
CERIAS Tech Report 2006-72
Energy and Communication Efficient Group Key Management Protocol for Hierarchical Sensor Networks

 by B Panja, S Madria, B Bhargava
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

This research is partially supported by NSF grant EIA-0323630.

Energy and Communication Efficient Group Key
Management Protocol for Hierarchical Sensor Networks

Biswajit Panja, Sanjay Kumar Madria Bharat Bhargava
Department of Computer Science

University of Missouri-Rolla, Mo 65401
bptfc,madrias@umr.edu

Department of Computer Science
Purdue University, West Lafayette, IN 47907

bb@cs.purdue.edu

Abstract

In this paper, we describe group key management

protocosl for hierarchical sensor networks where

instead of using pre-deployed keys, each sensor node

generates a partial key dynamically using a function.

The function takes partial keys of its children as

input. The design of the protocol is motivated by the

fact that traditional cryptographic techniques are

impractical in sensor networks because of high

energy and computational overheads. The group key

management protocol supports the establishment of

two types of group keys; one for the sensor nodes

within a group, and the other in a group of cluster

heads. The protocol handles freshness of the group

key dynamically, and eliminates the involvement of a

trusted third party (TTP). We have experimentally

evaluated the time and energy consumption in

broadcasting partial keys and group key under two

sensor routing protocols (Tiny-AODV and Tiny-

Diffusion) by varying the number of nodes and key

sizes. The performance study provides the optimum

number of partial keys needed for computing the

group key to balance the available security and power

consumption. The experimental study also concludes

that the energy consumption in SPIN [9] increases

rapidly as the number of group members increases in

comparison to our protocol.

1. Introduction

Sensor networks [1] have become an important area
of research because of their applications in military and
disaster relief. The most limiting factors of a sensor
node are its battery capacity and available memory.
Thus, the energy and storage conservation are two
important issues at the node level and at network level.

Security is one of the most important issues in
distributed ad hoc sensor networks. For example, a
wireless sensor network uses a radio frequency (RF)
channel [10], which is not a secure channel. It is also
difficult to prevent an adversary sensor node from
compromising the security of sensor networks because

of untraceable sensor nodes and less physical
protection [2,3,5]. To control information access in a
hierarchical sensor environment, only authorized
sensors should have the cryptographic keys by which
they can decode the disseminated information. Thus, a
group key management is required for such a
hierarchical environment as it can implement different
access control policies at each level and provide
mechanisms for secure group communication by
eliminating compromised nodes. In the traditional
cryptographic techniques for security, every sensor
node would need a {private, public} key pair which is
impractical because of high energy consumption and
scalability.

In this paper, we propose a group key management
protocol using a hierarchical architecture consisting of
different groups with a unique group key. Using this
approach, multi-level security can be achieved to
secure the group of sensors at different levels. There
are two types of group keys: intra-cluster, and inter-
cluster. The intra-cluster group key is used for
encryption/decryption of messages inside a sensor
network group, whereas the inter-cluster group key is
used for groups of cluster heads.

The two most important advantages of dynamic
partial keys over pre-deployed keys are that (1) sensor
nodes need not store too many keys and (2) the
dynamic key may not be compromised because it
changes frequently. In our proposed scheme, every
sensor node in a group generates a partial key
dynamically, and used it for computing the group key
in a bottom up fashion. Once the sensor network is
deployed, it is organized in a hierarchical fashion.
After that, a cluster head (leader) gets messages from
all its group members to know their level and location
in the sub-tree, and in response it sends a message. It
also requests the leaf nodes (initiator) to compute their
partial keys. In this protocol, the partial keys are
computed using the function associated with each node
which uses partial keys of their descendents as
arguments. The key computation starts by leaf nodes
generating random numbers as their partial keys,
because they have no descendents. The cluster head
computes the group key using an optimum number of
partial keys. The decision for choosing the number of

Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC’06)
0-7695-2553-9/06 $20.00 © 2006 IEEE

partial keys to be used is based on the security and
energy consumption.

In this paper, we modified the Tree Based Group
Diffie-Hellman (TGDH) protocol [7] for group key
management using a general tree structure. In addition,
Diffie-Hellman protocol [9] is used for computing the
group key. Using the modified TDGH, a new group
key management scheme is presented. The
experiments, with a sensor network environment
created in NS-2 and TinyOS are performed using two
sensor routing protocols (Tiny-AODV and Tiny-
Diffusion) by varying nodes, key sizes and energy
consumption. It is observed that Tiny-AODV is slower
than Tiny-Diffusion in terms of broadcasting the partial
keys and the group key. Also, the Tiny-AODV takes
more time to re-establish a route and re-send the partial
keys. The experiments for energy computation and
delivery of partial keys helped in selecting the
optimum partial key and group key sizes. It is observed
that a 300-bits group key size would be reasonable
considering memory and communication overheads. In
experiments, the optimum (energy, security) group key
size is 300 bits, which can be computed from 15 partial
keys of 20 bits each. It is known that decrypting 300-
bits group key needs 2300 micro seconds, with the
decryption rate of 1 bit per micro second [10].

We performed experiments to compute energy
consumption and concluded that the protocol consumes
very small amount of energy (approximately 0.245
joule) in the process of computing 15 partial keys,
broadcasting them, computing and broadcasting the
group key. The energy consumption is very small
compared to the total available energy of 4,61700 joule
(for 15 nodes with two batteries each having 15,390
joule per battery). The proposed protocol conserves
energy and communication with respect to SPIN [6]
and pre-deployed key protocol. To save
communication cost and energy, re-keying of the group
is done by the cluster head by sending a message to the
sensor nodes, which contains information for adding or
removing certain partial keys to generate the new
group key. To guarantee that all the nodes in a group
received the information, they send a reply (REP)
message. If the cluster head does not get the REP from
every node, it re-broadcasts the message.

2. Related work

Kim et al. [7] proposed a group key agreement
protocol called Tree Based Group Diffie-Hellman
protocol [TGDH], which is based on the Diffie-
Hellman key exchange. In this protocol, a distributed
key agreement has been considered rather than a
centralized group key agreement. Different group
agreement protocols have been proposed. In
centralized group key distribution, one key server
generates keys and distributes them to the group, while
in decentralized approaches the key is computed

dynamically. The basic requirements for group key
agreement protocols [1, 5] are key freshness, group key
secrecy (forward and backward) and key
independence.

In SPIN [6] two security concepts are used: SNEP
(Secure network encryption protocol) and micro
TESLA (Time, efficient, streaming, loss-tolerant
authentication protocol). The advantages of SNEP are
low communication overhead and semantic security. A
DES-CBC chaining algorithm is used to maintain data
confidentiality in SPIN, and a MAC is used to keep
messages unaltered. A special counter is used to
maintain the sequence of messages. The counter value
will never be the same, so the encrypted message is
different for the same data. The disadvantages of SPIN
are that (1) it is based on one-to-one communication
but nodes in sensor networks work in groups and (2) it
does not consider the security in hierarchical structure
and clustering which are important for sensor network
applications such as in military.

Eschenauer et al [4] presented a key management
scheme which has selective distribution and revocation
of keys in sensor nodes. Their scheme is based on the
probabilistic distribution of the key, which guarantees
that two neighboring nodes will have at least one
common key in their key ring. This key is used by the
neighboring nodes to encrypt/decrypt messages. The
disadvantage of this approach is that, pre-deployed
keys are comparatively easy to forge than a dynamic
key. Also, each node needs more memory to store
many keys, and therefore, it is impractical

3. Hierarchical sensor network model

In this section, the architecture of a hierarchical
sensor network with multiple levels consisting of
sensor nodes, cluster heads, and relay nodes is
described. There are two types of sensor groups; one is
a group of sensor nodes lead by a cluster head, and the
other is a group of cluster heads with one cluster head
as head of that group. Figure 1 shows the architecture.
In this model, each sensor group collects data from a
particular geographical area and sends the data to the
nearest sensor nodes. If the neighboring nodes are relay
nodes, they forward those data using the appropriate
routing path. Finally, the cluster head aggregates the
data and forwards that to its upper level cluster head.

Three different types of identifications are used in
this model: a unique identification (ID) for each sensor
node, each cluster head and each group of clusters. The
assignments of the IDs are done in the following ways:

The IDs of sensor nodes are given by the cluster
head of that particular group.
The IDs of cluster heads are given by the Head of
Cluster Heads [HCH] of a particular geographical
area. HCH is the cluster head, which is responsible
for leading the group of cluster heads.

Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC’06)
0-7695-2553-9/06 $20.00 © 2006 IEEE

Also, the IDs of the group of sensor nodes are
given by HCH.

Figure 1. Hierarchical architecture

4. Partial key computation

In this section, we describe the scheme for
computing the partial key in each sensor node. We
assume that after the organization, the cluster head of
each group knows the position (Pos<l,v>) (level in the
sub-tree) of its group members. It send a message
Msg(Pos<l,v>) to let them know their position. Next, the
cluster head sends a message (Rep<init,node>) to the leaf
nodes to compute the partial keys. The function
f(partial key of child1, partial key of child2) is used to
compute the partial keys in each node. As the leaf
nodes do not have any decedents, they generate
random numbers as their partial keys. Then, it uses a
simple approach to compute the partial keys of non-
leaf nodes. The parents of the leaf nodes compute their
partial keys using a function f(). The function

is pkkf kk mod),(21
21 , where p is the prime

number, is the primitive root of P and k1, k2 are keys
(k1,k2<p). The arguments of the function are the partial
keys of their children. Using a bottom up approach, all
non-leaf sensor nodes can compute their partial keys.

If the tree is binary, then the function for
computing the partial key K is f (K<l+1, 2v> K<l+1, 2v+1>),
where l is the level in the tree and v is the position of
the node from left. For example in Figure 2, to
compute the K<2, 0> we need the function f(K<3, 0> K< 3,

1>). The computation of K<2, 1> is not possible using
f(K<3, 2> K< 3, 3>) as children now have different
parents. If the function f(K<l+1, 2v+1> K<l+1, 2v+2>) is
used then we are able to compute K<2, 1>. From this we
observe that the levels l do not change, but the position
v changes depending on the number of children. In a
non-binary tree, the algorithm needs to count the
siblings in the left part of the sub-tree for calculating a
key for the parent node. It then computes m where m =
siblings - 2 so the function would be f(K<l+1, 2v+m>

K<l+1, 2v+1+m>).

Figure 2. Dynamic partial key computation

The advantage of this function is that it is difficult
to decode. When the nodes know the function

(pkkf kk mod),(21
21) then they do not need

to analyze the known function. The complexity of the
protocol is O(logn+mn), because the partial keys and
the group key are computed in a tree structure. For n
nodes, it takes O(logn) time, and computing the m
partial keys from n nodes takes O(mn) time.

A one time symmetric key is used for generation
and verification of the MAC first time. This key is also
used for encryption/decryption of partial keys,
intermediate keys and group key. Once the group key
is computed, the symmetric key is discarded. Figure 3
provides the algorithm for computing the partial keys
in a tree which is based on the position of the nodes in
that group.

 Figure 3. Algorithm for dynamic partial
key computation

Algorithm:

1. if (tree is binary) then

2. { f (K<l+1, 2v> K<l+1, 2v+1>) }

3. else if (it is not binary), then

4. { f (K<l+1, 2v+m> K<l+1, 2v+1+m>)

m = [If there is sub-tree left side of
node, left

siblings – (number of sub-tree)x 2 – 2] }

5. if (no sub-tree in the left side of the
node) then

6. { f (K<l+1, 2v> K<l+1, 2v+1>) }

7. else if (sub-tree is there in the left side
of the node),

then

8. { f (K<l+1, 2v+m> K<l+1, 2v+1+m>) }

Level 1

Cluster head General sensor nodes Relay nodes

Level 2

(0,0

(1,0 (1,1

(2,0 (2,1

(2,2 (2,3

(3,0 (3,1 (3,2 (3,3 (3,4 (3,5 (3,6 (3,7 (3,8

Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC’06)
0-7695-2553-9/06 $20.00 © 2006 IEEE

5. Group key computation

We have used the multi-party Diffie-Hellman and
TGDH protocol [7] to propose a new group key
computation method for sensor networks. To
accomplish this proposition, the leaf nodes work as the
initiators and the cluster head as the leader. Starting
from the initiator sensor nodes, every sensor node
contributes its partial key for computing the group key.
The leader node accumulates all partial keys for
computation of the group key. This is a bottom up
approach, as partial keys are accumulated from leaf
nodes to the parent nodes. In the following subsection,
we show the group key computation with and without
using the blind factor. The blind factor is a unique
number generated by a sensor node.

5.1 Group key computation without blind
factor

 We use the following approach for group key
computation without the blind factor [1]. As the leaf
nodes act as the initiators, they first broadcast their
partial keys. The parent nodes of the leaf nodes get the
partial keys and then add their own partial keys and
rebroadcast it. As it is a bottom up approach, the
cluster head will have all the partial keys, and it will
compute the group key using its partial key
contribution. After that, the cluster head broadcasts the
group key.

Initially, a pre-deployed one time symmetric key is
used to encrypt and decrypt the partial keys and the
group key. There after, only the group key is used for
this purpose. The identification of the nodes is attached
with the encrypted partial keys. The sensor nodes
check the identification before decrypting the partial
keys, as the parent nodes only need the partial keys of
their children. In this way, they can have early
rejection of packets, which saves communication and
computation overheads. The other group members
cannot compute the group key because they cannot get
the partial key of the cluster head, since it does not
broadcast its partial key.

In Figure 4, the leaf nodes are M1, M2, …, M9. To
start, M1 computes the partial key gS1 and broadcasts it.
The parent node M10 gets the partial keys from M1 and
other children. Here, g is a generator of the
multiplicative group ZP* (i.e. the set {1, 2… p-1}, p is
the prime) and S1 is a randomly chosen secret number
for member M1. Likewise, member M2 computes gS2

and broadcasts it, and the parent M10 gets the partial
keys. In this way, member M10 receives gS1S2S3, and
raises the power by S10 to get the intermediate key (IK).
Here, gS10 is the partial key contribution of M10.
In the following paragraphs, we discuss two types of
group keys: the intra-cluster and the inter-cluster.

The intermediate keys in M10, M11, and M12 are IK1
= g S1 S2 S3 S10, IK2 = g S4 S5 S6 S11, and IK3 = g S7 S8 S9

S12, respectively. The intermediate keys are encrypted
using a one time symmetric key, as explained earlier.
The cluster head computes the group key K, using IK1,
IK2, and IK3 and its contribution gs13.

K = g S1 S2 S3 S10 S4 S5 S6 S11 S7 S8 S9 S12s13 [Intra-cluster
group key]

Then, it encrypts the group key using the
symmetric key. The authentic nodes, which have the
symmetric key, can decrypt the group key. The cluster
head broadcasts the group key to its group members, so
that every sensor node gets the group key. This group
key is called the intra-cluster group key, and is used for
encryption/decryption of messages inside the group of
sensor nodes.

Cluster head General sensor nodes
M1 M2 M3 M4 M5 M6 M7 M8 M9

M10 M11 M12

gs2 gs3 gs4 gs5 gs6 gs7
gs8 gs9

gs1s2s3s10

gs1

gs4s5s6s11 gs7s8s9s12

gs1s2 ... s12s13

Figure 4. Intra-Cluster key computation

For inter-cluster encryption/decryption a different
group key is computed. The inter-cluster group key is
not known to the general sensor nodes. Figure 5 shows
the computation of the inter-cluster group key. The
intermediate key in C7, C8, C9 are IK1inter = g C1C7 ,
IK2inter = g C2C3C8 , and IK3inter = g C4C5C6C9

The head of the cluster heads (HCH) computes the
inter-cluster group key C using intermediate keys
IK1inter, IK2inter, IK3inter, and its contribution gc10.

C = g C1C7C2C3C8C4C5C6C9c10 [Inter-cluster group key]
The HCH broadcasts the inter-cluster group key to

the cluster heads. The cluster heads use this group key
for encryption/decryption of messages among the
cluster heads.

5.2. Group key computation using blind factor

We can compute the group key using a blind factor.
The advantage of using a blind factor is that an attacker
will not be able to get the group key when the cluster
head broadcasts the group key. In Figure 4, the
intermediate keys are IK1 = g S1 S2 S3 S10 , IK2 = g S4 S5 S6

S11 and IK3 = g S7 S8 S9 S12. After computation of IK1,
IK2, and IK3 the parent nodes M10, M11, M12 broadcast
the intermediate keys. The children of M10, M11, and
M12 are interested in those keys, as they need to

Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC’06)
0-7695-2553-9/06 $20.00 © 2006 IEEE

remove their contribution from the IK. Then they insert
a randomly chosen blind factor B. The keys, after
inserting blind factor, are as follows.
IKB1 = g B1 S2 S3 S10 , IKB2 = g S1 B2 S3 S10 , and
IKB9 = g S7 S8 B9 S12. The cluster head gets the
broadcasted keys IKB1,…, IKB9. The cluster head then
computes the group key K, using IKB1…IKB9 and its
contribution gs13.

K = g B1 S2 S3 S10 S4 S5 S6 S11 S7 S8 S9 S12s13

After the group key computation, the cluster head
broadcasts the group key with blind factor. Now the
authentic sensor node can recognize its blind factor.
Each member remove its blind factor that it received
from the cluster head. They reinsert their original
contribution Si (i = 1...n) for getting the group key. The
same method is used to compute the inter-cluster group
key. A symmetric key is used for encryption and
decryption of partial keys. The cluster head uses the
same symmetric key for encryption of the group key.

C1 C2 C3 C4 C5 C6

C7 C8 C9

gc2gc1 gc3 gc4
gc5 gc6

gc1c7
gc2c3c8 gc4c5c6c9

gc4 ... c9c10
C10

Cluster head

Figure 5. Inter-Cluster key computation

5.3. Updating a group key

Our key management protocol provides a scalable
approach for updating group keys for large dynamic
groups. Section 3 shows that large dynamic groups, re-
keying the group on each membership change becomes
unsustainable. One of the approaches to keep the key
fresh is by re-keying the group at fixed intervals; this
approach is computationally expensive as the partial
keys and the group key will be computed again.
Another approach for updating the key would be to
send a message from the cluster head to its group
members consists of instructions to remove or add a
certain partial key from the group key in order to get
the new group key. The group key K, which is
described in Section 5.1 is:

K = g S1 S2 S3 S10 S4 S5 S6 S11 S7 S8 S9 S12s13 [Old group key]
For example, the cluster head sends an encrypted
message to its group member for removing S10 from
their group key. The new group key K would be:

K = g S1 S2 S3 S4 S5 S6 S11 S7 S8 S9 S12s13 [New group key]

To guarantee that all the sensor nodes received the
message to update the part of the group key, nodes
send an acknowledgment (ACK) message to the cluster
head. If the cluster head receives the reply (REP) from
all the nodes, then it sends the next message that “the
new group key is in effect now”. If the cluster head
does not receive the reply message REP from all its
group members, then it resends (broadcast) the
message until it can get a reply message or it can come
to know events, such as a particular sensor node does
not have battery power left for communication. To
keep track of all the partial keys, the cluster head can
use a primary index by sorting the IDs of its group
member nodes.

5.4. Analysis: Energy and security level with
 respect to key size

This subsection explains the analysis of balancing
the energy consumption verses security level by
choosing the appropriate key sizes in the proposed
protocol.

Notations:

fL Leaf level nodes in the hierarchy

vtL Leaf level

lfK Partial keys in the leaf nodes

Pk Pre-deployed key in the network,
 can be symmetric or asymmetric

pK Parent key of the sub-tree

nP Parent nodes of each sub-tree

 vL Levels in the hierarchy as in figure 1

f () Function with the partial keys of
 children as arguments
E Energy consumption (joule)

totalP Total energy in the network (joule)

consumedP Consumed energy for group key

 computation
G Group of sensors in the network

gN Number of groups in the network

S Size of key

nL Number of levels in each group

nC Number of partial keys considered for the

group key
V Battery voltage (volt)
C Capacitance (farad)
f Frequency (Hz)

Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC’06)
0-7695-2553-9/06 $20.00 © 2006 IEEE

Let fL vtL and vL =1, 2, …….n [vL = 0 is the

root]. The parent key pK is computed from the

function f(lfK , 1lfK) where pkf k mod)(.

The energy remaining in each sensor node is computed
using their levels in the architecture. It is known that
the energy consumption in a circuit is : Power P = V2

.f. C
If the power (energy) consumption at each level is P
then the total power in all groups is:

Total power = gv NLP

Energy remaining = totalP - gv NLP
The energy required at each level will compute the
total energy needed in the computation of the group

key, and is given by
v

n
L

1 nv LLP

By considering the partial keys at each node level and
at their parent level energy consumption would be:

Pn

Lf
npv LKL)(nlfp PkK

If n partial keys are considered to form the group key
then the energy consumption with respect to key size

would be: consumedP = ECKK nplf)(
The energy consumption for the group key must be
less than the total available energy. Thus,

gtotalnplf NEPECKK)(
It is assumed that there exists more than one group in
the network. If the partial key size varies from 20 to
100 bits then the energy consumption would be:

100

20

)(
byteS

nplf SCKKE

The partial key sizes are based on the group key size,
the number of partial keys considered for the group key
and the available energy.
The energy consumption for computing the partial keys
and the group key proportional to the security
requirement in terms of key sizes can be expressed as
follows:

,GCn

lfp KK , | SecEKKC lfpn)(

where Sec is the time to the decrypt the key at a
decryption rate of 1 bit per micro second. It is observed
that, as the key size increases the security and energy
consumption would increase, and it is not possible to

have totalconsumed PP .

If
consumed

nvtnf

P

ELLELL)()(
1,

then the cluster head can choose the partial keys
from the leaf nodes. From the above, we can find the
number of partial keys to be used for balancing the
security requirement based on key size verses the
energy consumption.

6. Performance evaluation and observation

For performance analysis, we have implemented
the group key management protocol in TinyOS and
NS-2. As NS-2 is not developed for sensor network, a
sensor network environment is created in NS-2 by
plugging in sensor agent, energy model, and multi-
channel model developed by the United States Navy.

The cluster head computes the group using the
method as described in Section 5. It chooses a certain
number of partial keys in order to compute the group
key. It also stores the identification of the nodes along
with the partial keys so that it can save memory by
discarding the partial keys received earlier.

In order to measure how fast the partial keys are
delivered to the cluster head, we did experiments using
two sensor routing protocols: Tiny-AODV and Tiny-
Diffusion. The sensor nodes, which do not fall in a 10
meters range, generate partial keys so that the cluster
head can get the partial keys from different regions in
its group. Then, they establish a route to the cluster
head using the routing protocol and send the partial
keys using that route. The reasons for restricting the
number of sensor nodes and broadcasting the partial
keys are to reduce communication overhead, and
energy consumption. Figure 6 shows the time taken by
the network to send the first 25 partial keys to the
cluster head using the Tiny-AODV and Tiny-Diffusion
routing protocols. The algorithm for generating and
broadcasting partial keys and computing the group key
was kept the same in both cases.

Routing Protocols Tiny-AODV, Tiny-
Diffusion

Area 2000 x 2000 meter
Number of nodes per
group

50

Channel Single (wireless)
Simulation time 160 sec
Transmitting
power

0.175 mW

Receiving power 0.175 mW
Idle 0.0 W
Initial energy 0.5 Joule
Sensing power 0.00000175 mW

Table 1. Parameters for simulation

Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC’06)
0-7695-2553-9/06 $20.00 © 2006 IEEE

We observed that the Tiny-AODV takes
approximately 54 seconds to deliver the first 25 partial
keys to the cluster head; whereas Tiny-Diffusion takes
almost 15 seconds. This experiment is performed to
determine the effectiveness of routing protocols in
terms of how fast the partial keys can reach the
destination. After that, the group key is computed by
the cluster head. Then it is broadcasted to all its group
members. We found that both routing protocols take a
comparably small amount of time for broadcasting
partial keys.

Figure 7 shows the time taken by the network to
broadcast the group key generated based on the
collection of partial keys using the Tiny-AODV and
Tiny-Diffusion routing protocols. From experiments, it
is observed that the group members whose IDs are 1
through 25 receive the group key in approximately
7.57 seconds if Tiny-AODV is used whereas if Tiny-
Diffusion is used then it takes approximately 11.82
seconds. The reason is that, Tiny-Diffusion uses a
routing table for creating routes and therefore, it takes
more time to deliver the initial packets compared to
Tiny-AODV because of its proactive features. There is
a very small time difference in broadcasting the group
key using Tiny-AODV and Tiny-Diffusion. Thus,
delivering the partial keys (as shown in Figure 7) to the
cluster head using Tiny-AODV takes more time than
Tiny-Diffusion because of the partial key broadcast
from every node, and then delivering it to the cluster
head requires many-to-one communication.

In Figure 8, we present the results for time taken in
broadcasting partial keys of size 20 and 30 bits. The
group key in the cluster head is computed using the
first 15 partial keys. The group key size would be 300
and 450 bits, respectively. We observed that the time
taken to accumulate partial keys of size 300 and 450
bits remains almost same. Theoretically, the time
required to decrypt 300 bits key size is 2300 micro
seconds, at a rate of 1 bit decrypt per micro second.
Therefore, the forgery time for size of 300 bits group
key is quite high.

0

10000

20000

30000

40000

50000

60000

1 3 5 7 9 11 13 15 17 19 21 23 25
Number of nodes

P
ar

tia
l k

ey
 d

el
iv

er
y

tim
e

(m
S

ec
)

Tiny-AODV

Tiny-Diffusion

Figure 6. Partial key delivery to the cluster

head

0

2000

4000

6000

8000

10000

12000

14000

1 3 5 7 9 11 13 15 17 19 21 23 25
Number of nodes

G
ro

up
 k

ey
 d

el
iv

er
y

tim
e

(m
S

ec
)

Tiny-AODV

Tiny-Diffusion

Figure 7. Broadcasting group key

We performed another experiment to analyze the
energy consumption in the proposed model. As a
reminder, the power consumed by the sensor nodes for
transmission and reception is set at 175 mW, for
sensing 0.00000175 mW, and the initial energy of the
general sensor nodes is 0.5 joule. The cluster head
consumes the same power for transmission and
reception with its initial energy is set to 2.5 joules.
Figure 9 shows the energy consumption graph for
generating 20 partial keys and delivering those to the
cluster head. This also includes the energy
consumption for communication before delivering the
partial keys. From this experiment, we observe that
changing the number of senders has impact on the
energy consumption, and this experiment helps to
decide the number of partial keys that should be chosen
in order to balance the energy consumption and
security. The optimum number of partial keys is 15
with respect to the current configuration. Although the
total power consumption for generating partial keys,
delivering, computing the group key and broadcasting
back is not shown in the figure, it is approximately
0.245 joule.

One way to protect the network from intruders is by
updating (re-keying) the group keys frequently so that
an intruder cannot get enough time to forge the group
key. In our model, we update the group key using the
technique described in Section 5.3. As explained
earlier, in order to save communication and
computation cost, instead of re-computing the partial
keys and the group key, the cluster head sends a
message to its group members for removing or adding
certain partial keys from the group key to obtain the
new group key.

In Figure 10, the energy consumption by SPIN and
our key management protocol are compared. Though
SPIN is used for one-to-one node communication, here
it used for group communication. It is observed that
SPIN takes more time for communicating within a
group. We observed that the energy consumption of

Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC’06)
0-7695-2553-9/06 $20.00 © 2006 IEEE

SPIN increases exponentially with the increase of the
number of nodes in a group.

14800

14820

14840

14860

14880

14900

14920

14940

14960

1 3 5 7 9 11 13 15

Number of partial keys

Ti
m

e
(m

S
ec

)

Partial key size 20 bit
Partial key size 30 bit

Figure 8. Time taken for different key sizes

0

0.1

0.2

0.3

0.4

0.5

1 4 7 10 13 16 19
Partial keys

E
ne

rg
y

co
ns

um
pt

io
n

(J
ou

le
)

Energy consumption

Figure 9. Energy consumption verses the

number of partial keys

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17 19

Number of nodes

E
ne

rg
y

co
ns

um
pt

io
n

(jo
ul

e) Dynamic key
management protocol
SPIN

Figure 10. Comparison of dynamic key

management protocol with SPIN

7. Conclusions

In this paper, we have described a group key
management protocol where the partial keys are
computed dynamically, instead of using pre-deployed

keys. A group key is generated based on the partial
keys of the group members. The dynamic partial keys
have some advantages over pre-deployed keys, as
many pre-deployed keys need to be stored to provide
secure communication, which is not feasible in sensor
nodes because of the limited memory. It is easy to re-
compute the partial keys as each node uses a function
with the partial keys of its children as arguments of the
function to compute its partial key. Using a detailed
simulation study it is shown that the proposed protocol
is able to compute the partial keys and the group key
within a very small time period. We observed that the
energy consumption for generating the partial keys and
the group key is very small compared to the total
available energy. It is also sown by an experiment that
the energy consumption of SPIN increases
exponentially as the number of group nodes increase,
but our proposed protocol consumes a very small
amount of energy after the first group key computation.

8. References

[1] David W. Carman, Peter S. Kruus, and Brian J.Matt.
Constraints and approaches for distributed sensor
network security. NAI Labs Technical Report #00-010,
September 2000.

[2] H. Chan, A. Perrig, and D. Song. Random key
predistribution schemes for sensor networks, in IEEE
Symposium on Security and Privacy, Berkeley,
California, May 11-14 2003.

[3] Wenliang Du, Jing Deng, Yunghsiang S. Han, Shigang
Chen and Pramod Varshney. A Key Management
Scheme for Wireless Sensor Networks Using
Deployment Knowledge. To appear in IEEE
INFOCOM, 2004.

[4] L. Eschenauer and V. D. Gligor. A key-management
scheme for distributed sensor networks, in Proceedings
of the 9th ACM conferenceon Computer and
communications security, Washington, DC, USA, 2002.

[5] Wenliang Du, Jing Deng, Yunghsiang S. Han, and
Pramod Varshney. A Pairwise Key Pre-distribution
Scheme for Wireless Sensor Networks. In Proceedings
of the 10th ACM Conference on Computer and
Communications Security (CCS), Washington DC,
October 27-31, 2003.

[6] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J.D.
Tygar. SPINS: Security protocols for sensor networks.
In Proceedings of Mobicom, 2001.

[7] Michael Steiner, Gene Tsudik, Michael Waidner. Key
Agreement in Dynamic Peer Groups. IEEE
Transactions on Parallel and Distributed Systems
11(8): 769-780, 2000.

[8] A. Shamir. How to Share a Secret Communications of
the ACM, 22(11):612–613, 1979.

[9] Whitfield Diffie and Martin E. Hellman. Privacy and
authentication. An introduction to cryptography.
Proceedings of the IEEE, 67(3):397–427, March 1979.

[10] William Stallings. Network Security Essentials
Applications and Standards.

Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC’06)
0-7695-2553-9/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

