
CERIAS Tech Report 2007-20

DYNAMIC CRYPTOGRAPHIC HASH FUNCTIONS

by William Speirs

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

DYNAMIC CRYPTOGRAPHIC HASH FUNCTIONS

A Thesis

Submitted to the Faculty

of

Purdue University

by

William Robert Speirs II

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2007

Purdue University

West Lafayette, Indiana

ii

To my parents,

Jeffrey and Ellen

iii

ACKNOWLEDGMENTS

First and foremost I would like to thank my adviser, Samuel S. Wagstaff, Jr.

His advice, guidance, and patience helped me to gain a deeper understanding of

the field of cryptography and research in general. I would also like to thank only

one of my committee members Eugene Spafford for supporting me and my efforts to

complete this Ph.D. A special thanks to Bart Preneel (Katholieke Universiteit Leuven)

for providing early ideas and agreeing to be part of my preliminary examination

committee. I would also like to thank Moses Liskov (The College of William and

Mary) for providing me with valuable insight and comments towards the end of my

work.

Thanks to The Center for Education and Research in Information Assurance and

Security (CERIAS) and the Computer Science faculty and staff of Purdue University

for providing me with all the necessary resources and an environment that allowed

me to complete this work. A special thanks goes to the Pikewerks Corporation and

the Air Force Research Laboratory for providing me with funding to accomplish

additional research not directly related to this dissertation.

Finally, I would like to thank my family and friends. My family has always

shown me unconditional support through sometimes tumultuous periods and always

encouraged me to pursue this degree. My friends always supported me and endured

my sometimes negative discourse about this dissertation. A special thanks goes to

my roommates Barry Wittman and Armand Navabi who were always there to humor

my ideas and help me especially in those final trying weeks; stick with it guys.

“This thesis is dedicated to all the professors that wanted to see me fail,

to all the companies that supported me while I was trying to make some

money to support my daughter, and all the graduate students in the strug-

gle.” – Christopher George Latore Wallace (modified)

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABBREVIATIONS . x

ABSTRACT . xi

1 Introduction . 1

1.1 A Brief History of Cryptographic Hash Functions 1

1.2 Current Applications of Cryptographic Hash Functions 3

1.3 Motivation for Dynamic Hash Functions 5

1.4 Scope of This Dissertation . 6

1.4.1 Message Authentication Codes 7

1.5 Contributions of This Dissertation . 8

1.6 Organization of This Dissertation . 9

1.7 Notation . 10

2 Traditional Cryptographic Hash Functions 13

2.1 Function Families . 15

2.2 Adversarial Model . 16

2.3 Methods for Defining Security Properties 17

2.3.1 Experiment Descriptions . 18

2.3.2 The Fixed and Asymptotic Frameworks 19

2.4 Formal Definitions of Security Properties 20

2.4.1 Preimage Resistance . 20

2.4.2 Second Preimage Resistance 21

2.4.3 Collision Resistance . 22

2.5 Notions of Security . 23

v

Page

2.5.1 Preimage Resistance . 24

2.5.2 Second Preimage Resistance 26

2.5.3 Collision Resistance . 27

2.5.4 Implications Between Notions of Security 27

3 Dynamic Cryptographic Hash Functions 29

3.1 Background and Introduction . 29

3.2 Definition of a Dynamic Cryptographic Hash Function 30

3.3 Traditional Properties for Dynamic Hash Functions 32

3.4 Dynamic Versions of the Traditional Properties 35

3.5 Properties Without Traditional Analogs 40

3.5.1 Security Parameter Collision Resistance 41

3.5.2 Digest Resistance . 42

3.6 Implications Between Security Properties 44

3.7 Notions of Security . 49

3.7.1 Implications Between Notions of Security 52

3.8 Using Dynamic Hash Functions in Practice 54

3.8.1 Expected Security for an Ideal Dynamic Hash Function 54

3.8.2 Choosing the Right Security Parameter 56

4 Cryptographic Hash Function Constructions 58

4.1 The Merkle-Damg̊ard Construction 59

4.1.1 Proofs for Preimage Resistance and Collision Resistance . . . 60

4.2 Attacks Against the Merkle-Damg̊ard Construction 63

4.2.1 The Birthday Attack . 64

4.2.2 The Length Extension Attack 65

4.2.3 The Multi-Collision Attack . 65

4.2.4 Herding Attack . 68

4.2.5 Long Message Second Preimage Attack 70

4.2.6 Fixed Point Attack . 72

vi

Page

4.3 New Constructions . 73

4.3.1 The Wide-Pipe Hash and Double-Pipe Hash 73

4.3.2 Prefix-Free Merkle-Damg̊ard 76

4.3.3 Enveloped Merkle-Damg̊ard 78

4.3.4 The Hash Iterative Framework 79

4.3.5 Randomized Hashing: RMX 82

4.3.6 3C and 3C-X . 83

5 A Dynamic Hash Function Construction 87

5.1 Construction Description . 88

5.1.1 Initial Value Creation . 90

5.1.2 Message Processing . 90

5.1.3 Message Padding . 91

5.1.4 Digest Creation . 92

5.1.5 Security Parameter Bounds 93

5.2 The Security of This Construction . 93

5.2.1 Dynamic Preimage Resistance 97

5.2.2 Dynamic Collision Resistance 100

5.2.3 Security Parameter Collision Resistance 104

5.2.4 Digest Resistance . 105

5.3 Expanding the Digest Size Beyond 4n 106

5.4 Additional Properties . 108

5.5 Provisions for Adding Salt . 109

5.6 Preventing the Multi-Collision Attack 110

5.7 Implementation Issues . 111

5.7.1 Speed Comparison . 112

6 Summary . 114

6.1 Conclusion . 114

6.2 Future Work . 115

vii

Page

LIST OF REFERENCES . 117

A Additional Experiments for Dynamic Hash Function Security Properties . . 124

B Birthday Attacks . 127

B.1 Preimage . 127

B.2 Collision . 128

B.3 k-Collisions . 129

VITA . 131

viii

LIST OF TABLES

Table Page

1.1 Symbols and their description. 11

1.2 Variables and their description. 12

2.1 The seven notions of security for traditional hash functions. 24

5.1 The relative speed of the dynamic hash function construction. 112

ix

LIST OF FIGURES

Figure Page

2.1 Preimage resistance experiment. 21

2.2 Second preimage resistance experiment. 22

2.3 Collision resistance experiment. 23

2.4 Notions of preimage resistance. 25

2.5 Notions of second preimage resistance. 26

3.1 Preimage resistance experiment for dynamic hash functions. 33

3.2 Second preimage resistance experiment for dynamic hash functions. . 33

3.3 Collision resistance experiment for dynamic hash functions. 34

3.4 Dynamic preimage resistance experiment. 36

3.5 Dynamic second preimage resistance experiment. 37

3.6 Dynamic collision resistance experiment. 39

3.7 Security parameter collision resistance experiment. 41

3.8 Digest resistance experiment. 43

3.9 Implications between security properties for dynamic hash functions. 47

3.10 Notions of preimage resistance for dynamic hash functions. 50

3.11 Notions of second preimage resistance for dynamic hash functions. . . 50

3.12 Notions of dynamic preimage resistance. 51

3.13 Notions of dynamic second preimage resistance. 51

3.14 Notions of digest resistance. 52

3.15 Implications between notions of security for dynamic hash functions. . 53

4.1 The Merkle-Damg̊ard Construction. 59

4.2 The 3C construction without padding for zi. 84

5.1 The dynamic hash function construction. 89

5.2 Cross collisions built up through multiple iterations. 96

x

ABBREVIATIONS

Pre, Sec and Col are used for both traditional and dynamic hash

functions; context will disambiguate.

Pre Preimage Resistance

Sec Second Preimage Resistance

Col Collision Resistance

PCol Security Parameter Collision Resistance

Dig Digest Resistance

sSec Strong Second Preimage Resistance

sCol Strong Collision Resistance

dPre Dynamic Preimage Resistance

dSec Dynamic Second Preimage Resistance

dCol Dynamic Collision Resistance

wdPre Weak Dynamic Preimage Resistance

wdSec Weak Dynamic Second Preimage Resistance

wdCol Weak Dynamic Collision Resistance

sdPre Strong Dynamic Preimage Resistance

sdSec Strong Dynamic Second Preimage Resistance

sdCol Strong Dynamic Collision Resistance

wPCol Weak Security Parameter Collision Resistance

sPCol Strong Security Parameter Collision Resistance

wDig Weak Digest Resistance

xi

ABSTRACT

Speirs II, William Robert Ph.D., Purdue University, May, 2007. Dynamic Crypto-
graphic Hash Functions. Major Professor: Samuel S. Wagstaff, Jr.

This dissertation introduces a new type of cryptographic hash function, the dy-

namic cryptographic hash function. Dynamic cryptographic hash functions differ from

traditional hash functions because they require a second parameter, the security pa-

rameter. The security parameter controls both the method used to calculate a digest

and the size of the digest produced. Dynamic cryptographic hash functions are mo-

tivated by the need for a hash function that can match the level of expected security

of the protocols in conjunction with which they are used.

The properties that dictate the security of a dynamic cryptographic hash func-

tion are explored. The traditional properties of preimage resistance, second preimage

resistance, and collision resistance are modified to accommodate the security param-

eter and expanded into dynamic versions that dictate a dynamic cryptographic hash

function must be secure even if the attacker is able to choose a different security

parameter. Two additional properties are defined, security parameter collision resis-

tance and digest resistance. These properties ensure that two digests created from

the same message using different security parameters are unrelated.

Finally, the dynamic cryptographic hash function construction is presented, which

creates a dynamic cryptographic hash function from a traditional compression func-

tion. The construction is able to create digests larger than the compression function’s

output.

1

1 INTRODUCTION

Cryptographic hash functions are a necessary evil. It is almost impossible to con-

struct an efficient and secure cryptographic hash function, yet they are required for

the security of numerous protocols and systems. Recently research in cryptographic

hash functions has increased due to attacks, at all levels, against the cryptographic

hash functions currently in wide spread use. The National Institute for Standards and

Technology has opened a competition for the next cryptographic hash function stan-

dard. This dissertation provides one possible avenue for creating the next generation

of cryptographic hash function.

1.1 A Brief History of Cryptographic Hash Functions

Hash functions, in the cryptographic sense, arose from a need for one-way func-

tions. One-way functions were needed for computer login procedures, first described

by R.M. Needham [21]. The desire was for a function whose description was publicly

known, and yet calculating the inverse of the function was difficult because of some

unknown piece of information such as a key. In [21] they explain that the nonin-

vertible property required was not the standard notion of a single range point having

multiple domain points.

In [18] Ivan Damg̊ard explored claw free functions and provided formal definitions

for what it means for a function to be one-way and collision resistant. These defini-

tions were updated and the field of hash functions explored in more depth by Bart

Preneel in [59]. Preneel’s dissertation explored the formal definitions of the security

properties (preimage resistance and collision resistance) that are required for a hash

function to be considered cryptographically secure in both the information theoretic

and complexity theoretic settings. His dissertation further explored hash functions

2

based on block ciphers, hash functions based on modular arithmetic and dedicated

hash functions. The properties of Boolean functions were also discussed with respect

to hash functions. Preneel’s dissertation is one of the most complete works, to date,

of cryptographic hash functions.

The basis for constructing most dedicated hash functions is the Merkle-Damg̊ard

construction discovered independently by Ralph Merkle [49] and Ivan Damg̊ard [19] in

1989. Their construction expands a finite domain function to one of infinite domain.

Their construction changed the focus from building a secure hash function to building

a secure finite domain function.

One method for creating a finite domain function is by using a block cipher. In

1992 Lai and Massey explored creating hash functions using block ciphers [42]. This

work was systematically explored by Preneel, Govaerts and Vandewalle in [63] and

extended by Knudsen and Preneel in 1996 [38]. Black, Rogaway and Shrimpton

explored the work of [63] in their 2002 paper [10]. The result of this work is a number

of ways to construct secure finite domain functions from block ciphers, including the

most commonly used Davies-Meyer and Miyaguchi-Preneel.

Attacks against the Merkle-Damg̊ard construction began with Antoine Joux’s pa-

per on multi-collisions [35]. While other attacks such as the length extension attack

and the fixed-point attack were known before 2004, it was Joux’s paper that sparked

a series of attacks against the Merkle-Damg̊ard construction. Attacks such as the

herding attack, long message second preimage attack and others, seriously question

the continued use of the Merkle-Damg̊ard construction.

In 1989 Naor and Yung introduced the notion of Universal One-Way Hash Func-

tions [54]. This notion came from the work of Carter and Wegman who first in-

troduced universal classes of hash functions in 1977 [12]. Carter and Wegman even

commented on the cryptographic uses of such classes in 1981 [76]. A complete explo-

ration of the different notion of security with respect to cryptographic hash functions

was given by Rogaway and Shrimpton in 2004 [69]. They also explored the implica-

tions between these notions of security [69].

3

Numerous dedicated hash functions have been introduced and attacks against

most of them have been discovered. One lineage of cryptographic hash functions

stem from the Message Digest algorithms of Rivest [67] [68]. The National Institute

of Standards and Technology released modifications to MD4 as the Secure Hash Algo-

rithm. This algorithm was modified to fix “a minor technical flaw” and is now known

as SHA-1 [56]. The RIPEMD family of hash functions were developed as part of the

RIPE (RACE Integrity Primitives Evaluation) project. The successor to RIPEMD

is RIPEMD-160 [24]. Attacks against all of these functions have been published by

numerous authors, most notedly Xiaoyun Wang [74,75].

Today the security of SHA-1 is seriously questioned. Alternatives such as SHA-256

and SHA-512 exist, but are designed from the same basic principles as SHA-1 [56].

Other hash functions such as Whirlpool [65] are built using already considered secure

primitives. Currently there is no consensus as to which hash function should be used

in implementations today.

1.2 Current Applications of Cryptographic Hash Functions

Cryptographic hash functions are used in numerous ways, but their primary use

is to protect data integrity. The two settings in which a cryptographic hash function

is able to protect data integrity are with and without a secure channel. If a secure

channel exists, then the hash or digest of the data can be computed and sent via the

secure channel. The data is sent via an insecure channel and the recipient of both the

data and digest is able to recompute the digest to see if it matches the digest that

was sent.

If a secure channel does not exist, then hash functions can be used in conjunction

with signature schemes. The digest of the data is computed and signed using the

signature scheme. If the signed digest is modified during transmission through the

insecure channel, the signature will not verify. If the data is modified during trans-

4

mission, then the computed digest will not equal the digest that was signed. Signing

a digest is in some ways analogous to sending the digest via a secure channel.

Cryptographic hash functions can also be used in conjunction with a trusted third

party to provide data integrity. The two common applications of this type of use

are for commitment schemes and to ensure data corruption has not occurred during

transmission. In a commitment scheme that uses a cryptographic hash function, the

user committing to a value will compute the digest of the value and send it to a trusted

third party.1 This third party is often a newspaper or other public media. The user

committing to the value can verify that no change occurred during the publishing

stage. The user verifying the commitment is able to record the digest of the value

that has been committed. At a later stage the value is revealed and the verifier can

recompute the digest and compare it to the recorded digest.

Cryptographic hash functions can also be used to ensure that data corruption has

not been caused by a malicious or an error prone communication channel. The scheme

works by the user receiving data through some insecure or faulty communication

channel. The digest of the data is then computed and is compared to the digest of

the original data sent by the trusted third party. For example, the digest of a CD-

ROM ISO can be published on a website. After a user has downloaded the ISO, the

digest can be computed and checked against the digest posted on the website. This

scheme is similar to the commitment scheme except the goal of the scheme is slightly

different.

While the applications of hash functions explained above all rely on collision re-

sistance, applications of the one-way property of cryptographic hash functions can

be found in user authentication schemes. Passwords are stored securely on a system

by storing only their digests. Each time a user authenticates with the system the

digest of the provided password is compared with the stored digest. It is imperative

1One should note that information is possibly leaked about the value if the domain of values is
smaller than the set of possible digests.

5

that attackers are unable to reverse the digest of a password and discover the original

password.

Unfortunately, cryptographic hash functions are also often used as random num-

ber generators, pseudorandom functions, or entropy generators. Often times imple-

menters will use a cryptographic hash function to hash data in a haphazard manner

to create randomness. This type of use can be found in almost all modern operat-

ing systems such as the /dev/random device found on most Unix and Linux systems.

Most weaknesses are not due to the hash function [30]. However, using hash functions

to generate entropy is not the intended use and therefore should be used with care or

not at all.

1.3 Motivation for Dynamic Hash Functions

Creating a new class of cryptographic hash functions, dynamic cryptographic hash

functions, is advantageous for a number of reasons. First, dynamic cryptographic hash

functions have the ability to more evenly match the relative security of any protocol

or scheme with which they are used. For example, the block cipher AES (Advanced

Encryption Standard) has three different key sizes [55]. To accommodate the different

key sizes, three different2 hash functions were designed to complement the relative

level of security [56]. Instead of requiring multiple hash functions, one for each key

size of the block cipher being used, one hash function should have the ability to

produce different size digests.

This same logic applies to digital signature schemes. Most signatures schemes in

use today (RSA, DSA, or ElGamal) have the ability to select the size of the key down

to the bit. However, each of these signature schemes use a fixed size hash function to

compute the digest of the message. Instead, a hash function should be used that can

create digests of different sizes so the relative level of security is the same.3

2Actually, SHA-384 is the truncation of SHA-512 with a different initial value.
3Increasing the size of a key or digest does not always relate to increased security.

6

Second, incorporating dynamic hash functions into protocol design and implemen-

tation allows for easier changes of the function used for a given protocol. As discussed

in [6], algorithm agility is extremely important in protocol design. It is not feasible

to upgrade all of the systems used today at once. Instead of needing to implement a

new hash function when an attack is discovered, a security parameter can be changed

such that the function dynamically changes how a digest is computed.

Finally, the use of a dynamic cryptographic hash function allows designers to more

easily test functions by scaling down the number of rounds and the size of the digest

to a manageable number. Attacks can be launched against a reduced version in an

attempt to find weaknesses in the full version. This technique has been used numerous

times in the past [20,22,23], and was even suggested during the second workshop on

hash functions held by the National Institute of Standards and Technology [66].

1.4 Scope of This Dissertation

While cryptographic hash functions occupy a small sliver of cryptography, in-

side this sliver are a few different areas each addressing slightly different problems.

Because the main function of this dissertation is to present a new type of crypto-

graphic hash function, the dynamic cryptographic hash function, all aspects related

to cryptographic hash functions are not investigated.

One such area not thoroughly investigated is Message Authentication Codes. Mes-

sage Authentication Codes (or MAC) are functions that work in the same manner as

cryptographic hash functions except that they require a key. These functions are of

great importance to the subject of cryptography and even cryptographic hash func-

tions, so they are briefly covered in the following section. For a complete reference

on Message Authentication Codes, see John Black’s dissertation [9].

7

1.4.1 Message Authentication Codes

A message authentication scheme contains an algorithm (MAC) that generates

a tag for a message using a secret key.4 The algorithm is used in the following way

to provide message authentication. Say a user, Alice, wants to send a message to

Bob and provide Bob with some level of confidence that the message truly came from

Alice. Assume that Alice and Bob already share a secret key k and communicate over

a channel that has an active adversary with full control over the channel. The goal of

the adversary is to create a message and tag that appears to have come from Alice.

The goal of the adversary is not to intercept and read messages sent between Alice

and Bob. In this situation only the authenticity of the message is being protected.

Using the MAC algorithm and the secret key k, Alice is able to compute a tag

for the message: t = MAC(M, k) where t is the tag and M is the message. The tag

is then sent over an insecure channel to Bob along with the original message:

Alice→ (t,M)→ Bob.

Bob, or anyone else possessing the secret key k, is able to verify that the message

originated from Alice by recomputing the tag: MAC(M, k) = t′ and checking to

ensure that t = t′. If the adversary attempts to change either the message, tag, or

both while in transit the message authentication algorithm should ensure that t 6= t′

with a high degree of probability.

Several Message Authentication Codes have been proposed, some built upon cryp-

tographic hash functions. The two most famous MACs built upon cryptographic hash

functions are NMAC and HMAC. These are of interest to this work because they

demonstrate that a secure MAC can be created from a secure hash function [1,2,41].

The form of NMAC and HMAC are provided with no further discussion to demon-

strate how easily a MAC can be built from a cryptographic hash function. Assume

h : {0, 1}n × {0, 1}∗ → {0, 1}n is a collision resistant function that iterates over a

message M starting with an initial value IV . The cryptographic hash function is

4The key generation and verification algorithms are ignored for simplicity’s sake.

8

denoted by H(M) = h(IV,M) or H∗(K, M) = h(K, M) where K specifies the initial

value. NMAC and HMAC are then defined as follows where K = K1 ‖ K2:

NMAC(M, K1 ‖ K2) = H∗(K1, H
∗(K2, M))

HMAC(M, K1 ‖ K2) = H(K1 ‖ H(K2, M)).

HMAC is used in practice and is specified in IETF RFC [41] and NIST FIPS. The

results for NMAC can be shown to be lifted to HMAC [2], and is used in theoretical

work to prove the security of both [1].

1.5 Contributions of This Dissertation

This dissertation makes three contributions to the field of cryptographic hash

functions. First, it defines a new class of cryptographic hash functions, dynamic

cryptographic hash functions. A formal definition for a dynamic cryptographic hash

function is provided. The three security properties that make traditional hash func-

tions cryptographically secure are modified to apply to dynamic cryptographic hash

functions. Additional security properties are explored and formally defined, and im-

plications between the properties are proved.

Second, a survey of viable constructions for creating cryptographic hash functions

from compression functions is given. The constructions discussed are suggested as

replacements for or modifications to the Merkle-Damg̊ard construction. These new

constructions attempt to thwart many of the attacks against the Merkle-Damg̊ard

construction, which are also presented in this dissertation.

Finally, a construction that creates a dynamic cryptographic hash function from a

traditional compression function is described. The dynamic hash function construc-

tion is proved to have all of the security properties necessary for a dynamic hash

function to be considered cryptographically secure. The technique used to create

larger digests is also investigated.

9

1.6 Organization of This Dissertation

Chapter 2 introduces cryptographic hash functions. The chapter is titled “Tra-

ditional Cryptographic Hash Functions” only to disambiguate the information con-

tained in the chapter from dynamic cryptographic hash functions, the main focus of

this dissertation. The chapter provides a definition for a traditional cryptographic

hash function including the three main security parameters that separate crypto-

graphic hash functions from regular hash functions. The chapter continues by defin-

ing the different notions of security with respect to these three main properties, and

the implications found between these notions.

Chapter 3 introduces dynamic cryptographic hash functions. This chapter closely

mirrors Chapter 2. The definition of a dynamic hash function is given. The three

main properties that differentiate a traditional hash function from a regular hash

function are redefined to fit a dynamic hash function. The chapter includes varia-

tions on the three traditional properties that only apply to dynamic hash functions

and introduces two new security properties. All of the security properties, both new

and old, are extended to various notions of security with implications between them

explored.

Chapter 4 explores how traditional hash functions are constructed. The Merkle-

Damg̊ard construction is presented along with numerous attacks against this con-

struction. A number of new constructions are also presented that attempt to thwart

some of the attacks against the Merkle-Damg̊ard construction. Some of these con-

structions motivate many of the design decisions used in creating the dynamic cryp-

tographic hash function construction.

Chapter 5 presents the dynamic hash function construction. The construction builds

a dynamic hash function from a traditional compression function. Proofs that the

10

dynamic hash function construction possesses all of the security properties defined in

Chapter 3 are provided. An investigation into the methods for attacking the tech-

nique used to create larger digests is given.

Chapter 6 provides concluding remarks on the work and recommendations for future

work.

1.7 Notation

Throughout this dissertation certain symbols are used to aid in describing func-

tions, operations, etc. Whenever possible the symbols match that which is most

commonly used in the field. Table 1.1 lists the symbols used in this dissertation.

A number of variables are used to describe hash functions, compression functions

and messages. These variables are listed in Table 1.2 with their description. A number

of the theorems and proofs in this dissertation are modified from the originals so

that the names of all the variables are consistent throughout the dissertation. Any

variations from the naming convention is clearly noted.

In many of the theorems in this dissertation the big-Oh notation is used to denote

an expected value. This is a slight abuse of the notation; however, it is done to be

consistent with published work. At all opportunities the expected value itself is used

instead of the asymptotic bound.

11

Table 1.1
Symbols and their description.

Symbol Description

|x| If x is a binary string, the length of the string.

If x is a set, the size of the set.

Σ The binary alphabet.

Σx The set of all binary strings of length x.

Σ∗ The set of all binary strings, including the empty string.

× The Cartesian product of two sets.

N The set of natural numbers.

Pr[x] The probability of event x occurring.

AdvH(A) The adversarial advantage of adversary A against function H.

[x, y] The following set: {i ∈ N : x ≤ i ≤ y}.
x

$← y If y is a set, an element is randomly chosen from y and assigned to x.

If y is an algorithm, the algorithm is randomized and its result is x.

O The standard asymptotic upper bound.

Ω The standard asymptotic lower bound.

12

Table 1.2
Variables and their description.

Variable Description

n The output length, in bits, of a compression function.

b The block size, in bits, of a compression function.

g A compression function of the form Σn × Σb → Σn.

M The message being hashed.

l The length of the message being hashed.

M The set of all possible messages.

mi The ith message block of the message M .

k The number of message blocks in the message M .

s The security parameter of a dynamic hash function.

S The set of all possible security parameters.

d The function that determines the digest’s size.

λ The function that determines the smallest security parameter.

υ The function that determines the largest security parameter.

H A hash function; context will disambiguate its type.

D The domain of the hash function.

R The range of the hash function.

K The set of all possible keys for the hash function.

IV The initial value of a hash function construction.

hi The ith internal value of a hash function construction.

A The adversary.

t The time it takes for an adversary to run.

ε An upper limit on the adversarial advantage of an adversary.

It is desirable for t/ε to be large.

13

2 TRADITIONAL CRYPTOGRAPHIC HASH FUNCTIONS

There are numerous definitions in the literature for a cryptographic hash function,

including [19, 48, 59, 69]. While superficially these definitions are different, they all

define essentially the same type of function. For the purposes of this dissertation, a

hash function will be defined as follows.

Definition 2.0.1 (Hash Function) A hash function is a function of the form

H : Σ∗ → Σn.

This definition defines H, a hash function, as a function from binary strings of

arbitrary length to strings of a fixed length. The input to H is called a message, and

the output is called the digest of the message.

While the above definition describes what a hash function looks like, it does not

mention what is required of a hash function to be considered cryptographically secure,

making it a cryptographic hash function. There are six informal requirements for a

hash function to be considered cryptographically secure. The first three are commonly

referenced when discussing cryptographic hash functions and are formally defined

later in this chapter. All six requirements are enumerated below for completeness,

taken from [48].

1. Preimage Resistance - For essentially all pre-specified outputs, it is computa-

tionally infeasible to find any input which hashes to that output, i.e., to find

any preimage x′ such that h(x′) = y when given any y for which a corresponding

input is not known.

2. 2nd-Preimage Resistance - It is computationally infeasible to find any second

input which has the same output as any specified input, i.e., given x, to find a

2nd-preimage x′ 6= x such that h(x) = h(x′).

14

3. Collision Resistance - It is computationally infeasible to find any two distinct

inputs x, x′ which hash to the same output, i.e., such that h(x) = h(x′).1

4. Non-Correlation - Input bits and output bits should not be correlated. Related

to this, an avalanche property similar to that of good block ciphers is desir-

able whereby every input bit affects every output bit. [28] (This rules out hash

functions for which preimage resistance fails to imply 2nd-preimage resistance

simply due to the function effectively ignoring a subset of input bits.)

5. Near-Collision Resistance - It should be hard to find any two inputs x, x′ such

that h(x) and h(x′) differ in only a small number of bits.

6. Partial-Preimage Resistance or Local One-Wayness - It should be as difficult to

recover any substring of x as to recover the entire input x, given h(x). Moreover,

even if part of the input is known, it should be difficult to find the remainder

(e.g., if t input bits remain unknown, it should take on average 2t−1 hash oper-

ations to find these bits.)

Unfortunately, precise definitions for “essentially all” and “pre-specified outputs”

do not exist in these definitions. Section 2.4 provides formal definitions for preimage

resistance, second preimage resistance, and collision resistance. In Section 2.5 the

definitions in Section 2.4 are expanded to seven notions of security for preimage

resistance, second preimage resistance and collision resistance.

The final requirement of a cryptographic hash function does not deal with security

but practical application. A cryptographic hash function must be easy and quick to

compute. The difference between the time required to read data from a disk and

computing the digest while doing so should be negligible. This requirement usually

rules out number theoretic functions because of their high cost of computing.

1There is a free choice in both x and x′ by the adversary.

15

2.1 Function Families

The informal definitions for preimage resistance, second preimage resistance, and

collision resistance given in [48] are somewhat difficult to describe formally. Before

defining preimage resistance, second preimage resistance and collision resistance, a

hash function family must be defined. The reason is that one could imagine a proba-

bilistic polynomial time algorithm which has two messages encoded in the algorithm

for a specific hash function. This algorithm can be used to compute a collision for

the hash function. The algorithm simply outputs the two messages that cause a col-

lision [62]. Creating such an algorithm is extremely difficult, but once constructed

it would run in polynomial time. However, defining a function family as an infinite

family of finite sets of hash functions prevents such an algorithm from succeeding for

all hash functions in the family, because there are infinitely many. The definition of

a hash function family that follows is taken, in modified form, from [5,18,50,59,69].

Let D = Σl, or the domain of the function. Let R = Σn, or the range of the

function. Let K be the set of all possible keys.2 Therefore, for a hash function family

H, each hash function is of the form H : K ×D → R or Hk : D → R.

Definition 2.1.1 (Hash Function Family) A hash function family H is a infinite

set of functions where each function in the family is indexed by a key K, and each

function is of the form

HK : Σl → Σn.

There are three requirements imposed on the hash function family H [18, 59].

1. H is accessible, that is, there is a probabilistic polynomial time algorithm, that

on input K outputs an instance HK .

2. D is samplable, that is, there is a probabilistic polynomial time algorithm, that

selects an element uniformly from D.

2Theoretically this set is infinite. In practice it is finite.

16

3. HK is polynomial time computable, that is, there is a polynomial time algorithm

(polynomial in l) that on input M ∈ D computes HK(M).

To clarify the definition of a hash function family, SHA-1 [56] is used as an exam-

ple. First, it is important to note that SHA-1 is a single instance of a hash function,

not a family. However, SHA-1 can be modified to construct a finite family of func-

tions. In [5] SHA-1 is modified such that the key specifies the constants used in the

four round functions. In this case the size of the key is 128 bits in length, 4 32-bit

words. Therefore, K = Σ128, D = Σ264
and R = Σ160.3

One should note that an instance of a hash function family does not directly

correlate with the definition of a hash function given. The form of a hash function in

Definition 2.0.1 is H : Σ∗ → Σn; whereas, an instance of a hash function in Definition

2.1.1 is HK : Σl → Σn. This is done because for all of the security properties it is

required that the domain be uniformly sampled in polynomial time [50]. A family

H can always be constructed with an appropriate size domain to accommodate any

message because all the strings in Σ∗ are finite.

2.2 Adversarial Model

Before defining the properties that a hash function must possess to be crypto-

graphically secure, an adversarial model must be constructed. Without an appro-

priate adversarial model it is impossible to tell if a given hash function possesses a

security property or not. The adversarial model used in this dissertation is a RAM

model similar to the one found in [69] and [60]. The adversary is a program, in

some fixed programming language, that runs on the RAM model. The adversary, or

program, can take any number of inputs.

There are three important features of this adversarial model. First, the RAM

model has pointers. Pointers allow the adversary to query the ith bit of some argument

x by writing (i, x) in some distinguished register. The result of this query is returned

3The specification of SHA-1 is modified slightly to only accept strings that are up to 264 bits in
length.

17

in unit time. This prevents artificially slow adversaries that might need to read

through an extremely long input discarding all but the last bit, for example.

Second, the RAM model has random bits the adversary can access. This is much

the same as a probabilistic Turing machine traditionally used in cryptography [60].

Random bits allow the adversary to be a randomized algorithm. Access to a random

integer in the range [1, n] requires the expected time, Θ(log n).

Third, the adversary has access, in unit time, to the hash function it is designed to

break. For example, if the adversary needs to compute the digest of a given message,

this is performed by the RAM model in unit time. This prevents constructing a

“secure” hash function by simply requiring the hash function to take exponential

time to compute a single digest. The same is true for any underlying piece of the

hash function, such as a compression function. This allows for a flexible adversary

that is not inhibited by time consuming hash functions.

The resource used to determine the success of an adversary is time, t. An adver-

sary is considered successful if it returns the correct result, as determined by some

experiment, in the time allowed. To prevent time-memory trade-offs, a common trick

used to break cryptographic functions, the running time of the adversary is computed

as the running time of the program, plus the size of the program. This prevents an

adversary that stores the precomputed values for all domain and range points for a

given function. In this model the same amount of time is required for an adversary

to build the table as to store it in the program.

2.3 Methods for Defining Security Properties

With an adversarial model fixed, a method for defining the security properties

must be chosen. There are three ways to define a given security property with slight

variations for each method. The first method was used by Preneel [59] and Damg̊ard

[18] to define one-way functions (preimage resistant) and collision resistant functions.

The definitions are formed in a complexity theoretic framework where an adversary

18

is defined that attacks a certain property of the function. For example, to define

one-way functions, an adversary A is described that takes as input Hk(M) ∈ R and

outputs A(HK(M)) ∈ D. Then a description of how successful an adversary can be

is given in relation to some polynomial Q as follows:

Pr
[

HK(A(HK(M))) = HK(M)
]

<
1

Q(n)
.

The main problem with this type of a definition is that it does not explicitly state

how each piece is selected. In the above example, as with the definition in [59] there is

no mention how the hash function is selected from the function family or the message

from the set of possible messages. As described in Section 2.5, the way in which the

function is selected changes the notion of security that is considered. For this reason

this type of definition was not used.

The other two methods for defining properties are very similar. Both describe

the property being defined in two parts: an experiment and a description of the

success of an adversary. The experiment describes precisely what is required of an

attacker and how each piece of the experiment is chosen. This allows for numerous

notions of security such as those where the function is specified or chosen at random.

The difference between the two methods lies in the description of the success of the

adversary. In the fixed parameter framework, parameters for time and the adversarial

advantage are given. On the other hand, in the asymptotic framework the values

for time and the adversarial advantage are related to the output size of the hash

function. It is for this reason that the asymptotic framework is used to describe all

of the properties required by traditional hash functions and dynamic hash functions.

2.3.1 Experiment Descriptions

Experiments describe the steps taken by an adversary and the environment for a

particular security property with respect to a hash function. Experiments are param-

eterized by the adversary, and possibly another parameter, so that the same experi-

ment can be used to describe the success of any adversary. The notation ExpXXX

H (A)

19

labels the experiment describing property XXX using hash function H and adversary

A.

Each step in the experiment description is performed sequentially. If a step does

not involve the adversary it is assumed that the step is performed by the environment.

The adversary only has knowledge of those values explicitly passed as inputs. The

result of an experiment is binary. If the adversary is able to satisfy the condition

in the experiment, then a one (1) is returned. If the adversary fails to satisfy the

condition, then a zero (0) is returned.

2.3.2 The Fixed and Asymptotic Frameworks

As mentioned above, the description of how successful an adversary is can be

described in two ways. The first method is with fixed parameters for both time

and the adversarial advantage. The fixed parameter framework dictates that for all

adversaries that run in time less than t, the adversarial advantage AdvXXX

H (A) must

be less than ε for the function to posses the property XXX described by experiment

ExpXXX

H (A). The t and ε are usually not defined in the fixed parameter framework.

The fixed parameter framework is often used to compare the relative values for t and

ε for different security properties. For this reason the fixed parameter framework was

chosen for this dissertation. Using the fixed parameter framework allows definitions

for traditional and dynamic hash functions to be compared. Also, it allows for notions

of security to be discussed.

The asymptotic framework describes the success of an adversary related to the

output size of the hash function. Because the upper bound on the amount of work

needed to break any security property is dictated by the output size of the hash

function, it is natural to relate the success of the adversary to the output size of the

function. In the asymptotic framework it is required that t/ε be as large as possible

and yet t/ε ≤ 2n.4 Taken to the extreme, if there is an almost zero advantage

4For collision resistance, t/ε ≤ 2n/2.

20

by the adversary, ε ≈ 0, then t ≈ 2n for preimage resistance and t ≈ 2n/2 for

collision resistance. The trade-off between time and adversarial advantage should be

determined by the application in which the function is being used. However, in the

general case it is desirable for t/ε = 2n for preimage resistance and t/ε = 2n/2 for

collision resistance.

2.4 Formal Definitions of Security Properties

The properties a hash function must possess to be considered cryptographically

secure are defined by experiments. These experiments define a series of steps taken

by the environment. The result of each experiment is either a 1 or 0. A 1 denotes a

successful experiment. Stated differently, a result of 1 means that an adversary was

able to successfully attack the property the experiment tests. A result of 0 denotes

the failure of an adversary to successfully attack the property. While not explicitly

stated for each definition, the experiment is carried out multiple times using the same

adversary. The probability is the average of the results unless otherwise noted.

The advantage an adversary has over a generic or brute force attack is called the

adversarial advantage. For an adversary A, a function family H, and a property XXX,

the adversarial advantage is denoted by: AdvXXX

H (A).

2.4.1 Preimage Resistance

The formal definition for a preimage resistant hash function family is constructed

using the experiment from Figure 2.1. A hash function family is preimage resistant

if inverting more than a negligible fraction of the domain points is a hard problem.

Definition 2.4.1 formally defines preimage resistance.

21

Experiment ExpPre
H (A)

K
$← K

M1
$←M

Y ← HK(M1)

M2
$← A(K, Y)

if(Y = HK(M2))

return 1

else

return 0

Figure 2.1. Preimage resistance experiment.

Definition 2.4.1 (Preimage Resistant Hash Function Family) A hash function

family H is (t, ε)-preimage resistant if AdvPre
H (A) < ε for all adversaries A with a

running time less than t, where

AdvPre
H (A) = Pr

[

ExpPre
H (A) = 1

]

,

and the probability is taken over all K ∈ K, M ∈M and the random choices of A.

Definition 2.4.1 formally defines what it means for a preimage resistant hash func-

tion family to be “hard to invert for essentially all pre-specified outputs”.

2.4.2 Second Preimage Resistance

A hash function family is second preimage resistance if given a digest and a mes-

sage, it is a hard problem to find a second message that hashes to the same digest. It

has been shown in numerous places ([69], [48], etc) that collision resistance, explained

next, implies second preimage resistance. The formal definition for a second preimage

resistant hash function family is constructed using the experiment from Figure 2.2.

22

Experiment ExpSec
H (A)

K
$← K

M1
$←M

Y ← HK(M1)

M2
$← A(K, M1, Y)

if(Y = HK(M2) and M1 6= M2)

return 1

else

return 0

Figure 2.2. Second preimage resistance experiment.

Definition 2.4.2 (Second Preimage Resistant Hash Function Family) A hash

function family H is (t, ε)-second preimage resistant if AdvSec
H (A) < ε for all adver-

saries A with a running time less than t, where

AdvSec
H (A) = Pr

[

ExpSec
H (A) = 1

]

,

and the probability is taken over all K ∈ K, M ∈M and the random choices of A.

Definition 2.4.2 states exactly how hard it is to find “any second input which hash

the same output as any specific input”.

2.4.3 Collision Resistance

A hash function family is collision resistant if finding two different messages that

hash to the same digest is a hard problem. The formal definition for a collision

resistant hash function family is constructed using the experiment from Figure 2.3.

23

Experiment ExpCol
H (A)

K
$← K

(M1, M2)
$← A(K)

if(HK(M1) = HK(M2) and M1 6= M2)

return 1

else

return 0

Figure 2.3. Collision resistance experiment.

Definition 2.4.3 (Collision Resistant Hash Function Family) A hash function

family H is (t, ε)-collision resistant if AdvCol
H (A) < ε for all adversaries A with a run-

ning time less than t, where

AdvCol
H (A) = Pr

[

ExpCol
H (A) = 1

]

,

and the probability is taken over all K ∈ K and the random choices of A.

Definition 2.4.3 states exactly how hard it is to find “any two distinct inputs which

hash to the same output”.

2.5 Notions of Security

In each definition if the probability of success is maximized, instead of averaged,

over some parameter in the experiment, then the definition can be expanded into

several notions of security. Seven notions of security can be defined with respect

to preimage resistance, second preimage resistance and collision resistance. These

seven notions are summarized in Table 2.1. The prefix a or e represents always or

everywhere respectively.5 If a function family is secure for any fixed function, then

5These terms are taken from [69].

24

Table 2.1
The seven notions of security for traditional hash functions [69].

Name Given Aliases

Pre Random H, Random H(M) One-Way-Function

aPre Fixed H, Random H(M)

ePre Random H, Fixed H(M)

Sec Random H, Random M Weak Collision Resistance

aSec Fixed H, Random M

eSec Random H, Fixed M Universal One-Way-Function

Col Random H Strong Collision Resistance

it is always secure. If a function family is secure for any fixed challenge, then it is

everywhere secure.

2.5.1 Preimage Resistance

Using Definition 2.4.1 as the basis, the different notions of preimage resistance are

defined as follows, taken from [69]. The experiments for the notions of always and

everywhere are defined in Figure 2.4.

Definition 2.5.1 (Always Preimage Resistant) A hash function family H is

(t, ε)-always preimage resistant if AdvaPre
H (A) < ε for all adversaries A with a running

time less than t, where

AdvaPre
H (A) = max

K∈K

{

Pr
[

ExpaPre
H (A, K) = 1

]}

,

and the probability is maximized over all K ∈ K for each M ∈ M and the random

choices of A.

Always preimage resistant, aPre, is a stronger notion of security than preimage

resistant. Always preimage resistant relates to a particular hash function such as

25

Experiment ExpaPre
H (A, K) Experiment ExpePre

H (A, Y)

M1
$←M K

$← K
Y ← HK(M1) M

$← A(K, Y)

M2
$← A(K, Y) if(Y = HK(M))

if(Y = HK(M2)) return 1

return 1 else

else return 0

return 0

Figure 2.4. Notions of preimage resistance.

SHA-1, where the key is fixed. The difference between aPre and Pre is that the

probability is not averaged over all K ∈ K and M ∈ M. Instead the probability is

taken over all M ∈M for each K ∈ K and only the maximum probability is used as

the measure of how secure the function is.

Definition 2.5.2 (Everywhere Preimage Resistant) A hash function family H
is (t, ε)-everywhere preimage resistant if AdvePre

H (A) < ε for all adversaries A with a

running time less than t, where

AdvePre
H (A) = max

Y ∈R

{

Pr
[

ExpePre
H (A, Y) = 1

]}

,

and the probability is maximized over all Y ∈ R for each K ∈ K and the random

choices of A.

Everywhere preimage resistant relates to finding the preimage of a particular di-

gest. One should note that instead of selecting a message to generate the digest, all

digests (range points) are considered, even those that might not be the image of a

message. For ePre, probabilities are calculated over all K ∈ K for each Y ∈ R.

26

2.5.2 Second Preimage Resistance

Based on Definition 2.4.2, the different notions of second preimage resistance are

defined as follows using the experiments from Figure 2.5. These notions are analogous

to the those for preimage resistance, but apply to second preimage resistance.

Experiment ExpaSec
H (A, K) Experiment ExpeSec

H (A, M1)

M1
$←M K

$← K
Y ← HK(M1) Y ← HK(M1)

M2
$← A(K, M1) M2

$← A(K, M1)

if(Y = HK(M2)) if(Y = HK(M2))

return 1 return 1

else else

return 0 return 0

Figure 2.5. Notions of second preimage resistance.

Definition 2.5.3 (Always Second Preimage Resistant) A hash function family

H is (t, ε)-always second preimage resistant if AdvaSec
H (A) < ε for all adversaries A

with a running time less than t, where

AdvaSec
H (A) = max

K∈K

{

Pr
[

ExpaSec
H (A, K) = 1

]}

,

and the probability is maximized over all K ∈ K for each M ∈ M and the random

choices of A.

Always second preimage resistance states that functions such as SHA-1 are second

preimage resistant. The probability is calculated over all M ∈ M for each K ∈ K,

the same as is done for preimage resistance.

27

Definition 2.5.4 (Everywhere Second Preimage Resistant) A hash function

family H is (t, ε)-everywhere second preimage resistant if AdveSec
H (A) < ε for all

adversaries A with a running time less than t, where

AdveSec
H (A) = max

M1∈M

{

Pr
[

ExpeSec
H (A, M1) = 1

]}

,

and the probability is maximized over all M ∈ M for each K ∈ K and the random

choices of A.

Everywhere second preimage resistance relates to the idea that it is computation-

ally difficult to find a second message for a particular message that will result in the

same digest. Here the probability is calculated over all K ∈ K for each M ∈M. The

maximum probability is used as the indicator of the strength of the function.

2.5.3 Collision Resistance

For collision resistance there is no notion for maximizing over all K ∈ K. While

it would be hard for an adversary to construct a program to find a collision, the

algorithm would be efficient [69]. One might argue that an adversary could simply

possess a lookup table for each K ∈ K and then run the efficient algorithm for that

particular K. As stated in Section 2.2, all definitions are parameterized by the time

used by the adversary. In such an attack the size of the adversary’s program is

included in the overall time complexity of the adversary.

2.5.4 Implications Between Notions of Security

The notions of security for preimage resistance and second preimage resistance

have natural implications to the standard definitions for preimage resistance and

second preimage resistance. Because the probability is maximized over a particular

parameter of the experiment, a stronger notion of security is defined. When the

maximum probability is used all other probabilities must be smaller, and therefore

the average of the probabilities cannot be larger than the largest. The opposite

28

implication however is not true. All of the probabilities for some parameter could

be potentially very small except for one. This single large probability is the measure

of the notion, providing a larger advantage to the adversary than the traditional

property.

Theorem 2.5.1 Given a hash function H, the following implications are true for all

of the notions of security for a hash function:

1. If H possesses the aXXX security property, then H also possesses the XXX security

property.

2. If H possesses the eXXX security property, then H also possesses the XXX security

property.

The proof of this theorem is given in [69].

29

3 DYNAMIC CRYPTOGRAPHIC HASH FUNCTIONS

This chapter introduces a new type of cryptographic hash function and the foundation

of this dissertation, the dynamic cryptographic hash function. On a superficial level,

the only difference between a traditional cryptographic hash function and a dynamic

cryptographic hash function is that a dynamic cryptographic hash function takes a

second input. The second input, the security parameter, specifies the level of security

expected from the function. Increasing the security parameter should increase the

security of the digest produced by dynamically changing how the digest is computed,

hence the name. This dissertation presents the first formal definition of a dynamic

hash function and investigates the security properties of dynamic cryptographic hash

functions.

3.1 Background and Introduction

While the concept of a hash function that requires two inputs is not new, this

type of function is unique. Dynamic cryptographic hash functions are the only type

of hash function in which the second parameter specifies how the digest is computed

and the size of the digest. It is the fact that the security parameter changes both of

these attributes that makes this type of function unique.

Message authentication codes, for example, require two inputs (see Section 1.4.1)

however they are inherently different from dynamic hash functions. One difference is

that the size of a message authentication code does not change when the key changes.

Also, most message authentication code constructions work by concatenating the key

to the message in some secure manner. This is inherently different from changing

the way a digest is computed. It is not enough to simply concatenate the security

parameter to the message being hashed to create a dynamic hash function. The

30

security parameter must be related to the expected level of security of the digest. As

the security parameter increases, the expected level of security of the digest should

also increase. The same concept does not exist for message authentication codes.

Other hash functions, such as HAVAL [78], VSH [15], and functions constructed

from expander graphs [14], have been designed to create different size digests. While

such functions change the size of the digest created, the core way in which the digest

is computed does not change. For example, if the hard problem used in the VSH

function turns out to be easy, modifying the size of the digest does not help to keep

the function secure. The same is true for functions such as HAVAL.

A dynamic hash function must change how a digest is computed based on the

security parameter in two ways. First, the bit length of the digest is a function

of the security parameter. Second, the computation of the digest must depend on

the security parameter. These requirements ensure, among other things, that the

digests computed using two different security parameters and the same message are

unrelated.

To enable users to select the expected level of security, the bit length of the digest

is a function of the security parameter. While the size of the digest is not equal to

the complexity required to break the function, it does provide an upper bound on the

amount of work needed to break the function. The larger the digest, the longer it will

take, using a brute force approach, to find two messages that collide or a preimage of

a given digest. By being able to choose the expected level of security, schemes that

use hash functions (such as hash-then-sign) can now appropriately select an expected

level of security that is comparable to the expected level of security of the rest of the

protocol.

3.2 Definition of a Dynamic Cryptographic Hash Function

A dynamic cryptographic hash function is the same as a traditional cryptographic

hash function except that a security parameter specifies how the function computes

31

the digest and the size of the digest. The definition of a traditional hash function is

modified to define a dynamic hash function as follows.

Definition 3.2.1 (Dynamic Hash Function) Let d, λ and υ be monotone increas-

ing functions from N → N such that d(s) > 0 and 0 < λ(l) ≤ υ(l). A dynamic hash

function is a function

H : Σ∗ × N→ Σ∗ ∪ {“undefined”},

such that when |M | = l and λ(l) ≤ s ≤ υ(l), |H(M, s)| = d(s). If it is not true that

λ(l) ≤ s ≤ υ(l), then H(M, s) is undefined. The functions λ, υ and d all run in

polynomial time.

To enable a dynamic hash function to be quickly computed, there may be restric-

tions on the values of s and d(s). For example, d(s) might be restricted to a multiple

of the word size of the target architecture. In the broadest sense of the definition

these restrictions are not imposed.

Before defining the security properties for a dynamic hash function, a dynamic

hash function family must be defined. The reason is the same as that discussed in

Section 2.4 for traditional hash functions. If a function family is not defined, then

a probabilistic polynomial time algorithm could exist which has a table of (message,

security parameter, digest) triples encoded in it for a specific dynamic hash function.

An attacker can use this algorithm to break the function [62]. However, defining a

function family as an infinite family of finite sets of hash functions prevents such an

algorithm from running in polynomial time for all hash functions in the family.

Definition 3.2.2 (Dynamic Hash Function Family) A dynamic hash function

family H is an infinite set of functions where each function in the family is indexed

by a key K, and each function is of the form

HK : Σl × N→ Σ∗ ∪ {“undefined”},

so that ∀s ∈ [λ(l), υ(l)], HK(·, s) : Σl → Σd(s).

32

The same three requirements imposed on a traditional hash function family are

also imposed on the dynamic hash function family H.

1. H is accessible, that is, there is a probabilistic polynomial time algorithm, that

on input K outputs an instance HK .

2. D = Σl is samplable, that is, there is a probabilistic polynomial time algorithm,

that selects an element uniformly from D.

3. HK is polynomial time computable, that is, there is a polynomial time algorithm

(polynomial in s and in |M |) that computes HK(M, s).

3.3 Traditional Properties for Dynamic Hash Functions

One should note that a dynamic cryptographic hash function creates a family

of traditional cryptographic hash functions, each possessing the required security

properties of a traditional cryptographic hash function.

Because a dynamic cryptographic hash function takes a second parameter that

determines the digest’s size and how the function is computed, the definitions for the

traditional properties must be modified appropriately. Preimage resistance, second

preimage resistance, and collision resistance are defined for dynamic hash functions

in Definition 3.3.1. The experiments are the same as for traditional hash functions

except a dynamic hash function is used instead. Figures 3.1, 3.2, and 3.3 define the

experiments for these properties for dynamic hash functions.

The adversarial model used to define the security properties for dynamic hash

functions is similar to the one used for traditional hash functions. The only differ-

ence between the adversarial model described in Section 2.2 and the one used in the

following definitions is access to the function d. The adversarial model for traditional

hash functions attack hash functions where the digest is the same fixed size. However,

with dynamic hash functions the size is determined by a function, d. As with access

33

Experiment ExpPre
H (A, s)

K
$← K

M1
$← D

Y ← HK(M1, s)

M2
$← A(K, Y, s)

if(Y = HK(M2, s))

return 1

else

return 0

Figure 3.1. Preimage resistance experiment for dynamic hash functions.

Experiment ExpSec
H (A, s)

K
$← K

M1
$← D

Y ← H(M1, s)

M2
$← A(K, M1, Y, s)

if(Y = HK(M2, s) and M1 6= M2)

return 1

else

return 0

Figure 3.2. Second preimage resistance experiment for dynamic hash functions.

to the hash function itself, the adversary has access to the algorithm for computing

the digest size and can compute a digest size in unit time.

34

Experiment ExpCol
H (A, s)

K
$← K

(M1, M2)
$← A(K, s)

if(HK(M1, s) = HK(M2, s) and M1 6= M2)

return 1

else

return 0

Figure 3.3. Collision resistance experiment for dynamic hash functions.

Definition 3.3.1 A dynamic hash function family H is (t, ε)-preimage resistant if

there exists an s so that AdvPre
H (A, s) < ε for all adversaries A with a running time

less than t, where

AdvPre
H (A, s) = Pr

[

ExpPre
H (A, s) = 1

]

.

A dynamic hash function family H is (t, ε)-second preimage resistant if there exists

an s so that AdvSec
H (A, s) < ε for all adversaries A with a running time less than t,

where

AdvSec
H (A, s) = Pr

[

ExpSec
H (A, s) = 1

]

.

A dynamic hash function family H is (t, ε)-collision resistant if there exists an s so

that AdvCol
H (A, s) < ε for all adversaries A with a running time less than t, where

AdvCol
H (A, s) = Pr

[

ExpCol
H (A, s) = 1

]

.

For each experiment the probability is taken over all K ∈ K, M ∈M, and the random

choices of A.

The inclusion of a second parameter in a dynamic hash function dictates the need

for additional security properties. If the modified versions of the traditional properties

35

were the only properties considered for dynamic cryptographic hash functions, then

they would be improperly used. For example, the traditional properties do not provide

statements about the security of two digests created from the same message but with

different security parameters. By the definition of a dynamic cryptographic hash

function, one would expect these digests to be unrelated. Unfortunately, this idea is

never explicitly stated in the traditional properties.

It is important to note that the security parameter of a dynamic hash function is

not a key. Therefore, one cannot expect that it is infeasible to compute the security

parameter given a digest. The security parameter, by definition, determines the size

of the digest produced by the dynamic hash function. Therefore, determining the

security parameter might be as easy as counting the number of bits in the digest.

3.4 Dynamic Versions of the Traditional Properties

The traditional properties defined in Section 3.3 require that the same security

parameter is used for the digests being compared. Because the security parameter

dictates the way the digest is computed, properties must be defined for digests created

using different security parameters. These properties are defined by allowing the

adversary to choose the value of a second security parameter. While the security

parameter also dictates the size of the digest, it does not make sense to compare

digests of different sizes. This restricts the adversary to those security parameters

that keep the digests the same size.

Definition 3.4.1 (Dynamic Preimage Resistance) A dynamic hash function

family H is (t, ε)-dynamic preimage resistant if AdvdPre
H (A) < ε for all adversaries A

with a running time less than t, where

AdvdPre
H (A) = Pr

[

ExpdPre
H (A) = 1

]

,

and the probability is taken over all K ∈ K, M ∈M, s ∈ [λ(l), υ(l)], and the random

choices of A.

36

Experiment ExpdPre
H (A)

K
$← K

M1
$←M

s1
$← [λ(l), υ(l)]

Y ← HK(M1, s1)

(M2, s2)
$← A(K,Y, s1)

if(Y = HK(M2, s2) and d(s1) = d(s2))

return 1

else

return 0

Figure 3.4. Dynamic preimage resistance experiment.

Definition 3.4.1 states that the probability of an adversary successfully finding a

message and a security parameter that will hash to the given digest is negligible.

Dynamic preimage resistance is needed in the following scenario where a dynamic

hash function is used for the Linux password system rather than a traditional hash

function. In Linux systems there are two files that dictate user authentication: passwd

and shadow. Instead of a traditional hash function, a dynamic hash function can be

used with only slight modifications to the authentication system. The passwd file

stores user name and security parameter pairs. The shadow file stores user name and

digest pairs, where the digest is computed using the security parameter in the passwd

file and the user’s password. Everyone has read access to the passwd file and only

the administrator has access to the shadow file.

Assume Alice is a user on the system with a password of P . The digest of her

password is stored in the shadow file using security parameter s. Through a vulnera-

bility in the system, Mallory is able to gain write access to the passwd file and read

access to the shadow file. Mallory is now able to read Alice’s digest from the shadow

file and the security parameter from the passwd file.

37

If the dynamic hash function used on the system does not have dynamic preimage

resistance, then Mallory can compute a password P ′ and security parameter s′ such

that H(P, s) = H(P ′, s′).1 Because Mallory has write access to the passwd file, she

can change Alice’s security parameter from s to s′. Mallory can now use the new

password P ′ to authenticate with the system as if she were Alice. When Mallory uses

the user name “Alice” and the password P ′, the system reads the security parameter s′

from the passwd file and computes the digest H(P ′, s′). The digest is then compared

with the one stored in the shadow file, and Mallory is granted access to the system

as Alice.

Experiment ExpdSec
H (A)

K
$← K

M1
$←M

s1
$← [λ(l), υ(l)]

Y ← HK(M1, s1)

(M2, s2)
$← A(K,M1, Y, s1)

if(Y = HK(M2, s2) and M1 6= M2 and d(s1) = d(s2))

return 1

else

return 0

Figure 3.5. Dynamic second preimage resistance experiment.

Definition 3.4.2 (Dynamic Second Preimage Restance) A dynamic hash func-

tion

family H is (t, ε)-dynamic second preimage resistant if AdvdSec
H (A) < ε for all adver-

saries A with a running time less than t, where

AdvdSec
H (A) = Pr

[

ExpdSec
H (A) = 1

]

,

1Note that P may or may not be the same as P ′ and s may or may not be the same as s′.

38

and the probability is taken over all K ∈ K, M ∈M, s ∈ [λ(l), υ(l)], and the random

choices of A.

Definition 3.4.2 states that the probability of an adversary successfully finding

a different message and a security parameter that will hash to the given digest is

negligible.

Dynamic second preimage resistance is required in the following scenario where

digests are compared manually and assumptions are made about the security pa-

rameter that is used. Assume a key server with a web interface and a protocol for

downloading keys, such as a PGP key server. Users can search, by e-mail address,

for another user’s public key. The web page displays e-mail addresses and the corre-

sponding digest of that user’s public key when hashed with a dynamic hash function

using security parameter s. When a user clicks on an e-mail address a file is down-

loaded that contains the public key and the security parameter used to compute the

digest. The security parameter is included in the file to provide algorithm agility, one

of the main reasons for using a dynamic hash function. If certain security parameters

are found to be insecure in the future, the security parameter is change in the files

and the website is updated to reflect the new digests. These changes can all be done

without the user updating the encryption software on his or her computer.

Assume Mallory is able to control the files that are downloaded from the website,

but has no control over the web pages that are generated when a search is performed.

Alice visits the website in search of Bob’s public key, KBob. She searches for Bob’s

e-mail address, finds it and clicks on the link to download his key. Instead of down-

loading the proper file, Mallory is able to intercept it and change it to a file she has

precomputed. The new files contains her public key KMallory and a different security

parameter, s′. Alice’s encryption program computes H(KMallory, s
′) and displays this

digest on the screen for Alice to check against the digest associated with Bob’s e-mail

address on the website.

If the dynamic hash function that was used in the following scenario does not have

dynamic second preimage resistance, then the digest of Mallory’s key and new security

39

parameter will be the same as the one on the web-page: H(KMallory, s
′) = H(KBob, s).

Alice will think that she has Bob’s public key after verifying the digest computed by

her encryption program is the same as the one on the website. Actually, the key that

Alice has is Mallory’s. Mallory can now read any message sent from Alice to Bob.

Mallory can also re-encrypt the message with Bob’s actual public key and send it

to Bob as if nothing has happened. The same scenario can occur in reverse so that

Mallory can intercept any message sent from Bob to Alice.

Experiment ExpdCol
H (A)

K
$← K

l
$← N

s1
$← [λ(l), υ(l)]

(M1, M2, s2)
$← A(K, s1)

if(HK(M1, s1) = HK(M2, s2) and M1 6= M2 and d(s1) = d(s2))

return 1

else

return 0

Figure 3.6. Dynamic collision resistance experiment.

Definition 3.4.3 (Dynamic Collision Resistance) A dynamic hash function

family H is (t, ε)-dynamic collision resistant if AdvdCol
H (A) < ε for all adversaries A

with a running time less than t, where

AdvdCol
H (A) = Pr

[

ExpdCol
H (A) = 1

]

,

and the probability is taken over all K ∈ K, M ∈M, s ∈ [λ(l), υ(l)], and the random

choices of A.

Definition 3.4.3 states that the probability of an adversary successfully finding two

messages and a security parameter that will hash to the same digest using different

security parameters is negligible.

40

Dynamic collision resistance is needed in the following contract signing scenario

between Mallory and Bob. Mallory agrees to buy Bob’s car for $1,000. Bob sends

Mallory a security parameter s to use for computing the digest of the contract in

which Mallory agrees to buy his car for $1,000. Mallory creates a contract C stating

the price she will pay for the car and sends it to Bob. Bob computes the digest H(C, s)

and sends a digitally signed copy of the digest back to Mallory: Sign(H(C, s)). Before

Mallory pays Bob for his car she contests Bob’s version of the contract, C, with a

trusted mediator Trent.

If the dynamic hash function used in this scenario does not have dynamic collision

resistance, then Mallory is able produce a second contract C ′, which states that she

will only pay Bob $10 for his car, and a second security parameter s′ such that

H(C ′, s′) = H(C, s). Because the two digests are the same, the two signatures will be

the same: Sign(H(C, s)) = Sign(H(C ′, s′)). The trusted mediator Trent will verify

Bob’s signature and compute the digest of the second contract C ′ with the second

security parameter s′. The two digests will be the same, and Mallory will be awarded

Bob’s car by Trent for only $10.

The fact that only small changes are needed for these new security properties to be

defined is not surprising. The dynamic versions of the traditional security properties

are the generalized versions of the traditional properties. In fact, there is a natural

implication between the dynamic versions of the traditional security properties and

the traditional security properties. These implications are discussed in Section 3.6.

3.5 Properties Without Traditional Analogs

While the properties in Section 3.4 are analogous to the traditional properties,

there are two new properties, security parameter collision resistance and digest resis-

tance, that are not. These properties are only applicable to dynamic hash functions

because they directly relate to the function’s ability to dynamically generate digests

for different security parameters.

41

3.5.1 Security Parameter Collision Resistance

Security parameter collision resistance ensures that one cannot find a message that

will result in the same digest for two different security parameters. It is the property

of security parameter collision resistance that dictates dynamic hash functions are

different from hash functions where the security parameter only affects the size of the

digest. This property avoids having a weak hash function where if given H(M, s1) =

H(M ′, s2), it is probably the case that M = M ′.

Experiment ExpPCol
H (A)

K
$← K

l
$← N

s1
$← [λ(l), υ(l)]

(M, s2)
$← A(K, s1)

if(HK(M, s1) = HK(M, s2) and s1 6= s2 and d(s1) = d(s2))

return 1

else

return 0

Figure 3.7. Security parameter collision resistance experiment.

Definition 3.5.1 (Security Parameter Collision Resistance) A dynamic hash

function family H is (t, ε)-dynamic security parameter collision resistant if

AdvPCol
H (A) < ε for all adversaries A with a running time less than t, where

AdvPCol
H (A) = Pr

[

ExpPCol
H (A) = 1

]

,

and the probability is taken over all K ∈ K, M ∈M, s ∈ [λ(l), υ(l)], and the random

choices of A.

42

Definition 3.5.1 states that the probability of an adversary successfully finding

a message and a security parameter that will hash to the same digest as the same

message and the given security parameter is negligible.

Dynamic hash functions construction without security parameter collision resis-

tance are vulnerable when used in the following type of scenario. Assume a computer

system with r = |S| levels of access. Each level has a security parameter associated

with it. For simplicity the security parameters are the integers {1, 2, . . . , r}. Let

P be a password, l be one of the r levels, and Sign be the signature of the com-

puter system. When an account is created on the system, the administrator assigns

the access level and the user picks a password. The system computes and sends to

the user Sign(H(P, l)). A user authenticates with the system by sending P , l, and

Sign(H(P, l)) to the system. The server checks that the signature and the digest are

both valid. Assume Alice is given an account on the computer system at level one.

Alice chooses the password P for her account and the system computes and sends to

Alice Sign(H(P, 1)).

If the dynamic hash function used in the computer system does not have security

parameter collision resistance, then Alice can choose a higher level of access l′ and

a password P such that H(P, 1) = H(P, l′). Because the two digests are the same,

the signatures will be the same: Sign(H(P, 1)) = Sign(H(P, l′)). Alice can now

authenticate with the system by sending P , l′ and Sign(H(P, l′)). The system will

check the signatures and the digest, and authenticate Alice at the new level. Alice

is now able to operate at an increased level of access than the level intended by the

administrator.

3.5.2 Digest Resistance

Digest resistance ensures that it is not easy to create one digest from another.

This property is motivated by the following situation. Suppose Alice has created a

secret document. She posts the digest and the security parameter used to compute

43

the digest of her document on the Internet, staking her claim that she created the

document. Bob argues that he is the original creator of the document. He has a

digest using a different security parameter on his website which he claims proves he is

the creator of the document. Carol, acting as a trusted mediator, has both Alice and

Bob recompute the digest of their documents using a different security parameter

that Carol chooses. Because the security parameter will change how the digest is

computed, the procedure will allow Carol to determine if Alice and Bob actually have

the same document without revealing to Carol what the two documents contain.

Experiment ExpDig
H (A)

K
$← K

M
$←M

s1
$← [λ(l), υ(l)]

Y1 ← HK(M, s1)

(Y2, s2)
$← A(K, Y1, s1)

if(Y2 = HK(M, s2) and s1 6= s2)

return 1

else

return 0

Figure 3.8. Digest resistance experiment.

Definition 3.5.2 (Digest Resistance) A dynamic hash function family H is

(t, ε)-dynamic digest resistant if Adv
Dig
H (A) < ε for all adversaries A with a running

time less than t, where

Adv
Dig
H (A) = Pr

[

Exp
Dig
H (A) = 1

]

,

and the probability is taken over all K ∈ K, M ∈M, s ∈ [λ(l), υ(l)], and the random

choices of A.

44

Definition 3.5.2 states that the probability of an adversary successfully finding the

digest of an unknown message and a security parameter, given a digest of the same

message with a different security parameter, is negligible.

This property ensures, among other things, that a dynamic cryptographic hash

function is not constructed by concatenating or truncating a standard cryptographic

hash function. Another motivation for this property is to protect against attacks

that would leverage the ability to reduce the digest space to a manageable size and

then launch another attack against the hash function. For example, it is insecure

for the 50-bit digest of a message to be constructed from the 160-bit digest of the

same message. If this property is not ensured the following attack could be launched

against a password authentication scheme.

Assume that a two computer system stores the hash of users’ passwords in a central

database. The security parameter for system A produces a 160-bit digest and the

security parameter for system B produces a 100-bit digest. The only terminals to log

into either system are connected to the central database via a secure communication

link. The authentication is done by having the terminal compute the digest of the

password and send it to the database for comparison. Suppose that Alice has accounts

on both systems and that Bob is able to discover the hash of Alice’s password for

system A.

If the dynamic hash function used to compute the digest a of user’s passwords

does not have digest resistance, then Bob can compute Alice’s 100-bit digest from her

160-bit digest. Because the digest and user name are sent from the secure terminal to

the server, Bob can send the 100-bit digest and the user name “Alice” to authenticate

with the system B without ever knowing Alice’s password.

3.6 Implications Between Security Properties

The properties in Sections 3.3, 3.4, and 3.5 can be strengthened or weakened

by allowing the adversary to choose the security parameter(s) or by providing the

45

security parameter(s). When the adversary is able to choose the security parameter(s)

the property is strengthened. On the other hand, dictating the security parameter(s)

to the adversary creates a weaker version of the security property. Experiments for

the strengthened and weakened versions of all the security properties can be found in

Appendix A.

Most of the security properties for dynamic hash functions are weaker or stronger

versions of base properties. A natural implication is present between these classes of

security properties. The implication follows from a general rule: properties that give

more control to an adversary imply properties that give less control to an adversary.

The rule is true because if an adversary is unable to show the function is insecure,

with respect to some property, when complete control is given, then the adversary

will also be unable to break the function when some of the control is taken away. Let

XXX denote a security property. Let sXXX and wXXX denote the stronger and weaker

versions of the security property XXX respectively. A function is broken, with respect

to property XXX, if the adversary can find an example where the property does not

hold. The function is secure, with respect to property XXX, if no counter example can

be found.

Theorem 3.6.1 Given a dynamic hash function H, the following implications are

true for all of the security properties for a dynamic hash function:

1. If H possesses the sXXX security property, then H also possesses the XXX security

property.

2. If H possesses the XXX security property, then H also possesses the wXXX security

property.

Proof The proof of both statements is done the same way. The only difference be-

tween the sXXX property and the XXX property is the loss of control of some parameter

p by the adversary. The same is true for XXX and wXXX. A proof for both is provided

simultaneously.

46

Let H be a dynamic hash function. Assume there does not exist an algorithm to

break the sXXX (XXX) property of H; therefore, H possesses this property. Further

assume that there is an algorithm, A, that breaks the XXX (wXXX) property of H.

Stated differently, it is assumed that H has property sXXX (XXX) but this does not

imply XXX (wXXX).

Using algorithm A, algorithm A′ can always be constructed to break the sXXX (XXX)

property of H. Algorithm A′ is constructed by choosing at random a parameter p

from the set of possible parameters. Algorithm A is run using the chosen parameter

p as input. Algorithm A breaks the XXX (wXXX) property; therefore, A′ will break the

sXXX (XXX) property. Because an algorithm exists to break the sXXX (XXX) property

of H, it is not secure. Therefore, the assumption that sXXX (XXX) does not imply XXX

(wXXX) must be rejected and the theorem is proved correct.

While a dynamic hash function requires a security parameter, the same implication

for collision resistance and second preimage resistance that applies for traditional hash

functions still exists. This implication, along with the stronger and weaker versions

of properties, are shown in Figure 3.9. An arrow from one property to another means

that one property implies the other. For example, Col→ Sec means that Col implies

Sec.

Figure 3.9 also shows implications between the dynamic and traditional versions

of preimage resistance, second preimage resistance, and collision resistance. These

implications exist because the dynamic versions of these properties are the generalized

versions of the traditional properties. It is clear that if a dynamic hash function

possesses the generalized version of a property, then it will also possess the more

specific version of the same property.

Theorem 3.6.2 For each of the three traditional properties (Pre, Sec and Col), the

dynamic versions of these properties imply the traditional properties.

Proof The only difference between the traditional version and the dynamic version

of a property is that in the dynamic version the adversary is able to choose a new

47

Pre dPreoo

%%KK
KK

KK
KK

KK

sSec

%%K
KK

KK
KK

KK
sdSecoo

yyrrr
rr
rr
rr
r

��

%%J
JJ

JJ
JJ

JJ
wdPre

llXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Sec dSecoo

%%KK
KK

KK
KK

KK

sCol

99sssssssss

%%K
KK

KK
KK

KK
sdCol

eeLLLLLLLLLL
oo

yyrrr
rr
rr
rr
r

��

99ttttttttt
//

%%J
JJ

JJ
JJ

JJ
wdSec

llXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Col

OO

dCol

YY

oo

OO

%%KK
KK

KK
KK

KK

wdCol

llXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

sPCol

��
PCol

��

Dig

��
wPCol wDig

Figure 3.9. Implications between security properties for dynamic hash functions.

48

security parameter for the second digest. A proof by contradiction can be established

by assuming that the dynamic hash function has the dXXX property but there is an

algorithm A to break the XXX property, where XXX is one of Pre, Sec, or Col.

Using algorithm A, algorithm A′ can be constructed to attack the dXXX property

of the dynamic hash function. Algorithm A′ sets s′ = s and then runs algorithm A.

Because the dynamic versions do not require that s 6= s′ this will always work, if

algorithm A breaks the XXX property. Therefore, the assumption that the dynamic

hash function possesses the dXXX property but that this does not imply the XXX

property must be rejected.

The final set of implications state that the weak dynamic version of a property

implies the traditional property. This implication is slightly different from the others.

The weak version of a dynamic properties specifies that both s and s′ are given

to the adversary. On the other hand, in the traditional property only s is given

and the adversary is not allowed to choose an s′. The implication occurs because a

proper subset of the instances of the weak dynamic version exists when s = s′. The

instances in this subset are equivalent to the traditional security properties. Because

all instances of a given property must be considered to determine if a dynamic hash

function has the property or not, this implies that the weak dynamic version of a

property implies the traditional version.

Theorem 3.6.3 Let XXX represent one of the three traditional security properties:

Pre, Sec, or Col. The weak dynamic version of XXX, wdXXX, implies the traditional

security property XXX.

Proof The traditional version of a property is a specific instance of the weak dy-

namic version. In the weak dynamic version both security parameters, s1 and s2, are

given to the adversary. For certain instances of the experiment s1 = s2. When this

occurs, the wdXXX property is the same as XXX. If there is no adversary that can break

this instance of the wdXXX property, then there is no adversary that can break the

XXX property. Therefore, wdXXX implies XXX.

49

3.7 Notions of Security

The same notions of security described in Section 2.5 can be applied to dynamic

hash functions. Dynamic hash function families, like traditional hash function fam-

ilies, are infinite families of finite sets. A particular dynamic hash function can be

chosen at random so that the notions of always and everywhere can be established

in the same way. However, in defining these notions of security for dynamic hash

functions, the security parameter must be considered.

Because dynamic hash functions require a security parameter, each notion must

include the selection of a security parameter in the experiment that defines the adver-

sary’s advantage. While this security parameter must be chosen for each experiment,

it does not make sense for notions of security to exist across different security param-

eters because the size of the digest is a function of the security parameter. The size of

the digest bounds the complexity of attacking the hash function and therefore makes

it nonsensical to evaluate notions of security for different digest sizes.

The traditional notions of security have been modified for dynamic hash functions

and are defined in the same manner. One should note the change to ePre. The change

is required because a digest must be chosen from the set of all digests of a specified

length. Instead of choosing a random size range point, only valid domain points are

used to construct range points. Otherwise it might be impossible for an adversary to

find a preimage simply because the function does not create digests of that size with

that security parameter.

The definitions for the adversarial advantage for aPre, ePre, aSec, and eSec are

the same as those found in Definitions 2.5.1, 2.5.2, 2.5.3, and 2.5.4. The only change

is in the experiment.

The new security properties described in Sections 3.4 and 3.5 can also be expanded

into notions of security. The dynamic properties are analogous to the traditional

ones but compare digests created with different security parameters. The adversary

in these notions pick the second security parameter. Also, the original security pa-

50

Experiment ExpaPre
H (A, K) Experiment ExpePre

H (A, M1)

M1
$← D K

$← K
s

$← [λ(l), υ(l)] s
$← [λ(l), υ(l)]

Y ← HK(M1, s) Y ← HK(M1, s)

M2
$← A(K, Y, s) M2

$← A(K, Y, s)

if(Y = HK(M2, s)) if(Y = HK(M2, s))

return 1 return 1

else else

return 0 return 0

Figure 3.10. Notions of preimage resistance for dynamic hash functions.

Experiment ExpaSec
H (A, K) Experiment ExpeSec

H (A, M1)

M1
$← D K

$← K
s

$← [λ(l), υ(l)] s
$← [λ(l), υ(l)]

Y ← HK(M1, s) Y ← HK(M1, s)

M2
$← A(K, M1, s) M2

$← A(K, M1, s)

if(Y = HK(M2, s)) if(Y = HK(M2, s))

return 1 return 1

else else

return 0 return 0

Figure 3.11. Notions of second preimage resistance for dynamic hash functions.

rameter must be given to the adversary. Again, the definitions are the same as the

traditional ones. The only change is to the experiment. Figures 3.12 and 3.13 define

the experiments for adPre, edPre, adSec, and edSec.

51

Experiment ExpadPre
H (A, K) Experiment ExpedPre

H (A, M1)

M1
$← D K

$← K
s1

$← [λ(l), υ(l)] s1
$← [λ(l), υ(l)]

Y ← HK(M1, s1) Y ← HK(M1, s1)

(M2, s2)
$← A(K, Y, s1) (M2, s2)

$← A(K, Y, s1)

if(Y = HK(M2, s2)) if(Y = HK(M2, s2))

return 1 return 1

else else

return 0 return 0

Figure 3.12. Notions of dynamic preimage resistance.

Experiment ExpadSec
H (A, K) Experiment ExpedSec

H (A, M1)

M1
$← D K

$← K
s1

$← [λ(l), υ(l)] s1
$← [λ(l), υ(l)]

Y ← HK(M1, s1) Y ← HK(M1, s1)

(M2, s2)
$← A(K, M1, s1) (M2, s2)

$← A(K, M1, s1)

if(Y = HK(M2, s2)) if(Y = HK(M2, s2))

return 1 return 1

else else

return 0 return 0

Figure 3.13. Notions of dynamic second preimage resistance.

There are no additional notions of security for security parameter collision resis-

tance because the property is similar to collision resistance except that the collision

is for the security parameter and not the message.

The two notions of security are applicable for digest resistance. Because the

adversary is trying to form one digest from another, the probability can be measured

52

when the message used to create the original digest is fixed or random, along with

when the function is fixed or random. The definition for the adversarial advantage is

the same as previous notions, with Figure 3.14 defining the experiments.

Experiment ExpaDig
H (A, K) Experiment ExpeDig

H (A, M)

M
$←M K

$← K
s1

$← [λ(l), υ(l)] s1
$← [λ(l), υ(l)]

Y1 ← HK(M, s1) Y1 ← HK(M, s1)

(Y2, s2)
$← A(K, Y1, s1) (Y2, s2)

$← A(K,Y1, s1)

if(Y2 = HK(M, s2) and s1 6= s2) if(Y2 = HK(M, s2) and s1 6= s2)

return 1 return 1

else else

return 0 return 0

Figure 3.14. Notions of digest resistance.

3.7.1 Implications Between Notions of Security

Figure 3.15 shows the implication graph between the notions of security for dy-

namic hash functions. The stronger and weaker versions of each property were not

included to reduce the complexity of the graph. As in the case of the traditional

notions of security, the everywhere and always security notions imply the standard

notions of security even for the dynamic versions of the traditional properties. Also,

the same logic that was used to form the implications for the traditional notions can

be extended to the digest resistance property.

53

aPre

((QQ
QQ

QQ
QQ

QQ
QQ

QQ
adPreoo

�� **TTT
TT

TT
TT

TT
TT

TT
TT

ePre

uukkkk
kk
kk
kk
kk
kk
kk
kk
k

edPre

ttjjjj
jj
jj
jj
jj
jj
jj
jj
jj

oo

rreeeeeee
eeee

eeee
eeee

eeee
eeee

eeee
eeee

eeee
ee

Pre dPreoo

aSec

((QQ
QQ

QQ
QQ

QQ
QQ

QQ
adSecoo

�� **TTT
TTT

TTT
TTT

TTT
TTT

eSec

uukkkk
kk
kk
kk
kk
kk
kk
kk
k edSec

ttjjjj
jj
jj
jj
jj
jj
jj
jj
jj

oo

rreeeeeee
eeee

eeee
eeee

eeee
eeee

eeee
eeee

eeee
ee

Sec dSecoo

Col

OO

dColoo

OOjjTTTTTTTTTTTTTTTTTTT

aDig

##H
HH

HH
HH

HH
eDig

zzuu
uu
uu
uu
u

PCol Dig

Figure 3.15. Implications between notions of security for dynamic hash functions.

54

3.8 Using Dynamic Hash Functions in Practice

Dynamic cryptographic hash functions are the next logical step in the evolution

of hash functions. A dynamic cryptographic hash function can be used in all in-

stances where a traditional hash function is used by simply hard-coding the security

parameter. However, to take full advantage of a dynamic hash function, the security

parameter must be incorporated into the design of the protocol. One should note

that care needs to be taken when designing and implementing protocols so that an

attacker cannot negotiate an artificially small security parameter or a security pa-

rameter that is not allowed by the function. Simple checks by the implementation

can alleviate these types of problems.

With the ever advancing attacks against traditional hash functions, the need for

more secure and dynamic functions is obvious. Instead of requiring an implementa-

tion change when an attack is discovered, certain vulnerable security parameters can

be blacklisted as attacks are discovered. This is an important advantage of dynamic

hash functions that should be leveraged by system designers. To properly leverage the

flexibility inherent with dynamic hash functions, a mechanism is needed to blacklist

security parameters that are deemed insecure. The mechanism, and its implementa-

tion, has certain security issues that are outside of the scope of this dissertation to

discuss at length. However, the most obvious problem is one of policy. The policy

used to update the blacklist must be well known and carefully thought out. If anyone

is able to update the blacklist, then security parameters that are secure could be

blacklisted causing a denial of service. Also, security parameters that are known to

be vulnerable might never be blacklisted (or removed from the blacklist).

3.8.1 Expected Security for an Ideal Dynamic Hash Function

In the design of current systems, designers have an expected level of security for

each cryptographic primitive used, with respect to some type of an attack. The

security of a traditional hash function is usually measured by the expected number

55

of messages that must be tested before either a preimage or a collision is found. The

same method can be applied to the five properties of a dynamic hash function. For

the rest of this section it is assumed that the dynamic hash function is ideal.

The expected number of messages that must be tested for an attacker to discover a

preimage, second preimage or collision for a dynamic hash function is the same as the

expected number of messages for a traditional hash function. Because a dynamic hash

function allows for variable size digests, the expected number of messages that must

be tested varies as well. However, the expected number of messages is fixed for each

security parameter. For dynamic preimage resistance, second preimage resistance and

collision resistance, the expected number of messages that must be tested are 2d(s),

2d(s) and 2d(s)/2 respectively.

The additional properties are more difficult to quantify succinctly. The problem

is that there is no guarantee such a message can ever be found to break the property.

For example, if all of the security parameters produce different size digests, then

security parameter collision resistance can never be broken. This is an important

point to note for system designers. To ensure a dynamic hash function has security

parameter collision resistance one need only pick a dynamic hash function such that

the size of each digest is different for each security parameter.

Assuming that there are multiple security parameters that produce the same size

digest, the expected number of messages that must be tested to break security pa-

rameter collision resistance is 2d(s). The expected value comes from the properties

of an ideal hash function. The two different security parameters used simulate two

different hash functions. Lemma 5.2.1 provides a proof for this situation.

Digest resistance for an ideal dynamic hash function reduces to randomly choosing

digests and testing to see if they are correct. The problem is that an attacker does not

know when the correct digest is found (see Figure 3.8). Assuming the attacker was

able to learn if a given digest is correct or not, the attacker would need to produce

2d(s) digests before finding the correct one. The expected value is derived from the

56

question, “How many objects must be drawn at random from a bucket until a specific

object is found?” Appendix B addresses this question.

3.8.2 Choosing the Right Security Parameter

When used properly, dynamic hash functions allow the proper level of security for

each instantiation of a protocol. For example, a packet that has a lifetime of a few

seconds probably does not require a digest that is 160 bits long. However, a document

that must exist for twenty or thirty years would require a digest much larger than 160

bits. Instead of being forced to use two static hash functions, a single dynamic hash

function can be used that can create a digest that is appropriate for both situations.

The issue is then which security parameter to choose for each situation.

Assuming a general dynamic hash function, where no guidelines have been pro-

vided by the function designer, the selection of the security parameter should be

related to the size of the digest required. If multiple security parameters provide the

same size digest, it should be assumed that all of the security parameters produce

the same level of security for that digest size. The only problem that remains is how

big a digest should be for a certain scenario.

Each scenario is different and unfortunately no single answer is correct. When

hash functions, dynamic or traditional, are used in conjunction with some other

protocol, like hash-then-sign, the expected level of security provided by the hash

function should match the expected level of security provided by the rest of the

protocol. For example, collision resistance is usually the property desired when using

a hash function for digital signatures. If the signature scheme requires an expected

2100 trials before it is broken, the digest produced by the dynamic hash function

should be 2200, or d(s) = 200.

Using the expected number of messages for each property described in Section

3.8.1, the same logic can be applied whenever a dynamic hash function is used in

conjunction with a protocol. The more difficult question to answer is what size a

57

digest should be when used by itself. For example, if a secure channel exists to send

the digest of each packet sent on an insecure channel, the integrity of the packet’s

data relies only on the hash function used. In this type of a situation how long

data integrity will need to be checked will determine the digest’s size. Using packet

integrity as an example, most packets are short-lived. The data in them is not relevant

a few minutes (or seconds) later. For example, the packets that carry the information

for a web page are usually not needed after the user has read the web page. Therefore,

one should choose a digest size that cannot be broken for the amount of time needed.

In the situation of short-lived packets, a 160-bit digest should be adequate.

Beyond security, the final consideration for choosing a security parameter is the

amount of computational power required to produce the digest. In most situations the

larger the security parameter the more computational power is required to produce

the digest. This is because the function that determines the size of the digest is

monotonically increasing. Therefore, as larger security parameters are used, larger

(or the same size) digests are produced. The simple action of copying the digest into

the return buffer will require more time for larger digests. Therefore as a general rule,

larger security parameters will require more computational power to compute.

58

4 CRYPTOGRAPHIC HASH FUNCTION CONSTRUCTIONS

Constructing a hash function that possesses all of the security properties discussed

in Chapter 2 is extremely difficult. There are very few guidelines for constructing

a good cryptographic hash function. In fact, while the desired properties are well

known there have been very few published papers on how to create a cryptographic

hash function that possesses these properties. Part of the problem is that testing

a function to see if it possesses a security property is extremely difficult. It is easy

to prove that a function does not posses a property by constructing an algorithm

that breaks the function with respect to the property. However, for a function that

seems to be secure how can one know that it actually is? The only method currently

available is to publish the function and let cryptographers attempt to break it. This

method has been quite successful at proving some functions are not secure [75], and

doubt has even been cast on the current standard [7, 13,74].

To make the problem of designing a secure hash function easier a construction was

designed by Ralph Merkle and Ivan Damg̊ard that takes a compression function and

extends the domain to binary strings of arbitrary length. This construction, appro-

priately named the Merkle-Damg̊ard construction, is property preserving for preimage

resistance and collision resistance. Property preservation of preimage resistance and

collision resistance means that if the underlying compression function is preimage

resistant and collision resistant, then the hash function created using the Merkle-

Damg̊ard construction is also preimage resistant and collision resistant. This reduces

the work of creating a secure hash function to creating a secure compression function.

While this task is still extremely difficult, it is more manageable than constructing

an entire hash function from scratch.

Merkle and Damg̊ard developed the construction independently and presented

their work at the 1989 CRYPTO conference [58]. Merkle’s paper [49] discussed a meta

59

method which describes the construction and a method for padding an arbitrarily

long message to an appropriate length. Damg̊ard’s paper [19] discusses the same

construction with the same padding method, also providing proofs for the security of

the construction.

4.1 The Merkle-Damg̊ard Construction

Most hash functions use the Merkle-Damg̊ard construction. The construction

leverages a compression function that takes a fixed size input and produces a fixed

size output, where the output is smaller than the input. The input to the compres-

sion function is a block of the message to be hashed and the output of the previous

compression function. The entire message is processed by iterative calls to the com-

pression function. The output of one call is fed forward as input to the next call. The

output of the last call to the compression function is the digest of the message. Figure

4.1 is a diagram of the Merkle-Damg̊ard construction as it was originally described.

Definition 4.1.1 defines the Merkle-Damg̊ard construction algorithmically.

0l−b ‖ m1- - -g g
h1 ‖ m2 h2 ‖ m3 · · · - -g

hk−1 ‖ mk hk = H(M)

Figure 4.1. The Merkle-Damg̊ard Construction.

Definition 4.1.1 (Merkle-Damg̊ard Construction) Let β be the length in bits

of the input to the compression function g and n be the size of the output in bits.

The compression function g has the form: g : Σβ → Σn. Let M be a message broken

into blocks m1, m2, . . . mk, each of size β − n bits, after appending a single 1 bit and

enough 0s so that the total message is 64 bits short of a multiple of β. The size of the

60

message, as a 64-bit integer, is then appended to the end of the message. The hash

function H : Σ∗ → Σn for the message M is constructed as follows:

h1 = g(0n ‖ m1)

hi = g(hi−1 ‖ mi) for i = 2, 3, . . . , k

H(M) = hk

In practice the construction is modified slightly by redefining the compression

function to take two inputs instead of one: Σn × Σb → Σn. The first input is the

previous output or intermediate value and the second input is the message block

to be compressed by the function. The compression function is redefined because

most hash functions are constructed from a block cipher using the Davies-Meyer or

Miyaguchi-Preneel construction [63]. Also, a specified value, instead of 0s is used as

the initial value [56, 67, 68]. These modifications do not impact the security of the

construction, only aid in creating secure compression functions.

4.1.1 Proofs for Preimage Resistance and Collision Resistance

Two theorems that focus on the security of the Merkle-Damg̊ard construction are

presented by Merkle and Damg̊ard [19, 49] and Lai and Massey [42]. Theorem 4.1.1

states a sufficient condition for g in order for H to be collision resistant. Proposition

4.1.1 states necessary and sufficient conditions for g in order to obtain a secure hash

function [61].

Theorem 4.1.1 (Merkle-Damg̊ard) If the compression function g used in Defini-

tion 4.1.1 is collision resistant and β−n > 1, then the Merkle-Damg̊ard hash function

in Definition 4.1.1 is a collision resistant hash function.

Proof Proof by induction on k, the number of blocks, is used to show that the

construction in Definition 4.1.1 is collision resistant if the compression function is

collision resistant. First, it is assumed that M and M ′ are two messages of the same

61

length and M 6= M ′.

Base Case: For k = 1, H(M) = g(0n ‖ m1). If H(M) = H(M ′) then g(0n ‖
m1) = g(0n ‖ m′

1) which breaks the assumption that g is collision resistant because

0n ‖ m1 6= 0n ‖ m′
1.

Induction: Assume the property holds for k and must show that it holds for k+1. Be-

cause the property holds for k it must be the case that g(Hk−1 ‖ mk) = g(Hk−1 ‖ m′
k).

Therefore, m1, . . . ,mk = m′
1, . . . ,m

′
k, and because M 6= M ′, it must be true that

mk+1 6= mk+1. The only way to cause a collision is for g(Hk ‖ mk+1) = g(H ′
k ‖ m′

k+1).

However, this breaks the assumption that g is collision resistant because Ht ‖ mk+1 6=
H ′

k ‖ m′
k+1.

General Case: In the general case the length of the two messages might not be

equal. Assume, without loss of generality, that |M | < |M ′|. There are two cases 1)

M is a prefix of M ′, and 2) M is not a prefix of M ′. Both cases are proved in the

same manner.

For a collision to occur the last iteration of g on both M and M ′ must result in

the same output. However, there must exist a difference in their inputs at some point

because |M | 6= |M ′| and the final block of both M and M ′ contain their respective

sizes. Therefore, two different inputs have resulted in the same output from the

compression function g which breaks the assumption that g is collision resistant.

This means the only way for H(M) = H(M ′) is for M = M ′, assuming g is

collision resistant.

Provided as a proposition without proof in [42], the following states the relation

between the security of the underlying compression function and the overall hash

function constructed using the Merkle-Damg̊ard construction.

62

Proposition 4.1.1 (Lai-Massey) For an iterated hash function, any successful at-

tack on its compression function implies a successful attack of the same type on the

iterated hash function with the same computational complexity.

The proof for this proposition is somewhat difficult to show because the scope

of attacks has not been defined. For example, the common attacks against a hash

function are finding a preimage for a given digest and finding a collision; however,

there might be a situation where it is advantageous to find a digest that when treated

as an integer is a prime number. Certainly if one can find preimages, then one can

mount this attack; however, finding a digest that is a prime might be a lot easier than

finding a preimage. Therefore, only a proof a sketch is given for most attacks.

Proof Sketch Because the size of the message is not mentioned in the proposition,

one can assume that if the size of the message, with padding, is a single block then

the proof of the proposition is trivial. In the situation where a message after padding

is a single message block the hash function is a single iteration of the compression

function and therefore the computation complexity would be the same.

For messages that are larger than a single block the type of a attack is highly

dependent; however, the attack can usually be applied to only the last iteration of

the compression function. For example, if one can find a collision for the last iteration

of the compression function, then a message can be constructed with any prefix, the

internal value calculated and a collision found. The same can be said for a preimage

or the prime finding attack explained earlier. Essentially the root of the proposition

is that the last iteration of the compression function is the output of the construction

and therefore attacks on one implies attacks on the other. �

Combining Proposition 4.1.1 with other propositions given in [42], Preneel pro-

vided the following theorem, without proof, about the relation between second preim-

age resistance for the underlying compression function g and the hash function H [61].

63

Theorem 4.1.2 Assume that the padding contains the length of the input string,

and that the message M (without padding) contains at least 2 blocks. Then finding a

second preimage for H with a fixed IV requires 2n operations if and only if finding a

second preimage for g with arbitrarily chosen hi−1 requires 2n operations.

Proof The proof is by construction in both directions. First, if finding a second

preimage for H with a fixed IV requires 2n operations, then finding a second preimage

for g with arbitrarily chosen hi−i requires 2n operations. Without loss of generality,

assume both messages are only 2 blocks long: M = m1 ‖ m2 and M ′ = m′
1 ‖ m′

2.

If M ′ is a second preimage for H, then it must be the case that either m1 6= m′
1 or

m2 6= m′
2 or both. In any situation, it is the case that a second preimage is found

for the compression function g on the last iteration of the compression function or an

arbitrarily chosen hi−1.

Second, if finding a second preimage for g with arbitrarily chosen hi−1 requires

2n operations, then finding a second preimage for H with a fixed IV requires 2n

operations. It is clear that a second preimage for H can be constructed by finding a

second preimage for g after the first message block. This would create two messages

M = m1 ‖ m2 and M ′ = m1 ‖ m′
2 where m2 6= m′

2. Both messages would hash to the

same digest, H(M) = H(M ′), and yet M ′ would be a second preimage, given M .

4.2 Attacks Against the Merkle-Damg̊ard Construction

While there have been numerous attacks that specifically target the compression

functions of dedicated hash functions, only a few attacks have been launched against

the Merkle-Damg̊ard construction. This is a testament to the construction’s strength

and durability through the years. However, recent attacks, such as the multi-collision

attack, have raised questions about the continued use of the construction for modern

hash functions. Before discussing attacks against the Merkle-Damg̊ard construction,

the generic birthday attack is presented because it is used in a number of other

attacks.

64

4.2.1 The Birthday Attack

The birthday attack is a generic attack against any function whose output is

smaller than its input. This attack describes the expected number of random messages

that must be tested before a preimage or collision is discovered with a probability

greater than 50%. The attacks against the Merkle-Damg̊ard construction will often

use the birthday attack as a basis for describing the expected number of messages

that must be tested before the attack is sucessful. However, if a more efficient attack

is known for a particular hash function or compression function, then that attack can

usually be leveraged to reduce the expected number of trials. This is a direct result

of Proposition 4.1.1.

The birthday attack was first introduced, in relation to hash functions, by Yuval

in [77]. The attack specifies the expected number of random messages one must try

before finding a preimage for a given digest or a collision between two messages. The

following theorems provide the expected values with proofs given in Appendix B.

Theorem 4.2.1 (Birthday Attack) Assume H is an ideal hash function. Given a

digest H(M) of size n, the expected number of messages that need to be tested before

finding a preimage is 2n. The expected number of messages that need to be tested

before finding a collision is 2n/2.

In [47] Mckinney provides a more generalized version of the birthday attack in

which more than two messages collide. This type of collision is called a k-way collision

or k-collision. The expected number of messages that must be hashed before finding

k messages that collide is given in the following theorem with the proof provided in

Appendix B.

Theorem 4.2.2 (k-collisions) For an ideal hash function H that produces an n-bit

digest, the expected number of messages hashed before finding k messages that collide

is 2n(k−1/k).

65

While a k-collision is usually not the goal of an attacker, it is an extremely helpful

tool in talking about the strength or weakness of a construction. The attacks in

Sections 4.2.3, 4.2.4, and 4.2.5 all use a k-collision to mount some other form of

attack.

4.2.2 The Length Extension Attack

One of the simplest and well-known attacks against the Merkle-Damg̊ard con-

struction is the length extension attack. In this attack an adversary is able to extend

the length of an unknown message by computing the digest of the concatenation of

the unknown message and a suffix [27]. Stated differently, if an attacker is provided

H(M) and the length of the message, then the attacker is able to compute H(M ‖ S),

for any suffix S, without knowing M [43]. This is possible because the digest H(M)

is also the intermediate value for calculating H(M ‖ S).

While theoretically this attack is damaging, there are some hurdles that make the

attack less effective in practice. First, the original unknown message M is not hashed

directly, but padded to include the message’s length. Let M = X ‖ Y where X is

the original message and Y is the padding. Therefore to compute H(M ‖ S), the

prefix of S must be Y . While all of the information needed to construct such an S

is public, constructing a meaningful S of that form is usually difficult. However, if

implementations do not check for this sort of attack, then the attack is quite damaging

to certain protocols.

4.2.3 The Multi-Collision Attack

The most surprising attack against the Merkle-Damg̊ard construction is Joux’s

multi-collision attack. This attack shows how to create 2k collisions for a hash function

built using the Merkle-Damg̊ard construction in k × 2n/2 hash computations instead

of 2n(2k−1)/2k

as expected [35]. The attack works by finding local collisions for message

66

blocks, and then using any of the 2k “paths” through the two messages to create a

collision.

Theorem 4.2.3 (Joux Multi-Collision) If H is a hash function constructed using

the Merkle-Damg̊ard construction, then finding 2k collisions for H requires an expected

k × 2n/2 evaluations of H, where n is the size of the output of H.

Proof The proof is by construction. Let M = m1 ‖ m2 ‖ · · · ‖ mk and M ′ = m′
1 ‖

m′
2 ‖ · · · ‖ m′

k and for all i, mi 6= m′
i. For each message block in M and M ′ find a

local collision using O(2n/2) evaluations of g to find each collision.

g(IV,m1) = g(IV,m′
1)

g(g(IV,m1), m2) = g(g(IV,m′
1), m

′
2)

... =
...

g(g(· · · , mk−1), mk) = g(g(· · · , m′
k−1), m

′
k)

This results in O(k × 2n/2) time being spent to find all k local collisions.

For each intermediate value there are two possible message blocks that result in

the same intermediate value, mi and m′
i. Therefore, there are 2k combinations of

messages that all hash to the same digest:

H(m1 ‖ m2 ‖ · · · ‖ mk) = H(m′
1 ‖ m2 ‖ · · · ‖ mk)

= H(m1 ‖ m′
2 ‖ · · · ‖ mk)

=
...

= H(m′
1 ‖ m′

2 ‖ · · · ‖ mk)

= H(m′
1 ‖ m′

2 ‖ · · · ‖ m′
k).

This attack can also be applied to a cascading hash function where H(M) =

H1(M) ‖ H2(M) and H1 and H2 are independent n-bit hash functions. If both H1

and H2 are random oracles, then the expected number of queries to the oracles to

67

find a collision is 2n. However, if either H1 or H2 is a function built using the Merkle-

Damg̊ard construction, then the expected number of computations of the underlying

compression function is only (n/2)× 2n/2 [35].

Theorem 4.2.4 If H is a hash function constructed by concatenating two n-bit inde-

pendent hash functions H(M) = H1(M) ‖ H2(M) and either H1 or H2 is built using

the Merkle-Damg̊ard construction, then finding a collision for H requires only an ex-

pected (n/2) × 2n/2 evaluations of the compression function of H1 or H2, whichever

is built using the Merkle-Damg̊ard construction.

Proof Without loss of generality, let H1 be built using the Merkle-Damg̊ard con-

struction. By application of Theorem 4.2.3, 2n/2 collisions for H1 can be found in an

expected (n/2)× 2n/2 evaluations of H1. By application of the Birthday Attack, one

of the 2n/2 collisions for H1 will also collide with H2. Such a collision will also collide

with H as H(M) = H1(M) ‖ H2(M).

This theorem states that concatenating two hash functions of the same size does

not increase the security as originally thought. Before this was known, a common

technique to increase security was to concatenate two functions. For example, MD4

and MD5 were concatenated to increase the security of the overall digest to an ex-

pected 2128 evaluations. However, as this theorem shows, the actual security is only

that of 64× 264 expected evaluations.

This attack also has implications on efficiently finding second preimages. Instead

of requiring an expected 2k × 2n evaluations to find 2k second preimages, only an

expected 2n evaluations are needed [35]. This works by finding 2k colliding messages,

and then searching for a single preimage to force all 2k messages to result in the target

digest.

Theorem 4.2.5 If H is a hash function built using the Merkle-Damg̊ard construc-

tion, then finding 2k second preimages for a target digest Y requires only an expected

2n evaluations of H, where n is the size of the output of H.

68

Proof The proof is by construction. By application of Theorem 4.2.3 finding 2k

colliding messages requires an expected k × 2n/2 evaluations of H. Let X be the

intermediate value after processing the kth block of any of the 2k colliding messages.

Search for a message block(s) M ′ that will result in g(X, M ′) = Y . Finding the

preimage will take an expected 2n evaluations of the function H.

Because all of the 2k messages result in the same intermediate value X, all of the

messages will result in the target digest Y when M ′ is concatenated to the end of

them. The overall number of expected evaluations of H is k × 2n/2 + 2n = O(2n)

when k � 2n/2.

4.2.4 Herding Attack

The herding attack is an attack on the Merkle-Damg̊ard construction that allows

an attacker to force a particular digest when given a prefix to a message by choosing

the appropriate suffix [36]. In this attack an attacker chooses a target digest T , then

a prefix P for a message is given to the attacker and the attacker must create a suffix

S such that H(P ‖ S) = T . Using a näıve approach would require finding a preimage

for the compression function where the initial value is not fixed, but determined by

the prefix P .1 In the näıve approach the work required would be O(2n) to find such

a preimage.

Using the herding attack reduces the amount of work required to O(2n−k−1 +

2(n+k)/2+2) evaluations of the compression function, where the length of the suffix

created is k + 1.2 This is accomplished by building a diamond structure that has

2(k+1) − 1 intermediate hash values, requiring O(2(n+k)/2+2) evaluations of the com-

pression function. Then a linking message block is found requiring an additional

O(2n−k−1) evaluations of the compression function.

1It is assumed that H is built using the Merkle-Damg̊ard construction.
2This is slightly different than what is published in the paper because this version of the attack
considers searching all intermediate nodes and not applying the “expandable message” strategy.
This allows for the reduced work of O(2n−k−1) for searching without incurring the additional cost
of searching for lg(k) + 1 message blocks.

69

Theorem 4.2.6 (Herding Attack) For a hash function H built using the Merkle-

Damg̊ard construction, a Herding attack can be launched in O(2n−k−1 + 2(n+k)/2+2)

evaluations of the compression function, where n is the size in bits of the output of g

and k + 1 is the length of the suffix in message blocks.

Proof The proof is by construction in two parts. First, a diamond structure is built

requiring O(2(n+k)/2+2) evaluations of the compression function. Second, a linking

message is found requiring O(2n−k−1) evaluations of the compression function. The

overall work is the stated O(2n−k−1 + 2(n+k)/2+2).

Building the diamond structure works by generating 2k intermediate values and

then finding 2k−1 intermediate values such that pairs of messages are used to collide

two of the previous level’s intermediate values. The overall structure looks like a

binary tree turned on its side. To go from one level to another requires O(2(n+k+1)/2)

evaluations of the compression function. This is calculated by trying 2(n+k+1)/2

messages for each 2k starting values, resulting in 2(n+k+1)/2−k messages per start-

ing value. Between any two starting values it is expected that (2(n+k+1)/2−k)2×2−n =

2n+k+1−2k−n = 2−k+1 collisions occur. Therefore, about 2−k+k+1 = 2 other hash values

collide with any given starting value [36]. This results in O(2(n+k)/2+2) evaluations of

the compression function.

To find the linking value, 2n messages must be generated to find a message block

that will link to a particular starting node. However, if all nodes in the diamond

structure are considered instead of only the 2k starting nodes, then on average 2n−k−1

messages must be created. This results in O(2n−k−1) evaluations of the compression

function.

Summing the amount of work for both parts results in the overall number of

evaluations stated in the theorem: O(2n−k−1 + 2(n+k)/2+2).

To minimized the overall amount of work, the derivative with respect to k can be

taken, set equal to zero and then k solved for.

70

w = 2n−k−1 + 2(n+k)/2+2 (4.1)

∂

∂k

(

2n−k−1 + 2(n+k)/2+2
)

=

(

2n−k

2
− 2n/2+k/2+1

)

lg(1/2) (4.2)

Setting Equation 4.2 equal to zero and solving for k results in the value of k that

minimizes the work.

0 =

(

2n−k

2
− 2n/2+k/2+1

)

lg(1/2) (4.3)

k =
n− 4

3
(4.4)

Plugging k back in, w = 2n−n−4
3

−1 + 2(n+n−4
3

)/2+2 (4.5)

w = 3× 2(2n+1)/3 (4.6)

Therefore, when k = (n−4)/3, the overall work is minimized resulting in O(22n/3)

evaluations of the compression function or 2n/3 less work than the näıve approach.

4.2.5 Long Message Second Preimage Attack

The expected number of messages that must be hashed to find a second preimage

for a given digest is equal to the number of messages that must be hashed to find a

preimage or O(2n) where the digest is n bits in length. Kelsey and Schneier demon-

strate in [37] that only O(k × 2n/2+1 + 2n−k+1) messages, of k blocks in length, must

be tried before finding a second preimage. While these messages are too long3 for

practical use, this challenges the security of the Merkle-Damg̊ard construction.

The attack works by constructing expandable messages which are messages of

varying length that all result in the same intermediate value before applying any

padding. Using an expandable message, a second preimage for a target message k-

blocks long is created in much less work than O(2n). Before stating the theorem, the

following lemma is provided to aid in proving the theorem.

3An example message that is 264 − 1 bits in length is given for SHA-1

71

Lemma 4.2.1 Creating messages of [k, k +2k−1]-blocks in length which all result in

the same final intermediate value (before padding) requires O(k×2(n/2)+1) evaluations

of the underlying compression function g.

Proof The proof is by construction. If a pair of messages of 1 block and α blocks

can be constructed that result in the same final intermediate value in time O(α− 1+

2(n/2)+1), then with k calls to this function the overall number of evaluations of the

compression function required is the stated O(k × 2(n/2)+1).

To create a pair of messages of size 1 block and α blocks that result in the same

intermediate value, the following algorithm is used, taken from [37].

FindCollision(α, hin) – Finds 2 messages of 1 block and α blocks in length that collide,

both starting with hin

1. Compute α − 1 dummy message blocks resulting in htmp as the intermediate

value using q, a fixed random message, as the message block.

(a) htmp = hin

(b) htmp = F (htmp, q) for i = 0 . . . α− 2

2. Build lists A and B as follows where mi is a distinct random message block:

(a) A[i] = g(IV,mi) for i = 0 . . . 2n/2 − 1

(b) B[i] = g(htmp, mi) for i = 0 . . . 2n/2 − 1

3. Find i, j such that A[i] = B[j]

4. Return the colliding messages (mi and q ‖ q ‖ . . . ‖ mj) and the intermediate

value g(hin, mi)

The overall work for this algorithm is O(α− 1 + 2(n/2)+1) evaluations of the com-

pression function g. By calling FindCollision k times as follows the result is a table

of messages which all have the same final intermediate value.

(C[k − i− 1][0], C[k − i− 1][1], htmp) = FindCollision(2i + 1, htmp)

72

where i = 0 . . . k − 1, and htmp = hin for the first iteration. The total number of

evaluations of the compression function for this algorithm is O(k × 2(n/2)+1).

Theorem 4.2.7 (Long Message Second Preimage Attack) Given a target mes-

sage k-blocks long and the digest of the message, a second preimage can be constructed

in O(k × 2(n/2)+1 + 2n−k+1) evaluations of the underlying compression function if the

hash function is built using the Merkle-Damg̊ard construction.

Proof The proof is by construction. First, expandable messages of lengths [k, k +

2k − 1] are created using Lemma 4.2.1 requiring O(k × 2(n/2)+1) evaluations of the

compression function.

Next a message block is found that links the expandable message to one of the

intermediate values for the target message after the kth block. Using the the mes-

sage blocks after the one that collides with the linking block, a second message is

constructed using the appropriately sized expandable message. Because the length

of these two messages up to this point is the same, the padding will have no affect

on the resulting digest. The result is a second preimage for the target message. The

time required to find the linking message block is O(2n−k+1) evaluations of the un-

derlying compression function. Therefore, the overall number of evaluations of the

compression function g is O(k × 2(n/2)+1 + 2n−k+1).

4.2.6 Fixed Point Attack

While all of the attacks discussed thus far treat the compression function as a

black box, the fixed point attack works on compression functions built using a block

cipher according to the Davies-Meyer [64] principle. The compression function is

defined using a block cipher E, where the notation Ek(M) is used for the message M

being encrypted using the key k. The symbol ⊕ is used to denote any group operation

over Σn:

g(hi−1, mi) = Emi
(hi−1)⊕ hi−1.

73

To find a fixed point for a given message block mi, the identity element of the group

is decrypted resulting in a fixed point for the message block. In the case of addition,

the identity element is a string of zero bits:

E−1
mi

(0 . . . 0) = hi−1

where E−1 denotes decryption. Using this fixed point allows one to improve the attack

in Theorem 4.2.7. Creating an extremely long message that hashes to the same digest

as shorter versions of the message.

4.3 New Constructions

With attacks against the Merkle-Damg̊ard construction discovered, a number of

new constructions have been proposed to thwart these attacks. Most of the new

constructions still work in an iterative manner, but modify the input or output in

some way to prevent the above attacks from being successful. Almost all of the

constructions presented in this section assume an underlying compression function g

of the form: Σn × Σb → Σn where n is the size of the digest in bits and b is size

of a message block in bits. Any other functions used in the constructions will be

explicitly defined. The new constructions are presented in the following sections in

no particular order.

4.3.1 The Wide-Pipe Hash and Double-Pipe Hash

In [43, 44] Lucks introduces the notion of a wide-pipe hash function where the

intermediate value of the compression function is w bits long while the output remains

n bits long, where w > n. To have the overall hash function result in n bits, a second

74

compression function is used to compress w bits down to n bits, c : Σw → Σn. The

wide-pipe construction is then defined as follows:

h1 = g(IV,m1)

hi = g(hi−1, mi) for i = 2, 3, . . . , k

H(M) = c(hk)

The design of this construction is motivated by the Joux Multi-Collision attack.

Instead of performing 2n/2 work to find an internal collision, 2w/2 work is required.

This requires more work to mount the attack because w > n.

Theorem 4.3.1 If g and c are modeled as random oracles, then finding 2k-collisions

for the wide-pipe construction takes an expected min{k × 2w/2, 2n(2k−1)/2k} queries to

the oracles.

Proof There are two cases to consider, when 2k collisions are found for function g,

and when 2k collisions are found for function c. The case for 2k collisions for g will

require a running time of k × 2w/2. Constructing the 2k collisions for c requires a

running time of 2n(2k−1)/2k

.

CASE 1: 2k collisions for g

The compression function g produces a w-bit output; therefore, by application of

Theorem 4.2.3 it requires an expected k × 2w/2 messages to find 2k collisions for g.

CASE 2: 2k collisions for c

The compression function c produces an n-bit output, so by application of Theo-

rem 4.2.2 it requires an expected 2n(2k−1)/2k

messages to find 2k collisions.

Therefore the total amount of work required to find 2k collisions for the wide-pipe

construction takes time Ω(min{k × 2w/2, 2n(2k−1)/2k}).

75

To ensure that the construction is asymptotically as secure against the multi-

collision attack as an ideal hash function, w ≥ 2n [43]. This requires a new com-

pression function of the form Σw × Σb → Σw. Instead of creating a new dedicated

compression function, Lucks provides a new construction, the double-pipe construc-

tion which simulates a wider compression function. The construction simultaneously

computes two lines or Merkle-Damg̊ard iterations. The output from one line is mixed

with the input of the other to simulate a larger compression function.

Let hx,y denote the output of the xth iteration of the compression function in line

y. The double-pipe construction is defined as follows.

h1,1 = g(IV1, IV2 ‖ m1)

h1,2 = g(IV2, IV1 ‖ m1)

hi,1 = g(hi−1,1, hi−1,2 ‖ mi) for i = 2, 3, . . . , k

hi,2 = g(hi−1,2, hi−1,1 ‖ mi) for i = 2, 3, . . . , k

H(M) = g(IV3, hk,1 ‖ hk,2)

The following theorem, taken from [44], states the time required to find cross

collisions and strict collisions for the double-pipe hash. A cross collision is a collision

such that hi,1 6= hi,2 but g(hi−1,1, hi−1,2 ‖ mi) = g(hi−1,2, hi−1,1 ‖ mi). A strict collision

is a collision such that hi,1 6= hi,2, hj,1 6= hj,2, mi 6= mj, and i 6= j but g(hi−1,1, hi−1,2 ‖
mi) = g(hj−1,1, hj−1,2 ‖ mj) and g(hi−1,2, hi−1,1 ‖ mi) = g(hj−1,2, hj−1,1 ‖ mj).

Theorem 4.3.2 If g is modeled as a random oracle, then finding cross collisions for

g requires time Ω(2n), and finding strict collisions for g requires time Ω(2n).

Proof The proof is done in two parts, one for cross collisions and the other for strict

collisions, taken from [44].

Cross Collisions: Any triple (hi,1, hi,2, mi) can only be part of a cross collision if

hi,1 6= hi,2 and g(hi−1,1, hi−1,2 ‖ mi) = g(hi−1,2, hi−1,1 ‖ mi), i.e., with a probability of

76

2−n. Thus, Ω(2n) oracle queries are expected to find a cross collision.

Strict Collisions: For any triple (hi−1,1, hi−1,2, mi−1) with hi−1,1 6= hi−1,2, the pair

(hi,1, hi,2) ∈ Σ2n is a uniformly distributed 2n-bit random value, chosen independently

from all other g(·, · ‖ ·)-values. If the adversary chooses q different tuples and makes

q queries to the oracle, then the probability of success is Σ0≤j<qj/2
2n = Ω(q2/22n).

Thus, it is expected that q = Ω(2n) oracle queries are made to find a strict collision.

Because the only way to mount the multi-collision attack against the double-pipe

construction is through a combination of strict collisions and double collisions4, the

following corollary can be stated.

Corollary 4.3.1 The double-pipe construction requires Ω(2n(k−1)/k) evaluations of

the compression function g to create a k-collision.

4.3.2 Prefix-Free Merkle-Damg̊ard

In [17] it is shown that if the underlying compression function acts as a random

oracle, then any hash function built using the Merkle-Damg̊ard construction does not

act as a random oracle. To fix this problem a number of solutions were presented in-

cluding two methods for prefix-free encoding messages before the message is processed

by the hash function. The definition of a prefix-free code follows, taken from [17].

Definition 4.3.1 (Prefix-Free Code) A prefix-free code5 over Σb is an efficiently

computable injective function f : Σ∗ →
(

Σb
)∗

with the following conditions:

1. ∀x, ∀y, x 6= y, f(x) is not a prefix of f(y)

2. Given only f(x) it should be easy to recover x

4The final compression function is not considered as it would require Ω(2n(k−1)/k) queries to find a
k-collision.
5Many authors call this a Prefix Code.

77

The two prefix-free codes defined in the paper, f1(M) and f2(M), are applied to

the message M before it is fed into the compression function. Because both of the

codes work on one message block at a time, the prefix-free encoding can be done

in parallel with the application of the compression function. The two methods for

prefix-free encoding defined are as follows for the message M = m1 ‖ m2 ‖ . . . ‖ mk

where mk has the padding for the Merkle-Damg̊ard construction.

f1(M) = |M | ‖ m1 ‖ m2 . . . ‖ mk, where |mi| = b

f2(M) = 0 ‖ m1 ‖ 0 ‖ m2 ‖ . . . 0 ‖ mk−1 ‖ 1 ‖ mk, where |mi| = b− 1

One should note that the first method f1(M) has an important drawback that

makes it infeasible for use in real-world applications. In f1(M) the entire length of

the message must be known before processing begins. In applications where a digest

must be computed for streaming data this type of an encoding will not work. The

second method does not suffer from this same drawback. f2(M) can be run in parallel

with the compression function as data is streamed.

Before stating the theorem that these prefix-free encodings result in a construction

that is indifferentiable from a random oracle in the random oracle model, the definition

of indifferentiable used in [17] is provided. The definition is based on [45] which is an

extension of the ideas from [57] and [11]. The basic idea is that a simulator should

exist such that no distinguisher can tell whether it is interacting with a simulator

with access to a random oracle or a Turing machine with access to a random oracle.

Essentially, the simulator should simulate the Turing machine.

Definition 4.3.2 (Indifferentiablity) A Turing machine C with access to a ran-

dom oracle G is (tD, tS, q, ε)-indifferentiable from a random oracle F if there exists a

simulator S, such that for any distinguisher D one has:

∣

∣Pr
[

DC,G = 1
]

− Pr
[

DF ,S = 1
]∣

∣ < ε

The simulator has oracle access to F and runs in time at most tS. The distinguisher

runs in time at most tD and makes at most q queries. Similarly, CG is computationally

indifferentiable from F if ε is negligible.

78

When a distinguisher is successful it returns a 1 Definition 4.3.2 states that the

probability that the distinguisher is able to distinguish the algorithm C with access

to G from the simulator S with access to F should be negligible. For the prefix-

free construction, the algorithm C is the Merkle-Damg̊ard construction. The random

oracle G represents the underlying compression function, with the prefix-free encoding

applied first. The random oracle F represents the construction C is trying to emulate.

From this the theorem for prefix-free encoding can be stated.

Theorem 4.3.3 The Merkle-Damg̊ard construction with a prefix-free encoding ap-

plied to a message first is (tD, tS, q, ε)-indifferentiable from a random oracle, in the

random oracle model for the compression function, for any tD, with tS = ` · O(q2),

where ` is the maximum length of a query made by the distinguisher D.

The proof of this theorem is given in [17].

4.3.3 Enveloped Merkle-Damg̊ard

In [3] Bellare and Ristenpart presented a multi-property-preserving construction

called the Enveloped Merkle-Damg̊ard construction. The goal of their construction is

to preserve the properties of collision resistance, pseudorandom function, and pseudo-

random oracle if the underlying compression function possesses these properties. They

prove that all the constructions presented in [17] do not preserve collision resistance

when the underlying compression function is collision resistant. Their construction

however is provably multi-property-preserving. Their construction achieves multi-

property-preservation by taking the output from the second to last iteration of the

compression function and concatenating it with the final message block and supply-

ing it, along with a second initial value to the compression function. Appropriate

padding of the last message block ensures that it is the proper length.

79

h1 = g(IV1, m1)

hi = g(hi−1, mi) for i = 2, 3, . . . , k − 1

hk = g(IV2, hk−1 ‖ mk)

H(M) = hk

This transform utilizes two mechanisms to ensure that the required properties are

preserved. The first mechanism is that of appending the length of the message to

the final message block. This ensures that collision resistance is preserved, and is the

major flaw in the constructions presented in [17]. As stated in [3] if the standard

Merkle-Damg̊ard strengthening technique of appending the message’s length to the

end of the message was applied to the constructions in [17], then they too would be

multi-property-preserving.

The second mechanism is the use of the final application of the compression func-

tion enveloping the internal value of the previous applications of the compression

function. This technique is similar to that of Maurer and Sjödin in [46]. Their tech-

nique is different from other enveloping techniques in that bits from the message and

a second distinct initial value are used for the final application of the compression

function. This technique provides domain separation from the previous applications

of the compression function and the final application with high probability. It also is

more efficient than perpending zeros to the message or some other sort of prefix free

encoding scheme.

4.3.4 The Hash Iterative Framework

The Hash Iterative Framework (HAIFA) is a set of modifications to the Merkle-

Damg̊ard construction to provide resistance against a number of the attacks described

in Section 4.2. HAIFA, designed by Biham and Dunkelman [8], also provides the abil-

ity to perform randomized hashing and securely truncate the underlying compression

80

function. HAIFA provides these properties by including a salt, the number of bits

hashed so far, and a special IV for each digest size in the construction. The form of

the underlying compression function is changed to accommodate these new parame-

ters to the following,

f : Σn × Σb × Σt × Σs → Σn.

The intermediate values and message block sizes remain n and b bits long respectively.

The size in bits of the number of message bits processed so far is t. The size of the

salt in bits is s.

While the form of f is not the same as a traditional compression function, a tra-

ditional compression function can be modified to act as the type of function required

for use in HAIFA. The first parameter of both functions is a value from the same

size set Σn. The last three parameters of the HAIFA compression function can be

concatenated together and supplied as the message block to a traditional compres-

sion function: f(w, x, y, z) = g(w, x ‖ y ‖ z). While this reduces the efficiency of

the overall function, it requires little modification to existing hash functions to use

HAIFA.

To incorporate the size of the digest to be produced, a special initial value is

created for each digest size. Let IVd represent the initial value for a digest of size

d ≤ n. The initial value IVd is created by applying the compression function to the

desired size of the digest, a fixed initial value, zeros for the “bits processed”, and a

salt value. For example, if d = 256, then IV256 = g(IV, 256, 0, 0).6 One should note

that digests can be precomputed to increase efficiency.

The overall form of a hash function created using HAIFA is,

H(M, d, S) : Σ∗ × Σn × Σs → Σd.

The function can be created as follows:

6This is a slight change from [8] as indicated by the author via e-mail [25].

81

IVd = f(IV, d, 0, salt)

h1 = f(IVd, m1, 0, salt)

hi = f(hi−1, mi, i× b, salt) for i = 2, 3, . . . , k

H(M, d, S) = hk

HAIFA also includes a modification to the padding algorithm used in the Merkle-

Damg̊ard construction. Instead of concatenating the size of the message to the end

of the message, after padding with a single 1-bit and enough 0 bits, the size of

the digest is also concatenated. All messages processed by HAIFA have the form

M ‖ 1 ‖ 0 · · · 0 ‖ |M | ‖ d.

Because HAIFA can be constructed using a traditional compression function and

the overall iterative structure has not changed, the security proofs for the Merkle-

Damg̊ard construction described in Section 4.1.1 also apply to HAIFA [8]. However,

because HAIFA is an iterative construction many of the same attacks that work on

the Merkle-Damg̊ard construction can also be applied to this construction. The multi-

collision attack is successful against HAIFA, except that precomputation cannot be

carried out until a salt has been chosen. This is an important point as it requires the

Herding attack be carried out on-line [8]. As for the fixed point attack, this attack

can no longer be carried out because the number of bits hashed so far is included

in each iteration. Unfortunately, this same property does not prevent the length

extension attack. Only when bits from the output of the compression function on the

final iteration are truncated or obfuscated is the length extension attack prevented.

Techniques for obfuscating the output of the final compression function are discussed

in a number of places including [17] [43] and [27].

82

4.3.5 Randomized Hashing: RMX

The idea of randomized hashing or the RMX transform is proposed in two papers,

[32] and [31]. The first, [32], explains the idea of randomized hashing which introduces

randomization into messages before they are hashed to free digital signature schemes

from relying on strong collision resistance. This provides a safety net in case the hash

function used in a digital signature scheme is discovered to be less collision resistant

than initially thought. The second paper, [31], talks about the implementation details

of the RMX transform in the OpenSSL library.

The RMX transform works by generating a random binary string that is equal

in length to a message block and then hashing that string first instead of the first

message block. The random binary string is then XORed to each message block before

the message block is processed by the underlying compression function. Finally, a

truncated version of the random binary string is XORed with the final message block;

however, not with the padding of the message.

Let r1 be a random binary string of length b and r2 be r1 truncated to the size

of the last message block before padding, then padded with zeros to the size of a

message block. For example, if a message block is 4 bits long, and the last message

block is 2 bits long; r1 = 0110 and then r2 = 0100. This way the traditional padding

used in the Merkle-Damg̊ard construction is not XORed with the random string. The

RMX scheme is applied to a message M = m1 ‖ m2 ‖ . . . ‖ mk, where mk contains

padding, as follows:

h1 = g(IV, r1)

hi = g(hi−1, r1 ⊕mi) for i = 2, 3, . . . , k − 1

hk = g(hk−1, r2 ⊕mk)

H(M) = hk+1

The intended application of the RMX transform is to ensure a secure digital

signature even if an off-line collision can be generated for the hash function. To

83

enable a verifier to check the digest of a message the random value r1 must be sent

with the message so that the digest can be reconstructed.

The difference between this scheme and others that simply use a salt value, is that

the RMX transform has Enhanced Target Collision Resistance. Enhanced Target

Collision Resistance is defined as follows where Hr(M) is the digest of M using the

salt r.

Definition 4.3.3 (Enhanced Target Collision Resistance) If an attacker is not

able to win the following game with a non-negligible probability, then the function H

is enhanced target collision resistant.

1. The attacker chooses a message M

2. The attacker receives a salt r

3. The attacker must find a second message and salt (r, M) 6= (r′, M ′) such that

Hr(M) = H ′
r(M)

A formal proof for the RMX transform being enhanced target collision resistant

can be found in [32].

4.3.6 3C and 3C-X

The 3C and 3C-X constructions were proposed by Gauravarm et al. in [29]. The

3C construction is a modification of the Merkle-Damg̊ard construction which works

as a pseudorandom function, message authentication code, and cryptographic hash

function. This section will only focus on the 3C construction as it pertains to cryp-

tographic hash functions.

The Merkle-Damg̊ard construction is modified by the addition of another line of

intermediate values calculated by applying a function to the output of the compression

function. The name of the construction is derived from the number of applications of

the compression function needed for the construction to work. The three applications

84

- - -g g · · · - - -g g
h1 h2 hk−1 hk hk+1 = H(M)

IV
? ? ?

m1 m2 mk

g g g
? ?

-z0
?

-z1 · · · -zk−3 -zk−2

6
zk−1

Figure 4.2. The 3C construction without padding for zi.

come from compressing the first message block, the padded message block which

encodes the message’s size, and a final application of the compression function to

thwart attacks like the length extension attack. Because the construction works on

two lines, the traditional intermediate values are represented by hi and the second

line’s intermediate values are represented by zi. In the final step the two lines are

combined resulting in a single value. The 3C construction is shown in Figure 4.2. For

a message M = m1 ‖ m2 ‖ . . . ‖ mk where |mi| = b and PAD(x) pads the argument

x with zeros to the appropriate bit length, the construction is defined as follows.

h1 = g(IV,m1)

z0 = h1

hi = g(hi−1, mi) for i = 2 . . . k

zi−1 = g(zi−2, PAD(hi)) for i = 2 . . . k

hk+1 = g(hk, PAD(zk−1))

H(M) = hk+1

The difference between the 3C construction and the 3C-X construction is the reuse

of the compression function g. In the 3C-X construction the compression function

85

g is replaced by the XOR operation. This removes the need for padding each zi,

and reduces the overall computational effort needed to compute a digest. The XOR

however does not replace the last iteration of the compression function so padding

is always need for zk−1. This modification, the authors claim, is the smallest mod-

ification which one can make to the Merkle-Damg̊ard construction to increase its

security without imposing a penalty on performance. It is also shown in the paper

that this construction is collision resistant if the underlying compression function is

collision resistant. The proof works in much the same way as the Merkle-Damg̊ard

construction’s proof except that both lines must be considered.

Theorem 4.3.4 If the compression function g used in the 3C (or 3C-X) construction

is collision resistant, then the 3C (or 3C-X) construction results in a collision resistant

hash function.

Proof A sketch of the proof is provided for the last application of the compression

function for both lines in the constructions. The same inductive approach used to

prove this property for the Merkle-Damg̊ard construction can be applied here to

complete the proof.

Without loss of generality, assume that two messages M and M ′ are of equal

length and their message blocks are identical except for the final block mk 6= m′
k. For

a collision to occur, hk+1 = h′
k+1, there are three cases.

CASE 1: Let hk = h′
k and zk−1 6= z′k−1. This case can never occur because the inputs

to the compression function g are all the same, because the message blocks up to mk

and m′
k are all the same. The function g is deterministic; therefore, this is an invalid

case.

CASE 2: Let hk 6= h′
k and zk−1 = z′k−1. By definition of the construction,

g(hk, PAD(zk−1)) = g(h′
k, PAD(zk−1′)). Because hk 6= h′

k, a collision for g was dis-

covered. This breaks the assumption that g is collision resistant.

86

CASE 3: Let hk 6= h′
k and zk−1 6= z′k−1. By definition of the construction,

g(hk, PAD(zk−1)) = g(h′
k, PAD(zk−1′)). Because both hk 6= h′

k and zk−1 6= z′k−1, a

collision for g was discovered. This breaks the assumption that g is collision resistant.

Therefore, the only way for hk+1 = h′
k+1 is for there to be a collision earlier in one

or both of the lines of the construction. By induction the entire construction can be

proved collision resistant.

For the case of the 3C-X construction all of the same cases apply except for Case

2. Because g is replaced by XOR in this construction with zk−2 = z′k−2 and hk 6= h′
k,

there is no way for zk−1 = z′k−1 by definition of the XOR operator.

It should be noted that even with the addition of a second line of intermediate

values the complexity of finding multi-collisions is not reduced. The reason is that the

input to the second line (the one producing zis) comes from the his. Stated differently,

the message does not directly impact how you compute a zi. If a collision is found

for an hi = h′
i for some mi 6= mi, then the inputs used to calculate zi−1 and z′i−1 rely

only on hi and h′
i respectively, assuming all message blocks are the same up to this

point. Therefore, zi−1 = z′i−1 when hi = h′
i for all i, and the computational cost to

find the collision is still O(2n/2), when the output of g is n bits long. The same is

true for the 3C-X construction. It is unclear what additional security is provided by

either constructions.

87

5 A DYNAMIC HASH FUNCTION CONSTRUCTION

This chapter presents a construction that builds a dynamic cryptographic hash func-

tion from a traditional compression function. The construction is similar to the

Merkle-Damg̊ard construction in that a compression function is iteratively called over

blocks of a message. The dynamic hash function construction forms a dynamic cryp-

tographic hash function by incorporating the security parameter into the initial value,

the padding of the message, and the size of the digest. Some of the ideas used to

create the dynamic hash function construction are borrowed from [8], [3], and [43].

In [8] Dunkelman and Biham present HAIFA, or a Hash Iterative Framework.

As noted in Section 4.3.4, their framework describes a method for creating a hash

function that can produce digests of sizes less than or equal to the output size of

the underlying compression function. Unlike HAIFA, the dynamic construction only

produces a digest that is larger than or the same size as the output of the underlying

compression function. The dynamic hash function construction uses some of the same

techniques as HAIFA to securely create digests of various sizes.

In [3] Bellare and Ristenpart describe a multi-property preserving hash function

construction. As noted in Section 4.3.3, the Enveloped Merkle-Damg̊ard construction

describes a modification to the Merkle-Damg̊ard construction that provides provable

property preservation with respect to collision resistance, pseudorandom oracles, and

pseudorandom functions. The EMD construction accomplishes property preservation

by feeding the output of the last iteration as a message into the compression function

using a second initial value. The same enveloping technique is used in the dynamic

hash function construction.

In [43] Lucks provides a construction that is resistant to the multi-collision attack

described by Joux (see Section 4.3.1). Lucks’s idea is to create a construction with

two Merkle-Damg̊ard lines. The output of one compression function from one line

88

is concatenated with a message block as input to the next iteration on the other

line. This construction simulates a larger internal compression function such that

the internal values are twice as large as the output of the traditional compression

function. This same technique is used by the dynamic hash function construction to

create digests that are larger than the underlying compression function.

5.1 Construction Description

There are four parts to the dynamic construction: initial value creation, message

processing, message padding, and digest creation. Different initial values are created

for each security parameter and for each line in the construction. Different initial

values are used to ensure that the dynamic properties discussed in Chapter 3 are

possessed by the resulting hash function. The message is processed in an iterative

fashion by breaking the message up into blocks and processing blocks in a sequential

manner. The message is padded to a multiple of the block size and strengthened by

including both the message’s size and the security parameter. Finally, the digest is

constructed by enveloping the internal value of each line and concatenating together

the lines to create a digest of the appropriate length.

It is assumed that a traditional compression function1 of the following form is

used:

g : Σn × Σb → Σn where n < b ≤ 4n.

The dynamic hash function construction creates digests whose bit length is equal to

the security parameter, so d(s) = s. To accomplish this, multiple lines are used to

create multiple digests that are concatenated together after the message has been

processed. Figure 5.1 shows the dynamic hash function construction when (`−1)n <

d(s) ≤ `n. By concatenating multiple lines together to form the overall digest, a

large compression function is simulated. The extent at which this technique can be

exploited is discussed in Section 5.2.

1The compression functions of MD5 and SHA-1 satisfy this inequality.

89

g g g g

g g g g

g g g g

g g g gIV1
-

IV1
-

IV1
-

IV1
- - -

- -

- -

- - -

-

-

-

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

IV1 ‖ s ‖ 0 · · · 0

IV1 ‖ s ‖ 0 · · · 0 ‖ 1

IV1 ‖ s ‖ 0 · · · 0 ‖ 2

IV1 ‖ s ‖ 0 · · · 0 ‖ `− 1

m1 ‖ IVs,`−1

m1 ‖ IVs,0

m1 ‖ IVs,1

m1 ‖ IVs,`−2

m2 ‖ h1,`−1

m2 ‖ h1,0

m2 ‖ h1,1

m2 ‖ h1,`−2

mk ‖ hk−1,`−1

mk ‖ hk−1,0

mk ‖ hk−1,1

mk ‖ hk−1,`−2

IVs,0

IVs,1

IVs,2

IVs,`−1

h1,0

h1,1

h1,2

h1,`−1

gIV2
-

?

hk,0 ‖ 0 · · · 0

gIV2
-

?

hk,1 ‖ 0 · · · 1

gIV2
-

?

hk,2 ‖ 0 · · · 10

gIV2
-

?

hk,`−1 ‖ `− 1

-

-

-

-

...
...

...

Figure 5.1. The dynamic hash function construction.

90

5.1.1 Initial Value Creation

The initial value for each line depends on the security parameter used to create the

digest and the line the initial value is used on. This ensures that from the beginning

the intermediate values of the construction are different on each line, for each security

parameter.

The initial value, for security parameter s and line j, is:

IVs,j = g(IV1, IV1 ‖ s ‖ 0 · · · 0 ‖ j).

It should be noted that this method is a modified version of the one used in [8] to

help ensure that two digests of different sizes, computed from the same message, will

not result in one being the truncation of the other. This same technique is also used

by SHA-224 and SHA-384 so that the digest of a message will not be the truncation

of SHA-256 and SHA-512 respectively [56].

Because the initial value is created without processing any bits of the message,

initial values can be precomputed. To increase the speed of the dynamic hash function

construction, common initial values can be precomputed and stored in a table. When

a message is to be hashed with a specific security parameter already in the table the

number of calls to the underlying compression function is reduced. For short messages

this can greatly increase the relative speed of the function.

5.1.2 Message Processing

A message is processed in much the same way as the Merkle-Damg̊ard construc-

tion. The message is broken up into message blocks, b−n bits in length. The message

blocks are processed sequentially by the compression function where the output of

the last iteration is fed forward into the next. Instead of processing message blocks

alone, as is done in the Merkle-Damg̊ard construction, the dynamic hash function

construction concatenates the output of one of the other lines to each message block.

91

By concatenating the output of another line with the message block a larger

compression function is simulated. This technique is the same used in [43] to create a

larger internal value, preventing the multi-collision attack. The technique is applied

to the dynamic hash function construction to ensure that as the security parameter

increases, the security of the digest increases too. If an additional line were not

included for each multiple of the compression function’s output the security parameter

increased, then a simple attack against the construction could be launched to cause

a collision in less work than expected. A simple attack on a single line construction

is as follows.

If only a single line were used in the dynamic hash function construction, then a

collision for a digest of size 2n could be constructed with only O(2n/2) evaluations

of the compression function instead of the expected O(2n). The attack works by

finding a collision for an internal value which requires only O(2n/2) evaluations of

the compression function. Two messages that are exactly the same, except for the

colliding message blocks, can be constructed such that H(M, s) = H(M ′, s) and

|H(M, s)| = 2n. To accomplish the increase in security, ds/ne × n lines are needed.

Let ` = ds/ne × n, or the number of lines in the construction. Let hx,y be the

internal value for iteration x, line y. The overall form of the construction is as follows,

excluding digest creation.

IVs,j = g(IV1, IV1 ‖ s ‖ j) for j = 0 . . . `− 1

h1,j = g(IVs,j, m1 ‖ IVs,j−1 mod `) for j = 0 . . . `− 1

hi,j = g(hi−1,j, mi ‖ hi−1,j−1 mod `) for i = 2 . . . k, for j = 0 . . . `− 1

5.1.3 Message Padding

The dynamic construction pads a message to a multiple of b − n, minus 96 bits.

The padding is done by concatenating a single 1 bit to the end of the message followed

by enough 0 bits to allow for concatenating the message’s size as a 64-bit number and

92

the security parameter as a 32-bit number to end of the message. The suffix of all

messages have the form: 10 · · · 0 ‖ |M | ‖ s.

Including the security parameter in the padding of the message is done for much

the same reason as including the message’s length in the padding of the message.

Including the security parameter prevents attacks against the hash function where

a collision between two messages is found for different security parameters up to

the padding of the message. Including the security parameter in the final block

of the message prevents these two messages from colliding under different security

parameters. It should be noted that this technique is outlined in [8].

5.1.4 Digest Creation

When the size of the requested digest is equal to the output of the compres-

sion function, a single line is used and the output is enveloped using the technique

described in [3]. By enveloping the output, multiple properties of the underlying

compression function are preserved (see Section 4.3.3). This technique also helps to

prevent security parameter collisions because the initial value used in enveloping the

output of the compression function is not dependent on the security parameter. The

digest is created as follows, assuming the message after padding is k blocks long and

s = n:

H(M, n) = g(IV2, hk ‖ 0 · · · 0).

To create digests larger than the output of the compression function, the dynamic

hash function construction envelopes the output of each line and the line’s number

and then concatenates the output of the enveloping step, truncating appropriately.

Assuming a digest of 2n is requested from the construction, two lines are created,

enveloped and then concatenated together to form a 2n-bit digest. This is done as

follows:

H(M, 2n) = g(IV2, hk,1 ‖ 0 · · · 1) ‖ g(IV2, hk,0 ‖ 0 · · · 0).

93

If the size of the digest requested is between n and 2n bits long, the 2n-bit digest is

truncated to the proper length, removing the most significant bits first.

5.1.5 Security Parameter Bounds

In the dynamic hash function construction the size of the digest d(s) is simply

the security parameter provided: d(s) = s. As for all dynamic hash functions, the

range of possible security parameters must be specified. The construction specifies

that enveloped lines are concatenated together until a digest that is large enough is

created. Therefore, restrictions exist on how small a digest can be. The lower bound

of the security parameter for the dynamic hash function construction is λ(l) = n. This

ensures that if a collision resistant compression function is used in the construction,

that the overall construction is also collision resistant. This would not necessarily be

the case if the output was truncated.

The upper bound on the size of the digest is limited by the technique used to

create larger and larger digests. This limitation is investigated in Section 5.2, and

turns out to be four times the output size of the compression function. The upper

bound on the security parameter is υ(l) = 4n.

5.2 The Security of This Construction

All of the properties defined in Chapter 3 are possessed by the dynamic con-

struction with a few common assumptions made about the underlying compression

function used. However, as alluded to in Section 5.1.5, there are limitations on the

size of a digest the dynamic hash function construction can securely create. Certain

attacks become possible as the number of lines in the construction increase. Each of

the five properties defined in Chapter 3 are proved to be possessed by the dynamic

hash function construction when υ(l) = 4n.

Before the properties are investigated, the following definitions and lemmas are

provided to aid in proving that the construction is secure. These definitions and lem-

94

mas are used throughout the rest of this section. It is assumed that the compression

function g is a random oracle for this entire section unless explicitly noted otherwise.

Definition 5.2.1 An r-way cross collision occurs when a single message block causes

2 ≤ r ≤ ` lines in the construction to result in the same output: g(hi,j, mi ‖
hi,j−1 mod `) = g(hi,j+1 mod `, mi ‖ hi,j mod `) = · · · = g(hi,j+r−1 mod `, mi ‖
hi,j+r−2 mod `).

Definition 5.2.2 An r-way strict collision is caused when two different message

blocks cause the output of 1 ≤ r ≤ ` lines to be the same: g(hi,j, mi ‖ hi,j−1 mod `) =

g(hi,j, m
′
i ‖ hi,j−1 mod `), . . . , g(hi,j+r−1 mod `, mi ‖ hi,j+r−2 mod `) =

g(hi,j+r−1 mod `, m
′
i ‖ hi,j+r−2 mod `).

Because the compression function g is assumed to be a random oracle with an

output size of n, an expected 2n messages must be tested to find a preimage and

an expected 2n/2 messages must be tested to find a collision. These expected values

are generalized and applied to cross collisions and strict collisions in the following

Lemma.

Lemma 5.2.1 If g is a random oracle, then the expected number of messages that

must be tested before finding a message block that causes a cross collision for r lines

is 2(r−1)n. The expected number of messages that must be tested before finding two

message blocks that cause a strict collision for r lines is 2rn/2.

Proof To find a cross collision for r lines at iteration i, many messages can be tested

comparing the outputs of g at iteration i in the r lines. For each line after the first

one, the probability is 2−n that the output of its g is the same as that of g in the first

line. Because there are r − 1 lines after the first, and the lines are independent, the

overall probability of an r-way cross collision is 2−(r−1)n. Therefore, 2(r−1)n messages

must be tested before a preimage is found for the r lines.

The output size of r lines in the construction is rn. The birthday attack shows

that the expected number of messages that must be tested to find a collision is 2rn/2.

95

One should note that cross collisions can be built up through multiple iterations.

In one iteration a cross collision is found for a subset of the lines. In the next iteration

other lines are cross collided with the subset that has already been collided. Figure 5.2

shows how cross collisions can be built up through multiple iterations, where capital

letters are used to exemplify lines that mimic each other. In the first iteration, a cross

collision is found for the first three lines. In the second iteration a cross collision is

found for the top, bottom and one of the two middle lines. The other middle line will

also collide requiring no additional messages to be tested because the input to the

compression function for the two middle lines mimic each other. Building up a cross

collision in this manner reduces the overall amount of work required significantly.

Before determining how much work is required to build a cross collision iteration by

iteration, an invariant of the construction is required.

Theorem 5.2.1 An r-way cross collision at one iteration will produce at most an

(r− 1)-way cross collision at the next iteration, if no other cross collisions are found.

Proof Assume that on iteration i r lines cross collide and on iteration i + 1 at least

r lines cross collide. The inputs to each compression function for the r lines that

result in the same output for iteration i + 1 come from pairs of lines j mod ` and

j + 1 mod ` by definition of the construction. By definition of modular arithmetic,

j mod ` 6= j + 1 mod `. Therefore, at least r + 1 lines from iteration i are used in

constructing the inputs to the compression functions that cross collide for iteration

i + 1. Because only r lines cross collide at iteration i at least one of the inputs to

the compression function for one of the lines in iteration i + 1 must be different. By

definition of a random oracle, the output of this compression function will be different

from that of the other lines. This breaks our assumption that r lines still collide in

iteration i + 1, proving the theorem correct.

Theorem 5.2.1 states that the number of lines that cross collision in one iteration is

reduced in each subsequent iteration. This means that if a cross collision is found for

four lines, in the next iteration, if no additional work is performed, no more than three

96

g g

g g

g g

g g

- - -

- - -

- - -

- - -
? ?

? ?

? ?

? ?

m1 ‖ h0,3

m1 ‖ h0,0

m1 ‖ h0,1

m1 ‖ h0,2

m2 ‖ B

m2 ‖ A

m2 ‖ A

m2 ‖ A

h0,0

h0,1

h0,2

h0,3

A

A

A

B

C

CC

C

C

Figure 5.2. Cross collisions built up through multiple iterations.

of the four lines still result in a cross collision. Theorem 5.2.1 is an important fact

that is used in the examination of both preimage resistance and collision resistance.

Theorem 5.2.1 can be used to aid in calculating the amount of work required to

construct a cross collision iteration-by-iteration for a subset of the lines.

97

Lemma 5.2.2 The optimal way to find a cross collision for r ≥ 3 lines is by con-

structing the cross collision iteration-by-iteration, which requires testing an expected

(r − 2)22n messages.

Proof First it is proved that an expected (r − 2)22n messages must be tested to

find a cross collision for r ≥ 3 lines. By application of Theorem 5.2.1, the smallest r

can be so that progress is still made towards combining lines is r = 3. When r = 3

and the three lines are adjacent to each other, two of the lines will be the same in

the next iteration. A cross collision is then found for one of the two lines that still

collide and two additional lines. This results in four lines that cross collide, or three

lines that still cross collide in the next iteration. Repeating this process and adding

up the number of expected messages until all r lines cross collide results in the stated

(r − 2)22n messages by application of Theorem 5.2.1 and Lemma 5.2.1.

Any attack that is more efficient than the one described must do less work per

iteration or the same amount of work, but in fewer iterations. If less work is performed

in each iteration, then only two lines can cross collide. This will result in all lines

being different in the next iteration by Theorem 5.2.1. Therefore, no less than 22n

work can be done in each iteration. Any attack that works in fewer steps must cross

collide more than one additional line in each iteration. This cannot be done in the

same amount of work as cross colliding three lines by Lemma 5.2.1. Therefore, the

attack described is the most optimal way to cross collide r ≥ 3 lines.

5.2.1 Dynamic Preimage Resistance

Preimage resistance of the dynamic hash function construction is now considered.

To find the expected number of messages that must be tested to find a preimage of

any digest is a straightforward calculation.

Lemma 5.2.3 tells the expected number of messages that must be tested when all

of the outputs are different. As expected, this scenario is the most costly with respect

to testing messages.

98

Lemma 5.2.3 If all ` output lines of the dynamic hash function construction are

different and the compression function g is a random oracle, then an expected 2`n

messages must be tested before finding a preimage for the entire hash function.

Proof By definition of the dynamic hash function construction, the inputs to the

final application of the compression function are different for each line because the

line number is part of the last input. An expected 2n messages must be tested to find

a preimage for a single line of the construction by the definition of a random oracle.

For ` lines, the expected number of messages that must be tested is 2`n, because the

inputs to the final compression function are all independent.

Lemma 5.2.4 If the output of 1 < r ≤ ` lines of the dynamic hash function con-

struction are the same, then an expected (r− 1)22n messages must be tested to find a

preimage for these r lines with a probability greater than 1/2.

Proof The most efficient way to find a preimage for r lines is to cross collide r−1 of

the lines and then search for a preimage for the collided lines an the remaining line.

By Lemma 5.2.2, a cross collision for r− 1 lines can be found by testing an expected

(r − 2)22n messages. This will result in r − 1 lines acting as one line. A preimage

can then be found by testing 22n messages. The total amount of work is the stated

(r − 2)22n + 22n = (r − 1)22n.

Theorem 5.2.2 Assuming the compression function g is a random oracle, the ex-

pected number of messages that must be tested to find a preimage for the dynamic

hash function construction is 2cn, where

c = `e−`2−n

+ 2n+1(1− (1− `2−n)e−`2−n

).

In particular, c ≈ ` when 1 ≤ ` ≤ 2n/2, ` < c < (2 + 1/e)` when 2n/2 < ` < 2n,

and c ≈ 2n+1 + 3`e−`2−n

when `� 2n.

99

Proof When the outputs of the ` lines are all different, then number of messages

needed is 2`n by Lemma 5.2.3. Less work is needed when some lines have the same

output. By Lemma 5.2.4 each group of r ≥ 2 lines with the same output will take

≥ 22n messages (or (r−1)22n) to find a preimage. On the other hand, each line whose

output is not repeated requires testing 2n messages to find a preimage.

Fix one of the 2n possible line outputs. The probability that it appears exactly r

times in a digest having ` lines is given by the binomial distribution
(

`

r

)

(2−n)r(1− 2−n)`−r,

and the expected number of line outputs that appear exactly r times is 2n times this

probability.

Because n is at least a few dozen, the probability 2−n is small enough so that this

binomial distribution is well approximated by the Poisson distribution (see page 211

of [26])

e−λ λr

r!
,

where λ = `2−n.

Let the total number of messages needed to find a preimage for the entire digest

be 2cn. By Lemmas 5.2.3 and 5.2.4,

c = (2nλe−λ) · 1 + (2n(1− e−λ − λe−λ)) · 2

= 2n`2−ne−`2−n

+ 2n+1(1− (1− `2−n)e−`2−n

),

as claimed.

If 1 ≤ ` < 2n/2, then 0 < `2−n < 2−n/2, so

c ≈ `e−`2−n

+ 2n+1(1− (1− `2−n)e−`2−n

)

≈ ` + 2n+1(1− (1− `2−n)(1− `2−n))

≈ ` + 2n+1(2`22−2n)

≈ ` + 22−n`2.

But `2 < 2n, so 22−n`2 is small compared to ` and thus c ≈ `.

100

If ` = 2n, then `2−n = 1, so c = 2ne−1 + 2n+1(1− 0) = 2n(2 + 1/e). As ` increases

from 2n/2 to 2n, the factor e−`2−n

decreases smoothly from approximately 1 to e−1, so

the first term increases smoothly from ` = 2n/2 to `/e = 2n/e. On the other hand, as

` increases from 2n/2 to 2n, the second term increases smoothly from 0 to 2n+1 = 2`.

Thus c increases smoothly from ` to (2 + 1/e)` as ` increases from 2n/2 to 2n.

Finally, suppose ` = k · 2n, where k is large. Then `2−n = k and

c = 2nke−k + 2n+1(1− (1− k)e−k)

= 2n+1 + 2n(e−k(k − (1− k)2)

= 2n+1 + 2ne−k(3k − 2)

≈ 2n+1 + 2n · 3ke−k = 2n+1 + 3`e−`2−n

,

as claimed, completing the proof for Theorem 5.2.2.

Corollary 5.2.1 Assuming the compression function g is a random oracle, the dy-

namic hash function created from this construction is (2cn, 1)-dynamic preimage re-

sistant, where c = c(`) = c(ds/ne) is specified in Theorem 5.2.2.

Proof The adversary’s algorithm A tries 2cn messages to find a preimage and the

algorithm succeeds by Theorem 5.2.2.

Similar corollaries hold for (t, ε)-dynamic preimage resistance whenever the ratio

t/ε ≈ 2cn.

Because the size of the output of the compression function, n, is likely to be more

than 100, it is true that ` < 250 < 2n/2 for any practical instance of the construction.

In this situation, Theorem 5.2.2 gives c = ` = ds/ne. Here the dynamic hash function

construction is (t, ε)-dynamic preimage resistant so long as t/ε ≈ 2cn = 2ds/nen ≈ 2s =

2d(s). This shows, for example, that if the time t is fixed, then ε is multiplied by 2−s

when s is doubled, so long as 2s < 2n/2.

101

5.2.2 Dynamic Collision Resistance

All attacks against collision resistance that reduce the amount of work required to

find a collision have one of two forms. The first method for attacking this construction

is to find cross collisions so that multiple lines can be treated as a single line, and

then find a strict collision for the subset of lines. The second method is the opposite,

finding a strict collision for a subset of lines and then find cross collisions to combine

them together. Theorem 5.2.3 proves that causing a strict collision in more than one

message block does not help to efficiently attack this construction.

Theorem 5.2.3 The most efficient attack, excluding the birthday attack, that causes

a collision in the dynamic hash function construction produces two messages that

differ in only one message block, that is, there is just one strict collision.

Proof Without loss of generality, assume that for two messages M 6= M ′ and

H(M, s) = H(M ′, s), that the ith block in each message is the first message block

that is different in the two messages. There are two cases.

Case 1: The ith message blocks in each message cause a strict collision for the

entire construction. In this case searching for another pair of message blocks that

causes a strict collision requires additional, unnecessary, work. Also, this is the birth-

day attack.

Case 2: The ith message blocks in each message cause a strict collision in a proper

subset of the lines. Let hi 6= h′
i denote the two outputs of some g in a line not part of

the strict collision. If a cross collision is not found for the two outputs hi and h′
i, then

those differences will propagate to additional lines with each iteration that a cross

collision is not found. Letting the two different outputs propagate requires twice as

much work to cause a full collision.

If additional strict collisions are used to collide all of the lines, those lines that

were not collided and those that were must be considered. Those lines that were not

collided count twice in the calculation of the expected number of messages because

the inputs for either previous message block must be considered. Let r be the number

102

of messages that do not collide by the strict collision. Each line that does not collide

results in two different inputs to the compression function in the next iteration. These

two different inputs require additional work to cause a collision. In the scenario the

strict collision causes the first `−r lines to collide. This results in (2r+2)+(`−(r+1))

inputs that must be considered for the next strict collision. By Theorem 5.2.1, the

expected number of messages that must be tested to find the two strict collisions is:

2(`−r)n/2 + 2((2r+2)+(`−(r+1)))n/2.

For two strict collisions to be more efficient than finding cross collisions first, ((2r +

2) + (`− (r + 1)))n has to be less than log2((`− r)− 2) + 2n. This can never happen

with integer values for `, r and n.

Therefore, any attack that finds more than one strict collision requires more work

than finding a single strict collision.

To find an attack more efficient than the birthday attack, by application of Theo-

rem 5.2.3 only a single strict collision should be found for t of the ` lines, where t < `.

To find a strict collision for t lines, 2tn/2 messages must be tested, by application of

Lemma 5.2.1. By application of Lemma 5.2.2 the fastest way to collide the remaining

lines is by building cross collisions iteration-by-iteration. However, one should note

that each line that does not collide by the strict collision results in 2(` − t) “lines”

that must be collided with a cross collision. This is because there will be two different

outputs (one for each message) for each line not collided during the strict collision

which are inputs to the next iteration. These different inputs require more work to

cross collide the line; so twice as much work. Therefore, it is more beneficial to cross

collide lines before a strict collision than after.

Lemma 5.2.5 Any efficient attack other than the birthday attack that finds a colli-

sion for the entire construction uses cross collisions before the strict collision.

Proof By application of Theorem 5.2.3 any optimal attack other than the birthday

attack against the construction uses one strict collision. Let t be the number of lines

103

that collide after the strict collision. For the ` − t lines that do not collide after the

strict collision, the cross collision(s) must consider 2(` − t) “lines” by definition of

the construction. If the `− t lines were collided via a cross collision before the strict

collision, less work would be required for the overall attack, by application of Lemma

5.2.1. To collide `− t lines before the strict collision, ((`− t)−2)22n messages must be

tested. After the strict collision, (2(`− t)−2)22n messages must be tested. Therefore,

finding cross collisions before the strict collision is always more efficient.

Because of Lemma 5.2.5, the only efficient attack against this construction is

performed by finding a cross collision for a subset of the lines, and then a strict

collision for the remaining lines. Using Lemma 5.2.2, finding cross collisions one

iteration at a time is the most efficient method for cross colliding lines. The overall

number of messages that must be tested is determined by adding the number of

messages that must be tested for the cross collisions to the number of messages that

must be tested to cause a strict collision for the remaining lines.

Theorem 5.2.4 If r is the number of lines collided by the cross collision(s), then an

expected (r − 2)22n + 2(`−r+1)n/2 messages must be tested before a collision is found

for the entire construction.

Proof First, r cross collisions are found requiring (r − 2)22n messages to be tested

from a direct application of Lemma 5.2.2. Then a strict collision for the remaining

lines is found by testing an expected 2(`−r+1)n/2 messages, which is derived from

Lemma 5.2.1 and the fact that even if all the lines are the same at the iteration where

the r-way cross collision occurs, a single strict collision must still be found. It is

that fact that accounts for the additional n/2 term in the exponent. Therefore, these

two pieces added together results in the expected number of messages that must be

tested.

It is clear that when r = ` the number of messages that must be tested is mini-

mized. When this occurs, the expected number of messages is reduced to (`−2)22n +

104

2n/2. To ensure that the dynamic hash function construction is secure with respect

to collision resistance, it is shown that the expected number of messages is 2d(s)/2 for

all valid values of s, that is, for n ≤ s ≤ 4n.

Theorem 5.2.5 If the compression function g is a random oracle, then the dynamic

hash function construction is (t, ε)-dynamic collision resistant, for any t and ε with

t/ε = 2d(s)/2.

Proof To determine whether the dynamic hash function construction is secure with

respect to collision resistance, the possible values of ` can be tested to ensure the

expected number of messages is 2`n/2. Equations (5.1), (5.2), and (5.3) compare the

number of messages that must be tested for both the attack described in Theorem

5.2.4 and the birthday attack, when ` = 1, ` = 2, 3, 4, and ` = 5 respectively. If the

number of messages that must be tested for the former attack is less than 2`n/2, then

the construction is insecure for that value of `. One has

2n/2 = 2n/2 when ` = 1 (5.1)

(`− 2)22n + 2n/2 > 2`n/2 when ` = 2, 3, 4 (5.2)

(5− 2)22n + 2n/2 < 25n/2 when ` = 5. (5.3)

Therefore, when the security parameter (s = d(s) ≤ `n) is less than or equal to

4n the construction is (t, ε)-dynamic collision resistant with t/ε ≈ 2d(s)/2.

Theorem 5.2.5 is the reason the maximum security parameter is limited to 4n in

Section 5.1.5. Allowing the security parameter to be larger than four allows for a more

efficient attack against the construction making the overall construction not (t, ε)-

dynamic collision resistant, with t/ε ≈ 2d(s)/2. Section 5.3 discusses possible methods

for extending the dynamic hash function construction to create larger digests.

105

5.2.3 Security Parameter Collision Resistance

The dynamic hash function construction is always security parameter collision

resistant. For an attacker to successfully attack the construction with respect to

security parameter collision resistance, the attacker must create two digests using

different security parameters that are the same length. However, the way the dynamic

hash function construction is defined this can never occur because s = d(s). The

following theorem states this precisely.

Theorem 5.2.6 For any compression function g, the dynamic hash function con-

struction is (t, ε)-security parameter collision resistant, for any positive t and ε.

Proof By the definition of (t, ε)-security parameter collision resistance, an attacker

must find a message M and a second security parameter s2 such that s1 6= s2 and

d(s1) = d(s2). By definition of the dynamic hash function construction, d(s1) 6= d(s2)

if s1 6= s2. Therefore, the dynamic hash function is (t, ε)-security parameter collision

resistant.

5.2.4 Digest Resistance

Theorem 5.2.7 If the compression function g is a random oracle, then the dynamic

hash function construction is (t, ε)-digest resistant, for any t and ε with t/ε ≥ 2cn,

with c as in Theorem 5.2.2.

Proof By the definition of digest resistance, an attacker is given s1 and H(M, s1),

but not M and must find a second security parameter s2 and the digest of M computed

using security parameter s2. Because the security parameter is part of the input to

the last compression function in each line, no input to these compression functions

when computing H(M, s1) can equal any input to these compression functions when

computing H(M, s2). Because g is assumed to be a random oracle, the outputs

106

of these compression functions are chosen uniformly at random from the set of all

possible outputs.

As the total width of these outputs is d(s) = s ≤ `n, the only hope of finding

H(M, s2) from H(M, s1) is to find a M ′ with H(M ′, s1) = H(M, s1), choose s2 6= s1

in the interval (`−1)n < s2 ≤ `n, and then compute H(M ′, s2). If M ′ = M , then this

works. If M ′ 6= M , then one cannot compute H(M, s2) from H(M, s1) at all. The

effort required to find M ′ with H(M ′, s1) = H(M, s1) is 2cn, with c as in Theorem

5.2.2.

5.3 Expanding the Digest Size Beyond 4n

One possible method for extending the dynamic hash function construction beyond

4n-bit digests is by imposing limits on the block size of the compression function. It is

clear that b > n for any of the message to be processed with each iteration. However,

if b < 3n (or b− n < 2n), then the optimal attack described in Section 5.2.2 cannot

be launched. The attack requires that 22n messages be tested for each iteration until

enough cross collisions are found such that all of the lines produce the same output.

However, if the message block size, b − n, is not large enough to make this possible,

then this type of an attack will not always work. This occurs when b− n < 2n. This

prevents the collision finding attack described in Section 5.2, making the dynamic

hash function construction secure for all of the properties when b < 3n.

It is clear that Theorem 5.2.2 still holds because the number of messages that

must be tested in Lemma 5.2.4 increases from (r− 1)22n to 2(r−1)n to find the r cross

collisions needed. Therefore, the construction is still secure with respect to dynamic

preimage resistance.

The construction also remains secure with respect to both security parameter

collision resistance and digest resistance. The change in block size does not, in any

way, affect Theorem 5.2.6. The effects on Theorem 5.2.7 are the same as on Theorem

107

5.2.2; therefore, the construction is remains secure with respect to digest resistance.

Dynamic collision resistance is shown in Theorem 5.3.1 to be secure.

Theorem 5.3.1 If b < 3n, then the best collision finding attack is the birthday attack.

Proof The attack described in Section 5.2.2 cannot be launched. Theorem 5.2.1

states that to build cross collision iteration by iteration, at least three of the lines

must cross collide. However, the restriction of b − n < 2n limits the number of

messages that can be tested to 2b−n, which is less than 22n, the number required for

even three lines to cross collide in a single iteration.

Theorem 5.2.3 and Lemma 5.2.5 still apply, so the most optimal attack is to

find a cross collision for all of the lines, and then find a single strict collision. The

only way to cause a cross collision for all of the lines is by using multiple message

blocks. If multiple message blocks are treated as if they are the input to a single

larger compression function, Lemma 5.2.1 states that 2(`−1)n message blocks must be

tested to find a cross collision for all of the lines. However, when ` ≥ 2, this clearly

requires at least as much work as launching the birthday attack, with an expected

2`n/2 messages being tested.

From this it is clear that as many of the lines as possible must be cross collided and

the rest found to collide with a single strict collision. However, at most three lines can

collide with a single strict collision because of the restriction on the message block’s

size. Therefore, the total number of messages that must be tested is 2(`−2)n + 23n/2.

The 2(`−2)n is derived from the number of messages that must be tested to cross collide

`−1 lines, which is required because one line is lost due to Theorem 5.2.1. The strict

collision of three lines gives the 23n/2.

To determine when this attack is successful, each piece can be examined to ensure

that it is less than 2`n/2, the amount of work for the birthday attack. For 2(`−2)n <

2`n/2, it is required that ` < 4, while 23n/2 < 2`n/2 requires ` > 3. These two

restrictions upon ` are contradictory. Therefore, no attack against the dynamic hash

function construction is more efficient than the birthday attack when b < 3n.

108

Corollary 5.3.1 If b < 3n the dynamic hash function created from this construction

is (t, ε)-dynamic collision resistant for any t, ε with t/ε ≈ 2`n/2 ≈ 2s/2.

Proof When b < 3n, Theorem 5.3.1 states that the birthday attack is the most

efficient way to find a collision. An expected 2`n/2 messages must be tested for the

birthday attack to succeed with high probability.

The corollary shows, for example, that when s is doubled, the security ratio t/ε is

squared.

While this restriction creates a construction that can securely scale to any `n-bit

digest, it imposes a somewhat unreasonable restriction upon the block size of the

compression function. The block size of common compression functions, such as the

ones used for SHA-1 or RIPEMD-160 is 3.2n. This means that all of these common

and well known compression functions are unusable with the dynamic hash function

construction. Filling part of the message block with some fixed value can reduce the

actual size of the message block to meet the requirement, however, at the loss of

efficiency.

For reasons of efficiency, and lack of a suitable compression function, the message

block size restriction was not placed on the dynamic hash function construction.

Allowing digests of only four times the output size of the compression function is also

suitable for most applications. For example, using SHA-1’s compression function a

640-bit digest can be constructed. This is larger than the output of the largest hash

function standardized by NIST, SHA-512. Using the SHA-512 compression function

results in a 2,048-bit digest, larger than most keys used in digital signatures schemes.

5.4 Additional Properties

In [3] it was proved that the Enveloped Merkle-Damg̊ard construction preserves

the properties of collision resistance, pseudorandom oracles and pseudorandom func-

tions. It was proved in Section 5.2.2 that the dynamic hash function construction

109

preserves collision resistance, but it can also be shown that it preserves pseudoran-

dom oracles and pseudorandom functions.

In fact, the dynamic hash function construction is equivalent to the Enveloped

Merkle-Damg̊ard construction with respect to the preservation of pseudorandom or-

acles and pseudorandom functions. The only difference between the dynamic hash

function construction and the Enveloped Merkle-Damg̊ard construction is the con-

catenation of multiple lines together to form a larger digest.

Theorem 5.4.1 The dynamic hash function construction is equivalent to the En-

veloped Merkle-Damg̊ard construction with respect to preserving pseudorandom ora-

cles and pseudorandom functions.

Proof When s = n the dynamic hash function construction is exactly the same as

the Enveloped Merkle-Damg̊ard construction. When s > n the digest created can be

thought of as the concatenation of multiple hash functions all using the Enveloped

Merkle-Damg̊ard construction. While the iterations up to the enveloping step are

dependent upon each other, the final enveloping step is independent for each line.

With respect to the property preservation of pseudorandom oracles and pseudoran-

dom functions, the concatenation of these hash functions preserves the properties.

5.5 Provisions for Adding Salt

A salt value helps to prevent precomputation of collisions for a specific hash func-

tion. While the security parameter attempts to provide this type of security, the

domain of the security parameter may not be large enough to prevent precomputa-

tion. However, a 32-bit salt provides enough variation on the same message to prevent

such precomputation by today’s standards.

A salt can be added to this construction by concatenating the salt to each message

block. To increase the security further, the salt, treated as an integer, can be incre-

mented once for each message block that is processed by the construction. A similar

110

technique is described in [8] to prevent the fixed point attack (see Section 4.3.4). The

modified version of the message processing is as follows:

IVs,j = g(IV1, IV1 ‖ s ‖ j) for j = 0 . . . `− 1

h1,j = g(IVs,j, salt ‖ m1 ‖ IVs,[j+1]) for j = 0 . . . `− 1

hi,j = g(hi−1,j, salt + i ‖ mi ‖ hi−1,[j+1]) for i = 0 . . . k, for j = 0 . . . `− 1

It is clear that adding a salt will reduce the efficiency of the construction; however,

the increase in security may be worth the trade-off. For example, passwords are

commonly precomputed in an attempt to make it easier to break a password file.

Adding a salt to a password before it is hashed is the most common way to make

such a precomputation infeasible. The amount of time required to hash a password

that is a single block long is much less than the time required to hash the same single

block password with all possible salt values. However, the extra time needed to hash

the contents of a CD or DVD when using a salt will have a large impact and may not

make sense.

5.6 Preventing the Multi-Collision Attack

The same technique used by the dynamic hash function construction to increase

the security as the security parameter increases can also be applied to preventing the

multi-collision attack. In [43] a technique for expanding the size of the internal values

was presented which would prevent the multi-collision attack (see Section 4.3.1). The

requirement for preventing the attack is that the size of the output of the internal

compression function must be at least twice the size of the output of the hash function.

In the case of the dynamic hash function construction, the concatenation of the

intermediate values is considered the output of the internal compression function.

To achieve this with the dynamic hash function construction more lines will be

needed as the size of the digest increases. For example, if s = n, only a single line

is required by the dynamic hash function construction. However, an attacker can

easily launch the multi-collision attack against the construction. If two lines were

111

used, the attack would not be possible as it would require trying an expected 2n

message blocks to find an internal collision. Expanding this logic, if s = 2n, then four

lines are required. This way the expected number of message blocks would climb to

22n, preventing the multi-collision attack. One should note that while this attack is

prevented, an exponential increase in work is required. As the size of the digest in-

creases, the number of lines must increase two-fold. As with the salting modification,

preventing this type of an attack may only make sense in certain situations, and can

only be applied for s ≤ 2n.

5.7 Implementation Issues

While the dynamic hash function construction appears difficult to implement,

there are several features that programming languages can leverage to easily and ef-

ficiently implement the dynamic hash function construction. First, the initial values

are always created the same way for each security parameter. Time can be saved by

storing the initial values for common security parameters in a table so that they do

not need to be recomputed each time the function computes a digest. In most archi-

tectures a table lookup will be more efficient than a computation of the compression

function.

Second, with multiple CPUs becoming more prevalent in computers, the natural

parallelism of this construction can be exploited to compute digests more efficiently.

Each line in the construction is computed in the same manner and therefore the same

code can be used in parallel to compute each line. If multiple processors are not

available, as is the case on such restricted architectures as smart cards, each of the

computations can be done serially with only a linear increase in work needed for each

line required to compute the digest.

Third, while a number of variables are concatenated in this construction, all of

them have lengths that facilitate efficient concatenation for most architectures. The

lengths of the intermediate values concatenated with the message blocks are multiples

112

of the word size of the target architecture for the underlying compression function that

is used. Individual bits are never manipulated outside of the compression function,

with the exception of the padding algorithm, which is only used once per digest.

Finally, the padding algorithm used with the dynamic hash function construc-

tion is essentially the same as the padding algorithm used for the Merkle-Damg̊ard

construction. Code that implements the padding algorithm for the Merkle-Damg̊ard

construction requires only minor modifications to adapt it to work with the dynamic

hash function construction. The 64 bits usually required for the message’s size can

be increased to 96 bits to include the digest size as well. Concatenating the digest

size to the end of the message after the message’s length can be done with the same

code used to concatenate the message’s length.

5.7.1 Speed Comparison

To test the relative speed of the dynamic hash function construction described

in Section 5.1 compared to the commonly used SHA family of hash functions, both

were implemented with the same level of optimization and the running time of each

was recorded. Table 5.1 shows the relative time between the SHA functions and

the dynamic hash function construction using the SHA-1 compression function when

computing the digest of a 1 MB message.

Table 5.1
The relative speed between the SHA functions and the dynamic hash
function construction using the SHA-1 compression function when
calculating the digest of a 1 MB message.

Digest Size Relative Speed

160 1.42

256 1.38

512 1.85

113

For a 160-bit digest, the SHA-1 function was 1.42 times faster than the dynamic

hash function construction using the SHA-1 compression function. While this might

seem like a large decrease in speed when using the dynamic hash function construction,

the dynamic hash function construction can only process 352 bits of the message per

iteration. In contrast, the SHA-1 function can process 160 bits of the message per

iteration. The SHA-1 function is able to process messages with fewer than half of the

iterations of the dynamic hash function construction.

When calculating a 256-bit digest, the SHA-256 function is actually slower than

the dynamic hash function construction. This is most likely due to the fact that

the dynamic hash function construction must run the SHA-1 compression function

twice per message block, but the SHA-1 compression function is twice as fast as the

SHA-256 compression function. Therefore, the amount of time required to process

one message block for a single line compared to two lines increases at approximately

the same rate as the SHA-1 function compared to the SHA-256 function. The slight

variation in relatives speeds can most likely be attributed to rounding and inaccurate

timing of the CPU.

The 512-bit digest is calculated almost twice as slowly by the dynamic hash func-

tion construction as the SHA-512 function. The dynamic hash function construction

must compute the SHA-1 compression function four times per message block. The

SHA-1 compression function is however not even three times faster than the SHA-512

compression function. This attributes to the increase in relative computation time.

Overall the dynamic hash function construction is slower than the SHA family of

functions for the three digest sizes that were tested. However, the actual speed is still

practical. The dynamic hash function construction only required 37 clock ticks2 to

compute the 512-bit digest for a message of 1 MB in length. For most applications

this is a more than adequate amount of time to compute a digest for a message of its

size.

2See the Linux manual page for the gettimeofday system call for a definition of “clock tick.”

114

6 SUMMARY

6.1 Conclusion

This dissertation introduced a new type of cryptographic hash function, the dy-

namic cryptographic hash function. Dynamic cryptographic hash functions are differ-

ent from traditional cryptographic hash functions in that a security parameter dictates

how the digest is computed. The goal of a dynamic cryptographic hash function is

essentially the same as a traditional hash function: provide a cryptographically secure

hash function with respect to the properties of preimage resistance, second preimage

resistance, and collision resistance. However, because an adversary potentially has

control of the way in which the digest is computed, additional security properties are

required to ensure a dynamic cryptographic hash function is secure.

Security parameter collision resistance and digest resistance, were introduced and

formally defined in Chapter 3. These new properties prevent an adversary from

gaining an advantage in attacking the dynamic hash function by controlling the secu-

rity parameter. For example, digest resistance prevents an attacker from creating a

smaller version of the digest for a message, and then searching for a collision for the

larger digest. Security parameter collision resistance and digest resistance are what

differentiate dynamic cryptographic hash functions from previous cryptographic hash

functions that simply create variable size digests.

This dissertation also presented a number of attacks against the Merkle-Damg̊ard

construction. The Merkle-Damg̊ard construction is important because most of the

cryptographic hash functions used today are built upon this construction. In light of

these attacks new constructions by various authors were also presented. Most of these

constructions only seek to thwart a specific attack against the Merkle-Damg̊ard con-

115

struction. While each succeeds in thwarting a specific attack, no single construction

thwarts them all.

The dynamic hash function construction presented in this dissertation has the

ability to thwart all of the known attacks against the Merkle-Damg̊ard construction

and produces a variable size digest. The dynamic hash function construction leverages

many of the techniques used by the new constructions, combining them in a secure

way. The resulting construction is resistant to most of the attacks against the Merkle-

Damg̊ard construction and those that are not can be thwarted by simply increasing

the digest’s size.

6.2 Future Work

The area of cryptographic hash functions is one of the most active areas in cryp-

tography today. Much research is needed to understand all of the properties required

of a hash function to consider it cryptographically secure and how to achieve these

properties. The first area for future work is in identifying versions of the properties

listed in this dissertation that are potentially useful for cryptographic hash functions

to possess. While the implications between properties are important to understand,

it is also of great importance to understand what properties protocol and system

designers are counting on.

This dissertation presented a construction for creating a dynamic cryptographic

hash function from a traditional compression function. More efficient methods are

needed to create a viable dynamic cryptographic hash function. The most obvious

avenue for creating a more efficient dynamic cryptographic hash function is by devel-

oping a dynamic compression function that can be used with the standard Merkle-

Damg̊ard construction or one of its improved variants. Such a compression function

will allow for the more efficient computation of digests while leveraging all that is

known about the Merkle-Damg̊ard construction.

116

Finally, much more work needs to be done in determining whether a compression

function possess a given security property. While there have been a few examples of

provably secure compression functions, they are usually based on number theory and

are slower than dedicated compression functions. All of the properties proved about

the Merkle-Damg̊ard construction and the dynamic cryptographic hash function con-

struction rely on certain properties being possessed by the underlying compression

function. Much more work is needed in this area to create efficient and provably

secure dedicated compression function.

LIST OF REFERENCES

117

LIST OF REFERENCES

[1] Mihir Bellare. New proofs for NMAC and HMAC: Security without collision-
resistance. In Advances in Cryptology - CRYPTO 2006, 26th Annual Interna-
tional Cryptology Conference, volume 4117 of Lecture Notes in Computer Science,
pages 602 – 619, Santa Barbra, California, USA, August 2006. Springer-Verlag.

[2] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for
message authentication. In Advances in Cryptology - CRYPTO ’96, 16th Annual
International Cryptology Conference, volume 1109 of Lecture Notes in Computer
Science, pages 1 – 15, Santa Barbara, California, USA, August 1996. Springer-
Verlag.

[3] Mihir Bellare and Thomas Ristenpart. Multi-property-preserving hash domain
extension and the EMD transform. In Advances in Cryptology - ASIACRYPT
2006, volume 4284 of Lecture Notes in Computer Science, pages 299–314, Shang-
hai, China, December 2006. Springer-Verlag.

[4] Mihir Bellare and Thomas Ristenpart. Multi-property-preserving hash domain
extension: The EMD transform. In The Second Cryptographic Hash Workshop,
Santa Barbara, California, USA, August 2006.

[5] Mihir Bellare and Phillip Rogaway. Introduction to modern cryptography. Chap-
ter 5: http://www-cse.ucsd.edu/users/mihir/cse207/w-hash.pdf, Septem-
ber 2005.

[6] Steven Bellovin and Eric Rescorla. Deploying a new hash algorithm. In Crypto-
graphic Hash Workshop, Gaithersburg, Maryland, USA, October 2005. National
Institue of Standards and Technology.

[7] Eli Biham and Rafi Chen. Near-collisions of SHA-0. In Matthew K. Franklin, ed-
itor, Advances in Cryptology - CRYPTO 2004, 24th Annual International Cryp-
tologyConference, Lecture Notes in Computer Science, pages 290–305, Santa Bar-
bara, California, USA, August 2004. Springer.

[8] Eli Biham and Orr Dunkelman. A framework for iterative hash functions –
HAIFA. In The Second Cryptographic Hash Workshop, Santa Barbara, Califor-
nia, USA, August 2006. National Institue of Standards and Technology.

[9] John Black. Message Authentication Codes. Thesis (Ph.D.), University of Cali-
fornia Davis, Davis, California, 2000.

[10] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-box analysis of the
block-cipher-based hash-function constructions from PGV. In Moti Yung, editor,
Advances in Cryptology - CRYPTO 2002, 22nd Annual International Cryptology
Conference, volume 2442 of Lecture Notes in Computer Science, pages 320–335,
Santa Barbara, California, USA, August 2002. Springer-Verlag.

118

[11] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. Cryptology ePrint Archive, Report 2000/067, December 2001.
http://eprint.iacr.org/2000/067.pdf.

[12] J. Lawrence Carter and Mark Wegman. Universal classes of hash functions (ex-
tended abstract). In STOC ’77: Proceedings of the ninth annual ACM symposium
on Theory of computing, pages 106 – 112, Boulder, Colorado, USA, 1977. ACM
Press.

[13] Florent Chabaud and Antoine Joux. Differential collisions in SHA-0. In Hugo
Krawczyk, editor, Advances in Cryptology - CRYPTO ’98, 18th Annual Interna-
tional Cryptology Conference, Lecture Notes in Computer Science, pages 56–71,
Santa Barbara, California, USA, August 1998. Springer.

[14] Denis Charles, Eyal Goren, and Kristin Lauter. Cryptographic hash functions
from expander graphs. Cryptology ePrint Archive, Report 2000/021, January
2006. http://eprint.iacr.org/2000/021.pdf.

[15] Scott Contini, Arjen K. Lenstra, and Ron Steinfeld. VSH, an efficient and prov-
able collision-resistant hash function. In Serge Vaudenay, editor, Advances in
Cryptology - EUROCRYPT 2006, 25th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, volume 4004 of Lecture
Notes in Computer Science, pages 165 – 182, St. Petersburg, Russia, May 2006.
Springer.

[16] Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein. Intro-
duction to Algorithms. McGraw-Hill Book Company, second edition, 2002.

[17] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya.
Merkle-Damg̊ard revisited: How to construct a hash function. In Victor Shoup,
editor, Advances in Cryptology - CRYPTO 2005: 25th Annual International
Cryptology Conference, Lecture Notes in Computer Science, pages 430–448,
Santa Barbara, California, USA, August 2005. Springer.

[18] Ivan Damg̊ard. The application of claw free functions in cryptography. Thesis
(Ph.D.), Aarthus University, Mathematical Institute, 1988.

[19] Ivan Damg̊ard. A design principle for hash functions. In Gilles Brassard, editor,
Advances in Cryptology - CRYPTO ’89, 9th Annual International Cryptology
Conference, Lecture Notes in Computer Science, pages 416–427, Santa Barbara,
California, USA, August 1989. Springer.

[20] Bert den Boer and Antoon Bosselaers. An attack on the last two rounds of
MD4. In Joan Feigenbaum, editor, Advances in Cryptology - CRYPTO ’91,
11th Annual International Cryptology Conference, Lecture Notes in Computer
Science, pages 194–203, Santa Barbara, California, USA, August 1991. Springer.

[21] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, IT-22(6):644 – 654, November 1976.

[22] Hans Dobbertin. RIPEMD with two-round compress function is not collision-
free. Journal of Cryptology, 10(1):51–70, 1997.

119

[23] Hans Dobbertin. The first two rounds of MD4 are not one-way. In Serge Vau-
denay, editor, Fast Software Encryption, 5th International Workshop, FSE ’98,
Lecture Notes in Computer Science, pages 284–292, Paris, France, March 1998.
Springer.

[24] Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. RIPEMD-160: A
strengthened version of RIPEMD. In Fast Software Encryption, Third Inter-
national Workshop, volume 1039 of Lecture Notes in Computer Science, pages
71 – 82, Cambridge, United Kingdom, February 1996. Springer-Verlag.

[25] Orr Dunkelman. E-Mail correspondence with Orr Dunkelman, November 2006.

[26] W. Feller. An Introduction to Probability Theory and Its Applications. John
Wiley, New York, 1957.

[27] Niels Ferguson and Bruce Schneier. Practical Cryptography. Wiley Publishing,
Indianapolis, Indiana, USA, 2003.

[28] Réjane Forré. The strict avalanche criterion: Spectral properties of boolean
functions and an extended definition. In Shafi Goldwasser, editor, Advances
in Cryptology - CRYPTO ’88, 8th Annual International Cryptology Conference,
Lecture Notes in Computer Science, pages 450–468, Santa Barbara, California,
USA, August 1988. Springer.

[29] Praveen Gauravaram, William Millan, Juanma Gonzalez Nieto, and Edward
Dawson. 3C - A provably secure pseudorandom function and message authenti-
cation code. A new mode of operation for cryptographic hash function. Cryptol-
ogy ePrint Archive, Report 2005/390, 2005. http://eprint.iacr.org/2005/
390.pdf.

[30] Zvi Gutterman, Benny Pinkas, and Tzachy Reinman. Analysis of the linux
random number generator. In 2006 IEEE Symposium on Security and Privacy
(S&P 2006), pages 371–385, Berkeley, California, USA, 2006. IEEE Computer
Society.

[31] Shai Halevi and Hugo Krawczyk. The RMX transform and digital signatures.
In The Second Cryptographic Hash Workshop, Santa Barbara, CA, USA, August
2006. National Institue of Standards and Technology.

[32] Shai Halevi and Hugo Krawczyk. Strengthening digital signatures via randomized
hashing. In Cynthia Dwork, editor, Advances in Cryptology - CRYPTO 2006:
26th Annual International Cryptology Conference, volume 4117 of Lecture Notes
in Computer Science, pages 41 – 59, Santa Barbra, California, USA, August
2006. Springer.

[33] Shoichi Hirose. Provably secure double-block-length hash functions in a black-
box model. In Choonsik Park and Seongtaek Chee, editors, Information Security
and Cryptology - ICISC 2004, 7th International Conference, volume 3506 of
Lecture Notes in Computer Science, pages 330–342, Seoul, Korea, December
2005. Springer-Verlag.

[34] Walter Hohl, Xuejia Lai, Thomas Meier, and Christian Waldvogel. Security of
iterated hash functions based on block ciphers. In Douglas R. Stinson, editor,
Advances in Cryptology - CRYPTO ’93, 13th Annual International Cryptology
Conference, volume 773 of Lecture Notes in Computer Science, pages 379–390,
Santa Barbara, California, USA, August 1994. Springer-Verlag.

120

[35] Antoine Joux. Multicollisions in iterated hash functions. Application to cas-
caded constructions. In Matthew K. Franklin, editor, Advances in Cryptology -
CRYPTO 2004, 24th Annual International CryptologyConference, volume 3152
of Lecture Notes in Computer Science, pages 306–316, Santa Barbara, California,
USA, August 2004. Springer.

[36] John Kelsey and Tadayoshi Kohno. Herding hash functions and the Nostradamus
attack. In Serge Vaudenay, editor, Advances in Cryptology - EUROCRYPT
2006, 25th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, volume 4004 of Lecture Notes in Computer Science,
pages 183–200, St. Petersburg, Russia, May 2006. Springer.

[37] John Kelsey and Bruce Schneier. Second preimages on n-bit hash functions for
much less than 2n work. Cryptology ePrint Archive, Report 2004/304, November
2004. http://eprint.iacr.org/2004/304.pdf.

[38] Lars R. Knudsen and Bart Preneel. Hash functions based on block ciphers
and quaternary codes. In Kwangjo Kim and Tsutomu Matsumoto, editors, Ad-
vances in Cryptology - ASIACRYPT ’96, International Conference on the Theory
and Applications of Cryptology and Information Security, volume 1163 of Lec-
ture Notes in Computer Science, pages 77–90, Kyongju, Korea, November 1996.
Springer-Verlag.

[39] Lars R. Knudsen and Bart Preneel. Fast and secure hashing based on codes.
In Burton S. Kaliski Jr., editor, Advances in Cryptology - CRYPTO ’97, 17th
Annual International Cryptology Conference, volume 1294 of Lecture Notes in
Computer Science, pages 485–498, Santa Barbara, California, USA, August 1997.
Springer-Verlag.

[40] Lars R. Knudsen and Bart Preneel. Construction of secure and fast hash func-
tions using nonbinary error-correcting codes. IEEE Transactions on Information
Theory, 48(9):2524–2539, 2002.

[41] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC: Keyed-hashing for
message authentication. Request For Comments 2104, Network Working Group,
February 1997.

[42] Xuejia Lai and James L. Massey. Hash functions based on block ciphers. In
Rainer A. Rueppel, editor, Advances in Cryptology - EUROCRYPT ’92, Work-
shop on the Theory and Application of Cryptographic Techniques, volume 658 of
Lecture Notes in Computer Science, pages 55–70, Balatonfüred, Hungary, May
1992. Springer.

[43] Stefan Lucks. Design principles for iterated hash functions. Cryptology ePrint
Archive, Report 2004/253, September 2004. http://eprint.iacr.org/2004/
253.pdf.

[44] Stefan Lucks. A failure-friendly design principle for hash functions. In Bimal K.
Roy, editor, Advances in Cryptology - ASIACRYPT 2005, 11th International
Conference on the Theory and Application of Cryptology and Information Secu-
rity, volume 3788 of Lecture Notes in Computer Science, pages 474–494, Chennai,
India, December 2005. Springer.

121

[45] Ueli Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, im-
possibility results on reductions, and applications to the random oracle method-
ology. In Theory of Cryptography - TCC 2004, volume 2951 of Lecture Notes in
Computer Science, pages 21 – 39. Springer, February 2004.

[46] Ueli M. Maurer and Johan Sjödin. Single-key AIL-MACs from any FIL-MAC.
In Lúıs Caires, Giuseppe F. Italiano, Lúıs Monteiro, Catuscia Palamidessi, and
Moti Yung, editors, Automata, Languages and Programming, 32nd International
Colloquium, ICALP, volume 3580 of Lecture Notes in Computer Science, pages
472–484, Lisbon, Portugal, July 2005. Springer.

[47] E. H. Mckinney. Generalized birthday problem. The American Mathematical
Monthly, 73(4):385 – 387, April 1966.

[48] Alfred Menezes, Paul Van Oorschot, and Scott Vanstone. Handbook of applied
cryptography. The CRC Press series on discrete mathematics and its applications.
CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431, 1997.

[49] Ralph C. Merkle. One way hash functions and DES. In Gilles Brassard, editor,
Advances in Cryptology - CRYPTO ’89, 9th Annual International Cryptology
Conference, Lecture Notes in Computer Science, pages 428–446, Santa Barbara,
California, USA, August 1989. Springer.

[50] Ilya Mironov. Hash functions: Theory, attacks, and applications. Microsoft
Research Technial Report TR-2005-187, November 2005. ftp://ftp.research.
microsoft.com/pub/tr/TR-2005-187.pdf.

[51] Mridul Nandi. Towards optimal double-length hash functions. In Subhamoy
Maitra, C. E. Veni Madhavan, and Ramarathnam Venkatesan, editors, Progress
in Cryptology - INDOCRYPT 2005, 6th International Conference on Cryptol-
ogy, volume 3797 of Lecture Notes in Computer Science, pages 77–89, India,
Bangalore, December 2005. Springer.

[52] Mridul Nandi, Wonil Lee, Kouichi Sakurai, and Sangjin Lee. Security analysis
of a 2/3-rate double length compression function in the black-box model. In
Henri Gilbert and Helena Handschuh, editors, Fast Software Encryption: 12th
International Workshop, FSE 2005, volume 3557 of Lecture Notes in Computer
Science, pages 243–254, Paris, France, February 2005. Springer-Verlag.

[53] Mridul Nandi and Douglas Stinson. Multicollision attacks on generalized hash
functions. Cryptology ePrint Archive, Report 2004/330, May 2005.

[54] Moni Naor and Moti Yung. Universal one-way hash functions and their crypto-
graphic applications. In Proceedings of the Twenty First Annual ACM Sympo-
sium on Theory of Computing, pages 33 – 43, Seattle, Washington, USA, May
1989. ACM Press.

[55] NIST. FIPS PUB 197: Advanced encryption standard (AES). Technical report,
National Institute for Standards and Technology, Gaithersburg, Maryland, USA,
November 2001.

[56] NIST. FIPS PUB 180-2: Secure hash standard. Technical report, National
Institute for Standards and Technology, Gaithersburg, Maryland, USA, May
2002.

122

[57] Birgit Pfitzmann and Michael Waidner. A model for asynchronous reactive
systems and its application to secure message transmission. In Frances M.
Titsworth, editor, IEEE Symposium on Security and Privacy, pages 184 – 200,
Oakland, California, USA, May 2001. IEEE Computer Society Press.

[58] Josef Pieprzyk and Babak Sadeghiyan. Design of Hashing Algorithms. Number
756 in Lecture Notes in Computer Science. Springer-Verlag, 1993.

[59] Bart Preneel. Analysis and Design of Cryptographic Hash Functions. Thesis
(Ph.D.), Katholieke Universiteit Leuven, Leuven, Belgium, January 1993.

[60] Bart Preneel. The state of cryptographic hash functions. In Ivan Damg̊ard,
editor, Lectures on Data Security, Modern Cryptology in Theory and Practice,
volume 1561 of Lecture Notes in Computer Science, pages 158–182, Aarhus,
Denmark, July 1999. Springer.

[61] Bart Preneel. Hash functions. K.U. Leuven, Version 2.b – http://homes.esat.
kuleuven.be/~preneel/, January 2004.

[62] Bart Preneel. E-Mail correspondence with Bart Preneel, December 2005.

[63] Bart Preneel, René Govaerts, and Joos Vandewalle. Hash functions based on
block ciphers: A synthetic approach. In Douglas R. Stinson, editor, Advances
in Cryptology - CRYPTO ’93, 13th Annual International Cryptology Confer-
ence, volume 435, pages 154–163, Santa Barbara, California, USA, August 1994.
Springer-Verlag.

[64] Jean-Jacques Quisquater and Marc Girault. 2n-bit hash-functions using n-bit
symmetric block cipher algorithms. In Jean-Jacques Quisquater and Joos Van-
dewalle, editors, Advances in Cryptology - EUROCRYPT ’89, Workshop on the
Theory and Application of of Cryptographic Techniques, volume 434 of Lecture
Notes in Computer Science, pages 102–109, Houthalen, Belgium, April 1989.
Springer.

[65] Vincent Rijmen and Paulo Barreto. Iso/iec 10118-3:2004 – part 3: Dedicated
hash-functions. Technical report, International Organization for Standardization,
2004.

[66] Ron Rivest, Adi Shamir, Bart Preneel, Antoine Joux, and Niels Ferguson. Sha-
256 today and maybe something else in a few years: Effects on research and
design. Panel Discussion, August 2006.

[67] Ronald Rivest. The MD4 message-digest algorithm. Request For Comments
1320, Internet Activities Board, Internet Pricacy Task Force, April 1992.

[68] Ronald Rivest. The MD5 message-digest algorithm. Request For Comments
1321, Internet Activities Board, Internet Pricacy Task Force, April 1992.

[69] Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-function ba-
sics: Definitions, implications, and separations for preimage resistance, second-
preimage resistance, and collision resistance. In Bimal K. Roy and Willi Meier,
editors, Fast Software Encryption, 11th International Workshop, FSE 2004, Lec-
ture Notes in Computer Science, pages 371–388, Delhi, India, February 2004.
Springer.

123

[70] Thomas Shrimpton. E-Mail correspondence, February 2006.

[71] William Stallings. Cryptography and Network Security: Principles and Practice.
Prentice Hall, 2nd edition, 1998.

[72] Douglas Stinson. Cryptography Theory and Practice. Discrete Mathematics and
Its Applications. Chapman and Hall/CRC, Boca Raton, Florida, USA, third
edition, 2006.

[73] Samuel S. Wagstaff, Jr. Cryptanalysis of Number Theoretic Ciphers. Chapman
& Hall/CRC, 2002.

[74] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full
SHA-1. In Victor Shoup, editor, Advances in Cryptology - CRYPTO 2005: 25th
Annual International Cryptology Conference, Lecture Notes in Computer Sci-
ence, pages 17–36, Santa Barbara, California, USA, August 2005. Springer.

[75] Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions. In
Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005, 24th An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques, Lecture Notes in Computer Science, pages 19–35, Aarhus, Denmark,
May 2005. Springer.

[76] Mark N. Wegman and Larry Carter. New hash functions and their use in au-
thentication and set equality. Journal of Computer System Sciences, 22(3):265
– 279, 1981.

[77] Gideon Yuval. How to swindle Rabin. Cryptologia, 3:187 – 189, 1979.

[78] Yuliang Zheng, Josef Pieprzyk, and Jennifer Seberry. HAVAL – A one-way
hashing algorithm with variable length of output. In Jennifer Seberry and Yu-
liang Zheng, editors, Advances in Cryptology - ASIACRYPT ’92, Workshop on
the Theory and Application of Cryptographic Techniques, Lecture Notes in Com-
puter Science, pages 83–104, Gold Coast, Queensland, Australia, December 1992.
Springer.

APPENDICES

124

A ADDITIONAL EXPERIMENTS FOR DYNAMIC HASH FUNCTION

SECURITY PROPERTIES

Stronger Versions of the Traditional Properties

Experiment ExpsSec
H (A) Experiment ExpsCol

H (A)

K
$← K K

$← K
M1

$← D (M1,M2, s)
$← A(K)

(M2, s)
$← A(K, M1) if(HK(M1, s) = HK(M2, s) and M1 6= M2)

if(HK(M1, s) = HK(M2, s) and M1 6= M2) return 1

return 1 else

else return 0

return 0

Stronger Versions of the Dynamic Properties

Experiment ExpsdSec
H (A) Experiment ExpsdCol

H (A)

K
$← K K

$← K
M1

$← D (M1, M2, s1, s2)
$← A(K)

(M2, s1, s2)
$← A(K, M1) if(HK(M1, s1) = HK(M2, s2)

if(HK(M1, s1) = HK(M2, s2) and M1 6= M2 and d(s1) = d(s2))

and M1 6= M2 and d(s1) = d(s2)) return 1

return 1 else

else return 0

return 0

125

Weaker Versions of the Dynamic Properties

Experiment ExpwdPre
H (A) Experiment ExpwdSec

H (A)

K
$← K K

$← K
M1

$← D M1
$← D

s1
$← [λ(l), υ(l)] s1

$← [λ(l), υ(l)]

s2
$← [λ(l), υ(l)] s2

$← [λ(l), υ(l)]

Y ← HK(M1, s1) (M2)
$← A(K, M1, s1, s2)

(M2)
$← A(K, Y, s1, s2) if(HK(M1, s1) = HK(M2, s2)

if(Y = HK(M2, s2) and d(s1) = d(s2)) and M1 6= M2 and d(s1) = d(s2))

return 1 return 1

else else

return 0 return 0

Experiment ExpwdCol
H (A)

K
$← K

l
$← N

s1
$← [λ(l), υ(l)]

s2
$← [λ(l), υ(l)]

(M1, M2)
$← A(K, s1, s2)

if(HK(M1, s1) = HK(M2, s2)

and M1 6= M2 and d(s1) = d(s2))

return 1

else

return 0

126

Weak and Strong Versions of Security Parameter Collision Resistance

Experiment ExpwPCol
H (A) Experiment ExpsPCol

H (A)

K
$← K K

$← K
l

$← N

s1
$← [λ(l), υ(l)] (M, s1, s2)

$← A(K)

s2
$← [λ(l), υ(l)] if(HK(M, s1) = HK(M, s2)

(M)
$← A(K, s1, s2) and d(s1) = d(s2))

if(HK(M, s1) = HK(M, s2) return 1

and d(s1) = d(s2)) else

return 1 return 0

else

return 0

Weak Version of Digest Resistance

Experiment ExpwDig
H (A)

K
$← K

M
$←M

s1
$← [λ(l), υ(l)]

s2
$← [λ(l), υ(l)]

Y1 ← HK(M, s1)

(Y2)
$← A(K, Y1, s1, s2)

if(Y2 = HK(M, s2) and s1 6= s2)

return 1

else

return 0

127

B BIRTHDAY ATTACKS

The birthday attack derives its name from the birthday paradox. The birthday para-

dox is often used in introductory probability courses to demonstrate that probability

results are sometimes unexpected [71]. The problem asks the following question: How

many people are needed in a group to have two members of that group have the same

birthday (meaning day and month) with a probability greater than 50%? The relation

between this question and hash functions is not obvious.

The digest of a hash function can be thought of as a birthday. The messages

provided as input to the hash function can be thought of as the people. The question

can then be rephrased as follows: How many messages must be hashed before two

messages are found that have the same digest with a probability great than 50%?

This question asks how many messages must be hashed before collision resistance

(describe in Section 2.4.3) is broken.

This line of questioning can be extended to two other problems. The first question

asks, how many messages must be hashed before a message is found that results in

some target digest. This is the notion of preimage resistance described in Section

2.4.1. The second question extends the original birthday paradox to an arbitrary

number of collisions, or people with the same birthday. This is the notion of k-

collisions described in Section 4.2.3.

B.1 Preimage

Theorem B.1.1 For an ideal hash function H that produces an n-bit digest, the

expected number of messages hashed before finding a preimage is 2n.

Proof The proof is straightforward. There are 2n possible digests for an n-bit

hash function. Selecting messages randomly, there is a 2−n probability of selecting a

128

message that hashes to a specified digest. Therefore, the expected number of messages

that must be hashed before a message is found that hashes to a given digest is 2n.

B.2 Collision

Theorem B.2.1 For an ideal hash function H that produces an n-bit digest, the

expected number of messages hashed before finding two messages that collide is 2n/2.

The proof for this theorem is taken, in modified form, from [73].

Proof The probability of k messages being independently chosen from 2n possible

messages and having two that result in the same digest is considered first. Let P (2n, k)

denote this probability.

P (2n, k) = 1− 2n(2n − 1) · · · (2n − k + 1)

2nk
(B.1)

= 1−
(

1− 1

2n

) (

1− 2

2n

)

× · · · ×
(

1− k − 1

2n

)

(B.2)

To find the value of k such that P (2n, k) is greater than 50%, the fact that 1−x ≈
e−x is applied to each factor in (B.2).

P (2n, k) ≈ 1− (e−1/2n

)(e−2/2n

)(e−3/2n

)× · · · × (e−(k−1)/2n

) (B.3)

= 1− e−(1/2n+2/2n+3/2n+···+(k−1)/2n) (B.4)

= 1− e−k(k−1)/2(n+1)

(B.5)

Now that the probability is in an easier form, the probability is set to 1/2 and k is

solved for. Another approximation is used to simplify the computations, k(k−1) ≈ k2

for large values of k.

129

1

2
= P (2n, k) (B.6)

= 1− e−k(k−1)/2(n+1)

(B.7)

= e−k2/2(n+1)

(B.8)

2 = ek2/2(n+1)

(B.9)

ln 2 =
k2

2(n+1)
(B.10)

√

2(n+1)(ln 2) = k (B.11)

1.18
√

2n ≈ k (B.12)

Therefore, to pick messages independently from 2n possible messages and find two

the result in the same digest, an expected 2n/2 messages must be hashed.

B.3 k-Collisions

Finding a k-collision consists of finding k unique messages, M1, M2, . . . ,Mk, such

that the digests of the messages are all the same: H(M1) = H(M2) = · · · = H(Mk).

The number of messages that must be hashed before finding k that collide is 2n(k−1)/k.

This is given in Theorem 4.2.2, and is restated below.

Theorem 4.2.2 (k-collisions) For an ideal hash function H that produces an n-bit

digest, an expected 2n(k−1/k) messages must be hashed before finding k messages that

collide.

To prove this theorem the following lemma is proved, taken from [53].

Lemma B.3.1 For a random oracle g : D → Σn, the birthday attack with complexity

q finds a k-way collision with probability qk/2(k−1)n, where D is the domain of g.

130

Proof Let m1, . . . ,mq be randomly chosen from the domain D, then g(m1), . . . , g(mq)

are independent and uniformly distributed over the range R. Thus, for any set

{i1, . . . , ik} ⊂ [1, k],

Pr[g(xi1) = · · · = g(xik)] = 1/2(r−1)n.

Let S1, . . . , Sj be k-subsets of {m1, . . . ,mq} (which denotes the complete query list

of the birthday attack) where j =
(

q
k

)

. Let Ei denote the event that Si is a k-

collision set. Thus, the event corresponding to the existence of an k-way collision in

the set {m1, . . . ,mq} is
⋃

i Ei. Hence, the probability that the birthday attack finds

a k-collision set is

Pr

[

⋃

i

Ei

]

≤
∑

i

Pr[Ei] (B.13)

=

(

q
k

)

2(k−1)n
(B.14)

= O
(

qk

2(k−1)n

)

(B.15)

By application of Lemma B.3.1, Theorem 4.2.2 is proved as follows.

Proof From Lemma B.3.1, the probability of a k-collision is, O
(

qk

2(k−1)n

)

. Setting

this probability equal to 1 and solving for q gives a lower bound on the expected

number of messages that must be hashed before finding a k-collision.

qk

2(k−1)n
= 1 (B.16)

qk = 2(k−1)n (B.17)

q = Ω
(

2
(k−1)n

r

)

(B.18)

VITA

131

VITA

William R. Speirs, II received his Ph.D. degree in Computer Science from Pur-

due University in 2007 with Samuel S. Wagstaff, Jr. as his adviser. He received

his M.S. degree in Computer Science from Purdue University in 2005. He received

his B.S. degree in Computer Science and Information Technology from Rensselaer

Polytechnic Institute in 2003.

William’s interests include all aspects of practical security, specifically crypto-

graphic hash functions, and operating systems. He has worked on an operating sys-

tem designed for education outside of his academic work at Purdue University. He

has worked for numerous companies while pursuing his graduate degrees including

Lockheed Martin, Telemus Solutions, Inc., and The Pikewerks Corporation.

