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Abstract

In this paper, we describe group key management 

protocosl for hierarchical sensor networks where 

instead of using pre-deployed keys, each sensor node 

generates a partial key dynamically using a function. 

The function takes partial keys of its children as 

input. The design of the protocol is motivated by the 

fact that traditional cryptographic techniques are 

impractical in sensor networks because of high 

energy and computational overheads. The group key 

management protocol supports the establishment of 

two types of group keys; one for the sensor nodes 

within a group, and the other in a group of cluster 

heads. The protocol handles freshness of the group 

key dynamically, and eliminates the involvement of a 

trusted third party (TTP). We have experimentally 

evaluated the time and energy consumption in 

broadcasting partial keys and group key under two 

sensor routing protocols (Tiny-AODV and Tiny-

Diffusion) by varying the number of nodes and key 

sizes. The performance study provides the optimum 

number of partial keys needed for computing the 

group key to balance the available security and power 

consumption. The experimental study also concludes 

that the energy consumption in SPIN [9] increases 

rapidly as the number of group members increases in 

comparison to our protocol. 

1. Introduction 

Sensor networks [1] have become an important area 
of research because of their applications in military and 
disaster relief. The most limiting factors of a sensor 
node are its battery capacity and available memory. 
Thus, the energy and storage conservation are two 
important issues at the node level and at network level.  

Security is one of the most important issues in 
distributed ad hoc sensor networks. For example, a 
wireless sensor network uses a radio frequency (RF) 
channel [10], which is not a secure channel. It is also 
difficult to prevent an adversary sensor node from 
compromising the security of sensor networks because 

of untraceable sensor nodes and less physical 
protection [2,3,5]. To control information access in a 
hierarchical sensor environment, only authorized 
sensors should have the cryptographic keys by which 
they can decode the disseminated information. Thus, a 
group key management is required for such a 
hierarchical environment as it can implement different 
access control policies at each level and provide 
mechanisms for secure group communication by 
eliminating compromised nodes. In the traditional 
cryptographic techniques for security, every sensor 
node would need a {private, public} key pair which is 
impractical because of high energy consumption and 
scalability.  

In this paper, we propose a group key management 
protocol using a hierarchical architecture consisting of 
different groups with a unique group key. Using this 
approach, multi-level security can be achieved to 
secure the group of sensors at different levels. There 
are two types of group keys: intra-cluster, and inter-
cluster.  The intra-cluster group key is used for 
encryption/decryption of messages inside a sensor 
network group, whereas the inter-cluster group key is 
used for groups of cluster heads. 

The two most important advantages of dynamic 
partial keys over pre-deployed keys are that (1) sensor 
nodes need not store too many keys and (2) the 
dynamic key may not be compromised because it 
changes frequently. In our proposed scheme, every 
sensor node in a group generates a partial key 
dynamically, and used it for computing the group key 
in a bottom up fashion. Once the sensor network is 
deployed, it is organized in a hierarchical fashion. 
After that, a cluster head (leader) gets messages from 
all its group members to know their level and location 
in the sub-tree, and in response it sends a message. It 
also requests the leaf nodes (initiator) to compute their 
partial keys. In this protocol, the partial keys are 
computed using the function associated with each node 
which uses partial keys of their descendents as 
arguments. The key computation starts by leaf nodes 
generating random numbers as their partial keys, 
because they have no descendents. The cluster head 
computes the group key using an optimum number of 
partial keys. The decision for choosing the number of 
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partial keys to be used is based on the security and 
energy consumption. 

In this paper, we modified the Tree Based Group 
Diffie-Hellman (TGDH) protocol [7] for group key 
management using a general tree structure. In addition, 
Diffie-Hellman protocol [9] is used for computing the 
group key. Using the modified TDGH, a new group 
key management scheme is presented. The 
experiments, with a sensor network environment 
created in NS-2 and TinyOS are performed using two 
sensor routing protocols (Tiny-AODV and Tiny-
Diffusion) by varying nodes, key sizes and energy 
consumption. It is observed that Tiny-AODV is slower 
than Tiny-Diffusion in terms of broadcasting the partial 
keys and the group key. Also, the Tiny-AODV takes 
more time to re-establish a route and re-send the partial 
keys. The experiments for energy computation and 
delivery of partial keys helped in selecting the 
optimum partial key and group key sizes. It is observed 
that a 300-bits group key size would be reasonable 
considering memory and communication overheads. In 
experiments, the optimum (energy, security) group key 
size is 300 bits, which can be computed from 15 partial 
keys of 20 bits each. It is known that decrypting 300-
bits group key needs 2300 micro seconds, with the 
decryption rate of 1 bit per micro second [10].  

We performed experiments to compute energy 
consumption and concluded that the protocol consumes 
very small amount of energy (approximately 0.245 
joule) in the process of computing 15 partial keys, 
broadcasting them, computing and broadcasting the 
group key. The energy consumption is very small 
compared to the total available energy of 4,61700 joule 
(for 15 nodes with two batteries each having 15,390 
joule per battery). The proposed protocol conserves 
energy and communication with respect to SPIN [6] 
and pre-deployed key protocol. To save 
communication cost and energy, re-keying of the group 
is done by the cluster head by sending a message to the 
sensor nodes, which contains information for adding or 
removing certain partial keys to generate the new 
group key. To guarantee that all the nodes in a group 
received the information, they send a reply (REP) 
message. If the cluster head does not get the REP from 
every node, it re-broadcasts the message.  

2. Related work 

Kim et al. [7] proposed a group key agreement 
protocol called Tree Based Group Diffie-Hellman 
protocol [TGDH], which is based on the Diffie-
Hellman key exchange. In this protocol, a distributed 
key agreement has been considered rather than a 
centralized group key agreement. Different group 
agreement protocols have been proposed. In 
centralized group key distribution, one key server 
generates keys and distributes them to the group, while 
in decentralized approaches the key is computed 

dynamically. The basic requirements for group key 
agreement protocols [1, 5] are key freshness, group key 
secrecy (forward and backward) and key 
independence.  

In SPIN [6] two security concepts are used: SNEP 
(Secure network encryption protocol) and micro 
TESLA (Time, efficient, streaming, loss-tolerant 
authentication protocol).  The advantages of SNEP are 
low communication overhead and semantic security. A 
DES-CBC chaining algorithm is used to maintain data 
confidentiality in SPIN, and a MAC is used to keep 
messages unaltered. A special counter is used to 
maintain the sequence of messages. The counter value 
will never be the same, so the encrypted message is 
different for the same data. The disadvantages of SPIN 
are that (1) it is based on one-to-one communication 
but nodes in sensor networks work in groups and (2) it 
does not consider the security in hierarchical structure 
and clustering which are important for sensor network 
applications such as in military.  

Eschenauer et al [4] presented a key management 
scheme which has selective distribution and revocation 
of keys in sensor nodes. Their scheme is based on the 
probabilistic distribution of the key, which guarantees 
that two neighboring nodes will have at least one 
common key in their key ring. This key is used by the 
neighboring nodes to encrypt/decrypt messages. The 
disadvantage of this approach is that, pre-deployed 
keys are comparatively easy to forge than a dynamic 
key. Also, each node needs more memory to store 
many keys, and therefore, it is impractical 

3. Hierarchical sensor network model

In this section, the architecture of a hierarchical 
sensor network with multiple levels consisting of 
sensor nodes, cluster heads, and relay nodes is 
described. There are two types of sensor groups; one is 
a group of sensor nodes lead by a cluster head, and the 
other is a group of cluster heads with one cluster head 
as head of that group. Figure 1 shows the architecture. 
In this model, each sensor group collects data from a 
particular geographical area and sends the data to the 
nearest sensor nodes. If the neighboring nodes are relay 
nodes, they forward those data using the appropriate 
routing path. Finally, the cluster head aggregates the 
data and forwards that to its upper level cluster head.  

Three different types of identifications are used in 
this model: a unique identification (ID) for each sensor 
node, each cluster head and each group of clusters. The 
assignments of the IDs are done in the following ways: 

The IDs of sensor nodes are given by the cluster 
head of that particular group. 
The IDs of cluster heads are given by the Head of 
Cluster Heads [HCH] of a particular geographical 
area. HCH is the cluster head, which is responsible 
for leading the group of cluster heads. 
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Also, the IDs of the group of sensor nodes are 
given by HCH. 

Figure 1. Hierarchical architecture

4. Partial key computation 

In this section, we describe the scheme for 
computing the partial key in each sensor node. We 
assume that after the organization, the cluster head of 
each group knows the position (Pos<l,v>)  (level in the 
sub-tree) of its group members. It send a message 
Msg(Pos<l,v>) to let them know their position. Next, the 
cluster head sends a message (Rep<init,node>) to the leaf 
nodes to compute the partial keys. The function 
f(partial key of child1, partial key of child2) is used to 
compute the partial keys in each node. As the leaf 
nodes do not have any decedents, they generate 
random numbers as their partial keys. Then, it uses a 
simple approach to compute the partial keys of non-
leaf nodes. The parents of the leaf nodes compute their 
partial keys using a function f(). The function 

is pkkf kk mod),( 21
21 , where p is the prime 

number,  is the primitive root of P and k1, k2 are keys 
(k1,k2<p). The arguments of the function are the partial 
keys of their children. Using a bottom up approach, all 
non-leaf sensor nodes can compute their partial keys.  

If the tree is binary, then the function for 
computing the partial key K is f (K<l+1, 2v> K<l+1, 2v+1> ),
where l is the level in the tree and v is the position of 
the node from left. For example in Figure 2, to 
compute the K<2, 0> we need the function f(K<3, 0>  K< 3, 

1> ). The computation of K<2, 1> is not possible using 
f(K<3, 2>  K< 3, 3> ) as children now have different 
parents. If the function f(K<l+1, 2v+1> K<l+1, 2v+2> ) is 
used then we are able to compute K<2, 1>. From this we 
observe that the levels l do not change, but the position 
v changes depending on the number of children. In a 
non-binary tree, the algorithm needs to count the 
siblings in the left part of the sub-tree for calculating a 
key for the parent node. It then computes m where m = 
siblings - 2 so the function would be f(K<l+1, 2v+m>  

K<l+1, 2v+1+m> ).

Figure 2. Dynamic partial key computation 

The advantage of this function is that it is difficult 
to decode. When the nodes know the function 

( pkkf kk mod),( 21
21 ) then they do not need 

to analyze the known function. The complexity of the 
protocol is O(logn+mn), because the partial keys and 
the group key are computed in a tree structure. For n
nodes, it takes O(logn) time, and computing the m
partial keys from n nodes takes O(mn) time. 

A one time symmetric key is used for generation 
and verification of the MAC first time. This key is also 
used for encryption/decryption of partial keys, 
intermediate keys and group key. Once the group key 
is computed, the symmetric key is discarded. Figure 3 
provides the algorithm for computing the partial keys 
in a tree which is based on the position of the nodes in 
that group.  

         Figure 3. Algorithm for dynamic partial 
key computation

Algorithm: 

1. if (tree is binary) then 

2.  {    f (K<l+1, 2v> K<l+1, 2v+1>)    } 

3. else if (it is not binary), then 

4.        {     f (K<l+1, 2v+m> K<l+1, 2v+1+m>)

m = [ If there is sub-tree left side of 
node, left 

siblings – (number of sub-tree)x 2 – 2 ] } 

5. if (no sub-tree in the left side of the 
node) then 

6.  {    f (K<l+1, 2v> K<l+1, 2v+1>)    } 

7. else if (sub-tree is there in the left side 
of the node), 

then 

8.       {    f (K<l+1, 2v+m> K<l+1, 2v+1+m>)   } 

Level 1

Cluster head General sensor  nodes Relay  nodes 

Level 2

(0,0

(1,0 (1,1

(2,0 (2,1

(2,2 (2,3

(3,0 (3,1 (3,2 (3,3 (3,4 (3,5 (3,6 (3,7 (3,8
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5. Group key computation 

We have used the multi-party Diffie-Hellman and 
TGDH protocol [7] to propose a new group key 
computation method for sensor networks. To 
accomplish this proposition, the leaf nodes work as the 
initiators and the cluster head as the leader. Starting 
from the initiator sensor nodes, every sensor node 
contributes its partial key for computing the group key. 
The leader node accumulates all partial keys for 
computation of the group key. This is a bottom up 
approach, as partial keys are accumulated from leaf 
nodes to the parent nodes. In the following subsection, 
we show the group key computation with and without 
using the blind factor. The blind factor is a unique 
number generated by a sensor node. 

5.1 Group key computation without blind 
factor

 We use the following approach for group key 
computation without the blind factor [1]. As the leaf 
nodes act as the initiators, they first broadcast their 
partial keys. The parent nodes of the leaf nodes get the 
partial keys and then add their own partial keys and 
rebroadcast it. As it is a bottom up approach, the 
cluster head will have all the partial keys, and it will 
compute the group key using its partial key 
contribution. After that, the cluster head broadcasts the 
group key.  

Initially, a pre-deployed one time symmetric key is 
used to encrypt and decrypt the partial keys and the 
group key. There after, only the group key is used for 
this purpose. The identification of the nodes is attached 
with the encrypted partial keys. The sensor nodes 
check the identification before decrypting the partial 
keys, as the parent nodes only need the partial keys of 
their children. In this way, they can have early 
rejection of packets, which saves communication and 
computation overheads. The other group members 
cannot compute the group key because they cannot get 
the partial key of the cluster head, since it does not 
broadcast its partial key. 

In Figure 4, the leaf nodes are M1, M2, …, M9.  To 
start, M1 computes the partial key gS1 and broadcasts it. 
The parent node M10 gets the partial keys from M1 and
other children. Here, g is a generator of the 
multiplicative group ZP* (i.e. the set {1, 2… p-1}, p is
the prime) and S1 is a randomly chosen secret number 
for member M1. Likewise, member M2 computes gS2

and broadcasts it, and the parent M10 gets the partial 
keys. In this way, member M10 receives gS1S2S3, and 
raises the power by S10 to get the intermediate key (IK).
Here, gS10 is the partial key contribution of M10.
In the following paragraphs, we discuss two types of 
group keys: the intra-cluster and the inter-cluster.  

The intermediate keys in M10, M11, and M12 are  IK1 
= g S1 S2 S3 S10,  IK2 = g S4 S5 S6 S11,  and  IK3 = g S7 S8 S9 

S12, respectively. The intermediate keys are encrypted 
using a one time symmetric key, as explained earlier. 
The cluster head computes the group key K, using IK1,
IK2, and IK3 and its contribution gs13.

K = g S1 S2 S3 S10 S4 S5 S6 S11 S7 S8 S9 S12s13   [Intra-cluster 
group key] 

Then, it encrypts the group key using the 
symmetric key. The authentic nodes, which have the 
symmetric key, can decrypt the group key. The cluster 
head broadcasts the group key to its group members, so 
that every sensor node gets the group key. This group 
key is called the intra-cluster group key, and is used for 
encryption/decryption of messages inside the group of 
sensor nodes.  

Cluster head General sensor nodes
M1 M2 M3 M4 M5 M6 M7 M8 M9

M10 M11 M12

gs2 gs3 gs4 gs5 gs6 gs7
gs8 gs9

gs1s2s3s10

gs1

gs4s5s6s11 gs7s8s9s12

gs1s2 ... s12s13

Figure 4. Intra-Cluster key computation 

For inter-cluster encryption/decryption a different 
group key is computed. The inter-cluster group key is 
not known to the general sensor nodes. Figure 5 shows 
the computation of the inter-cluster group key. The 
intermediate key in C7, C8, C9 are IK1inter = g C1C7 , 
IK2inter = g C2C3C8 , and IK3inter = g C4C5C6C9

The head of the cluster heads (HCH) computes the 
inter-cluster group key C using intermediate keys 
IK1inter, IK2inter, IK3inter, and its contribution gc10.

C = g C1C7C2C3C8C4C5C6C9c10  [Inter-cluster group key] 
The HCH broadcasts the inter-cluster group key to 

the cluster heads. The cluster heads use this group key 
for encryption/decryption of messages among the 
cluster heads. 

5.2. Group key computation using blind factor 

We can compute the group key using a blind factor. 
The advantage of using a blind factor is that an attacker 
will not be able to get the group key when the cluster 
head broadcasts the group key. In Figure 4, the 
intermediate keys are IK1 = g S1 S2 S3 S10 , IK2 = g S4 S5 S6 

S11 and IK3 = g S7 S8 S9 S12. After computation of IK1, 
IK2, and IK3 the parent nodes M10, M11, M12 broadcast 
the intermediate keys. The children of M10, M11, and
M12 are interested in those keys, as they need to 
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remove their contribution from the IK. Then they insert 
a randomly chosen blind factor B. The keys, after 
inserting blind factor, are as follows. 
IKB1 = g B1 S2 S3 S10 , IKB2 = g S1 B2 S3 S10 , and               
IKB9 = g S7 S8 B9 S12. The cluster head gets the 
broadcasted keys IKB1,…, IKB9. The cluster head then 
computes the group key K, using IKB1…IKB9 and its 
contribution gs13.

K = g B1 S2 S3 S10 S4 S5 S6 S11 S7 S8 S9 S12s13 

After the group key computation, the cluster head 
broadcasts the group key with blind factor. Now the 
authentic sensor node can recognize its blind factor. 
Each member remove its blind factor that it received 
from the cluster head. They reinsert their original 
contribution Si (i = 1...n) for getting the group key. The 
same method is used to compute the inter-cluster group 
key. A symmetric key is used for encryption and 
decryption of partial keys. The cluster head uses the 
same symmetric key for encryption of the group key. 

C1 C2 C3 C4 C5 C6

C7 C8 C9

gc2gc1 gc3 gc4
gc5 gc6

gc1c7
gc2c3c8 gc4c5c6c9

gc4 ... c9c10
C10

Cluster head

Figure 5. Inter-Cluster key computation

5.3. Updating a group key 

Our key management protocol provides a scalable 
approach for updating group keys for large dynamic 
groups. Section 3 shows that large dynamic groups, re-
keying the group on each membership change becomes 
unsustainable. One of the approaches to keep the key 
fresh is by re-keying the group at fixed intervals; this 
approach is computationally expensive as the partial 
keys and the group key will be computed again. 
Another approach for updating the key would be to 
send a message from the cluster head to its group 
members consists of instructions to remove or add a 
certain partial key from the group key in order to get 
the new group key. The group key K, which is 
described in Section 5.1 is: 

K = g S1 S2 S3 S10 S4 S5 S6 S11 S7 S8 S9 S12s13 [Old group key] 
For example, the cluster head sends an encrypted 
message to its group member for removing S10 from 
their group key. The new group key K would be: 

K = g S1 S2 S3 S4 S5 S6 S11 S7 S8 S9 S12s13 [New group key] 

To guarantee that all the sensor nodes received the 
message to update the part of the group key, nodes 
send an acknowledgment (ACK) message to the cluster 
head. If the cluster head receives the reply (REP) from 
all the nodes, then it sends the next message that “the 
new group key is in effect now”. If the cluster head 
does not receive the reply message REP from all its 
group members, then it resends (broadcast) the 
message until it can get a reply message or it can come 
to know events, such as a particular sensor node does 
not have battery power left for communication. To 
keep track of all the partial keys, the cluster head can 
use a primary index by sorting the IDs of its group 
member nodes.  

5.4. Analysis: Energy and security level with   
       respect to key size 

This subsection explains the analysis of balancing 
the energy consumption verses security level by 
choosing the appropriate key sizes in the proposed 
protocol.  

Notations:

fL   Leaf level nodes in the hierarchy 

vtL   Leaf level 

lfK    Partial keys in the leaf nodes 

Pk   Pre-deployed key in the network,   
              can be symmetric or asymmetric   

pK    Parent key of the sub-tree 

nP  Parent nodes of each sub-tree 

            vL   Levels in the hierarchy as in figure 1 

f ( )  Function with the partial keys of    
              children as arguments 
E  Energy consumption (joule)

totalP      Total energy in the network (joule) 

consumedP Consumed energy for group key  

              computation 
G           Group of sensors in the network 

gN  Number of groups in the network 

S  Size of key 

nL  Number of levels in each group 

nC  Number of partial keys considered for the   

group key 
V Battery voltage (volt) 
C Capacitance (farad) 
f Frequency  (Hz) 
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Let fL vtL and vL =1, 2, …….n [ vL = 0 is the 

root]. The parent key pK is computed from the 

function f( lfK , 1lfK ) where pkf k mod)( .

The energy remaining in each sensor node is computed 
using their levels in the architecture. It is known that 
the energy consumption in a circuit is : Power P = V2

.f. C
If the power (energy) consumption at each level is P 
then the total power in all groups is: 

Total power = gv NLP

Energy remaining = totalP - gv NLP
The energy required at each level will compute the 
total energy needed in the computation of the group 

key, and is given by 
v

n
L

1 nv LLP

By considering the partial keys at each node level and 
at their parent level energy consumption would be: 

Pn

Lf
npv LKL )( nlfp PkK

If n partial keys are considered to form the group key 
then the energy consumption with respect to key size 

would be: consumedP = ECKK nplf )(
The energy consumption for the group key must be 
less than the total available energy. Thus, 

gtotalnplf NEPECKK )(
It is assumed that there exists more than one group in 
the network. If the partial key size varies from 20 to 
100 bits then the energy consumption would be: 

100

20

)(
byteS

nplf SCKKE

The partial key sizes are based on the group key size, 
the number of partial keys considered for the group key 
and the available energy.   
The energy consumption for computing the partial keys 
and the group key proportional to the security 
requirement in terms of key sizes can be expressed as 
follows: 

,GCn

lfp KK ,   | SecEKKC lfpn )(

where Sec  is the time to the decrypt the key at a 
decryption rate of 1 bit per micro second. It is observed 
that, as the key size increases the security and energy 
consumption would increase, and it is not possible to 

have totalconsumed PP .

If
consumed

nvtnf

P

ELLELL )()(
1,

then the cluster head can choose the partial keys 
from the leaf nodes. From the above, we can find the 
number of partial keys to be used for balancing the 
security requirement based on key size verses the 
energy consumption.  

6. Performance evaluation and observation 

For performance analysis, we have implemented 
the group key management protocol in TinyOS and 
NS-2. As NS-2 is not developed for sensor network, a 
sensor network environment is created in NS-2 by 
plugging in sensor agent, energy model, and multi-
channel model developed by the United States Navy.  

The cluster head computes the group using the 
method as described in Section 5. It chooses a certain 
number of partial keys in order to compute the group 
key. It also stores the identification of the nodes along 
with the partial keys so that it can save memory by 
discarding the partial keys received earlier. 

In order to measure how fast the partial keys are 
delivered to the cluster head, we did experiments using 
two sensor routing protocols: Tiny-AODV and Tiny-
Diffusion. The sensor nodes, which do not fall in a 10 
meters range, generate partial keys so that the cluster 
head can get the partial keys from different regions in 
its group. Then, they establish a route to the cluster 
head using the routing protocol and send the partial 
keys using that route. The reasons for restricting the 
number of sensor nodes and broadcasting the partial 
keys are to reduce communication overhead, and 
energy consumption. Figure 6 shows the time taken by 
the network to send the first 25 partial keys to the 
cluster head using the Tiny-AODV and Tiny-Diffusion 
routing protocols. The algorithm for generating and 
broadcasting partial keys and computing the group key 
was kept the same in both cases. 

Routing Protocols Tiny-AODV, Tiny-
Diffusion 

Area 2000 x 2000 meter 
Number of nodes per 
group 

50

Channel Single (wireless) 
Simulation time 160 sec 
Transmitting   
power 

0.175 mW 

Receiving power 0.175 mW 
Idle  0.0 W 
Initial energy 0.5 Joule 
Sensing power 0.00000175 mW 

Table 1. Parameters for simulation 
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We observed that the Tiny-AODV takes 
approximately 54 seconds to deliver the first 25 partial 
keys to the cluster head; whereas Tiny-Diffusion takes 
almost 15 seconds. This experiment is performed to 
determine the effectiveness of routing protocols in 
terms of how fast the partial keys can reach the 
destination. After that, the group key is computed by 
the cluster head. Then it is broadcasted to all its group 
members. We found that both routing protocols take a 
comparably small amount of time for broadcasting 
partial keys. 

Figure 7 shows the time taken by the network to 
broadcast the group key generated based on the 
collection of partial keys using the Tiny-AODV and 
Tiny-Diffusion routing protocols. From experiments, it 
is observed that the group members whose IDs are 1 
through 25 receive the group key in approximately 
7.57 seconds if Tiny-AODV is used whereas if Tiny-
Diffusion is used then it takes approximately 11.82 
seconds. The reason is that, Tiny-Diffusion uses a 
routing table for creating routes and therefore, it takes 
more time to deliver the initial packets compared to 
Tiny-AODV because of its proactive features. There is 
a very small time difference in broadcasting the group 
key using Tiny-AODV and Tiny-Diffusion.  Thus, 
delivering the partial keys (as shown in Figure 7) to the 
cluster head using Tiny-AODV takes more time than 
Tiny-Diffusion because of the partial key broadcast 
from every node, and then delivering it to the cluster 
head requires many-to-one communication.  

In Figure 8, we present the results for time taken in 
broadcasting partial keys of size 20 and 30 bits. The 
group key in the cluster head is computed using the 
first 15 partial keys. The group key size would be 300 
and 450 bits, respectively. We observed that the time 
taken to accumulate partial keys of size 300 and 450 
bits remains almost same. Theoretically, the time 
required to decrypt 300 bits key size is 2300 micro 
seconds, at a rate of 1 bit decrypt per micro second. 
Therefore, the forgery time for size of 300 bits group 
key is quite high.  
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Figure 7. Broadcasting group key 

We performed another experiment to analyze the 
energy consumption in the proposed model. As a 
reminder, the power consumed by the sensor nodes for 
transmission and reception is set at 175 mW, for 
sensing 0.00000175 mW, and the initial energy of the 
general sensor nodes is 0.5 joule. The cluster head 
consumes the same power for transmission and 
reception with its initial energy is set to 2.5 joules. 
Figure 9 shows the energy consumption graph for 
generating 20 partial keys and delivering those to the 
cluster head. This also includes the energy 
consumption for communication before delivering the 
partial keys. From this experiment, we observe that 
changing the number of senders has impact on the 
energy consumption, and this experiment helps to 
decide the number of partial keys that should be chosen 
in order to balance the energy consumption and 
security. The optimum number of partial keys is 15 
with respect to the current configuration. Although the 
total power consumption for generating partial keys, 
delivering, computing the group key and broadcasting 
back is not shown in the figure, it is approximately 
0.245 joule. 

One way to protect the network from intruders is by 
updating (re-keying) the group keys frequently so that 
an intruder cannot get enough time to forge the group 
key. In our model, we update the group key using the 
technique described in Section 5.3. As explained 
earlier, in order to save communication and 
computation cost, instead of re-computing the partial 
keys and the group key, the cluster head sends a 
message to its group members for removing or adding 
certain partial keys from the group key to obtain the 
new group key.  

In Figure 10, the energy consumption by SPIN and 
our key management protocol are compared. Though 
SPIN is used for one-to-one node communication, here 
it used for group communication. It is observed that 
SPIN takes more time for communicating within a 
group. We observed that the energy consumption of 
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SPIN increases exponentially with the increase of the 
number of nodes in a group.  
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7. Conclusions 

In this paper, we have described a group key 
management protocol where the partial keys are 
computed dynamically, instead of using pre-deployed 

keys. A group key is generated based on the partial 
keys of the group members. The dynamic partial keys 
have some advantages over pre-deployed keys, as 
many pre-deployed keys need to be stored to provide 
secure communication, which is not feasible in sensor 
nodes because of the limited memory. It is easy to re-
compute the partial keys as each node uses a function 
with the partial keys of its children as arguments of the 
function to compute its partial key.  Using a detailed 
simulation study it is shown that the proposed protocol 
is able to compute the partial keys and the group key 
within a very small time period. We observed that the 
energy consumption for generating the partial keys and 
the group key is very small compared to the total 
available energy. It is also sown by an experiment that 
the energy consumption of SPIN increases 
exponentially as the number of group nodes increase, 
but our proposed protocol consumes a very small 
amount of energy after the first group key computation.  
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