
CERIAS Tech Report 2006-65
Secure Collaborative Planning, Forecasting, and Replenishment

 by Mikhail J. Atallah
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Submitted to Management Science
manuscript

Secure Collaborative Planning, Forecasting, and
Replenishment (SCPFR)

Vinayak Deshpande, Leroy B. Schwarz
Krannert School of Management, Purdue University {vinayak,lee}@mgmt.purdue.edu

Mikhail J. Atallah, Marina Blanton, Keith B. Frikken, Jiangtao Li
Department of Computer Science, Purdue University {mja,mbykova,kbf,jtli}@cs.purdue.edu

Although the benefits of information sharing between supply-chain partners are well known, many compa-

nies are averse to share their “private” information due to fear of adverse impact of information leakage.

This paper uses techniques from Secure Multiparty Computation (SMC) to develop “secure protocols” for

the CPFR r© † (Collaborative Planning, Forecasting, and Replenishment) business process. The result is a

process that permits supply-chain partners to capture all of the benefits of information-sharing and collab-

orative decision-making, but without disclosing their “private” demand-signal (e.g., promotions) and cost

information to one another. In our collaborative (CPFR) scenario, the retailer and supplier engage in SMC

protocols that result in: (1) a forecast that uses both the retailers and the suppliers observed demand signals

to better forecast demand; and (2) prescribed order/shipment quantities based on system-wide costs and

inventory levels (and on the joint forecasts) that minimize supply-chain expected cost/period. Our contri-

butions are as follows: (1) we demonstrate that CPFR can be securely implemented without disclosing the

private information of either partner; (2) we show that the CPFR business process is not incentive com-

patible without transfer payments and develop an incentive-compatible linear transfer-payment scheme for

collaborative forecasting; (3) we demonstrate that our protocols are not only secure (i.e., privacy preserving),

but that neither partner is able to make accurate inferences about the others future demand signals from

the outputs of the protocols; and (4) we illustrate the benefits of secure collaboration using simulation.

Key words : privacy; security; secure computations; supply-chains; incentives; information sharing; CPFR

History : September 2005

1. Introduction

It is well known that information-sharing about inventory levels, sales, order-status, demand fore-

casts, production/delivery schedules, etc. can dramatically improve supply-chain performance. Lee

and Whang (2000) describe several real-world examples. Of course, the reason for this improve-

ment, isn’t information-sharing, per se, but, rather, because shared information improves decision-

making.

In Vendor-Managed Inventory (VMI) systems, for example, the buyer delegates inventory-

replenishment decisions to its supplier, who, presumably, makes more system-oriented decisions

† CPFR r© is a Registered Trademark of the Voluntary Interindustry Commerce Standards (VICS) Association

1

Deshpande et al.: SCPFR
2 Article submitted to Management Science; manuscript no.

based on the SKU-level inventory-status information that the buyer shares (plus its own infor-

mation). In other scenarios, the information of its partner is combined with each company’s own

information to make improved, but independent, decisions. Collaborative Planning, Forecasting

and Replenishment (CPFR), for example, involves information-sharing between multiple trading

partners (Retailers and Suppliers) to facilitate the planning and fulfillment of customer demand

(see http://www.vics.org/committees/cpfr/ for details). Key CPFR activities include projecting

consumer demand forecasts, and order and shipment forecasts (Demand and Supply Management),

as well as placement of orders and delivery (Execution).

Despite its well-known benefits, however, many companies are averse to sharing their so-called

“private” information. There are several reasons for this lack of information sharing in practice.

Lee and Whang (2000) observe that supply-chain partners seldom share information that relates

to sensitive cost data. One reason for not sharing such information is fear that a supply-chain

partner will take advantage of this information by driving down future prices. Another concern is

the confidentiality of the information to be shared. For example, a retailer may be unwilling to

share sales-promotion information with its supplier because of fear this information will leak to a

competitor. Walmart recently announced that it will no longer share its sales data with outside

companies such as Information Resources, Inc and AC Nielson due to fear of information leakage

(Hays 2004). Lack of trust between supply-chain partners can arise from each partner being wary

of the possibility of other partners abusing shared information and reaping all the benefits of

information sharing. Finally, companies may be unwilling to share information due to the fear of

violating anti-trust regulations.

Secure Multi-Party Computation (SMC) provides a framework that enables supply-chain part-

ners to make decisions that achieve system-wide goals without revealing the private information

of any of the parties, and without the aid of a “trusted third party”, even though the jointly-

computed decisions require the information of all the parties. SMC accomplishes this through

the use of so-called “protocols”. An SMC protocol involves theoretically-secure hiding of private

information (e.g., encryption), transmission, and processing of hidden private data. Since private

information is never available in its original form (e.g., if encryption is used to hide the data, it is

never decrypted), any attempt to hack or misuse private information is literally impossible. More

details on SMC are provided in the literature review section and in section 4.

In this paper we develop and apply SMC protocols to the CPFR business process between a

single supplier and a single retailer. Hence, the acronym “SCPFR” for Secure CPFR. Our primary

goal is to demonstrate that collaborative forecasting and inventory planning can be conducted

without disclosing private information of any supply-chain partners.

Deshpande et al.: SCPFR
Article submitted to Management Science; manuscript no. 3

1.1. Overview/Summary

The model we examine is a 2-stage, serial (supplier-retailer) supply chain facing periodic stochastic

retailer demand. Our model is based on that of Clark and Scarf (1960), except customer demand

is non-stationary, i.e., customer demand is generated by a state-dependent linear process, where

state information is split between the retailer and the supplier.

The privacy concerns of the supplier and retailer are as follows: Each has private information (e.g.

promotion plans) with respect to future retail-customer demand. Each partner’s private information

would improve the collaborative forecast, but neither wants to disclose that information to its

partner. Each participant also has private cost information (e.g., retailer’s inventory-holding cost,

manufacturer’s production cost), which, if centralized, could lead to a “coordinated” decision, but

both partners want to maintain its privacy, too. Finally, both partners have private inventory level

information (e.g. on-hand inventory, backorders, in-transit inventory) which can lead to better

ordering decisions if this information is shared.

Under a non-collaborative policy, each company forecasts demand and places replenishment

orders based only on its own private information. Our SCPFR protocols will determine a collabora-

tive forecast of future customer demand using both the retailer’s and supplier’s private information,

and, based on these, the target echelon base-stock levels of both partners that will minimize supply-

chain expected cost. Based on the base-stock levels, and their private inventory status, our SCPFR

protocols then prescribe shipment quantities.

The contributions of this paper are as follows:

• We address privacy/security issues in CPFR. In particular, we demonstrate that lead-time

demand forecasts, echelon base-stock levels, and order quantities can be computed collaboratively

without disclosing the private information of either the supplier or the retailer.

• We address incentive issues for collaborative forecasting. In particular, we: 1) show that the

CPFR process is not incentive compatible in absence of transfer payments; i.e, the retailer and sup-

plier have incentives to inflate or deflate their forecasts; and (2) construct an incentive-compatible

linear transfer payment scheme for collaborative forecasting.

• We provide an “inverse optimization” analysis of the SCPFR process, i.e., demonstrate that

it is difficult/impossible for either party to determine the private information of its partner using

its own private information and the shipping decisions made by the SCPFR protocols. This is

an important practical consideration; i.e., why use SMC techniques if participants can infer their

partners’ private inputs from the output of the protocol?

• Demonstrate the benefits of SCPFR over a non-collaborative policy.

Deshpande et al.: SCPFR
4 Article submitted to Management Science; manuscript no.

• Provide computationally efficient SMC protocols. That is, given their privacy-preserving

nature, certain simple mathematical processes become very complex. We reformulate such processes

to make them computationally more efficient.

The outline of this paper is as follows. Section 2 provides a review of relevant literature. Section

3 introduces the demand model, and the collaborative forecasting and inventory-planning process.

Incentive issues for collaborative forecasting are also addressed in this section. Secure protocols for

the collaborative forecasting and planning process are provided in section 4. Section 5 discusses

practical issues that can arise in implementing SCPFR protocols and also provides a simulation

study highlighting the benefits of SCPFR. Concluding remarks are provided in section 6.

2. Literature Review

Our research is based on three streams of literature: (i) The Value of Information in Managing

Supply Chains, (ii) Secure Multiparty Computation, and (iii) Algorithmic Mechanism Design.

2.1. The Value of Information in Managing Supply Chains

Our supply-chain model consists of a 2-stage, serial (supplier-retailer) supply chain facing periodic

stochastic retailer demand. There exists a large body of literature on multi-echelon inventory

theory which we draw upon. Clark and Scarf (1960) established optimal policies for a serial multi-

echelon inventory system for a finite-horizon problem with stationary demand, and showed that

the optimal base-stock levels can be computed in a recursive fashion. Federgruen and Zipkin (1984)

extended these results to the infinite-horizon model and also achieved further simplifications for

the normal-demand case.

Traditionally, supply-chain management research has focused on centralized policies under the

assumption that all the information about the system (e.g., costs capacity, inventory status) is

available to a central planner. However, most real-world supply chains are managed by several

decision-makers, each with their own, sometimes incompatible, objective functions, and each using

her/his own private information. This has led to more recent research on the management of decen-

tralized supply-chains, like the retailer-supplier scenario we examine. Chen (2004) provides a review

on the role of information-sharing in achieving supply-chain collaboration and the consequences of

failing to share (or imperfectly transmitting) it.

Several research papers have focused on showing the value of information sharing in a variety of

settings. Lee et al. (1997a,b) have shown that lack of sharing information such as retailer demand

can lead to a phenomenon known as the “bullwhip” effect. Examples of sharing downstream infor-

mation such as inventory levels (leading to echelon-stock policies) include Chen (1998), Moinzadeh

Deshpande et al.: SCPFR
Article submitted to Management Science; manuscript no. 5

(2002), Cachon and Fisher (2000), and Gavirneni et al. (1999). Lee et al. (2000) quantify the value

of sharing demand information in a supply-chain model with a non-stationary demand process.

Other examples of information sharing in supply-chains include Chen (2001) (Cost information),

Chen and Yu (2001) (Lead-time information), and Deshpande and Schwarz (2005) (Capacity and

Market potential information). Our model involves sharing, but not disclosing, of three kinds of

information between the retailer and supplier: demand forecast signals, inventory holding and

backlogging costs, and inventory level information.

For the CPFR business scenario, Aviv (2001) was the first to analyze the effect of collaborative

forecasting on supply-chain performance. Aviv (2002) extends this CPFR model to auto-correlated

demand processes, while Aviv (2003) provides a time-series framework for supply-chain manage-

ment. Our non-stationary demand model is the same as in Aviv (2001), except that demand signal

information is split between the retailer and supplier, and both parties desire privacy.

There is extensive literature on constructing incentive schemes for supply-chain collaboration

(Cachon 2003). For example, Corbett (2001) considers the impact of asymmetric information on

supply-chain coordination. For a two-echelon setting, Lee and Whang (1999) construct a non-linear

incentive scheme to align the retailer and supplier’s incentives with that of a centralized system. In

a model similar to ours, but with stationary demand, Cachon and Zipkin (1999) construct a linear

payment scheme to achieve system optimal base-stock levels as a Nash equilibrium solution. For

a single-period model, using a Stackelberg framework, Cachon and Lariviere (2001) and Mishra

et al. (2005) have shown that there exist incentives for the retailer to inflate demand forecasts.

Literature on privacy concerns in a supply-chain due to fear of information leakage is quite

scarce. Li (2003) shows that fear of information leakage may prevent a retailer from sharing demand

information with the supplier. Recently, Anand and Goyal (2005) have formalized the impact of

information leakage on the incentives to acquire and share demand information. A related stream

of literature looks at how information can be gleaned from the orders placed by retailers. Tarantola

(1987) and Ahuja and Orlin (2001) coined the term “inverse optimization” to represent the inverse

problem of inferring the values of the model parameters from given observed values of the observable

parameters. Raghunathan (2001) and Graves (1999) show that the supplier can infer demand from

the retailers orders for an AR(1) demand process. Recently, Gaur et al. (2005) have provided a

full characterization of conditions under which demand information sharing is useful, for general

ARMA demand processes. Raghunathan (2001) also conjectures that shared information is valuable

only when it cannot be deduced from other parameters.

Deshpande et al.: SCPFR
6 Article submitted to Management Science; manuscript no.

The major contribution of this paper to the information-sharing literature is to demonstrate

that information-disclosure isn’t necessary to achieve a collaborative policy. In particular, using

the seminal model of Clark and Scarf (1960), we demonstrate that supply-chain forecasting and

inventory-replenishment can be done collaboratively without disclosing the private information of

either the supplier or retailer.

2.2. Secure Multiparty Computation

Cryptographic techniques, once considered an esoteric subject, have revolutionized the way we

interact, particularly on the Internet. Examples include the encryption of credit-card information

and the use of digital certificates and signatures. Within cryptography, the sub-area of secure

multiparty computation is most relevant to this work: Secure multi-party protocols are a form of

cooperative distributed computing that preserves the privacy of the participants’ data. This general

class of computations typically takes the following form between two parties (usually called Alice

and Bob): “Alice” and “Bob” each have private data (say, xA for Alice and xB for Bob), and they

want to compute f(xA, xB) where the function f is known to both Alice and Bob, and f(xA, xB)

is efficiently computable by someone who had both xA and xB. However, neither Alice nor Bob

is willing to disclose his/her private data to the other or to a third party. Informally speaking, a

protocol that involves only Alice and Bob, is said to be secure if, at its end, Alice and Bob have

learned only f(xA, xB).

The history of the multi-party computation problem is extensive since it was introduced by

Yao (1982) and extended by Goldreich et al. (1987) and others. Broadly speaking, it has been

established that there exists a secure protocol to evaluate any well-defined function, no matter

how complex. However, Goldwasser (1997) states that although the general secure multi-party

computation problem is solvable in theory, using the solutions derived by these general results

for special cases can be impractical. In other words, efficiency dictates the development of special

solutions for special cases. Therefore, for efficiency reasons we might need to either transform the

computation into a different form or provide a customized solution.

There is a substantial volume of work on the application of SMC techniques to auctions. For

example, Franklin and Reiter (1996) describe SMC protocols that ensure that an auctioneer will

be able to extract the winning bid without learning anything about the losers’ bids until after the

bidding period. Subsequent work (e.g. Naor et al. 1999, Jakobsson and Juels 2000, Decker et al.

2001, Elkind and Lipmaa 2004, Brandt and Sandholm 2005) has extended the research on secure

auctions.

Deshpande et al.: SCPFR
Article submitted to Management Science; manuscript no. 7

Literature on applications of SMC techniques to operations management is very scarce. Atallah

et al. (2003) were the first to apply SMC to an operations management problem. They develop

secure protocols for allocating the fixed capacity of a supplier among N retailers. Their allocation

protocols are both incentive compatible and privacy preserving with respect to the supplier’s capac-

ity and the retailers’ demand drivers. Recently, Clifton et al. (2004) examined a problem faced

by independent trucking companies that have separate pickup and delivery tasks. They describe

a secure protocol that finds opportunities to swap loads without revealing any information except

the loads to be swapped.

Our contributions to the SMC literature is the development of computationally-efficient protocols

to perform the computations required by SCPFR. We also provide an incentive compatibility and

inverse optimization analysis of our protocols which traditionally has not been analyzed in SMC.

2.3. Algorithmic Mechanism Design

Mechanism design (MD) studies how private information can be elicited from independent agents

by providing incentives to the participants to report their information truthfully. Conitzer and

Sandholm (2002) show that the general algorithmic MD problem is NP-complete. One significant

new research direction within MD is the blending of economics with the traditional distributed-

computing notions of computational complexity and algorithmics Feigenbaum et al. (2002): More

specifically, the distributed algorithmic mechanism design (DAMD) model considers the agents

participating in a distributed computation to be acting in their own selfish best interest (as in

mechanisms), while also considering computational complexity and algorithmics (as in traditional

distributed computing). One of the two open problems listed in (Feigenbaum et al. 2002) asks

whether easy solutions can be shown for natural problems of interest. The present paper can be

viewed as a step in that direction, for some specific cases of supply-chain interactions.

Recently, the privacy of the agents within the DAMD framework has also been considered in

general terms (Feigenbaum and Shenker 2002, Brandt and Sandholm 2004). We label this subfield

DAMDP. Specific forms and applications of DAMDP, such as the special case of online auctions

have been analyzed. Naor et al. (1999) have developed an architecture for implementing the Groves-

Clarke mechanisms. Our work can be viewed as a specific form of DAMDP applied to the supply-

chain setting.

3. A Model of Collaborative Forecasting and Planning

Our model is based on that of Clark and Scarf (1960): a two-stage serial (supplier-retailer) supply

chain facing periodic, stochastic retailer demand over an infinite time horizon. Our assumptions

Deshpande et al.: SCPFR
8 Article submitted to Management Science; manuscript no.

are the same as those of Clark and Scarf except that customer demand in period t, dt, is realized

from a state-dependent linear process, as described below.

The retailer observes customer demand over time and places replenishment orders on the sup-

plier. The supplier receives orders placed by the retailer but does not observe customer demand.

The retailer and the supplier observe independent “signals” about future customer demand. For

example, the retailer might have private information about future promotions which can affect his

forecast of demand. Similarly, the supplier may observe signals about overall market trends which

can influence future demand.

In the non-collaborative scenario, retail demand is seen only by the retailer and not transmit-

ted to the supplier, and the retailer’s and supplier’s future demand signals are private informa-

tion and not shared with the other. As a result, the retailer forecasts demand based on his past

demand observations and (only) his signals about future demand. Correspondingly, the supplier

only observes the retailer’s replenishment orders; and must forecast the retailer’s future orders

without the knowledge of past customer demand or the retailer’s private signals.

In the collaborative scenario, a joint forecast is created by incorporating past observations of

demand as well the retailer’s and supplier’s signals about future demand. Under SCPFR, these fore-

casts are computed without disclosing either party’s private demand signals and without revealing

customer demand to the supplier.

3.1. Demand Model and Forecasting Process

Customer demand follows a linear process given by the following equation:

dt = µ + θr

T∑
i=1

δr
t,i + θs

T∑
i=1

δs
t,i + εt (1)

Here, dt denotes the demand realization in period t, while δj
t,i indicates the signal observed by player

j (=retailer or supplier) about period t demand in period t− i. For example, δr
t,i may represent the

impact of promotion that the retailer plans to run in period t as assessed in period t− i. Similarly,

δs
t,i may represent the impact of new product introductions by the supplier in period t as estimated

in period t − i. This demand model is similar to the one proposed by Aviv (2001, 2002), except

that we do not capture intertemporal correlation between demands in consecutive periods or the

correlation between the retailer and the supplier’s signals. The key difference between our model

and Aviv’s is that information is split between the retailer and the supplier, and each player desires

its privacy. Also, we assume that the parameters of the demand process, i.e., µ, θr, and θs are not

known to either the supplier or the retailer and, hence, must be estimated from past observations.

Deshpande et al.: SCPFR
Article submitted to Management Science; manuscript no. 9

As in Aviv (2001), we assume that the signals and the error term are normally distributed with

known parameters, i.e., δr
t,i ∼ N (0, σr

i), δs
t,i ∼N (0, σs

i), εt ∼N (0, σ0).

Hence, at the beginning of time-period t, demand over periods [i, i+L] (where i≥ t, i+L−t+1≤
T) is normally distributed with mean and standard deviation given by:

µt,[i,i+L] = (L + 1)µ + θr

i+L∑
j=i

T∑
k=j−t+1

δr
j,k + θs

i+L∑
j=i

T∑
k=j−t+1

δs
j,k (2)

σt,[i,i+L] =

√√√√(L + 1)σ2
0 + θr2

i+L∑
j=i

j−t∑
k=1

σr
k
2 + θs2

i+L∑
j=i

j−t∑
k=1

σs
k
2 (3)

In each period t the retailer observes the demand, dt, and demand signals up to T periods

in the future, δr
j,j−t, j = t + 1, . . ., t + T , but these observations are not known to the supplier.

Similarly, in each period t, the supplier observes signals about demand up to T periods in the

future, δs
j,j−t, j = t+ 1, . . ., t+ T , but these observations are not known to the retailer.

In the collaborative forecasting scenario, the forecast is based on both the retailer’s and supplier’s

observations. Hence the forecast is determined as follows:

1. At the beginning of each period t, estimate µ̂, θ̂r, and θ̂s by regressing the observations dj

versus the observed signals δr
j,i and δs

j,i for all j < t.

2. For the forecast horizon (T periods) construct the forecast using the following equation:

d̂j,t = µ̂+ θ̂r

T∑
i=j−t+1

δr
j,i + θ̂s

T∑
i=j−t+1

δs
j,i, j = t, ..., t+ T − 1 (4)

where d̂j,t is the forecast of the mean demand in period j, as observed at the beginning of period

t. Thus, at time t the estimate of mean demand over a lead-time of L periods beginning in period

i≥ t, i + L− t+ 1≤ T (i.e. periods [i, i + L]) is given by

µ̂t,[i,i+L] =
i+L∑
j=i

d̂j,t = (L + 1)µ̂+ θ̂r

i+L∑
j=i

T∑
k=j−t+1

δr
j,k + θ̂s

i+L∑
j=i

T∑
k=j−t+1

δs
j,k (5)

The estimate the standard deviation of demand over a lead-time of L periods [i, i + L] is:

σ̂t,[i,i+L] =

√√√√(L + 1)σ2
0 + θ̂r

2
i+L∑
j=i

j−t∑
k=1

σr
k
2 + θ̂s

2
i+L∑
j=i

j−t∑
k=1

σs
k
2 (6)

3.2. Inventory-Planning Process

We assume the following sequence of events during a period:

1. Shipments corresponding to orders placed a lead-time earlier are received.

Deshpande et al.: SCPFR
10 Article submitted to Management Science; manuscript no.

2. New orders are placed and shipments corresponding to these orders are released.

3. Signals about future demands are observed by the supplier and retailer, respectively.

4. Demand for the period is realized.

5. Holding and backorder costs are incurred.

The only inventory available to satisfy customer demand is the retailer’s on-hand inventory

at the beginning of each time period. Excess customer demand is backordered. Retailer end-of-

period backorders incur a penalty cost of $pR/unit. Retailer end-of-period inventory is charged a

holding cost of $hR/unit. The supplier incurs an inventory-holding cost of $hS/unit on its end-

of-period inventory each period (hS < hR). In addition, the supplier incurs a backorder-penalty

cost of $pS/unit on customer backorders at the retailer. At the beginning of each time period,

after receiving any units delivered that time period, but before demand occurs, the retailer has

the opportunity to place an order on the supplier. There is no fixed order cost. If the supplier’s

inventory is inadequate to fill the retailer’s order entirely, the supplier will ship only a partial order,

backordering the remainder until its own inventory is adequate to fill it. The supplier-to-retailer

delivery leadtime is a fixed LR periods. Like the retailer, the supplier can place an order (internally

or externally) at the beginning of each period. The supplier’s source of supply is infinite. The

leadtime on supplier orders is a fixed LS periods.

By definition, the retailer’s echelon inventory is the same as its local inventory; while the sup-

plier’s echelon inventory equals the total supply-chain inventory; i.e., inventory at the retailer,

plus inventory at the supplier, plus any inventory in transit between the supplier and the retailer.

Correspondingly, from a supply-chain perspective, an echelon inventory-holding cost, $hS/unit,

is charged on the supplier’s end-of-period echelon inventory; in addition, end-of-period retailer

inventory is charged an additional $(hR − hS)/unit. Define h1 = hR − hS and h2 = hS. Customer

backorders at the end of any period are charged $p = (pR + pS)/unit.Let p1 = pR, p2 = pS. Also,

define yS and yR to be the echelon base stocks of the supplier and retailer, respectively. The goal of

the collaborative inventory-planning process is to determine the echelon base-stock levels in each

period that minimize the total supply chain costs.

3.3. The Collaborative Inventory Planning Policy

For the stationary-demand case, Clark and Scarf (1960) prove that the optimal (yS, yR) can be

determined sequentially: first, by finding the yR∗ and then yS∗. For the non-stationary demand case,

several researchers have proposed a myopic policy for an L period lead-time with non-stationary

base-stock levels (e.g. Graves 1999). This myopic policy is optimal under the assumption that if

the desired inventory at either the supplier or retailer is smaller than its existing inventory, then

Deshpande et al.: SCPFR
Article submitted to Management Science; manuscript no. 11

units can be returned (by the retailer to the supplier, or by the supplier to its outside supplier)

instantaneously and without penalty. This assumption is typically made in non-stationary demand

models (e.g. Lee et al. 2000). Note that, if the mean of lead-time demand is much larger than its

standard deviation, then one can expect the probability of returns (or negative orders) to be small.

See Graves (1999) and Miyaoka and Hausman (2004) for additional justification.

Our collaborative inventory policy is the myopic policy described above. Following the convention

in Chen and Zheng (1994), we use an accounting scheme that shifts costs across periods. Since

the retailer’s base-stock level yR in period t affects costs incurred at the end of period t + LR, all

costs resulting from the yR decision incurred at the end of period t + LR are charged in period t,

assuming that the supplier can deliver this order quantity. Similarly, since the supplier’s base-stock

level yS in period t affects costs incurred in period t + LR + LS through his ability to deliver on

the retailer’s order placed in period t+ LR, all costs resulting from the yS decision, which include

the penalty for not satisfying the retailer’s order in period t + LS and the echelon-2 inventory at

the beginning of period t+ LS, are charged in period t.

We determine the optimal state-dependent base-stock levels (yS, yR) following Clark and Scarf

(1960).

In period t, First yR∗
t is chosen to minimize:

G1
t (y

R
t) = (h1) ·E(Leftoverst+LR

|yR
t) + (h2 + p) ·E(Backorderst+LR

|yR
t)

where

E(Leftoverst+LR
|yR

t) =
∫ yR

t

0

(y−x) · f[t,t+LR](x) dx

E(Backorderst+LR
|yR

t) =
∫ ∞

yR
t

(x− y) · f[t,t+LR](x) dx

where f[t,t+LR](x) is the pdf of the demand distribution over periods [t, t + LR]. Since demand is

normally distributed, G1
t (y

R
t) reduces to:

G1
t (y

R
t) = h1σt,[t,t+LR]z1 + (h1 + h2 + p)σt,[t,t+LR]LF (z1)

where z1 = (yR
t −µt,[t,t+LR])/σt,[t,t+LR], µt,[t,t+LR] is the mean of the demand over periods [t, t+LR]

and σt,[t,t+LR] is the standard deviation of the demand over periods [t, t + LR] given by equations

(2) and (3). LF () is the standard loss function for normally-distributed demand.

Proposition 1. The retailer’s optimal base-stock level is given by:

yR∗
t = µt,[t,t+LR] + z∗

1 · σt,[t,t+LR]

Deshpande et al.: SCPFR
12 Article submitted to Management Science; manuscript no.

where z∗
1 is the solution to

(h1 + h2 + p)Φ(z∗
1)− (h2 + p)= 0 (7)

where, Φ(·) is the cdf for the standard normal distribution.

Note that, z∗
1 is easily determined given (h1 +h2 + p) and (h2 + p) and a standard normal table.

Also note that, since costs are stationary in our model, z∗
1 has to be computed only once.

Second, yR∗ is used to define an implied penalty cost, P (yS
t), on the supplier’s echelon inventory,

as follows:

P (yS
t |yR∗

t+LS
, d[t,t+LS−1]) = 0 if yS

t − d[t,t+LS−1] ≥ yR∗
t+LS

= G1
t+LS

(yS
t − d[t,t+LS−1])−G1

t+LS
(yR∗

t+LS
) if yS

t − d[t,t+LS−1] ≤ yR∗
t+LS

Here, d[t,t+LS−1] is demand over the supplier’s lead-time and is a normally-distributed random

variable with mean µt,[t,t+LS−1] and standard deviation σt,[t,t+LS−1], as calculated from equations

(2) and (3), respectively. Note that yR∗
t+LS

is the retailer’s base-stock level at time t + LS and is

a normally distributed random variable at time t. Hence, this penalty function is defined condi-

tioned on the realization of yR∗
t+LS

and d[t,t+LS−1]. Thus, Ut = d[t,t+LS−1] + yR∗
t+LS

is also a normally

distributed random variable with mean µU and standard deviation σU , where µU = µt,[t,t+LS+LR] +

z∗
1σt+LS ,[t+LS ,t+LS+LR] and σ2

U = σ2
t,[t,t+LS+LR] −σ2

t+LS ,[t+LS ,t+LS+LR]. Also, define the random vari-

able Vt = d[t,t+LS+LR]. Note that Vt is also a normal random variable with a mean µV = µt,[t,t+LS+LR]

and standard deviation σV = σt,[t,t+LS+LR] as given by equations (2) and (3), respectively.

Hence, the optimal echelon base stock for the supplier, yS∗
t , is the yS that minimizes

G2
t (y

S
t) = h2(yS

t −µt,[t,t+LS−1]) + EU>yS
t
[G1

t+LS
(yS

t − d[t,t+LS−1])−G1
t+LS

(yR∗
t+LS

)]

Since G1(yR) is convex, P (yS) is also convex. Consequently, G2(yS) is convex.

Proposition 2. The supplier’s optimal base-stock level yS∗
t is a solution to:

h2 − (h2 + p1 + p2)Φ(z2(yS
t)) + (h1 + h2 + p1 + p2)Φ(z2(yS

t);z3(yS
t);

−σU

σV

) = 0 (8)

where Φ(x1;x2;ρ) denotes the cdf of the standard bi-variate normal distribution with correlation ρ,

z2(yS
t) =−(yS

t −µU)/σU , and z3(yS
t) = (yS

t −µV)/σV .

Note that, given the value of their parameters, equations (7) and (8) are easily determined using

the standard normal and bi-variate normal tables. However, as we will see in section 4, these

determinations are much more difficult if the process is to be secure. Section 4 will describe efficient

secure protocols for solving (7) and (8).

Deshpande et al.: SCPFR
Article submitted to Management Science; manuscript no. 13

3.4. Incentives for Collaborative Forecasting

The previous sub-sections described a collaborative forecasting and inventory-planning policy which

minimizes total supply-chain expected costs. However, in a decentralized setting, such a policy may

not be incentive compatible, since either the supplier or the retailer might reduce his individual

cost by distorting demand signal information to influence the centralized policy. In this section

we address incentives for each of the participants to truthfully participate in the collaborative

forecasting process.

We begin by formulating the supplier and retailer’s individual cost functions. Following the

convention in Chen and Zheng (1994), we use an accounting scheme that shifts costs across periods.

Since the retailer’s base-stock level yR in period t affects costs incurred in period t+LR, all costs

related to the yR decision incurred in period t + LR are charged in period t. Similarly, all costs

resulting from the yS
t decision are charged in period t.

Thus, in period t, the cost G1
t charged due to the yR

t decision, is split between the retailer and

the supplier as follows:

G1
t (y

R
t) = G1,R

t (yR
t) + G1,S

t (yR
t)

where G1,R
t (yR

t) and G1,S
t (yR

t) are the retailer and supplier’s share of the cost G1
t , respectively, as

given below.

G1,R
t (yR

t) = (h1 + h2) ·E(Leftoverst+LR
|yR

t) + (h1 + h2 + p1) ·E(Backorderst+LR
|yR

t)

= (h1 + h2)σt,[t,t+LR]z1 + (h1 + h2 + p1)σt,[t,t+LR]LF (z1) (9)

and

G1,S
t (yR

t) =−h2σt,[t,t+LR]z1 + p2σt,[t,t+LR]LF (z1) (10)

Similarly, G2
t , charged due to the yS

t decision, is split between the retailer and the supplier as

follows:

G2
t (y

S
t) = G2,R

t (yS
t) + G2,S

t (yS
t)

where G2,R
t (yS

t) and G2,S
t (yS

t) are the retailer and supplier’s share of the cost G2
t respectively, as

given below.

G2,R
t (yS

t) = EU>yS
t
[G1,R

t+LS
(yS

t − d[t,t+LS−1])−G1,R
t+LS

(yR∗
t+LS

)]

G2,S
t (yS

t) = h2(yS
t −µt,[t,t+LS−1]) + EU>yS

t
[G1,S

t+LS
(yS

t − d[t,t+LS−1])−G1,S
t+LS

(yR∗
t+LS

)]

Since each player cares about his individual expected cost, we next examine if the players can

decrease them by inflating or deflating the forecasts. The following theorems establish the incentives

for each player.

Deshpande et al.: SCPFR
14 Article submitted to Management Science; manuscript no.

Theorem 1. If the retailer’s base-stock level is determined by the collaborative inventory plan-

ning policy (described in section 3.3), the retailer (supplier) can lower his individual cost by deflating

(inflating) the lead-time demand forecast µt,[t,t+LR], while keeping the forecast µt,[t,t+LR+LS] at its

true value.

It is interesting to note that Cachon and Lariviere (2001) and Mishra et al. (2005), for a single-

period model in a Stackelberg setting, have shown that the retailer has an incentive to inflate

forecasts. In our multi-period, non-stationary demand setting, Theorem 1 shows that the retailer

has an incentive to deflate short-term (over retail lead-time) forecast. This is because the service-

level that minimizes the supply-chain costs is higher than the one that minimizes the retailer’s

cost. Hence, the solution that minimizes supply chain costs prescribes a higher base-stock level

than what the retailer desires. As a result, if the base-stock level is set using equation (7), the

retailer can lower his base-stock level by deflating the forecast over his lead-time, and hence lower

his cost. The incentives for the supplier go in the opposite direction.

Theorem 2. If the retailer’s and supplier’s base-stock levels are determined by the collaborative

inventory planning policy (described in section 3.3), the retailer/supplier can lower his individual

cost by distorting the lead-time demand forecast µt,[t,t+LR+LS], while keeping the forecast µt,[t,t+LR]

at its true value.

The retailer’s incentive for reporting his long-term forecast (over supply-chain lead-time),

µt,[t,t+LR+LS], has two components. Since the retailer does not incur inventory-holding costs on

inventory leftover at the supplier (at time t + LS), the retailer can improve his inventory avail-

ability from the supplier by inflating the forecast µt,[t,t+LR+LS], which results in an increase in the

supplier’s base-stock level. But, since at time t+ LS, the collaborative inventory policy prescribes

a higher shipment from the supplier than what the retailer desires, the retailer can lower the

shipment he receives from the supplier by lowering his forecast µt,[t,t+LR+LS]. If p2 = 0, then the

centralized solution prescribed retailer base-stock level is close to what the retailer desires at time

t+LS, and, hence, the retailer will inflate the demand forecast. However, if the supplier’s stock-out

cost is very high, the centralized retailer base-stock level is much higher than what the retailer

desires, and, hence, the retailer will deflate the demand forecast. Hence, depending on the values

of h2 and p2, the retailer may either inflate or deflate the forecast µt,[t,t+LR+LS]. Theorems (1) and

(2) illustrate that the collaborative forecasting process is not incentive compatible. We next show

that by using a transfer-payment scheme between the retailer and the supplier, the collaborative

forecasting process can be made incentive compatible.

Deshpande et al.: SCPFR
Article submitted to Management Science; manuscript no. 15

Theorem 3. If in each period t, a transfer payment scheme (from the retailer to the supplier)

of the form α + βµt,[t,t+LR] + γµt,[t,t+LR+LS] is used, then the collaborative forecasting process is

incentive compatible. Here α is any pre-negotiated constant (depending on the bargaining powers of

the retailer and supplier), β =−(h2 + h1p2
h1+h2+p1+p2

), and γ = h2(1−Φ(z∗
2))−p2(Φ(z∗

2)−Φ(z∗
2 ;z∗

3 ;ρ)).

Note that this incentive-compatible transfer-payment scheme is linear in the lead-time demand

forecasts. It does not use performance measures such as retailer or supplier on-hand inventory or

backorders, or any other information observable by one participant but not by the other. This is

important from a trust perspective, because a participant does not need to trust the other supply-

chain partner to report private performance measures truthfully, in order to compute the transfer

payments each period. In the next sub-section, we summarize our secure and incentive-compatible

process for collaborative forecasting and planning.

3.5. Secure Process for Forecasting and Inventory Planning

We now describe the process for secure collaboration between the retailer and the supplier; i.e., a

process which does not reveal the private information of either party. This is a 6-step process:

1. Retailer and supplier input their (private) cost parameters, hR, pR, hS, pS to the protocol.

2. In period t, the retailer inputs (private) information dt′ (where t′ = 1, . . ., t), δr
j,i (where j =

0, . . ., t+ T, and i = j − t, . . ., T), and also inventory status information OHR
t (on-hand inventory)

and BOR
t (backorders). The supplier inputs his (private) information δs

j,i (where j = 0, . . ., t + T

and i = j − t, . . ., T) and inventory status OHS
t , and IT R

t (in-transit from supplier to retailer).

3. The secure forecasting protocol (described in Section 4.3) is run to compute the demand

forecasts µ̂t,[t,t+LR], µ̂t,[t,t+LS+LR], and the standard deviations σ̂t,[t,t+LR], σU and σV . These forecasts

are computed in a split fashion (see section 4) and, hence, kept private.

4. The secure inventory-planning protocol (described in Section 4.4) is run to compute the

retailer and supplier’s optimal base-stock levels yR∗ and yS∗. The retailer’s inventory position is

computed as IPR
t = OHR

t − BOR
t + IT R

t . Also, the supplier’s inventory position is computed as

IPS
t = IPR

t + OHS
t + IT S

t . All this information is also computed in split fashion and, hence, kept

private. This serves as an input to the next step.

5. The secure replenishment protocol (described in Section 4.5) is run to compute the retailer

and supplier’s ordering decisions. This protocol computes the order quantity qR
t = yR∗

t − IPR
t and

qS
t = yS∗

t −IPS
t . The supplier’s shipment to the retailer is computed as SHR

t = min{qR
t ,OHS

t }. The

supplier is instructed to release this shipment to the retailer in period t. The retailer is informed of

this shipment quantity in period t +LR so that he can match it with the shipment received from

Deshpande et al.: SCPFR
16 Article submitted to Management Science; manuscript no.

the supplier. Similarly, in period t, the supplier’s outside source is instructed to release a shipment

of qS
t to the supplier in period t. The supplier is informed of this shipment quantity in period t+LS

so that he can match it with the shipment received from the supplier. Each player learns nothing

else from the protocol. See section 5.2 for additional discussion on this.

6. The transfer payment from the supplier to the retailer is computed as TPt = α+βµ̂t,[t,t+LR] +

γµ̂t,[t,t+LR+LS]. This information is released to both the supplier and the retailer.

4. Secure Protocols for Forecasting and Planning

In this section we provide a definition of our security model and the secure protocols for forecasting

and inventory planning, along with some important building blocks used to achieve security.

4.1. Security Model

Informally, a protocol is defined to be “secure” provided that, upon completion, none of the parties

involved know any more than they would know had the computation been performed by a hypo-

thetical trusted third party. See Appendix A.1 for a more technical discussion on the definition of

security.

4.1.1. Hiding by adding a value In our protocols we often hide a value by adding a large

random value to it. That is, we hide a value x by revealing x+ r for some unrevealed value r. It is

our goal to choose the value r such that little or no information is revealed about x by revealing

x + r.

Conventional addition by adding a random value potentially leaks information. For example,

suppose Bob has a value x that is in the range [0,10] and that he hides x by adding a value r that

is in the range [0,100]. If the realized value of r ∈ [10,90], then x + r ∈ [10,100], and x + r reveals

no information about x. On the other hand, if the realized value of r �∈ [10,90], then x + r may

reveal information about x. For example, if x + r = 0, then x + r reveals that x = 0. Hence, this

scheme reveals no information about x with an 80% probability, but may leak some information

about x with a 20% probability. By increasing the the range that r is chosen from, one can reduce

the probability of a leakage to a negligible level.

Another way of hiding a value is by adding a random value using modular arithmetic. In modular

arithmetic, numbers “wrap around” upon reaching a given fixed (typically very large) quantity N .

Hence, one can hide the value of x by adding a random value r ∈ [0,N − 1] to it modN . Because

all values of random r are equally likely, knowing x + r mod N does not reveal any information

about x; i.e., all values of x are equally likely.

Deshpande et al.: SCPFR
Article submitted to Management Science; manuscript no. 17

Boolean values are typically hidden by XORing them with a random Boolean value (a Boolean

variable takes the value from the set {0,1}). The Boolean operator ⊕, known as the XOR operator,

returns 1 if exactly one of its operands is 1 and returns 0 otherwise.

4.1.2. Split values In the rest of this section, we use the following notation: Any items

superscripted with (s) are known to the supplier but not to the retailer, those superscripted with

(r) are known to the retailer but not to the supplier. In what follows, we often additively split an

item x between the supplier and the retailer for the purpose of hiding it from either party.

Definition 1. A value x is said to be additively split between players supplier and retailer if

supplier has x(s) and retailer has x(r) such that x = x(s) + x(r), but the value of x is not known to

either.

Often numbers are additively split using modular arithmetic. Recall that in modular arithmetic

numbers “wrap around” upon reaching a given fixed quantity. Hence, one can hide x using large

random numbers x(s) and x(r) such that (x(s) +x(r)) mod N = x, where x(s) +x(r) ≥N and typically

x(s), x(r), and N are all significantly larger than x.

If arithmetic is modular, then this kind of additive splitting hides x in an information-theoretic

sense from both the supplier and the retailer. This means that even if the supplier or retailer

were given unlimited computational capabilities, neither of them could independently learn any

information about x given its share. If, on the other hand, arithmetic is not modular, then “hiding”

x is secure in a practical sense (that is, there is a negligible chance that information about x may

be revealed).

In some instances, prior to engaging in a protocol, the data may already be additively split

between the players. If not, then the player without input has its input share set to 0. Note that

there is no danger in doing this, because all subsequent computation is secure.

Similarly, we often XOR split a Boolean value x between the supplier and the retailer for the

purpose of hiding it from either party. This form of hiding is secure in an information-theoretic

sense.

Definition 2. A Boolean value x is said to be XOR split between players Supplier and Retailer

if Supplier has a Boolean value x(s) and Retailer has a Boolean value x(r) such that x = x(s) ⊕x(r),

but the value of x is not known to either party.

In this paper we introduce protocols that produce additively or XOR split values. By this we mean

that the output of the protocol will be split between the retailer and the supplier. Furthermore, to

ensure that this splitting is done in a secure manner, we require that each party’s output could be

Deshpande et al.: SCPFR
18 Article submitted to Management Science; manuscript no.

simulated from that party’s input alone. This requirement prevents protocols that set one party’s

split value of the output to 0 and the other party’s split value of the output to the actual result.

Since our protocols produce additively-split or XOR-split values, the reader may wonder how the

final result is obtained. If the supplier (retailer) is to learn the result, then the retailer (supplier)

can send its final split value to the supplier (retailer). If both parties are to learn the result, and

there is concern that one party may tamper with the result, then fair simultaneous exchange (e.g.,

Asokan et al. 1997, 2000) can be used.

4.1.3. Our Security Model In this section, we give protocols for honest-but-curious (a.k.a.

semi-honest or passive) adversaries, i.e., those that will follow the protocol, but will try to learn

additional information. Later in paper we show how this computation can be made resistant to

deviations from the protocols through the use of incentive compatibility of SCPFR and crypto-

graphic techniques. But in the current discussion, adversaries that try to influence the result of the

protocol are outside of our threat model.

In proving the security of our protocols, we use the composition theorem of Canetti (2000)

extensively. This theorem states that if a function g is computed by invoking functions f1, . . . , fn

and is proven secure if these functions are “perfectly” implemented in a secure manner (i.e., by using

a trusted third party), then a protocol that computes g by invoking secure protocols for f1, . . . , fn,

each of which is proven secure, securely computes g. A consequence of this theorem is that to prove

a protocol that sequentially invokes functions f1, . . . , fn is secure in the semi-honest model, all that

needs to be shown is that: i) the intermediate results of the protocol do not leak information and ii)

the individual functions are secure. Since all of our protocols produce additively-split or XOR-split

outputs, the first constraint is trivially true for all of our protocols. We formalize this notion in the

following lemma:

Lemma 1. If a protocol Π invokes only functions that use additively- or XOR-split input and

produce additively- or XOR-split output, and all of these functions are individually secure in the

honest-but-curious (semi-honest) model and independent (i.e., they do not share randomness), then

Π is secure in the honest-but-curious (semi-honest) model.

Proof. Follows directly from the composition theorem in Canetti (2000). �

4.1.4. A Note on the Efficiency of our Protocols In what follows, we describe the com-

plexity of our protocols in terms of the amount of resources that each requires. The resources we

consider are communication, computation (where we mostly pay attention to modular exponenti-

ations due to high computational overhead of these operations), and the number of rounds that

Deshpande et al.: SCPFR
Article submitted to Management Science; manuscript no. 19

the protocol requires. For simplicity, we consider all numbers to be representable by a constant

number of bits.

4.2. Building Blocks

Next we present two basic building blocks that are used in our secure forecasting, planning, and

replenishment protocols: secure split addition and secure multiplication. Other building blocks used

in SCPFR are split division, secure scalar product, secure polynomial evaluation, secure matrix

multiplication, secure matrix inversion, secure square root, secure comparison, and secure binary

search. These building blocks are presented in Appendix C.

4.2.1. Split Addition and Subtraction Suppose x and y are additively split between the

supplier and the retailer, i.e., the supplier has x(s) and y(s), and the retailer has x(r) and y(r) such

that x = x(s) +x(r) and y = y(s) + y(r). A split addition protocol allows the supplier and the retailer

to compute x + y in additively-split fashion. If the supplier computes x(s) + y(s) locally and the

retailer computes x(r) + y(r) locally, then x + y is naturally split by the supplier and the retailer.

4.2.2. Public-Key Cryptography In a public-key encryption scheme, there are two keys,

a public key and a private key, for encryption/decryption. The public key is used to encrypt

messages, and can be publicly known. The private key is used to decrypt messages, and must

be known only to the owner of the keys. This means that anyone can encrypt messages, but

only the owner can decrypt them. Typically, such schemes are more computationally expensive

than symmetric encryption schemes (i.e., where there is a single key for encryption/decryption).

Normally, both encryption and decryption operations involve modular exponentiation, where the

size of the modulus is 1024 bits or longer.

4.2.3. Homomorphic Encryption In what follows, we use E to denote a homomorphic

encryption function.

Definition 3. A cryptographic scheme is said to be homomorphic if for its encryption function

E the following holds: E(x) ·E(y)= E(x + y).

Some homomorphic schemes were proposed by Damg̊ard and Jurik (2001), Paillier (1999), and

Okamoto and Uchiyama (1998). A homomorphic encryption scheme is semantically secure if E(x)

reveals no information about x. Hence x = y does not imply E(x) = E(y).

Homomorphic encryption schemes are public-key encryption schemes. Their homomorphic prop-

erty together with key asymmetry makes them extremely useful in secure multiparty computations.

This is because someone without a private decryption key can directly perform computations on

the encrypted value without learning anything about that value.

Deshpande et al.: SCPFR
20 Article submitted to Management Science; manuscript no.

Homomorphic encryption is an efficient way of performing addition, subtraction, and multiplica-

tion operations in secure manner. Assume the supplier holds x and the retailer holds y. Then they

can add the numbers if the supplier computes E(x) and sends it to the retailer. All the retailer

needs to do is to compute E(y), and then E(x) · E(y) = E(x + y) to obtain the encryption of

x+ y (assuming that the retailer cannot decrypt encrypted values, e.g., obtain x from E(x)). Sub-

traction is very similar, but now the retailer computes E(−y) and then E(x) ·E(−y) = E(x− y).

Multiplication can be performed if the retailer computes E(x)y = E(xy).

4.2.4. Split Multiplication If x and y are additively split between the supplier and the

retailer (i.e., the supplier has x(s) and y(s), and the retailer has x(r) and y(r)), then homomorphic

encryption can be used to perform secure split multiplication. Let z be the desired answer to be

obtained additively split as xy = z = z(s) + z(r). Then

xy = x(s)y(r) + x(r)y(s) + x(s)y(s) + x(r)y(r)

The third and fourth terms above can be computed locally by the supplier and the retailer, respec-

tively. The first two terms are computed by having the supplier send to the retailer both E(x(s))

and E(y(s)), then the retailer (who can encrypt but does not have the private decryption key)

chooses a random r and computes:

v = E(x(s))y(r)
E(y(s))x(r)

E(−r) = E(x(s)y(r) + x(r)y(s) − r)

and sends v to the supplier who decrypts it and sets z(s) equal to:

z(s) = D(v) + x(s)y(s) = x(s)y(r) + x(r)y(s) − r + x(s)y(s)

where D(x) denotes decryption of x. The retailer then sets z(r) equal to z(r) = r + x(r)y(r). Note

that z(s) + z(r) = xy, as required.

Complexity Analysis:Secure split multiplication protocol involves a constant number of rounds

and requires a constant number of modular exponentiations. Communication complexity is also

O(1).

4.3. Secure forecasting protocol

We begin by describing the protocol for securely computing parameters µ̂, θ̂r, and θ̂s, which are

used in equation (4). Then we describe a protocol for computing µ̂t,[i,i+L] according to equation

(5), and, finally, a protocol for computing σ̂t,[i,i+L] according to equation (6).

Deshpande et al.: SCPFR
Article submitted to Management Science; manuscript no. 21

4.3.1. Parameter regression protocol Let 	θ denote the vector whose transpose is (µ̂, θ̂r, θ̂s).

The 	θ vector is computed so as to minimize the sum of squared differences between the predicted

values and the observed values. The sum of squared differences is given by:

t+T−1∑
j=t

(d̂j,t − µ̂− θ̂r

T∑
i=j−t+1

δr
j,i − θ̂s

T∑
i=j−t+1

δs
j,i)

2.

Let us denote

	Y =

⎛
⎜⎜⎜⎝

d̂t,t

d̂t+1,t

...
d̂t+T−1,t

⎞
⎟⎟⎟⎠ , and X =

⎛
⎜⎜⎜⎝

1
∑T

i=1 δr
t,i

∑T

i=1 δs
t,i

1
∑T

i=2 δr
t+1,i

∑T

i=2 δs
t+1,i

...
...

...
1

∑T

i=T δr
t+T−1,i

∑T

i=T δs
t+T−1,i

⎞
⎟⎟⎟⎠ .

The equation for obtaining the updated 	θ is then

	θ =

⎛
⎝ µ̂

θ̂r

θ̂s

⎞
⎠ = [XT X]−1XT 	Y .

The protocol is described in Figure 1.

Input: X is split between supplier and retailer (supplier has the third
column {∑T

i=1 δs
t,i, . . . ,

∑T

i=T δs
t+T−1,i} and retailer has the second column

{∑T

i=1 δr
t,i, . . . ,

∑T

i=T δr
t+T−1,i}); 	Y is known to retailer only.

Output: 	θ is additively split between supplier and retailer, so that 	θ = 	θ(s) + 	θ(r).

Protocol Steps:
1. Supplier and retailer compute the 3× 3 matrix V = XT X in additively split fashion,

by using a split scalar product protocol 3 times (each involving two vectors of t entries).
2. Supplier and retailer compute V −1 in additively split fashion using the protocol

described in Section C.5. This requires using the division protocol of Atallah et al. (2004)
for division by the determinant (the computation of the determinant and the other entries
are, as Step 1 was, split scalar product computations).

3. Supplier and retailer compute 	W = XT 	Y in additively split fashion, by using a split
scalar product protocol 3 times (one for each row of XT).

4. Supplier and retailer compute 	θ = V −1 	W in additively split fashion, by using a split
scalar product protocol 3 times (one for each row of V −1).

Figure 1 Secure parameter regression protocol.

Complexity Analysis: Step 1 requires 3 split scalar products, step 2 (the 3×3 matrix inversion)

requires 10 secure scalar products and 9 split divisions, step 3 requires 3 secure scalar products, and

step 4 requires 3 secure scalar products. Therefore, the protocol needs O(1) secure scalar products

and O(1) secure divisions.

Deshpande et al.: SCPFR
22 Article submitted to Management Science; manuscript no.

Security: By Lemma 1, this protocol does not reveal private information as long as modular

arithmetic is used, because additive splitting in that case hides information perfectly. One of the

division protocols in Atallah et al. (2004) uses modular arithmetic, but some of the more practical

division protocols in Atallah et al. (2004) do not use modular arithmetic.

4.3.2. Mean Demand Forecasting Protocol Figure 2 describes a protocol that securely

computes the estimate for mean demand µ̂t,[i,i+L] at time t over a lead-time of L periods from

equation (5), given additively split estimates (µ̂, θ̂r, and θ̂s).

Input: Supplier knows the δs
j,k’s and retailer knows the δr

j,k’s, for all j, k such that j =
i, . . ., i+L and k = j − t+1, . . ., T . The parameters µ̂, θ̂r, and θ̂s are available in additively
split form, i.e., for each x∈ {µ̂, θ̂r , θ̂s} Supplier (retailer) has a random x(s) (resp., x(r)) such
that x = x(s) + x(r).

Output: Supplier and retailer obtain µ̂
(s)
t and µ̂

(r)
t , respectively, where µ̂t,[i,i+L] = µ̂

(s)
t + µ̂

(r)
t .

Protocol Steps:
1. First, Supplier and retailer compute vs =

∑i+L

j=i

∑T

k=j−t+1 δs
j,k and vr =∑i+L

j=i

∑T

k=j−t+1 δr
j,k. To do so, supplier locally computes v(s)

s =
∑i+L

j=i

∑T

k=j−t+1 δs
j,k (since

all of δs
j,k’s are known to supplier only), and retailer sets v(r)

s = 0. Similarly, retailer locally
computes v(r)

r =
∑i+L

j=i

∑T

k=j−t+1 δr
j,k, supplier sets v(s)

r = 0.
2. Supplier and retailer run a split multiplication protocol twice, once to compute ws =

θ̂svs and once to compute wr = θ̂rvr (both in split fashion).
3. Supplier locally computes µ̂

(s)
t = (L + 1)µ̂ + w(s)

s + w(s)
r , and retailer computes µ̂

(r)
t =

w(r)
s + w(r)

r .
Figure 2 Secure mean demand forecasting protocol.

Complexity Analysis: The complexity of the secure demand forecasting protocol is dominated

by the 2 executions of a secure multiplication protocol (in step 2).

Security: Correctness of the answer produced by the protocol follows from equations (4) and (5),

which it directly implements. As long as the split multiplication protocol and the split addition

protocol are secure, by Lemma 1, the secure demand forecasting protocol is secure.

4.3.3. Standard Deviation of Demand Forecasting Protocol Figure 7 (see Appendix

D.1) gives a protocol that securely computes the standard deviation of demand σ̂t,[i,i+L] over a

lead-time of L periods [i, i + L] according to equation (6).

Complexity Analysis: The main overhead of the protocol is associated with a constant number

of invocation of the multiplication protocol and a single invocation of the square root protocol.

Security: Correctness of the protocol follows from the fact the it directly performs computations

Deshpande et al.: SCPFR
Article submitted to Management Science; manuscript no. 23

required to compute the standard deviation of demand given by Equation (6). Security of this pro-

tocol follows from Lemma 1, as long as modular arithmetics is used for addition, and multiplication

and square root protocols are secure.

4.4. Secure Inventory Planning Protocol

In this subsection, we first give a protocol for computing yR∗
t , then a protocol for computing yS∗

t .

4.4.1. Secure Protocol for Computing yR∗
t The goal is to find an optimal collaborative

base-stock for the retailer, yR∗
t , which can be expressed as: yR∗

t = µt,[t,t+LR] + z∗
1 · σt,[t,t+LR], where

z∗
1 is found by solving equation (7): (h1 + h2 + p)Φ(z∗

1)− (h2 + p)= 0

Since z∗
1 needs to be computed only once, computing yR∗

t securely in each period t is straight-

forward by using the SMC primitives previously described. Hence, we focus on determining z∗
1

securely in a split fashion.

Since the standard normal cdf Φ is well tabulated, one could determine yR∗ as follows. The

supplier and the retailer first compute: x1 = h2+p
h1+h2+p

in split fashion using split division, and then

compute z∗
1 = Φ−1(x1) by looking up the Φ−1 table in a secure fashion. Let T be the table that

represent Φ−1. Table T contains m tuples 〈ai,Φ−1(ai)〉, for i = 1, . . . ,m, where m is presumably a

large integer so that T gives a good estimate of Φ−1(·) with enough precisions. Suppose the supplier

and the retailer have x1 split between them; they can jointly lookup the table T and obtain the

value of Φ−1(a) in split fashion where a is the closest to x1 in the table. The value Φ−1(a) can be

used as an estimate of z∗
1 . This, however, is hugely inefficient because of the necessity to do secure

“table lookups” which takes m modular exponentiations. This approach requires one secure division

and one secure table lookup, thus overall it requires O(m) modular exponentiations, where m is

the size of the table. We next propose an efficient solution that avoids the table lookup operation.

Our solution to securely computing Φ(z) is to use an approximation based on Abramowitz and

Stegun (1972):

Φ(x) =
1
2

+
1√
2π

+∞∑
n=0

(−1)nx2n+1

n!2n(2n + 1)
≈ 1

2
+

1√
2π

N∑
n=0

(−1)nx2n+1

n!2n(2n + 1)

where N is a large integer. The protocol for computing Φ(z) is given in Appendix D.2.

Given a procedure for computing Φ(z), what now remains is the search for z∗
1 to satisfy equa-

tion (7). Let f(z) = (h1 + h2 + p)Φ(z)− (h2 + p). Our goal is to find z∗
1 such that f(z∗

1) = 0. Since

f(z) is a monotone function, one can determine z∗
1 by the binary search protocol described in

Figure 6 (see Appendix C.8). As the evaluation of f(z) takes O(n) modular exponentiations, the

overall binary search that computes z∗
1 needs O(k · (� + n)) modular exponentiations.

Compared to the table lookup approach which takes O(m) modular exponentiations, this binary

search approach is better in practice because the size of the table is huge, i.e., m > k · (� + N).

Deshpande et al.: SCPFR
24 Article submitted to Management Science; manuscript no.

4.4.2. Secure Protocol for Computing yS∗
t To compute yS∗

t , one must solve

h2 − (h2 + p1 + p2)Φ(z2(yS
t)) + (h1 + h2 + p1 + p2)Φ(z2(yS

t);z3(yS
t);

−σU

σV

) = 0

where z2(yS
t) = −(yS

t − µU)/σU and z3(yS
t) = (yS

t − µV)/σV . Hence z3 = µU−µV −z2σU
σV

. To compute

yS∗
t , we can first find z2 such that

h2 − (h2 + p1 + p2)Φ(z2) + (h1 + h2 + p1 + p2)Φ(z2;
µU −µV − z2σU

σV

;
−σU

σV

) = 0,

then we compute yS∗
t = µU − z2σU . We determine z2 using the same technique as above, i.e., using

approximation and binary search.

As above, we compute Φ(z2;
µU−µV −z2σU

σV
; −σU

σV
) in split fashion using approximations based on

Abramowitz and Stegun (1972):

φ(x) =
1√
2π

e−x2/2 ≈ 1√
2π

N∑
n=0

(−1)nx2n

n!2n

Φ(x;y;ρ)≈Φ(x)Φ(y) + φ(x)φ(y)
N∑

n=0

1
(n + 1)!

Hen(x)Hen(y)ρn+1

where

Hen(x) = (−1)n φ(n)(x)
φ(x)

= n!
[n
2]∑

m=0

(−1)m

2mm!(n− 2m)!
xn−2m

are the Hermite polynomials. The protocol for computing Φ(x, y, ρ) is given in Appendix D.3. Let

f(z2) = h2 − (h2 + p1 + p2)Φ(z2) + (h1 + h2 + p1 + p2)Φ(z2;
µU−µV −z2σU

σV
; −σU

σV
). Our goal is to find z∗

2

such that f(z∗
2) = 0. One can determine z∗

2 by the binary search protocol described in Figure 6 (see

Appendix C.8).

4.5. Secure Replenishment Protocol

Once the supplier and the retailer have yR∗, yS∗, IPR, and IPS computed in split fashion, com-

putation of the order quantity is easy, and is shown in Appendix D.4. In the protocol, we use a

cryptographic building block called commitment scheme (e.g., Cramer and Damg̊ard 1998, Fujisaki

and Okamoto 1997). In a commitment scheme, a prover chooses a secret s, computes the corre-

sponding commitment c, and reveals c to a verifier with the following two properties: (1) the verifier

cannot compute anything about s from the commitment c, and (2) the prover cannot change his

committed value once it is committed, but he can open the commitment to reveal s and convince

the verifier that s is indeed the value committed under c.

Deshpande et al.: SCPFR
Article submitted to Management Science; manuscript no. 25

4.6. Secure Transfer Payment Protocol

Before describing a protocol for computing the transfer payment, we first give protocols for com-

puting the parameters β and γ. Note that the value of β is fixed and, therefore, its computation

must be performed only once. The value of γ, on the other hand, must be re-computed every

period.

Secure Protocol for Computing β:

From Theorem 3, β = −(h2 + h1p2
h1+h2+p1+p2

) = −hS − (hR−hS)pR

hR+pR+pS . Using this equation, a secure

protocol for β is given in Appendix D.5.

Secure Protocol for Computing γ:

From Theorem 3, γ is computed as γ = h2(1−Φ(z∗
2))− p2(Φ(z∗

2)−Φ(z∗
2 ;z

∗
3 ;ρ)). Since the value

of z∗
2 = z2(yS∗

t) and z∗
3 is computed during step 4 of the SCPFR process (see Section 3.5), we

can directly use that value without re-calculating it. Furthermore, to minimize the possibility of

cheating by dishonest players, this step (i.e., computation of transfer payment) should be conducted

in parallel with computation of yS∗
t in step 4 of the SCPFR process (see Section 5.2 for further

discussion). Given z∗
2 , secure computation of γ becomes rather simple; our protocol for γ is given

in see Appendix D.6.

Overall Protocol for Transfer Payment:

We use sub-protocols for computing β and γ to securely calculate the transfer payment. The

protocol is given in Appendix D.7. Note that the values of µ̂t,[t,t+LR] and µ̂t,[t,t+LS+LR] are computed

as a part of step 3 of the SCPFR process (see Section 3.5) and thus are available in additively split

form.

4.7. Alternative Boolean Circuit Approach

In this section, we briefly describe an alternative approach for secure computation. This alternative

is based on the idea that one can securely compute a function by securely simulating a Boolean

circuit for that function.

Suppose we have constructed a logical circuit C for computing some function f (note that we are

not describing a physical circuit). As before, assume that the participants of the protocol will be

honest-but-curious adversaries. It is possible to securely evaluate the circuit C with communication

proportional to the size of C. This scheme also requires an oblivious transfer operation for each

input wire (which requires some form of public key cryptography), and for each gate of the circuit

it requires that a more efficient cryptographic function (e.g., a secure encryption scheme, such as

AES) be evaluated a constant number of times. This circuit simulation is possible in a constant

number of rounds using the technique identified by Yao (1986).

Deshpande et al.: SCPFR
26 Article submitted to Management Science; manuscript no.

In summary, if one has a circuit C for evaluating a function, then one can securely evaluate the

function with the same efficiency as evaluating C insecurely within a constant multiplicative factor

(albeit a very large constant). Furthermore, it is possible to build such a circuit for each of the

above-mentioned computations. We discuss how this is done in more detail in Appendix D.

The primary advantage of such an approach is that the rounds required to compute the function

is constant, whereas many of the protocols outlined above require O(k) rounds where k is the

required precision of the answer. The disadvantage of is that operations such as multiplication are

much more expensive in terms of communication than the previous approach (i.e., the common

circuit for multiplying two k-bit numbers requires O(k2) gates). Thus, it is not clear to us which of

these approaches will be more efficient, and we conjecture that this depends upon the environment

in which the protocols are used.

5. Implementation Considerations and Effectiveness of CPFR

Secure CPFR (SCPFR) is designed to support the Demand & Supply Management activity of

CPFR, which involves collaborative customer-demand forecasting and order planning. Specifically,

within the context of our supplier-retailer supply chain, SCPFR: (1) updates the estimates of µ, θr

and θs, using the private demand signals of both parties; (2) forecasts customer demand for future

periods using these updated estimates; (3) computes the optimal collaborative base stocks, and (4)

prescribes shipment quantities, based on the base-stock levels and each party’s private inventory

position. In addition, in order to assure incentive compatibility, SCPFR assesses transfer payments

as contracted for in CPFR’s Strategy-and-Planning activity.

5.1. Improved performance: Simulation Study

We address the following questions: How much benefit can the supply chain expect by implementing

SCPFR? How much does each party (retailer and supplier) benefit due to SCPFR? To answer

these questions, we compute costs/period for two policies: (i) SCPFR policy, described in sections

3 and 4, which minimizes total supply-chain costs, and (ii) a non-collaborative policy, where the

retailers and suppliers do not share information, and, as a result, focus on minimizing individual

costs based on their own information.

In the non-collaborative policy, the retailer constructs lead-time demand forecasts in the following

fashion:

µR
t,[i,i+L] = (L + 1)µ + θr

i+L∑
j=i

T∑
k=j−t+1

δr
j,k (11)

Note that (11) contains only signals observed by the retailer and not the supplier. Thus, at the

beginning of each period t, the retailer estimates µ̂, and θ̂r by regressing its observed dj values

Deshpande et al.: SCPFR
Article submitted to Management Science; manuscript no. 27

on its observed signals δr
j,i for all j < t. Then, using these estimates, he constructs a lead-time

demand forecast from equation (11). The retailer uses a myopic state-dependent base-stock policy,

for deciding his order quantity, given by the following equation:

yR
t = µR

t,[t,t+LR] + zR
1 · σR

t,[t,t+LR] (12)

Where zR
1 = Φ−1(hR/(hR + pR)) and σR

t,[t,t+LR] is his estimate of the standard deviation of the

unobservable (error) terms of demand. The supplier observes the orders placed by the retailer, qR
t ,

but does not observe customer demand or the retailer’s signals. Hence, the supplier regresses the

retailer’s orders, qR
t , on his demand signals δs to obtain estimates of µ and θs. The supplier uses

the following equations to estimate his demand forecast and set his (installation) base-stock level.

µS
t,[i,i+L] = (L + 1)µ + θs

i+L∑
j=i

T∑
k=j−t+1

δs
j,k (13)

yS
t = µS

t,[t,t+LS] + zS
2 · σS

t,[t,t+LS] (14)

Where zS
2 = Φ−1(hS/(hS + pS)) and σS

t,[t,t+LS] be his estimate of the standard deviation of the

unobservable (error) terms of retailer orders.

We compared the costs of the two policies for the following set of parameters: µ = 15, θr = θs =

1,LR = LS = 2, T = 5, σ2
0 = 1, σr

i
2 = σs

i
2 = σ2

i ;σ
2
i = σ2,0.8σ2,0.6σ2,0.4σ2,0.2σ2; i = 1,2,3,4,5;hR =

1, hS = 0.5, pR = 12, pS = 7. These parameters are similar to those in Aviv (2002).

Each policy was simulated for 10,000 periods using the same customer demand. In the simulation,

negative orders were not allowed, i.e., if the policy computed a negative order, an order of size zero

was used. We observed that the SCPFR policy recommended negative orders in only 10 of the

10,000 periods (0.1%). We report the cost/period for each policy. Figure 3 plots the absolute and

percentage benefits to the supply chain, the retailer, and the supplier as a function of σ. Note that,

the benefit of secure CPFR over a non collaborative setting can be significant, ranging from 26%

to 38%. These benefits are not equally split. The supplier gets most of the absolute cost savings

when σ is low, whereas the retailers and suppliers savings are comparable at higher values of σ.

The costs reported do not include the transfer payments derived in section 3.4. By adjusting the

value of the prenegotiated constant α of the transfer payment scheme, an equitable distribution of

the savings between the retailer and the supplier can be easily achieved.

Figure 4 displays the cost savings as a function of the split of the end-customer backorder costs

between the supplier and the retailer. The graph shows that if most of the end-customer backorder

costs accrue to the retailer, then the retailer gains the most by engaging in secure SCPFR. Note

Deshpande et al.: SCPFR
28 Article submitted to Management Science; manuscript no.

Figure 3 Percentage and Absolute Cost Savings vs σ

Figure 4 Percentage and Absolute Cost Savings vs pS/(pS + pR)

that, although the supply chain benefits from secure CPFR under all scenarios, the retailer can

actually be worse off if most of the end-customer backorder costs are attributed to the supplier. In

this case, the retailer would like to stock very little inventory (due to his low backorder cost), but

the collaborative policy forces him to stock much more. In this case, the transfer payments from

the supplier to the retailer (α) are needed to ensure the retailer’s participation.

5.2. Inverse Optimization and Practicality of protocols

As defined in section 4, a computation is said to be “secure” provided that, upon completion,

none of the parties involved know anything more than the output provided by the protocol. It

is important to note that, even in those circumstances when one or more parties involved could

deduce the private inputs of another from the output of the protocol, such a protocol would be

defined to be “secure”. As a trivial example, note that if f(xA, xB) = xA +xB, both Alice and Bob

could deduce the private input of the other simply by subtracting their private input from the sum

provided by the secure protocol.

Deshpande et al.: SCPFR
Article submitted to Management Science; manuscript no. 29

Hence, the issue of “inverse optimization” – which is not of concern within the area of SMC – is

an important one when secure protocols are deployed in practice. Inverse optimization asks: Can

the parties involved infer the input of other parties from the output of the protocol and their own

private information? Specifically, for our SCPFR setting: Can the retailer or the supplier deduce

its partners future demand signals from the output of the protocol? This issue is related to the

invertibility and inferability of demand. Gaur et al. (2005) addressed the question of whether the

supplier can infer the retailer’s demand by observing the retailer’s orders, under the assumption

that the supplier knows the parameters of the demand process. In addition, we address the question

of whether the retailer can infer the supplier’s future demand signals from shipment information

released by the protocol, assuming that the supply-chain partners do not know the parameters of

the demand process.

We first summarize what information is available to each player in each step of the SCPFR

process described in section 3.5. In step 1, the retailer and supplier provide their respective cost

inputs, h and p, and these are kept private by the protocol. In step 2, for each period t, the retailer

and supplier provide their (private) observations of future demand signals δj,i; t + T > j > t and

their private inventory level information. Both of these are kept private by the protocol. In step 3,

the mean and standard deviation of the demand are computed in a split fashion (and hence kept

private). In steps 4 and 5, the base-stock levels and order quantities are also computed in a split

fashion and are kept private. Finally, in step 5, the shipment quantities are computed. The period

t’s shipment from the supplier to the retailer is communicated to the supplier in period t, but is

communicated to the retailer later in period t+LR, when the retailer actually receives the shipment.

Similarly, the shipment from the supplier’s outside source to the supplier is communicated to the

supplier in period t+LS. Thus, at the beginning of each period t, the information available to the

retailer from the protocol is the shipment observation SHR
j ; j ≤ t−LR and his demand observations

dj; j < t. Similarly, at the beginning of each period t, information available to the supplier from the

protocol is the shipment observation SHS
j ; j ≤ t−LS , and the shipments to the retailer SHR

j ; j ≤ t.

Theorem 4 establishes the non-inversability of future demand signal property of our protocols.

Theorem 4. In period t, the retailer cannot infer the supplier’s future demand signals δs
j,i; j >

t with probability one from the shipment information SHR
j ; j ≤ t − LR provided by the protocol.

Similarly, in period t, the supplier cannot infer the retailer’s future demand signals δr
j,i; j > t with

probability one from the shipment information SHR
j ; j ≤ t provided by the protocol.

Theorem 4 shows that the protocol does not leak the values and the timing of future demand sig-

nals. A related question is whether the retailer can infer the supplier’s past demand signals from the

Deshpande et al.: SCPFR
30 Article submitted to Management Science; manuscript no.

shipment information. This question is complicated because the shipment quantity does not provide

complete information on the retailer’s desired order quantity (see footnote 5 in Chen (2004)). To

answer this question, one needs to characterize the (stochastic) process followed by the shipment

variable, SHR
t = min{qR

t ,OHS
t }. If the supplier’s probability of stocking out is non-negligible, then

the shipment quantity observations provide censored data on the desired order quantities. We next

characterize the invertibility of past demand signals from the shipment information received by the

retailer, under the assumption of negligible probability of supplier stockouts.

Theorem 5. If the probability of a supplier stockout is negligible, then as t →∞, the retailer

can infer the impact of the supplier’s past demand signals, θs
∑t

i=t−LR

∑T

k=i−(t−LR)+1 δs
i,k, with

probability one from the shipment information SHR
j ; j ≤ t−LR provided by the protocol.

While the impact of the supplier’s past demand signals may be invertible, if the supplier’s

stockout probability is negligible, we do not consider this as a breach of security. For example,

if the demand signals δ signify promotion plans, then they typically can be observed directly

by the other party when the promotion occurs during the demand period. Hence, the protocol

leaks information that may be available to the supply-chain partner through other means. When

the supplier’s probability of stockout is non-negligible, it is significantly more difficult to infer

the demand signals from the shipment information. We leave the complete characterization of

information leakage under non-negligible supplier stock-out probability for future research.

Note that our single-supplier single-retailer model provides the most stringent test of inverse

optimization. In practice, these protocols are likely to be implemented with several retailers. This

results in “hiding in the crowd” phenomenon, making it almost impossible for one party to invert

the private information of any other supply-chain partner. Also, in our model we assumed that the

standard deviation of the demand signals and the white noise of the demand process is known to

all parties. In practice, these are likely to be unknown, and hence required to be estimated from

demand observations. While it would be straightforward to construct a secure protocol to do so, it

would make inverse-optimization even more difficult. Finally, we assumed that the cost parameters

to the protocol are stationary. If these parameters fluctuate (very likely in practice), then the

protocols need to be adjusted so that the cost parameters are input every period and the critical

fractiles will need to be recomputed every period. This feature will likely make inverse-optimization

very difficult.

Our SCPFR protocols assumed the honest-but-curious model, i.e., the supplier and retailer follow

the protocols, but may try to learn additional information about the other party’s private input.

Deshpande et al.: SCPFR
Article submitted to Management Science; manuscript no. 31

In real applications, however, a participant of the SCPFR protocols may not necessary follow the

protocols if her malicious behavior cannot be detected by the other party. Recall that in section 4

a common technique for hiding of private data was to additively split it between the players.

Because of the additive nature of data sharing, it is possible for a malicious party to gain advantage

by distorting the data. For example, a malicious retailer may increase her share of the transfer

payment value in order to receive a larger amount of payment from the supplier than prescribed

by the protocol in the last step of the SCPFR process. In what follows, we propose two practical

guidelines to address this issue. Note that it is possible to use general solutions to SMC to make

the SCPFR protocols secure against malicious adversaries; such solutions, however, are expensive

to be used in practice.

1. Instead of revealing the shipment quantity in step 5 and transfer payment in step 6 of the

SCPFR process, these values are computed and used concurrently. Hence, tampering with the

transfer payments will distort the order quantities and vice versa. Hence, the incentive compatibility

of the transfer payment scheme will force the parties to follow the protocol.

2. In many business scenarios (including the SCPFR problem), information needs to be kept

private for only a certain period of time. For example, the signals the supplier and retailer observe at

time t may no longer be sensitive at time t+LR +LS, where LR +LS is the supply chain lead-time.

A practical solution to enforce the participants to follow the protocols is then to make the protocols

verifiable in the future (e.g., Schneier 1996). More specifically, the supplier and retailer commit, at

the time of the protocol execution, to all of their private inputs, private keys, randomly generated

numbers, and intermediate results of the protocols, and save the transcripts of the protocols. For

efficiency, they can use an integer commitment scheme (e.g., Cramer and Damg̊ard 1998, Fujisaki

and Okamoto 1997) or even in some cases a cryptographic hash function (Schneier 1996). After

a certain time, when the private inputs are no any longer sensitive, the supplier and retailer can

open the commitments, reveal all their private inputs and intermediate results, and individually

simulate the protocol. If one of them did not follow the protocols in the original execution, he/she

will be caught during the second execution.

6. Conclusions

This paper analyzed privacy/security issues in supply-chains, and demonstrated that collaborative

forecasting and inventory planning can be conducted by sharing, but without disclosing private

information of any supply-chain partners. We examined a two-echelon supply-chain with one sup-

plier and one retailer facing non-stationary demand. We constructed secure protocols for forecasting

Deshpande et al.: SCPFR
32 Article submitted to Management Science; manuscript no.

demand based on private demand signals observed by the retailer and supplier. Using these fore-

casts, and the supplier’s and retailer’s private cost information, we securely computed echelon base-

stock levels that minimize the total supply-chain cost/period. Using the retailer’s and supplier’s

private inventory level information, and the echelon base-stock levels, the order/shipment quantities

were computed securely. We constructed a linear transfer-payment scheme to enable incentive-

compatibility of the collaborative forecasting process. We also provided an inverse-optimization

analysis of the SCPFR process, and proved that the future demand signals observed by the

retailer and the supplier cannot be inferred from the output of the protocol. A simulation study

demonstrated that, depending on problem parameters, the savings of a SCPFR policy over a non-

collaborative policy can be significant.

This paper is a first step in analyzing privacy/security issues in supply-chain management and

this research can be extended in several ways. We assumed a linear demand model based on a

Martingale model of forecast evolution. It will be interesting to extend our results to other demand

models such as Bayesian demand models. More realistic supply-chain settings involving multiple

suppliers, retailers and echelons should also be examined. We conjecture that such settings will

enhance the privacy preserving nature of our protocols due to increased “hiding-in-the-crowd” phe-

nomenon. More modeling effort is needed in understanding equilibrium issues in non-collaborative

settings where information is not shared. This is useful in establishing benchmarks for the benefits

of the SCPFR process. Many extensions are possible from a secure-multiparty-computation per-

spective. Our analysis can be extended to the “malicious” model of security, but the protocols will

be more complex for these settings. Further experimentation needs to be carried out on comparing

the computational efficiency of the split arithmetic versus boolean circuit approaches outlined in

this paper. Tradeoffs between efficiency of protocols versus information leakage also need to be

examined. Methods for checking the honesty of participants should be developed, particularly in

situations where the value of information does not decay over time and hence commitment schemes

cannot be used. Finally, we leave an analysis of the fairness of the division of SCPFR savings

between the retailer and the supplier for future research.

Acknowledgments

Portions of this work were supported by Grants IIS-0325345, IIS-0219560, IIS-0312357, and IIS-0242421 from

the National Science Foundation, Contract N00014-02-1-0364 from the Office of Naval Research, by sponsors

of the Center for Education and Research in Information Assurance and Security, and by Purdue Discovery

Park’s e-enterprise Center. We thank Xin Zhai for computational assistance on the simulation study. We

also thank Joe Andraski, vice-chairman of the VICS CPFR committee, for supporting our research on secure

supply-chain collaborations.

Deshpande et al.: SCPFR
Article submitted to Management Science; manuscript no. 33

References
Abramowitz, M., I. Stegun. 1972. Handbook of Mathematical Functions with Formulas, Graphs, and Mathe-

matical Tables. U.S. Department of Commerce.

Aho, A., J. Hopcrof, J. Ullman. 1974. The Design and Analysis of Computer Algorithms. Addison-Wesley.

Ahuja, P., J. Orlin. 2001. Inverse optimization. Operations Research 49(5) 771–783.

Ajtai, M., J. Komlos, E. Szemeredi. 1983. An o((n log n)) sorting network. 15th annual ACM Symposium

on Theory of Computing . 1–9.

Alt, H. 1988. Comparing the combinational complexities of arithmetic functions. Journal of the ACM 35(2)

447–460.

Anand, K., M. Goyal. 2005. Incentives for information acquisition and information dissemination in a supply-

chain. Working Paper. The Wharton School, University of Pennsylvania.

Asokan, N., M. Schunter, M. Waidner. 1997. Optimistic protocols for fair exchange. 4th ACM Conference

on Computer and Communications Security . 7–17.

Asokan, N., V. Shoup, M. Waidner. 2000. Optimistic fair exchange of digital signatures. IEEE Journal on

Selected Areas in Communications 18(4) 593–610.

Atallah, M., M. Bykova, K. Frikken J. Li, M. Topkara. 2004. Private collaborative forecasting and bench-

marking. 3rd ACM Workshop on Privacy in Electronic Society .

Atallah, M., V. Deshpande, H. Elmongui, L. Schwarz. 2003. Secure supply chain protocols. IEEE Interna-

tional Conference on E-Commerce.

Aviv, Y. 2001. The effect of collaborative forecasting on supply chain performance. Management Science

47 1326–1343.

Aviv, Y. 2002. Gaining benefits from joint forecasting and replenishment processes: The case of auto-

correlated demand. Manufacturing & Service Operations Management 4 55–74.

Aviv, Y. 2003. A time-series framework for supply-chain inventory managment. Operations Research 51

210–227.

Bar-Ilan, J., D. Beaver. 1989. Non-cryptographic fault-tolerant computing in constant number of rounds of

interaction. 8th Annual ACM Symposium on Principles of Distributed Computing . 201–209.

Batcher, K. 1968. Sorting networks and their applications. AFIPS Spring Joint Computer Conference.

307–314.

Beame, P., S. Cook, H. Hoover. 1984. Log depth circuits for division and related problems. 16th Annual

IEEE Symposium on Foundations of Computer Science. 1–6.

Brandt, F., T. Sandholm. 2004. On correctness and privacy in distributed mechanisms. Proceedings of the

Agent-Mediated Electronic Commerce (AMEC) workshop.

Deshpande et al.: SCPFR
34 Article submitted to Management Science; manuscript no.

Brandt, F., T. Sandholm. 2005. Efficient privacy-preserving protocols for multi-unit auctions. Proceedings

of Financial Cryptography and Data Security (FC).

Cachon, G. 2003. Supply chain coordination with contracts. Handbooks in Operations Research and Man-

agement Science: Supply Chain Management .

Cachon, G., M. Fisher. 2000. Supply chain inventory management and the value of shared information.

Management Science 46(8) 1032–1048.

Cachon, G., M. Lariviere. 2001. Contracting to assure supply: how to share demand forecasts in a supply

chain. Management Science 47(5) 629–646.

Cachon, G., P. Zipkin. 1999. Competitive and cooperative inventory policies in a two-stage supply chain.

Management Science 45(7) 936–953.

Canetti, R. 2000. Security and composition of multiparty cryptographic protocols. Journal of Cryptology

13(1) 143–202.

Chen, F. 1998. Echelon reorder points, installation reorder points, and the value of centralized demand

information. Management Science 44(12) 221–234.

Chen, F. 2001. Auctioning supply contracts. Working paper, Columbia University.

Chen, F. 2004. Information sharing and supply chain coordination. Handbook of Operations Research and

Management Science: Supply Chain Management . North-Holland, Amsterdam.

Chen, F., B. Yu. 2001. Quantifying the value of leadtime information in a single-location inventory system.

Working paper, Columbia University.

Chen, F., Y. Zheng. 1994. Lower bounds for multi-echelon stochastic inventory systems. Management Science

40(11) 1426–1443.

Clark, A., H. Scarf. 1960. Optimal policies for a multi-echelon inventory problem. Management Science 6(4)

475–490.

Clifton, C., I. Iyer, R. Cho, W. Jiang, M. Kantarcioglu, J. Vaidya. 2004. An approach to identifying beneficial

collaboration securely in decentralized logistics systems. Working Paper, Purdue University.

Conitzer, V., T. Sandholm. 2002. Complexity of mechanism design. 18th Conference on Uncertainty in

Artificial Intelligence. 103–110.

Corbett, C. 2001. Stochastic inventory systems in a supply chain with asymmetric information: Cycle stocks,

safety stocks, and consignment stock. Operations Research 49(4) 487–500.

Cramer, R., I. Damg̊ard. 1998. Zero-knowledge proof for finite field arithmetic, or: Can zero-knowledge be

for free? Advances in Cryptology - CRYPTO 1998 . 424–441.

Damg̊ard, I., M. Jurik. 2001. A generalization, a simplification and some applications of paillier’s probabilistic

public-key system. 4th International Workshop on Practice and Theory in Public Key Cryptography .

119–136.

Deshpande et al.: SCPFR
Article submitted to Management Science; manuscript no. 35

Decker, B. De, G. Neven, F. Piessens, E. Van Hoeymissen. 2001. Second price auctions, a case study of

secure distributed computing. 3rd IFIP International Working Conference on Distributed Applications

and Interoperable Systems. 217–228.

Deshpande, V., L. Schwarz. 2005. Optimal capacity choice and allocation in decentralized supply chains.

Working paper, Purdue University.

Elkind, E., H. Lipmaa. 2004. Interleaving cryptography and mechanism design: The case of online auctions.

8th Annual Conference on Financial Cryptography . 117–131.

Federgruen, A., P. Zipkin. 1984. Computational issues in an infinite-horizon, multiechelon inventory model.

Operations Research 32(4) 818–836.

Feigenbaum, J., N. Nisan, V. Ramachandran, R. Sami, S. Shenker. 2002. Agents’ privacy in distributed

algorithmic mechanisms. Workshop on Economics and Information Security .

Feigenbaum, J., S. Shenker. 2002. Distributed algorithmic mechanism design: Recent results and future

directions. 6th International Workshop on Discrete Algorithms and Methods for Mobile Computing and

Communications. 1–13.

Feldman, P., S. Micali. 1988. Optimal algorithms for byzantine agreement. 20th Annual ACM Symposium

on Theory of Computing . 148–161.

Franklin, M., M. Reiter. 1996. The design and implementation of a secure auction service. IEEE Transactions

on Software Engineering 22(5) 302–312.

Freedman, M., K. Nissim, B. Pinkas. 2004. Efficient private matching and set intersection. Advances in

Cryptology - EUROCRYPT 2004 . 1–19.

Frikken, K., M. Atallah. 2004. Privacy preserving route planning. 3rd ACM Workshop on Privacy in the

Electronic Society . 8–15.

Fujisaki, E., T. Okamoto. 1997. Statistical zero knowledge protocols to prove modular polynomial relations.

Advances in Cryptology - CRYPTO 1997 . 16–30.

Gaur, V., A. Giloni, S. Seshadri. 2005. Information sharing in a supply chain under arma demand. Manage-

ment Science 51 961–969.

Gavirneni, S., R. Kapuscinski, S. Tayur. 1999. Value of information in capacitated supply chains. Manage-

ment Science 45(1) 16–24.

Goethals, B., S. Laur, H. Lipmaa, T. Mielikainen. 2004. On secure scalar product computation for privacy-

preserving data mining. 7th Annual International Conference on Information Security and Cryptology .

104–120.

Goldreich, O. 2004. The Foundations of Cryptography . Cambridge University Press.

Goldreich, O., S. Micali, A. Wigderson. 1987. How to play any mental game. 19th Annual ACM Symposium

on Theory of Computing . 218–229.

Deshpande et al.: SCPFR
36 Article submitted to Management Science; manuscript no.

Goldwasser, S. 1997. Multi-party computations: Past and present. 16th Annual ACM Symposium on Prin-

ciples of Distributed Computing . 1–6.

Graves, S. 1999. A single-item inventory model for a nonstationary demand process. Manufacturing &

Service Operations Management 1(1) 50–61.

Hays, C.L. 2004. What wal-mart knows about customers’ habits. The New York Times, Nov. 14.

Jakobsson, M., A. Juels. 2000. Mix and match: Secure function evaluation via ciphertexts. Advances in

Cryptology - ASIACRYPT 2000 . 162–177.

Katz, J., R. Ostrovsky. 2004. Round optimal secure two-party computation. Advances in Cryptology -

CRYPTO 2004 . 335–354.

Lee, H., P. Padmanabhan, S. Whang. 1997a. The bullwhip effect in supply chains. Sloan Management

Review 38 93–102.

Lee, H., V. Padmanabhan, S. Whang. 1997b. Information distortion in a supply chain: The bullwhip effect.

Management Science 43(4) 546–558.

Lee, H., K. So, C. Tang. 2000. The value of information sharing in a two-level supply chain. Management

Science 46(5) 626–643.

Lee, H., S. Whang. 1999. Decentralized multi-echelon supply chains: Incentives and information. Management

Science 45(5) 633–640.

Lee, H., S. Whang. 2000. Information sharing in a supply chain. Int. J. Technology Management 20(3/4)

373–387.

Li, L. 2003. Information sharing in a supply chain with horizontal competition. Management Science 48(9)

1196–1212.

Malkhi, D., N. Nisan, B. Pinkas, Y. Sella. 2004. Fairplay - a secure two-party computation system. 13th

USENIX Security Symposium. 287–302.

Mishra, B., S. Raghunathan, X. Yue. 2005. Information sharing in supply chains: Incentives for information

distortation. Working Paper, University of Wisconsin at Milwaukee.

Miyaoka, J., W. Hausman. 2004. How a base stock policy using “stale” forecasts provides supply chain

benefits. Manufacturing & Service Operations Management 6 149–162.

Moinzadeh, K. 2002. A multi-echelon inventory system with information exchange. Management Science 48

414–426.

Naor, M., B. Pinkas. 1999. Oblivious transfer and polynomial evaluation. 31st Annual ACM Symposium on

Theory of Computing . 245–254.

Naor, M., B. Pinkas, R. Sumner. 1999. Privacy preserving auctions and mechanism design. 1st ACM

Conference on Electronic Commerce. 129–139.

Deshpande et al.: SCPFR
Article submitted to Management Science; manuscript no. 37

Ofman, Y. 1963. On the algorithmic complexity of discrete functions. Sov. Phys. Dokl. 7 589–591.

Okamoto, T., S. Uchiyama. 1998. A new public-key cryptosystem as secure as factoring. Advances in

Cryptology - EUROCRYPT 1998 . 308–318.

Paillier, P. 1999. Public-key cryptosystems based on composite degree residuosity classes. Advances in

Cryptology - EUROCRYPT 1999 . 223–238.

Raghunathan, S. 2001. Information sharing in a supply chain: A note on its value when demand is nonsta-

tionary. Management Science 47(4) 605–610.

Reif, J., S. Tate. 1989. Optimal size integer division circuits. 21st annual ACM Symposium on Theory of

Computing . 264–273.

Schneier, B. 1996. Applied Cryptography . 2nd ed. John Wiley & Sons.

Schoehage, A., V. Strassen. 1971. Schnelle multiplikation grosser zahlen. Computing 7 281–292.

Tarantola, A. 1987. Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation.

Elsevier, Amsterdam.

Yao, A. 1982. Protocols for secure computations. 23rd Annual IEEE Symposium on Foundations of Computer

Science.

Yao, A. 1986. How to generate and exchange secrets. 27th Annual IEEE Symposium on Foundations of

Computer Science.

Deshpande et al.: SCPFR
38 Article submitted to Management Science; manuscript no.

Appendix A: A Brief Overview of SMC

Whereas Section 2.2 contained a high-level literature review of SMC, this section reviews in more technical

detail the concepts and results from the SMC literature that are used in the paper. These include what is

meant by “secure” computation, and general results from the simulation of circuits literature.

A.1. Security Model

We begin by discussing the security model, which is a standard security model (Canetti 2000, Goldreich

2004). At a high level, a protocol “securely” implements a function f if the information that can be learned by

engaging in the protocol, could be learned in an ideal implementation of the protocol where the functionality

was provided by a trusted oracle. We also consider two types of adversaries: (i) semi-honest adversaries that

will follow the protocol exactly but will try to compute “extra” information; and (ii) malicious adversaries

that will deviate from the protocol at any step in order to gain additional information or to control the

outcome. The types of things that an adversary could do include: (i) substitute inputs (ideal, semi-honest,

and malicious), (ii) deviate at an intermediate step (malicious), and (iii) terminate early (malicious ideal

and malicious). Our protocols do not attempt to address item (iii); in a sense this is the fairness constraint

(it may be possible for one party to learn the result and then terminate the protocol not allowing the other

party to learn the result). The reason that such attacks are ignored is that the solutions for such tasks are

complex and do not completely solve the problem. See discussion below.

We now formally define the notions above. We do this by defining the notion of an ideal-model adversary

(one for the situation where there is an oracle) and a real-model adversary for the protocol Π, and then assert

that a protocol is secure if the two executions are computationally indistinguishable. We focus on defining

the case for two-party protocols (and refer the reader to Canetti (2000) for multiple parties). Assume the Π

computes f : {0, 1}�×{0, 1}� →{0, 1}�.

Definition of IDEAL model:

The ideal model can be viewed as two Probabilistic Polynomial Time (PPT) algorithms (A,B) each of

which is composed of two parts AI and AO (and BI and BO), and the execution of the protocol is as follows:

1. Alice (Bob) sends AI(XA, rA) (resp., BI(XB , rB)) to the oracle (where rA and rB are Alice and Bob’s

respective coin flips).

2. The oracle evaluates f(AI(XA, rA), BI(XB , rB)) obtaining output (YA, YB), and sending YA (YB) to

Alice (resp., Bob).

3. Alice (Bob) outputs AO(XA, rA, YA) (resp., BO(XB, rB, YB)).

Alice is said to be honest if AI(XA, rA) = XA and AO(XA, rA, YA) = YA (a similar definition holds for Bob).

We say that an adversary is admissible if at least one party is honest (i.e., we do not concern ourselves with

adversaries that corrupt both parties).

We now define the ideal model’s view in the case where Bob is honest (an analogous definition occurs

when Alice is honest), there are two cases:

• Alice does not terminate, then IDEALA,B (XA,XB) = (AO(XA, rA, YA), f(AI(XA, rA),XB)).

Deshpande et al.: SCPFR
Article submitted to Management Science; manuscript no. 39

• Alice terminates, then IDEALA,B (XA,XB) = (⊥, f(AI (XA, rA),XB)).

We now define the actual execution for a protocol Π that implements the function f .

Definition of REAL model:

In a real model the parties are arbitrary PPT algorithms (A′, B′), where for semi-honest adversaries the

output function is arbitrary and for malicious adversaries the parties can behave arbitrarily. The adversaries

are admissible if at least one party uses the algorithm specified by protocol Π. We define the interaction of

protocol Π by REALΠ,A′ ,B′ (XA,XB) as the output from the interaction of A′(XA) and B′(XB) for protocol

Π.

As is usual, we assert a protocol Π is secure if there is an ideal-model adversary that is as powerful as

any real-model adversary up to a negligible degree. To define what is meant by this, we use the standard

definition of computational indistinguishability (Goldreich 2004):

Definition of Computational Indistinguishability:

We say that two random variables X and Y are computationally indistinguishable if for any PPT algorithm

D, any polynomial p, and large enough n, it holds that:

|(Pr(D(X) = 1))− (Pr(D(Y) = 1))|< 1
p(n)

Definition of security: We say that a protocol Π securely evaluates a function f if for any admissible

adversary in the real model (A′, B′), there exists an admissible ideal-model adversary (A,B) such that

IDEALA,B (XA,XB) and REALΠ,A′ ,B′ (XA,XB) are computationally indistinguishable.

Deshpande et al.: SCPFR
40 Article submitted to Management Science; manuscript no.

Appendix B: Proofs of Theorems and Propositions

Proof of Proposition 1 yR
t is chosen to minimize G1

t (yR
t) = h1σt,[t,t+LR]z1 +(h1 +h2 + p)σt,[t,t+LR]LF (z1)

Therefore,

G1′
t (yR

t) = h1σt,[t,t+LR] +(h1 +h2 + p)σt,[t,t+LR](Φ(z1)− 1)

Setting the derivative, w.r.t to yR
t , equal to zero, we get the first order condition

(h1 +h2 + p)Φ(z∗
1)− (h2 + p) = 0

From the convexity of the cost function, solution to the above equation is optimal. �
Proof of Proposition 2 Our proof follows from Federgruen and Zipkin (1984), who established the optimal

base-stock levels for the stationary demand case. For non-stationary demand, yS
t is chosen to minimize

G2
t (y

S
t) = h2(yS

t −µt,[t,t+LS−1])+EU>yS
t
[G1

t+LS
(yS

t − d[t,t+LS−1])−G1
t+LS

(yR∗
t+LS

)]

Taking derivative with respect to ys
t , we get the first order condition

h2 +
∫ ∞

yS
t

G1′
t+LS

(yS
t − d[t,t+LS−1])fU (u)du = 0

This can be written as

h2 +
∫ ∞

yS
t

{−(h2 + p)+ (h1 +h2 + p)Ft+LS ,[t+LS ,t+LS+LR](yS
t − d[t,t+LS−1])}fU(u)du = 0

Where, Ft+LS ,[t+LS ,t+LS+LR](·) is the cdf of the retailer’s lead-time demand distribution at t + LS. Now

U = d[t,t+LS−1] + yR∗
t+LS

is a normally distributed random variable with mean µU and standard deviation

σU , where µU = µt,[t,t+LS+LR] + z∗
1σt+LS ,[t+LS ,t+LS+LR] and σ2

U = σ2
t,[t,t+LS+LR] − σ2

t+LS,[t+LS ,t+LS+LR]. Also,

define the random variable Vt = d[t,t+LS+LR]. Note that Vt is also a normal random variable with a mean

µV = µt,[t,t+LS+LR] and standard deviation σV = σt,[t,t+LS+LR] as given by equations (2) and (3), respectively.

The above first order condition reduces to

h2 − (h2 + p)
∫ ∞

yS
t

fU (u)du +(h1 +h2 + p)Prob(U ≥ yS
t ;V ≤ yS

t) = 0

which can be rewritten as

h2 − (h2 + p1 + p2)Φ(z2(yS
t))+ (h1 +h2 + p1 + p2)Φ(z2(yS

t); z3(yS
t);

−σU

σV

) = 0

where Φ(x1;x2; ρ) denotes the cdf of the standard bi-variate normal distribution with correlation ρ, z2(yS
t) =

−(yS
t − µU)/σU , and z3(yS

t) = (yS
t − µV)/σV . This is because U and V have a joint-distribution which is

bi-variate normal.

From the convexity of the G2
t cost function, solution to the above equation is optimal. �

Proof of Theorem 1 The retailer’s cost, associated with the retailer’s base-stock decision, yR
t is given by

G1,R
t (z1) = (h1 +h2)σt,[t,t+LR]z1 +(h1 +h2 + p1)σt,[t,t+LR]LF (z1)

Deshpande et al.: SCPFR
Article submitted to Management Science; manuscript no. 41

Where z1 = (yR
t − µt,[t,t+LR])/σt,[t,t+LR]. Let µ̃t,[t,t+LR] be the retailer’s reported mean lead-time demand

forecast (which could be different than the true value µt,[t,t+LR]). Then, the effective z1 value is given by

z1 = (µ̃t,[t,t+LR] − µt,[t,t+LR] + z∗
1σt,[t,t+LR])/σt,[t,t+LR], and z∗

1 is computed from equation (7). Note that if

there is no distortion of the lead-time forecast, i.e., µ̃t,[t,t+LR] = µt,[t,t+LR], then z1 = z∗
1 . We next establish

the retailer’s incentive to report the true lead-time demand forecast, by examining the derivative of the cost

function at the true value of lead-time demand forecast.

∂G1,R
t

∂µ̃t,[t,t+LR]

=
∂G1,R

t

∂z1

∂z1

∂µ̃t,[t,t+LR]

= −p1 +(h1 +h2 + p1)Φ(z1)

Hence

∂G1,R
t

∂µ̃t,[t,t+LR] |µ̃t,[t,t+LR] = µt,[t,t+LR]

= −p1 +(h1 +h2 + p1)Φ(z∗
1) =−p1 +

(h1 +h2 + p1)(h2 + p1 + p2)
(h1 +h2 + p1 + p2)

> 0

Thus, if the retailer’s base-stock level is determined using proposition (1), the retailer can lower his cost by

deflating the lead-time demand forecast µt,[t,t+LR]. Similarly, it can be shown that the supplier can lower his

cost by inflating the lead-time demand forecast µt,[t,t+LR]. �
Proof of Theorem 2 The retailer’s cost, associated with the retailer’s base-stock decision, yS

t is given by

G2,R
t (yS

t) = EU>yS
t
{G1,R

t+LS
(yS

t − d[t,t+LS−1])−G1,R
t+LS

(yR∗
t+LS

)}

Let µ̃t,[t,t+LR+LS] be the retailer’s reported mean lead-time demand forecast (which could be different than

the true value µt,[t,t+LR+LS]). Then, the effective z3 value is given by z3 = (µ̃t,[t,t+LR+LS] − µt,[t,t+LR+LS] +

z∗
3σV)/σV , and z∗

3 is computed from equation (7). Note that if there is no distortion of the lead-time forecast,

i.e., µ̃t,[t,t+LR+LS] = µt,[t,t+LR+LS], then z3 = z∗
3 (and z2 = z∗

2). We next establish the retailer’s incentive to

report the true lead-time demand forecast, by examining the derivative of the cost function at the true value

of lead-time demand forecast.

∂G2,R
t

∂µ̃t,[t,t+LR+LS]

=
∂G2,R

t

∂yS
t

∂yS
t

∂µ̃t,[t,t+LR +LS]

=−p1Φ(z2)+ (h1 +h2 + p1)Φ(z2; z3; ρ)

Hence

∂G2,R
t

∂µ̃t,[t,t+LR+LS] |µ̃t,[t,t+LR+LS] = µt,[t,t+LR+LS]

= −p1Φ(z∗
2)+ (h1 +h2 + p1)Φ(z∗

2 ; z∗
3; ρ)

= −h2(1−Φ(z∗
2))+ p2(Φ(z∗

2)−Φ(z∗
2 ; z∗

3; ρ))

� 0

Note that the above derivative is negative if p2 = 0, but can be positive if p2 is sufficiently large. Thus, if the

supplier’s base-stock level is determined using proposition (2), the retailer can lower his cost by distorting

the lead-time demand forecast µt,[t,t+LR+LS], depending on the values of h2 and p2. Similarly, it can be shown

that the supplier can lower his cost by distorting the lead-time demand forecast µt,[t,t+LR+LS]. �
Proof of Theorem 3: The proof directly follows from the proofs of theorems (1) and (2). It is easy to verify

that
∂(G1,R

t +TPt)
∂µ̃t,[t,t+LR] |µ̃t,[t,t+LR] = µt,[t,t+LR]

= 0

Deshpande et al.: SCPFR
42 Article submitted to Management Science; manuscript no.

and
∂(G2,R

t +TPt)
∂µ̃t,[t,t+LR+LS] |µ̃t,[t,t+LR+LS] = µt,[t,t+LR+LS]

= 0 �

Proof of Theorem 4 In each period t, the retailer’s shipment quantity is based on the on-hand order

quantity of the supplier and the retailer’s order quantity, i.e. SHR
t = min{qR

t ,OHS
t }. Now, the retailer’s order

quantity qR
t is based on the retailer’s base-stock level yR

t , which contains information about demand signals

observed, by both the retailer and the supplier, for the time interval [t, t + LR] as observed by time t− 1.

Now, the shipment received by the retailer in period t is the shipment that was released by the supplier in

period t−LR. This shipment contains information about demand signals over the time-interval [t−LR, t],

but contains no information about demand signals about future periods. Hence, in any time period t, the

protocol does not reveal any information to the retailer that contains the supplier’s future observed demand

signals. Hence, the retailer cannot infer the supplier’s future demand signals from the output of the protocol.

The protocol does however reveal SHR
t to the supplier, which contains information about the retailer’s

future demand signals. Under the assumption that the supplier’s probability of stockout is negligible, the

retailer’s order process can be characterized as qR
t = yR∗

t − yR∗
t−1 + dt−1. This can be rewritten as

qR
t = µ + θr(

t+LR∑
j=t

δr
j,j−t +

T∑
i=LR+1

δr
t+LR,i)+ θs(

t+LR∑
j=t

δs
j,j−t +

T∑
i=LR+1

δs
t+LR,i)+ εt−1

However, since the protocol does not reveal retail demand to the supplier, the supplier does not know

the white noise of the demand process, εt−1. Hence, even if the supplier get’s the retailer order quantity

information qR
t , he cannot infer the retailer’s future demand signals δr

j ; j > t. �
Proof of Theorem 5 If the supplier’s probability of stock-out is negligible, then the retailer, at any time

t, knows qR
j ; j ≤ t−LR, by setting qR

j = SHR
j . Hence, the retailer can infer the retailer’s base-stock level by

setting yR∗
j = qR

j +IP R
j (since the retailer knows his echelon inventory-position from his on-hand inventory and

backorders). As t→∞, the retailer can infer the mean of the retailer’s base-stock level (LR +1)µ+z∗
1σLR+1,

by regressing yR∗
j versus his observed signals δr. Hence from each yR∗

j ; j ≤ t−LR, the retailer can infer the

impact of supplier’s past demand signals θs
∑j+LR

i=j

∑T

k=i−j+1 δs
i,k . �

Deshpande et al.: SCPFR
Article submitted to Management Science; manuscript no. 43

Appendix C: Building Blocks used in SCPFR

C.1. Split Division

Suppose x and y are additively split between Supplier and Retailer, and they want to compute x/y. A split

division protocol enables them to carry out this computation in a secure, additively-split fashion. Supplier

then obtains z(s) and Retailer obtains z(r) such that z(s) + z(r) = x/y = (x(s) + x(r))/(y(s) + y(r)). The

division operation is different from other computations described so far because it must handle floating point

arithmetic. Several efficient split division protocols were given by Atallah et al. (2004).

Complexity Analysis: All of the division protocols given in Atallah et al. (2004) for two players and

constant size numbers will result in a constant number of rounds, constant communication and computational

complexity (measured in modular exponentiations). Certain protocols are more efficient than others; this,

however, of interest only for actual implementations and does not affect our analysis.

C.2. Secure Scalar Product

Suppose Supplier has a private vector 	x = (x1, x2, . . . , xn), and Retailer has a private vector 	y =

(y1, y2, . . . , yn), a secure scalar product protocol enables them to compute 	x · 	y securely in additively-split

fashion. That is, Supplier obtains z(s) and Retailer obtains z(r) such that z(s) + z(r) = 	x · 	y =
∑n

i=1 xi · yi.

Goethals et al. (2004) give a construction of a secure scalar product protocol using homomorphic encryption

schemes.

Another variant of the scalar protocol is where two vectors 	x = (x1, x2, . . . , xn) and 	y = (y1, y2, . . . , yn) are

additively split between Supplier and Retailer. A secure split scalar product protocol then enables them to

compute 	x · 	y securely in split fashion. That is, Supplier obtains z(s) and Retailer obtains z(r) such that

z(s) + z(r) = 	x · 	y =
∑n

i=1(x
(s)
i + y

(r)
i) · (y(s)

i + y
(r)
i). Similar to the above case, secure split scalar product

can be implemented using a homomorphic encryption scheme since it relies on the use of only addition and

multiplication operations.

Complexity Analysis: As can be seen from the above, secure scalar product involves a constant number

of rounds and requires us to perform a O(n) modular exponentiations. Communication complexity is also

O(n).

C.3. Secure Polynomial Evaluation

Suppose Supplier has a private polynomial P of degree k, and Retailer has a private integer x. Secure

polynomial evaluation described in Freedman et al. (2004) enables Supplier and Retailer to compute P (x)

securely in additively-split fashion. Let P (x) = akx
k + · · ·+a2x

2 +a1x+a0. Using homomorphic encryption,

Supplier sends the encrypted coefficients E(ak), . . . , E(a1), E(a0) to Retailer in order. Retailer computes

E(P (x)) = E(ak)xk + · · ·+ E(a1)x + E(a0), then chooses a random r, and sends E(P (x) − r) to Supplier.

Now P (x) is additively split between Supplier and Retailer.

Complexity Analysis: As can be seen from the above, secure polynomial evaluation involves a constant

number of rounds and requires us to perform a O(k) modular exponentiations. Communication complexity

is also O(k).

Deshpande et al.: SCPFR
44 Article submitted to Management Science; manuscript no.

C.4. Secure Matrix Multiplication

Suppose an �× m matrix M1 and an m× n matrix M2 are additively split between Supplier and Retailer.

Secure matrix multiplication enables them to compute M3 = M1 × M2 securely with the result in a split

fashion. Let m
(i,j)
k denote the value of the cell at position (i, j) in matrix Mk, where k = 1, 2, 3. Then for

M3’s entries m
(i,j)
3 , where 1≤ i ≤ � and 1≤ j ≤ n, we have the following equation:

m
(i,j)
3 =

m∑
k=1

m
(i,k)
1 m

(k,j)
2

Therefore, m
(i,j)
3 can be computed in a split fashion using one secure split scalar product. M3 then can be

computed by Supplier and Retailer using the secure split scalar product protocol �n times.

Complexity Analysis: Secure matrix multiplication can be done with a single round of interaction. It

requires O(m�n) modular exponentiations and O(�m+ �n) communication.

C.5. Secure 3× 3 Matrix Inversion

In this section we introduce a protocol for computing the inverse of a 3× 3 matrix. There have been other

schemes introduced for inverting matrices (Bar-Ilan and Beaver 1989). However, these schemes find the

inverse when using modular arithmetic, which is not the same as the inverse when using standard arithmetic.

Let A be a 3× 3 matrix, i.e.,

A =

⎛
⎝ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠ .

We can compute A’s inverse as follows:

A−1 =
1
|A|

⎛
⎝ A11 A21 A31

A12 A22 A32

A13 A23 A33

⎞
⎠ , (15)

where |A|= a11(a22a33−a23a32)−a12(a21a33−a23a31)+a13(a21a32 −a22a31) and the values Aij , 1≤ i, j ≤ 3,

are given by:

A11 =
∣∣∣∣ a22 a23

a32 a33

∣∣∣∣ A12 = −
∣∣∣∣ a21 a23

a31 a33

∣∣∣∣ A13 =
∣∣∣∣ a21 a22

a31 a32

∣∣∣∣
A21 =−

∣∣∣∣ a12 a13

a32 a33

∣∣∣∣ A22 =
∣∣∣∣ a11 a13

a31 a33

∣∣∣∣ A23 = −
∣∣∣∣ a11 a12

a31 a32

∣∣∣∣
A31 =

∣∣∣∣ a21 a13

a22 a23

∣∣∣∣ A32 = −
∣∣∣∣ a11 a13

a21 a23

∣∣∣∣ A33 =
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ .
The protocol that produces an inverse of a matrix A in an additively split form is given in Figure 5.

Complexity Analysis: In the matrix inversion protocol, step 1 requires 9 secure scalar products, step 2

requires one secure scalar product, step 3 requires 9 secure split divisions. Therefore, the protocol needs O(1)

secure scalar products and O(1) secure divisions.

Security: Correctness of the protocol follows from Equation (15), which it faithfully implements. As long as

the split multiplication protocol and the split division protocol are secure, by Lemma 1, the matrix inversion

protocol is secure, i.e., does not reveal any private information.

Deshpande et al.: SCPFR
Article submitted to Management Science; manuscript no. 45

Input: Supplier and Retailer input a 3×3 matrix A in additively split form, i.e., Supplier
has A(s) and Retailer has A(r) such that A(s) + A(r) = A.

Output: Supplier learns B(s) and Retailer learns B(r) such that B(s) + B(r) = A−1.

Protocol Steps:
1. For each i ∈ {1,2,3} and j ∈ {1,2,3}, Supplier and Retailer run a split scalar product

protocol to compute Aij in additively split fashion.
2. Supplier and Retailer run another split scalar product protocol to compute |A| =

a11A11 − a12A12 + a13A13 in additively split fashion.
3. For each i ∈ {1,2,3} and j ∈ {1,2,3}, Supplier and Retailer run a split division protocol

to compute bij = Aji/|A| according to Equation (15).
Figure 5 Secure 3× 3 matrix inversion.

C.6. Secure Square Root

In some of our protocols we need the ability to compute the square root of a split value. To do this, we use

a Taylor series for square root. Recall that the Taylor series is:

√
1 +x =

∞∑
i=0

xn
∏n

j=0 (1
2
− j)

n!

Clearly, we can compute square root with the secure division, multiplication, and addition operations.

Complexity Analysis: The secure square root protocol requires O(1) rounds, communication, and com-

putation.

C.7. Secure Comparison

To compare two values we propose the usage of the technique described by Frikken and Atallah (2004), for

comparing modularly additively split values. This scheme requires that the modulus be twice as large as the

largest value that the unsplit data can take. This scheme requires communication and computation linear in

the number of bits required to represent the modulus being used. However, protocols were also introduced

to reduce the communication and computation to the number of bits required to represent the unsplit value.

Complexity Analysis: The above approaches require a constant number of rounds of interaction. The

communication and computation are also O(1).

C.8. Secure Binary Search

In some of our protocols we need the ability to compute x∗ such that f(x∗) = 0, where f is a monotone

function and can only be computed jointly by Supplier and Retailer. This can be done by binary search.

Suppose x is in the range of [s, t]. Let k be the number of binary-search steps and u = (t − s)/2k+1 be

a precision number. The secure binary-search protocol is described in Figure 6. After the binary-search

protocol, we ensure that x is close enough to x∗ where f(x∗) = 0, i.e., it is guaranteed that x−u < x∗ < x+u.

In the above protocol, we use a cryptographic building block called oblivious transfer. In oblivious transfer,

a sender has two messages M0 and M1, a receiver has a bit b ∈ {0, 1}; in the end, the receiver obtains Mb

Deshpande et al.: SCPFR
46 Article submitted to Management Science; manuscript no.

Input: f is a function that can be securely computed by Supplier and Retailer. Let s and
t be the lower and upper bound of x respectively. And let x initially be (s+ t)/2.

Output: x is additively split between Supplier and Retailer, such that f(x)≈ 0.

Protocol Steps: For step i = 1,2, . . . , k:
1. Supplier and Retailer jointly compute f(x) in split fashion.
2. If f(x) > 0, decrease x by 2k+1−iu; otherwise, increase x by 2k+1−iu. The decision of

whether to increase x or decease x should be oblivious to both Supplier and Retailer. This
is achieved as follows:

(a) Supplier and Retailer run a secure comparison protocol to compare f(x) to 0
with the result being XOR split. Supplier obtains b(s) and Retailer obtains b(r) such that
b(s) ⊕ b(r) = 1 if f(x) > 0, b(s)⊕ b(r) = 0 otherwise.

(b) Supplier sends her encrypted share of x to Retailer. Retailer computes E(x) by
adding his share.

(c) Retailer chooses a random number r and sets his new share of x = −r. Retailer
then prepares two encryptions e0 = E(x + 2k+1−iu + r) and e1 = E(x− 2k+1−iu + r), and
sets θ0 = e0⊕b(r) and θ1 = e1⊕b(r).

(d) Supplier and Retailer run an oblivious transfer protocol in which Retailer inputs
his two encrypted items θ0 and θ1 and Supplier inputs b(s). In the end, Supplier obtains
θb(s) = eb(s)⊕b(r) = eb; that is, she learns x + 2k+1−iu + r if f(z1) is negative and learns
x− 2k+1−iu + r is positive. Supplier and Retailer obtain the new x in split fashion.

Figure 6 Secure binary search protocol.

without anything else and the sender learns nothing. The oblivious transfer protocol (e.g., Naor and Pinkas

1999) requires O(1) modular exponentiations.

Complexity Analysis: The above protocol takes k steps. Each step requires one secure comparison, one

evaluation of f(x), and one oblivious transfer. Let � be the number of bits required to represent the f(x), o

be the number of modular exponentiations needed to compute f(x), then each step requires O(�+o) modular

exponentiations. Thus, the overall protocol needs O(k · (�+ o)) modular exponentiations.

Security: By Lemma 1, the secure binary search protocol is secure as each intermediate result is additively

split between Supplier and Retailer.

Deshpande et al.: SCPFR
Article submitted to Management Science; manuscript no. 47

Appendix D: Secure Protocols

D.1. Secure Standard Deviation Protocol

Input: Supplier knows the σs
k’s and Retailer knows the σr

k’s, for all k = 1, . . ., i+L− t; the
value of σ0 is known to both of them. The parameters θ̂s and θ̂r are available in additively
split form, i.e., Supplier has θ̂s(s) and θ̂r(s) and Retailer has θ̂s(r) and θ̂r(r) .

Output: Supplier and Retailer obtain σ̂
(s)
t and σ̂

(r)
t , respectively, where σ̂t,[i,i+L] = σ̂

(s)
t + σ̂

(r)
t .

Protocol Steps:
1. Supplier and Retailer engage in secure multiplication protocol twice to compute (θ̂s)2

and (θ̂r)2, respectively, and obtain the results in additively split form.
2. Supplier locally computes v(s)

s =
∑i+L

j=i

∑j−t

k=1(σ
s
k)

2, and Retailer correspondingly com-
putes v(r)

r =
∑i+L

j=i

∑j−t

k=1(σ
r
k)2. Supplier sets his value of v(s)

r to 0, and similarly Retailer
sets v(r)

s to 0. Note that these computations should be performed only once (since the
summations do not change),and therefore are pre-computed.

3. Supplier and Retailer execute secure multiplication protocol to compute us = (θ̂s)2 ·vs,
where Supplier inputs her share of (θ̂s)2 and v(s)

s and obtains u(s)
s and Retailer inputs his

share of (θ̂r)2 and v(r)
s and obtains u(r)

s (us = u(s)
s +u(r)

s and vs = v(s)
s + v(r)

s). Similarly, they
compute ur = (θ̂r)2 · vr and obtain the result in additively split form.

4. Supplier sets w(s) = (L+1)σ2
0 +u(s)

s +u(s)
r ; Retailer sets w(r) = u(r)

s +u(r)
r . Now the value

of w = w(s) + w(r) corresponds to the composite value under the square root in Equation
(6).

5. Supplier and Retailer engage in a secure square root protocol providing w(s) and w(r),
respectively, as their inputs. As a result, they obtain σ̂t,[i,i+L] in additively split form.

Figure 7 Secure standard deviation of demand forecasting protocol.

D.2. Secure protocol for computing Φ(z)

Input: The value of z is additively split between Supplier and Retailer.

Output: Supplier and Retailer additively share Φ(z).

Protocol Steps:
1. Supplier sends to Retailer E(z(s)), the encryption of her share using her public key.
2. Retailer computes E(z) = E(z(s)) ·E(z(r)), and runs secure polynomial evaluation on

z, and obtains E(Φ(z)).
3. Retailer chooses a random r and sends to Supplier E(Φ(z)− r). In the end, Φ(z) is

additively split between Supplier and Retailer.
Figure 8 Secure protocol for computing Φ(z).

Complexity Analysis: This protocol requires n modular exponentiations.

Security: By Lemma 1, this protocol is secure since each intermediate result is additively split between

supplier and retailer.

Deshpande et al.: SCPFR
48 Article submitted to Management Science; manuscript no.

D.3. Secure protocol for computing Φ(x, y, ρ)

Input: The values of x, y, and ρ are additively split between Supplier and Retailer.

Output: Φ(x, y, ρ) is additively split between Supplier and Retailer.

Protocol Steps:
1. Supplier and Retailer compute Φ(x) and Φ(y) in additively split fashion using the

technique in section 4.4.1. Then they compute Φ(x) ·Φ(y) using split multiplication.
2. Supplier and Retailer compute φ(x) and φ(y) in split fashion using secure polynomial

evaluation. Then they compute φ(x) · φ(y) using split multiplication.
3. Supplier and Retailer compute He0(x),He1(x), . . . ,Hen(x) in split fashion using secure

polynomial evaluation. Note that the result of Hei(x) can be used to compute Hei+1(x).
4. Similarly, Supplier and Retailer compute He0(y),He1(y), . . . ,Hen(y) in split fashion

using secure polynomial evaluation.
5. For i = 0, . . . , n, Supplier and Retailer compute Hei(x)Hei(y)ρi+1 in split fashion.
6. Supplier and Retailer put the pieces together and obtain Φ(x;y, ρ) in split fashion.

Figure 9 Secure protocol for computing Φ(x, y, ρ).

Complexity Analysis: In this protocol, step 1 and 2 require 4n modular exponentiation, step 3 and 4

require 2n modular exponentiation, step 5 requires around 4n modular exponentiation. Therefore, overall

the supplier and the retailer need to perform 10n modular exponentiation.

Security: By Lemma 1, the above protocol is secure as each intermediate result is additively split between

the supplier and the retailer.

D.4. Secure replenishment protocol

Input: The values of yR∗, yS∗, IPR, and IPS are additively split between Supplier and
Retailer.

Output: Supplier learns qS and Retailer learns qR, where qR = yR∗ − IPR and qS = yS∗ −
IPS.

Protocol Steps:
1. Supplier and Retailer compute qS and qR in split fashion using split subtraction twice.
2. Retailer sends q

(r)
S to Supplier, Supplier obtains qS = q

(s)
S + q

(r)
S .

3. Supplier sends a cryptographic commitment of q
(s)
R (using any suitable commitment

scheme) to Retailer (at current time t). At time t+LR, Retailer obtains q
(s)
R from Supplier

and verifies that it corresponds to the committed value at time t. Supplier sets qR = q
(r)
R +

q
(s)
R .

Figure 10 Secure replenishment protocol.

Complexity Analysis: The cost of the secure replenishment protocol is the complexity of exchanging q
(r)
S

and q
(s)
R .

Deshpande et al.: SCPFR
Article submitted to Management Science; manuscript no. 49

Security: By Lemma 1, the above protocol does not reveal private information as long as modular arithmetic

is used.

D.5. Secure protocol for computing parameter β

Input: Supplier inputs private hS and pS and Retailer inputs private hR and pR.

Output: Supplier and Retailer additively share the value of β.

Protocol Steps:
1. Retailer sets a(r) = hR and b(r) = pR, Supplier sets a(s) = −hS and b(s) = 0, and they

engage in a secure multiplication protocol on the values of a and b. Let the resulting value
be denoted as c, i.e., c(r) + c(s) = c = a · b.

2. Retailer sets d(r) = hR +pR, Supplier sets d(s) = pS, and they engage in a secure division
protocol on the values of c and d. Let e denote the result of division, i.e., er + e(s) = e = c

d
.

3. Retailer sets β(r) =−e(r) and Supplier sets β(s) =−hS − e(s).
Figure 11 Secure protocol for computing parameter β.

Complexity Analysis: The complexity of this protocol is dominated by one execution of the multiplication

protocol and one execution of the division protocol.

Security: By Lemma 1.

D.6. Secure protocol for computing γ

Input: Supplier and Retailer hold the values of Φ(z∗
2) and Φ(z∗

2 ;z
∗
3 ;ρ) in additively split

form. Supplier also inputs hS and pS.

Output: Supplier and Retailer obtain γ in additively split form.

Protocol Steps:
1. Supplier sets a(s) = hS, Retailer sets a(r) = 0, and they execute a secure multiplication

protocol on values of a and Φ(z∗
2), and obtain b = h2 · Φ(z∗

2) in split form. Supplier and
Retailer then engage a secure subtraction protocol to compute c = a− b and obtain c in
additively split form. Note that c = h2(1−Φ(z∗

2)).
2. Supplier sets d(s) = pS, Retailer sets d(r) = 0. Observe that d = p2. Supplier and Retailer

run a secure subtraction protocol to compute Φ(z∗
2)−Φ(z∗

2 ;z
∗
3 ;ρ), and then engage a secure

multiplication protocol to compute e = p2(Φ(z∗
2)−Φ(z∗

2;z∗
3 ;ρ)).

3. Supplier and Retailer run a secure subtraction protocol to compute γ = c − e. As a
result, Supplier has γ(s) and Retailer has γ(r).

Figure 12 Secure protocol for computing γ.

Complexity Analysis: The computational and communication complexity of this protocol is dominated

by secure polynomial evaluation and one execution of the multiplication protocol.

Security: By Lemma 1, the above protocol does not reveal private information as long as the underlying

blocks are secure.

Deshpande et al.: SCPFR
50 Article submitted to Management Science; manuscript no.

D.7. Secure protocol for computing transfer payment

Input: Supplier and Retailer hold the values of µ̂t,[t,t+LR], µ̂t,[t,t+LS+LR], β, and γ in addi-
tively split form. The value of α is known to both of them.

Output: Supplier and Retailer learn the value of transfer payment TPt.

Protocol Steps:
1. Supplier and Retailer execute a secure multiplication protocol twice: once to compute

a = β · µ̂t,[t,t+LR], and another time to compute b = γ · µ̂t,[t,t+LR+LS].
2. They exchange their shares of a and b (possible using a fair exchange protocol) and

set TR = α+ a + b.
Figure 13 Secure protocol for computing transfer payment.

Complexity Analysis: The computational and communication complexity of this protocol is dominated

by two executions of secure multiplication.

Security: By Lemma 1.

Deshpande et al.: SCPFR
Article submitted to Management Science; manuscript no. 51

Appendix E: Known Results for Circuit Simulation

We summarize known results for secure circuit evaluation in this section. The main part of this is Theorem

6. As this paper is based on two party computations, we summarize the results for two party computation.

For an excellent survey of this work see Goldreich (2004).

Theorem 6. Given a boolean circuit of binary gates with m gates, n inputs, and depth d, there exist tech-

niques for evaluating the circuit in a private manner for non-adaptive computationally-bounded adversaries

in the following cases:

1. Passive(semi-honest): (Yao 1986) showed that this can be done with n 1-out-of-2 Oblivious Transfers

(OT), O(m) communication, O(m) evaluations of a pseudorandom function (such as AES), and O(1) rounds.

2. Malicious: (Katz and Ostrovsky 2004) showed that this circuit can be evaluated in the malicious model

with only 5 rounds of interaction assuming that early termination is not considered a violation of security.

Furthermore, the computation and communication are polynomial in the size of the circuit.

The above theorem states that any function that is efficiently evaluable (i.e., is in P) can be evaluated

securely with polynomial time computation and polynomial size communication and a constant number of

rounds. This holds for adversaries that are semi-honest or malicious. This is because for every function in P

there is a polynomial size circuit that evaluates the function. There are a three remaining issues to discuss:

(i) the notion of early termination, (ii) the practicality of these protocols, and (iii) the usage of circuits in

the constructions.

First, as stated above, we do not consider early termination (i.e., one party stopping part way through

the protocol) to be a violation of security. The primary reason for this is that it is impossible to provide

protection against such deviation unless there is some third party helping with the computation. This follows

from impossibility results of Byzantine Agreement (Feldman and Micali 1988).

The protocols in Theorem 6 for the semi-honest model are actually practical for some problems. In fact,

there has recently been an implementation of these protocols which shows that it is useful for many problems

(Malkhi et al. 2004). However, the protocol for the malicious model requires many expensive operations

(such as zero-knowledge proofs) for each gate of the circuit. Thus while the round complexity of this scheme

is quite good, it is unlikely that these techniques are tractable for many problems (including those in this

paper).

The final remaining issue is the usage circuits. First, circuit complexity is not equivalent to computational

complexity. One reason for this is that circuits have a size and a depth, and while this does not matter for the

above mentioned secure protocol techniques, there are protocols that require the depth of the circuit. There

is one other substantial difference, however, and that is that circuits do not have random access memory.

Thus the circuit for indirectly indexing into a list of size n has O(n) gates, where as this would be a single

operation in computational complexity.

We now describe various binary circuit complexities:

Deshpande et al.: SCPFR
52 Article submitted to Management Science; manuscript no.

1. Adding two m-bit numbers: Adding or subtracting two m-bit numbers can be done optimally using

circuits of size O(m) gates and depth O(logm) (Ofman 1963).

2. Adding k m-bit numbers: Requires O(m logk) gates and O(logk logm) depth.

3. Multiplying two m-bit numbers: The practical circuits for multiplication have size O(m2) and depth

O(logm). Although there are asymptotic improvements to these circuits, they come at the cost of huge

constant factors; the asymptotically best of them (and the worst in terms of having impractically large

constant factors) is a circuit of size O(m logm log logm) and depth O(logm) derived from the textbook

Schoenhage-Strassen integer multiplication algorithm (Schoehage and Strassen 1971, Aho et al. 1974) (which

is itself of mainly theoretical interest, and not used in practice).

4. Integer division of two m-bit numbers: Just as for multiplication, the practical circuits for multiplication

have size O(m2) and depth O(logm). However, unlike multiplication, the “impractical” (but asymptotically

better) circuits achieve either O(m logm log logm) using the Schoehage-Strassen technique (Alt 1988, Beame

et al. 1984) or depth O(logm) (Beame et. al 1984) but not simultaneously. The division circuits that come

closest to achieving “close to simultaneity” of these size and depth bounds have size O(m logm log logm)

and depth O(logm log logm) (Reif and Tate 1989).

5. Comparing m bit numbers: Comparisons of the form ≥,≤,>,<,=, �= requires O(m) gates and O(logm)

depth.

6. Sorting n numbers with m bits: A practical sorting network is one that implements Batcher’s sort

(Batcher 1968) and has size O(mn log2 n) and depth O(logm log2 n). An asymptotically better (but imprac-

tical due to its large constant factors) sorting network is the AKS one (Ajtai et al. 1983) that has size

O(mn logn) and depth O(logm logn).

