1 copies of u′ and v′ as well.

UR ={(ui, rai), (vi, rai) | i ∈ [1,m] ∧ i is odd}

∪ {(ui, rai), (vi, rai), (u
′, rai) | i ∈ [1,m] ∧ i is even}

∪ {(u′, rbi) | i ∈ [1,m]} ∪Υ1 ∪ · · · ∪Υk

∪ {(v′, rd1
)} ∪ {(ui, rd1

), (vi, rd1
) | i ∈ [1,m] ∧ i is even}

∪ {(u′, rd2
)} ∪ {(ui, rd2

), (vi, rd2
) | i ∈ [1,m] ∧ i is even}

Construction of Υi: Let Li be the set of literals in clause φi. (pj , rbi) ∈ Υi if and only if there exists a literal l ∈ Li such

that l = xj ; and (qj , rbi) ∈ Υi if and only if there exists a literal l ∈ Li such that l = ¬xj .

• Constraints:

C = {〈ρ0(bi, ∃A)〉 | i ∈ [1, k]} ∪ {〈ρ1(d1, ∀Aeven)〉, 〈ρ2(d2, d1)〉}

where Aeven = {ai | i is even}. We have

– ρ0 = {(pi, ui), (qi, vi) | i ∈ [1,m]} ∪ {(u′, u′)}

– ρ1 = {(v′, u′)}

– ρ2 = {(ui, vi), (vi, ui) | i is even} ∪ {(u′, v′)}.

Figure 2. Generating a CRCP instance for a QSAT instance.

19

Input:

∃x1
∀x2
∃x3
· · · ∃xmφ, where φ = φ1 ∧ · · · ∧ φk

Output:

A workflow W = 〈S,¹,SA, C〉, an integer t = 1, a configuration Γ = 〈U,UR, {ρ}〉

Construction of W and Γ:

• Steps and Step-Authorization:

S = A ∪B

We have A = {a1, · · · , am}, B = {b1, · · · , bk}, and a1 ¹ · · · ¹ am ¹ b1 ¹ · · · ¹ bk

SA = {(rai , ai) | ai ∈ A} ∪ {(rbi , bi) | bi ∈ B}

• Configuration:

U = {ui, vi, pi, qi | i ∈ [1,m]}

For every odd number i in [1,m], there are 2 copies of ui and vi. For every j ∈ [1,m], there are 2 copies of pj and qj .

UR = {(ui, rai), (vi, rai) | i ∈ [1,m]} ∪Υ1 ∪ · · · ∪Υk

Construction of Υi: Let Li be the set of literals in clause φi. (pj , rbi) ∈ Υi if and only if there exists a literal l ∈ Li such

that l = xj ; and (qj , rbi) ∈ Υi if and only if there exists a literal l ∈ Li such that l = ¬xj .

• Constraints:

C = {〈ρ(bi, ∃A)〉 | i ∈ [1, k]}

where ρ = {(pi, ui), (qi, vi) | i ∈ [1,m]}

Figure 3. Generating a DRCP instance for a QSAT instance.

20

