
CERIAS Tech Report 2007-108
Adaptive Virtual Distributed Environments for Shared Cyberinfrastructures

 by Ruth, Paul
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Graduate School ETD Form 9 PURDUE UNIVERSITY (01/07)
GRADUATE SCHOOL

Thesis Acceptance

This is to certify that the thesis prepared

Paul Michael Ruth By

Entitled Adaptive Virtual Distributed Environments for Shared Cyberinfrastructures

Complies with University regulations and meets the standards of the Graduate School for originality
and quality

Doctor of Philosophy
For the degree of

Final examining committee members

Dongyan Xu Daisuke Kihara
, Chair

Bharat Bhargava

Mikhail Atallah

Vernon Rego

Dongyan Xu Approved by Major Professor(s):

Aditya Mathur/William J. Gorman Approved by Head of Graduate Program:

19 July 2007 Date of Graduate Program Head's Approval:

ADAPTIVE VIRTUAL DISTRIBUTED ENVIRONMENTS FOR SHARED

CYBERINFRASTRUCTURES

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Paul M. Ruth

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2007

Purdue University

West Lafayette, Indiana

UMI Number: 3291081

UMI Microform 3291081
Copyright 2008 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
 Ann Arbor, MI 48106-1346

ii

To my mother, Jean Ruth

iii

ACKNOWLEDGMENTS

Throughout my experiences as a graduate student at Purdue, there are many

people who have influenced my development as a researcher and some who have

contribute directly to the success of my dissertation. Several should be thanked here:

•	 Dongyan Xu, my advisor who has supported me throughout my research and

has put up with my, sometime, slow progress. Without Dongyan I would not

have the experience needed to successfully navigate academia.

•	 Committee Members, Mikhail Atallah, Bharat Bhargava, Daisuke Kihara, and

Vernon Rego, for their guidance throughout the process and there time and

effort spent on my committee.

•	 Everyone in the lab: Xuxian Jiang, Junghwan Rhee, Ardalan Kangarlou, Ryan

D. Riley, and Zhiqiang Lin. Without the engaging discussions none of these

ideas would be as developed. Special thank to Xuxian for initiating the VIOLIN

project, as well as, Junghwan and Ardalan for their continued work on it.

•	 The nanoHUB crew.: Sebastien Goasguen, Gerhard Kilmech, Rick Kennell, and

Steve Clark. Their hard work in creating, promoting, and funding the nanoHUB

has contributed to my work more significantly than they could ever know.

•	 Ron Minnich, my internship advisor at LANL,for convincing me to keep going

when I didn’t have will. Without him I most certainly would not be where I

am today.

•	 Dennis Brylow, who continues to demonstrate that it is possible to get what I

want out of academia and has supported me throughout it all.

•	 Adam Welc, for many memorable nights at the LBC. Na zdrowie.

iv

•	 Debbie Hughes who always knew I could do it and who has contributed to my

dissertation by putting up with years of my whining and has helped improve

my writing. She has read this dissertation at least as many times as I have. For

her reward, she gets a lifetime of putting up with my whining and helping me

to improve my writing skills.

•	 The National Science Foundation for suppporting my work through grants OCI

0438246, OCI-0504261, and CNS-0546173.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABBREVIATIONS . xi

ABSTRACT . xii

1 Introduction . 1

1.1 Background and Problem Statement 1

1.2 Dissertation Contributions . 4

1.3 Dissertation Organization . 6

2 Overview of VIOLIN Framework . 7

2.1 Overview . 7

2.1.1 Underlying Cyberinfrastructure 8

2.1.2 VIOLIN Virtual Environments 8

2.1.3 Adaptive Inter-domain Cluster Sharing 10

2.1.4 Autonomic Virtual Environments for Shared Cyberinfrastructure 11

3 Related Work . 12

3.1 Virtual Machines . 12

3.1.1 Hardware Level Virtualization 13

3.1.2 Operating System Level Virtualization 15

3.1.3 Virtualization and Dynamic Adaptation 16

3.2 Virtual Networks . 18

3.3 Virtual Clusters and Workspaces . 19

3.4 Grid Computing and Cyberinfrastructure 21

4 Enabling Virtual Environments in a Shared Infrastructure 22

4.1 Introduction . 22

vi

Page

4.2 Virtual Machines and Virtual Networks 26

4.3 Design of VIOLIN Networking . 30

4.4 Implementation of VIOLIN . 33

4.4.1	 VIOLIN Core . 33

4.4.2	 User-mode Linux Interface . 37

4.4.3	 Generic Interface (tun/tap) 38

4.4.4	 Multiple VIOLIN Environments Sharing Resources 41

4.5 Performance Measurements . 41

4.5.1	 High-performance Linpack in a UML-based VIOLIN Environ
ments . 42

4.5.2	 NEMO3D in Xen-based VIOLIN Environment 45

4.6 Summary . 48

5 Virtual Environments for Inter-domain Cluster Sharing 49

5.1 Introduction . 49

5.2 Motivation . 49

5.3 Design . 52

5.3.1	 Adaptive Virtual Clusters . 54

5.3.2	 Machine Brokering . 56

5.4 Implementation . 58

5.4.1	 Domain Virtualization Implementation 58

5.4.2	 Machine Brokering Implementation 60

5.5 Experiments . 62

5.5.1	 System Prototype Measurements 63

5.5.2	 Simulation . 64

5.6 Conclusion . 70

6 Autonomic Virtual Environments for Shared Cyberinfrastructure 71

6.1 Introduction . 71

6.2 Autonomic Virtual Environments . 73

vii

Page

6.2.1 Enabling Mechanisms . 75

6.2.2 Adaptation Manager . 76

6.3 Implementation . 84

6.3.1 Deployment Platform (nanoHUB) 84

6.3.2 Deployment Details . 86

6.4 Experiments . 87

6.4.1 Migration Overhead . 87

6.4.2 VIOLIN environment Adaptation Scenario 1 90

6.4.3 VIOLIN environment Adaptation Scenario 2 94

6.5 Conclusion . 96

7 Conclusion and Future Work . 97

7.1 Conclusion . 97

7.2 Future Work . 98

LIST OF REFERENCES . 100

VITA . 108

viii

LIST OF TABLES

Table Page

6.1 Environment Properties . 92

ix

LIST OF FIGURES

Figure	 Page

2.1	 Road map toward the integrated VIOLIN framework for virtual environ
ments in a shared cyberinfrastructure . 7

4.1	 Multi-layer overview of virtual distributed environments on a shared cy
berinfrastructure . 25

4.2	 Typical virtual machine configuration including the virtual machine mon
itor and two virtual machines. 27

4.3	 Virtual machines using host-only networking. 28

4.4	 Virtual machines using NAT networking. 29

4.5	 Virtual machines using bridged networking. 30

4.6	 Virtual machines connected to a virtual VIOLIN network. 33

4.7	 Virtual machines connect to Virtual Switch Daemons which tunnel traffi c

between hosts. 34

4.8	 Network layers from the view point of both the virtual and physical machines. 35

4.9	 UML virtual machines connect directly to virtual switch daemons located

on any accessible host. 38

4.10 The tun/tap interface to VIOLIN supports connections form many popular

virtualization platforms. 39

4.11 The tun/tap device interface allows for hybrid VIOLIN environments com
posed of both virtual and physical machines. 40

4.12 Multiple VIOLIN environments maintain isolation even when sharing the

same physical resources. 42

4.13 Comparison of UML VIOLIN with physical cluster 43

4.14 Measured performance of multiple UML VIOLINs concurrently running

on shared hosts. 44

4.15 Configuration 1: Performance of VIOLIN vs.	 non-VIOLIN environments

running NEMO3D. One virtual machine or process per host. 46

x

Figure	 Page

4.16 Configuration 2: Performance of VIOLIN vs.	 non-VIOLIN environments

running NEMO3D. Two virtual machines or processes per host with locality. 47

4.17 Configuration 3: Performance of VIOLIN vs.	 non-VIOLIN environments

running NEMO3D. Two virtual machines or processes per host without

locality. 48

5.1	 Two virtual clusters trading resources. Virtual clusters fluidly trade ma
chines in reaction to changes in workload. 53

5.2	 Demand on the virtual cluster over time. 65

5.3	 Number of borrowed nodes. 66

5.4	 Average time from job submission to job completion of qualitatively dif
ferent workloads. 67

5.5	 Average time from job submission to job completion of high demand work
loads. 68

5.6	 Average time from job submission to job completion of low demand work
loads. 69

6.1	 Two VIOLIN environments sharing multiple hosts. Daemons on each host

assist the Adaptation Manager in monitoring and controlling resource al
location. 74

6.2	 nanoHUB deployment of VIOLIN environments. 85

6.3	 Migration overhead caused by live migration of entire VIOLIN virtual

environments that are actively executing the parallel application NEMO3D 88

6.4	 VIOLIN Environment Adaptation Scenario 1. 89

6.5	 VIOLIN environment Adaptation Scenario 1: Execution time of applica
tions running within VIOLIN environments with and without adaptation

enabled. 91

6.6	 VIOLIN environment Adaptation Scenario 2. 93

6.7	 VIOLIN environment Adaptation Scenario 2: Execution time of applica
tions running within VIOLIN environments with and without adaptation

enabled. 95

xi

ABBREVIATIONS

API Application Programming Interface

BLAS Basic Linear Algerbra Sub-Routines

CI Cyberinfrastructure

IP Internet Protocol

ISO International Organization for Standardization

JVM Java Virtual Machine

HPC High Performance Computing

NIC Network Interface Card

NSF National Science Foundation

MPI Message Passing Interface

P2P Peer-to-Peer

TCP Transmission Control Protocol

UDP User Datagram Protocol

UML User-Mode Linux

VMM Virtual Machine Monitor

VE Virtual Environment

VIOLIN Virtual Internetworking on OverLay INfrastructure

VM Virtual Machine

xii

ABSTRACT

Ruth, Paul M. Ph.D., Purdue University, August, 2007. Adaptive Virtual Distributed
Environments for Shared Cyberinfrastructures. Major Professor: Dongyan Xu.

A shared distributed cyberinfrastructure is formed by federating computation re

sources from multiple domains. Such shared infrastructures are increasing in pop

ularity and are providing massive amounts of aggregated computation resources to

a large numbers of users. Meanwhile, virtualization technologies, at machine and

network levels, are maturing and enabling mutually isolated virtual computation en

vironments for executing unmodified parallel and distributed applications on top of

such a shared physical cyberinfrastructure.

In this dissertation, we go one step further by supporting runtime adaptation of

virtual computation environments as integrated, active entities. More specifically,

driven by both dynamic availability of infrastructure resources and dynamic applica

tion resource demand, a virtual computation environment is able to automatically re

locate itself across the infrastructure and adjust its share of infrastructural resources.

Such runtime adaptation is transparent to both users of a virtual environment and

applications running inside the environment, providing the look and feel of a private,

well-provisioned computational environment to the users and the applications.

This dissertation presents the design, implementation, and evaluation of a middle-

ware system, VIOLIN, which enables adaptive virtual computational environments.

Each VIOLIN virtual environment is composed of a virtual network of virtual ma

chines and is capable of live migration across a multi-domain physical infrastructure.

This research effort includes the development of the enabling mechanisms for virtual

environment creation and adaptation, as well as, policies for effectively utilizing these

mechanisms. Through this effort, we have found that by combining virtual environ

xiii

ments with adaptation policies and mechanisms, we can provide significant increases

in both usability and performance of shared computational infrastructures. Further,

the VIOLIN middleware is currently deployed on a production cyberinfrastructure,

called the nanoHUB, as a major computational facility used to execute parallel and

distributed nanotechnology simulations.

1

1. INTRODUCTION

1.1 Background and Problem Statement

The growth of distributed infrastructures such as the Grid [1, 2] and Planet-

Lab [3–5], along with the current push toward shared cyberinfrastructure has made

computing and communication resources available to a large community of users.

Meanwhile, virtualization technologies [6–9] are increasingly being deployed on top

of such shared physical infrastructures [10–14], supporting the customization, mu

tual isolation, and administrator privilege of virtual machines (VMs) running many

applications on behalf of users with a diverse set of needs. With recent advances

in network virtualization techniques [15–18], virtual private networked environments

can also be created on top of a shared distributed infrastructure.

In this dissertation, we argue that machine, network, and, ultimately, environ

ment virtualization provide a number of key features needed to federate distributed

shared resources into isolated, dynamic, and customizable platforms for a wide ar

ray of computing needs. Previous approaches to infrastructure sharing do not use

virtualization, limiting the types of applications supported and requiring significant

and often infeasible administrative and developer support to be usable. Further, the

adaptive capabilities of virtualization create possibilities which exceed the current ex

pectations of cyberinfrastructure. While an application is running, the amount, type,

and location of resources allocated to the application can be modified. For example,

an application that enters a phase of high CPU utilization can be dynamically allo

cated a larger share of the local CPU. Further, if the local CPU does not have enough

available power, the application can be migrated to a host with adequate available

CPU.

2

As such, this dissertation proposes an integrated virtualization-based framework

for the federation of resources in a shared cyberinfrastructure. At the center of

this framework is the VIOLIN middleware which enables virtual distributed envi

ronments [15, 19, 20] consisting of virtual machines connected by virtual networks.

The key benefit of VIOLIN is that it decouples the ownership, configuration, ad

ministration, and resources of the virtual environments from those of the underlying

infrastructure. Within a VIOLIN virtual environment, the user is able to execute

and interact with unmodified applications, including parallel and distributed applica

tions. Any negative impacts of these applications will be contained within the virtual

environment and will not cause damage to the infrastructure.

The all-software virtualization of VIOLIN decouples the virtual environments from

the underlying resources. This level of indirection provides a new opportunity to

make these environments autonomically adapt to environmental and application dy

namics [21–23]. The overall vision is to enable virtual environments that cater to

the application running inside them. The virtual environments dynamically adapt

and re-locate themselves by scaling local resource allocation and migrating across

the multi-domain infrastructure. From the point-of-view of a distributed application,

the underlying virtual environment may change its CPU, memory, and network link

capacity, re-configure its topology and scale (e.g., by adding new virtual machines),

or even migrate its virtual machines to more resource-sufficient locations in the in

frastructure. Conversely, from the point-of-view of the underlying infrastructure,

scaling and migration of virtual environments allows for more efficient utilization of

available resources. Virtual environments that are using less than their allocation of

resources can have their allocation scaled back, freeing resources to be used by other

under-provisioned virtual environments. Virtual environment adaptation is a unique

capability that cannot be achieved by a physical environment which is restricted by

the limits of physical computing with static resource capacity. Complementing the

traditional adaptation scheme where applications adapt to dynamic environments, we

advocate a new scheme where (virtual) environments adapt to dynamic applications.

3

To realize the vision of autonomic adaptive virtual computation environments in

a physical distributed infrastructure that spans multiple domains, we address the

following challenges:

The first challenge is to enable virtual environments that address the needs of

computational applications while spanning domains. The necessary characteristics of

these virtual environments are that they can achieve near-native performance while

executing unmodified existing applications and remain isolated from their underlying

host domains. Existing virtual machine platforms can execute unmodified applica

tions while providing good performance and per host isolation. However, virtual

machines do not necessarily create virtual environments. In order to create virtual

environments, VIOLIN must isolate and connect groups of distributed virtual ma

chines into what appear to be private LANs. These private LANs are called virtual

environments and can be used to run any parallel or distributed applications.

The second challenge is to provide the mechanisms for application-transparent

virtual environment adaptation. In order to provide a stable environment, adapta

tion should occur transparently without effecting the application or the user. Work

has been done to enable resource reallocation and migration within a local-area net

work [24,25] and machine migration features are provided by the most current machine

virtualization platforms. One question still demands our attention: how can we mi

grate an entire virtual environment across a wide-area network without effecting the

application? The solution must keep the virtual machines alive throughout the migra

tion. Computation must continue and network connections must remain open. The

necessary wide-area migration facility requires two feature not yet provided by current

virtualization techniques. First, virtual machines need to retain their IP addresses

and remain accessible through the network despite physical routers not knowing that

they were migrated. Second, wide-area migration cannot rely on NFS to maintain a

consistent view of the large virtual machine image files. These files must be quickly

transferred across the relatively slow wide-area network. Current solutions are not

adequate for wide-area use.

4

The third challenge is to define allocation policies : The static allocation of shared

resources considers the available resources and requested resources to find the optimal

allocation. Autonomic environments, however, must have the intelligence to scale

resource allocations without user intervention. How do we know when a virtual

machine needs more CPU? Which virtual machine should be migrated if a host can

no longer support the memory demands of its guests virtual machines? If a virtual

machine needs to be migrated, where should it go? We must determine whether the

best destination is the one which affords the quickest migration, or privilege the one

which results in more adequate resource allocation.

The VIOLIN framework provides solutions to the above challenges. Based on the

VIOLIN framework, we have deployed a production system on the nanoHUB [26] in

frastructure, as well as, created experimental prototypes to evaluate the effectiveness

of adaptation mechanisms and policies on increasing the usability and utilization of

shared computational resources. Further, there are over 20,000 users of the nanoHUB,

hundreds of which have accessed nanotechnology simulations [27] that run on produc

tion computational clusters that are actually VIOLIN virtual environments. These

users have run thousands of parallel and distributed jobs during the first year of

VIOLIN’s deployment. As new components of the experimental prototype become

reliable they will be deployed in the production system for the benefit of nanoHUB

users.

1.2 Dissertation Contributions

The challenges and contributions of this dissertation are three-fold: the develop

ment of the VIOLIN middleware which enables virtual environments, the development

and evaluation of virtual environments for inter-domain sharing, and the development

and evaluation of adaptive virtual environments for shared cyberinfrastructures.

•	 VIOLIN middleware. As the basis of this dissertation the VIOLIN mid

dleware was designed, implemented, and evaluated for effective utilization of

http:middleware.As

5

shared cyberinfrastructures. VIOLIN’s key contributions is on-demand creation

of isolated, dynamic, secure, and customizable virtual environments that can

effectively utilize the distributed resources of the shared cyberinfrastructure.

This is accomplished by inserting VIOLIN as a layer of indirection sitting be

tween the infrastructure and virtual machines running on top of it. This layer

provides users with the familiar look-and-feel of a private LAN environment

while allowing the cyberinfrastructure to be shared. Effectively and efficiently

sharing the infrastructure is achieved by manipulating the scale and location

of each virtual environment’s resource allocation. VIOLIN is among the first

virtual environment middleware that allows live wide-area migration, and it is

one of the few being used in a production environment.

•	 Virtual environments for inter-domain sharing. Leveraging the abilities

of VIOLIN, we have designed, implemented and evaluated a system of virtual

environments for inter-domain sharing. VioCluster [28] is a system that allows

multiple independently administered computational clusters to share resources

by temporarily lending and borrowing cluster nodes. We observe that many

computational clusters go through phases of utilization. They often sit idle

for long stretches of time followed by periods of demand beyond their capabil

ities. The VioCluster system monitors the resource demands of each cluster

by communicating directly with their batch schedulers. The number, size, and

runtime of the jobs in the scheduler are applied to domain-specified policies

in order to facilitate the lending of idle nodes of some clusters to others that

are overloaded. The system has been shown to mitigate large spikes in cluster

load. Existing virtualization-based cluster load-balancing mechanisms can only

be used to balance load within a single physical cluster. VioCluster can safely

distribute load beyond domain boundaries while maintaining strict autonomy

of each administrative domain.

6

•	 Adaptive virtual environments for shared cyberinfrastructure. We

have developed, implemented, and evaluated a system of virtual environments

based on VIOLIN intended to improve application performance and increase

the efficient use of a shared cyberinfrastructure. This system enables the mech

anisms and policies for virtual environment adaptation. Users and user groups

utilize cyberinfrastructure resources through isolated VIOLIN virtual environ

ments customized for their specific needs. Further, each environment transpar

ently relocates itself through the cyberinfrastructure consuming resources and

adapting to the environmental characteristics of its internal applications. In

contrast to VioCluster, adaptation decisions are made using only data observ

able from outside of the virtual environments (e.g. CPU, memory, and network

utilization). The system predicts the resource needs of applications running

within the virtual environments without any knowledge of the specific appli

cation. The predictions are used to determine the appropriate way in which

to adapt resource allocation to the needs of applications running within the

virtual environments. The ability to transparently adapt environments to ar

bitrary applications is essential to the efficient use of cyberinfrastructure. Our

study shows that these techniques greatly increase application performance and

overall infrastructure resource utilization.

1.3 Dissertation Organization

This dissertation is organized into 7 chapters including this introduction chapter.

Chapter 2 lays out the framework for the dissertation. Chapter 3 discusses related

works. Chapter 4 presents the details of VIOLIN enabling mechanisms. Chapter 5

presents the application of VIOLIN to inter-domain cluster sharing. Chapter 6 dis

cusses adaptation mechanisms and policies for VIOLIN virtual environments deployed

on a shared cyberinfrastructure. Concluding remarks and future work are discussed

in Chapter 7.

http:cyberinfrastructure.We

7

2. OVERVIEW OF VIOLIN FRAMEWORK

This chapter presents an overview of the VIOLIN integrated framework for utilizing

cyberinfrastructure.

2.1 Overview

Figure 2.1 shows the overall organization of the VIOLIN framework. There are

three main components whose development and concepts build upon each other to

create fully adaptive virtual environments for cyberinfrastructure: (1) the basic vir

tual environment enabling middleware (VIOLIN), (2) adaptive inter-domain sharing

Autonomic VIOLIN Environments VioCluster

Cyberinfrastructure Federation Cluster Resource Sharing
and Managment Mechanisms and Policies

VIOLIN Virtual Environments

Virtual Environment

Enabling Middleware

Fig. 2.1. Road map toward the integrated VIOLIN framework for
virtual environments in a shared cyberinfrastructure

8

mechanisms and policies (VioCluster), and (3) mechanisms and policies for autonomic

adaptive virtual environments in shared infrastructures.

2.1.1 Underlying Cyberinfrastructure

Below the adaptive virtual environment framework described in this thesis sits

the cyberinfrastructure. There is growing realization that computers, networks, and

network-attached devices have developed to the point where any device, regardless

of location, can be used by any scientist anywhere in the world to perform tasks not

possible using local infrastructure. Cyberinfrastructure is the term created by the

National Science Foundation (NSF) to describe its vision of the federation of a large

number of distributed resources to be used by a wide range of users. The challenges to

the development of a cyberinfrastructure are (1) facilitation of cooperation between

independently administered devices and (2) the need to provide diverse users and

user groups with a simple, easy to use interface through which to utilize resources

that are heterogeneous, distributed, and independently administered.

In 2003, the NSF released a blue-ribbon advisory panel report on cyberinfrastruc

ture [29]. In their report, the NSF presented its desire to create shared cyberinfras

tructures that enable science and engineering innovation. The work presented in this

dissertation is among work that shares the long-term vision.

2.1.2 VIOLIN Virtual Environments

The goal of the next generation cyberinfrastructure is to federate massive amounts

of heterogeneous resources that are available through the Internet and make the re

sources available to users. Unfortunately, existing methods for sharing independently

administered resources have limitations. Theses methods often use restrictive user au

thentication models that require manual creation and monitoring of accounts within

each independent domain. Independent authentication in each domain hinders the

ability to federate infrastructures. In addition, the heterogeneity seen across do

9

mains limits the portability of most applications. In order to provide for portability,

some cyberinfrastructure projects [30–32] require application programmers to use in

frastructure specific API’s and link their codes with infrastructure specific libraries.

Most users, especially those who are not computer experts, would prefer to remain

unencumbered by the details surrounding access to resources and do not wish to, or

may not be able to, modify or recompile existing codes. We argue that the virtual

ization of cyberinfrastructure resources, through both virtual machines and virtual

networks, can allow them to be used as if they were resources configured and admin

istered locally.

The VIOLIN middleware interacts with the infrastructure to form the founda

tion of our integrated framework. The VIOLIN middleware manages the creation,

destruction, and adaptation of multiple virtual environments sharing the resources

of the infrastructure. Each virtual environment is composed of one or more virtual

machines connected through an isolated virtual network. The VIOLIN middleware

uses machine and network virtualization to decouple the underlying infrastructure

from the virtual environment and provide cyberinfrastructure users with a familiar

look-and-feel of a customized private local-area network. Users can execute unmod

ified applications (both new and legacy) as if they were utilizing dedicated local re

sources. Meanwhile, the cyberinfrastructure is relieved of its per-domain user account

maintenance responsibilities. Domains can participate in the cyberinfrastructure by

providing support of virtual machines and agreeing to host virtual machines from the

participating domains.

Although enabling VIOLIN virtual environments is a major contribution in it

self, the adaptation abilities of virtual environments provide a unique opportunity.

VIOLIN provides fine-grain control of the amount of resources (CPU, memory, and

network bandwidth) allocated to each virtual machine within a VIOLIN environment.

Further, it provides coarse-grain control by enabling the live migration of individual

virtual machines, or whole virtual environments, between physical hosts or domains.

10

In 2005 VIOLIN was deployed on a production cyberinfrastructure called the

nanoHUB [26]. The nanoHUB is a web-based system providing access to high-

performance nanotechnology simulations. Since VIOLIN’s deployment it has sup

ported the execution of thousands of simulations for hundreds of users and has be

come an essential part of the nanoHUB’s computing backend. As of this writing,

production VIOLIN environments are utilized to run many of the most common par

allel and distributed nanoHUB applications and have become some of its most secure,

stable, and reliable computational facilities. VIOLIN virtual environment enabling

mechanisms are presented in Chapter 4.

2.1.3 Adaptive Inter-domain Cluster Sharing

With VIOLIN virtual environments in place, we have created an integrated au

tonomic adaptation platform that monitors and adapts virtual environments to the

applications they are running. By placing autonomic adaptation control facilities on

top of VIOLIN environments and adapting the allocation of resources to applica

tions we gain unique advantages in investigating efficient utilization of computational

infrastructure.

The VioCluster adaptive inter-domain cluster sharing system is the first system

built upon the VIOLIN middleware. VioCluster allows independently administered

computational clusters to share resources while each cluster retains isolated adminis

trative authority. VioCluster leverages VIOLIN’s ability to virtually extend a physical

cluster to a remote domain through the on-demand creation of virtual machines as

part of the physical cluster. VioCluster’s most significant contributions are to adapta

tion policies implemented to maximize the performance benefits of adaption through

defining effective cluster-specific node lending and borrowing policies. The policies

increase the overall performance of the system while protecting individual clusters

from the negative effects of lending nodes.

11

Chapter 5 presents the implementation of the VioCluster system and the study

of its ability to increase the performance of computational clusters.

2.1.4 Autonomic Virtual Environments for Shared Cyberinfrastructure

VIOLIN and VioCluster together demonstrate the benefits of adaptive virtual

environments. VioCluster, however, does not use all of the dynamic abilities of VI

OLIN. It only uses on-demand creation, destruction, and expansion of virtual en

vironments. Building on the adaptive concepts applied by VioCluster, we created

autonomic virtual environments for wide-area multi-domain cyberinfrastructure that

can scale resource allocation and migrate live virtual environments across distributed

infrastructure. These fully autonomic virtual environments have no dedicated hosts,

instead, they exist in the dynamic cyberinfrastructure and flow through the available

resources consuming resources and adapting to environmental changes. The primary

contribution of autonomic virtual environments is to the creation of adaptation mech

anisms and algorithms.

Chapter 6 presents the implementation of the autonomic virtual environment sys

tem and discusses the experimental deployment of the system on the nanoHUB’s

infrastructure.

12

3. RELATED WORK

3.1 Virtual Machines

Virtual machines have been used for computing since the early 1960’s when they

were developed along with other forms of time-sharing operating systems [33]. Before

the introduction of virtualization, computing systems research followed the paradigm

where in one program executed on one machine at any given time. Time-sharing

operating systems changed the way computers were used by allowing multiple pro

grams to run on a single computer, seemingly at the same time. At their inception,

there were two purposes for developing and using time-sharing systems, (1) to more

efficiently use available computing resources, and (2) to create a more productive

interface for humans to interact with computers [34]. To this day, the motivations

behind modern virtualization platforms remain the same as over 40 years ago. Ad

vances in virtualization continue to increase the efficiency of computational capacity

as well as provide convenient interfaces to massive amounts of computational power.

The earliest notable virtual machines were developed as a time-sharing system

for IBM’s System/370. Often simply called VM or VM/370, Virtual Machine Fa

cility/370 [35] is a second generation time-sharing system that pioneered the use of

virtualization. VM/370 allows multiple users to simultaneously interact with their

own copy of a single-user operating system called Conversational Monitor System

(CMS). Collectively, all CMS instances simultaneously use a single processor and are

controlled by the Control Program (CP). The CP multiplexes the available resources

while maintaining strict isolation between each operating system. Remarkably, the

CP/CMS model remains very similar to modern virtualization methods. The modern

equivalents of the Control Program are called Virtual Machine Monitors (VMM) or

13

Hypervisors and virtual machines now commonly run off-the-shelf multi-user operat

ing systems.

Throughout the 1960’s and 1970’s considerable research went into developing vir

tual machines as time-sharing mechanisms. However, from the 1970’s to the mid

1990’s operating systems such as UNIX, Linux, BSD, Solaris, Windows and many

others that use the more familiar single kernel multiple-user paradigm became very

popular while interest in virtualization has diminished.

More recently, machine and network virtualization has seen a renaissance. It has

become common to use personal computers simultaneously running multiple operat

ing systems that free the user from the limitations imposed by any individual operat

ing system. Further, using powerful servers, it is now possible for large server farms to

be completely based on virtual machines for easy management and flexible resource

provisioning. Following the philosophy of the original virtual machines, modern vir

tual servers efficiently share the limited resources of a server farm while maintaining

isolated customized servers for their customers. In addition, virtual servers can be

moved between hosts within the server farm to avoid maintenance downtime and

increase performance and availability.

3.1.1 Hardware Level Virtualization

The original virtual machines used in VM/370 were what today are called hard

ware level virtual machines. Hardware level virtualization is distinguished from other

types of virtualization by the technique of creating virtual hardware that exactly

replicates real hardware. The unmodified guest operating system interacts with fa

miliar virtual hardware. In the case of VM/370 virtual machines, each copy of the

CMS operating system interacts with its own virtual IBM System/370.

By providing replica virtual hardware, hardware level virtualization has the crucial

benefit of supporting a wide variety of off-the-shelf operating systems. Platforms like

VMware Server can easily support multiple virtual machines running unmodified

14

versions of Windows, Linux, Solaris, BSD, or most other operating systems for x86

architectures. The flexibility and ease of use of these systems continues to drives their

popularity.

Virtualizing raw hardware, however, incorporates unnecessary overhead. Much

of the I/O and networking capabilities of virtual machines can be made significantly

more efficient by optimizing the virtual hardware. For this reason, many hardware

level virtualization platforms use a method called paravirtualization. In paravirtual

ization, the strict separation between the VMM and the guest OS is broken. The

VMM (often referred to as a hypervisor in paravirtualization) provides a modified set

of virtual hardware that interacts with a modified guest OS. Xen is one of the more

popular examples of paravirtualization. The paravirtualization optimizations in Xen

allow it to provide higher performance than VMware Server, however, commercial

operating systems, for example all versions of Microsoft Windows, cannot be run on

Xen without special support from the manufacturer. It is important to note that

hardware support for virtualization seen in the Intel Virtualization Technology (VT)

chips [36] and AMD Pacifica [37] has become more common and allows for unmod

ified guest operating systems to run using some paravirtualization techniques while

achieving better performance [38].

The following is a list of many of the popular hardware virtualization platforms

and a brief description of the unique properties of each:

•	 VMware [39]. Possibly the most popular virtualization platform for business

and personal use, VMware has a wide range of virtualization products including,

VMware Workstation, VMware Player, VMware Server (formerly VMware GSX

Server), and VMware ESX Server. VMware Server is a free version of VMware

that runs on top of an existing operating system (currently Windows, Linux,

and OS X). It supports any x86 operating system as a guest but suffers from

reduced I/O performance due to it pure machine level virtualization. VMware

ESX Server [40, 41] is not free but is a high performance paravirtualization

http:paravirtualization.In

15

system with increased I/O performance [42]. VMware ESX Server also includes

live migration capabilities [25].

•	 Xen [6]. Xen is the most popular open-source paravirtualization platform avail

able today. Possibly the most popular virtualization platform in academia, Xen

has a large community of active developers and is easy to modify. Xen provides

both good performance [43] and live migration capability [24].

•	 User-Mode Linux [7]. Originally developed as a platform to simplify Linux

kernel development, UML was never intended to be a full-fledged virtual ma

chine platform. However, its fully user-level implementation and open-source

Linux-based implementation makes UML a ideal candidate for many uses.

•	 Parallels [44]. Originally a competitor of VMware, Parallels became popular

with the release of the Parallels Desktop for Mac. At the time, VMware Server

did not support Mac OS X hosts. Many OS X users run Windows as a guest

on Apple hardware using Parallels.

•	 Microsoft Virtual PC [45]. Virtual PC has been around since 1997. Origi

nally, it was designed to support Windows OS’s running on Power-PC Macin

toshs. When virtualization began its renaissance, Microsoft bought Virtual PC

and continues to develop it as a virtualization platform for Windows.

•	 Kernel Virtual Machine (KVM) [46] . KVM is a loadable kernel module

for Linux based on QEMU [47]. KVM provides full virtualization from within

the Linux kernel and has been included as part of the mainline Linux kernel

since version 2.6.20. Although it is in its infancy, initial evaluation shows that

KVM may provide better performance than Xen [48]

3.1.2 Operating System Level Virtualization

Operating system level virtualization is another popular form of virtualization

that is implemented at a different level of the software stack. What differentiates

16

operating system level virtualization from hardware level virtualization is that there

is no true VMM, instead there is a single instance of an operating system that is shared

by all virtual machines. Virtual machines are isolated from one another through a

kernel level abstraction but they share the same process scheduler, network stack,

and device drivers. Because there is only one operating system, these systems are

light weight and have higher performance than machine level virtualization systems.

However, they are less customizable and may not provide as high a level of isolation

(i.e.	 virtual machines often share a single IP address and set of ports).

Popular operating system level virtualization platforms include:

•	 Linux-VServer [49]. VServer is an open-source Linux-based OS level virtu

alization platform. It is mature and stable enough to be included with many

popular Linux distributions and is the fundamental virtual abstraction used by

PlanetLab [4].

•	 Virtuozzo [50]/OpenVZ [51]. OpenVZ is very similar to Linux-VServer.

Most notably, Virtuozzo is based on OpenVZ. OpenVZ is one of the few oper

ating system level virtual machines systems that provides for VM migration [52].

•	 FreeBSD Jails [53]. Operating system level virtualization for BSD.

•	 Solaris Containers [54]. Operating system level virtualization for Solaris.

3.1.3 Virtualization and Dynamic Adaptation

Beyond isolation and customization, the most useful but least understood aspects

of virtualization are its dynamic adaptation capabilities. Much work has been done

in creating virtual machines that perform nearly as well as raw hardware [55, 56].

However, we have just scratched the surface on virtualization’s ability to provide

better performance through dynamic application-transparent adaptation.

17

Resource Scaling

Many virtualization platforms provide facilities for controlling the resource alloca

tion of virtual machines at runtime. Most commonly, the VMM can scale the amount

of CPU capacity, memory, and network bandwidth allocated to a virtual machine.

Xen 3.0, for example, uses Slacked Earliest Deadline First (sEDF) [57] processor

scheduling which provides weighted CPU sharing among virtual machines. Each vir

tual machine is allocated a percentage of the CPU and the Xen hypervisor guarantees

the allocations. Further, the allocated percentage of CPU can be changed at any time

during the life of the virtual machine.

Xen also allows for the scaling of memory allocation. While a virtual machine

is running, the amount of memory a virtual machine is using can be increased or

decreased up to a maximum determined upon the creation of the virtual machine.

This feature is quite impressive when the effect on the guest operating system is

considered. To enable memory scaling, the guest operating system needs to be able

to handle changes in memory size at runtime. Most operating systems have not

been implemented with this feature. Clearly, Xen’s ability to modify memory size at

runtime does not work with unmodified guest operating systems and is a feature of

paravirtualization. Pure machine based virtualization methods (including VMware

Server) using unmodified guest OS’s can not modify memory allocation at runtime.

Machine Migration

Among the most sophisticated features of any virtual machine platform is the abil

ity to migrate virtual machines between hosts. Virtual machine migration involves

pausing a VM, transferring its state to another host, and restarting it. The challenge

to migrating virtual machines is maintaining access to the state of the virtual machine

and maintaining an appropriate network configuration, both of which are necessary

in order to reinstantiate the virtual machine. In current virtualization platforms,

including Xen and VMware ESX Server, these challenges are met by restricting mi

18

gration to within a single LAN or layer-2 network. The virtual machine’s filesystems

are stored in NFS accessible storage. Both the source and destination hosts must

have access to the NFS store eliminating the need to transfer the larger filesystem

images. Further, networking configurations can remain unchanged due to the bus

architecture used by many common layer-2 networks, including Ethernet. Before and

after the migration, the virtual machine remains part of the local Ethernet and can

send and receive data without modifying the network configuration. In contrast, VI

OLIN virtual environments can migrate live across a wide-area network due to the

implementation of virtual networking at a lower level in the network stack (layer-2).

Some platforms, including Xen and VMware ESX Server, allow for the live mi

gration of virtual machines. In live migration, the virtual machine remains running

through the execution of the migration. When performed efficiently, the migration

takes approximately as long as is needed to transfer the virtual machine’s memory

from the source host to the destination. However, the actual downtime the virtual

machine experiences is less than one second [24]. These live migration facilities are

key to VIOLIN’s ability to provide wide-area adaptation of virtual environments.

3.2 Virtual Networks

There are several virtual networking systems which are similar to VIOLIN net

working. Each of these systems has its own benefits and limitations.

•	 VNET1 [17,58]. The VNET project at Northwestern University creates virtual

network overlays composed of virtual machines residing on distributed hosts.

VNET provides a virtual a layer-2 Ethernet that connects remote virtual ma

chines to a local physical LAN. As opposed to VIOLIN, VNET does not main

tain strict isolation between virtual networks. Instead, VNET creates isolation

on a shared LAN by assigning IP addresses to virtual machines such that the

1Several similar projects share the name ‘vnet’. We discuss Peter Dinda’s VNET project from
Northwestern University

19

co-located virtual networks use disjoint sets of IP addresses. In this configu

ration, misconfigured IP virtual machines can have negative effects on other

virtual networks. One salient feature of VNET is the ability to automatically

find shorter paths between virtual machines in the virtual network through

Internet increasing performance of applications running inside the virtual net

work [18, 59].

•	 IPOP and ViNE. IPOP [60] and ViNE [61, 62] are both projects created

at the University of Florida’s Advanced Computing and Information System

Laboratory. IPOP and VIOLIN share the P2P layer-2 approach to virtual

networking. A P2P network is utilized to tunnel Ethernet frames between

virtual machines. ViNE virtualizes at the IP layer (layer-3) and is, therefore,

similar to traditional corporate VPN’s. ViNE is limited, however, by requiring

the modification the routing tables of the local IP level Internet edge routers.

3.3 Virtual Clusters and Workspaces

A system which shares similar goals to VIOLIN is Cluster-On-Demand (COD) [21].

Although Cluster-On-Demand does not use virtual machines, it allows dynamic shar

ing of resources between multiple clusters based on the same pool of hosts. In a

similar fashion to Oceano [63] and Emulab [64], Cluster-On-Demand reallocates re

sources by using remote-boot technologies to re-image a physical machine and install

preconfigured disk images from the network. The disk image that is installed de

termines which cluster the nodes will belong to upon booting. In this way, Cluster

On-Demand can redistribute the resources (at the granularity of a node) of a cluster

among several logical clusters sharing those resources. When we compare our work

with Cluster-On-Demand we see two projects that have very similar goals; however,

Cluster-On-Demand works by reinstalling the base operating system of the machines.

Our work creates virtual environments running on top of the existing VMMs and

is designed to be deployed over wide-area networks. Cluster-On-Demand is more

http:booting.In

20

suited for a centralized pool of machines supporting logical clusters administered by

trusted local administrators. The authors of Cluster-On-Demand are also studying

market-based algorithms for negotiating control over resources in a shared cluster

environment [65, 66]. We are also interested in machine broker policies, however, we

do not focus on market-based strategies with VIOLIN.

More recently, the group working on Cluster-on-demand has developed a new

project called Shirako [67–71]. Shirako is a virtualization-based cluster system in

which multiple virtual clusters are deployed on a single host cluster. Similar to our

work, the distribution of resources to virtual clusters changes as demand for cluster

resources changes. Shirako is limited to a single host cluster and does not extend

beyond domain boundaries.

The Virtual Workspaces [12, 13, 72, 73] project at Argonne National Laboratory

has the goal of providing policy-driven resource management and dynamically de

ployable environments for Grid applications. As part of the Globus project, Virtual

Workspaces has the potential to be integrated with a widely deployed Grid meta

scheduler. Up to now, the work on Virtual Workspaces has focused on just-in-time

deployment of virtual machine through Grid meta-schedulers [74].

PlanetLab [3] is a infrastructure consisting of computers distributed across the

World and made available for experiments on networking and distributed systems.

Users can acquire virtual machines, called ‘slices’, on any of the cooperating hosts.

PlanetLab is intended to be a test bed for distributed systems that possesses the

characteristics of real Internet overheads and congestion. Further, PlanetLab does

not create isolated virtual networks. It is only intended as a platform for world-wide

distributed system experiments. A limitation of PlanetLab is its use of VServer.

Using VServer, all virtual machines on a host share a single IP address and must

cooperate when accessing network ports.

21

3.4 Grid Computing and Cyberinfrastructure

Currently, the most common computational resource sharing methods are seen

in the creation of large, shared Beowulf [75] style computer clusters that multiplex

resources through a batch scheduler such as PBS [76] or Torque [77]. A common

example of such systems would be a large general-purpose cluster administered by a

campus-wide authority in a university system and used by members of many depart

ments. More recent examples of decentralized resource sharing include cycle stealing

applications such as SETI@Home [78], as well as meta-scheduling dedicated Grid in

frastructures like Globus [1, 79], Condor [30], and Sun Grid Engine [80]. All of these

solutions provide access to seemingly endless amounts of computational power with

out incurring the full cost of ownership. However, common to all of these systems is

the problem that jobs are run on nodes over which the job owner has no control.

Another interesting system that uses virtual machines for resource sharing is In-

VIGO [10, 81–84]. In-VIGO is a distributed Grid environment supporting multiple

applications which share resource pools. The In-VIGO resources are virtual machines.

When a job is submitted, a virtual workspace is created for the job by assigning

existing virtual machines to process it. During the execution of the job the virtual

machines are owned by the user and the user has access to his or her unique workspace

image through the NFS-based distributed virtual file system [85–87]. An automatic

virtual machine creation project called VMPlants [88] is provided with In-VIGO.

VMPlants is used to automatically create custom root file systems to be used in

In-VIGO workspaces.

22

4. ENABLING VIRTUAL ENVIRONMENTS IN A

SHARED INFRASTRUCTURE

4.1 Introduction

With the advances in cyberinfrastructure technologies, considerable opportunities

have been created for a broad spectrum of distributed and parallel computing ap

plications to take advantage of massive amounts of aggregate computational power

available through the Internet. Spanning multiple domains, a cyberinfrastructure

aims to provide for the federation, allocation, and management of heterogeneous net

worked resources and makes them available to a large number of users. As such, large

portions of the global computing community are joining together to form wide-area

shared cyberinfrastructures, realizing the vision of global sharing and access.

Research challenges exist in fulfilling the full potential of such a shared cyberin

frastructure. The users of traditional resource sharing technologies, such as Beowulf

Clusters [75] and the Grid [30,79,80,89,90], are familiar with the traditional job sub

mission and execution model as well as the service-oriented access model as defined

by the Open Grid Services Architecture (OGSA) [79]. Powered by technologies such

as the Grid Resource Allocation and Management (GRAM) of Globus [91], the Grid

provides a single detail-hiding interface for requesting and using networked resources

for the execution of jobs submitted by various users. These job and service models

have been widely used and they define an appropriate paradigm for resource shar

ing and program execution. Applications exist however, that exhibit an operational

rather than functional nature, making it difficult to map these applications to inde

pendent jobs or services. An example is the fine-grain emulation of real-world systems

such as airport operations and anti-terrorism exercises, each of which involves a large

number of dynamic and diverse objects, contexts, and object interaction patterns.

23

Furthermore, applications may require specially configured and customized exe

cution environments, including operating system and network level services as well

as application-level services, packages, and libraries. For example, many scientific

applications require mathematical and communication libraries such as Basic Linear

Algebra Subroutines (BLAS) [92] and Message Passing Interface (MPI) [93], and many

Java applications insist on a specific version of JVM. In a distributed infrastructure,

such specific requirements may not always be mutually accommodated. Moreover,

the requirements may be in conflict with each other (e.g., different versions of the

same library).

Finally, it is not possible to prevent users from running applications that are un

trustworthy or potentially mal-functioning. Software bugs and vulnerabilities may

be introduced into an application either inadvertently or deliberately. For exam

ple, security vulnerabilities have been identified in well-known applications such as

SETI@Home [78]. These vulnerabilities could be exploited to launch network attacks

against any machine on the Internet. As a result, it is critical to contain any se

curity impact incurred by an application, so that other applications, as well as the

underlying shared infrastructure, will not be affected precipitously.

It is clear that the need exists for mutually isolated distributed environments on

shared infrastructure as a complement to the job and service-oriented sharing model.

To address the problems discussed above, mutually isolated distributed environments

should have the following properties: (1) on-demand creation, (2) high customizability

and configurability, (3) binary compatibility for applications, and (4) containment of

negative impact of malicious or mal-functioning applications.

In its renaissance virtualization has become a promising technology for enabling

virtual environments. Virtualization introduces a level of indirection between ap

plications and the shared infrastructure. Technologies exist for the virtualization of

machines and networks. Examples of virtual machine (VM) enabling systems include

VMware [9], User-Mode Linux (UML) [7], and Xen [6]. Despite implementation dif

ferences, these systems all enable virtual machines that achieve binary compatibility

24

and networking capability just as do real machines. Examples of virtual network

enabling systems include VNET [17], IPOP [60], and ViNE [61] all of which create

virtual IP networks for confined virtual machine communications. However, VIO

LIN [15] creates virtual environments by introducing additional wide-area isolation

and adaptation capabilities.

The application of virtual machine technology to Grid computing was first pro

posed by Figueiredo, Dinda, and Fortes [11]. They have identified six major advan

tages of virtual machines for the Grid, namely security and isolation, customization,

legacy support, administrator privileges, resource control, and site-independence.

Their projects, In-VIGO [10] and Virtuoso [14], are among the first to address Grid

resource virtualization and heterogeneity masking using virtual machine abstraction.

The VMPlants architecture [88] within In-VIGO enables creation of customized vir

tual machines that exist in a shared execution environment adhering to the traditional

job submission and execution model.

Taking virtualization even further, we have developed the VIOLIN middleware

to enable isolated virtual environments on a shared cyberinfrastructure. The goal

is to provide applications with customized and consistent runtime and networking

environments with strong isolation from each other. The rest of this chapter presents

the desirable features, experimental results, and ongoing work towards this goal.

Figure 4.1 gives a multi-layer overview of virtual environments on a shared physical

infrastructure enabled by VIOLIN. The bottom layer is the physical infrastructure

with heterogeneous networked resources spanning multiple network domains. The

middle layer is the enhanced infrastructure integrated and managed by value-added

middleware systems. Our middleware for virtual environments is deployed in this

layer. The top layer consists of mutually isolated virtual environments, each with

its own network, operating system, and application services customized for the ap

plications running in it. They are employed by users or user groups with various

computational needs.

25

Fig. 4.1. Multi-layer overview of virtual distributed environments on
a shared cyberinfrastructure

Virtual distributed environments are supported by the integration of virtual net

work and on-demand virtual machine creation and customization technologies. This

leads to the VIOLIN middleware system we developed that enables virtual distributed

environments.

The four desirable properties of virtual distributed environments mentioned in

Chapter 1 will be realized as follows:

•	 On-demand creation of VIOLIN environments involving both virtual machines

and the virtual IP network connecting the virtual machines.

•	 Customization of VIOLIN environments including the virtual network topology

and services, operating system services, and application services/packages/libraries.

•	 Binary compatibility is achieved by creating the same runtime and network

environment under which an application was originally developed.

26

•	 Containment of negative impact is achieved by isolating virtual network address

space, limiting both virtual machine resources and inter-virtual machine traffic

rate, and granting users administrative privileges within the virtual environ

ments without requiring privileges at the physical infrastructure level.

4.2 Virtual Machines and Virtual Networks

We first survey techniques related to networking support for virtual machines.

Current virtual machine technologies can be used to create localized virtual private

environments. Virtual machines can be requested and instantiated on-demand, each

with a regular IP address as well as a customized installation of operating system

and application services. Enhancing the underlying host’s operating system allows

machines to support multiple virtual machines each of which are guaranteed a ‘slice’ of

the physical host with respect to CPU, memory, and network bandwidth. Typically,

the modified operating system that supports multiple independent virtual machines

is called a Virtual Machine Monitor.

Figure 4.2 shows a typical host that is running a VMM which is supporting vir

tual machines. Virtual machines reside on a physical machine or host. A virtual

machine monitor sits between the host’s hardware and the virtual machines. The

VMM directly interfaces with the hardware and provides each VM with its own

virtual hardware. The virtual machine’s main responsibility is to manage the mul

tiplexing of the real hardware into multiple sets of virtual hardware for the virtual

machines. The operating systems of each virtual machine logically interface with

their own virtual hardware and are unaware that they are sharing physical hardware

with other virtual machines. As a result, multiple virtual machines support multiple

users, processes, and applications, and can utilize a single piece of hardware while

maintaining completely isolated and independent operating systems, configurations,

and user space.

27

Fig. 4.2. Typical virtual machine configuration including the virtual
machine monitor and two virtual machines.

Using the technology described above, however, isolation is achieved only between

individual virtual machines. A set of virtual machines does not automatically cre

ate an isolated virtual environment. Typically, virtual machines use shared networks

which cause them to be addressable to/from other Internet hosts. Moreover, it is

difficult to manage multiple virtual networks because all the virtual machines share

the same IP address space. As a result, conflict may occur between these virtual net

works and administration of multiple conflicting virtual networks must be performed

by a single administrator.

Although virtualization makes use of multiplexing at the operating system level,

networking is established without considering isolation. Figures 4.3-4.5 show how

virtual machines are commonly networked. There are three types of networking

techniques that are possible using currently available off-the-shelf virtual machines.

•	 Host-only networking. Figure 4.3 shows host-only networking. As in all

types of virtual machine networking, the virtual machine has a virtual NIC

28

Fig. 4.3. Virtual machines using host-only networking.

provided by the VMM. In host-only networking the virtual NIC on each virtual

machine is linked to a virtual switch residing on the host. The virtual switch is

software that sits below the virtual machine and above the VMM. It is impor

tant to note that each virtual machine has its own operating system including

it’s own network stack. The virtual switch communicates with virtual NICs

by sending and receiving Ethernet frames. In this configuration, the virtual

machines communicate through a virtual network that is isolated from the un

derlying physical network. The limitation of host-only networking is that only

virtual machines on a single host can communicate through the switch. This

is analogous an isolated LAN that is not connected to any WAN and has wires

that are only long enough to reach machines in a single room.

•	 Network Address Translation (NAT) networking. Figure 4.4 shows NAT

networking. In this configuration the host becomes part of the host-only network

and acts as a NAT router forwarding IP packets from the virtual machines to

29

Fig. 4.4. Virtual machines using NAT networking.

the physical network. As in all NAT routing, the virtual machines can connect

to services outside of the host, but they cannot host services and make them

accessible by external machines. This is analogous to a small LAN located in

a private residence. The computers on the LAN are confined to the house and

can access Internet services through a NAT router connected to a DSL or Cable

ISP.

•	 Pass-through networking. Figure 4.5 shows pass-through networking. In

pass-through networking the host uses a bridge1 to extend the physical network

to include the host-only network. The host is responsible for listening to the

physical network for all Ethernet frames and for forwarding them to the internal

virtual machines. Using pass-through networking, the virtual machines can

both access the outside network as well as host services that can be accessed

from outside of the host. The drawback of using pass-through networking is

1A bridge is a standard Linux facility typically used to daisy-chain multiple physical Ethernets

30

Fig. 4.5. Virtual machines using bridged networking.

that each virtual machine needs to have an IP address from the host network’s

IP address space. In situations where large numbers of virtual machines are

needed the address space may become exhausted. This scenario is analogous to

daisy-chaining the host only network to an existing physical network.

All three of these virtual machine networking techniques are useful for many ap

plications of virtual machines; however, they all have limitations that prevent their

use for creating isolated virtual environments that span the cooperating domains of

a shared cyberinfrastructure.

4.3 Design of VIOLIN Networking

The vision of VIOLIN is to enable adaptive isolated virtual environments dis

tributed across a cyberinfrastructure. The key properties that VIOLIN must provide

are: (1) to federate groups of cyberinfrastructure resources to be utilized for a single

31

purpose, (2) to maintain isolation between virtual environments and the host infras

tructure, and (3) to enable the adaptive properties of virtualization in a infrastructure

distributed across domains. None of these properties is possible with the standard

virtual machine networking techniques described above.

To meet these challenges, VIOLIN uses a novel fourth category of virtual ma

chine networking we call tunneled networking or VIOLIN networking. In contrast

to standard virtual machine networking, VIOLIN networking maintains the isolation

properties of host-only networking while allowing virtual machines in the VIOLIN

network to be distributed across the Internet.

We introduce a level of communication indirection between the virtual machines

and the underlying infrastructure that decouples the virtual environment from the

underlying infrastructure. Inside a virtual environment, the virtual machines com

municate with each other using standard IP services. Below the virtual environment,

Ethernet services are emulated via application-level tunneling mechanisms.

The effects of this design responds to the properties needed to support virtual

environments on a cyberinfrastructure. VIOLIN networking enables groups of dis

tributed virtual machines to be logically on a single LAN and execute arbitrary codes

that require LAN connectivity. Encapsulation and tunneling of frames isolates these

virtual environments. Adaptive virtualization mechanisms that require LAN connec

tivity, such as live migration, can be performed over a VIOLIN network even though

the network may span multiple domains.

In addition, such a design leads to an important benefit: the VIOLIN environments

can utilize network services that are not widely deployed in the real Internet (e.g.,

IP multicast and IPv6) and enable these network services in the virtual network. By

virtualizing the network below layer-2, VIOLIN can support any high-level network

protocol including non-standard ones not supported by the underlying infrastructure.

VIOLIN can be used to create isolated virtual environments on a shared cyber

infrastructure because it creates high-order virtual IP networks for virtual machines.

These virtual networks have the following salient features:

http:networking.In

32

•	 Each virtual network has its own IP address space. This means that the address

spaces of different virtual networks can safely overlap allowing for independent

administration of multiple virtual environments sharing the same host infras

tructure.

•	 Virtual machines in a virtual network are not visible on the Internet, preventing

attacks from the virtual environments to the Internet as well as direct attacks

from the Internet to the virtual environments.

•	 The traffic volume between specific pairs of virtual machines is bounded by

a user-specified threshold, preventing the generation of excessive traffic from

ill-behaving virtual machines. Furthermore, the enforcement of both virtual

network topology and traffic volume is untamperable from inside the virtual

machines.

•	 The layer-2 virtualization of VIOLIN provides virtual Ethernet to be stretched

across domain boundaries. This feature allows for wide-area migration of vir

tual machine where the virtual machine logically remains within the original

Ethernet. This ability places VIOLIN as one of the few network virtualization

mechanisms that can migrate live virtual machines without modifying network

configuration and disrupting the applications running inside.

The design of VIOLIN employs a novel technique of networking that is analogous

to a distributed version of host-only networking. Figure 4.6 shows a VIOLIN network.

As in host-only networking, VIOLIN virtual machines connect to an isolated virtual

layer-2 network; however in VIOLIN, virtual machines from multiple hosts can con

nect to the same layer-2 switch. As the figure shows, a VIOLIN virtual network can

be viewed as independent LANs composed of virtual machines from multiple hosts.

33

Fig. 4.6. Virtual machines connected to a virtual VIOLIN network.

4.4 Implementation of VIOLIN

We have implemented a middleware system that enables VIOLIN virtual dis

tributed environments. Originally, the core features of VIOLIN were implemented

exclusively for User-Mode Linux virtual machines [15]. Over time, however, the per

formance provided by machine level paravirtualization led to the incorporation of

a tun/tap interface that supports connectivity with many virtualization platforms.

With the addition of the tun/tap interface, VIOLIN can support Xen and VMware

which are the most popular virtualization platforms used in academia and industry.

4.4.1 VIOLIN Core

The core feature of VIOLIN networking is the ability to connect virtual machines

residing on distributed hosts with a virtual LAN. Network traffic on the virtual LAN

is isolated from the underlying infrastructure and virtual machines do not have a

presence in the underlying physical network. In contrast to traditional virtual ma

chine networking techniques, virtual machines in a VIOLIN network connect to a

distributed virtual network switch. The virtual switch is composed of multiple dae

mons one residing on each host participating in the VIOLIN network. Together the

34

Fig. 4.7. Virtual machines connect to Virtual Switch Daemons which
tunnel traffic between hosts.

daemons form a peer-to-peer underlay network that emulates a single layer-two switch

of the VIOLIN network.

Figure 4.7 depicts the core functionality of VIOLIN networking. In the figure

there are two hosts and four virtual machines. The virtual machines connect to a

VIOLIN switch daemon on its host. The switch daemons together compose a single

distributed virtual switch which forwards virtual layer-2 network traffic (namely the

Ethernet frames). This demonstrates how VIOLIN encapsulates virtual network traf

fic and maintains isolation between the VIOLIN network and the underlying physical

network.

From the point-of-view of the virtual machines, the VIOLIN network is an Eth

ernet LAN that is accessible through the local VIOLIN switch daemon. The virtual

machines send and receive Ethernet frames to and from the virtual switch as if it were

a physical machine communicating with a physical switch. The virtual machines do

not know where their communication partners are physically located.

There are two planes of communication used by the VIOLIN switch. The first

is the data plane that is used to transport the Ethernet frames between the virtual

machines and the second is the control plane that is uses to transmit control and

signaling messages among the distributed switch daemons.

35

Data Plane

The VIOLIN data plane is a tunneling peer-to-peer underlay. It is solely respon

sible for obtaining and transporting Ethernet frames between virtual machines. In

terms of the ISO 7-layer reference model, VIOLIN comprises the Physical Hardware

Connection layer (layer-1) and Data Link layer (layer-2). Figure 4.8 shows the net

work stack as seen by the virtual machines. VIOLIN is implemented at the Link layer

and lower with respect to the virtual machines in order to allow the deployment of any

higher-level network protocols (e.g. IP Multicast, IPv6, or experimental protocols)

to be used within VIOLIN environments.

Fig. 4.8. Network layers from the view point of both the virtual and
physical machines.

36

In contrast, from the point of view of the host infrastructure, the VIOLIN data

plane is at the Application layer (layer-7). The choice of application layer implementa

tion allows for complete network isolation between the VIOLIN environments and the

underlying host network. Network frames are encapsulated within UDP packets and

tunneled between the virtual switch daemons. The physical network never directly

handles frames from the virtual network. In addition, each VIOLIN network exists

in an isolated IP space giving users flexibility to apply any network setting they want

without fear of conflict with other virtual networks or the underlying physical net

work. For example, multiple VIOLIN environments sharing the same infrastructure

can use IP addresses (or even MAC addresses) from the same address space.

Control Plane

The second communication plane used by VIOLIN daemons is the control plane.

The set of VIOLIN switch daemons emulates a single layer-2 switch. The control plane

is used to organize the daemons and update virtual machine location information.

A physical Ethernet switch has many ports through which machines connect to the

network. The machines send Ethernet frames to the switch through the ports. The

switch obtains the frame’s destination using the MAC address in the Ethernet header.

Based on the destination address, the switch forwards the frame to the outgoing port

found in its look-up table.

VIOLIN switches mimic the functionality of physical switches, however, their

distributed nature and the dynamics of virtualization create additional challenges.

First, the distributed switch must be able to adapt to infrastructure changes (e.g.,

node failures and the addition of new daemons and virtual machines). Second, each

daemon composing the virtual switch must be able to adapt to changes in the virtual

environment (e.g. the addition, deletion, or migration of virtual machines).

To accomplish these tasks the switch daemons are organized into a peer-to-peer

network. Each switch daemon maintains a control channel to every other switch

37

daemon. The control communication channel is independent of the data plane con

nections. The control plane connections are TCP connections between each pair of

switch daemons. It is important to note that any peer-to-peer scheme will work and

VIOLIN has all of the benefits and liabilities of modern peer-to-peer techniques. For

performance reasons, the only important attribute of VIOLIN routing is that the

data plane maintain direct connections between any pairs of daemons that have vir

tual machines that are communicating. In other words, data plane traffic must only

take one hop through the peer-to-peer network.

4.4.2 User-mode Linux Interface

Although VIOLIN’s features can be implemented in most virtualization archi

tectures, it was originally implemented for User-Mode Linux virtual machines. The

intent was to take advantage of UML’s already existing user level execution and

open-source code to aid our implementation.

Standard UML virtual machines are instantiated as processes in a Linux user’s

execution space. Communication outside of the host machine is possible through a

virtual network interface, called a tap device, residing in the host’s kernel. The UML

virtual machine contains a virtual network interface that connects to the host’s tap

device, and the host acts as a router forwarding packets between the virtual machines

and onto the physical network. Root level privileges on the host are needed to safely

create tap devices and manage the host’s routing tables that enable their use.

VIOLIN bypasses the need for tap devices when using User-Mode Linux and

allows virtual machines to exist in a private IP space logically disconnected from the

physical network. Figure 4.9 depicts a VIOLIN enabled UML virtual machine. The

virtual machine contains a virtual network interface that does not connect to the

host, but instead maintains a socket connection between the virtual machine’s host

process and a virtual switch daemon existing on any host connected to the physical

network. Placing a virtual switch daemon on each host increases performance but

38

Fig. 4.9. UML virtual machines connect directly to virtual switch
daemons located on any accessible host.

is not strictly necessary for UML virtual machines. The virtual switch behaves like

a physical switch accepting connections from many virtual machines and forwarding

network packets to their destination virtual machines.

As opposed to the more general interface described in section 4.4.3, the UML in

terface allows for virtual environments that run completely in user space with respect

to the hosts. User space virtual environments have the benefit of running without

host-level administrative privileges.

4.4.3 Generic Interface (tun/tap)

Since the initial UML implementation of VIOLIN, more powerful, better perform

ing virtualization platforms have matured and become more popular in academic

communities. In response, we have implemented a more universal interface to VIO

LIN. This interface relies on a kernel-level tun/tap device and supports most common

virtualization platforms, most importantly Xen and VMware. Although tun/tap de

vices create a more generic VIOLIN interface they have the drawback of requiring

some configuration by the administrator and an increased network overhead. It is

possible to modify each virtualization platform to bypass the tun/tap devices and

connect directly to the switch daemon similar to the UML interface; however, perfor

39

Fig. 4.10. The tun/tap interface to VIOLIN supports connections
form many popular virtualization platforms.

mance evaluation shows that even with the tun/tap device, the overhead of VIOLIN

is low, and a wide-array of virtual machines can use the interface making it an at

tractive alternative to modifying each virtual machine platform to interface directly

with VIOLIN.

A common approach to networking virtual machines is to have a two-part device

driver. The inner half of the device driver is a virtual NIC seen by the guest operating

system while the outer half appears as a virtual NIC in the host operating system.

The two halves of the device shuttle frames in and out of the virtual machine. Typ

ically, the host uses standard bridging or routing mechanisms to connect the outer

virtual device to a network. As seen in Figure 4.10, the tun/tap interface to VIOLIN

uses a similar approach by bridging the virtual machine’s device driver to a tun/tap

device. A tun/tap device is an operating system device driver that has the outward

appearance of the NIC, but forwards frames to a user-level process instead of a physi

cal network. In VIOLIN, the tun/tap device forwards frames to the the virtual switch

40

Fig. 4.11. The tun/tap device interface allows for hybrid VIOLIN
environments composed of both virtual and physical machines.

daemons. The switch daemons handle the frames using the same methods as they

handle frames originating from a UML interface.

As an additional advantage, the generic mechanisms used by the tun/tap interface

to VIOLIN are flexible enough to allow physical machines to connect to a VIOLIN

network. As shown in Figure 4.11. Virtual and physical machines can connect to the

network through the virtual switch daemons. To a physical machine a tun/tap device

functions as any network device driver. In order for a physical machine to connect

to a VIOLIN network, the machine must modify its IP routing table to route the

desired traffic to a tun/tap device associated with a VIOLIN switch daemon. Traffic

from the physical machine will be routed to the switch through the tun/tap device

and the switch will handle the traffic as it handles all other traffic.

Connecting a physical machine to a VIOLIN network requires some additional

administration. Although the machine will be connected to the VIOLIN network it

will also be responsible for the execution of the switch daemon and the tunneling

of frames. For this reason the physical machine must retain its physical network

interface and the associated routing tables. As a result the physical machine will be

a fully connected to both networks. The effect is that the IP address space of the

VIOLIN network and the physical network must be disjoint. On the other hand, in

41

purely virtual VIOLIN networks the IP address spaces are independent and can safely

overlap.

4.4.4 Multiple VIOLIN Environments Sharing Resources

The fundamental benefit of applying VIOLIN to shared infrastructures is network-

level isolation. Figure 4.12 demonstrates VIOLIN’s ability to achieve mutual isolation

between virtual environments sharing the same infrastructure and even the same

hosts.

In the figure, there are two isolated virtual environments: the blue environment

and the orange environment. In order to maintain isolation, each environment must

have its own distributed network switch. In turn, each host must have a switch

daemon for each of the environments. Notice that there are independent bridges

associated with each switch daemon. The blue virtual machines connect to the blue

switch daemons through the blue bridges while the orange virtual machines connect to

the orange switch daemons through the orange bridges. The blue and orange switch

daemons form two independent peer-to-peer underlay networks, one for switches of

each color. Although both virtual environments forward tunneled traffic over the

same underlying infrastructure they remain logically isolated LANs. Thanks to their

mutual isolation, all concurrently running VIOLINs use the same set of IP addresses

for their virtual machines without causing any conflict and are mutually isolated with

respect to traffic and network services.

4.5 Performance Measurements

VIOLIN is intended to provided many non-performance related value-added fea

tures to virtual environments running on a shared cyberinfrastructure. However,

performance is crucial to the success of VIOLIN in supporting real-world scientific

applications. We present two experiments measuring VIOLIN performance that show

that the performance overhead of using VIOLIN for high-performance parallel and

42

Fig. 4.12. Multiple VIOLIN environments maintain isolation even
when sharing the same physical resources.

distributed applications is low. The first experiment uses the original UML virtual

machines, while the second uses better performing Xen virtual machines.

4.5.1 High-performance Linpack in a UML-based VIOLIN Environments

In this section, we present experimental results from virtual environments re

stricted to hosts from a single domain. The goal is to demonstrate performance

of UML-based VIOLIN environments compared with that of the underlying physi

cal cluster. The cluster consists of hosts each with dual 1.2GHz Athlon processors

and 1GB RAM running Debian Linux 3.0. The hosts are connected by a 100 Mb/s

Ethernet switch. The application running in each VIOLIN environment is the High

Performance Linpack (HPL) [94] benchmark. Our purpose is to stress a UML VI

OLIN environment to its limit by finding the maximum number of floating point

operations per second (Flops) it can achieve relative to the Flops achievable without

using virtualization.

The VIOLIN virtual cluster cannot out-perform the underlying physical cluster,

however, a small loss of performance will justify using virtualization. We aim to show

that virtualization has a small performance penalty. In this experiment, we run HPL

on an increasing number of processors in a physical cluster and compare the FLops

30

G
Fl

op
s

43

2 4 8 32

Size (Processors or VMs)

20

40

Physical Cluster
VIOLIN

10

0
16 64

Fig. 4.13. Comparison of UML VIOLIN with physical cluster

achieved with that of the same problem specification on the same number of virtual

machines in a VIOLIN environment. For each virtual and physical cluster size we find

the maximum possible performance by tuning HPL parameters, most notably: prob

lem size, block size, and process grid shape. There is a non-zero amount of memory

overhead using virtualization. This overhead reduces the maximum problem size that

can be run in a virtual environment. Increasing the problem size to use all available

memory would not result in a fair comparison. Therefore, the problem size parameter

is tuned to the maximum problem size that can be run by the VIOLIN environment

and is used for both the virtual and non-virtual test of the same virtual and physi

cal cluster size. All other HPL parameters are tuned for maximum performance for

each environment. Also, because the host machines have dual-processors, two MPI

processes and two virtual machines per host are instantiated for the physical cluster

and VIOLIN experiments, respectively.

Figure 4.13 shows the experimental results of running HPL on up to 64 processors

or virtual machines. From this figure we see that the performance achievable when

44

G
Fl

op
s

8

6

4

2

0
1 2 4 8 16

Number of VIOLINs
Fig. 4.14. Measured performance of multiple UML VIOLINs concur
rently running on shared hosts.

running HPL in a virtualized VIOLIN environment is about 85% of that running on

the physical machine without virtualization. In addition this trend scales to a cluster

size of at least 64 nodes. This performance penalty is small enough to justify the

value-added features of virtualization for many applications and the scaling trend

shows promise for the use of virtualization in larger environments.

The results in figure 4.14 show that as more virtual environments share avail

able resources each virtual environment receives approximately an equal share of the

resources and the aggregate performance of all virtual environments is affected very

little. We observed an increase in aggregate performance up to 8 virtual environments

sharing the same set of hosts followed by a very small decrease at 16 virtual envi

ronments. These results show that there is little overhead (namely, loss of aggregate

performance) while increasing the number of UML virtual environments up to 16.

45

4.5.2 NEMO3D in Xen-based VIOLIN Environment

In this section we present another set of experimental results from virtual envi

ronments confined to a single cluster. The goal, again, is to demonstrate performance

of VIOLINs compared with that of the underlying physical cluster. The difference,

however, is that this experiment uses the more powerful and efficient Xen 3.0 virtual

machines and the tun/tap interface to VIOLIN. The Xen experiment uses a cluster

consisting of Dell 1425s with 2GB of RAM and two hyper-threaded Xeon proces

sors running at 3.00 GHz2. The application running in each VIOLIN environment

is NEMO3D [95]. The purpose is to find the overhead of using Xen-based VIOLIN

environments on a real MPI application.

Several virtual environment configurations were used:

•	 Configuration 1: One virtual machine per host.

•	 Configuration 2: Two virtual machines per host with ‘locality’. Locality

is defined as placing virtual machines on hosts such that the pairs of virtual

machines sharing a host are ‘neighbors’ within the NEMO3D execution (i.e.

virtual machines that communicate heavily). Neighbors in NEMO3D commu

nicate significantly and placing them on the same hosts takes advantage of the

fast communication within a host. We expect good performance using this al

location because much of the communication will be between virtual machines

share a host which will limit the traffic tunneled through the physical network.

•	 Configuration 3: Two virtual machines per host without ‘locality’. Virtual

machines sharing a host are NOT ‘neighbors’ within the NEMO3D execution.

They take advantage of both processors and always use the slower inter-host

communication. This is the least optimal allocation of two virtual machines to

each host, and increases the load on the VIOLIN switch daemons. We expect

2The cluster used in the previous experiment no longer exists so the Xen experiments are not directly
comparably to the UML HPL experiments.

46

Fig. 4.15. Configuration 1: Performance of VIOLIN vs. non-VIOLIN
environments running NEMO3D. One virtual machine or process per
host.

poor performance using this allocation because all tunneled traffic will be sent

through the physical network.

The total overhead seen in Figure 4.15 (configuration 1) shows that VIOLIN

has an overhead of less than 6%. Compared to the UML VIOLIN environments in

section 4.5.1 we see a significant reduction in overhead with the Xen-based VIOLIN

environments. Many HPC applications can tolerate a 6% overhead considering the

value-added benefits of VIOLIN.

Figures 4.16 (configuration 2) and 4.17 (configuration 3) show that as we increase

the number of virtual machines sharing each host to two, the overhead increases. This

is expected as the software VIOLIN switch daemons incur an increased processing load

in order to handle twice as many virtual network frames. In addition, we know that

47

Fig. 4.16. Configuration 2: Performance of VIOLIN vs. non-VIOLIN
environments running NEMO3D. Two virtual machines or processes
per host with locality.

NEMO3D communicates in a ring pattern. Figure 4.16 shows the overhead of VIOLIN

environments when the pairs of virtual machines assigned to each host are neighbors

in the communication ring. Figure 4.17 shows the overhead of VIOLIN when the

distribution of virtual machines is chosen such that neighbors in the communication

ring are never paired on the same host. In both cases there is increase in overhead

as network traffic is increased. However, comparing Figures 4.16 and 4.17, the

configuration without correct locality has more overhead than the one with locality.

It should be noted here that network and I/O overhead are the largest contributors

to the overhead of Xen and that the Xen developers are focused on increasing I/O

performance. We would expect this overhead to be reduced with future versions of

Xen.

48

Fig. 4.17. Configuration 3: Performance of VIOLIN vs. non-VIOLIN
environments running NEMO3D. Two virtual machines or processes
per host without locality.

4.6 Summary

In this chapter, we advocate the creation of virtual distributed environments in

shared cyberinfrastructures. The goal is to provide applications with their own cus

tomized runtime and networking environments with strong isolation from each other

while sharing the resources in the same infrastructure. We advocate the integration

and extension of virtual machine and virtual network technologies, in order to enable

virtual distributed environments. Our VIOLIN-based middleware system demon

strates the feasibility and promise of deploying virtual environments for computational

applications.. Experimental results urge further development and investigation of vir

tual distributed environments as a useful paradigm for sharing cyberinfrastructures.

49

5. VIRTUAL ENVIRONMENTS FOR INTER-DOMAIN

CLUSTER SHARING

5.1 Introduction

As demonstrated in Chapter 4, VIOLIN virtual environments are isolated, secure,

and customizable environments that use CPU, memory, and network recourses pro

vided by a cyberinfrastructure. Chapter 4 briefly mentions dynamic properties of VI

OLIN virtual environments, such as on-demand virtual machine creation, on-demand

virtual machines destruction, resource scaling, and live migration. The remainder of

this dissertation addresses using the dynamic properties of VIOLIN environments to

adapt to the resource demands of the applications they are running. This chapter

presents techniques that can be used to share traditional computer clusters within

a campus. This chapter extends the concepts presented in the previous chapter by

enabling the VIOLIN middleware to utilize the adaptive properties of virtualization.

The challenge addressed is to use the adaptive abilities of virtualization to increase

performance and efficiency of computer clusters. We target computer clusters due to

their reliance on batch schedulers that contain information about the jobs they are

running. VIOLIN can use job size and runtime information collected from the batch

scheduler to make intelligent adaptation decisions.

5.2 Motivation

To meet the varied computational needs of a large organization it is often nec

essary to maintain multiple, separate computational domains. These domains are

administered independently and will have software, hardware and network environ

ments customized to best serve their organizational unit. The workloads assigned to

50

these clusters will also vary; while one cluster is experiencing a spike in workload,

another may be sitting idle. Clearly this is wasteful of computational resources.

This wastage could be decreased were the organization able to temporarily transfer

resources from an under-utilized domain to a busy one. Once the period of peak

activity has ended, these nodes could be returned to the original domain. we argue

that the throughput of each cluster in an organization could be improved by using

virtualization to enable the borrowing of resources during non-overlapping periods of

heavy usage

Realizing this goal, however, is not a simple task. Each domain will be configured

according to the requirements of its owners. As a result nodes from different domains

may not be able to inter-operate. Machines under different domains may have dif

ferent software packages or user permissions. Worse, one domain may have access to

hardware unavailable on another, or be on a private subnet to which other machines

do not have access.

Further, organizational units may be unwilling to allow potentially unsafe code

to run on their machines, particularly under a privileged account. By lending ma

chines to another cluster, the safety and isolation of its own jobs may be threatened.

However, without root access, it may be impossible for the borrowing cluster’s jobs

to run. All of these challenges must me taken into account for virtual environments

to operate efficiently and safely.

In this chapter, we present VioCluster [28], a novel architecture which allows

dynamic machine trading while avoiding these problems. We use the concept of

VIOLIN virtual environments which allow a cluster to dynamically grow and shrink

based on resource demand. Under this system, the administrative privileges of both

the borrowing and lending clusters are maintained: cluster administrators are able to

configure borrowed machines as required, while not granting root privileges to others

making use of their nodes.

A VioCluster uses both machine and network virtualization techniques to logically

move machines between domains. A borrowed node in a VioCluster take the form of a

51

virtual machine running on top of a host machine located in another physical domain.

This virtual machine remains completely isolated from its host infrastructure, fulfilling

the requirement that administrative access remains exclusively with the node owner.

The configuration of the virtual machine is determined by the administrator of the

borrowing domain, allowing for the ability to install software packages or hardware

as required.

As noted before, users do not generally wish to be encumbered by platform config

uration details. To users and applications, the process of borrowing nodes is transpar

ent. A virtual machines running as part of a VioCluster is practically indistinguishable

from a physical machine running inside the same domain.

The VioCluster system offers several contributions:

•	 Dynamic machine trading between mutually isolated virtual environments. Vio-

Cluster creates software-based network components which seamlessly connect

physical and virtual machines to create isolated virtual clusters. Machines can

be traded dynamically through the on-demand creation, deletion, and configu

ration of virtual machines and network components based on information about

the applications gathered from the batch scheduler.

•	 Dynamic negotiation of machine trades. Each virtual cluster includes a ma

chine broker which interacts with other domains. Requests and offers are made

through these brokers based on workload and configurable lending and borrow

ing policies.

We have built a prototype of the VioCluster system, and have demonstrated its

effectiveness using two independent Portable Batch System (PBS) [76] based job-

execution clusters. Based on job number, size, and duration information collected

from the PBS scheduler, environments adaptation decisions are made. Careful ap

plication of adaptive measures greatly increase job performance and efficiency. Our

performance evaluation results show benefits to both clusters. Most notably they

increase their resource utilization and decrease their job execution times.

52

The remainder of this chapter is organized as follows: Section 5.3 describes the

design of VioCluster, Section 5.4 presents key implementation details, Section 5.5

describes the experiments and presents performance results, and Section 5.6 presents

the chapter’s conclusions.

5.3 Design

There are two key components in the VioCluster system: the ability to create

dynamic virtual clusters and the mechanism by which trades are negotiated. This

section describes the structure of these components, and the manner in which they

interact.

A summary of the terminology used within VioCluster is as follows:

•	 Physical domain: An autonomous set of networked computers managed as

a unit. Physical domains have a single administrator, and support a user-base

performing specific computational activities. For example, a physical domain

belonging to a biology department may be optimally configured for cellular

simulations, while a physical domain belonging to a network research group

may be designed for shorter network-intensive experiments.

•	 Virtual cluster: An autonomous set composed of a hybrid of virtual and phys

ical machines managed as a unit. Machines in a virtual cluster are connected

through a virtual private network, to which both virtual and physical machines

have access. Virtual clusters are able to grow and shrink on demand, and they

appear to the administrator to be identical to physical domains. A one-to-one

mapping exists between physical and virtual clusters; every virtual cluster is

hosted upon a physical domain. A virtual cluster is an extension of a physical

cluster and utilizes virtual machines on remote domains as if they were local.

•	 Machine broker: A software agent that represents a virtual cluster when

negotiating trade agreements with other virtual clusters. A machine broker

53

consists of a borrowing policy which determines under which circumstances it

will attempt to obtain more machines, and a lending policy which governs when

it is willing to let another virtual cluster make use of machines within its physical

domain. Both policies are defined by the domain’s administrator.

Policy
Borrowing Lending

Policy Policy
BorrowingLending

Policy

Machine BrokerMachine Broker

Physical Domain A Physical Domain B

Virtual Domain A Virtual Domain B

(a) Virtual cluster A borrowing nodes from virtual

cluster B in accordance with A’s borrowing policy

and B’s lending policy

Policy
BorrowingLending

Policy
Lending
Policy Policy

Borrowing

Machine Broker Machine Broker

Physical Domain BPhysical Domain A

Virtual Domain A Virtual Domain B

(b) Virtual cluster B borrowing nodes from vir

tual cluster A in accordance with A’s lending pol

icy and B’s borrowing policy

Fig. 5.1. Two virtual clusters trading resources. Virtual clusters
fluidly trade machines in reaction to changes in workload.

Figure 5.1 shows an example of VioCluster consisting of two physical domains,

A and B. There are virtual domains associated with each physical domain. Both

physical domains consist of 36 machines, each of which initially belongs to its respec

tive virtual cluster. These clusters could be imagined to belong to two university

departments, or to two divisions within a company.

Over time, the workload on each virtual cluster varies as jobs are submitted by

users. In Figure 5.1(a), virtual cluster A is experiencing a period of heavy demand,

while virtual cluster B is under-utilized. After negotiations between the borrowing

54

and lending policies of the respective brokers, virtual cluster A is able to temporarily

borrow half of virtual cluster B’s nodes. In Figure 5.1(b), the workload patterns are

reversed, and virtual cluster B is able to use nodes located in physical domain A.

When a machine belonging to physical domain B is borrowed by virtual cluster A,

it is used to run a virtual machine. This virtual machine is owned by the administrator

of virtual cluster A, and will match the configuration of the machines in virtual cluster

A. Virtual network connections will be made, connecting the new virtual machine to

the nodes of virtual cluster A.

The trading process is authorized according to the borrowing and lending policies

within the machine brokers of each domain. These policies are defined by the domain

administrator, and allow complete control over the access to a domain’s resources.

Without an agreement between the brokers, the trade cannot occur.

5.3.1 Adaptive Virtual Clusters

The use of virtualization is key within VioCluster. Through the use of virtual

machines, many of the configuration and access problems inherent in machine trading

can be avoided. Additionally, virtual networking allows physical and virtual machines

to communicate transparently, making network administration no more difficult than

for a single physical cluster.

Machine Virtualization

When transferring physical machines between domains without the aid of virtu

alization, many problems may be encountered. The set of user and group accounts

on clusters may be different, leading to access problems when running jobs. Nec

essary packages and services may not be installed, and superuser permissions may

be required to customize a machine’s configuration. Additionally, once a borrowed

machine is no longer necessary, it must be restored to its original state before it can

be used again in its original context.

55

By using virtualization, VioCluster bypass all of these problems. When a physical

node is lent to another virtual cluster, all that is required is a virtual machine process

run by an unprivileged user. The virtual machine is created using a disk image

supplied by the borrowing cluster. The user accounts, services and software services

on this image can be configured identically to those on the virtual cluster’s physical

machines. And when the machine is ready to be returned to its original cluster, all

that is required to restore its state is the termination of the virtual machine.

Network Virtualization

Networking between nodes in a virtual cluster is made possible by the use of

the VIOLIN networking mechanisms. Traditional VIOLIN creates a virtual layer

2 network overlay that tunnels network traffic end-to-end between remote virtual

machines. The overlay appears to these machines to be an isolated physical Ethernet

LAN. VioCluster, uses a the core features of the VIOLIN distributed switch, however,

it uses a hybrid of virtual machines as well as physical machines in each VIOLIN

environment. Within VioCluster, virtual and physical machines are able to exchange

network data transparently.

The physical host A connects to the kernel-space virtual NIC, or tun/tap device.

Data sent to this device via standard system calls are forwarded to the virtual switch

daemons on host B, where they are passed on to the virtual machines. Communi

cation from B to A is symmetrical, with the exception that the virtual NIC on B is

located in the kernel space of the virtual, rather than the physical, machine.

The effect of the hybrid approach to using a VIOLIN network overlay is that

each virtual cluster has a uniform and private IP address space. Virtual machines

running on borrowed nodes can be assigned IP addresses in the same range as the

physical machines belonging to the environment. Maintaining this illusion simplifies

the administration process and minimizes IP accounting. Additionally, because VI

56

OLIN virtualizes addresses at layer-2, arbitrary IP address spaces can be designated

to virtual clusters without the threat of conflicts with the host network.

In effect, the hybrid VIOLIN environment extends the LAN. Virtual machines

participating in a virtual cluster have the same access to domain services as nodes in

a physical domain. For example, all nodes on a virtual cluster may have equal access

to NFS-mounted directories and LDAP account information.

The machine and network virtualization techniques used in VioCluster allows

the isolation and safety required to make machine trading a viable proposition for

large organizations. Fully customizable machine configurations running inside isolated

virtual machines and private networks allow virtual clusters that are borrowing nodes

the flexibility to perform their work, and ensures that physical domains that are

lending nodes are not forced to compromise their security.

5.3.2 Machine Brokering

The second major component of the VioCluster system is the mechanism by which

machine exchanges are negotiated. Each domain has a software agent called a machine

broker which has the responsibility of determining whether trades should occur. The

VioCluster system supplies the means by which physical domain administrators may

define lending and borrowing policies. Wise decisions made in these policies can

lead to large benefits in overall system throughput, while poor choices can degrade

performance.

The policies used by a machine broker must be designed with several factors in

mind. Observations of the current and past workload levels in the domain may al

low predictions of future demand. For example, a cluster may see predictable spikes

in usage during business hours, with less demand at night. In that case, a sensible

set of policies might take advantage of this usage pattern and borrow during the

day and lend at night. Additionally, knowledge of the applications run on a domain

may influence policy decisions. For example, if a cluster is used primarily for short,

57

network-intensive experiments, borrowing nodes may lead to unacceptable communi

cation overheads.

What follows are several attributes that must be specified in the policies for ne

gotiating machine trades:

•	 Reclamation: A policy must determine when a machine will be returned to its

home domain. One reclamation policy may be to lend a machine for a specified

lease period. Once this lease period has expired, the node must be returned.

Alternately, a lending domain may wait until a remote job has completed, or

reserve the right to reclaim machines gradually as its demand increases.

Another possible reclamation policy would be to lend a machine for an unlim

ited period, on the understanding that it will be returned when required by the

owner. While this offers flexibility to the lending domain, it requires the bor

rower to be able to recover from the sudden loss of a machine. If the borrowing

virtual cluster cannot handle this situation, its borrowing policy should forbid

such trades.

•	 Machine properties: The characteristics of the machine to be borrowed will

have an impact on the policies of the domains involved in a trade. The machine

broker must ensure that any machine lent to another virtual cluster has the pro

cessing power, memory and disk space required to run a virtual machine. Since

the granularity at which resources are assigned is at the machine level, some

properties, such as CPU power and memory, will remain constant. However

others, such as available disk space, may change and must be monitored by the

machine broker. Machines not capable of running a virtual machine suitable

for the tasks required may be rejected by the borrowing machine broker.

•	 Location: For some applications, particularly those with high levels of com

munication between nodes, the physical location of machines may affect perfor

mance. Bandwidth and latency within a virtual environment may be affected

by the location of communicating nodes. A borrowing policy should be aware

58

of the communication requirements of its applications. If little communication

is required, it may be acceptable to borrow nodes with high-latency or nodes

with low-bandwidth connections to the remainder of the machines. Alternately,

if the applications run on a virtual cluster tend to be tightly-coupled with high

levels of network traffic, it may be best to wait until nodes can be co-located

on a single physical domain.

5.4 Implementation

We have implemented a prototype VioCluster system that uses a domain virtu

alization mechanism based on UML and VIOLIN networking, which is governed by

simple but effective machine brokering policies.

As an example application scenario, our prototype configures virtual environments

as clusters managed by a PBS job scheduler. Within each virtual cluster one physical

machine is designated the PBS master node and the remainder of the machines are

configured as PBS compute nodes. As workload changes, machines are added and

removed from the virtual cluster and the PBS master is re-configured to allocate jobs

to all machines in the virtual cluster. It is important to note that batch scheduling

is not the focus of our work and PBS is only used as a sample application.

5.4.1 Domain Virtualization Implementation

User-Mode Linux and VIOLIN environments are well suited for VioCluster’s ma

chine and network virtualization techniques because of their user level execution

needed for isolation. In addition, VIOLIN’s networking abilities that support both

virtual and physical machines fit VioCluster’s unique needs.

Virtual Network Configuration. In our prototype, we define a virtual cluster

by a Hybrid VIOLIN network. The machines connected to each virtual cluster’s

virtual network are a mixture of the real machines of its physical domain and the

virtual machines created on nodes borrowed from other physical domains.

59

Each physical machine has two NICs: one connected to the physical LAN (eth0),

and the other to the VIOLIN network (tap0). Remote domains access the host via a

private non-routable IP address associated with tap0. Depending on the configuration

of the virtual NIC, virtual machines can have Internet routable IP addresses or private

non-routable IP addresses through which they can access the Internet through a NAT

router. The routing tables of the physical machine must be aware of the virtual

network configuration, enabling traffic destined for the physical machine to be sent to

eth0 while virtual machine traffic is forwarded to tap0. For this reason, administrative

privileges are needed on the physical domain to create and manage the tun/tap device.

Virtual Machine Configuration. VioCluster dynamically creates and destroys

UML virtual machines at the request of the machine brokers. The virtual machines

are configured by the borrowing domain to fulfill the needs of its applications. In

the prototype system, all virtual environments use a modified Fedora Core I root file

system. This includes all libraries, packages and applications (such as MPI and PBS)

required to function like the physical machines.

Since the virtual machines are nearly-identical PBS compute nodes, small Copy

On-Write (COW) files can be used to capture the differences in their disk images.

These COW files share a common root image and store only the minor differences

between images, such as network settings. Upon creation, a COW system image

represents an individual virtual machine and can be transferred to any host for in

stantiation.

The prototype system uses a pool of pre-built COW file systems. However, it

would also be possible to create them on-demand.

Virtual Machine Instantiation. The creation of a UML virtual machine re

quires only user-level access to the host machine. The root file system must be

transferred, the virtual switch daemon started, and the virtual machine booted. To

this end, each physical domain maintains a user account for each peer virtual cluster

that may borrow machines.

60

The size of the root filesystem used in the prototype is approximately 300MB

when compressed. Transferring this across the network whenever a virtual machine

is required would be prohibitive, so the base system is copied to each potential host

before any virtual machine is created. As a result, only the small (approximately

200KB) COW file must be transferred on demand.

Once the root image is transferred, the virtual switch daemon is started via an

ssh connection. The daemon contacts the peer daemons on the other hosts and joins

the distributed switch. Finally, the virtual machine is booted via ssh, and connects

through the distributed virtual switch.

Virtual Machine Removal. Before a virtual machine can be removed from

a virtual cluster, it must be halted. This can be achieved by either killing the vir

tual machine process or by using the shutdown command inside the virtual machine.

Killing the process is faster, but results in a corrupted COW file. The common root

disk image is read-only, however, so it is unaffected.

The state maintained on the virtual machine’s COW files is not important, since

the virtual machines are used as PBS compute nodes. As such, when we need to

create a new virtual machine, we can simply copy the original COW file from the

virtual environment administrator. This means that it is not necessary to properly

shut down virtual machines, making the halting process faster.

5.4.2 Machine Brokering Implementation

Virtual clusters share resources according to contracts agreed upon by their ma

chine brokers. Trades are permitted or denied in accordance with the brokers policies,

based on virtual cluster demand levels. Virtual clusters experiencing heavy workloads

propose trade offers, while those with spare capacity advertise the capabilities of the

machines they have available. The proposal will be accepted only if the trade is

acceptable to the policies of both brokers.

�

61

Our implementation of VioCluster uses PBS to schedule jobs. It should be noted

that our intent is not to study job scheduling; we use PBS simply to gather information

about environmental demand and to demonstrate VioCluster’s ability to operate in a

dynamic environment. Applications running on virtual clusters must be able to handle

changes in available machines. PBS, and most job schedulers, can adapt to these

changes and are excellent ways to use the dynamic resources of virtual clusters. When

a machine is added or removed from the virtual cluster the PBS master daemon is

re-configured to reflect the change. One benefit of using a job scheduler is its inherent

resilience to node failure. Nodes can be preempted at any time without effecting the

correctness of the applications. Jobs will be re-run by the scheduler with the only

effect being on performance. To reduce the effect of preemption on performance, the

PBS scheduler is aware of the heterogeneity of the virtual cluster and never schedules

jobs on a mixture of virtual and physical machines. The application’s ability to adapt

is particularly important in our case, since virtual machines are created and destroyed

on demand.

Demand Heuristic. In general, there is no requirement for how machine brokers

calculate demand. For our prototype, we use the PBS scheduler’s work queue as a

measure of the demand on the domain. Each virtual cluster a uses a PBS scheduler

that multiplexes the set of physical machines Pa and the set of virtual machines Va.

The machine broker queries the PBS scheduler for the number and size of jobs j in

the queue Qa. The result is used to assess the current demand da, defined as the

number of nodes required to satisfy all jobs j ∈ Qa.

da = jnodes required

j∈Qa

Borrowing and Lending. Based on the calculated demand da and current

number of machines lent |La| or borrowed |Va|, the machine broker calculates the

number of machines needed na.

na = da − [(|Pa| − |La|) + |Va|]

62

The value of na determines if it is desirable to lend, borrow, or return previously

borrowed machines. If na is positive, virtual environment a needs to acquire na nodes;

if it is negative then virtual cluster a can lend or return |na| nodes; and if it is zero

virtual cluster a has exactly enough nodes to satisfy its own demand.

The lending policy implemented in our prototype allows up to half of the domain’s

idle nodes to be borrowed by other clusters. This allows substantial resources to be

offered to other domains in quiet periods, while guarding against resource shortages

during sudden spikes in demand.

Reclamation Technique. It is sometimes necessary for a virtual environment

to recover machines from other clusters, due to sudden increases in demand. In these

cases, machines are returned according to the reclamation policy specified in the

lending contract.

In our prototype, machines are returned immediately upon request from the lend

ing domain. Any jobs running on these machines will be terminated, and must restart.

This recovery process is managed by the PBS scheduler. Clearly, such preemption

has a negative impact on the throughput of the system, and steps must be taken to

minimize the cost of this interference. When possible, our scheduler runs jobs only

on physical machines belonging to the virtual cluster. Additionally, to minimize the

overhead of preemption and improve the network locality of a job, the scheduler never

schedules jobs on a mix of virtual and physical machines.

As an alternative, a gradual reclamation policy may be implemented. Future work

on VioCluster will study policy interactions, most notably in the area of machine

reclamation techniques.

5.5 Experiments

In this section we present several experiments that show the feasibility of VioClus

ter1. First we measure several individual VioCluster system properties, then we show

1Special thanks goes to Phil MaGachey who coded much of the VioCluster simulator and helped
run the simulations.

63

the results of a large-scale VioCluster simulation based on the prototype’s measured

behavior, using real workload traces from production clusters.

5.5.1 System Prototype Measurements

For the prototype measurements we used two clusters on the Purdue University

campus. One cluster is administered by the nanoHUB and the other cluster is ad

ministered by our laboratory in the Computer Science department. The nanoHUB

cluster is composed of dual processor 3.06GHz Intel Xeon machines with 2GB of

RAM connected by 100Mb/s Ethernet. The Computer Science cluster is composed

of 2.6GHz Intel Xeon machines with 2GB RAM connected the 100Mb/s Ethernet.

The connection between the clusters is through Purdue’s campus network. Although

the UML-based experiments provided good results, our continuing work with Xen

promises significantly increased performance.

Metric Value

Execution Slowdown on virtual machine

Virtual Machine Boot Time

Virtual Machine Halt Time

VIOLIN Bandwidth Penalty

VIOLIN Latency Penalty

15%

40 seconds

16 seconds

5-15%

5-10%

Bandwidth and Latency. From our previous work [15] we have observed that

VIOLIN networks affect communication bandwidth and latency. VIOLIN decreases

the bandwidth between machines by 5-15% and increases the latency by 5-10%.

Computation Overhead. We have found that computation and communication

intensive workloads, such as High Performance Linpack (HPL), run 15% slower on

virtual machines connected to a VIOLIN network [19]. Less communication intensive

applications would experience a smaller decrease in performance.

64

Image Transfer, Boot, and Halt Times. Aside from runtime overhead, virtual

machines require time to be setup and destroyed. By using small COW filesystems

and transferring the base system images ahead of time, we can transfer the system

image to a physical host in under a second. This short transfer time means that

the virtual machine boot time dominates the creation process. We measured boot

times for two virtual machine images: the first being a modified Fedora Core 1 server

installation, and the second a minimal RedHat 8.0 system. The larger image took 40

seconds to boot on the our cluster, while the smaller took 5 seconds. Halt times were

found to be 16 seconds and 3 seconds respectively.

5.5.2 Simulation

Simulation Setup. Evaluating VioCluster on real workloads was not practical,

due to the difficulty of scaling workloads that originally took months or years to run

in a reasonable period. We therefore developed a simulator that not only enables us

to accurately evaluate the system on large workload traces, but also to simulate far

larger clusters than we have available.

Our simulation takes into account our measured virtual machine transfer, boot

and halt times, as well as the computation and communication overheads of VIOLIN.

The machine brokers use the preemptive trading policy described in section 5.4.2.

Each broker calculates the virtual cluster’s demand hourly, and then takes action

based on the results.

The virtual cluster’s size and usage pattern is created using traces obtained from

production machines. The two traces used are publicly available (CTC and OSC

from [96]) and are composed of a 512 CPU machine at The Cornell Theory Center

(CTC) and a 178 CPU machine at Ohio Supercomputing Center (OSC). What follows

is the results of the simulation. By using our machine trading mechanism and policy

the perceived processing power of both clusters is improved.

65

Demand on Virtual Domain
OSC Cluster

25000

20000

15000

10000

5000

0
0 50 100 150 200 250Day

With Sharing
Without Sharing

D
em

an
d

CTC Cluster
10000

8000

6000

0

2000

4000

0 50 100 150 200
Day

Fig. 5.2. Demand on the virtual cluster over time.

Observed Demand. Figure 5.2 shows the demand on each of two virtual clusters

over time with and without sharing enabled. The demand without sharing is what

would be observed if the load patterns were submitted to independent clusters. It

can be seen that the OSC cluster has two distinct spikes of very high demand and

the CTC cluster has many spikes that are relatively small.

When the clusters are run with sharing enabled the virtual clusters are able to

handle demand more efficiently. With sharing, the large spikes of the OSC cluster

are significantly reduced while the CTC cluster is relatively unaffected.

Machine Borrowing. Figure 5.3 shows the machines traded between domains

over time. Positive numbers indicate that the OSC virtual cluster is borrowing from

CTC, while negative numbers indicate CTC borrowing from OSC. A correspondence

250

66

Number of Borrowed Nodes

By OSC Cluster From CTC Cluster

Bo
rro

w
ed

 N
od

es

300

200

100

0

-100
0 50 100 150 200 250

Day

Fig. 5.3. Number of borrowed nodes.

can be seen between the areas of high demand in the OSC domain in Figure 5.2

and the number of machines borrowed from CTC. The high frequency of spikes in

Figure 5.3 could be reduced by either a more conservative lending strategy or a more

gradual reclamation policy.

Job Completion Times. Figures 5.4, 5.5, and 5.6 show the responsiveness of

the system from a user’s perspective. They show the average time between a job’s

submission to the cluster’s queue and its completion both with and without sharing.

Each figure depicts the interaction of cluster workloads with different qualitative

properties.

Figure 5.4 shows the interaction between two different workload patterns. The

OSC cluster has two large spikes of high demand, while the CTC cluster has a steady

67

Average Job Completion Time

80000

60000

40000

20000

0

Fig. 5.4. Average time from job submission to job completion of
qualitatively different workloads.

pattern of small spikes. From the graph, we see that both clusters benefit from

sharing, with the OSC cluster almost completely eliminating its spikes.

The reduction in completion time during peak demand is due to a reduction of

the amount of time the jobs wait in the queue. Referring back to Figure 5.3, we see

that during periods of high workload, the OSC virtual cluster is often able to borrow

a significant portion of the CTC virtual cluster’s nodes. The borrowed nodes allow

the OSC virtual cluster to run more jobs at once reducing the average completion

time drastically.

Figure 5.4 shows occasional points where completion time increases when sharing

is enabled. This is caused by jobs being preempted when a physical machine was

0 50 100 150 200 250Day
0

2e+05

4e+05

6e+05

8e+05
Ti

m
e

(s
ec

on
ds

)
With Sharing
Without Sharing

OSC Cluster

CTC Cluster

0 50 100 150 200
Day

250

68

0 50 100 150Day
0

2e+05

4e+05

6e+05

8e+05
Ti

m
e

(s
ec

on
ds

)
With Sharing
Without Sharing

Average Job Completion Time
Begining of OSC Cluster

End of OSC Cluster
8e+05

6e+05

4e+05

2e+05

0

Fig. 5.5. Average time from job submission to job completion of high
demand workloads.

reclaimed, and subsequently restarted. Techniques such as check-pointing, virtual

machine migration, or complementary advanced scheduling algorithms designed for

dynamic systems, can reduce or eliminate this problem.

In Figure 5.5, two traces with corresponding spikes in demand were created by

extracting sections of the OSC cluster trace. From the figure we see that if one of

the virtual environments has a spike at the same time the other does not, the spike

is largely mitigated through machine borrowing. On the other hand, if both virtual

clusters experience a spike at the same time, very little improvement is seen, although,

neither cluster experiences a reduction in performance.

0 50 100 150
Day

69

Average Job Completion Time
Begining of CTC Cluster

1e+05

80000

60000

40000

20000

0

With Sharing
Without Sharing

0 50 100 150Day
End of CTC Cluster

Ti
m

e
(s

ec
on

ds
)

1e+05

80000

60000

40000

20000

0

Fig. 5.6. Average time from job submission to job completion of low
demand workloads.

Figure 5.6, created from sections of the CTC trace, shows the opposite situation.

Here neither cluster experiences a large spike in demand, and as a result, neither

benefits greatly from sharing. However, again, neither shows a performance decrease.

From theses results we can conclude that by sharing computational resources

through VioCluster great gains in the user’s perceived performance are possible. As

expected, clusters that are experiencing extreme spikes in workload benefit most from

sharing. Unexpectedly, their gains do not penalize the donating clusters. In addition,

these gains are the product of a relatively simple trading policy which demonstrates

the the effectiveness of the system and the potential of more advanced policies.

0 50 100 150
Day

70

5.6 Conclusion

We have presented the design and implementation of VioCluster, a virtualization

based computational resource sharing platform based on VIOLIN. Using VioClus

ter, independently administered computation domains can lend and borrow nodes,

increase utilization, and reduce idle node time. We have implemented a prototype

VioCluster system and have created a large scale simulation based on real prototype

parameters. The results of the simulation using real workload traces show that by

using relatively simple machine trading policies VioCluster leads to potentially large

increases in the perceived computational power of administratively autonomous clus

ters. VioCluster proves that the VIOLIN middleware can enable computer clusters

to provide better performance to their users.

71

6. AUTONOMIC VIRTUAL ENVIRONMENTS FOR

SHARED CYBERINFRASTRUCTURE

6.1 Introduction

We have seen the emergence of shared distributed cyberinfrastructures that feder

ate, allocate, and manage heterogeneous resources across multiple network domains.

The growth of these infrastructures has led to the availability of unprecedented com

putational power to a large community of users. Meanwhile, virtual machine tech

nology [6, 7, 9] has been increasingly adopted on top of such shared physical infras

tructures [11], and has greatly elevated customization, isolation, and administrator

privilege for users running applications inside individual virtual machines.

The previous chapters have proposed techniques that enable the creation of virtual

distributed computation environments on top of a shared distributed infrastructure

and take the initial steps toward dynamic virtual environments. Thus far we have

discussed VIOLIN environments and how they are composed of virtual machines

connected by a virtual network, which provides a layer separating the ownership,

configuration, and administration of the VIOLIN environment from those of the un

derlying infrastructure. The goal of this dissertation is to create mutually isolated

autonomic VIOLIN environments that can be created for different users as their “own”

private distributed computation environment bearing the same look and feel of cus

tomized physical environments with administrative privilege (e.g., their own private

cluster). Within VIOLIN, the user is able to execute and interact with unmodified

parallel/distributed applications, and can expect strong confinement of potentially

untrusted applications, giving them easy to use access to the vast cyberinfrastruc

ture.

72

It is possible to realize VIOLIN environments as integrated, autonomic entities

that dynamically adapt and relocate themselves for better performance of the appli

cations running inside. This all software virtualization of distributed computation

environments presents a unique opportunity to advance the possibilities of autonomic

computing [97, 98]. The autonomic adaptation of virtual computation environments

is driven by two main factors: (1) the dynamic, heterogeneous availability of infras

tructure resources and (2) the dynamic resource needs of the applications running

inside VIOLIN environments. Dynamic resource availability may cause the VIOLIN

environment to relocate its virtual machines to new physical hosts when current phys

ical hosts experience increased workloads. At the same time, dynamic applications

may require different amounts of resources throughout their execution. The changing

requirements can trigger the VIOLIN environment to adapt its resource capacity in re

sponse to the application’s needs. Furthermore, the autonomic adaptation (including

relocation) of the virtual computation environment is transparent to the application

and the user, giving the latter the illusion of a well-provisioned, private, networked

run-time environment.

To realize the vision of autonomic virtual environments we must address significant

challenges. First, we must provide the mechanisms for application-transparent virtual

environment adaptation. In order to provide a consistent environment, adaptation

must occur without affecting the application or the user. Currently, work has been

done to enable resource reallocation and migration within a local-area network [24]

and most current machine virtualization platforms support migration. However, we

still need to determine how to migrate virtual machines across a multi-domain en

vironment without affecting the application. The solution must keep the virtual

machine alive throughout the migration. Computation must continue and network

connections must remain open. The necessary cross-domain migration facility requires

two features not yet provided by current virtualization techniques. First, virtual ma

chines need to retain the same IP addresses and remain accessible through the network

when physical routers will not know where they were migrated. Second, cross-domain

73

migration cannot rely on NFS to maintain a consistent view of the large virtual ma

chine image files. These files must be transferred quickly across the network. Clearly,

current solutions are not yet adequate for multi-domain infrastructures. VIOLIN vir

tual environments extend the local network across domain boundaries avoiding these

limitations.

The second challenge is to define allocation policies. Our goal is to move beyond

the limits of static allocation and provide autonomic environments that have the

intelligence to scale resource allocations without user intervention. As such, we need

to determine when a virtual machine needs more CPU, which virtual machine should

be migrated, and where to migrate the virtual machine when a host can no longer

support the memory demands of its guests. Consequently, we need to determine if the

best destination is that which allows for quick migration, or that which, irrespective

of migration speed, can ensure adequate resources.

The main contribution of this chapter is the introduction and analysis of auto

nomic adaptation capabilities of VIOLIN environments. These environments retain

the customization and isolation properties of existing static VIOLIN environments,

however, they may be migrated to another host domain during run-time. In this way

we can make efficient use of available resources across multiple domains.

We have built a prototype adaptive VIOLIN system using Xen virtual machines

and have deployed it over the nanoHUB infrastructure. The evaluation of the system

shows that we are able to provide increased performance to several concurrently run

ning virtual environments. To the best of our knowledge, this is the first demonstra

tion of an autonomic adaptive virtual environment, using live application-transparent

migration with real-world parallel applications.

6.2 Autonomic Virtual Environments

In the VIOLIN system, each user is presented with an isolated virtual computation

environment of virtual machines connected by a virtual network. From the user’s

74

Fig. 6.1. Two VIOLIN environments sharing multiple hosts. Dae
mons on each host assist the Adaptation Manager in monitoring and
controlling resource allocation.

point of view, a virtual computation environment is a private cluster of machines

dedicated to that user. The user does not know where the virtual machines reside.

On the other hand, the infrastructure sees the environments as dynamic entities that

can move through the infrastructure utilizing as much or as little resources as needed.

The components of the VIOLIN system can be seen in Figure 6.1 and are described

below:

•	 Enabling Mechanisms: The enabling mechanisms include the VIOLIN vir

tual environments as well as the monitoring daemon running on each physical

host. The VIOLIN environments provide an interface to the user and applica

tions, while the monitoring daemons monitor the CPU and memory on each

host by querying the local virtual machine monitor (VMM) for resource avail

ability and utilization levels. In addition, the monitors can manipulate the

allocation of resources to local virtual machines.

75

•	 Adaptation Manager: The adaptation manager queries the monitoring dae

mons to form a global view of all host resources available as well as the utiliza

tion level of the allocated resources. With this information, the adaptation man

ager can dictate resource reallocation including fine-grained per-host CPU and

memory adjustments, as well as coarse-grained migration of virtual machines

or whole virtual environments without any user or administrator involvement.

6.2.1 Enabling Mechanisms

Local Adaptation Mechanism. The adaptation manager controls all virtual

machines through the monitoring daemons. VIOLIN environments use both memory

ballooning and weighted CPU scheduling to achieve fine-grained control over per-host

memory and CPU allocation. Both VMware [9] and Xen [6] enable memory ballooning

which allows the VMM to change the amount of memory allocated to each virtual

machine while the machine is running. At run-time, the adaptation manager may

decide to modify the memory footprint and percentage of CPU allocated through the

monitoring daemons.

Multi-domain Adaptation Mechanism. A key contribution of VIOLIN to

autonomic adaptation is the ability to reallocate resources to virtual machines by

migrating them live across networks. Live virtual machine migration is the transfer

of a virtual machine from one host to another without pausing the virtual machine or

checkpointing the applications running within the virtual machine. One of the major

challenges of live migration is maintaining any network connections the virtual ma

chine may have open. Modern machine virtualization mechanisms provide live virtual

machine migration within layer-2 networks [24]. VIOLIN lifts this limitation by creat

ing a virtual layer-2 network that tunnels network traffic end-to-end between remote

virtual machines. The virtual network appears to be an isolated physical Ethernet

LAN through which migration is possible. As the virtual machines move through the

infrastructure, they will remain connected to their original virtual network.

76

6.2.2 Adaptation Manager

The adaptation manager is the intelligent agent, or “puppeteer” acting on behalf

of the users and administrators and making autonomic reallocation decisions. It is

appointed two tasks: to compile a global system-view of the available resources and

to use this view to transparently adapt the allocation of global resources to virtual

environments.

Infrastructure Resource Monitoring

The adaptation manager monitors the entire infrastructure by querying the moni

toring daemons on each host. Via the monitors, it maintains knowledge of all available

hosts in addition to the demands of applications running within the VIOLIN envi

ronments. Over time both the resources available in the shared infrastructure and

the VIOLIN environment’s utilization of resources will change. Hosts may be added

or removed and VIOLIN environments can be created, destroyed, or enter periods of

high or low CPU, memory, or network usage.

Resource Reallocation Policy

The adaptation manager’s reallocation policy is based on observed host resource

availability and virtual machine resource utilization. It uses a heuristic that aims

to dynamically migrate overloaded virtual machines between hosts within each do

main and, if that is not possible, migrate overloaded VIOLIN environments between

domains in the infrastructure. We do not attempt to find the optimal allocation of

resources to virtual machines. Instead, we aim at incrementally increasing the per

formance of the system while minimizing the number of virtual machine migrations

and the resulting overhead.

Intuitively, the policy determines a desired resource level for each virtual machine

and attempts to assign that amount of resources to a virtual machine. If adequate

77

resources cannot be obtained locally, the virtual machine may be migrated to another

host or the whole VIOLIN environment may be migrated to another domain.

It may be that there are not enough resources in the entire infrastructure to

supply each virtual machine with its desired resource level. In this case, we would

like to achieve a weighted balance of load on each domain and host (more powerful

hosts/domains will take on more load). Conveniently, a weighted balance of load on

an under-utilized system will assure that all (or most) virtual machines will have been

allocated their desired resource level. With this in mind, our reallocation policy is

designed to balance the load between hosts and domains.

The desired resource level of each virtual machine is determined by the amount

of allocated CPU and memory as well as the amount of resources that are actually

being utilized. We wish to keep each virtual machine’s resource utilization within a

certain (predefined and configurable) range. A utilization level outside of the expected

range will cause the adaptation manager to increase or decrease the virtual machine’s

resource allocation.

The heuristic finds over- and under-utilized virtual machines and attempts to ad

just their allocations using first the local host’s resources. If the local host cannot

support all of its currently hosted virtual machines, an attempt is made to find an

other host within the domain to which one or more virtual machines can be migrated.

The heuristic first looks at the hosts within the domain that have the lowest utiliza

tion level. If no host can support the over-utilized virtual machine, the whole domain

is considered overloaded, and an attempt is made to find another domain which can

support the resource needs of one or more of the overloaded domain’s VIOLIN envi

ronments. If a destination domain is found, VIOLIN environments will be migrated

live to hosts in that domain.

http:level.In

78

Resource Demand Prediction

A fundamental part of the adaption manager’s responsibilities rely on its ability

to predict the amount of resources each virtual environment and virtual machine will

need to utilize in the near-future. Predicting the future is difficult in general and is

made even tougher in this scenario because we have no knowledge of the applications

that are creating the demand. In light of this restriction, the adaptation managers

use only historic data to predict future resource demand.

The goal is to assign a desired resource level for each virtual machine in the

system. In order to find this level, we use weighted moving average time series

analysis [99]. For each virtual machine we observe and record over time a of series of

a measurements of the amount of each resource that is utilized. For each resource r, we

use the previous n recorded measurements at any given point in time m. The recorded

resource utilization measurements form the series rm, rm−1, ..., rm−n+2, rm−n+1. The

predicted usage is defined as:

nrm + (n − 1)rm−1 + ... + 2rm−n+2 + rm−n+1
PUm = (6.1)

n + (n − 1) + ... + 2 + 1

The predicted usage gives a prediction of the amount of a resource that a given

virtual machine will use in the next time step. However, this prediction is only

accurate if the virtual machine is using less than its allocated amount of resources.

For example, if a virtual machine has been allocated 10 units of CPU and is only

using 4 units, we know that the virtual machine can utilize exactly 4 units of CPU.

However, if the same virtual machine is using all 10 units of CPU we can not know

how much CPU it may use in the future. We only know that it can use at least 10

units.

We do not directly apply predicted usage to desired resource level. Instead, we

over-allocate resources to virtual machines by a user-defined factor α. For most

virtual machines desired resource level is defined to be:

79

DRLm = PUm ∗ α (6.2)

We recognize resource utilizations that are at or near 100% have a greater chance

of being able to utilize far more resources than that PUm ∗ α. To address this,

we provide a second function used to determine the desired resource level of virtual

machines using high percentages of their allocated resources. We first define β to be

the desired over-allocation of a 100% utilized virtual machines. Then we augment

our definition of desired resource level to be:

β − α
DRLm = PUm ∗ (∗ (PUm − 1) + β) (6.3)

1 − α

Having two functions, one for high utilizations and one for low utilizations could

result in small changes in utilization leading to large changes in predicted demand.

For this reason, the resulting functions must be continuous at PUm = α. Combining

the continuous Equations 6.2 and 6.3 the desired resource level is defined to be:

⎧

⎪

⎪ 1
⎪
⎪
⎨PUm ∗ α if PUm < .

αDRLm = (6.4)
⎪
⎪ β − α 1
⎪
⎪
⎩PUm ∗ (∗ (PUm − 1) + β) if PUm ≥ .

1 − α α

As an example, if we desire to have each virtual machine utilizing 75% of its al

location and a 100% utilized virtual machine to desire twice its currently allocated

resources, we would set α = 1/0.75 and β = 2. In the example, the allocation of

resources would be done using the desired resource levels determined by the function

depicted Equation 6.4. All virtual machines with utilizations less than 75% are al

located resources such that their utilization will be 75% while all virtual machines

with allocations grater than 75% are assigned allocations along the linear function

between 75% and 200%.

Its is important that this desired resource level be assigned such that small changes

in utilization do not create large changes in desired resource level. For example, if

80

our functions were not equal at utilizations of 1/α, a small increase in utilization

that moves the utilization from less than 1/α to greater than 1/α would create larger

changes in the desired resource level. In turn, small oscillations of utilization from

less than 1/α to greater than 1/α would create large oscillations in desired resource

level potentially causing larger oscillations in environment adaptation.

Adaptation Model

The model used to develop adaptation policies is based on knowledge gathered

from the host-level monitoring daemons. At any given time the adaptation model

knows two things: (1) the current mapping of virtual machines to hosts, and (2) the

desired resource level of each virtual machine as calculated using the method in the

previous section. With this knowledge the adaptation manager is tasked with finding

the best allocation of resources to virtual machines.

We assume that we are given a set of domains D = (d1, d2, ..., dn) with capacities

ci, a set of virtual environments V = (v1, v2, ..., vm) with desired resource level rj, and

a current mapping of virtual environments to domains M(vi) → dj.

For each virtual machine we define TargetUtilization and DomainUtilization to

be:

 m
i=1 ri

TargetUtilization = (6.5) n
j=1 cj

The TargetUtilization is the ratio of the total demand on the entire system to the

capacity of the system. A TargetUtilization that is less than one (1) occurs when

the system has excess capacity while greater than one (1) implies an over allocated

system.

Similarly, the DomainUtilization is the ratio of the demand on a specific domain

to the capacity of that domain.

riM(vi)=djDomainUtilization(j) = (6.6)
cj

�

81

Next we define the balance of a mapping to be:

m

Balance(M) = |DomainUtilization(M(vi)) − TargetUtilization()| (6.7)
i=1

Observe that if the DomainUtilization of all domains were equal, the load on

the system would be balanced equally throughout the system. Also, observe that

in order for all DomainUtilizations to be equal to each other, they would equal the

TargetUtilization.

These observations lead to the following problem definition:

Find a new mapping M �(vi) → dj
(6.8)

Minimizing Balance(M �)

In effect, this model aims to balance the load between domains by minimizing

the difference between the utilization of each domain and the utilization of the entire

system.

Adaptation Heuristic

We have developed a heuristic based on the model in the previous section. The

goal of the heuristic is to balance the load on resources while maintaining the expected

performance of the individual virtual environments.

Through our experience with the nanoHUB we have made several observations

about the three resources that VIOLIN can control.

•	 Networking. Most cyberinfrastructures and Grids, including the nanoHUB, are

composed of several cluster computers. In these environments, there are high-

bandwidth, low-latency connections between nodes within an individual clus

ter and low-bandwidth, high-latency connections between clusters. Further,

most applications using these systems, and specifically applications using the

82

nanoHUB, are tightly coupled parallel applications. To provide better perfor

mance to the virtual environments we make the simplifying assumption that

virtual environments in the nanoHUB must be completely within a single clus

ter or host domain. As a result, the execution of any parallel or distributed job

will not be required to communicate across domain boundaries.

•	 Memory. We also observe that applications do not perform well if insufficient

memory is allocated to them. As such, it is not necessary to load balance the

memory allocated to virtual machines. Providing less than adequate memory

to an application will, in effect, stop the application due to thrashing. Our

heuristic assumes adequate memory allocation. If there is not enough memory

in the system to allocate sufficient memory to every virtual machine, some

virtual machine will have to be halted. Policy that decides which machines

to halt should be decided by the particular needs of the cyberinfrastructure

members.

•	 CPU. The processor is the only resource that can be viably load balanced. Jobs

not receiving enough processing power will run slower; but for computationally

intensive applications, the speed will be proportional to the processor allocation.

With these observations in mind, our heuristic assumes memory to be fully allo

cated and all virtual environments must be completely within a single host domain.

These assumptions have lead us to a two tiered approach to the allocation of virtual

machines to hosts. First, virtual environments will be allocated to host domains.

Second, each host domain will allocate virtual machines to host machines.

Algorithm 1 depicts the method used to balance load between host domains. The

outer loop (line 2) of the algorithm continues the balancing the load while the new

mapping (M �) provides better balance than the previous mapping (M). During each

pass through the loop, the target utilization (line 4) and domain utilization (loop 5)

are calculated using the equations seen above. Then we find the domains with the

highest and lowest domain utilizations (lines 8 and 9). A virtual environment is

http:Memory.We

83

Algorithm 1: Balance load between domains
Input: D = (d1, d2, ..., dn), V = (v1, v2, ..., vm), M = CurrentMapping of

D → V

Output: M = New Mapping of D → V

M �
1 = M

2 repeat

3 M = M �

P m
i=1 ri

4 TargetUtilization = P n ;
j=1 cj

5 foreach Host Domain j do
P

M(i)=j ri
6 DomainUtilizationj =

cj

7 end

8 HighDomain = Max(DomainUtilization)

9 LowDomain = Min(DomainUtilization)

10 MigrationCandidate = BestF it(HighDomain,LowDomain)

11 M � = Migrate(M,MigrationCandidate,HighDomain → LowDomain)

12 until Balance(M �) ≤ Balance(M) ;

13 return M

84

chosen to be the migration candidate (line 10) and will be migrated from the highest

domain utilization to the lowest. The migration candidate is chosen using the bestfit

heuristic which finds the virtual environment that when migrated will have the most

effect on the minimization of the balance function. After the migration candidate is

found the new balance is calculated. If the new balance is less than the old one the

algorithm continues.

6.3 Implementation

We have implemented an adaptive VIOLIN system prototype and have deployed

the system on the nanoHUB’s infrastructure. The nanoHUB is a virtualization-based

cyberinfrastructure running online and on-demand nanotechnology applications, and

is our “living lab”. Part of the nanoHUB allows students and researchers to execute

computational Nanotechnology applications, including distributed and parallel sim

ulations, through either a web-based GUI or a VNC desktop session. The unique

property of the nanoHUB is that the back-end processing is heavily reliant on virtu

alization. Users of the nanoHUB may, unknowingly, be using VIOLIN environments

that have the ability to adapt resource allocation to the changing needs of their sim

ulations.

6.3.1 Deployment Platform (nanoHUB)

The unique property of the nanoHUB is that the back-end processing is heavily

reliant on virtualization. Jobs are transparently executed on one of many Grid infras

tructures. Unbeknownst to the user, their jobs may be submitted to a local cluster,

the TerraGrid, or any Globus or Condor systems. Additionally jobs may be executed

on a VIOLIN virtual environment.

VIOLIN virtual environments greatly increase the functionality and efficiency of

the nanoHUB. Functionally, VIOLIN environments provide the nanoHUB with the

ability to host applications that do not or cannot run on traditional Grid infras

85

Fig. 6.2. nanoHUB deployment of VIOLIN environments.

tructures. The nanoHUB no longer relies on administrators of remote domains to

configure remote hosts and install the necessary specific software packages. Instead,

custom virtual machine images can be created to host any existing or future Nan

otechnology applications. In addition, it will be possible to allow individual nanoHUB

users to own and customize their own virtual environments, removing the need for

nanoHUB staff intervention. Further, the efficiency with which nanoHUB applica

tions use the available resources will be increased through the dynamic re-allocation

of resources to virtual environments.

86

6.3.2 Deployment Details

Toward a full deployment, we have deployed multiple adaptive VIOLIN envi

ronments on the nanoHUB’s multi-domain infrastructure on the campus of Purdue

University.

Host Infrastructure. The virtual machines are hosted on two independent

clusters on separate subnets. One cluster is composed of 24 Dell 1750s each with

2GB of RAM and two hyper-threaded Pentium 4 processors running at 3.06 GHz,

while the other is 22 Dell 1425s each with 2GB of RAM and two hyper-threaded

Pentium 4 processors running at 3.00 GHz. Both clusters support Xen 3.0 virtual

machines and VIOLIN virtual networking.

Virtual Environment Configuration. Each virtual computation environment

is composed of Xen virtual machines connected by a VIOLIN network. Among the

virtual machines, one is a head node and the rest are compute nodes. The head node

provides users with access to the VIOLIN environment and, as such, must remain

statically located within its original host domain. However, all compute nodes are

free to move throughout the infrastructure as they remain connected via the VIOLIN

virtual network.

User accounts are managed by a shared Lightweight Directory Access Protocol

(LDAP) server, and user’s home directories are mounted to the local NFS server

with the head node acting as a NAT router for the isolated compute nodes, giving a

consistent system view to all virtual machines regardless of the physical locations of

the virtual machines.

In order to migrate a virtual machine, the following must be transferred to the

destination host: a snapshot of the root file system image, a snapshot of the current

memory, and the thread of control. Xen’s live migration capability supports efficient

transfer of the memory and thread of control. It performs an iterative process that

reduces the amount of time the virtual machine is unavailable to an approximately

165ms [24]. However, Xen does not support the migration of the root file system

87

image. Xen assumes that the root file system is available on both the source and

destination hosts - usually through NFS which can not safely be made available

between multiple domains. The shared infrastructure is composed of independently

administered domains which cannot safely share NFS servers.

In order to perform multi-domain migrations, our prototype uses read-only root

images that can be distributed without having to be updated. We do this by putting

all system files that need to be written to in tmpfs filesystems. Since tmpfs file systems

are resident in memory, Xen will migrate these files with the memory. Initially, we

thought of this solution as a workaround to be fixed later. However, our experience

has demonstrated that tmpfs can be a reasonable solution for a number of nanoHUB

applications. In addition to using tmpfs for system files, users home directories are

NFS-mounted through the virtual network to the nanoHUB server and do not need

to be explicitly transferred.

6.4 Experiments

In this section, we present several experiments that show the feasibility of adaptive

VIOLIN environments. First, we measure the overhead of live migration of VIOLIN

environments, then we demonstrate application performance improvement due to au

tonomic live adaptation of VIOLIN environments sharing a multi-domain infrastruc

ture. For all experiments we use the nanoHUB VIOLIN deployment, an adaptation

manager employing the heuristic described in section 6.2.2, and the NEMO3D [95]

parallel atomic particle simulation as the application running in the VIOLIN envi

ronments.

6.4.1 Migration Overhead

Objective. This experiment aims to find the overhead of migrating an entire

VIOLIN environment that is actively running a resource intensive application (indi

vidual virtual machine migration overheads have been studied in [24]). The overhead

88

 1,200

1,000

 800

 600

 400

 200

 0

NEMO3D problem size

Fig. 6.3. Migration overhead caused by live migration of entire VI
OLIN virtual environments that are actively executing the parallel
application NEMO3D

of live VIOLIN environment migration includes the execution time lost due to the

temporary down-time of the virtual machines during migration, the time needed to

reconfigure the VIOLIN virtual network, and any lingering effects such as network

slowdown caused by packet loss and the resulting TCP back-off.

Configuration. We use a VIOLIN environment composed of four virtual ma

chines. We execute NEMO3D with several different problem sizes between 1/8 and

1 million particles. For each problem size, we record the execution time with and

without migrating the VIOLIN environment. During the no-migration runs, the ap

plication is allowed to run unimpeded. During each run involving migration, all four

virtual machines are simultaneously migrated live across the network to destination

hosts configured identically to the source hosts. In order to stress the system and

find the worst overhead possible, we choose the migration to occur at the most re

source intensive period of the application’s execution. During each run, there is no

Ti
m

e(
s)

Runtime
Runtime after migration

Eighth_million Quarter_million Half_million One_million

http:Configuration.We

89

Fig. 6.4. VIOLIN Environment Adaptation Scenario 1.

background load in any of the hosts involved. However, the network is shared and

therefore incurs background traffic.

Results. Figure 6.3 shows the results. We find that, regardless of problem size,

the run-time of the application is increased by approximately 20 seconds (ranging

from 17-25 seconds) when the VIOLIN environment is migrated.

Discussion. One requirement of adaptive VIOLIN environments is that there

should be little or no effect on the applications due to adaptation. The 20 second

penalty would seem impossible considering that Xen virtual machine migration re

quires the transfer of the entire memory footprint (approximately 800MB per virtual

machine for an execution of NEMO3D simulating 1 million particles). However, Xen’s

live migration mechanism hides the migration latency by continuing to run the ap

90

plication in the virtual machine on the source host while the bulk of the memory is

being transferred. We do not measure the actual down-time of our virtual machines;

however, Xen migration of a virtual machine with 800MB of memory was found to

have a 165ms down-time when migrating within a LAN [24]. The major effect on

application performance is not due to the migration itself but the time to reestablish

the VIOLIN virtual network plus application slowdown during the migration. This

experiment shows that the penalty for migrating a VIOLIN environment is relatively

small and does not escalate with increased virtual machine memory size.

6.4.2 VIOLIN environment Adaptation Scenario 1

Objective. The purpose of this experiment is to demonstrate the effectiveness of

the adaptation manager and to show how a small amount of autonomic adaptation can

lead to better performance of all VIOLIN environments that share the infrastructure.

Configuration. We launch five VIOLIN environments, each running the NEMO3D

application with different input problem sizes (emulating independent VIOLIN envi

ronments used by different users). Each VIOLIN environment starts executing the

application at a different time. The shared infrastructure is comprised of two host

domains. Domain 1 has six physical nodes while domain 2 has four physical nodes.

The two domains are subsets of the two physical clusters in the nanoHUB. At the

time of this experiment we did not have administrative privileges on any machines

outside of Purdue University campus that could be used for these experiments, there

fore we did not experiment with truly wide-area infrastructures. However, the two

domains that we are using are on separate subnets within Purdue University’s cam

pus. These domains have the same routing and migration configurations that would

be seen in a true wide-area experiment, and demonstrate VIOLIN’s ability to operate

in a multi-domain infrastructure.

The experiment compares the execution time of NEMO3D within each VIOLIN

environment with and without autonomic resource reallocation enabled. When re

http:Configuration.We

91

Ti
m

e(
s)

4,000

3,500

 3,000

 2,500

 2,000

 1,500

 1,000

 500

 0

No Adaptation

Adaptation

V
IO

LI
N

 1

V
IO

LI
N

 2

V
IO

LI
N

 3

V
IO

LI
N

 4

V
IO

LI
N

 5

A
ve

ra
ge

 ti
m

e

O
ve

ra
ll

tim
e

Fig. 6.5. VIOLIN environment Adaptation Scenario 1: Execution
time of applications running within VIOLIN environments with and
without adaptation enabled.

allocation is enabled, some VIOLIN environments will be migrated in accordance

with the adaptation manager’s heuristic in order to balance the load and improve the

performance of applications.

Results. Figure 6.4 is a time-line showing where each VIOLIN environment is

located at key instances of time. Figure 6.5 shows recorded NEMO3D execution time

of each VIOLIN environment with and without adaptation enabled.

Initially, for both runs, VIOLIN environments 1, 2, and 3 (referred to as V1, V2,

and V3) are executing their applications and have been allocated significant portions

of the host domains (referred to as D1 and D2). Each virtual machine is using nearly

100% of its allotted CPU.

V2 is executing a smaller problem size and is running alone in D2 so it finishes

quickly. When V2’s finishes, there occurs a load imbalance between the domains.

There are 10 virtual machines in D1 that expect more CPU allocation while there is

92

no virtual machine in D2. The imbalance triggers the migration of V1 to the hosts

of D2. This adaptation balances the load and allows the virtual machines of both V1

and V3 to be allocated the full resources of a single host.

It is important to note that although both remaining VIOLIN environments have

increased CPU allocation, V1 temporally slows down during the migration. V3 will

surely complete its application sooner, but it remains to be seen if the increased

resource allocation to V1 can compensate for the cost of migration.

After some time, V4 and V5 start their applications and require significant re

sources (100% utilization). We assume that both of these environments are new and

must be created to allow the non-adaptation case to have some balance in load. With

out this allowance, V4 and V5 would have to remain where they were (potentially

within D1, creating an even larger advantage for the adaptation case). In either

case, the creation of V4 and V5 causes both domains to be overloaded. The load is,

however, balanced.

Next, V1 and V3 finish their applications. From Figure 6.5, we see that the

migration of V1 allows V3 to finish 30% sooner than it would have otherwise, while

V1 finishes in approximately the same amount of time due to the additional cost

it pays to migrate. Once V1 and V3 finish, the remaining VIOLIN environments

(V4 and V5) are already balanced in the adaptation case, while they are not in the

non-adaptation case.

Table 6.1

Environment Properties

Env VMs Size Start Time

1 4 1/2 Mill Part. 0:00

2 4 1/4 Mill Part. 0:00

3 6 1 Mill Part. 0:00

4 4 1/2 Mill Part. 24:20

5 4 1/2 Mill Part. 24:20

93

Fig. 6.6. VIOLIN environment Adaptation Scenario 2.

The chart in Figure 6.5 shows the application execution in each VIOLIN envi

ronment. For each VIOLIN environment, the execution time is reduced by enabling

autonomic adaptation. The last two data points on the chart show the average time

and overall time metrics of the system. The average time is the average execution

time for all VIOLIN environments. In this example, adaptation saves on the average

39% of the application’s execution time. The overall time is the duration between the

execution of the first VIOLIN environment and the completion of the last VIOLIN

environment. The overall time gives us a measure of the efficiency of resource usage.

We see a 34% reduction in overall time with adaptation.

Discussion. Observe that during this experiment nearly all of the VIOLIN envi

ronments benefit from adaptation even though only one is migrated, suggesting that

a small amount of adaptation can lead to a large increase in both application per

formance and resource utilization. In addition, heuristics that aim to balance load

while minimizing the cost of migration are likely to achieve satisfactory performance

without having to find the optimal allocation of resources to virtual machines.

94

6.4.3 VIOLIN environment Adaptation Scenario 2

Objective. Whereas the previous example shows the typical case where virtual

environments are either being heavily used or completely idle, the next example shows

how adaptation can benefit applications that go through periods of high and low use

during a single execution. In this situation, we create a VIOLIN environment that

initially uses a high amount of CPU then moves to a stage in its application that uses

lower amounts of CPU.

Configuration. The configuration uses the same host infrastructure as the pre

vious example. However, the VIOLIN environments and their applications have

changed. There are now four VIOLIN environments, all of which execute the NEMO3D

application except for V1. V1 executes the high demand NEMO3D followed by a less

CPU intensive “dummy” application. V1 is simulating 100% utilization followed by

a lower utilization that stabilizes within the desired utilization range after the appro

priate reduction in CPU allocation.

Results. The time-line in Figure 6.6 and the chart in Figure 6.7 show the resulting

execution time of the applications with and without adaptation enabled. Initially, the

load is balanced between the four VIOLIN environments which are running on the

two domains. After some time, V3 completes its application and no longer requires

resources. Next V1 enters its second, less CPU intensive, stage of its execution. In

the new stage, V1’s utilization of resources drops well below desired range. Its drop

in CPU allocation results in a load imbalance between the two domains, forcing the

adaptation manager to migrate V2 to D1. The migration balances the load between

domains but causes an imbalance between the hosts of D1. Since it is now possible for

all six virtual machines from V1 to be supported by only two of the available hosts,

they are migrated to the hosts left vacant by V2.

The results in Figure 6.7 show that V1 and V2 execute in approximately the

same amount of time while V3 and V4 show significantly lower execution time. With

95

autonomic reallocation enabled, the average time and overall time are decreased by

41% and 47%, respectively.

Discussion. From this experiment we see that it is possible to obtain further

improvement of performance and efficiency by combining the fine-grained resource

reallocation mechanisms with the coarse-grained migration mechanisms. The adap

tation manager is able to identify virtual environments that experience a significant

reduction in resource requirements. By scaling down the CPU share allocated to indi

vidual virtual machines of V1, it opens the possibility of migrating V2 thus improving

the performance seen by all VIOLIN environments.

2,500

No Adaptation
Adaptation

 0

 500

 1,000

 1,500

 2,000

Ti
m

e(
s)

V
IO

LI
N

 1

V
IO

LI
N

 2

V
IO

LI
N

 3

V
IO

LI
N

 4

A
ve

ra
ge

 ti
m

e

O
ve

ra
ll

tim
e

Fig. 6.7. VIOLIN environment Adaptation Scenario 2: Execution
time of applications running within VIOLIN environments with and
without adaptation enabled.

96

6.5 Conclusion

We have presented the design and implementation of VIOLIN autonomic virtual

computation environments for multi-domain shared infrastructures. Using VIOLIN

environments, independently administered virtual computation domains flow through

the massive amount of computation resources available through multi-domain shared

infrastructures. We have shown the design and implementation of VIOLIN environ

ments that allows virtual environments to adapt to the needs of their applications

including the use of wide-area migration of live virtual environments. Our experiments

with our nanoHUB deployment of virtual computation environments has shown signif

icant performance and efficiency increases. With continued advancement of machine

and network virtualization, as well as resource allocation policies, VIOLIN virtual

computation environments will continue to increase the potential of multi-domain

shared infrastructures.

97

7. CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this dissertation, we have presented an integrated, virtualization-based frame

work for federating massive amounts of cyberinfrastructure resources. By creating a

layer of indirection between physical resources and software systems, virtualization

provides unique opportunities to address challenging problems in cyberinfrastruc

ture and high-throughput computing. More specifically, the VIOLIN middleware has

demonstrated the power of virtualization for the creation of efficient, secure environ

ments for utilizing cyberinfrastructure. Using VIOLIN virtual environments (Chap

ter 4), we are able to provide each user with the illusion of a isolated private LAN

which is actually deployed across a wide-area shared cyberinfrastructure. Further, we

utilize VIOLIN environments to create VioCluster which enables inter-domain cluster

sharing (Chapter 5) by dynamically expanding the domain boundaries of cluster com

puters to utilize the resources of cooperating clusters. Finally, we use our experience

gained through the creation of VioCluster and the wide-area adaptation mechanisms

of VIOLIN to create fully autonomic virtual environments for shared cyberinfrastruc

ture (Chapter 6).

Based on the integrated VIOLIN framework, we have deployed a production sys

tem on the nanoHUB infrastructure, as well as, created experimental systems used

to evaluate the effectiveness of adaptation mechanisms and policies on increasing the

efficiency and throughput of shared computational resources. Based on the observa

tion and insights obtained from this platform, we have gained unique advantages in

designing and evaluating advanced virtualization-based middleware for federating cy

berinfrastructure resources. Currently, VIOLIN environments are a fundamental part

of the production nanoHUB execution environment, and in the near future advanced

98

adaptation mechanisms and policies will be extended to the nanoHUB increasing its

performance and benefiting all of its users.

7.2 Future Work

The integrated middleware for autonomic adaptive virtual environments presented

in this dissertation has laid a solid foundation for future work. In the following we

propose topics for future research:

•	 Advanced resource demand prediction methods. The key to effective

resource allocation is knowing the proper amount of resources a virtual ma

chine or environment will need in the future. In this dissertation, we have

discussed two techniques for predicting future demand: (1) application-aware

prediction, and (2) application-independent prediction. VioCluster (Chapter 5),

uses application-aware prediction by utilizes notoriously inaccurate and often

unavailable information gathered from cluster schedulers. The fully autonomic

environments discussed in Chapter 6 use application-independent prediction

methods by applying relatively simple time series analysis.

In future work, we plan on developing more advanced prediction methods based

on techniques found in the field of Artificial Intelligence (AI). Reinforcement

Learning (RL) is an AI technique that aims to learn about an algorithm using a

black-box approach. Reinforcement Learning techniques manipulate the values

used as input to a function and record the associated output. Over time, the

system can learn how the inputs effect the output without knowing the inter

nals functionality. If we view a virtual machine as a black-box, the resource

allocation as inputs, and the completed computation as output, we can use RL

to manipulate the resource allocation in order to effect the virtual machine’s

ability to run the application.

•	 Advanced Cluster throughput mechanisms. Computational clusters have

many users. Some users are skilled at coding and running efficient applications,

99

while others are not. In large supercomputing centers inefficient applications

have actual costs seen in the need to purchase more machines and in long

queue wait times endured by users. Work has been done to identify inefficient

applications and notify users in the attempt to modify their behavior [100]. We

intend to utilize the job efficiency information to adapt virtual environments

allocation. By applying the techniques we have developed through the creation

of the VIOLIN middleware, we will continue to increase the performance and

efficiency of distributed shared computational platforms.

LIST OF REFERENCES

100

LIST OF REFERENCES

[1] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid: Enabling
Scalable Virtual Organizations,” International Journal of Supercomputer Ap
plications, vol. 15, no. 3, 2001.

[2] TeraGrid, “http://www.teragrid.org.”.

[3] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir, L. Peterson,
T. Roscoe, T. Spalink, and M. Wawrzoniak, “Operating System Support for
Planetary-Scale Network Services,” in Proceedings of the Symposium on Net
worked Systems Design and Implementation, March 2004.

[4] L.	 Peterson, T. Anderson, D. Culler, and T. Roscoe, “A Blueprint for Intro
ducing Disruptive Technology into the Internet ,” ACM SIGCOMM Computer
Communication Review, vol. 33, no. 1, pp. 59–64, 2003.

[5] L. Peterson, A. Bavier, M. E. Fiuczynski, and S. Muir, “Experiences Building
PlanetLab,” in Proceedings of the 7th USENIX Symposium on Operating System
Design and Implementation, November 2006.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield, “Xen and the Art of Virtualization,” in Proceedings
of the 19th ACM Symposium on Operating Systems Principles, pp. 164–177,
2003.

[7] J. Dike, “User-Mode Port of the Linux Kernel,” in Proceedings of the USENIX
Annual Linux Showcases and Conference, 2000.

[8] R. Figueiredo, P. A. Dinda, and J. Fortes, “Guest Editors’ Introduction: Re
source Virtualization Renaissance,” IEEE Computer, vol. 38, no. 5, pp. 28–31,
2005.

[9] VMware, “http://www.vmware.com.”

[10] S. Adabala, V. Chadha, P. Chawla, R. Figueiredo, J. Fortes, I. Krsul, A. Mat
sunaga, M. Tsugawa, J. Zhang, M. Zhao, L. Zhu, and X. Zhu, “From Virtu
alized Resources to Virtual Computing Grids: The In-VIGO System,” Future
Generation Computer Systems Special section: Complex Problem-Solving Envi
ronments for Grid Computing, vol. 21, pp. 896–909, June 2005.

[11] R. Figueiredo, P. Dinda, and J. Fortes, “A Case for Grid Computing on Virtual
Machines,” in Proceedings of International Conference on Distributed Comput
ing Systems, May 2003.

http:http://www.vmware.com
http:http://www.teragrid.org

101

[12] I. T. Foster, T. Freeman, K. Keahey, D. Scheftner, B. Sotomayer, and X. Zhang,
“Virtual Clusters for Grid Communities,” in Proceedings of the Sixth IEEE
International Symposium on Cluster Computing and the Grid, pp. 513–520,
2006.

[13] K. Keahey, K. Doering, and I. T. Foster, “From Sandbox to Playground: Dy
namic Virtual Environments in the Grid,” in Proceedings of the 5th Interna
tional Workshop in Grid Computing, pp. 34–42, November 2004.

[14] A. Shoykhet, J. Lange, and P. Dinda, “Virtuoso: A System For Virtual Machine
Marketplaces,” Tech. Rep. NWU-CS-04-39, Northwestern Univeristy, July 2004.

[15] X. Jiang and D.	 Xu, “VIOLIN: Virtual Internetworking on OverLay INfras
tructure,” Tech. Rep. TR 03-027, Purdue University Department of Computer
Science, July 2003. in LNCS Vol. 3358, Springer.

[16] M. Kallahalla, M. Uysal, R. Swaminathan, D. E. Lowell, M. Wray, T. Christian,
N. Edwards, C. I. Dalton, and F. Gittler, “SoftUDC: A Software-Based Data
Center for Utility Computing,” IEEE Computer, vol. 37, no. 11, pp. 38–46,
2004.

[17] A. I. Sundararaj and P. A. Dinda, “Towards Virtual Networks for Virtual Ma
chine Grid Computing,” in Proceedings of USENIX Virtual Machine Research
and Technology Symposium, pp. 177–190, 2004.

[18] A. Sundararaj, A. Gupta, and P. Dinda, “Increasing Application Performance
In Virtual Environments Through Run-time Inference and Adaptation,” in Pro
ceedings of the 14th IEEE International Symposium on High Performance Dis
tributed Computing, July 2005.

[19] P. Ruth, X. Jiang, D. Xu, and S. Goasguen, “Virtual Distributed Environments
in a Shared Infrastructure,” IEEE Computer, vol. 38, pp. 63–69, May 2005.

[20] X. Jiang and D.	 Xu, “SODA: A Service-On-Demand Architecture for Appli
cation Service Hosting Utility Platforms,” in Proceedings of The 12th IEEE
International Symposium on High Performance Distributed Computing, June
2003.

[21] J. S. Chase, D. E. Irwin, L. E. Grit, J. D. Moore, and S. E. Sprenkle, “Dynamic
Virtual Clusters in a Grid Site Manager,” in Proceedings of the 12th IEEE
International Symposium on High Performance Distributed Computing, p. 90,
2003.

[22] H. Liu	 and M. Parashar, “Enabling Self-Management of Component Based
High-Performance Scientific Applications,” in Proceedings of the 14th IEEE
International Symposium on High Performance Distributed Computing, 2005.

[23] P. Ruth, J. Rhee, D. Xu, R. Kennell, and S. Goasguen, “Autonomic Live Adap
tation of Virtual Computational Environments in a Multi-Domain Infrastruc
ture,” in Proceedings of the 3rd IEEE International Conference on Autonomic
Computing, June 2006.

[24] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and
A. Warfield, “Live Migration of Virtual Machines,” in Proceedings of the 2nd
ACM/USENIX Symposium on Networked Systems Design and Implementation,
May 2005.

102

[25] M.	 Nelson, B.-H. Lim, and G. Hutchins, “Fast Transparent Migration for
Virtual Machines,” in USENIX Annual Technical Conference, General Track,
pp. 391–394, April 2005.

[26]	 “http://www.nanohub.org.”

[27] J. Fortes, R. Figueiredo, and M. Lundstrom, “Virtual Computing Infrastruc
tures for Nanoelectronics Simulation,” in IEEE, vol. 93(10), pp. 1839–1847, 8
2005.

[28] P.	 Ruth, P. McGachey, and D. Xu, “VioCluster: Virtualization for Dynamic
Computational Domains,” in Proceedings of the IEEE International Conference
on Cluster Computing, September 2005.

[29] D. E. Atkins, K. K. Droegemeier, S. I. Feldman, H. Garcia-Molina, M. L. Klein,
D. G. Messerschmitt, P. Messina, J. P. Ostriker, and M. H. Wright, “Revolu
tionizing Science and Engineering Through Cyberinfrastructure,” 2003.

[30] D. Thain, T. Tannenbaum, and M. Livny, “Distributed Computing in Practice:
The Condor Experience,” Concurrency and Computation: Practice & Experi
ence, vol. 17, pp. 323–356, February 2005.

[31] Message	 Passing Interface Forum, “MPI: A Message-Passing Interface Stan
dard,” Tech. Rep. UT-CS-94-230, The University of Tennessee and Oak Ridge
National Laboratory, 1994.

[32] I.	 Foster and C. Kesselman, “Globus: A Metacomputing Infrastructure
Toolkit,” The International Journal of Supercomputer Applications and High
Performance Computing, vol. 11, no. 2, pp. 115–128, 1997.

[33] M.	 Varian, “VM and the VM Community, Past, Present, and Future,” in
SHARE 89 Sessions 9059-9061, 1997.

[34] F. J. Corbat;, M. Merwin-Daggett, and R. C. Daley, “An Experimental Time-
Sharing System,” Classic Operating Systems: From Batch Processing to Dis
tributed Systems, pp. 117–137, 2000.

[35] R. J. Creasy, “The Origin of the VM/370 Time-Sharing System,” IBM Journal
of Research and Development, vol. 25, no. 5, pp. 483–490, 1981.

[36] G. Neiger, A. Santoni, F. Leung, D. Rodgers, and R. Uhlig, “Intel Virtualization
Technology: Hardware Support for Efficient Processor Virtualization,” Intel
Technology Journal, 2006.

[37] Advanced	 Micro Devices, “http://www.amd.com/us-en/Processors/
ProductInformation/.”.

[38] J. Casazza, M. Greenfield, and K. Shi, “Redefining Server Performance Char
acterization for Virtualization Benchmarking,” Intel Technology Journal, 2006.

[39] J. Sugerman,	 G. Venkitachalam, and B.-H. Lim, “Virtualizing I/O Devices
on VMware Workstation’s Hosted Virtual Machine Monitor,” in Proceedings of
the General Track: 2002 USENIX Annual Technical Conference, pp. 1–14, June
2001.

http://www.amd.com/us-en/Processors
http:http://www.nanohub.org

103

[40] C. Waldspurger, “Memory Resource Management in VMware ESX Server,” in
Proceedings of the Fifth Symposium on Operating Systems Design and Imple
mentation, December 2002.

[41] Z. Amsden, D. Arai, D. Hecht, A. Holler, and P. Subrahmanyam, “VMI: An In
terface for Paravirtualization,” in Proceedings of the Ottawa Linux Symposium,
July 2006.

[42] I. Ahmad, J. Anderson, A. Holler, R. Kambo, and V. Makhija, “An Analysis of
Disk Performance in VMware ESX Server Virtual Machines,” in Proceedings of
IEEE International Workshop on Workload Characterization, WWC-6, pp. 65–
76, October 2003.

[43] XenSource,	 Inc., “A Performance Comparison of Commercial Hypervi
sors.” http://www.xensource.com/files/hypervisor_performance\
_comparison_1_0_5_with_esx-data.pdf.

[44] Parallels Inc., “http://www.parallels.com.”.

[45] Virtual	 PC, “http://www.microsoft.com/windows/products/winfamily/
virtualpc/default.mspx.”.

[46] Qumranet Inc. White Paper, “KVM: Kernel-based Virtualization Driver.” 2006.

[47] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” pp. 41–46.

[48] M.	 Larabel, “Linux KVM Virtualization Performance,” Phoronix, January
2007.

[49] VServer Community, “http://linux-vserver.org/paper.”.

[50] SWSOFT White Paper, “An Introduction to OS Virtualization and Virtuozzo.”
http://www.swsoft.com/r/pdfs/vz/whitepapers/VZ-Overview.pdf.

[51] OpenVZ, “http://openvz.org.”.

[52] SWSOFT White Paper, “Live Migration.” http://www.swsoft.com/r/pdfs/
vz/whitepapers/Virtuozzo_Live_Migration.pdf.

[53] P.	 Kamp and R. Watson, “Jails: Confining the Omnipotent Root.” http://
docs.freebsd.org/44doc/papers/jail/jail.html.

[54] D. Price and A. Tucker, “Solaris Zones: Operating System Support for Consoli
dating Commercial Workloads,” in Proceedings of the 18th USENIX Conference
on System Administration, pp. 241–254, 2004.

[55] B. Clark, T. Deshane, E. Dow, S. Evanchik, M. Finlayson, J. Herne, and J. N.
Matthews, “Xen and the Art of Repeated Research,” in Proceeding of USENIX
Annual Technical Conference, FREENIX Track, pp. 135–144, 2004.

[56] K. Adams and O. Agesen, “A Comparison of Software and Hardware Techniques
for x86 Virtualization,” in Proceedings of the 12th international conference on
Architectural support for programming languages and operating systems, pp. 2–
13, 2006.

http://www.swsoft.com/r/pdfs
http:http://openvz.org
http://www.swsoft.com/r/pdfs/vz/whitepapers/VZ-Overview.pdf
http://linux-vserver.org/paper
http://www.microsoft.com/windows/products/winfamily
http:http://www.parallels.com
http://www.xensource.com/files/hypervisor_performance
http:Characterization,WWC-6,pp.65

104

[57] A. Sinha and A. P.	 Chandrakasan, “Energy Efficient Real-time Scheduling,”
in Proceedings of the 2001 IEEE/ACM International Conference on Computer-
aided Design, pp. 458–463, 2001.

[58] J. Lange, A. Sundararaj, and P. Dinda, “Automatic Dynamic Run-time Optical
Network Reservations,” in Proceedings of the 14th IEEE International Sympo
sium on High Performance Distributed Computing, 2005.

[59] B. Lin and P. Dinda, “VSched: Mixing Batch and Interactive Virtual Machines
Using Periodic Real-time Scheduling,” in Proceedings of ACM/IEEE SC 2005
(Supercomputing), 2005.

[60] A. Ganguly,	 A. Aagrawal, P. O. Boykin, and R. Figueiredo, “IP over P2P:
Enabling Self-configuring Virtual IP Networks for Grid Computing,” in Pro
ceedings of the 20th IEEE International Parallel and Distributed Processing
Symposium, 2006.

[61] A. Ganguly,	 A. Agrawal, P. O. Boykin, and R. Figueiredo, “WOW: Self-
Organizing Wide Area Overlay Networks of Virtual Workstations,” in Pro
ceedings of the 15th IEEE International Symposium on High Performance Dis
tributed Computing, June 2006.

[62] D. Wolinsky, A. Agrawal, P. O. Boykin, J. Davis, A. Ganguly, V. Paramygin,
P. Sheng, and R. Figueiredo, “On the Design of Virtual Machine Sandboxes
for Distributed Computing in Wide Area Overlays of Virtual Workstations,”
in First Workshop on Virtualization Technologies in Distributed Computing
(VTDC), with Supercomputing (SC07), 2007.

[63] L. Zhang and D. Ardagna, “SLA Based Profit Optimization in Autonomic Com
puting Systems,” in Proceedings of the 2nd international conference on Service
oriented computing, pp. 173–182, 2004.

[64] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hi
bler, C. Barb, and A. Joglekar, “An Integrated Experimental Environment for
Distributed Systems and Networks,” in Proceedings of the 5th Symposium on
Operating Systems Design and Implementation, vol. 36, pp. 255–270, December
2002.

[65] M. Ripeanu, M. Bowman, J. S. Chase, I. Foster, and M. Milenkovic,	 “Globus
and PlanetLab Resource Management Solutions Compared,” in Proceedings of
the 13th IEEE International Symposium on High Performance Distributed Com
puting, pp. 246–255, 2004.

[66] R. P. Doyle, J. S. Chase, O. M. Asad, W. Jin, and A. Vahdat, “Model-Based
Resource Provisioning in a Web Service Utility,” in Proceedings of USENIX
Symposium on Internet Technologies and Systems, March 2003.

[67] L.	 Grit, D. Irwin, A. Yumerefendi, and J. Chase, “Virtual Machine Hosting
for Networked Clusters: Building the Foundations for “Autonomic” Orches
tration,” in Proceedings of the First International Workshop on Virtualization
Technology in Distributed Computing, November 2006.

[68] L.	 Grit, J. Chase, D. Irwin, and A. Yumerefendi, “Shirako: Virtual Machine
Hosting for Federated Clusters,” in Seventh USENIX Symposium on Operating
Systems Design and Implementation, November 2006.

105

[69] L. Ramakrishnan, L. Grit, A. Iamnitchi, D. I. A. Yumerefendi, and J. Chase,
“Toward a Doctrine of Containment: Grid Hosting with Adaptive Resource
Control,” in Proceedings of the 19th Annual Supercomputing Conference,
November 2006.

[70] D. Irwin, J. Chase, L. Grit, A. Yumerefendi, D. Becker, and K. Yocum, “Shar
ing Networked Resources with Brokered Leases,” in Proceedings of USENIX
Technical Conference, May 2006.

[71] D.	 E. Irwin, L. E. Grit, and J. S. Chase, “Balancing Risk and Reward in a
Market-Based Task Service,” in HPDC ’04: Proceedings of the 13th IEEE Inter
national Symposium on High Performance Distributed Computing, pp. 160–169,
June 2004.

[72] K.	 Keahey, I. T. Foster, T. Freeman, X. Zhang, and D. Galron, “Virtual
Workspaces in the Grid,” in Proceedings of Euro-Par, pp. 421–431, 2005.

[73] K. Keahey, I. Foster, T. Freeman, and X. Zhang, “Virtual Workspaces: Achiev
ing Quality of Service and Quality of Life in the Grid,” Scientific Programming
Journal, vol. 13, no. 4, 2005, Special Issue: Dynamic Grids and Worldwide
Computing, pp. 265–275, 2005.

[74] B. Sotomayor, K. Keahey, and I. Foster, “Overhead Matters: A Model for Vir
tual Resource Management,” in Proceedings of the First International Workshop
on Virtualization Technology in Distributed Computing, 2006.

[75] Beowulf, “http://www.beowulf.org.”

[76] Portable Batch Scheduler, “http://www.openpbs.org.”

[77] Torque,	 “http://www.clusterresources.com/pages/products/
torque-resource-manager.php.”

[78] Seti@home, “http://setiweb.ssl.berkeley.edu/.”

[79] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, “The Physiology of the Grid:
An Open Grid Services Architecture for Distributed Systems Integration,” in
Open Grid Service Infrastructure WG, Global Grid Forum, June 2002.

[80] P.	 T. Bulhes, C. Byun, R. Castrapel, and O. Hassaine, “N1 Grid Engine 6
Features and Capabilities.” Sun Microsystems White Paper, http://www.sun.
com/products-n-solutions/edu/whitepapers/pdf/N1GridEngine6.pdf.

[81] S. Adabala, A. M. Matsunaga, M. O. Tsugawa, R. J. O. Figueiredo, and J. A. B.
Fortes, “Single Sign-On in In-VIGO: Role-Based Access via Delegation Mecha
nisms Using Short-Lived User Identities,” in Proceedings of 18th International
Parallel and Distributed Processing Symposium, April 2004.

[82] V. Sanjeepan,	 A. Matsunaga, L. Zhu, H. Lam, and J. A. Fortes, “Service
oriented, scalable approach to grid-enabling of legacy scientific applications,”
in Proceedings of 2005 International Conference on Web Services, pp. 553–560,
July 2005.

[83] A. Ganguly,	 D. Wolinsky, P. O. Boykin, and R. Figueiredo, “Decentralized
Dynamic Host Configuration in Wide-Area Overlay Networks of Virtual Work
stations,” in Workshop on Large-Scale and Volatile Desktop Grids, March 2007.

http://www.sun
http:http://setiweb.ssl.berkeley.edu
http://www.clusterresources.com/pages/products
http:http://www.openpbs.org
http:http://www.beowulf.org

106

[84] A. Matsunaga, M. Tsugawa, S. Adabala, R. Figueiredo, H. Lam, and J. Fortes,
“Science gateways made easy: the in-vigo approach,” in Workshop on Science
Gateways, Global Grid Forum, 2005.

[85] M. Zhao, J. Xu, and R. Figueiredo, “Towards Autonomic Grid Data Manage
ment with Virtualized Distributed File Systems,” in International Conference
on Autonomic Computing, 2006.

[86] M. Zhao, J. Zhang, and R. Figueiredo, “Distributed File System Support for
Virtual Machines in Grid Computing,” in Proceedings of the 15th IEEE Inter
national Symposium on High Performance Distributed Computing, June 2004.

[87] M. Zhao, J. Zhang, and R. Figueiredo, “Distributed File System Virtualization
Techniques Supporting On-Demand Virtual Machine Environments for Grid
Computing,” Proceedings of Cluster Computing, vol. 9, pp. 45–56, January 2006.

[88] I.	 Krsul, A. Ganguly, J. Zhang, J. A. B. Fortes, and R. J. Figueiredo, “VM-
Plants: Providing and Managing Virtual Machine Execution Environments for
Grid Computing,” in the Proceedings of the ACM/IEEE Super Computing Con
ference, p. 7, 2004.

[89] D. Hepema, M. Livny, R. van Dantzig, X. Evers, and J. Pruyne, “A Worldwide
Flock of Condors: Load Sharing Among Workstation Clusters,” Future Gener
ation Computer Systems, vol. 12, no. 1, Special issue: resource management in
distributed systems, pp. 53–65, 1996.

[90] D. P. Anderson, “Public Computing: Reconnecting People to Science,” in Pro
ceedings of Conference on Shared Knowledge and the Web, November 2003.

[91] I.	 Foster and C. Kesselmann, “Globus: A Toolkit-based Grid Architecture,”
The Grid: Blueprints for a New Computing Infrastructure, pp. 259–278, 1999.

[92] L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry,
M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo, K. Remington, and
R. C. Whaley, “An Updated Set of Basic Linear Algebra Subprograms (BLAS),”
ACM Transactions on Mathematical Software, vol. 28, no. 2, pp. 135–151, 2002.

[93] Message Passing Interface Forum, “MPI-2 Journal of Development.” http://
www.mpi-forum.org/docs/mpi-20-jod.ps, 1997.

[94] J. Dongarra, J. Bunch, C. Moler, and G. Stewart, “LINPACK Users Guide.”
SIAM, 1979.

[95] G. Klimeck, F. Oyafuso, T. B. Boykin, R. C. Bowen, and P. von Allmen, “De
velopment of a Nanoelectronic 3-D (NEMO 3-D) Simulator for Multimillion
Atom Simulations and Its Application to Alloyed Quantum Dots,” Computer
Modeling in Engineering and Science, vol. 3, no. 5, pp. 601–642, 2002.

[96] The Hebrew University – Parallel Systems Lab, “http://www.cs.huji.ac.il/
labs/parallel/workload/.”

[97] S. R. White, J. E. Hanson, I. Whalley, D. M. Chess, and J. O. Kephart, “An
Architectural Approach to Autonomic Computing,” in Proceedings of the IEEE
International Conference on Autonomic Computing, 2004.

http:http://www.cs.huji.ac.il
www.mpi-forum.org/docs/mpi-20-jod.ps,1997

107

[98] G. Tesauroa, D. M. Chess, W. E. Walsh, R. Das, A. Segal, I. Whalley, J. O.
Kephart, and S. R. White., “A Multi-Agent Systems Approach to Autonomic
Computing,” in Proceedings of the Third International Joint Conference on
Autonomous Agents and Multiagent Systems, pp. 464–471, 2004.

[99] G.	 Box and G. M. Jenkins, Time Series Analysis: Forecasting and Control.
Oakland, CA: Holden-Day, second edition ed., 1976.

[100] Mississippi	 Center for Supercomputing Research, “http://www.mcsr.
olemiss.edu/allMCSRCrntJb.php.”.

http://www.mcsr

VITA

108

VITA

Paul Michael Ruth was born in Urbana, Illinois and spent most of his childhood

in Escondido, California. He attended San Pasqual High School where he way always

interested in mathematics and science but spent most of his time playing soccer. He

graduated from high school in 1994 and went on to attend Baker University in Baldwin

City, Kansas. This unlikely choice of college was due mostly to his desire to experience

life on his own and the opportunity to play soccer on an athletic scholarship. While a

undergraduate, he had various jobs within the university including lab assistant and

working for computer services, administering, configuring, and installing computers

and computer networks. In 1998 he graduated with a Bachelor of Science degree

in mathematics and computer science. After graduating from Baker University, Paul

spent one year working as a contractor with Sprint in Kansas City. In 1999, he arrived

at Purdue University where he spent many semesters as a teaching and research

assistant. Much of his work as a research assistant was in developing and deploying

the nanoHUB gateway. As a result of his work on the nanoHUB he is a recipient

of the 2007 Halstead Award for his contributions to virtualization middleware for

distributed and parallel computing. As a research assistant under Dongyan Xu, he

earned his Doctor of Philosophy in computer science in August of 2007. In the fall of

2007 he joined the faculty of the Department of Computer and Information Science

at the University of Mississippi in Oxford, Mississippi as an assistant professor.

