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a b s t r a c t

Several digital forensic frameworks have been proposed, yet no conclusions have been

reached about which are more appropriate. This is partly because each framework may

work well for different types of investigations, but it hasn’t been shown if any are sufficient

for all types of investigations. To address this problem, this work uses amodel based on the

history of a computer to define categories and classes of analysis techniques. The model is

more lower-level than existing frameworks and the categories and classes of analysis

techniques that are defined support the existing higher-level frameworks. Therefore,

they can be used to more clearly compare the frameworks. Proofs can be given to show

the completeness of the analysis techniques and therefore the completeness of the frame-

works can also be addressed.

ª 2006 DFRWS. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Digital investigations have been conducted in various forms

for many years, with several different methodological frame-

works proposed. Many frameworks have been presented at

past Digital Forensic Research Workshops (DFRWS). The Re-

search Roadmap (Palmer, 2001) from DFRWS 2001 outlined

a five-phase framework and DFRWS 2004 had three presenta-

tions on the topic (Beebe and Clark, 2004; Baryamureeba and

Tushabe, 2004; Carrier and Spafford, 2004). To date, no conclu-

sions have been made about which framework is ‘‘best’’ or

even most ‘‘correct.’’

To advance the field of digital investigations to one

grounded in science requires the development of comprehen-

sive models and theory that can be validated using scientific

methods. We propose the following, first explicated in Carrier

(2006), as one suchmodel with a sound theoretical foundation

and that supports existing frameworks. This should serve to

bring a formal basis to further research, as well as satisfy

external requirements for scientific rigor (e.g., Daubert

requirements).

In the past, the framework proposals have been high-level

process models that outline phases of the process. Unfortu-

nately, there is typically not a single process that must be

followed when conducting an investigation. Multiple investi-

gators may do different things at different times and all may

reach the same conclusions. Further, there are different pro-

cesses for a criminal investigation versus a non-criminal

investigation, and different processes for a contraband inves-

tigation versus a computer intrusion investigation. Therefore,

it has been difficult to show that one of the previously pro-

posed frameworks is incorrect because its phases could be

appropriate for some circumstances.

It was the authors’ belief that the proposed frameworks

and process models had underlying concepts in common.

The goal of this work was to identify the common concepts

of a digital investigation by focusing on the subject being in-

vestigated, which is a computer. A computation model based
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on a finite state machine (FSM) and the history of a computer

was used to define digital evidence and digital investigation

concepts. One result of this work is the ability to define cate-

gories and classes of analysis techniques. Proofs can be given

to show that the categories are sufficient. It can also be shown

that the previously proposed frameworks have these cate-

gories and classes in common and the differences among

the frameworks are the phases in which the categories and

classes exist.

Section 2 of this paper provides an overview of the com-

puter history model and Section 3 describes the categories

and classes of analysis techniques. Section 4 compares the

existing frameworks using these categories and Section 5

concludes.

2. Computer history model

To define categories of analysis techniques based on some-

thing beyond only our investigation experiences and biases,

a computer model was used. The computer history model is

based on the concept that every computer has a history,

which is the sequence of states and events that occurred be-

tween two times (Carrier, 2006). In practice, the history of

a computer is not fully recorded or known.

This work uses the definition that a digital investigation is

a process that formulates and tests hypotheses to answer

questions about digital events or the state of digital data.

Questions include ‘‘does file X exist?’’ and ‘‘did event Y

occur?’’. If the investigator knew the complete history of a sys-

tem, then she could use it to answer any question about the

system. In practice, the investigator may know only a current

or previous state and need tomake inferences about unknown

states and events.

We propose that the techniques that can be used to make

inferences about the history of a computer are the same that

could be used during a digital investigation. Each investigation

will require different techniques based on what questions are

being asked and what devices were used. The following two

sections outline the computer history model in more detail.

2.1. Primitive computer history model

The computer history model makes the assumption that the

computer being investigated can be reduced to a finite state

machine (FSM) quintuple (Q, S, d, s0, F ). Q is a finite set of

states and S is a finite alphabet of event symbols. The transi-

tion function d : Q � S/Q is the mapping between states in Q

for each event symbol in S. Themachine state changes only as

a result of an event. The starting state of the machine is s0˛Q

and the final states are F4Q (Sudkamp, 1997). It should be

stressed that this work does not assume that a computer

will be reduced to an FSM during an investigation. The FSM

is used only as a theoretical model so that this work is not

tied to a specific platform or design.

The primitive history of a system includes the complete se-

quence of primitive states and events that occurred. Primitive

events are the lowest-level state transitions that a computer

program can explicitly cause to occur. For example, in most

computers primitive events are caused by programs executing

machine instructions.

The primitive state of a system is defined by the discrete

values of its primitive storage locations, each of which has

a unique address. The primitive storage locations are those

that primitive events can read from or write to. For example,

in many current computers the primitive state includes regis-

ters, memory, hard disks, networks, and removable media.

A graphical representation of states and events can be seen

in Fig. 1, which shows an event E1 reading the values from

storage locations R3 and R6 and writing to locations R3 and

R4. In thiswork, network cables are treated as short-term stor-

age devices and network devices are treated as computers.

If the system can be represented by an FSM, then it is trivial

to formally represent the primitive history. We define a set T

that contains the times that the system has a history. The du-

ration between each time in T, which we will call Dt, must be

shorter than the fastest state change in the system. The prim-

itive state history is represented by a function hps : T/Q that

maps a time to the primitive state that existed at that time.

The primitive event history is represented by a function

hpe : T/S that maps a time t˛ T to a primitive event if that

event occurred between t�Dt and tþDt.

While it is trivial to represent the history of a theoretical

computer as amapping, it is not trivial to represent the history

of a modern computer because the possible states and events

of amodern computer can change at each time in T. For exam-

ple, when a USB drive is plugged into a system, the total num-

ber of possible states increases, which means that the size of

the FSM Q set increases. To fully represent the primitive his-

tory of a system, the model must take the dynamic nature of

the system into account.

The computer history model uses a dynamic FSM model

with sets and functions to represent the changing system ca-

pabilities. In the dynamic FSM model, the Q, S, and d sets and

functions can change for each time in T. The setQ is defined at

each time t˛ T based on what storage devices are connected,

the number of storage locations in each device, and the

domain of each storage location. The set S and function

d are defined at each time t˛ T based on what event devices

are connected, the possible events that each supports, and

the state change function for each event.

As shown in Carrier (2006), knowing when each device was

connected and the capabilities of each device will allow Q, S,

and d to be defined for each time in T. Table 1 lists the names

of the 11 sets and functions that are used in the primitive
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Fig. 1 – Graphical representation of an event E1.
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computer history model. Using this information, we can de-

fine the primitive state and event histories as a mapping

from a time in T to a state and event in the dynamic Q and S

sets. It can be shown that the 11 variables are necessary and

sufficient to represent the primitive history of a computer.

2.2. Complex computer history model

The previous section outlined a model for low-level events

and storage locations, but modern systems execute billions

of instructions per second and store billions of bytes of data.

Further, investigations are typically concerned with questions

about complex events and states, such as the existence of

a file or an event that downloaded a file. The primitive history

model cannot directly represent complex states and events

and therefore the complex computer history model builds

upon the primitive model.

A complex event is a state transition that causes one ormore

lower-level complex or primitive events to occur. For example,

the process of clicking on a button to save a file is a complex

event because it is one event to the user and it causes hun-

dreds or thousands of primitive events to actually occur. A

complex event may have multiple representations. For exam-

ple, we can also represent the complex event associated with

clicking on a button as the sequence of programming lan-

guage statements and functions that were used to implement

the program and we can represent each programming lan-

guage event with primitive-level events.

A complex storage location is a virtual storage location that is

created by software. Complex storage locations are created by

grouping together or dividing primitive-level storage loca-

tions. For example, a file is a complex storage location and

the contents of a file are presented to the user and program

as a single storage location, but it is really a group of sectors.

Complex storage locations have one ormore attributes, which

are name and value pairs. For example, a file is a complex stor-

age location and the name value attribute pairs include the file

name,MAC times, permissions, and content. Complex storage

locations exist only because software exists to create them.

For example, a file can be read from and written to only if

the operating system supports the file system type that was

used to create the file.

A graphical representation of complex storage locations

and events can be seen in Fig. 2. At a high-level, complex event

E1 reads from complex storage locations D1 and D2 and writes

a value to complex storage location D1. At a lower-level, com-

plex event E1 is performed using lower-level events E1a and

E1b. For example, these could be machine-level instructions.

In addition, we can see that the complex storage locations

use lower-level storage locations. The contents of D1 are

stored in lower-level locations D1a and D1b and the contents

of D2 are stored in lower-level locations D2a and D2b.

As previously mentioned, there are multiple levels of ab-

straction in a system and each can be represented by an

FSMwhere QX is the set of possible complex states at abstrac-

tion layerX, SX is the set of possible events at abstraction layer

X, and dX is the state transition function at abstraction layer X.

The possible complex states and events in a realistic system

can change at each time, based on which applications and

programs exist.

To define the dynamic FSM variables for the complex sys-

tem at each time in T, we must enumerate the programs

that existed and determine the complex events and storage lo-

cations they support. We must also define the transformation

rules between the various abstraction layers. For example,

there are transformation rules that define how lower-level

data are abstracted to a higher-level, such as the rules that de-

finewhich bytes of the FAT boot sector store the size of the file

system and the location of the root directory. Transformation

rules also exist to map between high- and low-level events.

The complex historymaps a time in T to a complex state in

QX and a complex event in SX. Table 2 lists the names of the 17

sets and functions that exist in the complex computer history

model.

3. Categories of analysis techniques

As described in the previous section, the primitive computer

historymodel has 11 variables and the complex computer his-

tory model has 17 variables. For example, one variable in the

primitive history model defines the number of addresses in

each of the storage devices and another defineswhen the stor-

age devices were connected.

Table 1 – Primitive computer history model variable
names

Variable Description

T Set of times that system existed

Dps Set of primitive storage devices

DADps Set of storage locations per device

ADOps Set of possible values per location

cps Maps a time to the set of storage

devices that were connected

hps Maps a time to the state that existed

Dpe Set of primitive event devices

DSYpe Set of event symbols for each event device

DCGpe Set of state change functions per device

cpe Maps a time to the set of event devices

that were connected

hpe Maps a time to the event that occurred

Fig. 2 – A complex event E1 with two complex cause loca-

tions and one complex effect location.
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Digital investigation questions about a state or event can

be answered using the computer history and we use the his-

tory model variables to define the categories of analysis tech-

niques. An investigation defines, at a minimum, the variables

needed to answer the questions that started the investigation.

For example, to answer questions about the existence of a file

in the current state, we must define the primitive storage de-

vice capabilities and the current state. Next, the programs that

exist in the current state must be identified and analyzed to

determine the file system types that are supported. Lastly,

the primitive state is transformed into a complex state to de-

fine the virtual storage locations.We refer to the history that is

defined during an investigation as the inferred history.

The classifications of the analysis techniques in this work

are subjective. We propose seven categories that are further

organized into 31 unique classes, but this is not the only clas-

sification. It can be shown that the analysis techniques in the

classification are capable of defining all variables in themodel.

The next section describes the general process to define a vari-

able and the next seven sections describe the categories of

analysis techniques.

3.1. General investigation process

The process of a digital investigation will depend on the

questions being asked and therefore this work does not as-

sume a specific sequence of high-level phases. However,

this work proposes that the process of defining each of the

variables in the computer history is a hypothesis formulation

process and that the scientific method can be used to come to

objective conclusions. The scientific method has four general

phases: Observation, Hypothesis Formulation, Prediction,

and Testing and Searching. This section provides a brief

overview of the process and examples of how it would be

used.

In the Observation phase, an investigator or programmakes

observations about states and events. Examples include ob-

serving the output of a tool that lists running processes or

e-mail contents. The Observation phase in a digital investiga-

tion is equivalent to an investigator looking at a physical crime

scene, except that in the digital world most observations are

indirect. Indirect observations occur when something else is

used tomake the observation and observations ofmost digital

data require hardware and software. In general, we trust di-

rect observations and do not need to test them. Indirect obser-

vations will be trusted based on our trust and confidence

in the things, such as tools, that were used to make the

observation.

The Hypothesis Formulation phase is where the investigator

or program interprets the data observed in the previous phase

and formulates hypotheses. In the formal approach, the hy-

potheses are about the variables in the history model. Exam-

ple hypotheses may be about the storage capabilities of the

system, the primitive state of a hard disk, or the occurrence

of a complex event.

Formulating hypotheses is a difficult part of the investiga-

tion process and the categories of analysis techniques that are

presented in the following sections are based on the different

types of hypotheses that are used. To be a scientific process,

the hypotheses must be capable of being refuted (Popper,

1998).

Each hypothesis must be tested and the Prediction phase

identifies evidence that, if it exists, would support or refute

a hypothesis. Based on the predictions, experiments will be

conducted in the next phase. Some common types of predic-

tions are based on the existence of data, the results from run-

ning a simulation, and the output of executing a program on

the suspect system.

For example, if the investigator’s hypothesis is that the

partition contains an NTFS file system then his prediction

would be that valid attribute values will exist after applying

the abstraction transformation functions for the NTFS boot

sector. If the investigator’s hypothesis is that the user down-

loaded contraband images from the Internet, then he will pre-

dict that the system has JPEG files. For a scientific process,

predictions must be made that, if true, would refute the

hypothesis.

The last phase of the process is the Testing phase. Tests

may involve running a simulation on another system, query-

ing the hardware for data, executing programs on a running

system, or searching the inferred history. Based on the test

results, new predictions may be made and hypotheses may

be revised. Example searches include files whose SHA-1

hash is not in a hash database, files whose attributes are set

to hidden, and sectors with a keyword or pattern in them.

If the test supports the hypothesis then the investigator, or

automated analysis program, can choose to define the rele-

vant functions and sets in the inferred history. He may also

choose to conduct more tests and obtain more support before

defining the sets and functions. If a hypothesis is neither

Table 2 – Complex computer history model variables

Variable Description

T Set of times that system existed

L Set of abstraction layers used

by system

Dcs Set of complex storage types

DADcs Set of addresses per storage type

DATcs Set of attributes per storage type

ADOcs Set of possible values for

each attribute

ABScs Set of abstraction transformation

functions

MATcs Set of materialization transformation

functions

ccs�X Maps a time to the complex

storage types that existed at layer X

hcs Maps a time to a complex state

at that time

Dce Set of programs on the system

DSYce�X Set of complex events per program

DCGce�X Set of state change functions

per program

ABSce Set of abstraction transformation

functions

MATce Set of materialization transformation

functions

cce Maps a time to the programs that existed

hce Maps a time to the slice of complex

events that occurred
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supported nor refuted, then an assumption can bemade that it

is true, but the investigator must be capable of justifying the

assumption.

3.2. History Duration

We now describe the seven categories of analysis techniques

proposed in this work. The first is theHistory DurationCategory

and it is used to define the contents of the set T, which con-

tains the times that the system being investigated has

a history.

There is a single class of post-mortem analysis techniques

for in this category and it is operational reconstruction, which

uses event reconstruction and temporal data from the storage

devices to determine when events occurred and when the

system was active. For example, a log file that records the

OS installation date could be used to define when the system

was first used and file times could also provide additional

information. When time values from logs and files are used

to formulate these hypotheses, the prediction and testing

phases should attempt to refute the values by searching for

signs of tampering. In practice, these techniques are used to

show that the computer was used during the times being

investigated.

3.3. Primitive Storage System Configuration

The second category is the Primitive Storage System Configura-

tion Category and it contains analysis techniques to define

the capabilities of the primitive storage system. The tech-

niques in this category define the names of the storage devices

(Dps set), the number of addresses for each storage device

(DADps set), the domain of each address on each storage de-

vice (ADOps set), and when each storage device was connected

(cps function). These sets and functions define the FSM set Q of

possible states.

We can organize this category into two types of hypothe-

ses. The first defines the storage capabilities of each device

and the second defines when the devices were connected.

To define the storage capabilities, there are two classes of

techniques. Storage Device Capability Observation uses direct ob-

servations of the device labels and technical specifications to

determine the device capabilities. The second class is Storage

Device Capability Query, which uses a program to query the de-

vice for its capability information. For example, a program

could query a hard disk to determine the number of sectors

and size of each. In practice, these techniques are used

when a copy of the hard disk is made. As with all of the values

that are defined in themodel, the results from the observation

or query should be tested because the device could be incor-

rectly labeled or the device could have beenmodified to return

false data.

There are also two classes of techniques to definewhen de-

viceswere connected. The Storage Device Connection Observation

class of techniques uses direct observations of which devices

were connected to define the current set of connections. The

Storage Device Connection Reconstruction class of techniques

uses log files and other data to reconstruct when each device

was connected. For example, there could be a system log file

that records when a removable storage device was inserted

and removed. In practice, these techniques are performed

for removable media, but not typically for hard disks.

3.4. Primitive Event System Configuration

The third category is the Primitive Event System Configuration

Category and it defines the capabilities of the primitive event

system. The techniques in this category are used to define the

names of the event devices connected (Dpe set), the event sym-

bols for each event device (DSYpe set), the state change func-

tion for each event device (DCGpe set), and when each event

device was connected (cpe function). These sets and functions

are used to formally define the FSM set S of event symbols and

state change function d. In practice, because questions are not

typically asked about primitive event devices, these analysis

techniques are not performed.

We can organize this category of techniques into two types

of hypotheses. One defines the name, event symbols, and

state change function for each event device and the second

defines when each event device was connected to the system.

There are two classes of techniques to formulate hypothe-

ses about the capabilities of the event devices. Event Device Ca-

pability Observation uses direct observations about the make

and model of event devices. Event Device Capability Query

uses a program to query the event device and determine its

capabilities.

There are also two classes of techniques to formulate

hypotheses about when devices were connected. The Event

Device Connection Observation class of techniques formulates

and tests hypotheses based on direct observations of which

devices were connected. The Event Device Connection Recon-

struction class of techniques uses logs and other data to recon-

struct when devices were connected to the system.

3.5. Primitive state and event definition

The previous two categories defined the capabilities of the

primitive system and now we consider the techniques to de-

fine which events and states are believed to have occurred.

The Primitive State and Event Definition Category defines the

primitive state history (hps function) and event history (hes
function). There are five classes of analysis techniques that

can be used to formulate and test this type of hypothesis

and each class has a directional component, as can be seen

in Fig. 3. Because all five classes of techniques are different ap-

proaches to defining the same two functions, a hypothesis can

be formulated using a technique from one class and tested

with techniques from other classes.

The Primitive State Observation class of techniques uses a di-

rect observation of an output device to define its state in the

inferred history. Note that this technique cannot be used to

define the state of most internal storage devices, such as

a hard disk, because an investigator must use software or

hardware to observe those devices. Direct observations can

be used to define the state of amonitor controller or other out-

put device controller.

The Primitive State and Event System Capabilities class of

techniques uses the primitive system capabilities to formulate

and test state and event hypotheses. To formulate a hypothe-

sis, the investigator may arbitrarily choose a possible state or
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event. This approach is not efficient for real systems, which

have a large number of possible states and events. Note that

if a hypothesis is formulated with this technique, it will still

need to be tested and evidence will need to exist to support

the occurrence of the state or event. This class of techniques

can also be used to formally test a hypothesis about states

and events if the hypothesis has values that are beyond the

known system capabilities.

The Primitive State and Event Sample Data class of techniques

uses sample data from observations of similar systems or

from previous executions of the system being investigated.

The sample data include metrics on the occurrence of events

and states. When formulating a hypothesis with this tech-

nique, states and events are chosen based on how likely

they are to occur (instead of randomly choosing a state). Test-

ingwill reveal if there is evidence to support the state or event.

This class of techniques is not formally used in practice be-

cause sample data do not exist and their usefulness is not

clear at the primitive level.

The Primitive State and Event Reconstruction class of tech-

niques uses a known state to formulate and test hypotheses

about the event and state that existed immediately prior to

the known state. This is not formally performed in practice

because questions are not typically asked about primitive

events.

Informally, primitive-level reconstruction is performed in

practice when the clone of a disk is analyzed. A clone of

a disk is created to preserve its state and is created by copying

the contents of each sector to a second disk. Consider a situa-

tion at time twhere an investigator causes primitive events to

occur that read the state of the suspect storage device and

write the state to a second storage device. Note that the sec-

ond storage device (the clone) has its own history, as shown

in Fig. 4.

Now consider that at time t0 (t0 > t) the investigator wants to

use the clone to define the state of the systemat time t. At time

t0, the investigator knows only the current state of the clone.

Reconstruction must be performed to determine the state of

the suspect system at time t. First, he must reconstruct the

state of the clone back to when it was made. In practice, this

is typically achieved by calculating the one-way hash of the

clone when it is made so that it can be later shown that it

did or did not change. A similar reconstruction process hap-

pens at the complex level when using disk image files.

The Primitive State and Event Construction class of techniques

is the forwards technique and uses a known state to formulate

and test hypotheses about the next event and state. In prac-

tice, this class of techniques would not be useful because we

typically start with an ending state of the system and not

a starting state. Further, hypotheses about events when the

ending state is not known cannot be refuted and therefore

any event and ending state is possible.

3.6. Complex Storage System Configuration

We now define three categories for the complex system. The

Complex Storage System Configuration Category of analysis tech-

niques defines the complex storage capabilities of the system.

These techniques are required if the investigator needs to for-

mulate and test hypotheses about complex states. The tech-

niques in this category define the names of the complex

storage types (Dcs), the attribute names for each complex stor-

age type (DATcs), the domain of each attribute (ADOcs), the set

of identifiers for the possible instances of each complex stor-

age type (DADcs), the abstraction transformation functions for

each complex storage type (ABScs), the materialization
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Fig. 3 – The five classes of analysis techniques for defining primitive states and events.
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Fig. 4 – A cloned disk has its own history and reconstruction

must be performed to define the state of the original disk.
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transformation functions for each complex storage type

(MATcs), and the complex storage types that existed at each

time and at each abstraction layer X˛ L (ccs�X).

There are two types of hypotheses that are formulated

in this category. The first defines the names of the complex

storage types and when they existed. The second defines the

attributes, domains, and transformation functions for each

complex storage type.

Complex storage locations exist only because programs

exist to create them. Therefore, to enumerate the complex

storage types that existed at a given time wemust reconstruct

the state of the computer to that time so that the programs

can be identified and analyzed. There are two classes of tech-

niques that are used to identify what programs existed. The

first is Program Identification and it searches for programs on

the system, which are then analyzed. The second class is

Data Type Observation and it makes inferences about complex

storage types that existed based on the data types that are

found. This technique may identify complex storage types

that were not supported by the system though, if for example

the data were created on another computer and transferred to

the computer being investigated.

The second type of hypothesis in this category defines the

attributes, domains, and transformation functions for each

complex storage type. Three classes of techniques are pre-

sented here. One is Complex Storage Specification Observation

and it uses a specification to define the details about the com-

plex storage types that the program supports. The second is

Complex Storage Reverse Engineering and it uses design recovery

reverse engineering techniques (Chikofsky and Cross II, 1990)

to analyze the data that are transformed to define complex

storage locations. The third is Complex Storage ProgramAnalysis

and it analyzes the programs that create the complex storage

locations. Static program analysis may identify the code that

performs the transformations or dynamic program analysis

may identify the instructions used in the abstraction and ma-

terialization process.

In practice, the programs and complex storage types for

each system are not enumerated for each investigation. In-

stead, analysis tools are programmed to support a finite num-

ber of complex storage types and the types are applied when

the corresponding data type is identified. Therefore this cate-

gory is typically performed by tool vendors prior to an

investigation.

3.7. Complex Event System Configuration

The Complex Event System Configuration Category of analysis

techniques defines the complex event system capabilities.

The techniques in this category define the names of the pro-

grams that existed on the system (Dce), the names of the ab-

straction layers (L), the symbols for the complex events in

each program (DSYce�X), the state change functions for the

complex events (DCGce�X), the abstraction transformation

functions (ABSce), the materialization transformation func-

tions (MATce), and the set of programs that existed at each

time (cce).

Making inferences about complex events can be evenmore

challenging than about complex storage locations because

complex storage locations are designed to be both abstracted

and materialized and have a long life because of backward

compatibility, while complex events are typically only

designed from the top-down and the transformation rules

can be more easily changed without loss of backwards com-

patibility. Further, many of the materializations are per-

formed by software engineers and not tools, so learning the

actual rules that were used may be impossible.

There are three types of hypotheses that can be used in this

category. The first defines which programs existed and when

they existed. The second defines the abstraction layers, event

symbols, and state change functions for each program. The

third defines the materialization and abstraction transforma-

tion functions between the abstraction layers.

There are two classes of analysis techniques that can be

used to determine which programs existed and when they

existed. These are Program Identification and Data Type Recon-

struction. Both of these were described in the previous section.

The complex events in each program can be determined

using two classes of analysis techniques. The first is Complex

Event Specification Observation and it uses a specification of

the program to determine the complex events that it could

cause. The second is Complex Event Program Analysis and it

analyzes the program itself. At a basic level, this is performed

by the investigator when he runs a program to determine its

capabilities. At a more detailed level, this is a difficult task

and requires extensive reverse engineering knowledge.

The third type of hypothesis in this category is about the

abstraction and materialization transformation rules. These

rules define the mappings between the higher-level events

and the lower-level events. These rules are difficult to learn

and only one class of techniques is proposed. The Development

Tool and Process Analysis class of techniques analyzes the pro-

gramming tools and development process to determine how

complex events are defined. In practice, this is not performed.

Defining the rules is a difficult problem because different

abstraction layers require different techniques. For example,

the abstraction rules from primitive events to implementation-

level events are based on compilers and interpreters. The

abstractions from implementation-level to user-level are

based on how the software engineers decided to design and

implement the program and therefore there may not be exact

rules. The problem of abstracting events is not unique to dig-

ital investigations and the software engineering community

has been researching program understanding techniques to

help developers abstract legacy code. For example, Cifuentes

and Gough (1995) and Ward (2000) describe approaches to ab-

stract primitive-level events to programming language-level

events using flow graphs and intermediate representations.

3.8. Complex state and event definition

The final category of analysis techniques defines the complex

states that existed (hcs) and the complex events that occurred

(hce). There are eight classes of analysis techniques in this cat-

egory and each has a directional component, as can be seen in

Fig. 5. Two of the techniques can be used to formulate and test

hypotheses about individual states and events. Two are for-

wards- and backwards-based and the final four are upwards-

and downwards-based.
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The Complex State and Event System Capabilities class of tech-

niques uses the capabilities of the complex system to formu-

late and test state and event hypotheses based on what is

possible. Therefore, a hypothesis may include a state or event

at random. This class of techniques is not used in practice for

formulating hypotheses, but can be used to show that another

hypothesis is impossible because it is outside of the system’s

capabilities.

The Complex State and Event Sample Data class of techniques

uses sample data from observations of similar systems or

from previous executions of the system being analyzed. The

sample data include metrics on the occurrence of events

and states and would show which states and events are

most likely. This class of techniques informally occurs in prac-

tice when investigators formulate hypotheses about the exis-

tence of files and data types based on the types of systems or

the type of incident being investigated. For example, if a PC is

found then hypotheses are formulated about the most com-

mon types of operating and file systems. If the investigation

is for an intrusion, then hypothesis will be formulated about

the existence of rootkits and attack tools.

The Complex State and Event Reconstruction class of tech-

niques uses a state to formulate and test hypotheses about

the previous complex event and state. In practice, event and

state reconstruction often occurs, but it does not reconstruct

the event and state immediately prior to a known state.

More commonly, the hypothesis describes a general class of

event instead of a specific event and the starting state of the

event is not given. Common examples of event reconstruction

include analyzing a web browser history file to determine

which web sites were visited and analyzing the Most Recently

Used (MRU) keys in the Windows registry to determine previ-

ous files and commands. Another example of data and event

reconstruction is deleted file recovery. The investigator or

tool observes a deleted file and formulates a hypothesis about

the deletion event and previous state. The previous state is

determined using knowledge about the deletion process and

lower-level data.

A less obvious example of data and event reconstruction

occurs when the investigator observes the state of the sys-

tem on an output device, such as a monitor. The monitor

could be showing the output of a program that listed the

running processes, but the investigator can only directly

observe the state of the monitor controller. Complex event

and state reconstruction must be used to formulate a hy-

pothesis about the corresponding data stored in kernel

memory. The hypothesis should be tested to determine if

data were hidden or introduced before they were was dis-

played on the monitor.

The Complex State and Event Construction class of techniques

uses a known complex state to formulate and test hypotheses

about the next complex event and state. As with primitive-

level construction techniques, complex-level construction

techniques are not frequently used in practice to define the

event and state immediately following a known state. Instead,

the construction concept is used to predict what events may

have occurred. For example, if an e-mail is found that in-

structs a user to perform events or if a program is found,

then the instructions in the e-mail and program could be

used to predict what events occurred.
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Fig. 5 – The classes of analysis techniques for defining complex states and events have directional components to them.
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The final four classes are based on abstracting lower-level

data and events to higher-levels and on materializing higher-

level data and events to lower-levels. The Data Abstraction

class of analysis techniques is a bottom-up approach to defin-

ing complex storage locations using lower-level data and data

abstraction transformation rules. Because many current in-

vestigations start with only disk sectors or network packets,

this class of techniques is one of the first steps in the investi-

gation process so that the investigator can search the complex

state for evidence. A common example of this is the abstrac-

tion of disk sectors into a file system and files.

TheDataMaterialization class of techniques is the reverse of

data abstraction and it defines primitive and complex storage

locations using higher-level complex storage locations and

data materialization rules. This class of techniques is not

used much in practice because the lower-level data are typi-

cally known and, by design, the materialization process will

produce either multiple possibilities of lower-level data or

the data will have undefined values.

The Event Abstraction class of analysis techniques is the

bottom-up approach to defining complex events using a se-

quence of lower-level events and event abstraction rules. In

practice, this class of techniques is not formally performed

and there has been little work to address it from the digital in-

vestigation perspective, but program understanding tech-

niques apply.

The Event Materialization class of techniques is the reverse

of event abstraction. This class of techniques is a top-down

approach where the investigator uses high-level events and

event materialization rules to formulate and test hypotheses

about lower-level complex and primitive events. This can

occur, for example, when the investigator knows a user per-

formed an action or that a high-level system event occurred,

but he does not know the lower-level details.

4. Application to existing frameworks

There are several applications to the computer history model

and categories of analysis techniques. For example, it can be

used to show how the scientific method is used in a digital in-

vestigation and it can be used to support existing process

models and frameworks. In this section, we will show how

this work supports three of the existing frameworks and pro-

cess models. Only the analysis related phases of the models

are considered.

The firstmodel thatwe consider is the processmodel in the

NIJ Electronic Crime Scene Investigation Guide (United States

National Institute of Justice, 2001). This model has five high-

level phases: Preparation, Collection, Examination, Analysis,

and Reporting. The Preparation and Reporting phases are

operations-based and do not apply to this work. In the Collec-

tion phase, the electronic devices are collected or copied. This

phase would therefore contain the analysis techniques to de-

fine the primitive storage and event capabilities of the system

and a known state.

In the Examination phase, the electronic evidence is made

‘‘visible’’ and the contents of the system are documented.

Data reduction is performed to identify the evidence. In the

Analysis phase, the evidence from the Examination phase is

analyzed to determine its ‘‘significance and probative value.’’

Presumably, the Examination phase includes the tech-

niques to define the complex state, which includes the file ab-

stractions. After establishing the primitive and complex state,

the investigator can begin to formulate and test hypotheses

about the incident, which may use Complex State and Event

Sample Data techniques to determinewhich events and states

are most likely to exist. For example, searching for all JPEG

files if they are commonly associated with this type of inci-

dent. Basic event reconstruction of deleted files may also

occur.

The Analysis phase is where more detailed analysis occurs

to determine if the data identified in the Examination phase

are from events related to the incident. The techniques used

in this phase will vary depending on the type of investigation.

For example, in an intrusion investigation, this phase may

perform event reconstruction on files identified in the Exami-

nation phase. While many of the classes of analysis tech-

niques that were described in the previous section are not

specifically addressed in this model, the phases are general

enough that any technique can be performed in them. In gen-

eral, there is not a clear difference between the technical re-

quirements of the Examination and Analysis phases and any

of the analysis techniques could occur in either phase.

The Event-Based Digital Forensic Investigation Framework

has three phases: Preservation, Search, and Reconstruction

(Carrier and Spafford, 2004). The Preservation phase preserves

the state of the system and is where the primitive and com-

plex system capability definition techniques would be used.

The Search phase is where the evidence is identified, which

would require that the remaining system capabilities and

complex storage locations be defined. This phase will also re-

quire the Complex State and Event Sample Data techniques to

formulate hypotheses based on experiences with similar inci-

dents. Searches would be conducted to answer the investiga-

tion questions. The Reconstruction phase uses event

reconstruction techniques to formulate hypotheses about

the events that occurred based on the evidence that was

found.

This model is specific about the analysis techniques that

must occur in each phase, but it is not clear if, for example,

the event construction techniques are supported by this

framework. Event construction techniques are not useful in

practice though they formulate hypotheses about an event

occurring when there is no evidence to support the event.

Therefore, it is not unreasonable for a process model to not

specifically include this class of techniques. The Searching

phase does not limit hypotheses from being formulated

using construction techniques, but because reconstruction

is specifically identified then the use of construction is not

clear.

Lastly, we consider the Hierarchical, Objectives-Based

Framework (Beebe and Clark, 2004). This model has two tiers

of phases. In the first tier, the relevant phases are Incident

Response, Data Collection, and Data Analysis. The Incident

Response phase is where the incident is detected and verified.

The detection and verification processes are equivalent to

using event reconstruction techniques to test the hypothesis

that the incident occurred because they look for evidence of
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the incident. The Data Collection phase defines states of the

system and system capabilities.

The Data Analysis phase is further organized into the Sur-

vey, Extract, and Examine phases. The Survey phase performs

the complex storage location abstraction techniques and the

Extract phase begins to identify data based on objectives

such as keywords and filters. This is a process of formulating

hypotheses about states based on experience and sample

data. The Examine phase may include event reconstruction

on the extracted data to determine if the data are relevant to

the incident. The exact techniques of this phase will likely de-

pend on the investigation type.

5. Conclusions

There is no single high-level process that every digital investi-

gation must follow. We have shown a model with theoretical

foundations and that supports existing frameworks. This

work allows a formal basis to exist for further research and

shows where the scientific method can be used in a digital

investigation.

This work has outlined analysis techniques that may apply

to all types of investigations and the completeness of the anal-

ysis techniques can be shown. As new process models and

frameworks are proposed, the results from this work can be

used to show how the new proposals are different from exist-

ing ones.

The class and category definitions in this paper still have

a level of subjectivity to them based on how they are grouped.

The unique contribution of this paper is that the categories are

based on howdigital evidence is created and not based on how

existing tools operate or how existing investigations are con-

ducted. This work has identified analysis techniques that are

not supported by existing tools, although the practical value

of some of the techniques is not entirely clear.

Carrier (2003) previously defined analysis tools based on

abstraction layers. This work expands upon that to show

that there aremore than simply abstraction techniques. There

are also techniques to, for example, learn the abstraction

transformation rules, to determine the system capabilities,

and to reconstruct previous states and events.
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