
CERIAS Tech Report 2007-19

USING ARTIFICIAL NEURAL NETWORKS FOR FORENSIC
FILE TYPE IDENTIFICATION

by Ryan M. Harris

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

USING ARTIFICIAL NEURAL NETWORKS FOR FORENSIC FILE TYPE

IDENTIFICATION

A Thesis

Submitted to the Faculty

of

Purdue University

by

Ryan M. Harris

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

May 2007

Purdue University

West Lafayette, Indiana

ii

ACKNOWLEDGMENTS

The author would like to express appreciation to Dr. Marcus Rogers for his assistance

with this thesis. Without his help, this project never would have been completed. He

would also like to thank Dr. Victor Raskin for his guidance throughout his stay at Purdue

University and Professor Rick Mislan for his neural network advice.

iii

TABLE OF CONTENTS

Page
LIST OF TABLES...v
LIST OF FIGURES ... vi
ABSTRACT.. vii
1 THE PROBLEM...1

1.1 Introduction ...1
1.2 Statement of the Problem ..1
1.3 Significance of the Problem ..2
1.4 Purpose of the Study ...3
1.5 Delimations ...3
1.6 Limitations ..4
1.7 Definitions...5

2 LITERATURE REVIEW ...10
2.1 Attempts to Evade Detection ..10
2.2 Counteracting Attempts to Evade Detection...11
2.3 Difficulties with File Type Identification ...11
2.4 A Possible Approach...13
2.5 Neural Networks for Pattern Recognition...14
2.6 Capabilities and Limitations ...15

3 PROCEDURES AND METHODS...17
3.1 Sample Selection...17
3.2 Software and Hardware...19
3.3 Neural Network Construction ...20
3.4 Inputs and Outputs ..22
3.5 Training the Networks...24

4 RESULTS ...26
4.1 Network Training Iterations ..26
4.2 Ending Training MSE and Input Node Count...26
4.3 Ending Training MSE and Hidden Node Count ...27
4.4 File Detection Anomaly ..28
4.5 Unaltered File Detection Performance..29
4.6 Altered File Detection Performance..31
4.7 Test File MSE and Node Count ..33

5 DISCUSSION...37
5.1 Number of Training Iterations ..37
5.2 Input Node Count and Filtering Method...39

iv

Page
5.3 Hidden Node Count...40
5.4 File Detection Rates ..41

6 CONCLUSION, RECOMMENDATIONS, AND FUTURE RESEARCH.................45
6.1 Conclusion...45
6.2 Recommendations and Future Research ...45

APPENDIX..51

v

LIST OF TABLES

Table Page
Table 1: Number of images of each type contributing to the testing and training sets........4
Table 2: Image sources by file type ...18
Table 3: Configuration of training and testing hardware...20
Table 4: Expected output node value by image type ...23
Table 5: Ending mean square error (MSE) from training..27
Table 6: Two way analysis of variance for node count and training MSE........................27
Table 7: Detection rates for unaltered test files ...29
Table 8: Detection rates for altered test files ...32
Table 9: Mean square error (MSE) from unaltered file test...33
Table 10: Mean square error (MSE) from altered file test...34
Table 11: Two way analysis of variance for node count and unaltered file MSE.............36
Table 12: Two way analysis of variance for node count and altered file MSE.................36

vi

LIST OF FIGURES

Figure Page
Figure 1: End of training mean square error (MSE) ..27
Figure 2: Percent of character code filtered files detected by type (unaltered files)30
Figure 3: Percent of raw filtered files detected by type (unaltered files)...........................31
Figure 4: Percent of character code filtered files detected by type (altered files)32
Figure 5: Percent of raw filtered files detected by type (altered files)...............................33
Figure 6: Unaltered file test mean square error (MSE)..34
Figure 7: Altered file test mean square error (MSE) ...35
Appendix Figure
Figure A.1: Mean square error across training epochs for the character code frequency
neural network with 10 hidden nodes ..51
Figure A.2: Mean square error across training epochs for the character code frequency
neural network with 20 hidden nodes ..52
Figure A.3: Mean square error across training epochs for the character code frequency
neural network with 30 hidden nodes ..53
Figure A.4: Mean square error across training epochs for the raw neural network with
10 hidden nodes ...54
Figure A.5: Mean square error across training epochs for the raw neural network with
20 hidden nodes ...55
Figure A.6: Mean square error across training epochs for the raw neural network with
30 hidden nodes ...56

vii

ABSTRACT

Harris, Ryan M. M.S., Purdue University, May 2007. Using Artificial Neural Networks
for Forensic File Type Identification. Major Professor: Dr. Marcus K. Rogers.

Current forensic software relies upon accurate identification of file types in order to

determine which files contain potential evidence. However, current type recognition

mechanisms are susceptible to simple attacks that enable a criminal to confuse the

detection algorithm. This study investigated whether artificial neural networks were

superior to existing mechanisms at responding to modern evidence tampering techniques

and concluded that the tested neural networks were not better than the existing methods.

However, the study yielded avenues for future investigation.

1

1 THE PROBLEM

1.1 Introduction

With the rapid development of computer technology, crime involving digital evidence

is becoming more commonplace (Kruse & Heiser, 2002). Digital forensics involves an

investigation of digital evidence to enable investigators to determine the truth about what

happened (Kruse & Heiser, 2002). However, to achieve this goal, law enforcement must

have tools and technologies that enable them to examine the evidence accurately.

Unfortunately, as computer technology has advanced, criminals have found a myriad of

ways to avoid law enforcement detection.

The forensics community seems to be ill prepared for these anti-forensic techniques.

In fact, most of the discussion about these methods is taking place outside the law

enforcement community (Harris, 2006). Since anti-forensics can be used to “. . .

compromise the availability or usefulness of evidence to the forensics process” (Harris,

2006, p. S45), it is imperative that investigators begin to develop techniques for

responding to these threats.

1.2 Statement of the Problem

A child predator might attempt to hide an image by changing its extension to “.doc”

so it appears to be a Microsoft Word document. Some forensics software looks at a file’s

2

contents to determine what information it contains (Kruse & Heiser, 2002). This allows

investigators to detect the type of the contents even if the file extension has been

changed. However, the software currently detects images based on hard coded file

signatures. The first few bytes of the file are examined to determine what type of

information the file contains (Foster & Liu, 2005). This method of detecting file types

works well in cases where the file has been otherwise unaltered; but it may fail when the

file’s contents do not match the predetermined signatures.

The signature-based method of detecting file types leaves the software susceptible to

“evidence counterfeiting.” Evidence counterfeiting manipulates existing evidence to hide

its purpose or creates new evidence that is deceptive (Harris, 2006). If a suspect alters

any of the first few bytes of a file, the forensics packages are no longer able to detect

what type of information is in the file (Foster & Liu, 2005).

1.3 Significance of the Problem

Even though files can be rendered undetectable to present forensics software, suspects

are still able to open them normally. This means that a suspect can alter files so they are

not detected during a scan of the computer for incriminating images. A suspect may go

free simply because the investigative software used was unable to see the files.

The implications for child exploitation investigations are scary. The Internet has

made it increasingly easy for sexual predators to traffic illicit images (Heimbach, 2002;

Federal Bureau of Investigation, n.d.) and engage in other illicit acts (Hernandez, 2006).

During the last ten years, child pornography cases have increased over 1750 percent

(Federal Bureau of Investigation, n.d.). One Internet trading group that the FBI

3

investigated had over 7,200 members (Heimbach, 2002). If suspects can reliably hide

files from forensic tools, many of these individuals may not be caught.

1.4 Purpose of the Study

The purpose of this research was to determine whether artificial neural networks

could provide a more robust method of detecting file types than that provided by current

signature based methods. The expectation was that artificial neural networks’ ability to

respond to changes in data would allow reliable detection of file types even if the

contents had been subtly altered. This research attempted to determine whether artificial

neural networks provided an acceptable substitute for existing detection algorithms.

During the process of pursuing the research goal, the research also attempted to identify

which file types could be identified most accurately using neural networks.

1.5 Delimations

Because of the wide variety of files in use on modern computers, the research was

unable to cover all file types comprehensively. This thesis concentrated on files that

could not yield useful information without being identified first. This included files that

store information only in a binary format such as images, executables and archives.

Other file types such as spreadsheets and documents may store binary information, but

the plain text is still available to any search algorithm used by the forensic software.

Therefore, this study did not seek to identify file types that included plain text but instead

concentrated on files whose contents could not be searched. Specifically, this study only

4

included JPEG, GIF, TIFF, BMP and PNG image files since those files were widely

available on the Internet and were commonly encountered during forensic investigation

(Table 1).

Signature analysis could occur in two forms in forensic investigation. If a file’s

extension has been changed, signatures might be used to determine the type of data the

file contains. Another use of signature identification is in file carving. During file

carving, a forensics program attempts to identify the start and end of files based on pre-

defined signatures (Richard & Roussev, 2005). This technique is typically used to find

deleted files. While it was expected that this study's results might be useful for file

carving, the investigation only centered on identifying files whose contents were known.

1.6 Limitations

The layout of files generated within different software packages may have varied

slightly due to differences in interpretation of the format specifications. Since it was

impossible to obtain a complete sample of all the different variations of the file formats,

Table 1

Number of images of each type contributing to the testing and training sets

File Type Training Set Testing Set

JPEG 5000 500

PNG 5000 500

BMP 1000 100

GIF 1000 100

TIFF 1000 100

TOTAL 13000 1300

5

this research employed opportunity based sampling to select images based on their

availability rather than attempting to meet a specific statistical constraint. Images were

selected from a variety of image databases on the Internet. The images in these databases

may have been primarily furnished by photographers who used professional software and

equipment. As such, the training data may not have accurately represented image files

that came from lower-end software or equipment. This limitation may have affected the

applicability of the generated neural networks to the community of image files at large.

However, the file formats of the images are constrained by specifications, so the impact

should have been minimal.

Another limitation of this research involved the complexity of creating classification

mechanisms. General-purpose classification schemes are difficult to create (Duda, Hart,

& Stork, 2001). While the study yielded a general classification mechanism, the

mechanism was not optimal for all of the file types. Future studies would be necessary to

determine whether individualized classification mechanisms are necessary for specific

types of file. For example, GIF files might need a separate input feature choice method

than JPEG files to be detected in an optimal manner.

1.7 Definitions

The following definitions explain the usage of key terms used throughout this

document.

� Activation function – An activation function is the function that determines the

output value of a neuron in an artificial neural network based upon the weight

assigned to the connections to that neuron (Duda, Hart, & Stork, 2001).

6

� ANOVA – An ANOVA (analysis of variance) is a statistical test that attempts to

determine whether there is a statistically significant difference between two or

more data groups.

� Anti-forensics – “Any attempts to compromise the availability or usefulness of

evidence to the forensics process” (Harris, 2006, p. S45).

� Artificial neural network – An artificial neural network uses a series of neurons to

transform a set of inputs into a desired set of outputs (Bishop, 1995).

� Backpropagation – Backpropagation is the process by which an artificial neural

network adjusts the weights assigned to the connections between neurons to bring

the current output value of the neuron closer to the expected value (Duda, Hart, &

Stork, 2001). Backpropagation only occurs during neural network training.

� Clustering – Clustering is a technique for grouping similar data points together to

aid in classifying the data (Duda, Hart, & Stork, 2001; Mena, 2003).

� Epoch – An epoch is one presentation of the complete training set to the neural

network (Duda, Hart, & Stork, 2001).

� Error – Error is the difference between an expected neuron output value, and the

actual output value.

� Error backpropagation – See backpropagation.

� Filesystem – A filesystem contains data which helps the computer locate and

access files stored on the drive.

� File carving – File carving is a technique for extracting file contents from a disk

by searching for signatures which identify the start and end of the file contents

(Richard & Roussev, 2005).

7

� Forensics - “The application of science to those criminal and civil laws which are

enforced by police agencies in a criminal justice system” (Saferstein, 1998, p. 4).

� Hidden layer – A hidden layer is a layer whose inputs and outputs are connected

to other neurons (Duda, Hart, & Stork, 2001).

� Input layer – An input layer is made up of neurons whose inputs are the data that

the network is expected to process (Duda, Hart, & Stork, 2001).

� Incremental training algorithm – An incremental training algorithm adjusts for

differences between the actual output value and the expected output value after

each sample in the training set is presented to the network rather than adjusting

for the error at the end of each epoch (Fast Artificial Neural Network Library,

n.d.).

� Layer – A layer is a group of nodes that all accept inputs from the same data set

and output to the same data set. There are three types of layers: input layers,

hidden layers, and output layers (Duda, Hart, & Stork, 2001). There are

connections between the layers that have weights assigned to them to allow the

network to adjust the actual output values so that they match with the desired

output values (Duda, Hart, & Stork, 2001).

� Metadata – Metadata is data about other data. In a filesystem, the filename, file

size, date last accessed, etc. are all metadata; they are data about the file itself.

� Mean square error (MSE) – The mean of the squared differences between the

expected and actual output values from neurons in a neural network.

� Neuron - A neuron takes one or more input values and transforms them using an

activation function to produce an output value (Duda, Hart, & Stork, 2001).

8

� Node – See neuron.

� Output layer – An output layer is a layer made up of neurons which output the end

result of the network's processing (Duda, Hart, & Stork, 2001).

� Overfitting – Overfitting occurs when the neural network begins to approximate

individual data samples in the training set rather than generalizing the pattern that

these data values represented.

� Present – To present a sample is to supply it to the input layer of a neural network

in order to determine what the output values of the neural network will be.

� Symmetric sigmoid – A symmetric sigmoid function is a type of activation

function that is smooth and non-linear (Duda, Hart, & Stork, 2001), ranging from

-1 to 1 (Fast Artificial Neural Network Library, n.d.).

� Tanh – Tanh is an abbreviation for the function hyperbolic tangent. This function

is a member of the sigmoid class of functions (Duda, Hart, & Stork, 2001).

� Testing set – A testing set is a set of samples which are used to test how well the

network has learned the training set. Each sample in the testing set also includes

the expected output value of the neural network so that it can be compared with

the actual output value.

� Training – Training is the process by which a neural network “learns” patterns.

Generally, data is presented to the neural network, and the actual output values

are compared with the expected output values. Any error is corrected through

backpropagation (Duda, Hart, & Stork, 2001).

� Training set – A training set is a set of samples that are used to train the network.

Each sample in the training set also includes the expected output value of the

9

neural network so that the network can be trained to output that value when

presented with a similar input.

10

2 LITERATURE REVIEW

2.1 Attempts to Evade Detection

It is important to understand how anti-forensic methods may affect computer file

systems since they store a variety of evidence that can be useful to an investigation. In

addition to file contents, file systems also store a wide range of metadata (Carrier, 2005)

which is used to enhance usability. The wealth of information provided by the file

system may be extremely valuable to an analysis. Without valid metadata, the forensic

process can become extremely difficult to complete.

Therefore, criminals have started using the anti-forensic techniques of counterfeiting

and destruction (Harris, 2006) to manipulate the forensic process. A criminal might

choose to create counterfeit file system metadata to hide the true purpose of a file (Harris,

2006; Foster & Liu, 2005). For example, a criminal could choose to rename an image

file so that it would appear to be a Microsoft Word document. However, the actual

contents of the file would still be an image. Another technique that a criminal could use

would be to destroy the file system metadata that points to the file. This would make it

difficult for the investigator to find and identify the file. However, removing the file

system information does not destroy the actual file contents (Carrier, 2005; Geiger, 2005;

Mallery, 2001). Therefore, if the file contents can be identified, they may become

valuable evidence.

11

2.2 Counteracting Attempts to Evade Detection

Forensic software vendors have recognized that criminals attempt to hide files by

changing the file’s extension. As a result, it was essential to identify files based on the

actual data they contain rather than the names that they had been assigned. As early as

1973, the UNIX operating system provided the “file” command to enable people to

identify files based on their contents (Darwin, 1999). The command used a few bytes

from the beginning of the file (referred to as the “magic”) to identify the file type

(Darwin, 1999). Forensics software borrowed this technique and current software

attempts to identify files based on a brief series of bytes at the beginning of the files

(Foster & Liu, 2005).

File carving is another technique quite similar to file type identification that is used to

recover deleted files. When a file’s metadata has been destroyed, file carving attempts to

find the original files by identifying their contents (Richard & Roussev, 2005). File

carving can be viewed as an extended type of signature based file identification. This is

because the first few bytes of each sector are checked for a signature that identifies the

start of a known file type (Richard & Roussev, 2005).

2.3 Difficulties with File Type Identification

One of the primary difficulties with identifying data based on a known signature is

that the signature must be static. If a signature is not picked correctly, it may fail to

identify files consistently. In some cases, a signature may result in false positive values

when it is not sufficiently restrictive. For example, Foster and Liu (2005) detailed how

some forensic software can misidentify text files as executables if the first two bytes in

12

the file are “MZ.” However, this is not the only difficulty. If a signature is too

restrictive, it may result in files not being identified as they should be. Forensic software

may fail to identify JPEG images if the second two bytes are changed, even though these

two bytes are not significant in identifying an image as a JPEG (Harris, 2006).

Since file carving is a special type of file identification, it has similar problems to

those encountered by standard file identification. The first activity of a carving tool is

identifying the start of files using a signature detection algorithm (Richard & Roussev,

2005). However, even if we assume that the signature used for determining where the

file starts is completely correct, there are still several difficulties with this approach.

After a carving tool has identified the start of a file, it will scan in a similar manner for a

signature that identifies the end of the file (Richard & Roussev, 2005). The signatures

that identify the end of the file may not fall on an even 512-byte boundary. Therefore, a

file carving tool must be even more carefully created to avoid falsely detecting the end of

a file.

After an end signature is found, the tool then assumes that the bytes between the start

and end signatures belong to a single file. However, file systems can become fragmented

so the data stored in-between the start marker and end marker could be from different

files. File fragmentation occurs frequently during normal computer use (Kinsella, 2006),

so fragmentation can be expected to be a norm on most file systems. Therefore, there is a

high likelihood that files will be incorrectly identified if the software is unable to detect

whether the in-between sectors have come from a similar file type.

13

2.4 A Possible Approach

Usable files must have a standardized enough format that a program is able to parse

the data they contain and use it. Logically then, all usable files must have some sort of

format or pattern to the data that they contain. Since each usable file type must have a

pattern, if this pattern can be discerned and expressed uniquely from other file types, then

a file can be identified by the pattern of the data it contains. Therefore, file type

identification may not need to be a search for a specific hard-coded byte-sequence. An

algorithm could simply search for an identifiable pattern to determine what type of data a

file contains.

A file may contain mostly random information with little organized structure.

Therefore, one difficulty with this method is that a pattern might be hard to recognize

through the noise of the file’s data. Neural netwo rks may provide a solution since they

can learn patterns that are difficult to discern (Mena, 2003).

Neural networks offer a couple of advantages for pattern recognition. First, they are

extremely effective at recognizing patterns (Mena, 2003). This is a distinct advantage

when processing large volumes of training data where the actual underlying pattern is

unknown (Mena, 2003). Having a human search for discernible patterns may take quite a

while, yet a neural network may be able to pick out the pattern easily.

Another advantage of neural networks is the speed with which they operate once they

have been trained (Mena, 2003). Speed is an essential factor in a forensic investigation

where almost every file on a drive will need to be identified and classified. As hard drive

size increases, the number of files that can be stored on the drive increases as well. An

14

algorithm that takes too much time to classify each file would not be useful to an

investigation.

2.5 Neural Networks for Pattern Recognition

Neural networks are a well-established field. Initial research into neural networks

started over 50 years ago (Mena, 2003). Extensive research has investigated using neural

networks in pattern recognition tasks (Bishop, 1995). This research was based on the

premise that the best framework for assessing patterns is that which is provided by

statistics (Bishop, 1995).

Neural networks have been designed to solve a variety of pattern related problems

including forecasting, clustering, classifying and generalizing (Mena, 2003). Prediction

uses neural networks to determine future events based on history (Mena, 2003). While

this might be useful in some branches of forensics, it appears to have little usefulness for

analyzing file types.

Clustering attempts to group data according to similarities (Mena, 2003) which allows

the researcher to find related data points. For file type identification, clustering could be

useful to determine which features of a specific file type are most useful in creating a

classification scheme. For example, a clustering algorithm could identify bytes within

JPEG files that normally are identical.

Classification attempts to identify data as either inside or outside a set (Mena, 2003).

Classification seems to be useful approach for a system that identifies file types. An

algorithm might classify a file as belonging to a specific type of file as either a GIF or not

a GIF image. However, this is not the goal of robust file type identification. A signature-

15

based system is quite capable at identifying and classifying files based on specific

attributes.

The most useful aspect of neural networks appears to be the ability to generalize data.

Generalization attempts to recognize a pattern between cases (Bishop, 1995; Mena,

2003). When identifying file types, the algorithm must be powerful enough to enable it

to identify files that have not been seen before. Neural networks might generalize file

patterns enough to identify file types even when the file has been altered.

2.6 Capabilities and Limitations

Neural networks appear to have distinct advantages when used for file type

identification. However, there are several significant limitations. Neural networks are

vastly misunderstood in common literature (Bishop, 1995). As a result, neural networks

may receive undue attention as a complete solution to every pattern recognition problem.

Any investigation using neural networks cannot assume that they are the ideal solution.

One of the primary difficulties with neural networks is determining how much

information must be provided at the inputs (Bishop, 1995). Intuitively, it would seem

that the more information that is provided to the network, the better the matching

capability. Nevertheless, this is not the case. Large numbers of input values actually

may adversely affect the capability of the recognition system (Bishop, 1995). This

occurs because the number of training data points must increase with the number of input

nodes into the neural network (Bishop, 1995).

Another difficulty with neural networks is determining how many hidden layer nodes

are necessary to represent the data accurately. Adding more hidden neurons may more

16

accurately represent the data when the input data values are tightly related (Duda, Hart, &

Stork, 2001). However, adding too many hidden layer inputs provides little value (Liang,

Moskowitz, & Yih, 1992). Duda, Hart and Stork (2001) acknowledge that there “is no

foolproof method for setting the number of hidden units before training” (p. 310). So, the

only way to correctly determine the best number of hidden layer nodes is through

experimentation.

17

3 PROCEDURES AND METHODS

3.1 Sample Selection

To gather an appropriately large sample, it was necessary to rely on opportunity-

based sampling. Stratification by image type was used to increase the likelihood that

each type of image was adequately represented in the training and testing sets. Table 1

indicates the number of images of each type that were assigned to the testing and training

sets.

From the beginning, it was understood that file formats may have differed slightly

from package to package (for example, a JPEG created in Adobe Photoshop will differ

from one created by a Canon camera). So, the file sources were chosen with the hope of

reducing this bias. The files were selected from several different Internet file

repositories. Repositories that contained images from many different sources were

favored over ones that contained images from a single source. This was done to reduce

the likelihood that the image file formats in the repository would be identical. For

example, Flickr was assumed to have more variety in its images than a stock photography

site would have. This assumption was based on the fact that a stock photography site

might use images from a small group of photographers.

In addition to controlling the repository selection, each image type was selected from

more than one repository. Again, this was done to reduce the likelihood that all the

18

images were passed through the same image processing algorithms. Table 2 provides a

summary of the repositories from which images were selected for possible inclusion in

the testing or training sets and how many images of each type were selected from that

source. The images selected from each source had an equal likelihood of being included

in either the testing or training set. However, once an image had been included in one of

the sets, it was no longer eligible for inclusion in the second set.

The samples for the experiment were stratified by file type. This was done to ensure

that all the file types that were to be trained on the system were adequately represented.

As shown in Table 2, in some cases the samples were removed from consideration for

training and testing. These samples were removed as a double stratification measure to

ensure that one size or shape of image was not over-represented. Thumbnails were

eliminated since they may have biased the sample toward images of that size and shape.

Table 2

Image sources by file type

JPEG PNG BMP GIF TIFF
Source D U D U D U D U D U Total

usenet-
replayer.com 620 611 1090 1082 1121 1103 1553 1538 734 734 5068
wpclipart.com 0 0 15189 15189 0 0 0 0 0 0 15189
flickr.com 23191 9038 95 95 0 0 161 161 0 0 9294
cs.sfu.ca* 0 0 0 0 0 0 0 0 223 223 223
nps.gov 0 0 0 0 0 0 0 0 31 31 31
sipi.usc.edu* 0 0 0 0 0 0 0 0 215 215 215
TOTAL 23811 9649 16374 16366 1121 1103 1714 1699 1203 1203

D Number of images downloaded
U Number of images that were considered for the testing or training sets
* Test image archives

19

During the initial run of the data for this investigation, it became obvious that it was

necessary to impose further controls on the samples. The results of the partial data run

showed that the size of the individual files was biasing training results. File types that

tended to be larger (such as a TIFF image) were being learned disproportionately to the

other file types. This phenomenon occurred because the larger files supplied more

training data to the network. To eliminate this bias, the experiment was stopped and a

file size control was added before the experiment was restarted. This control was

designed to reduce the bias caused by the file size differences and better represent each

file type. The file size control specified that only the first five kilobytes (first 10 blocks)

of each file would be fed to the networks for training and testing. The 10 block limit was

chosen since most of the files were at least 5 kilobytes in size.

3.2 Software and Hardware

The neural networks for the experiment were constructed and tested using the Fast

Artificial Neural Network library (or FANN). The FANN library was picked because it

provided a flexible design that met the requirements of the project. It was necessary to

use a beta version (version 2.1.0 beta) of FANN since the release version at the time of

the experiment was known to have issues in some configurations. The FANN graphical

interface was used for the neural network design and much of the testing. Command line

interfaces were used for the training and the remainder of the testing to enable logging

results more easily.

The FANN library was used in floating point mode. The smallest network used in

this experiment had over 250 nodes and ten times as many connections between the

20

layers. This meant that over two thousand floating-point calculations were required for

each training or testing record. Since training required processing many times more

records than testing, the neural networks were trained on four separate desktop computer

systems. Since the testing did not require as much processor activity, it was completed

on a single laptop. Table 3 summarizes the configuration of each of the training and

testing systems.

3.3 Neural Network Construction

Two feature extraction methods were used: raw filtering and character code

frequency. For both methods, the file was divided into blocks of 512 bytes. As noted in

prior sections, only the first 10 blocks of each file were processed. Raw filtering

essentially took each byte from a block in the input file and supplied it as an input into

one neuron of the neural network. It was assumed that this technique would be most

Table 3

Configuration of training and testing hardware

System Chassis Processor RAM HD Usage

blackbeast Desktop Athlon64 2800 2.0 750.0 Training
Character Frequency (10)

slimjim Desktop Sempron 2800 1.0 60.0 Training
Character Frequency (20)

mythtv Desktop Athlon64 3200 1.0 120.0 Training
Character Frequency (30)

newhorizon Desktop Pentium D 820 1.0 250.0 Training
Raw (10, 20, 30)

graydawn Laptop Pentium M 1.6GHz 1.5 80.0 Testing
All

21

useful for files that had regularly spaced data structures (for example 64 bytes for each

data structure) since the patterns would occur at regular intervals.

Character code frequency filtering was borrowed from the cryptographic community.

The inputs to the character frequency filtered neural networks were comprised of the

number of times each character code was used in each of the blocks in the file to be

identified. This technique was assumed most useful for files that had non-regularly

spaced file structures that were started with uniform identifiers.

There were many possible methods of constructing the networks and it was difficult

to determine which layout would be most appropriate for this research. Consequently,

the research examined several different node counts at each juncture to determine their

effectiveness. The research used neural networks with two different input node counts.

Networks that were created for use with raw input filtering had 512 input nodes and the

character-code frequency networks had 256 input nodes. There were significant amounts

of random data fed to the networks because of the number of nodes present at the input

layer. Theoretically, determining optimal input clusters would create better results.

However, this trade-off was picked in the interest of creating a general network structure

that would be useful on a wide variety of files.

There was only a single hidden layer in the neural networks. This hidden layer had

nodes numbering ten, twenty or thirty. The hidden node count was limited to no more

than thirty because it was expected that there would be a point at which additional hidden

nodes would provide no additional benefit. This expectation was based on a phenomenon

mentioned by Liang, Moskowitz, and Yih (1992), where extra hidden layer nodes

increase computational complexity without providing substantial value. Output node

22

count was held constant at five to allow for representing the types of input files as a bit

sequence.

Duda, Hart and Stork (2001) mentioned that a linear activation function would

effectively negate the benefits of a tri-layer network. For this reason, the activation

functions were set to hyperbolic tangent (tanh) for all the networks. These functions

were selected since they were the most accurate available in the library of supported

functions (Fast Artificial Neural Network Library, n.d.).

In artificial neural networks, the error encountered during each iteration is used to

adjust the weights of the individual neurons in the network. This adjustment is referred

to as backpropagation (Ripley, 1996). In this research, the error was adjusted using tanh

which is generally more effective than a standard linear error function (Fast Artificial

Neural Network Library, n.d.).

Based on Duda, Hart and Stork’s (2001) suggestions, the network learning rate was

set to 0.1 anticipating that a small value would reduce the variability during the training

and would also reduce the likelihood of consistently overshooting the correct connection

weight. Although the software allowed for more advanced training methods, the author

chose to use the incremental error backpropagation algorithm. This decision was made to

increase the likelihood of usable results since the other available algorithms are only

useful under specific circumstances (Fast Artificial Neural Network Library, n.d.).

3.4 Inputs and Outputs

As mentioned earlier, a variable number of input nodes were fed through a hidden

layer into a fixed number of output nodes. The input nodes were fed using n consecutive

23

bytes from the file being identified or from the character frequency table (where n was

the number of input nodes in the neural network). Because of software limitations and

general neural network limitations, the bytes were processed before being submitted at

the artificial neural network input nodes. During preliminary testing, it was found that

the software only allowed decimal values to be provided for inputs and outputs, so the

input byte-codes were divided by one thousand to accommodate this limitation.

Additionally, the input values were mathematically shifted to center around zero with

byte-code 128 being the center. This was done to ensure that null values in the files

(byte-code 0) would not adversely affect the output node values.

The output node values were treated like bits in a byte with a positive 0.9 indicating

“on” and a negative 0.9 indicating “off.” This range was chosen to reduce the likelihood

of falsely classifying a file that was subtly altered. While +/-0.9 was the intended output

value, any output greater than either 0.5 or less than -0.5 was assumed to be on or off

respectively. This was in-line with Duda, Hart and Stork’s (2001) recommendations that

the chosen output values should be less than the saturation point of the output nodes since

Table 4

Expected output node value by image type

Type Bit 1 Bit 2 Bit 3 Bit 4 Bit 5

JPEG On Off Off Off Off

PNG Off Off On Off Off

BMP Off Off Off Off On

GIF Off Off Off On Off

TIFF Off On Off Off Off

24

the neural network outputs nodes might never reach the saturation point. Table 4

summarizes the bit values that were assigned to each file type.

3.5 Training the Networks

Before training, the neural network node weights were initialized to random values

between 0.1 and -0.1. These minimum and maximum values were chosen to ensure that

the nodes were not initialized to large values. According to Ripley (1996), large initial

weights could have caused the output node values to be saturated at the outset (too close

to zero or one).

There were two training data sets. Both sets were constructed using the same input

samples; the only difference between the sets was in the filtering mechanism. The first

data set consisted of the training samples filtered through the raw filtering mechanism.

The second data set consisted of training samples that were processed with the character

frequency filter. As noted earlier, due to a change in experimental protocol, only the first

10 blocks of 512 bytes each were taken from each file, and then filtered and processed for

the training sets.

The neural network software allowed for both a variable number of training iterations

and a fixed limitation (Fast Artificial Neural Network Library, n.d.). The variable limit

used the mean square error (MSE) between the expected output neuron values and the

actual output neuron values for that iteration (Fast Artificial Neural Network Library,

n.d.). In this research, the variable limit was set to a MSE of 0.001 and the fixed limit

was set to 20,000 iterations. If either limit were encountered, the training would stop.

The variable limitation was designed to help prevent the neural network from being

25

overfitted. An overfitted network effectively memorizes the individual data points in the

training set rather than recognizing the overall pattern (Ripley, 1996).

26

4 RESULTS

4.1 Network Training Iterations

As was detailed in Chapter 3, the training was set to stop automatically after 20,000

rounds or an MSE of 0.001 was reached. This double stopping condition was designed to

provide protection against overfitting. However, the chosen MSE of 0.001 was not

reached by any of the networks before they had completed the 20,000 epochs. Since all

of the networks reached 20,000 epochs, it was impossible to use the number of epochs as

a predictor of how effectively a given network configuration was able to learn the

training data.

4.2 Ending Training MSE and Input Node Count

Table 5 provides a summary of the ending MSE of each of the network

configurations. Figure 1 provides a graphical summary of the same data. As can be seen

from the graph, on average, the raw input network configurations exhibited a much

higher error than that shown by the character frequency code filtering network

configurations. A two-tailed two way ANOVA was done to assess whether the number

of nodes in each layer had an effect on the MSE of the networks at completion (Table 6).

The number of input nodes resulted in an F(1, 5) = 79.4, p = 0.012. This indicated that

27

the number of input nodes had a significant impact on input node configuration and the

end of training MSE.

4.3 Ending Training MSE and Hidden Node Count

Table 5 also provides a summary of the ending MSE based on the number of hidden

nodes. As can be seen from Figure 1, as the number of hidden nodes increased, the

Table 5

Ending mean square error (MSE) from training

Hidden Node Count
Input Filtering 10 20 30 Mean

Character Frequency 0.26 0.22 0.21 0.23

Raw 0.39 0.35 0.30 0.35

Mean 0.33 0.28 0.26

10 20 30
0.00

0.10

0.20

0.30

0.40

Character
Frequency
Raw
Average

Hidden Node Count

M
ea

n
Sq

ua
re

 E
rr

or
 (M

SE
)

Figure 1

End of training mean square error (MSE)

28

overall MSE decreased. In a two-tailed two way ANOVA, the number of hidden nodes

resulted in an F(2, 5) = 10.1, p = 0.090 (Table 6). At an alpha of 0.05, there was no

significant relationship between the number of hidden nodes and the end of training

MSE. Normally, one would expect that the number of hidden layer nodes would have a

significant impact on the accuracy of the network (Duda, Hart, & Stork, 2001) and would

therefore affect the ending MSE.

4.4 File Detection Anomaly

A possible anomaly in file type detection was detected when compiling the study

results. According to FTK, around one percent of the files were misclassified during the

training and testing of the networks. This explained why the percentage of unaltered files

detected by FTK was less than 100%. The possibility of such an error was accepted for

several reasons. First, this issue was found to affect less than one percent of the training

samples overall and affected no one file type more than 2.1%. This amount was

considered small enough that it would not decrease the learning capability of the network.

Additionally, in many cases the files were downloaded based on specific file type

information provided by the source of the files. For example, the bitmaps that were

Table 6

Multiple analysis of variance for node count and training MSE

Source df F � p
Input Node Count 1 79.38 18.51 0.01*
Hidden Node Count 2 10.06 19.00 0.09*
Error 2
* p < 0.05

29

downloaded from usenet-replayer.com were all classified as “image/bmp” by the site's

internal recognition algorithm.

4.5 Unaltered File Detection Performance

The neural networks were assessed to determine their effectiveness at detecting

unaltered files. A file was detected properly if the average of the output bits for the file's

blocks were in the appropriate range for that file type. This detection rate was compared

against that of Access Data’s Forensic Toolkit (FTK) Version 1.7 to determine the

viability of neural networks in this configuration. Table 7 provides a summary of how

well the networks detected unaltered samples of each of the file types and baselines the

detection rate against that of FTK.

As with the end of training MSE, in almost every case, the raw input filtering

networks performed more poorly than the character code frequency networks. Overall,

the performance of the networks was not very good. None of the networks achieved a

Table 7

Detection rates for unaltered test files

 Hidden JPG PNG TIF GIF BMP
10 6.2% 7.2% 36.0% 2.0% 17.0%
20 7.6% 8.6% 37.0% 9.0% 20.0% Raw filtering
30 10.6% 12.8% 50.0% 1.0% 29.0%
10 16.0% 35.8% 49.0% 0.0% 31.0%
20 50.2% 43.8% 57.0% 0.0% 41.0% Character code filtering
30 42.6% 46.6% 60.0% 0.0% 37.0%

FTK 99.0% 100.0% 99.0% 100.0% 99.0%

30

mean file detection rate above 50%. The best performance occurred with TIFF files. On

average, the recognition rate for TIFF images was almost 15% above the recognition rate

of any other file type. The worst performing file type was GIF. The GIF image detection

rate was several orders of magnitude lower than any of the other file types. Even the best

performing network had no more than a ten percent success rate at detecting GIF images.

The results for character code frequency networks seemed to be affected differently

by the hidden node count than the raw filtering networks. For these networks, once the

hidden node count hit thirty, the performance actually declined. Therefore, it would seem

that an increase in the number of hidden nodes might not have increased the performance

of the network. This idea was also supported by the results seen in Figure 1. Once the

neural network hidden node count reached thirty, the training MSE leveled off.

Therefore, an increase in the number of hidden nodes for character code frequency

networks might not have provided a boost in neural network performance.

10 20 30
0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%
Detection Percent (Character Code Filtered Unaltered Files)

JPG
PNG
TIFF
GIF
BMP

Hidden Node Count

P
er

ce
nt

 D
et

ec
te

d

Figure 2

Percent of character code filtered files detected by type (unaltered files)

31

When the detection rate for each of the network types was compared based on file

type (Figures 2 and 3), a completely different picture emerged. As hidden neuron count

increased, some of the file types appeared to have increasing detection rates. However,

this general trend was not the same for every file type. Figure 2 shows that the JPEG and

BMP accuracy decreased for the character code frequency network with 30 hidden nodes.

As could be seen in Figure 3, GIF image accuracy declined for the raw filtering network

with 30 hidden nodes.

4.6 Altered File Detection Performance

Table 8 details the performance of the neural networks when files were altered.

Figures 4 and 5 provide a graphical summary of the same data. For most file types, the

performance decreased. This can be seen in the difference between the detection

10 20 30
0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%
Detection Percent (Raw Filtered Unaltered Files)

JPG
PNG
TIFF
GIF
BMP

Hidden Node Count

P
er

ce
nt

 D
et

ec
te

d

Figure 3

Percent of raw filtered files detected by type (unaltered files)

32

percentage from Tables 7 and 8. The difference in detection rate was no more than 10%

for the raw filtering networks and no more than 8% for the character frequency networks.

Table 8

Detection rates for altered test files

 Hidden JPG PNG TIFF GIF BMP
10 5.2% 7.4% 28.0% 1.0% 17.0%
20 2.8% 8.0% 32.0% 9.0% 21.0% Raw filtering
30 4.4% 11.8% 40.0% 1.0% 27.0%
10 14.4% 35.6% 47.0% 0.0% 37.0%
20 50.8% 42.8% 57.0% 0.0% 48.0%

Character code
filtering

30 41.8% 45.6% 61.0% 0.0% 45.0%
FTK 98.0% 98.2% 99.0% 100.0% 91.0%

10 20 30
0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%
Detection Percent (Character Code Filtered Altered Files)

JPG

PNG

TIFF
GIF

BMP

Hidden Node Count

P
er

ce
nt

 D
et

ec
te

d

Figure 4

Percent of character code frequency filtered files detected by type (altered files)

33

4.7 Test File MSE and Node Count

Tables 9 and 10 detail the testing MSE that resulted from each of the network

configurations. Table 9 summarizes the MSE for unaltered files; Figure 6 provides a

graphical summary of the same data. The MSE for altered files is slightly higher and is

detailed in Table 10 and Figure 7.

10 20 30
0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%
Detection Percent (Raw Filtered Altered Files)

JPG

PNG

TIFF
GIF

BMP

Mean

Hidden Node Count

P
er

ce
nt

 D
et

ec
te

d

Figure 5

Percent of raw filtered files detected by type (altered files)

Table 9

Mean square error (MSE) from unaltered file test

Hidden Node Count
Input Filtering

10 20 30
Mean

Character Frequency 0.29 0.24 0.24 0.26

Raw 0.46 0.57 0.66 0.56

Mean 0.37 0.40 0.45

34

 A two-tailed two factor ANOVA was performed on the unaltered test file MSE data

to assess whether the number of nodes in each layer had an effect on the MSE of the

networks at completion. The number of input nodes resulted in an F(1, 5) = 17.5, p =

0.05. At an alpha level of 0.05, there was a significant relationship between the input

node count and the unaltered test file MSE. The number of hidden nodes resulted in an

Table 10

Mean square error (MSE) from altered file test

Hidden Node Count
Input Filtering

10 20 30
Mean

Character Frequency 0.29 0.24 0.25 0.26

Raw 0.46 0.58 0.67 0.57

Mean 0.38 0.41 0.46

10 20 30
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70
MSE for Unaltered Files

Character
Frequency
Raw
Average

Hidden Node Count

M
ea

n
Sq

ua
re

 E
rr

or
 (M

SE
)

Figure 6

Unaltered file test mean square error (MSE)

35

F(2, 5) = 0.40, p = 0.72 (Table 11). At an alpha level of 0.05, there was no significant

relationship between the hidden node count and the unaltered test file MSE.

A two factor ANOVA was also performed on the altered test file MSE data to assess

whether the number of nodes in each layer had an effect (Table 12). The number of input

nodes resulted in an F-ratio of F(1, 5) = 17.03, p = 0.05. At an alpha level of 0.05, there

was a significant relationship between the input node count and the unaltered test file

MSE. The number of hidden nodes resulted in an F(2, 5) = 0.42, p = 0.71. At an alpha

level of 0.05, there was no significant relationship between the hidden node count and the

unaltered test file MSE.

10 20 30
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70
MSE for Altered Files

Character
Frequency
Raw
Average

Hidden Node Count

M
ea

n
Sq

ua
re

 E
rr

or
 (M

SE
)

Figure 7

Altered file test mean square error (MSE)

36

Table 11

Two way analysis of variance for node count and unaltered file MSE

Source df F � p

Input Node Count 1 17.53 18.51 0.05*

Hidden Node Count 2 0.40 19.00 0.72*

Error 2
* p < 0.05

Table 12

Two way analysis of variance for node count and altered file MSE

Source df F � p

Input Node Count 1 17.03 18.51 0.05*

Hidden Node Count 2 0.42 19.00 0.71*

Error 2
* p < 0.05

37

5 DISCUSSION

5.1 Number of Training Iterations

Why all the networks ran for the full 20,000 training epochs is not readily apparent.

There were four viable explanations. One could argue that the number of iterations might

not have been sufficient. Increasing the number of training epochs might have increased

the likelihood of reaching a lower training MSE. However, this solution is not as

straightforward as it would seem. The appendix shows the relationship between training

epochs and mean square error. As can be seen in the graphs, each of the networks

reached a point where the training mean square error (MSE) started to decrease at almost

infinitesimal rates. Therefore, without further experimentation it would be very difficult

to determine whether a change in the number of epochs could have caused the neural

networks to reach an MSE of 0.001.

A second explanation could be that an MSE of 0.001 was too low of a stopping

condition. In retrospect, this argument would seem to carry some weight. However, in

this case it would be difficult to determine what a better stopping MSE would be. As can

be seen from the graphs, none of the networks ended training at exactly the same MSE.

The networks using raw input filtering did not reach as low of an error as the networks

using counted input filtering. So, if one were to pick an MSE such as 0.2, the raw input

networks would still have completed the maximum epochs. If a higher MSE such as 0.3

38

was picked, one could argue that the character frequency input networks were not

adequately trained. Therefore, determining a proper stopping MSE retroactively would

still be fraught with difficulty.

Another possible explanation for the number of epochs would be to say that the

neural networks were incapable of correctly approximating the data. One could argue

that there were not enough training entries, the network design was inadequate, or the

data was too random for the network to learn. Arguing that there were insufficient

training entries appears to be incorrect since there were over 130,000 records in the

training set. Simply saying that the network configuration was inadequate would neglect

the possibility that the data was too random for any network configuration to reach an

MSE of 0.001. Alternatively, blaming the data randomness neglects the possibility of

better network designs. So, assessing how these two variables related to the ending MSE

would be difficult and would require a new experiment design.

The final possible explanation is that there should have been an additional stopping

condition to prevent overfitting. Duda, Hart and Stork (2001) suggest separating out a

portion of the training set to validate the network concurrently with the training.

According to these authors, overfitting would be detectable by looking at a graph of the

validation set's MSE across rounds. For example, the network would be trained for five

epochs, and then it would be tested against the validation set to determine whether

overfitting was occurring. The training would be stopped if a graph of the MSE across

epochs showed an increase (rather than the expected decrease). It would be assumed that

the rise in error was caused by the neural network memorizing the training data points

rather than generalizing them. At face value, this type of stopping condition would sound

39

like a good solution. However, this type of stopping condition may be illegitimate.

According to Ripley (1996), frequently “...after an initial drop the error on the validation

set rises slowly...then falls dramatically to a small fraction of the previous minimum” (pp.

154-155). Therefore, this type of stopping condition could have accidentally stopped

training when the neural network has not finished learning.

5.2 Input Node Count and Filtering Method

 According to the ANOVA, there was a significant relationship between the ending

MSE and input node count. This result was not surprising given the significant gap

between the ending MSE of the two different network input configurations (Figure 1).

From this data, we can conclude that the input configuration of the networks must have

had an effect on the ability of the network to be trained. The networks that had 256 input

nodes had statistically higher training performance and were more capable of

approximating the training data presented to them.

This result did imply that the character frequency networks had better learning

performance. However, it did not signify that the difference was completely caused by

the actual filtering method used to provide the data. The degree of relationship between

ending MSE and input filtering method could not easily be separated from that caused by

the actual number of input nodes. The significance in the relationship may have simply

come from the number of input nodes in the networks. Based on purely anecdotal

evidence, some of the significance may have been from the difference in filtering

method. The training files were compressed when they were moved between computers.

The character frequency filtering files were compressed two times more efficiently.

40

Compression works by removing repeated patterns. It appears that character frequency

filtering had more discernible patterns. However, further testing would be needed to

assert definitively that the relationship completely stems from the input filtering method.

It seems that at least one of the file types (GIF) benefited from a different input

filtering method than the other types of files. From anecdotal evidence, it appeared that a

fair amount of the performance difference was related to the filtering method. But, it is

common knowledge in the neural network community that input node count has a

performance impact. As a result, it was impossible to quantify how much of the

performance of the networks was related to the input node count and how much was

related to the actual filtering mechanism chosen.

5.3 Hidden Node Count

The hidden node count in the neural networks seemed to have no statistically

significant effect on the overall performance of the networks. This phenomenon could

possibly be explained by saying that the neural networks had an incorrect number of

hidden nodes or layers. If the number of hidden nodes were several orders of magnitude

too low or too high, the networks would all be unable to adequately represent the training

data. In this type of situation, one might conclude that the error between the networks

was relatively minor since none of the networks were successful at approximating the

data. In this case, it appears that the number of hidden nodes or layers may have been

too small. This assessment was based on the general direction of the MSE as shown in

Figure 1. However, it would be incorrect to assert that this was the case given the fact

that the ANOVA found no significance.

41

However, as noted earlier, there were several possible reasons for this result. First,

one could argue that the networks were not trained sufficiently. Another argument would

state that the number of nodes in the neural network was dramatically above or below the

number that were actually needed. Another likely explanation is that the different file

types responded differently to the hidden layer nodes. Some file types benefited from

additional nodes, while others were not benefited by these nodes. Figures 2 through 5

seem to indicate that this problem may have occurred.

5.4 File Detection Rates

TIFF images were detected most effectively out of all the file types. This

effectiveness could be attributed to the ability of the data to be classified by the neural

network. TIFF file types would appear to have data that could be recognized consistently

by the neural networks. The patterns in these types of files would appear to be more

consistent. One caveat with this assessment should be noted. As can be seen from Table

2, some of the TIFF images were drawn from test image archives. If the images in these

archives had a more consistent layout than the images from other sources, then this could

have introduced a bias toward TIFF images. However, as noted in Table 1, TIFF images

were less represented than either JPEG or PNG images. Therefore, one would expect that

any problems introduced by using these image sources would have been minimized by

the reduced number of total samples used during training.

GIF images were detected correctly the least out of all the file types. This could be

the result of GIF images containing more apparently random information than the other

file types. The GIF images caused a negative skew in the mean detection rate for the

42

character frequency networks. In the raw filtered networks, the negative effect of the GIF

files was balanced by the TIFF detection rate. This effect could be seen in the difference

between the mean (biased estimator) and median (unbiased estimator) as shown in Table

8. It should also be noted that GIF images were the only type of image whose actual

detection rate was higher with the raw input filtering networks. This lends some

credence to the initial supposition that different filtering methods would be better for

different types of files.

None of the file types were correctly detected more than 60% of the time. However,

this is not to imply that the neural networks were incapable of detecting file types. Since

there were five different file types to be detected, the random chance detection would be

no higher than 20%. Therefore, we could assume that neural networks were more

successful than random chance at detecting the file types.

There were several possible explanations for the poor performance of the networks.

First, as noted in prior sections, one could argue that the neural network hidden node

configuration was incorrect. If this assessment were correct, the networks would have

been able to generalize the data with which they were presented. At face value, this

argument initially seems plausible if one only considers the earlier end of training MSE

findings.

However, the difference in detection trends between file types that could provide a

possible explanation for much of the learning and detection difficulty for the neural

networks. From Figures 2 through 5, it would appear that some file types benefited from

additional hidden nodes, while for others, additional nodes were detrimental. This could

mean that these file types required a different neural network layout than the other file

43

types. Therefore, the inclusion of these files in larger neural networks actually reduced

the performance of the network. So, rather than the network not containing enough nodes

to adequately represent the data, it appears that some of the low learning rate could be

blamed on the difference in optimal parameters for each of the file types.

The neural network performance for altered files was generally lower than that for

unaltered files. This decrease in detection rate was expected because the files no longer

matched exactly with a standard pattern for that particular file type. This result lends

credence to the notion that neural networks are resilient against changes in the files

themselves. If a well performing neural network configuration could be designed, it

appears that it would be fairly well suited to changing data.

However, when comparing the altered file detection rate with the unaltered detection

rate, there was a slight anomaly in the data. While almost all the file detection rates

decreased with altered files, the BMP file detection rate actually increased. At first, it

was thought that this was the result of a data recording error. However, this was not the

case. Therefore, there must have been another reason for the increase in effectiveness at

detecting altered bitmaps.

One possible explanation assumes that the neural networks were not successful at

fully generalizing the training data (as noted in several other places in this research).

Depending on how well the data was generalized, there could have been an abundance of

“borderline cases.” These borderline cases would fall just barely outside the detection

criteria mentioned earlier. For example, the average of a single output bit might be just

below the cutoff of 0.5. In these borderline cases, any alteration of the file might be

enough to shift the average bit toward either direction of the cutoff point. To assess

44

whether this might have been true, the list of altered files that were detected correctly was

spot-checked against the list of unaltered files. In every checked instance, the unaltered

files were a borderline case. Therefore, it appears that the anomaly may have been

caused by the learning rate of the networks, rather than any data error.

45

6 CONCLUSION, RECOMMENDATIONS, AND FUTURE RESEARCH

6.1 Conclusion

In the configurations tested in this paper, neural networks were not a practical method

for detecting file types in the real world. However, this research provided a valuable

foundation for future studies. Since the detection rate of the neural networks was much

better than random chance alone, we may assume that the networks were able to

recognize some type of pattern in most of the files’ data. This lends credence to the idea

that data patterns may be a future way of identifying suspect files.

Additionally, the neural networks' performance was stable even when the files were

altered. Therefore, while the neural networks as configured in this research were not

effective, there is still some possibility that neural networks will provide a viable method

for detecting file types in the future. As such, this research has also pinpointed several

possible avenues for future experimentation.

6.2 Recommendations and Future Research

Several possible research projects could center on increasing the effectiveness of the

neural network configurations presented here. As detailed throughout the project, it was

known from the outset that this project might not result in optimal neural network

46

configurations. Based on the results of the study, there appear to be several ways in

which the file type detection rate of neural networks could be improved.

One possible study could look at whether adjusting the number of training epochs

would have an impact on the effectiveness of the networks. As noted in the first section

of Chapter 4, the number of training iterations may not have been sufficient. Based on

results of the study as a whole, the number of epochs appeared to have been adequate.

However, an additional study could determine whether this assumption was correct. This

type of investigation would probably be most effective if it concentrated specifically on

one of the neural network filtering methods.

Another possible future study could attempt to isolate how much of the significance

between neural network input configuration and performance was caused by the actual

input filtering method. This study was unable to quantify the difference between the

performance change due to input node count and the performance change due to filtering

method. While there was some evidence that the filtering method played a role in the

network effectiveness, a future study could better isolate the variables. One possible

method of isolation would be to reduce the raw input filtering to blocks of 256 bytes.

However, this might have an unforeseen impact on the training because of the difference

in the number of blocks presented to the networks.

The most promising area for future investigation would to isolate the training by file

type. Some evidence indicated that the filtering method affected the file types

differently. There was also evidence that the number of hidden nodes influenced the file

types in separate ways. Therefore, it would be useful to split out the file types and train

each file type on individual networks to see if the performance of the networks increases.

47

If the performance were to increase, investigation could pursue identifying the optimal

configuration for each individual file type. Once optimal configurations were found, it

might be possible to arrive at standard configurations that have acceptable detection rates

for a variety of files.

REFERENCES

48

REFERENCES

Bishop, C. M. (1995). Artificial neural networks for pattern recognition. New York:

Oxford University Press.

Carrier, B. (2005). File system forensic analysis. Upper Saddle River, NJ: Addison

Wesley Professional.

Darwin, I. F. (1999). File - determine file type. UNIX man pages. Retrieved November

17, 2006 from http://unixhelp.ed.ac.uk/CGI/man-cgi?file

Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Multilayer neural networks. Pattern

classification (2nd Ed.). New York: John Wiley & Sons.

Fast Artificial Neural Network Library. (n.d.). Fast Artificial Neural Network Library

(FANN): Version 2.0 reference manual. Retrieved April 21, 2006 from

http://leenissen.dk/fann/html/files/fann-h.html.

Federal Bureau of Investigation. (n.d.) Innocent images national initiative. Retrieved

November 27, 2006 from http://www.fbi.gov/publications/innocent.htm

Foster, J. C., & Liu, V. (2005). Catch me, if you can. . . Retrieved September 30, 2005

from http://www.blackhat.com/presentations/bh-usa-05/bh-us-05-foster-liu-

update.pdf.

49

Geiger, M. (2005). Evaluating commercial counter-forensic tools. Digital Forensic

Research Workshop. Retrieved November 27, 2006 from

http://www.dfrws.org/2005/proceedings/geiger_couterforensics.pdf.

Harris, R. (2006, August). Arriving at an anti-forensics consensus: Examining how to

define and control the anti-forensic problem. Digital Forensic Research

Workshop. S44-S49. Retrieved November 16, 2006 from

http://www.dfrws.org/2006/proceedings/6-Harris.pdf

Heimbach, M. J. (2002). Testimony of Michael J. Heimbach, Crimes against children

unit, FBI. Retrieved November 27, 2006 from

http://www.fbi.gov/congress/congress02/heimbach050102.htm.

Hernandez, A. E. (2006). Statement of Andres E. Hernandez director of the sex offender

treatment program, Federal Correctional Institution - Butner, NC. Retrieved

November 27, 2006 from

http://www.projectsafechildhood.gov/HernandezTestimonyCongress.pdf

Kinsella, J. (2006). The impact of disk fragmentation. Windows IT pro. Retrieved

November 17, 2006 from

http://files.diskeeper.com/pdf/ImpactofDiskFragmentation.pdf.

Kruse, W. G., II & Heiser, J. G., (2004). Computer forensics: Incident response

essentials. Upper Saddle River, NJ: Addison Wesley Professional.

Liang, T., Moskowitz, H., & Yih, Y. (1992). Integrating neural networks and semi-

Markov processes for automated knowledge acquisition: An application to real-

time scheduling. Decision Sciences, 23(6). 1297-1314. Retrieved February 21,

2006 from ProQuest database.

50

Mallery, J. R. (2001). Secure file deletion, fact or fiction?. Retrieved February 19, 2006

from http://www.sans.org/rr/whitepapers/incident/631.php.

Mena, J. (2003). Investigative data mining for security and criminal detection.

Burlington, MA: Butterworth-Heinemann.

Richard, III, G. G., Roussev, V. (2005). Scalpel: a frugal, High performance file carver.

Digital Forensic Research Workshop. Retrieved November 17, 2006 from

http://www.dfrws.org/2005/proceedings/richard_scalpel.pdf.

Ripley, B. D. (1996). Feed-forward neural networks. Pattern recognition and neural

networks. Cambridge, U.K.: Cambridge University Press.

Shannon, C. E. (1948). A mathematical theory of communication. The Bell system

technical journal, 27. 379-423, 623-656. Retrieved November 17, 2006 from

http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf.

APPENDIX

51

APPENDIX

1 740
1480
2220
2960
3700
4440
5180
5920
6660
7400
8140
8880
9620
10360
11100
11840
12580
13320
14060
14800
15540
16280
17020
17760
18500
19240
19980

0.00

0.10

0.20

0.30

0.40

0.50

Training Epoch

M
ea

n
Sq

ua
re

 E
rr

or
 (M

SE
)

Figure A.1

Mean square error across training epochs for the character code frequency neural
network with 10 hidden nodes

52

1 760
1520
2280
3040
3800
4560
5320
6080
6840
7600
8360
9120
9880
10640
11400
12160
12920
13680
14440
15200
15960
16720
17480
18240
19000
19760

0.00

0.10

0.20

0.30

0.40

0.50

Training Epoch

M
ea

n
Sq

ua
re

 E
rr

or
 (M

SE
)

Figure A.2

Mean square error across training epochs for the character code frequency neural
network with 20 hidden nodes

53

1 760
1500
2240
2980
3720
4460
5200
5940
6680
7420
8160
8900
9640
10380
11120
11860
12600
13340
14080
14820
15560
16300
17040
17780
18520
19260

0.00

0.10

0.20

0.30

0.40

0.50

Training Epoch

M
ea

n
Sq

ua
re

 E
rr

or
 (M

SE
)

Figure A.3

Mean square error across training epochs for the character code frequency neural
network with 30 hidden nodes

54

1 740
1480
2220
2960
3700
4440
5180
5920
6660
7400
8140
8880
9620
10360
11100
11840
12580
13320
14060
14800
15540
16280
17020
17760
18500
19240
19980

0.00

0.10

0.20

0.30

0.40

0.50

Training Epoch

M
ea

n
Sq

ua
re

 E
rr

or
 (M

SE
)

Figure A.4

Mean square error across training epochs for the raw neural network with 10 hidden
nodes

55

1 740
1480
2220
2960
3700
4440
5180
5920
6660
7400
8140
8880
9620
10380
11120
11860
12600
13340
14080
14820
15560
16300
17040
17780
18520
19260
19999

0.00

0.10

0.20

0.30

0.40

0.50

Training Epoch

M
ea

n
Sq

ua
re

 E
rr

or
 (M

SE
)

Figure A.5

Mean square error across training epochs for the raw neural network with 20 hidden
nodes

56

1 740
1480
2220
2960
3700
4440
5180
5920
6660
7400
8140
8880
9620
10380
11120
11860
12600
13340
14080
14820
15560
16300
17040
17780
18520
19260
19999

0.00

0.10

0.20

0.30

0.40

0.50

Training Epoch

M
ea

n
Sq

ua
re

 E
rr

or
 (M

SE
)

Figure A.6

Mean square error across training epochs for the raw neural network with 30 hidden
nodes

