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ABSTRACT 

Ruth, Paul M. Ph.D., Purdue University, August, 2007. Adaptive Virtual Distributed 
Environments for Shared Cyberinfrastructures. Major Professor: Dongyan Xu. 

A shared  distributed  cyberinfrastructure  is  formed  by  federating computation re

sources from multiple domains. Such shared infrastructures are  increasing  in  pop

ularity and are providing massive amounts of aggregated computation resources to 

a large  numbers  of  users.  Meanwhile,  virtualization  technologies, at machine and 

network levels, are maturing and enabling mutually isolated virtual  computation en

vironments for executing unmodified parallel and distributed applications on top of 

such a shared physical cyberinfrastructure. 

In this dissertation, we go one step further by supporting runtime adaptation of 

virtual computation environments as integrated, active entities. More specifically, 

driven by both dynamic availability of infrastructure resources and dynamic applica

tion resource demand, a virtual computation environment is able to automatically re

locate itself across the infrastructure and adjust its share of  infrastructural  resources.  

Such runtime adaptation is transparent to both users of a virtual environment and 

applications running inside the environment, providing the look  and  feel  of  a  private,  

well-provisioned computational environment to the users and the applications. 

This dissertation presents the design, implementation, and evaluation  of  a  middle-

ware system, VIOLIN, which enables adaptive virtual computational environments. 

Each VIOLIN virtual environment is composed of a virtual network of virtual ma

chines and is capable of live migration across a multi-domain physical  infrastructure.  

This research effort includes the development of the enabling mechanisms  for  virtual  

environment creation and adaptation, as well as, policies for effectively utilizing these 

mechanisms. Through this effort, we have found that by combining virtual environ
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ments with adaptation policies and mechanisms, we can provide significant increases 

in both usability and performance of shared computational infrastructures. Further, 

the VIOLIN middleware is currently deployed on a production cyberinfrastructure, 

called the nanoHUB, as a major computational facility used to execute  parallel  and  

distributed nanotechnology simulations. 
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1. INTRODUCTION 

1.1 Background and Problem Statement 

The growth of distributed infrastructures such as the Grid [1, 2] and Planet-

Lab [3–5], along with the current push toward shared cyberinfrastructure has made 

computing and communication resources available to a large community of users. 

Meanwhile, virtualization technologies [6–9] are increasingly being deployed on top 

of such shared physical infrastructures [10–14], supporting the customization, mu

tual isolation, and administrator privilege of virtual machines (VMs) running many 

applications on behalf of users with a diverse set of needs. With recent advances 

in network virtualization techniques [15–18], virtual private networked environments 

can also be created on top of a shared distributed infrastructure. 

In this dissertation, we argue that machine, network, and, ultimately, environ

ment virtualization provide a number of key features needed to federate distributed 

shared resources into isolated, dynamic, and customizable platforms for a wide ar

ray of computing needs. Previous approaches to infrastructure sharing do not use 

virtualization, limiting the types of applications supported and requiring significant 

and often infeasible administrative and developer support to be usable. Further, the 

adaptive capabilities of virtualization create possibilities which exceed the current ex

pectations of cyberinfrastructure. While an application is running,  the  amount,  type,  

and location of resources allocated to the application can be modified.  For  example,  

an application that enters a phase of high CPU utilization can be  dynamically  allo

cated a larger share of the local CPU. Further, if the local CPU does  not  have  enough  

available power, the application can be migrated to a host with adequate available 

CPU. 
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As such, this dissertation proposes an integrated virtualization-based framework 

for the federation of resources in a shared cyberinfrastructure. At the center of 

this framework is the VIOLIN middleware which enables virtual distributed envi

ronments [15, 19, 20] consisting of virtual machines connected by virtual networks. 

The key benefit of VIOLIN is that it decouples the ownership, configuration, ad

ministration, and resources of the virtual environments from those of the underlying 

infrastructure. Within a VIOLIN virtual environment, the user is able to execute 

and interact with unmodified applications, including parallel and distributed applica

tions. Any negative impacts of these applications will be contained within the virtual 

environment and will not cause damage to the infrastructure. 

The all-software virtualization of VIOLIN decouples the virtual environments from 

the underlying resources. This level of indirection provides a new opportunity to 

make these environments autonomically adapt to environmental and application dy

namics [21–23]. The overall vision is to enable virtual environments that cater to 

the application running inside them. The virtual environments dynamically adapt 

and re-locate themselves by scaling local resource allocation and migrating across 

the multi-domain infrastructure. From the point-of-view of a  distributed  application,  

the underlying virtual environment may change its CPU, memory, and network link 

capacity, re-configure its topology and scale (e.g., by adding new virtual machines), 

or even migrate its virtual machines to more resource-sufficient locations in the in

frastructure. Conversely, from the point-of-view of the underlying infrastructure, 

scaling and migration of virtual environments allows for more efficient utilization of 

available resources. Virtual environments that are using less than their allocation of 

resources can have their allocation scaled back, freeing resources to be used by other 

under-provisioned virtual environments. Virtual environment adaptation is a unique 

capability that cannot be achieved by a physical environment which  is  restricted  by  

the limits of physical computing with static resource capacity. Complementing the 

traditional adaptation scheme where applications adapt to dynamic environments, we  

advocate a new scheme where (virtual) environments adapt to dynamic applications. 
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To realize the vision of autonomic adaptive virtual computation environments in 

a physical  distributed  infrastructure  that  spans  multiple  domains, we address the 

following challenges: 

The first challenge is to enable virtual environments that address the needs of 

computational applications while spanning domains. The necessary characteristics of 

these virtual environments are that they can achieve near-native performance while 

executing unmodified existing applications and remain isolated from their underlying 

host domains. Existing virtual machine platforms can execute unmodified applica

tions while providing good performance and per host isolation. However, virtual 

machines do not necessarily create virtual environments. In order  to  create  virtual  

environments, VIOLIN must isolate and connect groups of distributed virtual ma

chines into what appear to be private LANs. These private LANs are  called  virtual  

environments and can be used to run any parallel or distributed applications. 

The second challenge is to provide the mechanisms for application-transparent 

virtual environment adaptation. In order to provide a stable environment,  adapta

tion should occur transparently without effecting the application or the user. Work 

has been done to enable resource reallocation and migration within a local-area net

work [24,25] and machine migration features are provided by the most current machine 

virtualization platforms. One question still demands our attention: how can we mi

grate an entire virtual environment across a wide-area network without effecting the 

application? The solution must keep the virtual machines alive throughout the migra

tion. Computation must continue and network connections must remain open. The 

necessary wide-area migration facility requires two feature not yet provided by current 

virtualization techniques. First, virtual machines need to retain  their  IP  addresses  

and remain accessible through the network despite physical routers not knowing that 

they were migrated. Second, wide-area migration cannot rely on  NFS  to  maintain  a  

consistent view of the large virtual machine image files. These files must be quickly 

transferred across the relatively slow wide-area network. Current solutions are not 

adequate for wide-area use. 
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The third challenge is to define allocation policies : The  static  allocation  of  shared  

resources considers the available resources and requested resources to find the optimal 

allocation. Autonomic environments, however, must have the intelligence  to  scale  

resource allocations without user intervention. How do we know when a virtual 

machine needs more CPU? Which virtual machine should be migrated if a host can 

no longer support the memory demands of its guests virtual machines? If a virtual 

machine needs to be migrated, where should it go? We must determine whether the 

best destination is the one which affords the quickest migration, or privilege the one 

which results in more adequate resource allocation. 

The VIOLIN framework provides solutions to the above challenges. Based on the 

VIOLIN framework, we have deployed a production system on the nanoHUB  [26]  in

frastructure, as well as, created experimental prototypes to evaluate the effectiveness 

of adaptation mechanisms and policies on increasing the usability and utilization of 

shared computational resources. Further, there are over 20,000 users of the nanoHUB, 

hundreds of which have accessed nanotechnology simulations [27]  that  run  on  produc

tion computational clusters that are actually VIOLIN virtual environments. These 

users have run thousands of parallel and distributed jobs during the first year of 

VIOLIN’s deployment. As new components of the experimental prototype become 

reliable they will be deployed in the production system for the benefit of nanoHUB 

users. 

1.2 Dissertation Contributions 

The challenges and contributions of this dissertation are three-fold: the develop

ment of the VIOLIN middleware which enables virtual environments, the development 

and evaluation of virtual environments for inter-domain sharing, and the development 

and evaluation of adaptive virtual environments for shared cyberinfrastructures. 

•	 VIOLIN middleware. As  the  basis  of  this  dissertation  the  VIOLIN  mid

dleware was designed, implemented, and evaluated for effective utilization of 

http:middleware.As
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shared cyberinfrastructures. VIOLIN’s key contributions is on-demand creation 

of isolated, dynamic, secure, and customizable virtual environments that can 

effectively utilize the distributed resources of the shared cyberinfrastructure. 

This is accomplished by inserting VIOLIN as a layer of indirection sitting be

tween the infrastructure and virtual machines running on top of  it.  This  layer  

provides users with the familiar look-and-feel of a private LAN environment 

while allowing the cyberinfrastructure to be shared. Effectively and efficiently 

sharing the infrastructure is achieved by manipulating the scale and location 

of each virtual environment’s resource allocation. VIOLIN is among the first 

virtual environment middleware that allows live wide-area migration, and it is 

one of the few being used in a production environment. 

•	 Virtual environments for inter-domain sharing. Leveraging  the  abilities  

of VIOLIN, we have designed, implemented and evaluated a system of virtual 

environments for inter-domain sharing. VioCluster [28] is a system  that  allows  

multiple independently administered computational clusters to share resources 

by temporarily lending and borrowing cluster nodes. We observe that many 

computational clusters go through phases of utilization. They often sit idle 

for long stretches of time followed by periods of demand beyond their capabil

ities. The VioCluster system monitors the resource demands of each cluster 

by communicating directly with their batch schedulers. The number, size, and 

runtime of the jobs in the scheduler are applied to domain-specified policies 

in order to facilitate the lending of idle nodes of some clusters to others that 

are overloaded. The system has been shown to mitigate large spikes in cluster 

load. Existing virtualization-based cluster load-balancing mechanisms can only 

be used to balance load within a single physical cluster. VioCluster can safely 

distribute load beyond domain boundaries while maintaining strict  autonomy  

of each administrative domain. 
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•	 Adaptive virtual environments for shared cyberinfrastructure. We  

have developed, implemented, and evaluated a system of virtual environments 

based on VIOLIN intended to improve application performance and  increase  

the efficient use of a shared cyberinfrastructure. This system enables  the  mech

anisms and policies for virtual environment adaptation. Users and user groups 

utilize cyberinfrastructure resources through isolated VIOLIN virtual environ

ments customized for their specific needs. Further, each environment transpar

ently relocates itself through the cyberinfrastructure consuming resources and 

adapting to the environmental characteristics of its internal applications. In 

contrast to VioCluster, adaptation decisions are made using only  data  observ

able from outside of the virtual environments (e.g. CPU, memory, and network 

utilization). The system predicts the resource needs of applications running 

within the virtual environments without any knowledge of the specific  appli

cation. The predictions are used to determine the appropriate way in which 

to adapt resource allocation to the needs of applications running within the 

virtual environments. The ability to transparently adapt environments to ar

bitrary applications is essential to the efficient use of cyberinfrastructure. Our 

study shows that these techniques greatly increase application performance and 

overall infrastructure resource utilization. 

1.3 Dissertation Organization 

This dissertation is organized into 7 chapters including this introduction chapter. 

Chapter 2 lays out the framework for the dissertation. Chapter 3 discusses related 

works. Chapter 4 presents the details of VIOLIN enabling mechanisms. Chapter 5 

presents the application of VIOLIN to inter-domain cluster sharing. Chapter 6 dis

cusses adaptation mechanisms and policies for VIOLIN virtual environments deployed 

on a shared cyberinfrastructure. Concluding remarks and future work are discussed 

in Chapter 7. 

http:cyberinfrastructure.We
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2. OVERVIEW OF VIOLIN FRAMEWORK 

This chapter presents an overview of the VIOLIN integrated framework for utilizing 

cyberinfrastructure. 

2.1 Overview 

Figure 2.1 shows the overall organization of the VIOLIN framework. There are 

three main components whose development and concepts build upon each other to 

create fully adaptive virtual environments for cyberinfrastructure: (1) the basic vir

tual environment enabling middleware (VIOLIN), (2) adaptive inter-domain sharing 

Autonomic VIOLIN Environments VioCluster 

Cyberinfrastructure Federation Cluster Resource Sharing 
and Managment Mechanisms and Policies 

VIOLIN Virtual Environments 

Virtual Environment
 
Enabling Middleware
 

Fig. 2.1. Road map toward the integrated VIOLIN framework for 
virtual environments in a shared cyberinfrastructure 
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mechanisms and policies (VioCluster), and (3) mechanisms and policies for autonomic 

adaptive virtual environments in shared infrastructures. 

2.1.1 Underlying Cyberinfrastructure 

Below the adaptive virtual environment framework described in  this  thesis  sits  

the cyberinfrastructure. There is growing realization that computers,  networks,  and  

network-attached devices have developed to the point where any device, regardless 

of location, can be used by any scientist anywhere in the world to  perform  tasks  not  

possible using local infrastructure. Cyberinfrastructure is  the  term  created  by  the  

National Science Foundation (NSF) to describe its vision of the federation of a large 

number of distributed resources to be used by a wide range of users. The challenges to 

the development of a cyberinfrastructure are (1) facilitation of cooperation between 

independently administered devices and (2) the need to provide diverse users and 

user groups with a simple, easy to use interface through which to  utilize  resources  

that are heterogeneous, distributed, and independently administered. 

In 2003, the NSF released a blue-ribbon advisory panel report on  cyberinfrastruc

ture [29]. In their report, the NSF presented its desire to create shared cyberinfras

tructures that enable science and engineering innovation. The work presented in this 

dissertation is among work that shares the long-term vision. 

2.1.2 VIOLIN Virtual Environments 

The goal of the next generation cyberinfrastructure is to federate massive amounts 

of heterogeneous resources that are available through the Internet and make the re

sources available to users. Unfortunately, existing methods for sharing independently 

administered resources have limitations. Theses methods often use restrictive user au

thentication models that require manual creation and monitoring of accounts within 

each independent domain. Independent authentication in each domain hinders the 

ability to federate infrastructures. In addition, the heterogeneity seen across do
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mains limits the portability of most applications. In order to provide for portability, 

some cyberinfrastructure projects [30–32] require application programmers to use in

frastructure specific API’s and link their codes with infrastructure specific libraries. 

Most users, especially those who are not computer experts, would prefer to remain 

unencumbered by the details surrounding access to resources and  do  not  wish  to,  or  

may not be able to, modify or recompile existing codes. We argue that the virtual

ization of cyberinfrastructure resources, through both virtual machines and virtual 

networks, can allow them to be used as if they were resources configured and admin

istered locally. 

The VIOLIN middleware interacts with the infrastructure to form the founda

tion of our integrated framework. The VIOLIN middleware manages the creation, 

destruction, and adaptation of multiple virtual environments sharing the resources 

of the infrastructure. Each virtual environment is composed of  one  or  more  virtual  

machines connected through an isolated virtual network. The VIOLIN  middleware  

uses machine and network virtualization to decouple the underlying infrastructure 

from the virtual environment and provide cyberinfrastructure users with a familiar 

look-and-feel of a customized private local-area network. Users can execute unmod

ified applications (both new and legacy) as if they were utilizing dedicated local re

sources. Meanwhile, the cyberinfrastructure is relieved of its  per-domain  user  account  

maintenance responsibilities. Domains can participate in the cyberinfrastructure by 

providing support of virtual machines and agreeing to host virtual machines from the 

participating domains. 

Although enabling VIOLIN virtual environments is a major contribution in it

self, the adaptation abilities of virtual environments provide a unique opportunity. 

VIOLIN provides fine-grain control of the amount of resources (CPU,  memory,  and  

network bandwidth) allocated to each virtual machine within a  VIOLIN  environment.  

Further, it provides coarse-grain control by enabling the live migration of individual 

virtual machines, or whole virtual environments, between physical hosts or domains. 
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In 2005 VIOLIN was deployed on a production cyberinfrastructure called the 

nanoHUB [26]. The nanoHUB is a web-based system providing access to high-

performance nanotechnology simulations. Since VIOLIN’s deployment it has sup

ported the execution of thousands of simulations for hundreds of users and has be

come an essential part of the nanoHUB’s computing backend. As of  this  writing,  

production VIOLIN environments are utilized to run many of the most common par

allel and distributed nanoHUB applications and have become some of its most secure, 

stable, and reliable computational facilities. VIOLIN virtual environment enabling 

mechanisms are presented in Chapter 4. 

2.1.3 Adaptive Inter-domain Cluster Sharing 

With VIOLIN virtual environments in place, we have created an integrated  au

tonomic adaptation platform that monitors and adapts virtual environments to the 

applications they are running. By placing autonomic adaptation control facilities on 

top of VIOLIN environments and adapting the allocation of resources to applica

tions we gain unique advantages in investigating efficient utilization of computational 

infrastructure. 

The VioCluster adaptive inter-domain cluster sharing system is the first system 

built upon the VIOLIN middleware. VioCluster allows independently administered 

computational clusters to share resources while each cluster retains isolated adminis

trative authority. VioCluster leverages VIOLIN’s ability to virtually extend a physical 

cluster to a remote domain through the on-demand creation of virtual machines as 

part of the physical cluster. VioCluster’s most significant contributions are to adapta

tion policies implemented to maximize the performance benefits of adaption through 

defining effective cluster-specific node lending and borrowing policies. The policies 

increase the overall performance of the system while protecting individual clusters 

from the negative effects of lending nodes. 
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Chapter 5 presents the implementation of the VioCluster system and the study 

of its ability to increase the performance of computational clusters. 

2.1.4 Autonomic Virtual Environments for Shared Cyberinfrastructure 

VIOLIN and VioCluster together demonstrate the benefits of adaptive virtual 

environments. VioCluster, however, does not use all of the dynamic abilities of VI

OLIN. It only uses on-demand creation, destruction, and expansion of virtual en

vironments. Building on the adaptive concepts applied by VioCluster, we created 

autonomic virtual environments for wide-area multi-domain cyberinfrastructure  that  

can scale resource allocation and migrate live virtual environments across distributed 

infrastructure. These fully autonomic virtual environments have no dedicated hosts, 

instead, they exist in the dynamic cyberinfrastructure and flow through the available 

resources consuming resources and adapting to environmental changes. The primary 

contribution of autonomic virtual environments is to the creation of adaptation mech

anisms and algorithms. 

Chapter 6 presents the implementation of the autonomic virtual environment sys

tem and discusses the experimental deployment of the system on the nanoHUB’s 

infrastructure. 
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3. RELATED WORK 

3.1 Virtual Machines 

Virtual machines have been used for computing since the early 1960’s  when  they  

were developed along with other forms of time-sharing operating systems [33]. Before 

the introduction of virtualization, computing systems research followed the paradigm 

where in one program executed on one machine at any given time. Time-sharing  

operating systems changed the way computers were used by allowing multiple pro

grams to run on a single computer, seemingly at the same time. At their inception, 

there were two purposes for developing and using time-sharing systems, (1) to more 

efficiently use available computing resources, and (2) to create a more productive 

interface for humans to interact with computers [34]. To this day,  the  motivations  

behind modern virtualization platforms remain the same as over 40 years ago. Ad

vances in virtualization continue to increase the efficiency of computational capacity 

as well as provide convenient interfaces to massive amounts of computational power. 

The earliest notable virtual machines were developed as a time-sharing system 

for IBM’s System/370. Often simply called VM or VM/370, Virtual Machine Fa

cility/370 [35] is a second generation time-sharing system that pioneered the use of 

virtualization. VM/370 allows multiple users to simultaneously interact with their 

own copy of a single-user operating system called Conversational Monitor System 

(CMS). Collectively, all CMS instances simultaneously use a single  processor  and  are  

controlled by the Control Program (CP). The CP multiplexes the available resources 

while maintaining strict isolation between each operating system. Remarkably, the 

CP/CMS model remains very similar to modern virtualization methods. The modern 

equivalents of the Control Program are called Virtual Machine Monitors (VMM) or 
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Hypervisors and virtual machines now commonly run off-the-shelf multi-user operat

ing systems. 

Throughout the 1960’s and 1970’s considerable research went into  developing  vir

tual machines as time-sharing mechanisms. However, from the 1970’s  to  the  mid

1990’s operating systems such as UNIX, Linux, BSD, Solaris, Windows and many 

others that use the more familiar single kernel multiple-user paradigm became very 

popular while interest in virtualization has diminished. 

More recently, machine and network virtualization has seen a renaissance.  It  has  

become common to use personal computers simultaneously running multiple operat

ing systems that free the user from the limitations imposed by any  individual  operat

ing system. Further, using powerful servers, it is now possible for large server farms to 

be completely based on virtual machines for easy management and flexible resource 

provisioning. Following the philosophy of the original virtual machines, modern vir

tual servers efficiently share the limited resources of a server farm while maintaining 

isolated customized servers for their customers. In addition, virtual servers can be 

moved between hosts within the server farm to avoid maintenance downtime and 

increase performance and availability. 

3.1.1 Hardware Level Virtualization 

The original virtual machines used in VM/370 were what today are called hard

ware level virtual machines. Hardware level virtualization is  distinguished  from  other  

types of virtualization by the technique of creating virtual hardware  that  exactly  

replicates real hardware. The unmodified guest operating system interacts with fa

miliar virtual hardware. In the case of VM/370 virtual machines, each copy of the 

CMS operating system interacts with its own virtual IBM System/370. 

By providing replica virtual hardware, hardware level virtualization has the crucial 

benefit of supporting a wide variety of off-the-shelf operating systems. Platforms like 

VMware Server can easily support multiple virtual machines running unmodified 
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versions of Windows, Linux, Solaris, BSD, or most other operating systems for x86 

architectures. The flexibility and ease of use of these systems continues to drives their 

popularity. 

Virtualizing raw hardware, however, incorporates unnecessary overhead. Much 

of the I/O and networking capabilities of virtual machines can be made significantly 

more efficient by optimizing the virtual hardware. For this reason, many hardware 

level virtualization platforms use a method called paravirtualization. In  paravirtual

ization, the strict separation between the VMM and the guest OS is broken. The 

VMM (often referred to as a hypervisor in paravirtualization) provides a modified set 

of virtual hardware that interacts with a modified guest OS. Xen is one of the more 

popular examples of paravirtualization. The paravirtualization optimizations in Xen 

allow it to provide higher performance than VMware Server, however, commercial 

operating systems, for example all versions of Microsoft Windows, cannot be run on 

Xen without special support from the manufacturer. It is important to note that 

hardware support for virtualization seen in the Intel Virtualization Technology (VT) 

chips [36] and AMD Pacifica [37] has become more common and allows for unmod

ified guest operating systems to run using some paravirtualization techniques while 

achieving better performance [38]. 

The following is a list of many of the popular hardware virtualization platforms 

and a brief description of the unique properties of each: 

•	 VMware [39]. Possibly the most popular virtualization platform for business  

and personal use, VMware has a wide range of virtualization products including, 

VMware Workstation, VMware Player, VMware Server (formerly VMware  GSX  

Server), and VMware ESX Server. VMware Server is a free version of VMware 

that runs on top of an existing operating system (currently Windows, Linux, 

and OS X). It supports any x86 operating system as a guest but suffers from 

reduced I/O performance due to it pure machine level virtualization. VMware 

ESX Server [40, 41] is not free but is a high performance paravirtualization 

http:paravirtualization.In
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system with increased I/O performance [42]. VMware ESX Server also includes 

live migration capabilities [25]. 

•	 Xen [6]. Xen is the most popular open-source paravirtualization platform  avail

able today. Possibly the most popular virtualization platform in academia, Xen 

has a large community of active developers and is easy to modify. Xen provides 

both good performance [43] and live migration capability [24]. 

•	 User-Mode Linux [7]. Originally developed as a platform to simplify Linux 

kernel development, UML was never intended to be a full-fledged virtual ma

chine platform. However, its fully user-level implementation and open-source 

Linux-based implementation makes UML a ideal candidate for many uses. 

•	 Parallels [44]. Originally a competitor of VMware, Parallels became popular 

with the release of the Parallels Desktop for Mac. At the time, VMware  Server  

did not support Mac OS X hosts. Many OS X users run Windows as a guest 

on Apple hardware using Parallels. 

•	 Microsoft Virtual PC [45]. Virtual PC has been around since 1997. Origi

nally, it was designed to support Windows OS’s running on Power-PC Macin

toshs. When virtualization began its renaissance, Microsoft bought Virtual PC 

and continues to develop it as a virtualization platform for Windows. 

•	 Kernel Virtual Machine (KVM) [46] . KVM is a loadable kernel module 

for Linux based on QEMU [47]. KVM provides full virtualization from within 

the Linux kernel and has been included as part of the mainline Linux kernel 

since version 2.6.20. Although it is in its infancy, initial evaluation shows that 

KVM may provide better performance than Xen [48] 

3.1.2 Operating System Level Virtualization 

Operating system level virtualization is another popular form of virtualization 

that is implemented at a different level of the software stack. What  differentiates  
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operating system level virtualization from hardware level virtualization is that there 

is no true VMM, instead there is a single instance of an operating system that is shared 

by all virtual machines. Virtual machines are isolated from one another through a 

kernel level abstraction but they share the same process scheduler, network stack, 

and device drivers. Because there is only one operating system, these systems are 

light weight and have higher performance than machine level virtualization systems. 

However, they are less customizable and may not provide as high a level of isolation 

(i.e.	 virtual machines often share a single IP address and set of  ports).  

Popular operating system level virtualization platforms include: 

•	 Linux-VServer [49]. VServer is an open-source Linux-based OS level virtu

alization platform. It is mature and stable enough to be included with many 

popular Linux distributions and is the fundamental virtual abstraction used by 

PlanetLab [4]. 

•	 Virtuozzo [50]/OpenVZ [51]. OpenVZ  is  very  similar  to  Linux-VServer.  

Most notably, Virtuozzo is based on OpenVZ. OpenVZ is one of the few oper

ating system level virtual machines systems that provides for VM migration [52]. 

•	 FreeBSD Jails [53]. Operating system level virtualization for BSD. 

•	 Solaris Containers [54]. Operating system level virtualization for Solaris. 

3.1.3 Virtualization and Dynamic Adaptation 

Beyond isolation and customization, the most useful but least understood aspects 

of virtualization are its dynamic adaptation capabilities. Much  work  has  been  done  

in creating virtual machines that perform nearly as well as raw hardware [55, 56]. 

However, we have just scratched the surface on virtualization’s ability to provide 

better performance through dynamic application-transparent adaptation. 



17 

Resource Scaling 

Many virtualization platforms provide facilities for controlling the resource alloca

tion of virtual machines at runtime. Most commonly, the VMM can scale the amount 

of CPU capacity, memory, and network bandwidth allocated to a virtual  machine.  

Xen 3.0, for example, uses Slacked Earliest Deadline First (sEDF) [57] processor 

scheduling which provides weighted CPU sharing among virtual machines. Each vir

tual machine is allocated a percentage of the CPU and the Xen hypervisor guarantees 

the allocations. Further, the allocated percentage of CPU can be changed at any time 

during the life of the virtual machine. 

Xen also allows for the scaling of memory allocation. While a virtual machine 

is running, the amount of memory a virtual machine is using can be  increased  or  

decreased up to a maximum determined upon the creation of the virtual machine. 

This feature is quite impressive when the effect on the guest operating system is 

considered. To enable memory scaling, the guest operating system needs to be able 

to handle changes in memory size at runtime. Most operating systems have not 

been implemented with this feature. Clearly, Xen’s ability to modify memory size at 

runtime does not work with unmodified guest operating systems and  is  a  feature  of  

paravirtualization. Pure machine based virtualization methods (including VMware 

Server) using unmodified guest OS’s can not modify memory allocation at runtime. 

Machine Migration 

Among the most sophisticated features of any virtual machine platform  is  the  abil

ity to migrate virtual machines between hosts. Virtual machine migration involves 

pausing a VM, transferring its state to another host, and restarting it. The challenge 

to migrating virtual machines is maintaining access to the state of the virtual machine 

and maintaining an appropriate network configuration, both of which are necessary 

in order to reinstantiate the virtual machine. In current virtualization platforms, 

including Xen and VMware ESX Server, these challenges are met by  restricting  mi
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gration to within a single LAN or layer-2 network. The virtual machine’s  filesystems  

are stored in NFS accessible storage. Both the source and destination hosts must 

have access to the NFS store eliminating the need to transfer the larger filesystem 

images. Further, networking configurations can remain unchanged due to the bus 

architecture used by many common layer-2 networks, including Ethernet. Before and 

after the migration, the virtual machine remains part of the local Ethernet and can 

send and receive data without modifying the network configuration. In contrast, VI

OLIN virtual environments can migrate live across a wide-area network due to the 

implementation of virtual networking at a lower level in the network stack (layer-2). 

Some platforms, including Xen and VMware ESX Server, allow for the live mi

gration of virtual machines. In live migration, the virtual machine remains running 

through the execution of the migration. When performed efficiently, the migration 

takes approximately as long as is needed to transfer the virtual machine’s memory 

from the source host to the destination. However, the actual downtime the virtual 

machine experiences is less than one second [24]. These live migration facilities are 

key to VIOLIN’s ability to provide wide-area adaptation of virtual environments. 

3.2 Virtual Networks 

There are several virtual networking systems which are similar to VIOLIN net

working. Each of these systems has its own benefits and limitations. 

•	 VNET1 [17,58]. The VNET project at Northwestern University creates virtual 

network overlays composed of virtual machines residing on distributed hosts. 

VNET provides a virtual a layer-2 Ethernet that connects remote virtual ma

chines to a local physical LAN. As opposed to VIOLIN, VNET does not  main

tain strict isolation between virtual networks. Instead, VNET creates isolation 

on a shared LAN by assigning IP addresses to virtual machines such that the 

1Several similar projects share the name ‘vnet’. We discuss Peter Dinda’s VNET project from 
Northwestern University 
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co-located virtual networks use disjoint sets of IP addresses. In this configu

ration, misconfigured IP virtual machines can have negative effects on other 

virtual networks. One salient feature of VNET is the ability to automatically 

find shorter paths between virtual machines in the virtual network through 

Internet increasing performance of applications running inside the virtual net

work [18, 59]. 

•	 IPOP and ViNE. IPOP  [60] and  ViNE  [61,  62]  are  both  projects  created  

at the University of Florida’s Advanced Computing and Information System 

Laboratory. IPOP and VIOLIN share the P2P layer-2 approach to virtual  

networking. A P2P network is utilized to tunnel Ethernet frames between 

virtual machines. ViNE virtualizes at the IP layer (layer-3) and  is,  therefore,  

similar to traditional corporate VPN’s. ViNE is limited, however, by requiring 

the modification the routing tables of the local IP level Internet edge routers. 

3.3 Virtual Clusters and Workspaces 

A system  which  shares  similar  goals  to  VIOLIN  is  Cluster-On-Demand (COD) [21]. 

Although Cluster-On-Demand does not use virtual machines, it allows dynamic shar

ing of resources between multiple clusters based on the same pool of hosts. In a 

similar fashion to Oceano [63] and Emulab [64], Cluster-On-Demand reallocates re

sources by using remote-boot technologies to re-image a physical machine and install 

preconfigured disk images from the network. The disk image that is installed de

termines which cluster the nodes will belong to upon booting. In  this  way,  Cluster

On-Demand can redistribute the resources (at the granularity of a node) of a cluster 

among several logical clusters sharing those resources. When we compare our work 

with Cluster-On-Demand we see two projects that have very similar goals; however, 

Cluster-On-Demand works by reinstalling the base operating system  of the  machines.  

Our work creates virtual environments running on top of the existing VMMs and 

is designed to be deployed over wide-area networks. Cluster-On-Demand is more 

http:booting.In
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suited for a centralized pool of machines supporting logical clusters  administered  by  

trusted local administrators. The authors of Cluster-On-Demand are also studying 

market-based algorithms for negotiating control over resources in a shared cluster 

environment [65, 66]. We are also interested in machine broker policies, however, we 

do not focus on market-based strategies with VIOLIN. 

More recently, the group working on Cluster-on-demand has developed a new 

project called Shirako [67–71]. Shirako is a virtualization-based cluster system in 

which multiple virtual clusters are deployed on a single host cluster.  Similar to  our  

work, the distribution of resources to virtual clusters changes as demand for cluster 

resources changes. Shirako is limited to a single host cluster and does not extend 

beyond domain boundaries. 

The Virtual Workspaces [12, 13, 72, 73] project at Argonne National Laboratory 

has the goal of providing policy-driven resource management and  dynamically  de

ployable environments for Grid applications. As part of the Globus project, Virtual 

Workspaces has the potential to be integrated with a widely deployed Grid meta

scheduler. Up to now, the work on Virtual Workspaces has focused on just-in-time 

deployment of virtual machine through Grid meta-schedulers [74].  

PlanetLab [3] is a infrastructure consisting of computers distributed across the 

World and made available for experiments on networking and distributed systems. 

Users can acquire virtual machines, called ‘slices’, on any of the cooperating hosts. 

PlanetLab is intended to be a test bed for distributed systems that  possesses the  

characteristics of real Internet overheads and congestion. Further,  PlanetLab  does  

not create isolated virtual networks. It is only intended as a platform  for  world-wide  

distributed system experiments. A limitation of PlanetLab is its use of VServer. 

Using VServer, all virtual machines on a host share a single IP address  and  must  

cooperate when accessing network ports. 
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3.4 Grid Computing and Cyberinfrastructure 

Currently, the most common computational resource sharing methods are seen 

in the creation of large, shared Beowulf [75] style computer clusters that multiplex 

resources through a batch scheduler such as PBS [76] or Torque [77].  A  common  

example of such systems would be a large general-purpose cluster administered by a 

campus-wide authority in a university system and used by members of many depart

ments. More recent examples of decentralized resource sharing include cycle stealing 

applications such as SETI@Home [78], as well as meta-scheduling dedicated Grid in

frastructures like Globus [1, 79], Condor [30], and Sun Grid Engine [80]. All of these 

solutions provide access to seemingly endless amounts of computational power with

out incurring the full cost of ownership. However, common to all of these systems is 

the problem that jobs are run on nodes over which the job owner has no control. 

Another interesting system that uses virtual machines for resource sharing is In-

VIGO [10, 81–84]. In-VIGO is a distributed Grid environment supporting multiple 

applications which share resource pools. The In-VIGO resources are virtual machines. 

When a job is submitted, a virtual workspace is created for the job  by  assigning  

existing virtual machines to process it. During the execution of the job the virtual 

machines are owned by the user and the user has access to his or her unique workspace 

image through the NFS-based distributed virtual file system [85–87]. An automatic 

virtual machine creation project called VMPlants [88] is provided with In-VIGO. 

VMPlants is used to automatically create custom root file systems to be used in 

In-VIGO workspaces. 



22 

4. ENABLING VIRTUAL ENVIRONMENTS IN A 

SHARED INFRASTRUCTURE 

4.1 Introduction 

With the advances in cyberinfrastructure technologies, considerable opportunities 

have been created for a broad spectrum of distributed and parallel computing ap

plications to take advantage of massive amounts of aggregate computational  power  

available through the Internet. Spanning multiple domains, a  cyberinfrastructure  

aims to provide for the federation, allocation, and management of heterogeneous net

worked resources and makes them available to a large number of users.  As  such,  large  

portions of the global computing community are joining together to form wide-area 

shared cyberinfrastructures, realizing the vision of global sharing and access. 

Research challenges exist in fulfilling the full potential of such  a  shared  cyberin

frastructure. The users of traditional resource sharing technologies, such as Beowulf 

Clusters [75] and the Grid [30,79,80,89,90], are familiar with the traditional job sub

mission and execution model as well as the service-oriented access model as defined 

by the Open Grid Services Architecture (OGSA) [79]. Powered by technologies such 

as the Grid Resource Allocation and Management (GRAM) of Globus [91], the Grid 

provides a single detail-hiding interface for requesting and using networked resources 

for the execution of jobs submitted by various users. These job and service models 

have been widely used and they define an appropriate paradigm for resource shar

ing and program execution. Applications exist however, that exhibit  an  operational  

rather than functional nature, making it difficult to map these applications  to  inde

pendent jobs or services. An example is the fine-grain emulation of real-world systems 

such as airport operations and anti-terrorism exercises, each of which involves a large 

number of dynamic and diverse objects, contexts, and object interaction patterns. 
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Furthermore, applications may require specially configured and  customized exe

cution environments, including operating system and network level services as well 

as application-level services, packages, and libraries. For example, many scientific 

applications require mathematical and communication libraries such as Basic Linear 

Algebra Subroutines (BLAS) [92] and Message Passing Interface (MPI) [93], and many 

Java applications insist on a specific version of JVM. In a distributed infrastructure, 

such specific requirements may not always be mutually accommodated. Moreover, 

the requirements may be in conflict with each other (e.g., different versions of the 

same library). 

Finally, it is not possible to prevent users from running applications that are un

trustworthy or potentially mal-functioning. Software bugs and  vulnerabilities  may  

be introduced into an application either inadvertently or deliberately. For exam

ple, security vulnerabilities have been identified in well-known applications such as 

SETI@Home [78]. These vulnerabilities could be exploited to launch  network  attacks  

against any machine on the Internet. As a result, it is critical to contain any se

curity impact incurred by an application, so that other applications, as well as the 

underlying shared infrastructure, will not be affected precipitously. 

It is clear that the need exists for mutually isolated distributed environments on 

shared infrastructure as a complement to the job and service-oriented sharing model. 

To address the problems discussed above, mutually isolated distributed environments 

should have the following properties: (1) on-demand creation, (2) high customizability 

and configurability, (3) binary compatibility for applications, and (4) containment of 

negative impact of malicious or mal-functioning applications. 

In its renaissance virtualization has become a promising technology for enabling 

virtual environments. Virtualization introduces a level of indirection  between  ap

plications and the shared infrastructure. Technologies exist for the virtualization of 

machines and networks. Examples of virtual machine (VM) enabling systems include 

VMware [9], User-Mode Linux (UML) [7], and Xen [6]. Despite implementation dif

ferences, these systems all enable virtual machines that achieve binary compatibility 
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and networking capability just as do real machines. Examples of  virtual  network  

enabling systems include VNET [17], IPOP [60], and ViNE [61] all of which create 

virtual IP networks for confined virtual machine communications. However, VIO

LIN [15] creates virtual environments by introducing additional wide-area isolation 

and adaptation capabilities. 

The application of virtual machine technology to Grid computing was first pro

posed by Figueiredo, Dinda, and Fortes [11]. They have identified six major advan

tages of virtual machines for the Grid, namely security and isolation, customization, 

legacy support, administrator privileges, resource control, and site-independence. 

Their projects, In-VIGO [10] and Virtuoso [14], are among the first  to  address  Grid  

resource virtualization and heterogeneity masking using virtual machine abstraction. 

The VMPlants architecture [88] within In-VIGO enables creation of customized vir

tual machines that exist in a shared execution environment adhering to the traditional 

job submission and execution model. 

Taking virtualization even further, we have developed the VIOLIN middleware 

to enable isolated virtual environments on a shared cyberinfrastructure. The goal 

is to provide applications with customized and consistent runtime and networking 

environments with strong isolation from each other. The rest of  this  chapter presents  

the desirable features, experimental results, and ongoing work towards this goal. 

Figure 4.1 gives a multi-layer overview of virtual environments on a shared physical 

infrastructure enabled by VIOLIN. The bottom layer is the physical infrastructure 

with heterogeneous networked resources spanning multiple network domains. The 

middle layer is the enhanced infrastructure integrated and managed by value-added 

middleware systems. Our middleware for virtual environments is deployed in this 

layer. The top layer consists of mutually isolated virtual environments, each with 

its own network, operating system, and application services customized  for  the  ap

plications running in it. They are employed by users or user groups with various 

computational needs. 
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Fig. 4.1. Multi-layer overview of virtual distributed environments on 
a shared  cyberinfrastructure  

Virtual distributed environments are supported by the integration of virtual net

work and on-demand virtual machine creation and customization technologies. This 

leads to the VIOLIN middleware system we developed that enables virtual distributed 

environments. 

The four desirable properties of virtual distributed environments mentioned in 

Chapter 1 will be realized as follows: 

•	 On-demand creation of VIOLIN environments involving both virtual machines 

and the virtual IP network connecting the virtual machines. 

•	 Customization of VIOLIN environments including the virtual network  topology  

and services, operating system services, and application services/packages/libraries. 

•	 Binary compatibility is achieved by creating the same runtime and network 

environment under which an application was originally developed. 
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•	 Containment of negative impact is achieved by isolating virtual network address 

space, limiting both virtual machine resources and inter-virtual machine traffic 

rate, and granting users administrative privileges within the virtual environ

ments without requiring privileges at the physical infrastructure level. 

4.2 Virtual Machines and Virtual Networks 

We first survey techniques related to networking support for virtual machines. 

Current virtual machine technologies can be used to create localized virtual private 

environments. Virtual machines can be requested and instantiated on-demand, each 

with a regular IP address as well as a customized installation of  operating  system  

and application services. Enhancing the underlying host’s operating system allows 

machines to support multiple virtual machines each of which are guaranteed a ‘slice’ of 

the physical host with respect to CPU, memory, and network bandwidth. Typically, 

the modified operating system that supports multiple independent virtual machines 

is called a Virtual Machine Monitor. 

Figure 4.2 shows a typical host that is running a VMM which is supporting vir

tual machines. Virtual machines reside on a physical machine or  host. A  virtual  

machine monitor sits between the host’s hardware and the virtual machines. The 

VMM directly interfaces with the hardware and provides each VM with its own 

virtual hardware. The virtual machine’s main responsibility is to manage the mul

tiplexing of the real hardware into multiple sets of virtual hardware for the virtual 

machines. The operating systems of each virtual machine logically interface with 

their own virtual hardware and are unaware that they are sharing physical hardware 

with other virtual machines. As a result, multiple virtual machines support multiple 

users, processes, and applications, and can utilize a single piece of  hardware while  

maintaining completely isolated and independent operating systems,  configurations,  

and user space. 
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Fig. 4.2. Typical virtual machine configuration including the virtual 
machine monitor and two virtual machines. 

Using the technology described above, however, isolation is achieved  only between  

individual virtual machines. A set of virtual machines does not automatically cre

ate an isolated virtual environment. Typically, virtual machines use shared networks 

which cause them to be addressable to/from other Internet hosts. Moreover, it is 

difficult to manage multiple virtual networks because all the virtual machines share 

the same IP address space. As a result, conflict may occur between these virtual net

works and administration of multiple conflicting virtual networks must be performed 

by a single administrator. 

Although virtualization makes use of multiplexing at the operating system level, 

networking is established without considering isolation. Figures 4.3-4.5 show how 

virtual machines are commonly networked. There are three types of networking 

techniques that are possible using currently available off-the-shelf virtual machines. 

•	 Host-only networking. Figure  4.3  shows  host-only  networking.  As  in  all  

types of virtual machine networking, the virtual machine has a  virtual  NIC  



28 

Fig. 4.3. Virtual machines using host-only networking. 

provided by the VMM. In host-only networking the virtual NIC on each virtual 

machine is linked to a virtual switch residing on the host. The virtual  switch  is  

software that sits below the virtual machine and above the VMM. It is impor

tant to note that each virtual machine has its own operating system including 

it’s own network stack. The virtual switch communicates with virtual  NICs  

by sending and receiving Ethernet frames. In this configuration, the virtual 

machines communicate through a virtual network that is isolated from the un

derlying physical network. The limitation of host-only networking is that only 

virtual machines on a single host can communicate through the switch.  This  

is analogous an isolated LAN that is not connected to any WAN and has wires 

that are only long enough to reach machines in a single room. 

•	 Network Address Translation (NAT) networking. Figure  4.4  shows  NAT  

networking. In this configuration the host becomes part of the host-only  network  

and acts as a NAT router forwarding IP packets from the virtual machines  to  
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Fig. 4.4. Virtual machines using NAT networking. 

the physical network. As in all NAT routing, the virtual machines can connect 

to services outside of the host, but they cannot host services and  make  them  

accessible by external machines. This is analogous to a small LAN  located  in  

a private  residence.  The  computers  on  the  LAN  are  confined  to the house and 

can access Internet services through a NAT router connected to a DSL or Cable 

ISP. 

•	 Pass-through networking. Figure  4.5  shows  pass-through  networking.  In  

pass-through networking the host uses a bridge1 to extend the physical network 

to include the host-only network. The host is responsible for listening  to  the  

physical network for all Ethernet frames and for forwarding them to the internal 

virtual machines. Using pass-through networking, the virtual machines can 

both access the outside network as well as host services that can be accessed 

from outside of the host. The drawback of using pass-through networking is 

1A bridge  is  a  standard  Linux  facility  typically  used  to  daisy-chain multiple physical Ethernets 
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Fig. 4.5. Virtual machines using bridged networking. 

that each virtual machine needs to have an IP address from the host network’s 

IP address space. In situations where large numbers of virtual machines are 

needed the address space may become exhausted. This scenario is  analogous  to  

daisy-chaining the host only network to an existing physical network.  

All three of these virtual machine networking techniques are useful  for  many  ap

plications of virtual machines; however, they all have limitations that prevent their 

use for creating isolated virtual environments that span the cooperating  domains  of  

a shared  cyberinfrastructure.  

4.3 Design of VIOLIN Networking 

The vision of VIOLIN is to enable adaptive isolated virtual environments dis

tributed across a cyberinfrastructure. The key properties that VIOLIN must provide 

are: (1) to federate groups of cyberinfrastructure resources to be utilized for a single 
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purpose, (2) to maintain isolation between virtual environments and the host infras

tructure, and (3) to enable the adaptive properties of virtualization in a infrastructure 

distributed across domains. None of these properties is possible with the standard 

virtual machine networking techniques described above. 

To meet these challenges, VIOLIN uses a novel fourth category of  virtual  ma

chine networking we call tunneled networking or VIOLIN networking. In  contrast  

to standard virtual machine networking, VIOLIN networking maintains the isolation 

properties of host-only networking while allowing virtual machines in the VIOLIN 

network to be distributed across the Internet. 

We introduce a level of communication indirection between the virtual machines 

and the underlying infrastructure that decouples the virtual environment from the 

underlying infrastructure. Inside a virtual environment, the virtual machines com

municate with each other using standard IP services. Below the virtual environment, 

Ethernet services are emulated via application-level tunneling mechanisms. 

The effects of this design responds to the properties needed to support  virtual  

environments on a cyberinfrastructure. VIOLIN networking enables groups of dis

tributed virtual machines to be logically on a single LAN and execute arbitrary codes 

that require LAN connectivity. Encapsulation and tunneling of  frames  isolates  these  

virtual environments. Adaptive virtualization mechanisms that  require  LAN  connec

tivity, such as live migration, can be performed over a VIOLIN network  even  though  

the network may span multiple domains. 

In addition, such a design leads to an important benefit: the VIOLIN environments 

can utilize network services that are not widely deployed in the real Internet (e.g., 

IP multicast and IPv6) and enable these network services in the virtual network. By 

virtualizing the network below layer-2, VIOLIN can support any high-level network 

protocol including non-standard ones not supported by the underlying infrastructure. 

VIOLIN can be used to create isolated virtual environments on a  shared cyber

infrastructure because it creates high-order virtual IP networks for virtual machines. 

These virtual networks have the following salient features: 

http:networking.In
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•	 Each virtual network has its own IP address space. This means that the address 

spaces of different virtual networks can safely overlap allowing for independent 

administration of multiple virtual environments sharing the same host infras

tructure. 

•	 Virtual machines in a virtual network are not visible on the Internet, preventing 

attacks from the virtual environments to the Internet as well as  direct  attacks  

from the Internet to the virtual environments. 

•	 The traffic volume between specific pairs of virtual machines is bounded  by  

a user-specified  threshold,  preventing  the  generation  of excessive traffic from 

ill-behaving virtual machines. Furthermore, the enforcement of both virtual 

network topology and traffic volume is untamperable from inside the virtual 

machines. 

•	 The layer-2 virtualization of VIOLIN provides virtual Ethernet to be stretched 

across domain boundaries. This feature allows for wide-area migration  of  vir

tual machine where the virtual machine logically remains within the original 

Ethernet. This ability places VIOLIN as one of the few network virtualization  

mechanisms that can migrate live virtual machines without modifying network 

configuration and disrupting the applications running inside. 

The design of VIOLIN employs a novel technique of networking that is analogous 

to a distributed version of host-only networking. Figure 4.6 shows  a  VIOLIN  network.  

As in host-only networking, VIOLIN virtual machines connect to  an  isolated  virtual  

layer-2 network; however in VIOLIN, virtual machines from multiple hosts can con

nect to the same layer-2 switch. As the figure shows, a VIOLIN virtual network can 

be viewed as independent LANs composed of virtual machines from multiple hosts. 
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Fig. 4.6. Virtual machines connected to a virtual VIOLIN network. 

4.4 Implementation of VIOLIN 

We have implemented a middleware system that enables VIOLIN virtual dis

tributed environments. Originally, the core features of VIOLIN were implemented 

exclusively for User-Mode Linux virtual machines [15]. Over time,  however,  the  per

formance provided by machine level paravirtualization led to the incorporation of 

a tun/tap interface that supports connectivity with many virtualization platforms. 

With the addition of the tun/tap interface, VIOLIN can support Xen and VMware 

which are the most popular virtualization platforms used in academia and industry. 

4.4.1 VIOLIN Core 

The core feature of VIOLIN networking is the ability to connect virtual machines 

residing on distributed hosts with a virtual LAN. Network traffic on the virtual LAN 

is isolated from the underlying infrastructure and virtual machines do not have a 

presence in the underlying physical network. In contrast to traditional virtual ma

chine networking techniques, virtual machines in a VIOLIN network connect to a 

distributed virtual network switch. The virtual switch is composed of multiple dae

mons one residing on each host participating in the VIOLIN network. Together the 
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Fig. 4.7. Virtual machines connect to Virtual Switch Daemons which  
tunnel traffic between hosts. 

daemons form a peer-to-peer underlay network that emulates a single  layer-two  switch  

of the VIOLIN network. 

Figure 4.7 depicts the core functionality of VIOLIN networking. In the figure 

there are two hosts and four virtual machines. The virtual machines connect to a 

VIOLIN switch daemon on its host. The switch daemons together compose  a  single  

distributed virtual switch which forwards virtual layer-2 network traffic (namely the 

Ethernet frames). This demonstrates how VIOLIN encapsulates virtual network traf

fic and maintains isolation between the VIOLIN network and the underlying  physical  

network. 

From the point-of-view of the virtual machines, the VIOLIN network is an Eth

ernet LAN that is accessible through the local VIOLIN switch daemon. The virtual 

machines send and receive Ethernet frames to and from the virtual switch as if it were 

a physical  machine  communicating  with  a physical  switch.  The virtual  machines  do  

not know where their communication partners are physically located. 

There are two planes of communication used by the VIOLIN switch. The first 

is the data plane that is used to transport the Ethernet frames between the virtual 

machines and the second is the control plane that is uses to transmit control and 

signaling messages among the distributed switch daemons. 
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Data Plane 

The VIOLIN data plane is a tunneling peer-to-peer underlay. It is solely respon

sible for obtaining and transporting Ethernet frames between virtual machines. In 

terms of the ISO 7-layer reference model, VIOLIN comprises the Physical Hardware 

Connection layer (layer-1) and Data Link layer (layer-2). Figure 4.8 shows the net

work stack as seen by the virtual machines. VIOLIN is implemented at the Link layer 

and lower with respect to the virtual machines in order to allow the deployment of any 

higher-level network protocols (e.g. IP Multicast, IPv6, or experimental  protocols)  

to be used within VIOLIN environments. 

Fig. 4.8. Network layers from the view point of both the virtual and 
physical machines. 
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In contrast, from the point of view of the host infrastructure, the VIOLIN data 

plane is at the Application layer (layer-7). The choice of application layer implementa

tion allows for complete network isolation between the VIOLIN environments and the 

underlying host network. Network frames are encapsulated within UDP packets and 

tunneled between the virtual switch daemons. The physical network never directly 

handles frames from the virtual network. In addition, each VIOLIN network exists 

in an isolated IP space giving users flexibility to apply any network setting they want 

without fear of conflict with other virtual networks or the underlying physical net

work. For example, multiple VIOLIN environments sharing the same  infrastructure  

can use IP addresses (or even MAC addresses) from the same address space. 

Control Plane 

The second communication plane used by VIOLIN daemons is the control plane. 

The set of VIOLIN switch daemons emulates a single layer-2 switch. The control plane 

is used to organize the daemons and update virtual machine location information. 

A physical  Ethernet  switch  has  many  ports through which machines connect to the 

network. The machines send Ethernet frames to the switch through the ports. The 

switch obtains the frame’s destination using the MAC address in  the  Ethernet  header.  

Based on the destination address, the switch forwards the frame to the outgoing port 

found in its look-up table. 

VIOLIN switches mimic the functionality of physical switches, however, their 

distributed nature and the dynamics of virtualization create additional challenges. 

First, the distributed switch must be able to adapt to infrastructure changes (e.g., 

node failures and the addition of new daemons and virtual machines). Second, each 

daemon composing the virtual switch must be able to adapt to changes in the virtual 

environment (e.g. the addition, deletion, or migration of virtual machines). 

To accomplish these tasks the switch daemons are organized into a peer-to-peer 

network. Each switch daemon maintains a control channel to every other switch 
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daemon. The control communication channel is independent of the  data plane  con

nections. The control plane connections are TCP connections between  each  pair  of  

switch daemons. It is important to note that any peer-to-peer scheme  will  work  and  

VIOLIN has all of the benefits and liabilities of modern peer-to-peer techniques. For 

performance reasons, the only important attribute of VIOLIN routing  is  that  the  

data plane maintain direct connections between any pairs of daemons that have vir

tual machines that are communicating. In other words, data plane traffic must only 

take one hop through the peer-to-peer network. 

4.4.2 User-mode Linux Interface 

Although VIOLIN’s features can be implemented in most virtualization archi

tectures, it was originally implemented for User-Mode Linux virtual  machines.  The  

intent was to take advantage of UML’s already existing user level execution and 

open-source code to aid our implementation. 

Standard UML virtual machines are instantiated as processes in  a  Linux  user’s  

execution space. Communication outside of the host machine is possible through a 

virtual network interface, called a tap device, residing in the host’s kernel. The UML 

virtual machine contains a virtual network interface that connects to the host’s tap 

device, and the host acts as a router forwarding packets between the virtual machines 

and onto the physical network. Root level privileges on the host are needed to safely 

create tap devices and manage the host’s routing tables that enable their use. 

VIOLIN bypasses the need for tap devices when using User-Mode Linux  and  

allows virtual machines to exist in a private IP space logically disconnected from the 

physical network. Figure 4.9 depicts a VIOLIN enabled UML virtual machine. The 

virtual machine contains a virtual network interface that does not connect to the 

host, but instead maintains a socket connection between the virtual machine’s host 

process and a virtual switch daemon existing on any host connected to the physical 

network. Placing a virtual switch daemon on each host increases performance but 
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Fig. 4.9. UML virtual machines connect directly to virtual switch 
daemons located on any accessible host. 

is not strictly necessary for UML virtual machines. The virtual switch behaves like 

a physical  switch  accepting  connections  from  many  virtual  machines and forwarding 

network packets to their destination virtual machines. 

As opposed to the more general interface described in section 4.4.3,  the  UML  in

terface allows for virtual environments that run completely in  user  space  with  respect  

to the hosts. User space virtual environments have the benefit of  running  without  

host-level administrative privileges. 

4.4.3 Generic Interface (tun/tap) 

Since the initial UML implementation of VIOLIN, more powerful, better perform

ing virtualization platforms have matured and become more popular in academic 

communities. In response, we have implemented a more universal interface to VIO

LIN. This interface relies on a kernel-level tun/tap device and supports most common 

virtualization platforms, most importantly Xen and VMware. Although  tun/tap  de

vices create a more generic VIOLIN interface they have the drawback of requiring 

some configuration by the administrator and an increased network overhead. It is 

possible to modify each virtualization platform to bypass the tun/tap devices and 

connect directly to the switch daemon similar to the UML interface; however, perfor
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Fig. 4.10. The tun/tap interface to VIOLIN supports connections 
form many popular virtualization platforms. 

mance evaluation shows that even with the tun/tap device, the overhead  of  VIOLIN  

is low, and a wide-array of virtual machines can use the interface making it an at

tractive alternative to modifying each virtual machine platform to interface directly 

with VIOLIN. 

A common  approach  to  networking  virtual machines  is  to  have  a  two-part device 

driver. The inner half of the device driver is a virtual NIC seen by the guest operating 

system while the outer half appears as a virtual NIC in the host operating  system.  

The two halves of the device shuttle frames in and out of the virtual machine. Typ

ically, the host uses standard bridging or routing mechanisms to connect the outer 

virtual device to a network. As seen in Figure 4.10, the tun/tap interface to VIOLIN 

uses a similar approach by bridging the virtual machine’s device driver to a tun/tap 

device. A tun/tap device is an operating system device driver that  has  the  outward  

appearance of the NIC, but forwards frames to a user-level process instead of a physi

cal network. In VIOLIN, the tun/tap device forwards frames to the  the  virtual  switch  
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Fig. 4.11. The tun/tap device interface allows for hybrid VIOLIN 
environments composed of both virtual and physical machines. 

daemons. The switch daemons handle the frames using the same methods as they 

handle frames originating from a UML interface. 

As an additional advantage, the generic mechanisms used by the tun/tap interface 

to VIOLIN are flexible enough to allow physical machines to connect to a VIOLIN 

network. As shown in Figure 4.11. Virtual and physical machines can connect to the 

network through the virtual switch daemons. To a physical machine a tun/tap device 

functions as any network device driver. In order for a physical machine to connect 

to a VIOLIN network, the machine must modify its IP routing table to route the 

desired traffic to a tun/tap device associated with a VIOLIN switch daemon. Traffic 

from the physical machine will be routed to the switch through the  tun/tap device  

and the switch will handle the traffic as it handles all other traffic. 

Connecting a physical machine to a VIOLIN network requires some additional 

administration. Although the machine will be connected to the VIOLIN network it 

will also be responsible for the execution of the switch daemon and the tunneling 

of frames. For this reason the physical machine must retain its physical network 

interface and the associated routing tables. As a result the physical machine will be 

a fully  connected  to both  networks.  The  effect  is  that  the  IP  address space of the 

VIOLIN network and the physical network must be disjoint. On the other hand, in 
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purely virtual VIOLIN networks the IP address spaces are independent and can safely 

overlap. 

4.4.4 Multiple VIOLIN Environments Sharing Resources 

The fundamental benefit of applying VIOLIN to shared infrastructures is network-

level isolation. Figure 4.12 demonstrates VIOLIN’s ability to  achieve  mutual  isolation  

between virtual environments sharing the same infrastructure and even the same 

hosts. 

In the figure, there are two isolated virtual environments: the blue environment 

and the orange environment. In order to maintain isolation, each environment must 

have its own distributed network switch. In turn, each host must have a switch 

daemon for each of the environments. Notice that there are independent bridges 

associated with each switch daemon. The blue virtual machines connect to the blue 

switch daemons through the blue bridges while the orange virtual machines connect to 

the orange switch daemons through the orange bridges. The blue and orange switch 

daemons form two independent peer-to-peer underlay networks, one for switches of 

each color. Although both virtual environments forward tunneled traffic over the 

same underlying infrastructure they remain logically isolated LANs. Thanks to their 

mutual isolation, all concurrently running VIOLINs use the same set of IP addresses 

for their virtual machines without causing any conflict and are mutually isolated with 

respect to traffic and network services. 

4.5 Performance Measurements 

VIOLIN is intended to provided many non-performance related value-added  fea

tures to virtual environments running on a shared cyberinfrastructure. However, 

performance is crucial to the success of VIOLIN in supporting real-world  scientific  

applications. We present two experiments measuring VIOLIN performance that show 

that the performance overhead of using VIOLIN for high-performance parallel and 
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Fig. 4.12. Multiple VIOLIN environments maintain isolation even  
when sharing the same physical resources. 

distributed applications is low. The first experiment uses the original UML virtual 

machines, while the second uses better performing Xen virtual machines. 

4.5.1 High-performance Linpack in a UML-based VIOLIN Environments 

In this section, we present experimental results from virtual environments re

stricted to hosts from a single domain. The goal is to demonstrate performance 

of UML-based VIOLIN environments compared with that of the underlying physi

cal cluster. The cluster consists of hosts each with dual 1.2GHz Athlon processors 

and 1GB RAM running Debian Linux 3.0. The hosts are connected by a 100 Mb/s 

Ethernet switch. The application running in each VIOLIN environment is the High 

Performance Linpack (HPL) [94] benchmark. Our purpose is to stress a UML VI

OLIN environment to its limit by finding the maximum number of floating point 

operations per second (Flops) it can achieve relative to the Flops achievable without 

using virtualization. 

The VIOLIN virtual cluster cannot out-perform the underlying physical cluster, 

however, a small loss of performance will justify using virtualization. We aim to show 

that virtualization has a small performance penalty. In this experiment,  we  run  HPL  

on an increasing number of processors in a physical cluster and compare the FLops 
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Fig. 4.13. Comparison of UML VIOLIN with physical cluster 

achieved with that of the same problem specification on the same number of virtual 

machines in a VIOLIN environment. For each virtual and physical cluster size we find 

the maximum possible performance by tuning HPL parameters, most notably: prob

lem size, block size, and process grid shape. There is a non-zero amount of memory 

overhead using virtualization. This overhead reduces the maximum problem size that 

can be run in a virtual environment. Increasing the problem size to use all available 

memory would not result in a fair comparison. Therefore, the problem size parameter 

is tuned to the maximum problem size that can be run by the VIOLIN environment 

and is used for both the virtual and non-virtual test of the same virtual and physi

cal cluster size. All other HPL parameters are tuned for maximum performance for 

each environment. Also, because the host machines have dual-processors, two MPI 

processes and two virtual machines per host are instantiated for  the  physical  cluster  

and VIOLIN experiments, respectively. 

Figure 4.13 shows the experimental results of running HPL on up to 64 processors 

or virtual machines. From this figure we see that the performance achievable when 
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Fig. 4.14. Measured performance of multiple UML VIOLINs concur
rently running on shared hosts. 

running HPL in a virtualized VIOLIN environment is about 85% of that running on 

the physical machine without virtualization. In addition this trend scales to a cluster 

size of at least 64 nodes. This performance penalty is small enough to justify the 

value-added features of virtualization for many applications and the scaling trend 

shows promise for the use of virtualization in larger environments. 

The results in figure 4.14 show that as more virtual environments share avail

able resources each virtual environment receives approximately an equal share of the 

resources and the aggregate performance of all virtual environments is affected very 

little. We observed an increase in aggregate performance up to 8 virtual environments 

sharing the same set of hosts followed by a very small decrease at  16  virtual  envi

ronments. These results show that there is little overhead (namely, loss of aggregate 

performance) while increasing the number of UML virtual environments up to 16. 
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4.5.2 NEMO3D in Xen-based VIOLIN Environment 

In this section we present another set of experimental results from virtual envi

ronments confined to a single cluster. The goal, again, is to demonstrate performance 

of VIOLINs compared with that of the underlying physical cluster. The difference, 

however, is that this experiment uses the more powerful and efficient Xen 3.0 virtual 

machines and the tun/tap interface to VIOLIN. The Xen experiment uses a cluster 

consisting of Dell 1425s with 2GB of RAM and two hyper-threaded Xeon proces

sors running at 3.00 GHz2. The  application  running  in  each  VIOLIN  environment  

is NEMO3D [95]. The purpose is to find the overhead of using Xen-based VIOLIN 

environments on a real MPI application. 

Several virtual environment configurations were used: 

•	 Configuration 1: One  virtual  machine  per  host.  

•	 Configuration 2: Two  virtual  machines  per  host  with  ‘locality’.  Locality  

is defined as placing virtual machines on hosts such that the pairs of virtual 

machines sharing a host are ‘neighbors’ within the NEMO3D execution (i.e. 

virtual machines that communicate heavily). Neighbors in NEMO3D commu

nicate significantly and placing them on the same hosts takes advantage of the 

fast communication within a host. We expect good performance using  this  al

location because much of the communication will be between virtual machines 

share a host which will limit the traffic tunneled through the physical network. 

•	 Configuration 3: Two  virtual  machines  per  host  without  ‘locality’.  Virtual  

machines sharing a host are NOT ‘neighbors’ within the NEMO3D execution.  

They take advantage of both processors and always use the slower inter-host 

communication. This is the least optimal allocation of two virtual machines to 

each host, and increases the load on the VIOLIN switch daemons. We expect 

2The cluster used in the previous experiment no longer exists so the Xen experiments are not directly 
comparably to the UML HPL experiments. 
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Fig. 4.15. Configuration 1: Performance of VIOLIN vs. non-VIOLIN 
environments running NEMO3D. One virtual machine or process per  
host. 

poor performance using this allocation because all tunneled traffic  will  be  sent  

through the physical network. 

The total overhead seen in Figure 4.15 (configuration 1) shows that  VIOLIN  

has an overhead of less than 6%. Compared to the UML VIOLIN environments in 

section 4.5.1 we see a significant reduction in overhead with the Xen-based VIOLIN 

environments. Many HPC applications can tolerate a 6% overhead considering the 

value-added benefits of VIOLIN. 

Figures 4.16 (configuration 2) and 4.17 (configuration 3) show that  as  we  increase  

the number of virtual machines sharing each host to two, the overhead increases. This 

is expected as the software VIOLIN switch daemons incur an increased processing load 

in order to handle twice as many virtual network frames. In addition, we know that 
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Fig. 4.16. Configuration 2: Performance of VIOLIN vs. non-VIOLIN 
environments running NEMO3D. Two virtual machines or processes 
per host with locality. 

NEMO3D communicates in a ring pattern. Figure 4.16 shows the overhead of VIOLIN 

environments when the pairs of virtual machines assigned to each host are neighbors 

in the communication ring. Figure 4.17 shows the overhead of VIOLIN when the 

distribution of virtual machines is chosen such that neighbors in the communication 

ring are never paired on the same host. In both cases there is increase in overhead 

as network traffic is increased. However, comparing Figures 4.16 and 4.17, the 

configuration without correct locality has more overhead than the one with locality. 

It should be noted here that network and I/O overhead are the largest contributors 

to the overhead of Xen and that the Xen developers are focused on increasing I/O 

performance. We would expect this overhead to be reduced with future  versions  of  

Xen. 



48 

Fig. 4.17. Configuration 3: Performance of VIOLIN vs. non-VIOLIN 
environments running NEMO3D. Two virtual machines or processes 
per host without locality. 

4.6 Summary 

In this chapter, we advocate the creation of virtual distributed environments in 

shared cyberinfrastructures. The goal is to provide applications with their own cus

tomized runtime and networking environments with strong isolation from each other 

while sharing the resources in the same infrastructure. We advocate the integration 

and extension of virtual machine and virtual network technologies, in order to enable 

virtual distributed environments. Our VIOLIN-based middleware system demon

strates the feasibility and promise of deploying virtual environments for computational 

applications.. Experimental results urge further development and investigation of vir

tual distributed environments as a useful paradigm for sharing cyberinfrastructures. 
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5. VIRTUAL ENVIRONMENTS FOR INTER-DOMAIN 

CLUSTER SHARING 

5.1 Introduction 

As demonstrated in Chapter 4, VIOLIN virtual environments are isolated, secure, 

and customizable environments that use CPU, memory, and network recourses pro

vided by a cyberinfrastructure. Chapter 4 briefly mentions dynamic properties of VI

OLIN virtual environments, such as on-demand virtual machine creation, on-demand 

virtual machines destruction, resource scaling, and live migration. The remainder of 

this dissertation addresses using the dynamic properties of VIOLIN  environments  to  

adapt to the resource demands of the applications they are running. This chapter 

presents techniques that can be used to share traditional computer clusters within 

a campus.  This  chapter  extends  the  concepts  presented  in  the  previous chapter by 

enabling the VIOLIN middleware to utilize the adaptive properties of virtualization. 

The challenge addressed is to use the adaptive abilities of virtualization to increase 

performance and efficiency of computer clusters. We target computer clusters due to 

their reliance on batch schedulers that contain information about  the  jobs  they  are  

running. VIOLIN can use job size and runtime information collected from the batch 

scheduler to make intelligent adaptation decisions. 

5.2 Motivation 

To meet the varied computational needs of a large organization it is often nec

essary to maintain multiple, separate computational domains. These domains are 

administered independently and will have software, hardware and network environ

ments customized to best serve their organizational unit. The workloads assigned to 
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these clusters will also vary; while one cluster is experiencing a spike in workload, 

another may be sitting idle. Clearly this is wasteful of computational resources. 

This wastage could be decreased were the organization able to temporarily  transfer  

resources from an under-utilized domain to a busy one. Once the period of peak 

activity has ended, these nodes could be returned to the original domain. we argue 

that the throughput of each cluster in an organization could be improved by using 

virtualization to enable the borrowing of resources during non-overlapping periods of 

heavy usage 

Realizing this goal, however, is not a simple task. Each domain will be configured 

according to the requirements of its owners. As a result nodes from  different  domains  

may not be able to inter-operate. Machines under different domains may have dif

ferent software packages or user permissions. Worse, one domain may have access to 

hardware unavailable on another, or be on a private subnet to which other machines 

do not have access. 

Further, organizational units may be unwilling to allow potentially unsafe code 

to run on their machines, particularly under a privileged account. By lending ma

chines to another cluster, the safety and isolation of its own jobs  may  be  threatened.  

However, without root access, it may be impossible for the borrowing cluster’s jobs 

to run. All of these challenges must me taken into account for virtual environments 

to operate efficiently and safely. 

In this chapter, we present VioCluster [28], a novel architecture which allows 

dynamic machine trading while avoiding these problems. We use the concept of 

VIOLIN virtual environments which allow a cluster to dynamically grow and shrink 

based on resource demand. Under this system, the administrative privileges of both 

the borrowing and lending clusters are maintained: cluster administrators are able to 

configure borrowed machines as required, while not granting root privileges to others 

making use of their nodes. 

A VioCluster  uses  both  machine  and  network  virtualization  techniques to logically 

move machines between domains. A borrowed node in a VioCluster take the form of a 
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virtual machine running on top of a host machine located in another physical domain. 

This virtual machine remains completely isolated from its host infrastructure, fulfilling 

the requirement that administrative access remains exclusively with the node owner. 

The configuration of the virtual machine is determined by the administrator of the 

borrowing domain, allowing for the ability to install software packages or hardware 

as required. 

As noted before, users do not generally wish to be encumbered by platform config

uration details. To users and applications, the process of borrowing nodes is transpar

ent. A virtual machines running as part of a VioCluster is practically indistinguishable 

from a physical machine running inside the same domain. 

The VioCluster system offers several contributions: 

•	 Dynamic machine trading between mutually isolated virtual environments. Vio-

Cluster creates software-based network components which seamlessly connect 

physical and virtual machines to create isolated virtual clusters. Machines can 

be traded dynamically through the on-demand creation, deletion, and configu

ration of virtual machines and network components based on information about 

the applications gathered from the batch scheduler. 

•	 Dynamic negotiation of machine trades. Each virtual cluster includes  a  ma

chine broker which interacts with other domains. Requests and offers are made 

through these brokers based on workload and configurable lending and borrow

ing policies. 

We have built a prototype of the VioCluster system, and have demonstrated its 

effectiveness using two independent Portable Batch System (PBS) [76] based job-

execution clusters. Based on job number, size, and duration information collected 

from the PBS scheduler, environments adaptation decisions are made. Careful ap

plication of adaptive measures greatly increase job performance and efficiency. Our 

performance evaluation results show benefits to both clusters. Most notably they 

increase their resource utilization and decrease their job execution times. 
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The remainder of this chapter is organized as follows: Section 5.3 describes the 

design of VioCluster, Section 5.4 presents key implementation details, Section 5.5 

describes the experiments and presents performance results, and Section 5.6 presents 

the chapter’s conclusions. 

5.3 Design 

There are two key components in the VioCluster system: the ability to create 

dynamic virtual clusters and the mechanism by which trades are negotiated. This 

section describes the structure of these components, and the manner  in  which  they  

interact. 

A summary  of  the  terminology  used  within  VioCluster  is  as  follows: 

•	 Physical domain: An  autonomous  set  of  networked  computers  managed  as  

a unit.  Physical  domains  have  a single  administrator,  and  support a user-base 

performing specific computational activities. For example, a  physical  domain  

belonging to a biology department may be optimally configured for  cellular  

simulations, while a physical domain belonging to a network research group 

may be designed for shorter network-intensive experiments. 

•	 Virtual cluster: An  autonomous  set  composed  of  a  hybrid  of  virtual  and  phys

ical machines managed as a unit. Machines in a virtual cluster are  connected  

through a virtual private network, to which both virtual and physical machines 

have access. Virtual clusters are able to grow and shrink on demand, and they 

appear to the administrator to be identical to physical domains. A one-to-one 

mapping exists between physical and virtual clusters; every virtual  cluster  is  

hosted upon a physical domain. A virtual cluster is an extension of a physical 

cluster and utilizes virtual machines on remote domains as if they  were  local.  

•	 Machine broker: A  software  agent  that  represents  a  virtual  cluster  when  

negotiating trade agreements with other virtual clusters. A machine  broker  
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consists of a borrowing policy which determines under which circumstances it 

will attempt to obtain more machines, and a lending policy which governs when 

it is willing to let another virtual cluster make use of machines within its physical 

domain. Both policies are defined by the domain’s administrator. 

Policy
Borrowing Lending

Policy Policy
BorrowingLending

Policy 

Machine BrokerMachine Broker 

Physical Domain A Physical Domain B 

Virtual Domain A Virtual Domain B 

(a) Virtual cluster A borrowing nodes from virtual 

cluster B in accordance with A’s borrowing policy 

and B’s lending policy 

Policy
BorrowingLending

Policy 
Lending
Policy Policy

Borrowing 

Machine Broker Machine Broker 

Physical Domain BPhysical Domain A 

Virtual Domain A Virtual Domain B 

(b) Virtual cluster B borrowing nodes from vir

tual cluster A in accordance with A’s lending pol

icy and B’s borrowing policy 

Fig. 5.1. Two virtual clusters trading resources. Virtual clusters 
fluidly trade machines in reaction to changes in workload. 

Figure 5.1 shows an example of VioCluster consisting of two physical domains, 

A and B. There  are  virtual  domains  associated  with  each  physical  domain. Both 

physical domains consist of 36 machines, each of which initially belongs to its respec

tive virtual cluster. These clusters could be imagined to belong to two university 

departments, or to two divisions within a company. 

Over time, the workload on each virtual cluster varies as jobs are  submitted  by  

users. In Figure 5.1(a), virtual cluster A is experiencing a period of heavy demand, 

while virtual cluster B is under-utilized. After negotiations between the borrowing 
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and lending policies of the respective brokers, virtual cluster A is able to temporarily 

borrow half of virtual cluster B’s nodes. In Figure 5.1(b), the workload patterns are 

reversed, and virtual cluster B is able to use nodes located in physical domain A. 

When a machine belonging to physical domain B is borrowed by virtual cluster A, 

it is used to run a virtual machine. This virtual machine is owned by the administrator 

of virtual cluster A, and  will  match  the  configuration  of  the  machines  in  virtual  cluster 

A. Virtual  network  connections  will  be  made,  connecting  the  new virtual machine to 

the nodes of virtual cluster A. 

The trading process is authorized according to the borrowing and  lending  policies  

within the machine brokers of each domain. These policies are defined  by  the  domain  

administrator, and allow complete control over the access to a domain’s  resources.  

Without an agreement between the brokers, the trade cannot occur. 

5.3.1 Adaptive Virtual Clusters 

The use of virtualization is key within VioCluster. Through the use of virtual 

machines, many of the configuration and access problems inherent in machine trading 

can be avoided. Additionally, virtual networking allows physical and virtual machines 

to communicate transparently, making network administration no more difficult than 

for a single physical cluster. 

Machine Virtualization 

When transferring physical machines between domains without the aid of virtu

alization, many problems may be encountered. The set of user and group accounts 

on clusters may be different, leading to access problems when running jobs. Nec

essary packages and services may not be installed, and superuser permissions may 

be required to customize a machine’s configuration. Additionally, once a borrowed 

machine is no longer necessary, it must be restored to its original state before it can 

be used again in its original context. 
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By using virtualization, VioCluster bypass all of these problems. When a physical 

node is lent to another virtual cluster, all that is required is a virtual machine process 

run by an unprivileged user. The virtual machine is created using a disk image 

supplied by the borrowing cluster. The user accounts, services and software services 

on this image can be configured identically to those on the virtual cluster’s physical 

machines. And when the machine is ready to be returned to its original cluster, all 

that is required to restore its state is the termination of the virtual  machine.  

Network Virtualization 

Networking between nodes in a virtual cluster is made possible by the use of 

the VIOLIN networking mechanisms. Traditional VIOLIN creates a virtual layer

2 network  overlay  that  tunnels  network  traffic  end-to-end  between remote virtual 

machines. The overlay appears to these machines to be an isolated physical Ethernet 

LAN. VioCluster, uses a the core features of the VIOLIN distributed switch, however, 

it uses a hybrid of virtual machines as well as physical machines in each VIOLIN 

environment. Within VioCluster, virtual and physical machines are able to exchange 

network data transparently. 

The physical host A connects to the kernel-space virtual NIC, or tun/tap device. 

Data sent to this device via standard system calls are forwarded to the virtual switch 

daemons on host B, where  they  are  passed  on  to  the  virtual  machines.  Communi

cation from B to A is symmetrical, with the exception that the virtual NIC on B is 

located in the kernel space of the virtual, rather than the physical, machine. 

The effect of the hybrid approach to using a VIOLIN network overlay is that 

each virtual cluster has a uniform and private IP address space. Virtual machines 

running on borrowed nodes can be assigned IP addresses in the same range as the 

physical machines belonging to the environment. Maintaining this illusion simplifies 

the administration process and minimizes IP accounting. Additionally, because VI
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OLIN virtualizes addresses at layer-2, arbitrary IP address spaces  can  be  designated  

to virtual clusters without the threat of conflicts with the host network. 

In effect, the hybrid VIOLIN environment extends the LAN. Virtual machines 

participating in a virtual cluster have the same access to domain services as nodes in 

a physical  domain.  For  example,  all  nodes  on  a virtual  cluster may  have  equal  access  

to NFS-mounted directories and LDAP account information. 

The machine and network virtualization techniques used in VioCluster allows 

the isolation and safety required to make machine trading a viable proposition for 

large organizations. Fully customizable machine configurations running inside isolated 

virtual machines and private networks allow virtual clusters that are borrowing nodes 

the flexibility to perform their work, and ensures that physical domains that are 

lending nodes are not forced to compromise their security. 

5.3.2 Machine Brokering 

The second major component of the VioCluster system is the mechanism by which 

machine exchanges are negotiated. Each domain has a software agent  called  a  machine 

broker which has the responsibility of determining whether trades should occur. The 

VioCluster system supplies the means by which physical domain administrators may 

define lending and borrowing policies. Wise decisions made in these  policies  can  

lead to large benefits in overall system throughput, while poor choices can degrade 

performance. 

The policies used by a machine broker must be designed with several factors in 

mind. Observations of the current and past workload levels in the  domain may  al

low predictions of future demand. For example, a cluster may see predictable spikes 

in usage during business hours, with less demand at night. In that case, a sensible 

set of policies might take advantage of this usage pattern and borrow  during  the  

day and lend at night. Additionally, knowledge of the applications run on a domain 

may influence policy decisions. For example, if a cluster is used primarily for short, 
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network-intensive experiments, borrowing nodes may lead to unacceptable  communi

cation overheads. 

What follows are several attributes that must be specified in the policies for ne

gotiating machine trades: 

•	 Reclamation: A  policy  must  determine  when  a  machine  will  be  returned  to  its 

home domain. One reclamation policy may be to lend a machine for a specified 

lease period. Once this lease period has expired, the node must be returned. 

Alternately, a lending domain may wait until a remote job has completed, or 

reserve the right to reclaim machines gradually as its demand increases.  

Another possible reclamation policy would be to lend a machine for an unlim

ited period, on the understanding that it will be returned when required by the 

owner. While this offers flexibility to the lending domain, it requires the bor

rower to be able to recover from the sudden loss of a machine. If the  borrowing  

virtual cluster cannot handle this situation, its borrowing policy  should  forbid  

such trades. 

•	 Machine properties: The  characteristics  of  the  machine  to  be  borrowed  will  

have an impact on the policies of the domains involved in a trade. The machine 

broker must ensure that any machine lent to another virtual cluster has the pro

cessing power, memory and disk space required to run a virtual machine.  Since  

the granularity at which resources are assigned is at the machine level, some 

properties, such as CPU power and memory, will remain constant. However 

others, such as available disk space, may change and must be monitored by the 

machine broker. Machines not capable of running a virtual machine suitable 

for the tasks required may be rejected by the borrowing machine broker. 

•	 Location: For  some  applications,  particularly  those  with  high  levels of  com

munication between nodes, the physical location of machines may  affect  perfor

mance. Bandwidth and latency within a virtual environment may be affected 

by the location of communicating nodes. A borrowing policy should be aware 
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of the communication requirements of its applications. If little communication 

is required, it may be acceptable to borrow nodes with high-latency or nodes 

with low-bandwidth connections to the remainder of the machines. Alternately, 

if the applications run on a virtual cluster tend to be tightly-coupled with high 

levels of network traffic, it may be best to wait until nodes can be co-located 

on a single physical domain. 

5.4 Implementation 

We have implemented a prototype VioCluster system that uses a domain  virtu

alization mechanism based on UML and VIOLIN networking, which is governed by 

simple but effective machine brokering policies. 

As an example application scenario, our prototype configures virtual  environments  

as clusters managed by a PBS job scheduler. Within each virtual cluster one physical 

machine is designated the PBS master node and the remainder of the  machines  are  

configured as PBS compute nodes. As workload changes, machines are added and 

removed from the virtual cluster and the PBS master is re-configured to allocate jobs 

to all machines in the virtual cluster. It is important to note that  batch  scheduling  

is not the focus of our work and PBS is only used as a sample application. 

5.4.1 Domain Virtualization Implementation 

User-Mode Linux and VIOLIN environments are well suited for VioCluster’s ma

chine and network virtualization techniques because of their user level execution 

needed for isolation. In addition, VIOLIN’s networking abilities that support both 

virtual and physical machines fit VioCluster’s unique needs. 

Virtual Network Configuration. In our prototype, we define a virtual cluster 

by a Hybrid VIOLIN network. The machines connected to each virtual cluster’s 

virtual network are a mixture of the real machines of its physical domain and the 

virtual machines created on nodes borrowed from other physical domains. 
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Each physical machine has two NICs: one connected to the physical LAN (eth0 ), 

and the other to the VIOLIN network (tap0 ). Remote domains access the host via a 

private non-routable IP address associated with tap0. Depending  on  the  configuration  

of the virtual NIC, virtual machines can have Internet routable IP addresses or private 

non-routable IP addresses through which they can access the Internet through a NAT 

router. The routing tables of the physical machine must be aware of the virtual 

network configuration, enabling traffic destined for the physical machine to be sent to 

eth0 while virtual machine traffic is forwarded to tap0. For  this  reason,  administrative  

privileges are needed on the physical domain to create and manage the tun/tap device. 

Virtual Machine Configuration. VioCluster dynamically creates and destroys 

UML virtual machines at the request of the machine brokers. The virtual machines 

are configured by the borrowing domain to fulfill the needs of its applications. In 

the prototype system, all virtual environments use a modified Fedora  Core  I root  file  

system. This includes all libraries, packages and applications (such as MPI and PBS) 

required to function like the physical machines. 

Since the virtual machines are nearly-identical PBS compute nodes,  small  Copy

On-Write (COW) files can be used to capture the differences in their disk images. 

These COW files share a common root image and store only the minor differences 

between images, such as network settings. Upon creation, a COW system image 

represents an individual virtual machine and can be transferred to any host for in

stantiation. 

The prototype system uses a pool of pre-built COW file systems. However,  it  

would also be possible to create them on-demand. 

Virtual Machine Instantiation. The creation of a UML virtual machine re

quires only user-level access to the host machine. The root file system must be 

transferred, the virtual switch daemon started, and the virtual machine booted. To 

this end, each physical domain maintains a user account for each peer virtual cluster 

that may borrow machines. 
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The size of the root filesystem used in the prototype is approximately 300MB 

when compressed. Transferring this across the network whenever a virtual machine 

is required would be prohibitive, so the base system is copied to  each potential  host  

before any virtual machine is created. As a result, only the small (approximately 

200KB) COW file must be transferred on demand. 

Once the root image is transferred, the virtual switch daemon is  started via  an  

ssh connection. The daemon contacts the peer daemons on the other hosts  and  joins  

the distributed switch. Finally, the virtual machine is booted via ssh, and  connects  

through the distributed virtual switch. 

Virtual Machine Removal. Before a virtual machine can be removed from 

a virtual  cluster,  it  must  be  halted.  This  can  be  achieved  by  either killing the vir

tual machine process or by using the shutdown command inside the virtual machine. 

Killing the process is faster, but results in a corrupted COW file. The common root 

disk image is read-only, however, so it is unaffected. 

The state maintained on the virtual machine’s COW files is not important, since 

the virtual machines are used as PBS compute nodes. As such, when we need to 

create a new virtual machine, we can simply copy the original COW file from the 

virtual environment administrator. This means that it is not necessary  to  properly  

shut down virtual machines, making the halting process faster. 

5.4.2 Machine Brokering Implementation 

Virtual clusters share resources according to contracts agreed upon by their ma

chine brokers. Trades are permitted or denied in accordance with the brokers policies, 

based on virtual cluster demand levels. Virtual clusters experiencing heavy workloads 

propose trade offers, while those with spare capacity advertise the capabilities of the 

machines they have available. The proposal will be accepted only if the trade is 

acceptable to the policies of both brokers. 
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Our implementation of VioCluster uses PBS to schedule jobs. It should be noted 

that our intent is not to study job scheduling; we use PBS simply to gather information 

about environmental demand and to demonstrate VioCluster’s ability  to  operate  in  a  

dynamic environment. Applications running on virtual clusters must be able to handle 

changes in available machines. PBS, and most job schedulers, can  adapt  to  these  

changes and are excellent ways to use the dynamic resources of virtual  clusters.  When  

a machine  is  added  or  removed  from  the  virtual  cluster  the  PBS  master daemon is 

re-configured to reflect the change. One benefit of using a job scheduler is its inherent 

resilience to node failure. Nodes can be preempted at any time without  effecting  the  

correctness of the applications. Jobs will be re-run by the scheduler with the only 

effect being on performance. To reduce the effect of preemption on  performance,  the  

PBS scheduler is aware of the heterogeneity of the virtual cluster and never schedules 

jobs on a mixture of virtual and physical machines. The application’s ability to adapt 

is particularly important in our case, since virtual machines are created and destroyed 

on demand. 

Demand Heuristic. In general, there is no requirement for how machine brokers 

calculate demand. For our prototype, we use the PBS scheduler’s work queue as a 

measure of the demand on the domain. Each virtual cluster a uses a PBS scheduler 

that multiplexes the set of physical machines Pa and the set of virtual machines Va. 

The machine broker queries the PBS scheduler for the number and size of jobs j in 

the queue Qa. The  result  is  used  to  assess  the  current  demand  da, defined  as  the  

number of nodes required to satisfy all jobs j ∈ Qa. 

da = jnodes required 

j∈Qa 

Borrowing and Lending. Based on the calculated demand da and current 

number of machines lent |La| or borrowed |Va|, the  machine  broker  calculates  the  

number of machines needed na. 

na = da − [(|Pa| − |La|) +  |Va|] 
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The value of na determines if it is desirable to lend, borrow, or return previously 

borrowed machines. If na is positive, virtual environment a needs to acquire na nodes; 

if it is negative then virtual cluster a can lend or return |na| nodes; and if it is zero 

virtual cluster a has exactly enough nodes to satisfy its own demand. 

The lending policy implemented in our prototype allows up to half of the domain’s 

idle nodes to be borrowed by other clusters. This allows substantial resources to be 

offered to other domains in quiet periods, while guarding against resource shortages 

during sudden spikes in demand. 

Reclamation Technique. It is sometimes necessary for a virtual environment 

to recover machines from other clusters, due to sudden increases in demand. In these 

cases, machines are returned according to the reclamation policy specified in the 

lending contract. 

In our prototype, machines are returned immediately upon request from the lend

ing domain. Any jobs running on these machines will be terminated, and must restart. 

This recovery process is managed by the PBS scheduler. Clearly, such preemption 

has a negative impact on the throughput of the system, and steps must be taken to 

minimize the cost of this interference. When possible, our scheduler runs jobs only 

on physical machines belonging to the virtual cluster. Additionally, to minimize the 

overhead of preemption and improve the network locality of a job, the scheduler never 

schedules jobs on a mix of virtual and physical machines. 

As an alternative, a gradual reclamation policy may be implemented. Future work 

on VioCluster will study policy interactions, most notably in the area of machine 

reclamation techniques. 

5.5 Experiments 

In this section we present several experiments that show the feasibility of VioClus

ter1. First  we  measure  several  individual  VioCluster  system  properties, then we show 

1Special thanks goes to Phil MaGachey who coded much of the VioCluster simulator and helped 
run the simulations. 
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the results of a large-scale VioCluster simulation based on the prototype’s measured 

behavior, using real workload traces from production clusters. 

5.5.1 System Prototype Measurements 

For the prototype measurements we used two clusters on the Purdue University 

campus. One cluster is administered by the nanoHUB and the other cluster is ad

ministered by our laboratory in the Computer Science department. The nanoHUB 

cluster is composed of dual processor 3.06GHz Intel Xeon machines with 2GB of 

RAM connected by 100Mb/s Ethernet. The Computer Science cluster is composed 

of 2.6GHz Intel Xeon machines with 2GB RAM connected the 100Mb/s Ethernet. 

The connection between the clusters is through Purdue’s campus network. Although 

the UML-based experiments provided good results, our continuing work with Xen 

promises significantly increased performance. 

Metric Value 

Execution Slowdown on virtual machine 

Virtual Machine Boot Time 

Virtual Machine Halt Time 

VIOLIN Bandwidth Penalty 

VIOLIN Latency Penalty 

15% 

40 seconds 

16 seconds 

5-15% 

5-10% 

Bandwidth and Latency. From our previous work [15] we have observed that 

VIOLIN networks affect communication bandwidth and latency. VIOLIN  decreases  

the bandwidth between machines by 5-15% and increases the latency by 5-10%. 

Computation Overhead. We have found that computation and communication 

intensive workloads, such as High Performance Linpack (HPL), run 15% slower on 

virtual machines connected to a VIOLIN network [19]. Less communication intensive 

applications would experience a smaller decrease in performance. 
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Image Transfer, Boot, and Halt Times. Aside from runtime overhead, virtual 

machines require time to be setup and destroyed. By using small COW filesystems 

and transferring the base system images ahead of time, we can transfer the system 

image to a physical host in under a second. This short transfer time  means  that  

the virtual machine boot time dominates the creation process. We measured boot 

times for two virtual machine images: the first being a modified Fedora  Core  1  server  

installation, and the second a minimal RedHat 8.0 system. The larger  image took  40  

seconds to boot on the our cluster, while the smaller took 5 seconds. Halt times were 

found to be 16 seconds and 3 seconds respectively. 

5.5.2 Simulation 

Simulation Setup. Evaluating VioCluster on real workloads was not practical, 

due to the difficulty of scaling workloads that originally took months  or  years  to  run  

in a reasonable period. We therefore developed a simulator that not only enables us 

to accurately evaluate the system on large workload traces, but also to simulate far 

larger clusters than we have available. 

Our simulation takes into account our measured virtual machine transfer, boot 

and halt times, as well as the computation and communication overheads of VIOLIN. 

The machine brokers use the preemptive trading policy described in section 5.4.2. 

Each broker calculates the virtual cluster’s demand hourly, and  then  takes  action  

based on the results. 

The virtual cluster’s size and usage pattern is created using traces  obtained  from  

production machines. The two traces used are publicly available (CTC and OSC 

from [96]) and are composed of a 512 CPU machine at The Cornell Theory Center 

(CTC) and a 178 CPU machine at Ohio Supercomputing Center (OSC). What follows 

is the results of the simulation. By using our machine trading mechanism  and  policy  

the perceived processing power of both clusters is improved. 
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Fig. 5.2. Demand on the virtual cluster over time. 

Observed Demand. Figure 5.2 shows the demand on each of two virtual clusters 

over time with and without sharing enabled. The demand without sharing is what 

would be observed if the load patterns were submitted to independent clusters. It 

can be seen that the OSC cluster has two distinct spikes of very high  demand  and  

the CTC cluster has many spikes that are relatively small. 

When the clusters are run with sharing enabled the virtual clusters are able to 

handle demand more efficiently. With sharing, the large spikes of  the  OSC  cluster  

are significantly reduced while the CTC cluster is relatively unaffected.  

Machine Borrowing. Figure 5.3 shows the machines traded between domains 

over time. Positive numbers indicate that the OSC virtual cluster is borrowing from 

CTC, while negative numbers indicate CTC borrowing from OSC. A correspondence  

250 
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Fig. 5.3. Number of borrowed nodes. 

can be seen between the areas of high demand in the OSC domain in Figure  5.2  

and the number of machines borrowed from CTC. The high frequency of spikes in 

Figure 5.3 could be reduced by either a more conservative lending strategy or a more 

gradual reclamation policy. 

Job Completion Times. Figures 5.4, 5.5, and 5.6 show the responsiveness of 

the system from a user’s perspective. They show the average time between a job’s 

submission to the cluster’s queue and its completion both with and without sharing. 

Each figure depicts the interaction of cluster workloads with different  qualitative  

properties. 

Figure 5.4 shows the interaction between two different workload patterns. The 

OSC cluster has two large spikes of high demand, while the CTC cluster has a steady 
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Fig. 5.4. Average time from job submission to job completion of 
qualitatively different workloads. 

pattern of small spikes. From the graph, we see that both clusters benefit from 

sharing, with the OSC cluster almost completely eliminating its  spikes.  

The reduction in completion time during peak demand is due to a reduction  of  

the amount of time the jobs wait in the queue. Referring back to Figure  5.3,  we  see  

that during periods of high workload, the OSC virtual cluster is  often  able  to  borrow  

a significant  portion  of the  CTC  virtual  cluster’s  nodes.  The  borrowed nodes allow 

the OSC virtual cluster to run more jobs at once reducing the average completion 

time drastically. 

Figure 5.4 shows occasional points where completion time increases when sharing 

is enabled. This is caused by jobs being preempted when a physical machine was 
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reclaimed, and subsequently restarted. Techniques such as check-pointing, virtual 

machine migration, or complementary advanced scheduling algorithms designed for 

dynamic systems, can reduce or eliminate this problem. 

In Figure 5.5, two traces with corresponding spikes in demand were  created by  

extracting sections of the OSC cluster trace. From the figure we see that if one of 

the virtual environments has a spike at the same time the other does  not,  the  spike  

is largely mitigated through machine borrowing. On the other hand,  if  both  virtual  

clusters experience a spike at the same time, very little improvement is seen, although, 

neither cluster experiences a reduction in performance. 
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Figure 5.6, created from sections of the CTC trace, shows the opposite situation. 

Here neither cluster experiences a large spike in demand, and as  a  result,  neither  

benefits greatly from sharing. However, again, neither shows a  performance  decrease.  

From theses results we can conclude that by sharing computational resources 

through VioCluster great gains in the user’s perceived performance are possible. As 

expected, clusters that are experiencing extreme spikes in workload benefit most from 

sharing. Unexpectedly, their gains do not penalize the donating clusters. In addition, 

these gains are the product of a relatively simple trading policy which demonstrates 

the the effectiveness of the system and the potential of more advanced policies. 
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5.6 Conclusion 

We have presented the design and implementation of VioCluster, a virtualization 

based computational resource sharing platform based on VIOLIN. Using VioClus

ter, independently administered computation domains can lend and borrow nodes, 

increase utilization, and reduce idle node time. We have implemented a prototype 

VioCluster system and have created a large scale simulation based on real prototype 

parameters. The results of the simulation using real workload traces show that by 

using relatively simple machine trading policies VioCluster leads to potentially large 

increases in the perceived computational power of administratively autonomous clus

ters. VioCluster proves that the VIOLIN middleware can enable computer clusters 

to provide better performance to their users. 
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6. AUTONOMIC VIRTUAL ENVIRONMENTS FOR 

SHARED CYBERINFRASTRUCTURE 

6.1 Introduction 

We have seen the emergence of shared distributed cyberinfrastructures that feder

ate, allocate, and manage heterogeneous resources across multiple network domains. 

The growth of these infrastructures has led to the availability of unprecedented com

putational power to a large community of users. Meanwhile, virtual machine tech

nology [6, 7, 9] has been increasingly adopted on top of such shared physical infras

tructures [11], and has greatly elevated customization, isolation, and administrator 

privilege for users running applications inside individual virtual  machines.  

The previous chapters have proposed techniques that enable the creation of virtual 

distributed computation environments on top of a shared distributed infrastructure 

and take the initial steps toward dynamic virtual environments. Thus far we have 

discussed VIOLIN environments and how they are composed of virtual machines 

connected by a virtual network, which provides a layer separating the ownership, 

configuration, and administration of the VIOLIN environment from  those  of  the  un

derlying infrastructure. The goal of this dissertation is to create  mutually  isolated  

autonomic VIOLIN environments that can be created for different users as their “own” 

private distributed computation environment bearing the same look and feel of cus

tomized physical environments with administrative privilege (e.g., their own private 

cluster). Within VIOLIN, the user is able to execute and interact with unmodified 

parallel/distributed applications, and can expect strong confinement of potentially 

untrusted applications, giving them easy to use access to the vast  cyberinfrastruc

ture. 
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It is possible to realize VIOLIN environments as integrated, autonomic  entities  

that dynamically adapt and relocate themselves for better performance of the appli

cations running inside. This all software virtualization of distributed  computation  

environments presents a unique opportunity to advance the possibilities of autonomic 

computing [97, 98]. The autonomic adaptation of virtual computation environments 

is driven by two main factors: (1) the dynamic, heterogeneous availability  of  infras

tructure resources and (2) the dynamic resource needs of the applications running 

inside VIOLIN environments. Dynamic resource availability may  cause  the  VIOLIN  

environment to relocate its virtual machines to new physical hosts  when  current  phys

ical hosts experience increased workloads. At the same time, dynamic  applications  

may require different amounts of resources throughout their execution. The changing 

requirements can trigger the VIOLIN environment to adapt its resource  capacity  in  re

sponse to the application’s needs. Furthermore, the autonomic adaptation (including 

relocation) of the virtual computation environment is transparent to the application 

and the user, giving the latter the illusion of a well-provisioned, private, networked 

run-time environment. 

To realize the vision of autonomic virtual environments we must address significant 

challenges. First, we must provide the mechanisms for application-transparent virtual 

environment adaptation. In order to provide a consistent environment, adaptation 

must occur without affecting the application or the user. Currently, work has been 

done to enable resource reallocation and migration within a local-area network [24] 

and most current machine virtualization platforms support migration. However, we 

still need to determine how to migrate virtual machines across a multi-domain en

vironment without affecting the application. The solution must keep the virtual 

machine alive throughout the migration. Computation must continue and network 

connections must remain open. The necessary cross-domain migration facility requires 

two features not yet provided by current virtualization techniques. First, virtual ma

chines need to retain the same IP addresses and remain accessible through the network 

when physical routers will not know where they were migrated. Second,  cross-domain  
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migration cannot rely on NFS to maintain a consistent view of the large virtual ma

chine image files. These files must be transferred quickly across the network. Clearly, 

current solutions are not yet adequate for multi-domain infrastructures. VIOLIN vir

tual environments extend the local network across domain boundaries avoiding these 

limitations. 

The second challenge is to define allocation policies. Our  goal  is  to  move  beyond  

the limits of static allocation and provide autonomic environments that have the 

intelligence to scale resource allocations without user intervention. As such, we need 

to determine when a virtual machine needs more CPU, which virtual machine should 

be migrated, and where to migrate the virtual machine when a host can no longer 

support the memory demands of its guests. Consequently, we need to determine if the 

best destination is that which allows for quick migration, or that which,  irrespective  

of migration speed, can ensure adequate resources. 

The main contribution of this chapter is the introduction and analysis  of  auto

nomic adaptation capabilities of VIOLIN environments. These environments retain 

the customization and isolation properties of existing static VIOLIN environments, 

however, they may be migrated to another host domain during run-time. In this way 

we can make efficient use of available resources across multiple domains. 

We have built a prototype adaptive VIOLIN system using Xen virtual machines 

and have deployed it over the nanoHUB infrastructure. The evaluation of the system 

shows that we are able to provide increased performance to several concurrently run

ning virtual environments. To the best of our knowledge, this is  the  first  demonstra

tion of an autonomic adaptive virtual environment, using live application-transparent 

migration with real-world parallel applications. 

6.2 Autonomic Virtual Environments 

In the VIOLIN system, each user is presented with an isolated virtual computation 

environment of virtual machines connected by a virtual network. From the user’s 
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Fig. 6.1. Two VIOLIN environments sharing multiple hosts. Dae
mons on each host assist the Adaptation Manager in monitoring and  
controlling resource allocation. 

point of view, a virtual computation environment is a private cluster  of  machines  

dedicated to that user. The user does not know where the virtual machines reside. 

On the other hand, the infrastructure sees the environments as dynamic entities that 

can move through the infrastructure utilizing as much or as little resources as needed. 

The components of the VIOLIN system can be seen in Figure 6.1 and are described 

below: 

•	 Enabling Mechanisms: The  enabling  mechanisms  include  the  VIOLIN  vir

tual environments as well as the monitoring daemon running on each physical 

host. The VIOLIN environments provide an interface to the user and applica

tions, while the monitoring daemons monitor the CPU and memory on each 

host by querying the local virtual machine monitor (VMM) for resource avail

ability and utilization levels. In addition, the monitors can manipulate the 

allocation of resources to local virtual machines. 
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•	 Adaptation Manager: The  adaptation manager queries the monitoring dae

mons to form a global view of all host resources available as well as the  utiliza

tion level of the allocated resources. With this information, the adaptation man

ager can dictate resource reallocation including fine-grained per-host CPU and 

memory adjustments, as well as coarse-grained migration of virtual machines 

or whole virtual environments without any user or administrator involvement. 

6.2.1 Enabling Mechanisms 

Local Adaptation Mechanism. The  adaptation manager controls all virtual 

machines through the monitoring daemons. VIOLIN  environments  use  both  memory  

ballooning and weighted CPU scheduling to achieve fine-grained control over per-host 

memory and CPU allocation. Both VMware [9] and Xen [6] enable memory ballooning 

which allows the VMM to change the amount of memory allocated to each virtual 

machine while the machine is running. At run-time, the adaptation manager may 

decide to modify the memory footprint and percentage of CPU allocated through the 

monitoring daemons. 

Multi-domain Adaptation Mechanism. A  key  contribution  of  VIOLIN  to  

autonomic adaptation is the ability to reallocate resources to  virtual  machines  by  

migrating them live across networks. Live virtual machine migration is the transfer 

of a virtual machine from one host to another without pausing the virtual machine or 

checkpointing the applications running within the virtual machine. One of the major 

challenges of live migration is maintaining any network connections the virtual ma

chine may have open. Modern machine virtualization mechanisms provide live virtual 

machine migration within layer-2 networks [24]. VIOLIN lifts this limitation by creat

ing a virtual layer-2 network that tunnels network traffic end-to-end between remote 

virtual machines. The virtual network appears to be an isolated physical Ethernet 

LAN through which migration is possible. As the virtual machines move through the 

infrastructure, they will remain connected to their original virtual network. 



76 

6.2.2 Adaptation Manager 

The adaptation manager is the intelligent agent, or “puppeteer” acting on behalf 

of the users and administrators and making autonomic reallocation decisions. It is 

appointed two tasks: to compile a global system-view of the available resources and 

to use this view to transparently adapt the allocation of global resources to virtual 

environments. 

Infrastructure Resource Monitoring 

The adaptation manager monitors the entire infrastructure by querying the moni

toring daemons on each host. Via the monitors, it maintains knowledge of all available 

hosts in addition to the demands of applications running within the VIOLIN envi

ronments. Over time both the resources available in the shared infrastructure and 

the VIOLIN environment’s utilization of resources will change. Hosts may be added 

or removed and VIOLIN environments can be created, destroyed, or enter periods of 

high or low CPU, memory, or network usage. 

Resource Reallocation Policy 

The adaptation manager’s reallocation policy is based on observed host resource 

availability and virtual machine resource utilization. It uses a heuristic that aims 

to dynamically migrate overloaded virtual machines between hosts  within  each  do

main and, if that is not possible, migrate overloaded VIOLIN environments between 

domains in the infrastructure. We do not attempt to find the optimal allocation of 

resources to virtual machines. Instead, we aim at incrementally increasing the per

formance of the system while minimizing the number of virtual machine  migrations  

and the resulting overhead. 

Intuitively, the policy determines a desired resource level for  each  virtual  machine  

and attempts to assign that amount of resources to a virtual machine. If adequate 
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resources cannot be obtained locally, the virtual machine may be migrated to another 

host or the whole VIOLIN environment may be migrated to another domain. 

It may be that there are not enough resources in the entire infrastructure to 

supply each virtual machine with its desired resource level. In  this  case,  we  would  

like to achieve a weighted balance of load on each domain and host (more powerful 

hosts/domains will take on more load). Conveniently, a weighted balance of load on 

an under-utilized system will assure that all (or most) virtual machines will have been 

allocated their desired resource level. With  this  in  mind,  our  reallocation  policy  is  

designed to balance the load between hosts and domains. 

The desired resource level of each virtual machine is determined by the amount 

of allocated CPU and memory as well as the amount of resources that are actually 

being utilized. We wish to keep each virtual machine’s resource utilization within a 

certain (predefined and configurable) range. A utilization level outside of the expected 

range will cause the adaptation manager to increase or decrease the virtual machine’s 

resource allocation. 

The heuristic finds over- and under-utilized virtual machines and attempts to ad

just their allocations using first the local host’s resources. If the local host cannot 

support all of its currently hosted virtual machines, an attempt is made to find an

other host within the domain to which one or more virtual machines can be migrated. 

The heuristic first looks at the hosts within the domain that have the lowest utiliza

tion level. If no host can support the over-utilized virtual machine, the whole domain 

is considered overloaded, and an attempt is made to find another domain which can 

support the resource needs of one or more of the overloaded domain’s VIOLIN envi

ronments. If a destination domain is found, VIOLIN environments will be migrated 

live to hosts in that domain. 

http:level.In
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Resource Demand Prediction 

A fundamental part  of  the  adaption  manager’s  responsibilities rely on its ability 

to predict the amount of resources each virtual environment and virtual machine will 

need to utilize in the near-future. Predicting the future is difficult in general and is 

made even tougher in this scenario because we have no knowledge of the applications 

that are creating the demand. In light of this restriction, the adaptation managers 

use only historic data to predict future resource demand. 

The goal is to assign a desired resource level for each virtual machine in the 

system. In order to find this level, we use weighted moving average time series 

analysis [99]. For each virtual machine we observe and record over  time  a  of  series  of  

a measurements  of the  amount  of each  resource  that  is  utilized. For each resource r, we  

use the previous n recorded measurements at any given point in time m. The  recorded  

resource utilization measurements form the series rm, rm−1, ..., rm−n+2, rm−n+1. The  

predicted usage is defined as: 

nrm + (n − 1)rm−1 + ... + 2rm−n+2 + rm−n+1 
PUm = (6.1) 

n + (n − 1) + ... + 2 + 1  

The predicted usage gives a prediction of the amount of a resource that a given 

virtual machine will use in the next time step. However, this prediction is only 

accurate if the virtual machine is using less than its allocated amount of resources. 

For example, if a virtual machine has been allocated 10 units of CPU and is only 

using 4 units, we know that the virtual machine can utilize exactly 4 units of CPU. 

However, if the same virtual machine is using all 10 units of CPU we can not know 

how much CPU it may use in the future. We only know that it can use at  least  10  

units. 

We do not directly apply predicted usage to desired resource level. Instead,  we  

over-allocate resources to virtual machines by a user-defined factor α. For  most  

virtual machines desired resource level is defined to be: 
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DRLm = PUm ∗ α (6.2) 

We recognize resource utilizations that are at or near 100% have a greater chance 

of being able to utilize far more resources than that PUm ∗ α. To  address  this,  

we provide a second function used to determine the desired resource level of virtual 

machines using high percentages of their allocated resources. We first define β to be 

the desired over-allocation of a 100% utilized virtual machines. Then we augment 

our definition of desired resource level to be: 

β − α 
DRLm = PUm ∗ ( ∗ (PUm − 1) + β)  (6.3)  

1 − α 

Having two functions, one for high utilizations and one for low utilizations could 

result in small changes in utilization leading to large changes in predicted demand. 

For this reason, the resulting functions must be continuous at PUm = α. Combining  

the continuous Equations 6.2 and 6.3 the desired resource level is defined to be: 

⎧
 
⎪
 
⎪ 1 
⎪ 
⎪ 
⎨PUm ∗ α if PUm < . 

αDRLm = (6.4) 
⎪ 
⎪ β − α 1 
⎪ 
⎪ 
⎩PUm ∗ ( ∗ (PUm − 1) + β) if  PUm ≥ . 

1 − α α 

As an example, if we desire to have each virtual machine utilizing 75% of its al

location and a 100% utilized virtual machine to desire twice its currently allocated 

resources, we would set α = 1/0.75 and β = 2.  In  the  example,  the  allocation  of  

resources would be done using the desired resource levels determined by the function 

depicted Equation 6.4. All virtual machines with utilizations less than 75% are al

located resources such that their utilization will be 75% while all virtual machines 

with allocations grater than 75% are assigned allocations along the linear function 

between 75% and 200%. 

Its is important that this desired resource level be assigned such that  small  changes  

in utilization do not create large changes in desired resource level. For example, if 
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our functions were not equal at utilizations of 1/α, a  small  increase  in  utilization  

that moves the utilization from less than 1/α to greater than 1/α would create larger 

changes in the desired resource level. In turn, small oscillations of utilization from 

less than 1/α to greater than 1/α would create large oscillations in desired resource 

level potentially causing larger oscillations in environment adaptation. 

Adaptation Model 

The model used to develop adaptation policies is based on knowledge gathered 

from the host-level monitoring daemons. At any given time the adaptation  model  

knows two things: (1) the current mapping of virtual machines to  hosts,  and  (2)  the  

desired resource level of each virtual machine as calculated using the method in the 

previous section. With this knowledge the adaptation manager is tasked with finding 

the best allocation of resources to virtual machines. 

We assume that we are given a set of domains D = (d1, d2, ..., dn) with  capacities  

ci, a  set  of  virtual  environments  V = (v1, v2, ..., vm) with  desired  resource  level  rj, and  

a current  mapping  of virtual  environments  to domains  M(vi) → dj. 

For each virtual machine we define TargetUtilization and DomainUtilization to 

be: 

 m 
i=1 ri

TargetUtilization  =  (6.5) n 
j=1 cj 

The TargetUtilization is the ratio of the total demand on the entire system to the 

capacity of the system. A TargetUtilization that is less than one (1) occurs when 

the system has excess capacity while greater than one (1) implies an over allocated 

system. 

Similarly, the DomainUtilization is the ratio of the demand on a specific domain 

to the capacity of that domain. 

 

riM(vi)=djDomainUtilization(j) = (6.6) 
cj 
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Next we define the balance of a mapping to be: 

m 

Balance(M) =  |DomainUtilization(M(vi )) − TargetUtilization()| (6.7) 
i=1 

Observe that if the DomainUtilization of all domains were equal, the load on 

the system would be balanced equally throughout the system. Also, observe that 

in order for all DomainUtilizations to be equal to each other, they would equal the 

TargetUtilization. 

These observations lead to the following problem definition: 

Find a new mapping M �(vi) → dj 
(6.8) 

Minimizing Balance(M �) 

In effect, this model aims to balance the load between domains by minimizing 

the difference between the utilization of each domain and the utilization of the entire 

system. 

Adaptation Heuristic 

We have developed a heuristic based on the model in the previous section. The 

goal of the heuristic is to balance the load on resources while maintaining  the  expected  

performance of the individual virtual environments. 

Through our experience with the nanoHUB we have made several observations 

about the three resources that VIOLIN can control. 

•	 Networking. Most  cyberinfrastructures  and  Grids,  including  the  nanoHUB, are 

composed of several cluster computers. In these environments, there are high-

bandwidth, low-latency connections between nodes within an individual  clus

ter and low-bandwidth, high-latency connections between clusters. Further, 

most applications using these systems, and specifically applications using the 
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nanoHUB, are tightly coupled parallel applications. To provide better perfor

mance to the virtual environments we make the simplifying assumption that 

virtual environments in the nanoHUB must be completely within a single clus

ter or host domain. As a result, the execution of any parallel or distributed job 

will not be required to communicate across domain boundaries. 

•	 Memory. We  also  observe  that  applications  do  not  perform  well  if  insufficient 

memory is allocated to them. As such, it is not necessary to load balance the 

memory allocated to virtual machines. Providing less than adequate memory 

to an application will, in effect, stop the application due to thrashing. Our 

heuristic assumes adequate memory allocation. If there is not enough memory 

in the system to allocate sufficient memory to every virtual machine, some 

virtual machine will have to be halted. Policy that decides which machines 

to halt should be decided by the particular needs of the cyberinfrastructure 

members. 

•	 CPU. The  processor  is  the  only  resource  that  can  be  viably  load  balanced. Jobs 

not receiving enough processing power will run slower; but for computationally 

intensive applications, the speed will be proportional to the processor allocation. 

With these observations in mind, our heuristic assumes memory to be fully allo

cated and all virtual environments must be completely within a  single  host  domain.  

These assumptions have lead us to a two tiered approach to the allocation of virtual 

machines to hosts. First, virtual environments will be allocated to host domains. 

Second, each host domain will allocate virtual machines to host machines. 

Algorithm 1 depicts the method used to balance load between host domains. The 

outer loop (line 2) of the algorithm continues the balancing the load while the new 

mapping (M �) provides  better balance  than  the  previous  mapping  (M). During each 

pass through the loop, the target utilization (line 4) and domain utilization (loop 5) 

are calculated using the equations seen above. Then we find the domains  with  the  

highest and lowest domain utilizations (lines 8 and 9). A virtual environment is 

http:Memory.We
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Algorithm 1: Balance  load  between  domains  
Input: D = (d1, d2, ..., dn), V = (v1, v2, ..., vm), M = CurrentMapping  of  

D → V 

Output: M = New  Mapping  of  D → V 

M � 
1 = M
 

2 repeat
 

3 M = M � 

P m 
i=1 ri 

4 TargetUtilization = P n ; 
j=1 cj 

5 foreach Host Domain j do 
P 

M(i)=j ri 
6 DomainUtilizationj = 

cj 

7 end 

8 HighDomain = Max(DomainUtilization) 

9 LowDomain = Min(DomainUtilization) 

10 MigrationCandidate = BestF it(HighDomain,LowDomain) 

11 M � = Migrate(M,MigrationCandidate,HighDomain → LowDomain) 

12 until Balance(M �) ≤ Balance(M) ;  

13 return M 



84 

chosen to be the migration candidate (line 10) and will be migrated from the highest 

domain utilization to the lowest. The migration candidate is chosen  using  the  bestfit 

heuristic which finds the virtual environment that when migrated will have the most 

effect on the minimization of the balance function. After the migration candidate is 

found the new balance is calculated. If the new balance is less than  the  old  one  the  

algorithm continues. 

6.3 Implementation 

We have implemented an adaptive VIOLIN system prototype and have deployed 

the system on the nanoHUB’s infrastructure. The nanoHUB is a virtualization-based 

cyberinfrastructure running online and on-demand nanotechnology applications, and 

is our “living lab”. Part of the nanoHUB allows students and researchers to execute 

computational Nanotechnology applications, including distributed and parallel sim

ulations, through either a web-based GUI or a VNC desktop session. The unique 

property of the nanoHUB is that the back-end processing is heavily reliant on virtu

alization. Users of the nanoHUB may, unknowingly, be using VIOLIN environments 

that have the ability to adapt resource allocation to the changing needs of their sim

ulations. 

6.3.1 Deployment Platform (nanoHUB) 

The unique property of the nanoHUB is that the back-end processing is heavily 

reliant on virtualization. Jobs are transparently executed on  one  of  many  Grid  infras

tructures. Unbeknownst to the user, their jobs may be submitted to a local cluster, 

the TerraGrid, or any Globus or Condor systems. Additionally jobs  may be  executed  

on a VIOLIN virtual environment. 

VIOLIN virtual environments greatly increase the functionality and efficiency of 

the nanoHUB. Functionally, VIOLIN environments provide the nanoHUB  with  the  

ability to host applications that do not or cannot run on traditional Grid infras
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Fig. 6.2. nanoHUB deployment of VIOLIN environments. 

tructures. The nanoHUB no longer relies on administrators of remote  domains  to  

configure remote hosts and install the necessary specific software packages. Instead, 

custom virtual machine images can be created to host any existing or future Nan

otechnology applications. In addition, it will be possible to allow individual nanoHUB 

users to own and customize their own virtual environments, removing the need for 

nanoHUB staff intervention. Further, the efficiency with which nanoHUB  applica

tions use the available resources will be increased through the dynamic re-allocation 

of resources to virtual environments. 
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6.3.2 Deployment Details 

Toward a full deployment, we have deployed multiple adaptive VIOLIN  envi

ronments on the nanoHUB’s multi-domain infrastructure on the campus of Purdue 

University. 

Host Infrastructure. The virtual machines are hosted on two independent 

clusters on separate subnets. One cluster is composed of 24 Dell 1750s each with 

2GB of RAM and two hyper-threaded Pentium 4 processors running at 3.06 GHz, 

while the other is 22 Dell 1425s each with 2GB of RAM and two hyper-threaded 

Pentium 4 processors running at 3.00 GHz. Both clusters support Xen 3.0 virtual 

machines and VIOLIN virtual networking. 

Virtual Environment Configuration. Each virtual computation environment 

is composed of Xen virtual machines connected by a VIOLIN network. Among the 

virtual machines, one is a head node and the rest are compute nodes. The head node 

provides users with access to the VIOLIN environment and, as such, must remain 

statically located within its original host domain. However, all compute nodes are 

free to move throughout the infrastructure as they remain connected via the VIOLIN 

virtual network. 

User accounts are managed by a shared Lightweight Directory Access Protocol 

(LDAP) server, and user’s home directories are mounted to the local  NFS  server  

with the head node acting as a NAT router for the isolated compute nodes, giving a 

consistent system view to all virtual machines regardless of the  physical  locations  of  

the virtual machines. 

In order to migrate a virtual machine, the following must be transferred to the 

destination host: a snapshot of the root file system image, a snapshot of the current 

memory, and the thread of control. Xen’s live migration capability supports efficient 

transfer of the memory and thread of control. It performs an iterative process that 

reduces the amount of time the virtual machine is unavailable to  an  approximately  

165ms [24]. However, Xen does not support the migration of the root  file system  
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image. Xen assumes that the root file system is available on both the source and 

destination hosts - usually through NFS which can not safely be made available 

between multiple domains. The shared infrastructure is composed of independently 

administered domains which cannot safely share NFS servers. 

In order to perform multi-domain migrations, our prototype uses read-only root 

images that can be distributed without having to be updated. We do this by putting 

all system files that need to be written to in tmpfs filesystems. Since tmpfs file systems 

are resident in memory, Xen will migrate these files with the memory. Initially, we 

thought of this solution as a workaround to be fixed later. However, our experience 

has demonstrated that tmpfs can be a reasonable solution for a number of nanoHUB 

applications. In addition to using tmpfs for system files, users home directories are 

NFS-mounted through the virtual network to the nanoHUB server and do not need 

to be explicitly transferred. 

6.4 Experiments 

In this section, we present several experiments that show the feasibility  of  adaptive  

VIOLIN environments. First, we measure the overhead of live migration of VIOLIN 

environments, then we demonstrate application performance improvement  due to  au

tonomic live adaptation of VIOLIN environments sharing a multi-domain infrastruc

ture. For all experiments we use the nanoHUB VIOLIN deployment, an adaptation 

manager employing the heuristic described in section 6.2.2, and the NEMO3D [95] 

parallel atomic particle simulation as the application running in the VIOLIN envi

ronments. 

6.4.1 Migration Overhead 

Objective. This  experiment  aims  to  find  the  overhead  of  migrating  an  entire 

VIOLIN environment that is actively running a resource intensive application (indi

vidual virtual machine migration overheads have been studied in [24]). The overhead 
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Fig. 6.3. Migration overhead caused by live migration of entire VI
OLIN virtual environments that are actively executing the parallel 
application NEMO3D 

of live VIOLIN environment migration includes the execution time  lost  due  to  the  

temporary down-time of the virtual machines during migration, the time needed to 

reconfigure the VIOLIN virtual network, and any lingering effects such as network 

slowdown caused by packet loss and the resulting TCP back-off. 

Configuration. We  use  a  VIOLIN  environment  composed  of  four  virtual  ma

chines. We execute NEMO3D with several different problem sizes between 1/8 and 

1 million  particles.  For  each  problem  size,  we  record  the  execution time with and 

without migrating the VIOLIN environment. During the no-migration runs, the ap

plication is allowed to run unimpeded. During each run involving migration, all four 

virtual machines are simultaneously migrated live across the network to destination 

hosts configured identically to the source hosts. In order to stress the system and 

find the worst overhead possible, we choose the migration to occur at the most re

source intensive period of the application’s execution. During each run, there is no 
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Fig. 6.4. VIOLIN Environment Adaptation Scenario 1. 

background load in any of the hosts involved. However, the network is shared and 

therefore incurs background traffic. 

Results. Figure  6.3  shows  the  results.  We  find  that,  regardless  of  problem size, 

the run-time of the application is increased by approximately 20 seconds (ranging 

from 17-25 seconds) when the VIOLIN environment is migrated. 

Discussion. One  requirement  of  adaptive  VIOLIN  environments  is  that  there 

should be little or no effect on the applications due to adaptation. The 20 second 

penalty would seem impossible considering that Xen virtual machine migration re

quires the transfer of the entire memory footprint (approximately 800MB per virtual 

machine for an execution of NEMO3D simulating 1 million particles). However, Xen’s 

live migration mechanism hides the migration latency by continuing to run the ap
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plication in the virtual machine on the source host while the bulk of the memory is 

being transferred. We do not measure the actual down-time of our virtual machines; 

however, Xen migration of a virtual machine with 800MB of memory was found to 

have a 165ms down-time when migrating within a LAN [24]. The major effect on 

application performance is not due to the migration itself but the time to reestablish 

the VIOLIN virtual network plus application slowdown during the migration. This 

experiment shows that the penalty for migrating a VIOLIN environment is relatively 

small and does not escalate with increased virtual machine memory size. 

6.4.2 VIOLIN environment Adaptation Scenario 1 

Objective. The  purpose  of  this  experiment  is  to  demonstrate  the  effectiveness of 

the adaptation manager and to show how a small amount of autonomic adaptation can 

lead to better performance of all VIOLIN environments that share the infrastructure. 

Configuration. We  launch  five  VIOLIN  environments,  each  running  the  NEMO3D  

application with different input problem sizes (emulating independent VIOLIN envi

ronments used by different users). Each VIOLIN environment starts executing the 

application at a different time. The shared infrastructure is comprised  of  two  host  

domains. Domain 1 has six physical nodes while domain 2 has four physical nodes. 

The two domains are subsets of the two physical clusters in the nanoHUB.  At  the  

time of this experiment we did not have administrative privileges on any machines 

outside of Purdue University campus that could be used for these experiments, there

fore we did not experiment with truly wide-area infrastructures. However, the two 

domains that we are using are on separate subnets within Purdue University’s cam

pus. These domains have the same routing and migration configurations that would 

be seen in a true wide-area experiment, and demonstrate VIOLIN’s ability to operate 

in a multi-domain infrastructure. 

The experiment compares the execution time of NEMO3D within each VIOLIN 

environment with and without autonomic resource reallocation enabled. When re

http:Configuration.We
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Fig. 6.5. VIOLIN environment Adaptation Scenario 1: Execution 
time of applications running within VIOLIN environments with and 
without adaptation enabled. 

allocation is enabled, some VIOLIN environments will be migrated in accordance 

with the adaptation manager’s heuristic in order to balance the load and improve the 

performance of applications. 

Results. Figure  6.4  is  a  time-line  showing  where  each  VIOLIN  environment is 

located at key instances of time. Figure 6.5 shows recorded NEMO3D execution time 

of each VIOLIN environment with and without adaptation enabled. 

Initially, for both runs, VIOLIN environments 1, 2, and 3 (referred to as V1, V2, 

and V3) are executing their applications and have been allocated significant portions 

of the host domains (referred to as D1 and D2). Each virtual machine is using nearly 

100% of its allotted CPU. 

V2 is executing a smaller problem size and is running alone in D2 so it finishes 

quickly. When V2’s finishes, there occurs a load imbalance between the domains. 

There are 10 virtual machines in D1 that expect more CPU allocation while there is 
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no virtual machine in D2. The imbalance triggers the migration of V1 to the hosts 

of D2. This adaptation balances the load and allows the virtual machines of both V1 

and V3 to be allocated the full resources of a single host. 

It is important to note that although both remaining VIOLIN environments have 

increased CPU allocation, V1 temporally slows down during the migration. V3 will 

surely complete its application sooner, but it remains to be seen if the increased 

resource allocation to V1 can compensate for the cost of migration. 

After some time, V4 and V5 start their applications and require significant re

sources (100% utilization). We assume that both of these environments are new and 

must be created to allow the non-adaptation case to have some balance in load. With

out this allowance, V4 and V5 would have to remain where they were (potentially 

within D1, creating an even larger advantage for the adaptation case). In either 

case, the creation of V4 and V5 causes both domains to be overloaded. The load is, 

however, balanced. 

Next, V1 and V3 finish their applications. From Figure 6.5, we see that the 

migration of V1 allows V3 to finish 30% sooner than it would have otherwise,  while  

V1 finishes in approximately the same amount of time due to the additional cost 

it pays to migrate. Once V1 and V3 finish, the remaining VIOLIN environments 

(V4 and V5) are already balanced in the adaptation case, while they  are  not  in  the  

non-adaptation case. 

Table 6.1
 
Environment Properties
 

Env VMs Size Start Time 

1 4 1/2 Mill Part. 0:00 

2 4 1/4 Mill Part. 0:00 

3 6 1 Mill  Part.  0:00 

4 4 1/2 Mill Part. 24:20 

5 4 1/2 Mill Part. 24:20 
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Fig. 6.6. VIOLIN environment Adaptation Scenario 2. 

The chart in Figure 6.5 shows the application execution in each VIOLIN envi

ronment. For each VIOLIN environment, the execution time is reduced by enabling 

autonomic adaptation. The last two data points on the chart show the average time 

and overall time metrics of the system. The average time is the average execution 

time for all VIOLIN environments. In this example, adaptation saves on the average 

39% of the application’s execution time. The overall time is the duration between the 

execution of the first VIOLIN environment and the completion of the last VIOLIN 

environment. The overall time gives us a measure of the efficiency of resource usage. 

We see a 34% reduction in overall time with adaptation. 

Discussion. Observe  that  during  this  experiment  nearly  all  of  the  VIOLIN envi

ronments benefit from adaptation even though only one is migrated, suggesting that 

a small  amount  of adaptation  can  lead  to a large  increase  in  both application per

formance and resource utilization. In addition, heuristics that  aim  to  balance  load  

while minimizing the cost of migration are likely to achieve satisfactory performance 

without having to find the optimal allocation of resources to virtual machines. 
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6.4.3 VIOLIN environment Adaptation Scenario 2 

Objective. Whereas  the  previous  example  shows  the  typical  case  where  virtual 

environments are either being heavily used or completely idle, the next example shows 

how adaptation can benefit applications that go through periods of high and low use 

during a single execution. In this situation, we create a VIOLIN environment that 

initially uses a high amount of CPU then moves to a stage in its application that uses 

lower amounts of CPU. 

Configuration. The  configuration  uses  the  same  host  infrastructure  as  the  pre

vious example. However, the VIOLIN environments and their applications have 

changed. There are now four VIOLIN environments, all of which execute  the  NEMO3D  

application except for V1. V1 executes the high demand NEMO3D followed  by  a  less  

CPU intensive “dummy” application. V1 is simulating 100% utilization followed by 

a lower  utilization  that  stabilizes  within  the  desired  utilization range after the appro

priate reduction in CPU allocation. 

Results. The  time-line  in  Figure  6.6  and  the  chart  in  Figure  6.7  show  the resulting 

execution time of the applications with and without adaptation enabled. Initially, the 

load is balanced between the four VIOLIN environments which are running on the 

two domains. After some time, V3 completes its application and no longer requires 

resources. Next V1 enters its second, less CPU intensive, stage of its execution. In 

the new stage, V1’s utilization of resources drops well below desired  range.  Its drop  

in CPU allocation results in a load imbalance between the two domains, forcing the 

adaptation manager to migrate V2 to D1. The migration balances the load between 

domains but causes an imbalance between the hosts of D1. Since it  is  now  possible for  

all six virtual machines from V1 to be supported by only two of the available hosts, 

they are migrated to the hosts left vacant by V2. 

The results in Figure 6.7 show that V1 and V2 execute in approximately the 

same amount of time while V3 and V4 show significantly lower execution time. With 
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autonomic reallocation enabled, the average time and overall time are decreased by 

41% and 47%, respectively. 

Discussion. From  this  experiment  we  see  that  it  is  possible  to  obtain  further 

improvement of performance and efficiency by combining the fine-grained resource 

reallocation mechanisms with the coarse-grained migration mechanisms.  The  adap

tation manager is able to identify virtual environments that experience  a  significant  

reduction in resource requirements. By scaling down the CPU share allocated to indi

vidual virtual machines of V1, it opens the possibility of migrating V2 thus improving 

the performance seen by all VIOLIN environments. 
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Fig. 6.7. VIOLIN environment Adaptation Scenario 2: Execution 
time of applications running within VIOLIN environments with and 
without adaptation enabled. 
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6.5 Conclusion 

We have presented the design and implementation of VIOLIN autonomic virtual 

computation environments for multi-domain shared infrastructures. Using VIOLIN 

environments, independently administered virtual computation domains flow through 

the massive amount of computation resources available through multi-domain shared 

infrastructures. We have shown the design and implementation of VIOLIN environ

ments that allows virtual environments to adapt to the needs of their applications 

including the use of wide-area migration of live virtual environments. Our experiments 

with our nanoHUB deployment of virtual computation environments has shown signif

icant performance and efficiency increases. With continued advancement of machine 

and network virtualization, as well as resource allocation policies, VIOLIN virtual 

computation environments will continue to increase the potential of multi-domain 

shared infrastructures. 
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7. CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

In this dissertation, we have presented an integrated, virtualization-based frame

work for federating massive amounts of cyberinfrastructure resources.  By  creating  a  

layer of indirection between physical resources and software systems, virtualization 

provides unique opportunities to address challenging problems in cyberinfrastruc

ture and high-throughput computing. More specifically, the VIOLIN middleware has 

demonstrated the power of virtualization for the creation of efficient,  secure  environ

ments for utilizing cyberinfrastructure. Using VIOLIN virtual environments (Chap

ter 4), we are able to provide each user with the illusion of a isolated private LAN 

which is actually deployed across a wide-area shared cyberinfrastructure. Further, we 

utilize VIOLIN environments to create VioCluster which enables inter-domain cluster 

sharing (Chapter 5) by dynamically expanding the domain boundaries of cluster com

puters to utilize the resources of cooperating clusters. Finally, we use our experience 

gained through the creation of VioCluster and the wide-area adaptation mechanisms 

of VIOLIN to create fully autonomic virtual environments for shared  cyberinfrastruc

ture (Chapter 6). 

Based on the integrated VIOLIN framework, we have deployed a production sys

tem on the nanoHUB infrastructure, as well as, created experimental systems used 

to evaluate the effectiveness of adaptation mechanisms and policies on increasing the 

efficiency and throughput of shared computational resources. Based  on  the  observa

tion and insights obtained from this platform, we have gained unique  advantages  in  

designing and evaluating advanced virtualization-based middleware for federating cy

berinfrastructure resources. Currently, VIOLIN environments are a fundamental part 

of the production nanoHUB execution environment, and in the near future advanced 
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adaptation mechanisms and policies will be extended to the nanoHUB increasing its 

performance and benefiting all of its users. 

7.2 Future Work 

The integrated middleware for autonomic adaptive virtual environments presented 

in this dissertation has laid a solid foundation for future work. In the following we 

propose topics for future research: 

•	 Advanced resource demand prediction methods. The  key  to  effective  

resource allocation is knowing the proper amount of resources a virtual ma

chine or environment will need in the future. In this dissertation, we have 

discussed two techniques for predicting future demand: (1) application-aware 

prediction, and (2) application-independent prediction. VioCluster (Chapter 5), 

uses application-aware prediction by utilizes notoriously inaccurate  and  often  

unavailable information gathered from cluster schedulers. The  fully  autonomic  

environments discussed in Chapter 6 use application-independent prediction 

methods by applying relatively simple time series analysis. 

In future work, we plan on developing more advanced prediction methods based 

on techniques found in the field of Artificial Intelligence (AI). Reinforcement 

Learning (RL) is an AI technique that aims to learn about an algorithm using a 

black-box approach. Reinforcement Learning techniques manipulate the values 

used as input to a function and record the associated output. Over time, the 

system can learn how the inputs effect the output without knowing the inter

nals functionality. If we view a virtual machine as a black-box, the resource 

allocation as inputs, and the completed computation as output, we can use RL 

to manipulate the resource allocation in order to effect the virtual machine’s 

ability to run the application. 

•	 Advanced Cluster throughput mechanisms. Computational  clusters  have  

many users. Some users are skilled at coding and running efficient applications, 
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while others are not. In large supercomputing centers inefficient applications 

have actual costs seen in the need to purchase more machines and in long 

queue wait times endured by users. Work has been done to identify inefficient 

applications and notify users in the attempt to modify their behavior [100]. We 

intend to utilize the job efficiency information to adapt virtual environments 

allocation. By applying the techniques we have developed through the creation 

of the VIOLIN middleware, we will continue to increase the performance and 

efficiency of distributed shared computational platforms. 
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