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ABSTRACT

Kim, Hyung Cook. Ph.D., Purdue University, May, 2006. Watermark and Data
Hiding Evaluation: The Development of a Statistical Analysis Framework. Major
Professor: Edward J. Delp.

Digital watermarking is the practice of hiding a message in an image, audio, video

or other digital media elements. Since the late 1990’s, there has been an explosion in

the number of digital watermarking algorithms published. But there are few widely

accepted tools and metrics that can be used to validate the performance claims being

asserted by members of the research community.

Robust image watermarks are watermarks designed to survive attacks including

signal processing operations and spatial transformations. To evaluate robust water-

marks, we need to evaluate how attacks affect the fidelity of an image. The mean

square error (MSE) is the most popular metric to measure fidelity. MSE, as it is,

cannot measure the fidelity for images that went through geometric attacks such as

rotation, pixel loss attacks such as cropping, or valumetric attacks such as gamma

correction. We take the approach of evaluating attacks using MSE by compensating

valumetric, pixel loss, and geometric attacks using conditional mean, error conceal-

ment, and motion compensation, respectively.

Robust watermarks are evaluated in terms of fidelity and robustness. To measure

robustness, bit error rate, message error rate and the receiver operating characteristic

(ROC) of the watermark decoder and detector are currently used in the literature.

We extend this framework by adopting reliability testing. We define reliability as

the probability that a watermarking algorithm will correctly detect or decode a wa-

termark for a specified fidelity requirement under a given set of attacks and images.

We evaluate three watermarking algorithms in terms of quality (fidelity), load (wa-
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termark strength, payload), capacity (minimum watermark strength, maximum pay-

load), and performance (robustness). We adopt the Taguchi loss function which is a

compromise between average and percentile to summarize fidelity and performance.

To facilitate the use of a watermark evaluation method, we need a watermark

evaluation benchmark that implements that method. To meet this need, we devel-

oped the watermark evaluation testbed (WET ). This system consists of reference

software that includes both watermark embedders and detectors, attacks, evaluation

modules and image database.
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1. INTRODUCTION

In order to prevent forgery in checks and bank notes, paper watermarks are com-

monly used. Analogous to paper watermarks, digital watermarking is the practice

of hiding a message in an image, audio, video or other digital media elements. Since

the late 1990s, there has been an explosion in the number of digital watermarking

algorithms published [1–6]. That is most likely due to the increase in concern over

copyright protection of content [7]. Because digital devices store content in digital

form, there is no degradation in quality of data [8]. The popularization of Internet

and digital recording devices caused piracy to increase and content providers are

seeking technologies to protect their rights [9]. Currently, cryptographic techniques

are the most popular method to prevent piracy [10]. But after the content is de-

crypted, we need another way to protect the content. Because digital watermarking

can embed information related to the content in the digital media element and can

be designed to survive many changes such as format conversion, D/A and A/D con-

version and compression, it is seen as a technique to complement cryptography in

preventing piracy [11].

1.1 Watermarking Applications

While copyright protection is usually the major driving force in the watermark

field, there are a number of possible applications of watermarking. These [5, 12–14]

include:

• Owner Identification: If an owner of a copyrighted material does not put a

copyright notice on the distributed material, the award for the copyright holder

can be limited in case the material has not been used as agreed upon. The
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problem with copyright notices is that they can be easily moved and may cover

a portion of the material. Because watermarks can be made both imperceptible

and inseparable from the material that contains them, they can be a better

alternative to copyright notices [15].

• Proof of Ownership: Proof of ownership is using watermarks to provide proof

of ownership in a court of law. For a watermarking algorithm to be used in a

proof of ownership application, it should not be susceptible to the ambiguity

attack described later in this chapter [6, 16].

• Transaction Tracking: In transaction tracking, or fingerprinting, a unique wa-

termark is embedded into each copy of a media element. The embedded water-

mark will be present in any copy of the watermarked signal. The watermark

identifies the legal recipient of the copy and can be used to trace the source of

copied content.

• Copy Control: In the copy control application, we aim to prevent people from

making illegal copies of copyrighted content. Current technologies that do

this is encryption and Macrovision’s Videocassette Anticopy Process. These

technologies do not survive format changes of the content. Because watermarks

are embedded in the content itself, they are present in every variation of the

content and therefore might provide a better method of implementing copy

control.

• Content Authentication [17–20]: It is becoming easier to tamper with digi-

tal content in ways that are difficult to detect. One common cryptographic

approach for authenticating messages is using digital signature, which is an

encrypted summary of the image. The problem with digital signature is that

they can be lost during normal usage. By using watermarking to embed the

signature in the content, we can make the signature stay with the media ele-

ment. An image with a missing or damaged watermark could imply some kind
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of tampering has occured and also indicate where the tampering has taken

place.

• Device Control: There are several applications in which devices react to wa-

termarks they detect in content. From the user’s point of view, many of these

are different from copy control in that they add value to the content, rather

than restrict its use. These include linking toys with television or websites with

images.

• Broadcast Monitoring: We can use watermarks for broadcast monitoring by

putting a unique watermark in each video or sound clip prior to broadcast.

Automated monitoring stations can then receive broadcasts and look for these

watermarks, identifying when and where each clip appears.

• Steganography: Steganography is the hiding of a secret message within an ordi-

nary medial element and the extraction of it at its destination. Steganography

takes cryptography a step farther by hiding an encrypted message so that no

one suspects it exists [21]. Steganography can be used to send messages to

other people without being detected.

1.2 Watermarking Overview

The objectives of digital watermarking is to embed or insert a message into a

signal in a secure and imperceptible manner and to detect the embedded information

from a watermarked signal. A watermarked image may be attacked, such as JPEG

compression, before it is available to the watermark detector. A block diagram of

a typical watermarking system [4] is shown in Figure 1.1. In the following we will

explain watermarking techniques that currently exist in the literature. Although the

techniques described can be applied to other medial elements, we will mainly focus

on still images.
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Fig. 1.1. A block diagram of a typical watermarking system.
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1.2.1 Watermark Embedding

Watermark embedding is hiding a message into an image by mapping the mes-

sage to another signal and adding that signal to an image. That signal is also called

the watermark. Components of an embedder are shown in Figure 1.1. A watermark

embedder accepts as inputs the host image S, secret key K, and message M and

produces the watermarked signal X. The embedding key K is the secret that is

necessary to detect the watermark and decode the message in the watermark. The

embedding strength parameter α is a parameter to control the energy of the wa-

termarked signal. As the signal strength of the watermark increases, usually the

visibility of the watermark and the probability to detect or decode the watermark

increases. A secret key K or key pair is used for watermark embedding and de-

tection. This key is analogous to the secret PN-sequences (chips) used in spread

spectrum communications. Although, the size of the watermark key space has no

direct impact on some properties of watermark such as fidelity and robustness, it

plays an important role in the security of the system. The key space, that is the

range of all possible values of the watermark keys, must be large enough to make

exhaustive search attacks impossible.

Marking Space

Although, watermarking can be done in the spatial domain, it is usually done in

the transform domain to spread the watermark all over the image [1].

Discrete Fourier Transform The unitary Discrete Fourier Transform (DFT) of

a sequence f(n), n = 0, . . . , N − 1 is defined [22] as

F (k) = 1√
N

N−1
∑

n=0
f(n) exp−j 2πnk

N , k = 0, . . . , N − 1 (1.1)

The inverse transform is given by

f(n) = 1√
N

N−1
∑

k=0
F (k) expj 2πkn

N , n = 0, . . . , N − 1 (1.2)
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The translational property and reciprocal scaling property of DFT make the DFT a

good candidate for developing watermarks that are robust to translation and scal-

ing [23].

Discrete Cosine Transform The one-dimensional Discrete Cosine Transform

(DCT) of a sequence f(n), 0 ≤ n ≤ N − 1 is defined as [22]

F (k) = α(k)
N−1
∑

n=0

f(n) cos[
π(2n + 1)k

2N
], 0 ≤ k ≤ N − 1 (1.3)

where

α(0) =

√

1

N
, α(k) =

√

2

N
for 1 ≤ k ≤ N − 1 (1.4)

DCT has been widely studied by the source coding community in the context

of JPEG and MPEG [24,25]. The main arguments for using DCT in watermarking

are the following. Watermarking algorithms that work in the DCT domain are often

more robust to JPEG and MPEG compression. Furthermore, studies on visibility

(i.e., visual distortions) which were previously conducted in the field of source coding

can be reused [26] to hide the watermark more effectively to the human visual system

(HVS). Also, watermarking in the DCT domain offers the possibility of combining

compression and watermarking (i.e., inside a JPEG or MPEG encoder) in order to

minimize the computation time.

Discrete Wavelet Transform Discrete Wavelet Transform (DWT) is used in

the source compression standard JPEG 2000. In several recent publications, this

transform has been used in image watermarking. The reason for using DWT closely

follows those for using DCT (i.e. preventing watermark removal by JPEG 2000

lossy compression, reusing previous studies on source coding regarding the visibility

of image degradations, and offering the possibility of embedding in the compressed

domain). In addition to these criteria, the multiresolution aspect of wavelets is

helpful in spreading the watermark in regions where the watermark is less visible

than other regions.
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Fig. 1.2. A block diagram of a two-dimensional discrete wavelet transform (DWT).

The basic idea of the Discrete Wavelet Transform (DWT) is the following. A

signal is split into two parts, usually high frequencies and low frequencies. The edge

components of the signal are largely confined in the high frequency part. The low

frequency part is split again into two parts of high and low frequency. For two-

dimensional images, we apply the DWT in the row and column directions as shown

in Figure 1.2. It is desirable that we use the linear phase finite impulse response

(FIR) filters, since such filters can be easily cascaded in pyramid filter structures

without the need for phase compensation [27]. One can preserve linear phase by

relaxing the orthonormality requirement, and using biorthogonal bases. An example

of a two-level wavelet decomposition using the Daubechies 9x7 filter [27] is shown in

Figure 1.3.

Watermark Generation

Many watermark algorithms use a sequence with each element having a normal

distribution N(0, 1) as the watermark. This makes the watermark resilient to collu-
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(a) Original image: Barbara(512x512) (b) 2 level wavelet decomposition

Fig. 1.3. An example of a two-level wavelet decomposition using the
Daubechies 9x7 filter.
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sion attacks [1]. One way to generate normal random variables is to use the polar

method from [28]. Let

Θ ∼ U(0, 1) and S ∼ U(0, 1). (1.5)

Set X1 and X2 as follows:

X1 =
√
−2 ln S cos 2πΘ and X2 =

√
−2 ln S sin 2πΘ. (1.6)

Then X1 and X2 are independent with mean 0 and standard deviation 1. The

algorithm in [28] avoids the use of cosine and sine.

Embedder Classification

During watermark embedding, the host signal is known to the embedder and

can be treated as side information about the distortion channel rather than as un-

known noise. Based on how we use this information, we can categorize watermarking

embedding as follows [5].

Blind Embedder Blind Embedder is an embedder that ignores the host signal,

shown in Figure 1.4. Many blind embedders [29] are of the form

X = S+αWm (1.7)

, where X is the watermarked signal, S is the original signal, Wm is a message mark

which depends only on the key and message for blind embedders and α is a scaling

constant.

Informed Embedder Informed embedder is an embedder that produces a wa-

termark depending on the characteristics of the host image as shown in Figure 1.5.

One example of watermarking techniques with informed embedding is perceptually

adaptive watermarking techniques [3,30,31]. A watermarking technique can exploit

the characteristics of a Human Visual System (HVS) , such as masking, sensitivity
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and pooling [32, 33], to produce an imperceptible watermarked signal by using a

perceptual model [26,31,33–35].

Another example of informed embedding is the Secure Spread Spectrum Water-

marking Algorithm by Cox et al. [1]. The algorithm is based on the assumption that

a watermark should be placed in the perceptually most significant components of

data. For imperceptibility, the algorithm spreads the watermark among the signifi-

cant components of data. It watermarks an N ×N image by computing the N ×N

2-dimensional(2D) DCT(Discrete Cosine Transform) of the image and placing the

watermark into the n highest magnitude coefficients of the transform matrix, exclud-

ing the DC component. We obtain the watermarked image by applying inverse DCT

to the N × N DCT coefficients. The algorithm extracts the n highest magnitude

DCT coefficients S = s1, . . . , sn and inserts a watermark W = w1, . . . , wn to obtain

an adjusted sequence of values X = x1, . . . , xn. X is inserted back into the 2D DCT

coefficients. The DCT coefficients are watermarked as follows:

xi = si(1 + αwi) (1.8)

, where α is the embedding strength. The watermark is detected by comparing the

extracted watermark W ∗ and the original watermark W . The similarity of W and

W ∗ is measured by a scaled version of normalized correlation

sim(W,W ∗) =
W ∗ · W√
W ∗ · W ∗ . (1.9)

A watermarked image and its watermark for the DCT spread spectrum watermarking

are shown in Figure 1.6 for embedding strength α = 1 and watermark length n =

1000. Instead of DCT we can use DWT. Watermarked image and its watermark

for the DWT spread spectrum watermarking is shown in Figure 1.7 for embedding

strength α = 0.1, watermark length n = 1000, and wavelet decomposition level of 9.

As we can see from the difference images, wavelet watermarks is more localized in a

specific area.
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Fig. 1.4. A block diagram of a blind embedder that ignores the host image.

Informed Coder and Embedder Informed coding refers to the use of side infor-

mation during the selection of a message mark Wm. This can be done by defining

a dirty-paper code [36] in which message is represented by several alternate vectors.

We then select the watermark that represents the desired message and is closest to

the host image. By combining informed coding and informed embedding as shown

in Figure 1.8, it is possible to obtain much better performance than with simple

blind coding and embedding. In fact, there is reason to believe that the amount

of information we can reliably embed might be independent of the distribution of

unwatermarked content. Informed embedding and informed coding are also called

watermarking with side information [37]. An example of informed coding and in-

formed embedding combined is Quantization Index Modulation technique by Chen

et al. [38,39]. Quantization Index Modulation is a method of watermarking in which

each message is associated with a distinct vector quantizer. The embedder quantizes

the host signal (or a vector extracted from the host signal) according to the quan-

tizer associated with the desired message. The detector quantizes the image using

the union of all quantizers, and identifies the message.

1.2.2 Watermark Detection and Decoding

The watermark detector decides whether a watermark is present in an image.

The decision is usually made by comparing a detection statistic with a threshold T .

The detection statistic is any measure of the likelihood that a watermark is present in
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Fig. 1.5. A block diagram of an informed embedder that produces a
watermark depending on the characteristics of the host image.

(a) Watermarked image (MSE = 23.0) (b) Watermark added to the image

Fig. 1.6. A watermarked image (a) and its watermark (b) for a DCT
spread spectrum watermarking.
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(a) Watermarked image (MSE=22.3) (b) Watermark added to the image

Fig. 1.7. A watermarked image (a) and its watermark (b) for a DWT
spread spectrum watermarking.

Fig. 1.8. A watermark block diagram using informed coding and embedding.
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the image. The value of T depends on the detection probability requirements. For

detection statistics, majority of the algorithms use similarity measures [5]. There

are also algorithms that use maximum likelihood (ML) and maximum a posteriori

probability (MAP) estimates [40]. Common similarity measures include linear cor-

relation, normalized correlation, and the correlation coefficient. Watermark decoder

maps the watermarked image into a message. Watermark decoders also use similarity

measures, ML, and MAP estimates to determine the message.

A detector that requires access to the original, unwatermarked image is an in-

formed detector. This term also refer to detectors that require some information

derived from the original image, rather than the entire image. Conversely, detectors

that do not require any information related to the original are referred to as blind

detectors.

Similarity Measures

For watermark detection in correlation-based watermarking systems, linear corre-

lation, normalized correlation and correlation coefficient values are usually compared

against a threshold.

Linear correlation of two N -dimensional vectors v and wr is defined as

zlc(v,wr) =
1

N
v · wr (1.10)

It is common in practice in communications to test for the presence of a transmitted

signal, wr, in a received signal, v, by computing linear correlation and comparing it

to a threshold. The practice is referred to as matched filtering and is known to be

an optimal method of detecting signals in the presence of additive, white Gaussian

noise [41].

One of the problems with linear correlation is that it is vulnerable to amplitude

scaling. To solve this, normalized correlation of two vectors, wr and v defined as

zlc(v,wr) =
v · wr

|v||wr|
(1.11)
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is used.

Correlation coefficient is a form of normalized correlation in which the vector is

first modified to have zero mean. This provides robustness against changes in the

DC term of an image, such as the addition of a constant intensity to all pixels of an

image. Correlation coefficient is defined as

ṽ = v − v̄

ṽ = v − v̄

zcc(v,wr) = znc(ṽ, ṽ). (1.12)

1.2.3 Attacks

To test the robustness and security properties of watermarks, we have to use

various attacks that models the processes the media element will go through based on

the application. We describe attacks and counter-attacks that are from [5,21,42–44].

Categories of Attack

The wide class of existing attacks can be divided into four main categories: in-

terference and elimination attacks, presentation attacks, cryptographic attacks and

protocol attacks. Figure 1.9 summarizes the different attacks.

Interference and Elimination Attacks Elimination attacks [45] aim at com-

plete removal of a watermark from host data. The interference attacks are those

which add noise to the watermarked image.

• Compression: JPEG [24] is currently one of the most widely used lossy com-

pression algorithm for images. Any still image watermarking system should

be resilient to some degree of lossy compression because images are usually

lossy compressed to reduce its file size significantly. Many people have rec-
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Fig. 1.9. Types of attacks on digital watermarking systems.
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ognized that there is a fundamental conflict between watermarking and lossy

compression.

• Noise addition: Various types of noise are added to the image by the imaging

system [46]. Additive noise and uncorrelated multiplicative noise have been

largely addressed in the communication theory and signal processing theory

literature.

• Statistical averaging and collusion: Given two or more copies of the same image

but with different watermarks, the watermarks should survive when the images

are averaged or a new image is constructed by taking different parts from each

image. Collusion attacks are applicable when many copies of a given data set,

each signed with a key or different watermark, can be obtained by an attacker

or a group of attackers. In such a case, a successful attack can be achieved by

averaging all copies.

• Low pass filtering: This includes linear and non-linear filters. Frequently used

filters include Gaussian, and standard average filters. Since natural images

generally have energy concentrated in the low frequency components, low pass

filtering are sometimes used to reduce noise in an image.

• Sharpening: Sharpening functions are used to enhance edges. These filters

can be used as a tool to actually see the watermark embedded in an image

when the watermark are embedded in the high frequency components to reduce

watermark visibility.

• Color quantization: This is mostly applied when the output devices can only

represent limited number of colors. Color quantization is very often accompa-

nied by dithering which diffuses the error of the quantization.

• Restoration: These techniques are usually designed to reduce the effects of

specific degradation processes but could also be used without a priori knowledge

of the noise introduced by the watermarking system.



18

• Denoising: The basic idea of this approach consists in the assumption that the

watermark is noise which can be modeled statistically. Therefore, estimating

the host image from a watermarked image, an attacker can potentially remove

the watermark. Image denoising is mostly based on a maximum likelihood

(ML), a maximum a posteriori probability (MAP), a minimum mean square

error (MMSE) or a minimax criteria. In the case of the ML, the well-known de-

noising algorithms are local mean, median, trimmed mean and myriad filter [47]

which are the estimates for a Gaussian, Laplacian, ε-contaminated (mixture

model of a Gaussian and Laplacian), and Cauchy watermark distributions, re-

spectively. The representatives of the MAP-estimates are the adaptive Wiener

filter, soft and hard shrinkage [48].

Presentation Attacks Presentation attacks make the watermark undetectable by

existing detectors without removing the watermark [49,50].

• Amplitude changes: Amplitude changes for music means change of volume. In

images and video, it represents a change in brightness and contrast. Linear

correlation detection does not cope well with amplitude scaling.

• Gamma correction: Gamma correction is frequently used to enhance images

or adapt images for display.

• Vertical, Horizontal, and Diagonal Flip: Many images can be flipped without

losing any value. Some watermarking detectors consider all the flips and detect

watermarks for each case.

• Rotation: Small angle rotation, often in combination with cropping, does not

usually change the commercial value of the image but can make the watermark

undetectable. Rotations are used to realign horizontal features of an image and

it is one of the modifications applied to an image after it has been scanned.
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• Cropping: From a large image, people crop a part of the image they want. Web

sites sometimes divide images into several pieces. An example of cropping is

the mosaic attack [51].

• Scaling: This happens when a printed image is scanned or when a high reso-

lution image from a digital camera is scaled down to send by email or to post

it on a Web site. Scaling can be divided into two groups, uniform and non-

uniform scaling. Uniform scaling preserves the aspect ratio of the image while

non-uniform scaling does not.

• Row or column removal: In interlaced video, every odd or even line is removed

from each frame. Row or column removal attack is not easily noticed by the

human visual system. Randomly removing columns or rows is also called a

jitter attack.

• Generalized geometrical transformations: A generalized geometrical transfor-

mation is a combination of non-uniform scaling, rotation, and shearing.

• Local random bending: This attack locally and imperceptibly warps an image.

This is also called the StirMark [51,52] attack.

Cryptographic Attacks Cryptographic attacks are very similar to the attacks

used in cryptography. Cryptographic attacks aim at breaking the security methods in

watermarking schemes. They can remove a watermark, read the embedded message

and add a watermark in an image with a different message.

• Brute-force search: Brute-force search is trying all the keys to get the key used

to embed the watermark. The correct key can be found from the detection

statistic or from the decoded message if we have a prior knowledge of the

message embedded.
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• Oracle attack: When a watermark detector is available that tells you whether

a watermark is embedded or not, an attacker can remove a watermark by

applying small changes to the image until the watermark is detected.

Protocol Attacks Protocol attacks are attacks that prevent the watermark from

doing its intended function in a watermarking applications [5].

• Over-marking: It is embedding another watermark to a media element. In this

case the attacker needs special access to the watermarking software. Current

commercial implementations prevent this by refusing to add a watermark if

another is already embedded.

• Ambiguity attacks: Ambiguity attacks is based on inversion. The idea behind

inversion is that the attacker subtracts his own watermark from watermarked

data and claims to be the owner of the watermarked data. This can create am-

biguity with respect to the true ownership of the data. It has been shown that

for copyright protection applications, watermarks need to be noninvertible.

The requirement of noninvertibility of the watermarking technology implies

that it should not be possible to extract a watermark from a non-watermarked

document.

• Copy attack: The goal of copy attack is not to destroy the watermark or impair

its detection, but to estimate a watermark from watermarked data and copy it

to some other data, called target data. The estimated watermark is adapted to

the local features of the target data to satisfy imperceptibility. The copy attack

is applicable when a valid watermark in the target data can be produced with

neither algorithmic knowledge of the watermarking technology nor knowledge

of the watermarking key.

Counter-Attacks

There are many ways to increase robustness against attacks. These include [5,43]:
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• Image registration or synchronization: The received image data has to be

mapped to the original host image in order to determine the locations where the

watermark has to be extracted. Imperfect image registration can result from

cropping and other geometric attacks or from synchronization problems. Image

registration can be seen as a separate state prior to watermark detection. To

survive against geometrical transformations, there have been much research on

embedding specific signals or designing a different structure in the watermark.

• Inverting Distortions: This is to invert any processing that has been applied

since the watermark was embedded. It includes rescaling and gamma correcting

the amplitude of the image,

• Error correction coding [41]: Because images go through attacks, an error can

occur in the message bits. We can increase decrease the error in the message by

encoding the message using an error correcting code. By defining the mapping

between messages and code words in an appropriate way, it is possible to build

decoders that can identify the code word closest to a given corrupted sequence.

1.3 Properties of Watermarking Systems

For evaluating watermarking systems, they can be characterized by a number of

defining properties [14,32,53]. The suitability of a given watermarking system for a

given application may be judged in terms of the following properties.

1.3.1 Robustness

Robustness is the ability of the watermark to survive normal processing of im-

ages. The more robust a watermark, the more difficult it is to remove from the

watermarked signal. We draw a distinction between robustness, which refers to

common operations, and security, which refers to hostile operations. Many authors

do not draw this distinction and use robustness to refer to both types of operations.



22

Like perceptual fidelity, actual robustness is difficult to quantify, in part because

many attacks are difficult to model. Many watermarking papers report robustness

by measuring bit or detection error rate of the embedded watermark after performing

specific attacks. Attack benchmarks, such as StirMark [51,52] and Checkmark [54],

can be used to compare the robustness of image watermarking techniques after a

common set of attacks have been performed.

1.3.2 Data Payload

Data Payload Nm is the number of bits a watermark encodes within a unit of

time or within a media element. The more information one wants to embed, the

lower is the watermark robustness. A watermark that encodes N bits is referred to

as an N -bit watermark. Such a system can be used to embed any on of 2N different

messages. The output of the detector will have 2N + 1 output values: 2N messages

plus “no watermark present”.

Data payload is an important parameter since it directly influences the watermark

robustness. The more information one wants to embed, the lower is the watermark

robustness. The data payload is dependent on the application and does not include

the extra bits for error correction codes.Copy control applications may require 4

to 8 bits of information to be received over 5 minutes while broadcast monitoring

require 24 bits within the first second of commercials for video. It is suggested in

that to avoid small scale proprietary solutions, roughly 70 bits of information should

be embedded in an image [42].

1.3.3 Embedding Effectiveness

Embedding effectiveness is the probability that the embedder will successfully

embed a watermark in a randomly selected media element. In other words, the effec-

tiveness is the probability of detection immediately after embedding. This definition

implies that a watermarking system might have an effectiveness of less than 100%.
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Embedding effectiveness depends on the watermarking algorithm, data payload, im-

age size, and image characteristics. For example, multiplicative spread spectrum

algorithm [1] does not embed a watermark in a signal if the amplitude of that sig-

nal is constant. Also, if the image size is small, watermark cannot be embedded

effectively. This is used in the mosaic attack [29].

1.3.4 Fidelity

Fidelity is the perceptual similarity between the original and watermarked ver-

sions of the media element. Visible Artifacts of an watermarked image may reduce or

destroy the commercial value of the watermarked image. The most popular fidelity

measure for images is the mean square error (MSE) [22]. MSE for images with M

number of color components and N the number of pixels is [55],

MSE =
1

MN

M
∑

i=1

N
∑

j=1

(s(i, j) − y(i, j))2

, where s is the original image and y is the modified image. More popular form of

MSE is the peak signal to noise ratio (PSNR) [22]. For 8 bit images, it is given as

follows:

PSNR = 10 log10

2552

MSE

There is a tradeoff between the watermark robustness and fidelity. Increased

robustness requires a stronger embedding, which in turn decreases the fidelity of

the image. Because PSNR [22] does not correlate too well with the human visual

system (HVS), other more sophisticated objective fidelity metrics have been used for

watermark evaluation [2, 54,56–58].

1.3.5 Cost

Cost is the computational cost of the embedder and detector. The economics

of deploying watermark embedders and detectors can be extremely complicated and

depends on the business models involved [59]. Among the many issues of concern
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are speed, memory usage of the embedder and detector. In the case of MPEG video

broadcast, the watermark detector must be fast to allow real-time detection. For

digital camera applications, the embedder must be fast and have a small memory

footprint.

1.4 Performance Evaluation

For designing digital watermarking methods, an important and often neglected

issue is proper evaluation and benchmarking [42,60]. This lack of a proper evaluation

in designing watermarking methods causes confusion among researchers and hinders

the adoption of digital watermarking in various applications. With a well-defined

benchmark, researchers and watermarking software manufacturers would just need

to provide a table of results, which would give a good and reliable summary of the

performances of the proposed scheme for end users. To address this issue, a few

still image digital watermarking benchmarks have been proposed. These include

StirMark [51, 52, 60], Certimark [61], Checkmark [54] and Optimark [62]. These

benchmarks evaluate robust watermark algorithms which are watermarks designed

to survive normal signal processing applications which all also called attacks [5]. So

these benchmarks include many attacks that are encountered in various applications.

These benchmarks contributed significantly to the advancement of watermarking

algorithms.

1.5 Contribution of this Dissertation

This dissertation contributes to the fair and systematic evaluation of robust still

image watermarking in terms of fidelity and robustness. The main contribution of

this thesis, as described in later chapters are:

• Mean square error fidelity metric for presentation attacked images
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Evaluating fidelity of the attacked images is important for attack develop-

ment and consequently watermark development. One element that watermark

benchmarks still lacks is objective fidelity evaluation of the presentation at-

tacked images. Presentation attacks include pixel value operations (e.g., his-

togram equalization, gamma correction, and contrast enhancement), geometri-

cal attacks (e.g., rotation, scaling, random local bending), and pixel loss attacks

(e.g., cropping, block loss in image transmission). For pixel value operations,

the SSIM metric [63] and the Visual Quality metric [64] is insensitive to lin-

ear amplitude scaling and minor mean shifts but does not consider nonlinear

operations. For geometrical attacks, it has been proposed to evaluate images

through image registration techniques [57]. The complex wavelet SSIM met-

ric [65] is also insensitive to minor geometrical transforms but is sensitive to

rotation and scaling.

We describe a technique to measure fidelity of images in terms of mean square

error in this dissertation by compensation techniques commonly used in the

human visual system (HVS). We use conditional mean to evaluate images that

went through pixel value operations. For pixel loss attacks, we use error con-

cealment. For geometrical attacks, instead of using image registration tech-

niques, we assume that we can approximate the mapping from the original

image to the attacked image. This is true in a watermarking evaluation frame-

work.

• New summary statistics for still image watermark evaluation

Current watermarking benchmarks use summary statistics to summarize the

results. One example is the average. Average bit error rate is used to sum-

marize the bit error rates and average PSNR is used to summarize the PSNR

values. This does not reflect still watermarking scenarios where each water-

marked image is distributed to different people and distributions of the bit

error rates and PSNR values become important.
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Another approach to summarization is to use a threshold. We could mea-

sure the maximum bit error rate and compare it against a threshold. For

fidelity, we could compare the fidelity results against the just noticeable dif-

ference (JND) [5, 6] value. But requiring the watermarking system to meet

a hard threshold requirement puts too much restriction on the watermarking

application.

In quality engineering [66,67], it is recommended that we should also consider

the variance of the distribution as well as the mean. We propose PSNR and

BER summary statistic using the Taguchi loss function [66–68] which considers

both the mean and variance for watermark evaluation. We show a watermark

evaluation result using the new summary statistic.

• Watermark Evaluation Testbed

While digital watermarking has received much attention within the academic

community and private sector in recent years, it is still a relatively young tech-

nology. As such there are few widely accepted benchmarks that can be used to

validate the performance claims asserted by members of the research commu-

nity. This lack of a universally adopted benchmark has hindered research and

created confusion within the general public. To facilitate the development of a

universally adopted benchmark, we are developing at Purdue University a web-

based system that will allow users to evaluate the performance of watermarking

techniques. We refer to this system as the Watermark Evaluation Testbed or

WET [58, 69]. This system consists of reference software that includes both

watermark embedders and watermark detectors, attack scenarios, evaluation

modules and a large image database. The ultimate goal of the current work is

to develop a platform that one can use to test the performance of watermarking

methods and obtain fair, reproducible comparisons of the results. We feel that

this work will greatly stimulate new research in watermarking and data hiding
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by allowing one to demonstrate how new techniques are moving forward the

state of the art.
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2. WATERMARK FIDELITY EVALUATION

2.1 Introduction

One important property for watermarks is fidelity [5], which is defined as the

perceptual similarity between the host image and the watermarked image. Although

there are much research on how to embed watermarks imperceptibly, there have been

limited research on evaluating image fidelity for attacked watermarked images [57].

Evaluating the fidelity of attacked images is important for developing new attacks

and watermark algorithms. Two approaches to fidelity evaluation are subjective

evaluation and using objective visual quality metrics [57].

The subjective method involves viewers who grade host, watermarked, and at-

tacked image presented [57]. The viewer is asked to rate the fidelity of an image,

using procedures such as the single/double-stimulus methods and the two alterna-

tives forced choice. The ITU Recommendation 500 gives recommendations for stan-

dardized subjective image quality evaluation procedures. Since subjective quality

assessment methods involve humans, they are not suitable for automatic bench-

marking.

To measure fidelity for an automated watermark benchmark, we need to use

objective measures. One of the widely used objective metric is the mean square

error (MSE) and its variant PSNR (peak signal to noise ratio). It is well known

that MSE (mean square error) fails to evaluate valumetric attacks such as gamma

correction and amplitude scaling or geometrical attacks such as spatial shifts and

the affine transform in terms of fidelity [57]. This is also true for other image quality

metrics developed [26,63–65,70], although a moderate amount of geometric distortion

is allowed in [65]. These metrics are developed to compare different signal processing
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operations such as blurring and image compression and are not designed to cope with

presentation attacks described in subsubsection 1.2.3.

2.2 Conditional Entropy as a Fidelity Measure

If the watermarked image undergoes attacks such as amplitude scaling and gamma

correction, mean square error cannot adapt to such effects. In image registration,

mutual information has been successfully used to measure the alignment of images

obtained through different modalities [71–73]. An advantage of mutual informa-

tion [74] over mean square error is that it does not depend on the exact value of

pixel values but only on the joint histogram of two images. For point operations, we

can think of the original image and the attacked image as images obtained through

different modalities. This motivated us to consider mutual information a fidelity

measure to evaluate still image watermarking algorithms and attacks [58].

The entropy H(X) of a discrete random variable X is defined by [75]

H(X) = −
∑

x

p(x) log p(x)

where p(x) is the probability mass function of the random variable X. The joint en-

tropy H(X,Y ) of a pair of discrete random variables (X,Y ) with a joint distribution

p(x, y) is defined as

H(X,Y ) = −
∑

x

∑

y

p(x, y) log p(x, y).

The conditional entropy H(X|Y ) is defined as

H(X|Y ) = −
∑

x

∑

y

p(x, y) log p(x|y).

The properties of H include

H(X) ≥ 0

H(X|Y ) ≤ H(X)

H(X,Y ) = H(Y ) + H(X|Y ).
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The mutual information I(X; Y ) between two random variables X and Y is de-

fined as

I(X; Y ) =
∑

x

∑

y

p(x, y) log
p(x, y)

p(x)p(y)

Properties of I(X; Y ) are

I(X; Y ) =
∑

x

∑

y

p(x, y) log
p(x, y)

p(x)p(y)

=
∑

x

∑

y

p(x, y) log
p(x|y)

p(x)

= H(X) − H(X|Y )

= H(X) + H(Y ) − H(X,Y ).

I(S; Y ) is a measure of the amount of information that Y contains about S [75].

I(S; Y ) is a “larger is better” measure because it is the reduction in the uncertainty

of S by knowing the distribution of Y . To use mutual information in an environment

where “smaller is better” such as the Taguchi loss function [66, 67, 69] described in

chapter 3, we need to modify it. In this sense, we could use the conditional entropy

H(S|Y ) as a similarity measure. H(S|Y ) is the average bits needed to describe S

given Y . The relation between H(S|Y ) and I(S; Y ) is given as follows:

H(S|Y ) = H(Y, S) − H(Y )

= H(S) − I(Y ; S).

We can estimate entropies by approximating the probabilities using histograms [72].

Let h(s, y) be the joint histogram of the pixel values. We approximate the probability

as follows:

p(x, y) ≈ h(x, y)
∑

x

∑

y h(x, y)

p(x) =
∑

y

p(x, y)

p(y) =
∑

x

p(x, y).

While there is a link between minimum mean square error and mutual infor-

mation [76], it depends on the noise distribution of the attack channel and the
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(a) fcc-door(440x324) (b) 0115(600x400) (c) grid-16-16(600x400)

Fig. 2.1. The test images used for comparing different compensation
techniques. ”fcc-door,” ”0115,” and ”grid-16-16.”

distribution of the original image. In the next section, we describe a technique to

measure fidelity using a conditional mean which also uses the joint histogram of two

images.

2.3 Mean Square Error Fidelity Evaluation through Compensation

In the following, we will extend MSE by assuming the attacker has information

the watermark detector/decoder may not have and will use it to restore the image to

its original form. Specifically, we will modify MSE to compensate valumetric attacks,

geometrical attacks, and pixel loss attacks. A distortion function we will use is given

below and similar to the one given in [55].

d(s,y) = min
θ∈Θ

‖s − Tθy‖2

, where Θ is the set of compensating functions. We develop Tθ for geometrical

attacks, valumetric attacks and pixel loss attacks and combine them to measure in

terms of MSE. For test images, we will use the image shown in Figure 2.1 as our test

image.
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2.3.1 Compensation for Valumetric Attacks

Valumetric Attacks or point operations are zero memory operations where we

use a monotonically increasing or decreasing function f(s) to map a pixel value s to

f(y) [22,77] for all pixels in an image. Valumetric attacks include contrast stretching,

digital negative, range compression, and histogram equalization. We assume that

these operations does not change the content in an image because human visual

system (HVS) determines the content not by the exact value of a pixel but whether

the pixel value is greater or smaller than the neighborhood pixel values. This is

analogous to changing keys in music. We assume that the attacker knows f(s) and

will use that information to invert to the original image. Example of this is display

of images on different computers. If you have an image on your computer that you

want to display on another computer, you may want to apply color correction to that

image to show a similar image on the other computer [78]. To apply color correction,

you need to know the display characteristics of both computers. This information

are stored in the form of color profiles and this information may not given to the

watermark detector.

Let ŝ(y) be a function that maps the attacked image pixel values to other pixel

values. This function is defined only for values y such that p(y) > 0. We can write

MSE for the image produced by the mapping ŝ(y) using the joint probability as

follows:

MSE(s, y) =
∑

s

∑

y,p(y)>0

(s − ŝ(y))2p(s, y).

It is well known that ŝmmse(y) (p(y) > 0), which minimizes MSE, is a conditional

mean [79],

ŝmmse(y) =
∑

s

sp(s|y).

Theorem 2.3.1 Let y = f(s) be a monotonically increasing function. Then ŝmmse(y)

is an increasing function for values of y s.t. p(y) > 0.
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Proof We can rewrite ŝmmse(y) as follows:

ŝmmse(y) =
∑

s,p(s)>0,f(s)=y

sp(s|y).

Because
∑

s p(s|y) = 1, ŝmmse(y) is an weighted average of s’s for f(s) = y. By the

definition of f , if s1 and s2 exists s.t. f(s1) > f(s2) then s1 > s2. This implies that

if y1 > y2, then ŝmmse(y1) > ŝmmse(y2) for any y1 and y2 s.t. p(y1) > 0 and p(y2) > 0.

This means ŝmmse(y) is an increasing function for values of y s.t. p(y) > 0.

Corollary 2.3.1 Let y = f(s) be a monotonically increasing function. If we define

mutual information I(s; y) as [75]:

I(s; y) =
∑

s

∑

y

p(s, y) log
p(s, y)

p(s)p(y)
,

then I(s; y) = I(s; ŝmmse(y)).

Proof Because ŝmmse(y) is an increasing function of y, it is a one-to-one function

of y s.t. p(y) > 0. If ŝmmse(y) is a one-to-one function, then p(s, y) = p(s, ŝmmse(y))

and p(y)=p(ŝmmse(y)), for y s.t. p(y) > 0. By the definition of I(s; y), I(s; y) =

I(s; ŝmmse(y)).

Above theorem and corollary can also be proven for the monotonically decreasing

case, similarly.

Since a conditional mean preserves the rank of the attacked image pixel values

and has the minimum mean square among zero memory operations, we use it to

compensate images that go through a point operation. From the histogram h(s, x)

of pixel values, we can approximate the conditional mean as follows:

p(s, y) ≈ h(s, y)
∑

s

∑

y h(s, y)

p(y) =
∑

s

p(s, y)

≈
∑

s h(s, y)
∑

s

∑

y h(s, y)

p(s|y) =
p(s, y)

p(y)
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≈ h(s, y)
∑

s h(s, y)

ŝmmse(y) =
∑

s

sp(s|y)

≈
∑

s sh(s, y)
∑

s h(s, y)
.

2.3.2 Compensating for Pixel Loss Attacks

We define pixel loss attacks as attacks that lose the value of a pixel. Pixel loss

attacks include cropping, random column and row removal. Pixel loss attacks can

be seen as a packet loss due the error occurring in the channel. Although we could

use conditional mean for the lost pixels by mapping the lost pixels to an arbitrary

pixel value (e.g. -1 or 256), we are ignoring the correlation between adjacent pixels

in an image. The human visual system can estimate the values of loss pixels by

the pixels close to the lost pixel. Here, we assume that the attacker knows exactly

where the pixels were lost and will use that information to recover those lost pixels.

Example of this is video de-interlacing [80]. In de-interlacing, we make full frames

out of fields by interpolating lost pixels using adjacent pixels. The attacker who

makes interlaced video from non-interlaced video knows that the video is interlaced

but the watermark detector does not have this information.

For pixel loss attacks, there are error concealment methods already developed [81].

Here we use the neighborhood mean for error concealment [82] as shown in Figure 2.2.

Algorithm is implemented as follows:

1. Initialize binary map n(i, j) = m(i, j) = 0, if pixel at location (i, j) is lost for

image y(i, j), else n(i, j) = m(i, j) = 1.

2. For all (i, j), ec(i, j) = y(i, j).

3. Define neighborhood mean of ec(i, j) as

NM(ec(i, j)) =

∑1
k=−1

∑1
l=−1 ec(i + k, j + l)I(m(i + k, j + l) > 0)

∑1
k=−1

∑1
l=−1 I(m(i + k, j + l) > 0)

, where I is the indicator function.
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Fig. 2.2. The weights used for a neighborhood mean for error concealment.

4. For all (i, j), if m(i, j) = 0 and
∑1

k=−1

∑1
l=−1 I(m(i + k, j + l) > 0) > 0, then

ec(i, j) = NM(ec(i, j)) and n(i, j) = 1.

5. For all (i,j), m(i,j)=n(i,j).

6. Repeat 4 and 5 until m(i, j) = 1 for all (i,j). ec(i, j) is the error concealment

image.

2.3.3 Compensation for Geometrical Attacks

A geometric attack is defined by a spatial transformation [83]. It can be expressed

as

[x, y] = [X(u, v)Y (u, v)]

or

[u, v] = [U(x, y)V (x, y)]

where [u,v] is the input image coordinates and [x,y] is the output image coordinates

of the spatial transformation. X and Y are the forward mapping and U and V are

the inverse mapping. Inverse mapping as shown in Figure 2.3 is more common than

the forward mapping in spatial transformation implementations [83] and is used in

StirMark 4.0.

Currently, two methods exist to evaluate geometrically attacked images [57]. One

is to do a subjective evaluation. The other is to use a registration technique to match

the host image and the attacked image geometrically. For image registration, the
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geometrical attacks are modeled as an affine transform locally and based on how

large each affine transform covered each area determines the fidelity.

As mentioned above, we take the approach of compensating the attacked image

and measure fidelity in terms of MSE. We assume that the attacker knows the

geometric attack and will invert it. An example of this is different pixel aspect ratios

used in broadcast and computers [78]. To display video from one pixel aspect ratio

to another aspect ratio, we need to apply interpolation in the horizontal or vertical

direction which is a form of geometrical attack. We assume that the attacker knows

the pixel aspect ratio and will use it to display video with the correct pixel aspect

ratio. The watermark detector may not have this information. For all geometric

attacks in StirMark 4.0, we can obtain the exact expression for forward mapping

except the local random bending attack. This eliminates the image registration

step. The reason that there is no exact expression for the forward mapping in local

random bending is that there are random components in the inverse mapping.

For interpolation of pixels, we use the biquadratic interpolation used in StirMark

4.0. Its speed and interpolation quality is between bilinear interpolation and bicubic

interpolation [84]. Its interpolating kernel is given as follows:

h(s) =



























−2|s|2 + 1 |s| < 1/2

(|s| − 1)(|s| − 3/2) 1/2 < |s| ≤ 3/2

0 otherwise

Forward Mapping for the Affine Transform

For an affine transform inverse mapping

u = a1x + a2y + a3

v = a4x + a5y + a6

, the forward mapping is

x =
a5(u − a3) − a2(v − a6)

a1a5 − a2a4
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Input image Output image

Fig. 2.3. An example of inverse mapping for implementing geometrical attacks.
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y =
−a4(u − a3) + a1(v − a6)

a1a5 − a2a4

.

Inverse Mapping Approximation using the Bilinear Transform

To approximate the inverse mapping for the local bending attack, we interpo-

late the inverse mapping using the piecewise bilinear transform. Piecewise bilinear

transform is assuming that the square grid in the output image coordinates has been

inverse mapped from a quadrangle from the input image coordinates by a bilinear

transform.

A bilinear transform is given as follows:

u = a1x + a2y + a3xy + a4

v = a5x + a6y + a7xy + a8.

A property of the bilinear transform is that it maps horizontal or vertical lines to

a straight lines in the transformed coordinates [83]. This means that a grid square

in the output image coordinates is mapped to a quadrangle in the input image

coordinates.

Given four points on a square grid (x0, y0), (x0 + 1, y + 1), (x0 + 1, y0 + 1), and

its corresponding bilinear transformed points (u1, v1), (u2, v2), (u3, v3), and (u4, v4),

we can obtain the bilinear transform as follows:

u = a1(x − x0) + a2(y − y0) + a3(x − x0)(y − y0) + u1

v = a5(x − x0) + a6(y − y0) + a7(x − x0)(y − y0) + v1

a1 = u2 − u1

a5 = v2 − v1

a2 = u3 − u1

a6 = v3 − v1
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a3 = u4 − a1 − a2 − u1

a7 = v4 − a5 − a6 − v1.

Forward Mapping using the Inverse Mapping Approximation

There are two methods we know, on approximating the forward mapping given

the piecewise bilinear transform. One method we did not implement is as follows:

For each input image quadrangle inverse mapped by the output image grid square,

we can determine what input image grid squares intersect with or are inside the input

image quadrangle. Each input image grid square keeps a list of all the quadrangles

it is inside or intersects with. Then, for a point (u, v) in the input image, we first

find the input image grid square that includes (u, v). We go through the list of

quadrangles that the input image grid square keeps and if we find a quadrangle that

includes the point (u, v), we can obtain the forward mapping (x, y) using a closed

form of the inverse bilinear transform [83].

The second approach, we implemented, does not use lists. Instead we use the

variable metric algorithm [85] to find the inverse with the following cost function

and its gradient:

f(x, y) = (U(x, y) − u)2 + (V (x, y) − v)2

∇f(x, y) = 2







(U(x, y) − u)(a1 + a3(y − y0)) + (V (x, y) − v)(a2 + a3(x − x0))

(U(x, y) − u)(a5 + a7(y − y0)) + (V (x, y) − v)(a6 + a7(x − x0)).







We used the Broyden-Fletcher-Goldfarb-Shanno (BFGS) variable metric algo-

rithm from the gnu gsl library [86] as our variable metric algorithm. To use the

variable metric algorithm, we need to choose an initial point (xo, yo). We make an

array aij that stores all the initial points for the input grid points. aij has the same

size as the input image. For each point (u, v) in the input image, we choose the initial

point as a⌊u⌋⌊v⌋ and based on the value of the initial point we can determine f(x,y),
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and ∇f(x, y). For each output image grid square, we draw a bilinear transformed

quadrangle on the vector array aij. We use the same bilinear transform used in the

inverse mapping. Quadrangles are drawn using the midpoint line algorithm [87].

The values of the quadrangle we draw with are the center point of the output image

grid square which is a vector not a scalar value. To fill inside the quadrangle, we

use the neighborhood mean shown in Figure 2.2. Using the neighborhood mean, we

also fill aij’s that are not inside any quadrangle generated by the output image grid

squares.

2.4 Experimental Results

For valumetric attacks, we chose histogram equalization and amplitude scaling

and implemented the algorithm given in [22] for the histogram equalization. The

histogram equalization images and their conditional mean images are shown in Fig-

ure 2.4. The amplitude scaling attack was implemented using the convolution filter

given in StirMark 4.0. We applied the amplitude scaling to the sample test im-

ages and acquired the amplitude scaled images and their conditional mean image,

as shown in Figure 2.5.

To show the effect of conditional mean compensation on PSNR for signal pro-

cessing attacks, which are not valumetric, we chose gaussian filtering, sharpening,

and JPEG compression. The implementation of these attacks are described in sub-

section 3.5.2. The Figure 2.6, Figure 2.7, and Figure 2.8 show the images and PSNR

values for gaussian filtering, sharpening, and JPEG compression, respectively. The

differences between the attacked image and conditional mean image are noted in

the figures (c). We can see that conditional mean images show artifacts which are

amplified in the difference image. This is due to the fact that our implementation of

conditional mean does not consider the relationship between adjacent pixels or the

frequency response of the human visual system. As we can see from the PSNR val-

ues, the conditional mean did not considerably change the PSNR values for attacks
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that are not valumetric attacks. This may be due to the fact that the three attacks

locally preserve DC values.

To see the effect of conditional mean compensation and error concealment on

pixel loss attacks, we chose cropping and row and column removal as our attacks.

Figure 2.9 shows the images and their PSNR using conditional mean (b) and error

concealment (c) for cropping attack with cropping factor 0.9 (a). Figure 2.10 shows

the images and PSNR values using conditional mean (b) and error concealment (c) for

column and row removal attack (a), where every 10th row and column are removed.

It is shown that the PSNR values for the conditional mean images are similar for

both attacks, which might be due to the effect of similar amount of pixels lost.

Comparing cropping with row and column removal, row and column removal is shown

to have better PSNR after compensation and this is because interpolation is usually

more accurate than extrapolation. When comparing conditional mean and error

concealment for cropping attack, results differ depending on the test image. PSNR

values for the conditional mean image turned out to be greater than that of error

concealment for the “fcc-door” test image. This might be due to the frame around

the “fcc-door” test image. On the other hand, error concealment compensation is

better for the “0115” test image, which might be due to the fact that the lost pixels

have similar characteristics to the pixels near the boundary of the cropped image.

In order to investigate the effect of conditional mean compensation and error

concealment on geometrical attacks, we selected zoom 25%, zoom 200%, 45 degree

rotation and local random bending as our attacks. We used StirMark 4.0 to imple-

ment the attacks. The results for zoom 25%, zoom 200%, 45 degree rotation and local

random bending are shown in Figure 2.11, Figure 2.12, Figure 2.13, and Figure 2.14.

It is shown that if we compensate a zoom 25% image, it degrades the image con-

siderably because we lose the high frequency components of an image. Figure 2.14

indicates that local random bending attack also includes pixel loss attacks due to

cropping. Because of the many iterations in the forward mapping approximation, it



42

PSNR 22.2dB PSNR 56.2dB

PSNR 17.5dB PSNR 54.7dB

(a) Attacked image (b) Conditional mean

Fig. 2.4. Images and their PSNR values after histogram equalization
attack: (a) is without compensation and (b) is with compensation
using a conditional mean.

took about 30 seconds on a Xeon 2.4 GHz computer for a 600x400 size test image

to compensate the local random bending attack.

2.5 Conclusion

In this chapter, we described a technique to measure fidelity in terms of MSE

for valumetric attacks including amplitude scaling and histogram equalization, pixel
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PSNR 12.4dB PSNR 52.1dB

PSNR 12.3dB PSNR 51.8dB

(a) Attacked image (b) Conditional mean

Fig. 2.5. Images and their PSNR values after amplitude scaling at-
tack with a factor of 9

16
: without compensation (a) and with com-

pensation using a conditional mean (b).
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PSNR 28.3dB PSNR 28.6dB

PSNR 35.3dB PSNR 35.5dB

(a) Attacked image (b) Conditional mean (c) Difference

Fig. 2.6. Images and their PSNR values after gaussian filter attack:
without compensation (a), compensation using a conditional mean
(b), and the difference image (c) between (a) and (b).
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PSNR 18.2dB PSNR 20.3dB

PSNR 24.8dB PSNR 27.0dB

(a) Attacked image (b) Conditional mean (c) Difference

Fig. 2.7. Images and their PSNR values after sharpening attack:
without compensation (a), with compensation using a conditional
mean (b), and the difference image (c) between (a) and (b).
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PSNR 34.1dB PSNR 34.1dB

PSNR 40.8dB PSNR 40.8dB

(a) Attacked image (b) Conditional mean (c) Difference

Fig. 2.8. Images and their PSNR values after JPEG Compression
(Q=70): without compensation (a), with compensation using a con-
ditional mean (b), and the difference image (c) between (a) and (b).
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PSNR 19.4dB PSNR 16.8dB

PSNR 22.4dB PSNR 32.6dB

(a) Attacked image (b) Conditional mean (c) Error concealment

Fig. 2.9. Compensated images and their PSNR values for cropping
attack with factor 0.9: cropped images (a), compensated by a con-
ditional mean (b), and compensated by error concealment (c).
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PSNR 19.5dB PSNR 29.6dB

PSNR 22.9dB PSNR 41.5dB

(a) Attacked image (b) Conditional mean (c) Error concealment

Fig. 2.10. Compensated images and their PSNR values for row and
column removal attack: every 10th row and column removed (a),
compensated by a conditional mean (b), and compensated by error
concealment (c).
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PSNR 21.6dB PSNR 21.5dB

PSNR 29.6dB PSNR 32.3dB

(a) Attacked image (b) Conditional mean (c) Error concealment

Fig. 2.11. Geometrically compensated images and their PSNR values
for 25% zoom out attack: zoomed out images (a), pixel loss compen-
sated by a conditional mean (b), and by error concealment (c).
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PSNR 38.3dB PSNR 38.2dB

PSNR 38.8dB PSNR 47.8dB

(a) Attacked image (b) Conditional mean (c) Error concealment

Fig. 2.12. Geometrically compensated images and their PSNR values
for 200% zoom in attack: zoomed in images (a), pixel loss compen-
sated by a conditional mean (b), and by error concealment (c).
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PSNR 32.1dB PSNR 32.1dB

PSNR 42.2dB PSNR 42.2dB

(a) Attacked image (b) Conditional mean (c) Error concealment

Fig. 2.13. Geometrically compensated images and their PSNR values
for 45 degrees rotate attack: rotated images (a), pixel loss compen-
sated by a conditional mean (b), and by error concealment (c).
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PSNR 7.4dB PSNR 23.6 dB PSNR 21.1dB

PSNR 15.6dB PSNR 29.3dB (c) PSNR 28.3dB

PSNR 24.8dB PSNR 30.9dB PSNR 41.2dB

(a) Attacked image (b) Conditional mean (c) Error concealment

Fig. 2.14. Geometrically compensated images and their PSNR values
for the local random bending attack: local random bending attacked
images (a), pixel loss compensated by a conditional mean (b) and by
error concealment (c).
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loss attacks including cropping, and row and column removal, and geometrical at-

tacks such as affine transform and local random bending. This technique uses the

assumption that attacker knows the attack and will use that information to invert

the attack. We gave some examples in previous sections where this assumption is

true. To measure fidelity of valumetric attacked images in terms of MSE, we used

conditional mean to compensate the attack. Using conditional mean, we can de-

crease the mean square error without affecting the pixel value order for valumetric

attacks. We need to extend conditional mean to consider the frequency component

of the image or correlation between adjacent pixels. For fidelity evaluation of pixel

loss attacks, we assumed that the attacker knows where the pixels were lost and will

use error concealment techniques to estimate the lost pixels. We compared error con-

cealment with using only conditional mean. We only used a simple neighborhood

mean to estimate the lost pixel values. Neighborhood mean seem to work better

than conditional mean when the lost pixels have similar characteristics to the near

preserved pixels. One suggestion to determine the MSE value of the pixel loss at-

tacked image is to choose the minimum MSE for using error concealment and using

conditional mean. To further reduce the MSE, we need to investigate different error

concealment techniques such as multiresolution error concealment techniques. For

geometrical attacks, we assumed that attacker knows the attack and will invert the

geometrical attack. To invert the local random bending attack, we approximated the

inverse mapping using the bilinear transform and found the forward mapping using

a conjugate gradient method. To improve speed for forward mapping, we could use

a bigger square size sacrificing the accuracy of the registration or use information

from previously mapped pixels to better estimate the initial points.
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3. WATERMARK EVALUATION

3.1 Introduction

As we have seen in Chapter 1, watermark designers design a watermark from vari-

ous methodologies and algorithms [6]. While no technique exists which is better than

others from all points of view, a comparative analysis of the techniques developed

until now is very important. Such an analysis may be useful to show the advantages

and disadvantages of different algorithms, to guide system designers in the choice of

the most suitable technique for a given application, to guide research towards new

more efficient schemes. This requires an watermark evaluation framework. Previous

watermark evaluation frame work include StirMark [51,52,60], Checkmark [54] and

Optimark [62].

StirMark [51,52,60] is the most popular reference benchmark for still image wa-

termark evaluation. Images are watermarked with the strongest strength parameter

α that is below a fidelity threshold. Threshold is chosen as PSNR 38 dB. Then a set

of attacks is applied to the watermarked image, to look whether the watermark sur-

vives. Watermark detection and decoding is only treated successful when the whole

message is recovered. The benchmark score is produced by assigning 1 to detection

and 0 to non-detection. The average score is then computed for each class of attacks

and the overall score is obtained by averaging partial scores. What StirMark did not

consider was the false probability rate for using different keys and unwatermarked

images.

Checkmark [54] includes many attacks that are not included in StirMark such

as image denoising, wavelet compression, new geometrical attack, etc. Among 400

attacks in Checkmark, only 100 attacks are from StirMark. It also uses perceptual

metric such as the Watson metric [26] or the weighted mask SNR(WMPSNR).
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Optimark [62] considers the false positive error probability by using the receiver

operating characteristic (ROC). It generates the ROC curve by assuming the posi-

tive detection probability and the negative detection error probability are Gaussian

distributed. It also considers varying the message and keys for watermark evaluation.

For performance measures, receiver operating characteristic (ROC), bit error rate

(BER), and message error rate are generally used in watermark evaluation [5,8,56].

Bit Error Rate (BER) is defined as the ratio of the wrongly extracted bits by the

watermark decoder to the total number of embedded bits. To display evaluation

results, the use of “BER versus visual quality,” “BER versus attack,” “attack versus

visual quality” for a fixed BER, was proposed in [56]. In watermark evaluation, it

is important to summarize the results to facilitate the comparison of algorithms.

For BER, the results are summarized using message error rate or average bit error

rate [56]. Message error rate is defined as the number of correctly decoded messages

to the total number of watermarked image tested. For fidelity metric summarization,

some iterate the embedding strength for each image to meet a fidelity requirement

threshold [2,56,57,62]. To summarize ROC, area under the curve (AUC), equal error

rate, false negative rate for a fixed false positive probability are used [56,62].

In 3.4, we will define and describe the watermark evaluation procedure we will

use in this dissertation. We will evaluate watermark performance in terms of BER

and Receiver Operating Characteristics (ROC). We will measure fidelity by PSNR.

ROC analysis is described in section 3.2. We will also define new summary statistics

for BER and PSNR using the Taguchi loss function [67] in subsection 3.4.1.

3.2 ROC Analysis

Given any image, a watermark detector has to decide if the given image is wa-

termarked [56]. This can be seen as a binary hypothesis testing in that the detector

has to decide between the alternative hypothesis (the image is watermarked) and the

null hypothesis (the image is not watermarked). In binary hypothesis testing, two
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kinds of errors can occur: accepting the alternative hypothesis, when the null hy-

pothesis is correct and accepting the null hypothesis when the alternative hypothesis

is true. The first error is often called false positive and the second error is called false

negative. False positive probability is the probability that the watermark detector

will detect a watermark in an unwatermarked image. We estimate the false positive

probability by the false positive rate. The false positive rate FPR is defined as

FPR =
FP

TN + FP

, where FP is the number of false positives, and TN is the number of true negatives.

False negative probability is the probability that the detector will detect a watermark

in an watermarked image. We estimate the false negative probability by the false

negative rate. The false negative rate FNR is defined as

FNR =
FN

TP + FN

, where FN is the number of false negatives, and TP is the number of true positives.

We also define true negative rate TNR = 1 − FPR, and true positive rate TPR =

1 − FNR.

ROC graphs is used in signal detection to show the tradeoff between true positive

rates and false alarm rates [88]. Usually in hypothesis testing, a test statistic is

compared against a threshold to decide for one or the other hypothesis. ROC graphs

are generated by repeating the test using varying decision thresholds. The ROC

graph shows the relation between the true positive rate (TPR) on the y-axis and the

false positive rate (FPR) on the x-axis. It is proposed in [56] that the same number

of watermarked and non-watermarked should be tested.

An ROC curve is a two-dimensional description of detector performance. To

compare different watermark detectors, we may want to summarize the ROC to a

single value representing expected performance. As suggested in [56], we can use the

integral under the curve to summarize the ROC. This is called the area under the

curve (AUC) [88]. Since the AUC of an optimal detector will be 1.0, the value of a
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real detector will always be between 0 and 1.0. The AUC has an important statistical

property [88] that it is an estimate of the probability that the detector will rank a

randomly chosen watermarked image higher than a randomly chosen unwatermarked

image. It is possible for a high-AUC detector to perform worse in a specific region

than a low-AUC detector. But in practice, the AUC performs very well and is often

used when a general measure of predictiveness is desired [88]. It is also useful to

compare different watermarking detectors when the desired false alarm rate is not

given. To obtain AUC, we use the algorithm described in [88].

3.3 Reliability Testing

Most of the watermark evaluation methods [2,54,56–58] fit the reliability testing

framework. We define reliability as the probability that a watermarking algorithm

will correctly detect or decode a watermark for a specified fidelity requirement under

a given set of attacks and images. In reliability testing, a system is evaluated in

terms of quality, load, capacity and performance [67]. We define quality as the

fidelity of watermarked images produced by an watermarking algorithm and attacks.

Measuring fidelity by the compensated mean square error (MSE) was described in

chapter 2. We define capacity as the maximum data payload or minimum embedding

strength that satisfies a certain error criteria. Then, we define load to be the actual

embedding strength and data payload of a watermark. Because, capacity usually

exceeds watermarking requirements, we will not consider capacity here. We described

various performance measures used in watermark evaluation at the introduction of

this chapter. In a reliability testing framework, we vary the load and measure quality

and performance for different attacks and images and see if the performance meets

the required criteria.
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3.4 Watermark Evaluation Procedure

Watermark users usually fix the embedding strength α and threshold T , where the

fixed values depend on the application of the watermarking system. The embedding

Strength α depends on the fidelity requirement and the threshold T depends on the

detection probability requirement of the application.

The input of a benchmarking system are the watermark embedding and the

detection-decoding software and the output are the robustness characteristics. When

evaluating watermarking algorithms, we fix the embedding strength and data payload

for each algorithm and vary the images, keys and messages. This is the approach

used by StirMark [51,52,89] and Optimark [62,90]. Although, there is an option to

iterate the embedding strength α such that the PSNR of each watermarked image

is within +/- 1 PSNR of the target PSNR in Optimark, this will not be true for all

watermarking algorithms because of processing time requirements.

We adopted a watermark evaluation procedure similar to Optimark [62,90]. The

benchmarking system’s parameters are [62,90]:

• a set of images I = {Ii|i = 1 . . . NI}

• a set of attacks A = {Aj|j = 1 . . . NA}

• NK : Number of keys we use for each image

• a set of fidelity specifications Q = {Ql|l = 1 . . . NQ}

From this, a set of NI × NK watermarked images for an attack Aj and fidelity

specification Ql, where fidelity specification is described below. For the message,

we use the bits generated by a pseudo binary random number generator with the

current time as the seed. To test as many keys as possible, we arbitrary use keys k =

1, . . . NI×NK to test the watermarking algorithm and use keys (i−1)NK+1, . . . , iNK

for each test image Ii, where i = 1, . . . , NI . We will use PSNR as an image fidelity

measure and Bit Error Rate (BER) and ROC curve with and without attacks as a

measure of robustness in this paper. Let’s define PSNRk, k = 1, . . . , NKNI to be the
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PSNR of the kth watermarked image with no attack. For false positive probability,

we measure the detection statistics of unwatermarked images.

3.4.1 BER and PSNR Summarization

Fidelity specification Ql for an application is usually defined in terms of the

specification limit. For example, we could define average PSNR as

Average(PSNR) =
1

NKNI

∑

k

PSNRk

and require the average PSNR be greater than LSL=45dB, where LSL is the lower

specification limit. Or we could define percentile as

Percentile(PSNR, LSL) =
1

NKNI

∑

k

I(PSNRk ≥ LSL)

where I is the indicator function and then require Percentile(PSNR, 40dB) > 99%,

where 99% is the yield requirement. Summarizing PSNR of watermarked images us-

ing the average PSNR or percentile has its disadvantages. Figure 3.1 is an example

that shows the disadvantage of specifying the fidelity requirements in terms of average

PSNR. If we require Average(PSNR) > LSL for an watermarking algorithm, both

algorithm A and B satisfy the fidelity specification but algorithm B produces more

watermarked images with relatively low PSNR values near the left tail of the distribu-

tion. Figure 3.2 is an example that shows the disadvantage of specifying the fidelity

requirements in terms of percentile. If we require Percentile(PSNR, LSL) = 1, both

algorithms do not produce watermarked images that have a PSNR value lower than

LSL but algorithm A produces more watermarked images with relatively low PSNR

images near LSL. A compromise between average and percentile is to specify the

fidelity requirements in terms of Taguchi loss function.

For fair benchmarking, one has to ensure that the methods under investigation

are tested under comparable conditions [56]. The shortcomings of using only the

mean or percentile to define product requirements prompted Taguchi to formulate

a continuous loss function [67] that more closely represents the quality degradation
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associated with the increased deviation of x, one of the many parameters used for

product specification, from the optimal parameter value τ . The advantage of the

Taguchi loss function over average and percentile is that it considers both the mean

and variance of the distribution. The Taguchi method was used in [34] to build

better watermarking algorithms and in [35] to select optimal parameters for video

compression. Since PSNR and BER is defined for each watermarked image, we can

define the fidelity and robustness requirements using the Taguchi loss function.

For a parameter x, and the optimal parameter value τ , the loss function is defined

as [67]:

L(x) = k(x − τ)2

, where the coefficient k is determined by each application. For a random variable

X with mean µ and variance σ2, we obtain

E[L(X)] = k(σ2 + (µ − τ)2).

For many situations where a parameter value should be minimized, only an Upper

Specification Limit (USL) is set. For these situations, Taguchi defines the smaller-

is-better loss function as

L(x) = kx2,

, with k determined by equating the loss function to the quality loss at the upper

specification limit.

For performance characteristics where larger-is-better, only the Lower Specifica-

tion Limit (LSL) is designated. The Taguchi loss function is then

L(x) = kx−2,

with k determined by equating the loss function to the quality loss at the lower

specification limit.
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Fig. 3.1. An example showing the shortcomings of using average
PSNR for a fidelity specification.

Since PSNR is a larger-is-better measure and BER is a smaller-is-better measure,

we define a pseudo PSNR and a pseudo BER as follows using the Taguchi loss

function as follows:

PSNR′ = (
1

NINK

∑

k

(
1

PSNRk

)2)−
1

2 .

BER
′

= (
1

NINK

∑

k

(BERk)
2)

1

2 .

We choose PSNR′ as fidelity summary statistic and BER′ and AUC of the ROC

curve as a robustness summary statistic for a watermarking technique for a set of

images , I, keys=1, . . . , NINK for a given attack Aj and fidelity specification Ql.

3.5 Example Evaluation Setting

For a base test setting, we set the lower specification limit for PSNR′ as 45dB.

We chose the data payload Nd to be 16 bits. This specification can be used as

a specification for “fingerprinting” applications [91]. We tested NK=20 for each

image for no attacks and false positives. We test NK=2 keys for each image for
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Fig. 3.2. An example showing the shortcomings of using percentile
for a fidelity specification.
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other attacks. For the image test set I, we use WET image database described in

subsection 4.2.4. It has NI = 1301 images.

3.5.1 Watermarking Algorithms

Let mn=0, 1, (n = 1, . . . , Nm) be the bits we want to embed. Xn is the wa-

termarked vector, Sn be the original host vector or image, Wn is a normalized

watermark vector (‖ Wn ‖= 1). We define α as the scaling factor. For α, we use

a fixed value for each test that satisfies the fidelity requirement. We find α using

the bisection method [85]. In this experiment, we generate a normalized watermark

vector by normalizing an i.i.d. Gaussian Random Vector with distribution N(0, 1).

We define (Xn)i be the ith element of Xn.

We embed multiple bits using Spatial Division Multiplexing. We divide the image

into 8x8 blocks and apply the Discrete Cosine Transform (DCT) to each block [92].

We evenly and randomly distribute each blocks to form Nm groups. We construct

an original host vector Sn by row concatenating all the blocks in the nth group

excluding some frequency components. A frequency component selection scheme

in DCT domain is used for embedding to reduce watermark visibility as shown in

Figure 3.3. This is to reduce the visibility of the watermark in an image [6].

As test algorithms, we choose three watermarking algorithms. Each algorithm

is described below. Each uses a Gaussian Watermark Pattern. Each algorithm is a

blind watermarking algorithm, that is it does not require the original host image to

detect the watermark. Summary of each algorithm in terms of embedding, decoding

and detection is shown in Table 3.1, Table 3.2 and Table 3.3. As shown in Table 3.2,

the three algorithms use the same decoding scheme.

Additive Spread Spectrum Watermarking (ASSW)

In many watermarking schemes, Additive Spread Spectrum Watermarking (ASSW)

is the modulation technique used to embed the watermark [93] because of fidelity
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Fig. 3.3. A frequency component selection scheme in DCT domain
for embedding to reduce watermark visibility.
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Table 3.1
Watermark embedding for the three (ASSW, MSSW, ISSW) test algorithms.

Name Embedding

ASSW Xn = Sn + α(2mn − 1)Wn

MSSW (Xn)i = (Sn)i + α(2mn − 1)|(Sn)i|(Wn)i

ISSW Xn = Sn + (α(2mn − 1) − Sn · Wn)Wn

requirements. In the simplest scheme, the bits composing the desired message are

modulated by an spread spectrum sequence and added to the signal. Additive Spread

Spectrum used here is a type of blind embedder [29]. The blind embedder is an em-

bedder that ignores the host signal. In more elaborate schemes, differences in the

host signal may be explored in order to reduce subjective distortion introduced by

the watermark.

Multiplicative Spread Spectrum Watermarking (MSSW)

Multiplicative Spread Spectrum Watermarking of [94] is based on the non-blind

multiplicative spread spectrum algorithm [1]. This method is based on the assump-

tion that a watermark must be placed in perceptually significant components of a

signal if it is to be robust to common signal distortions and malicious attacks.

Improved Spread Spectrum Watermarking (ISSW)

Improved Spread Spectrum Watermarking (ISSW) [93] removes the host signal

interference in ASSW, producing a dramatic improvement in the quality of the wa-

termarking process. The gains for the ISSW are similar to those obtained by Quan-

tization Index Modulation (QIM) [38] for Gaussian noise attacks, but the method

does not suffer from amplitude scaling which QIM is very sensitive.
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Table 3.2
Watermark decoding for the three (ASSW, MSSW, ISSW) test algorithms.

Name Decoding

ASSW m̂n =











1 if Yn · Wn > 0

0 otherwise

MSSW m̂n =











1 if Yn · Wn > 0

0 otherwise

ISSW m̂n =











1 if Yn · Wn > 0

0 otherwise

Table 3.3
Watermark detection for the three (ASSW, MSSW, ISSW) test algorithms.

Name Detection

ASSW Watermark Present, if
∑

n
(2m̂n − 1)Yn · Wn > T

Watermark Not Present, otherwise

MSSW Watermark Present, if

∑

n

(2m̂n−1)Yn·Wn

∑

n

∑

i
|(Yn)i| > T

Watermark Not Present, otherwise

ISSW Watermark Present, if
∑

n
(2m̂n − 1)Yn · Wn > T

Watermark Not Present, otherwise
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3.5.2 Attacks

We use StirMark [51,52,60] 4.0 software for our attacks except histogram equaliza-

tion which is an implementation of the described in [22]. We evaluated the algorithms

for the following attacks:

• Gaussian filtering (blur):















1 2 1

2 4 2

1 2 1















/16

• Simple sharpening:















0 −1 0

−1 5 −1

0 −1 0















• JPEG [25] compression with quality factor 70

• Amplitude scaling with scaling factor 9
16

• Histogram equalization

We also measured performance for quality factor 50, 30, 10 to see the effect

quality factor has on performance for JPEG attacks. StirMark 4.0 uses the software

from the independent JPEG group [95].

3.6 Experimental Results

We define PNSRcm as the PSNR obtained from the conditional mean image

described in subsection 2.3.1. Figure 3.4 shows the 1/PSNR distribution of water-

marked images for the 3 algorithms. Figure 3.5 shows the watermarked images for

PSNR′ = 35dB. The original image is shown in Figure 2.1. Table 3.4 shows the

average PSNR, harmonic mean PSNR, PSNR′ values. We define harmonic mean

PSNR as:

Harmonic(PSNR) = (
1

NINK

∑

k

(
1

PSNRk

))−1.
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Table 3.5 shows the results for the conditional mean PSNR. For the histogram equal-

ization and amplitude scaling, it give a higher value than PSNR. Table 3.6 shows

the bit error rates for different attacks. It shows that ISSW is always better than

the ASSW in terms of bit error rate for the attacks selected except the histogram

equalization. MSSW is better than ISSW and ASSW for the JPEG attack. It also

shows that the sharpening attack lowered the bit error rate for all algorithms even

though the images are degraded more than other attacks. Table 3.7 shows the 1-AUC

results. It shows that 1-AUC values for ASSW and ISSW are similar and MSSW is

better that the other two for JPEG and Gaussian filtering. Figure 3.6 shows the ROC

results for false positives using unwatermarked images and false positives using dif-

ferent keys. In our test algorithms, it shows similar results. As shown in Figure 3.7,

MSSW seems to be better than other algorithms in terms of false probability and

false negative probability for attacks that preserve the low frequency components.

This is due to the fact that the test images we use has energy concentrated in the low

frequency components and MSSW embeds the watermark in the significant compo-

nents of the images. Figure 3.8 shows the performance results for different payload

and JPEG attack. As expected, the performance decreased when payload increased.

Figure 3.9 shows the results for different JPEG attacks. It shows that performance

of MSSW does not change as much compared to other two algorithms. Figure 3.10

shows the results for various embedding strength. It shows that ASSW and ISSW

can have better performance than MSSW by sacrificing fidelity.

3.7 Conclusion

Robust image watermarks are image watermarks designed to survive attacks that

include signal processing and spatial transformations. Most of the robust water-

mark evaluation methods evaluate watermarks in terms of load (payload, embedding

strength), capacity (maximum payload, minimum embedding strength), quality (fi-

delity of the image), and performance. We evaluated three watermark algorithms by
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Fig. 3.4. The histogram (50 bins) of 1/PSNR values for the three
test agorithms (ASSW, MSSW, ISSW).

Table 3.4
The summary of PSNR values (PSNR′, Harmonic mean, Average)
of three algorithms (ASSW, MSSW, ISSW) for different attacks.

Attacks No Attack Gaussian Filtering Sharpening

ASSW (45.0,45.0,45.0) (31.6,32.4,33.5) (21.9,22.2,22.8)

MSSW (45.0,45.4,∞) (31.6,32.3,33.5) (22.5,22.9,23.8)

ISSW (45.0,45.0,45.0) (31.6,32.4,33.5) (21.9,22.2,22.8)

Attacks JPEG Amplitude Scaling Histogram Equalization

ASSW (39.0,39.3,39.8) (12.4,12.7,13.3) (13.3,14.2,16.1)

MSSW (38.1,38.4,38.9) (12.4,12.7,13.3) (13.0,14.3,16.3)

ISSW (39.0,39.3,39.8) (12.4,12.7,13.3) (13.3,14.2,16.1)
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ASSW(PSNR=34.8dB) ISSW(PSNR=34.8dB)

MSSW(PSNR=41.8dB)

Fig. 3.5. Watermarked images and PSNR values of the ”0115” test
image using three test algorithms (ASSW, ISSW, MSSW).
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Table 3.5
The summary of PSNRcm values (PSNR′

cm, Harmonic mean, Aver-
age) of three algorithms (ASSW, MSSW, ISSW) for different attacks.

Attacks No Attack Gaussian Filtering Sharpening

ASSW (45.5,45.6,∞) (32.6,33.2,34.1) (24.1,24.3,24.7)

MSSW (45.3,45.7,∞) (32.5,33.1,34.0) (24.7,25.0,25.6)

ISSW (45.5,45.6,∞) (32.6,33.2,34.1) (24.1,24.3,24.7)

Attacks JPEG Amplitude Scaling Histogram Equalization

ASSW (39.3,39.6,∞) (44.8,44.9,∞) (44.5,44.5,44.5)

MSSW (38.5,38.8,∞) (44.3,44.5,∞) (44.3,44.5,∞)

ISSW (39.3,39.6,∞) (44.8,44.9,∞) (44.5,44.5,44.5)

Table 3.6
The summary of BER values (BER′, Average) of three algorithms
(ASSW, MSSW, ISSW) for different attacks.

Attacks No Attack Gaussian Filtering Sharpening

ASSW (1.8e-2,1.4e-3) (4.9e-2,1.1-e2) (1.3e-2,4.8e-4)

MSSW (3.3e-2,4.3e-3) (9.6e-2,4.2e-2) (3.3e-2,4.4e-3)

ISSW (8.1e-3,2.8e-4) (3.9e-2,6.7e-3) (1.3e-2,4.6e-4)

Attacks JPEG Amplitude Scaling Histogram Equalization

ASSW (7.6e-2,2.4e-2) (2.2e-2,2.0e-3) (1.2e-3,2.4e-5)

MSSW (5.1e-2,1.2e-2) (3.3e-2,4.3e-3) (3.2e-2,3.3e-3)

ISSW (6.4e-2,1.7e-2) (1.1e-2,4.6e-4) (9.7e-2,4.6e-4)
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Table 3.7
The 1-AUC (area under the curve) results of three test algorithms
(ASSW, MSSW, ISSW) for different attacks.

Attacks Different Key No Attack Gaussian Filtering Sharpening

ASSW 1.01e-3 1.09e-3 2.67e-2 1.33e-7

MSSW 3.19e-3 3.24e-3 6.24e-3 1.12e-3

ISSW 1.01e-3 1.11e-3 2.71e-2 4.28e-7

Attacks JPEG Amplitude Scaling Histogram Equalization

ASSW 5.90e-2 3.64e-3 2.82e-5

MSSW 8.44e-3 3.70e-3 6.47e-3

ISSW 6.06e-2 3.68e-3 2.96e-5
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Fig. 3.6. The receiver operating characteristics (ROC) for three test
algorithms (ASSW, MSSW, ISSW) without attacks, using false pos-
itive results from unwatermarked images (a) and different keys (b).
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Fig. 3.7. The receiver operating characteristics (ROC) for three test
algorithms (ASSW, MSSW, ISSW) for different attacks.
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Fig. 3.8. The 1-AUC and BER’ results of three test algo-
rithms (ASSW, MSSW, ISSW) for different payloads for JPEG at-
tack(Q=70).
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varying the embedding strength and payload and measuring the performance and fi-

delity for different attacks and images. We measured the performance using bit error

rate (BER) and receiver operating characteristic (ROC) and fidelity using PSNR of

the conditional mean image. One important property of evaluation is summarization

and to summarize PSNR and BER results we used the Taguchi loss function which

considers both the mean and variance. To summarize ROC, we used area under the

curve (AUC). Even from the limited results we obtained, evaluation using actual

images and attacks showed some characteristics of the implemented watermarking

algorithms that would be hard to predict using theoretical models. For future work,

we need a method to assign a robustness score to a watermarking technique based

on the requirements of a particular application. One method is to assign different

importance to the bit error rate, the false negative probability for the false positive

probability required by the application and attacks and combine in them in a manner

that is suitable to that application. To assign different importance, we would need

a better understanding of the application requirements.
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4. WATERMARK BENCHMARKING SYSTEM

4.1 Introduction

The definition from online Merriam-Webster Online Dictionary [96] states that a

benchmark is “a standardized problem or test that serves as a basis for evaluation or

comparison.” There are widely used computer benchmarks used in the industry. A

computer benchmark is typically a computer program that performs a strictly defined

set of operations (a workload) and returns some form of result (a metric) describing

how the tested computer performed. Computer benchmark metrics usually measure

speed (how fast was the workload completed) or throughput (how many workloads

per unit time were measured).

It is measured against a reference speed or throughput. Running the same com-

puter benchmark on multiple computers allows a comparison to be made. Ideally,

the best comparison test for systems would be your own application with your own

workload. Unfortunately, it is often very difficult to get a wide base of reliable,

repeatable and comparable measurements for comparisons of different systems on

your own application with your own workload. This might be due to time, money,

confidentiality, or other constraints.

There exists widely used benchmarks in the computer industry. SPEC [97] is

an acronym for the Standard Performance Evaluation Corporation. SPEC designed

SPEC CPU2000 to provide a comparative measure of compute intensive performance

across the widest practical range of hardware. This resulted in source code bench-

marks developed from real user applications. These benchmarks are dependent on

the processor, memory and compiler on the tested system. It consists of 12 integer

programs and 14 floating-point programs. The basic reason behind SPEC’s success

is that all parts of the market profit from having a technically well-respected and
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socially well-trusted “measuring stick” available that allows comparison of different

systems for a certain purpose [61].

EEMBC [98], the Embedded Microprocessor Benchmark Consortium, was formed

in 1997 to develop meaningful performance benchmarks for processors and compilers

in embedded applications. EEMBC benchmarks have become an industry standard

for evaluating the capabilities of embedded processors and compilers according to ob-

jective, clearly-defined, application-based criteria. It evaluates embedded processors

in 6 areas: telecom, office automation, consumer, automotive/industrial, networking

and microcontroller.

4.1.1 Current Still Image Watermark Benchmarks

As shown in chapter 1 watermark designers design watermark algorithms using

various techniques. The role of benchmarking of watermarking is to provide a fair

and automated evaluation of these techniques. While a significant portion of the

community’s effort has gone into proposing and in a few instances implementing

attacks against different watermark algorithms, only StirMark [51, 52, 60] has been

accepted by the community at large.

StirMark

StirMark [51, 52, 60] was originally written in 1997, and has been continually

enhanced with new techniques. The first version of StirMark was published as a

generic tool for simple robustness testing of image watermarking algorithms. It

introduced random bilinear geometric distortions to de-synchronize watermarking

algorithms. Then several versions followed improving the original attack but also

introducing a longer lists of tests. One of the ambitions of StirMark is to provide a

single tool that will be able to test different kinds of media such as images, sounds and

videos. The project is being written using the C++ language to take full advantage

of the inheritance and polymorphism features of an object-oriented language. For
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the Watermarking scheme functions, it uses a dynamic library provided by the user.

You can write a evaluation profile in the form of Windows INI files.

Stirmark is currently developing a public automated web-based evaluation ser-

vice for watermarking schemes [60, 99]. The features of the StirMark benchmark

evaluation service are

• Simple interface with watermarking libraries.

• Takes into account the application of the watermarking scheme by proposing

different evaluation profiles (tests and set of images) and strengths.

• Allows client to submit libraries for using Windows dll’s.

• Ease of use: The client sends a library which follows a general interface to be

evaluated and specifies the evaluation profile and level of assurance to be used.

The StirMark Benchmark service automatically starts hundreds of tests on the

library using its library of images. As soon as the test are finished the results

are sent to the client and may later be published on the project website.

• All evaluation procedures, profiles and code are publicly available and available

for download.

Certimark

The Certimark [61] Consortium consisted of 15 partners from European industry

and academia. The consortium was developing a benchmark suite that will enable

its users to evaluate digital watermarking technologies. The project started in May

2000 and ended in July 2002. Certimark benchmark uses XML schema as the format

for all control and result information as they support the required flexibility and

modularity with regard to the design of data structures. The Certimark benchmark

supports still images and a limited set of professional-quality video clips. It runs

on a web-based platform, with the server currently restricted to Windows NT/2000,
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while the client running the web browser can be any web browser. The objectives of

Certimark [100] are

• To design, develop and publish a complete benchmark suite for watermarking

technologies within promising application scenarios.

• To make this benchmark suite a reference tool both for technology suppliers

and for technology customer within promising application scenarios.

• To set up a certification process for watermarking algorithms.

• To concentrate research on pending key issues in watermarking for protection

of still pictures and low bit rate video over the Internet.

The benchmark can be presented as a suite of modules as shown in Figure 4.1, for

which interfaces will be defined both towards the previous and the next module in

the pipeline and to the operator of the benchmark. The modules in Certimark are

defined as follows:

• Image source, delivering the content to be watermarked, according to categories

of contents and to parameters defined for a particular benchmark session.

• SUT (”System Under Test”) watermark embedder, provided by the tester, who

can define some parameters that control SUT operation.

• Attack module, the first operative module in the benchmark, simulating all

sorts of attacks on the watermark (intentional and non-intentional) resulting in

possible loss of watermark readability. Can perform several sequential attacks.

• SUT watermark decoder, provided by the tester. Two main functions are

achieved here, detection of the watermark and extraction of the payload for

monitoring purposes.

• Comparator module, where the payload is compared to the original values in-

serted, according to parameters that are defined for the benchmarking purpose

in relation with the monitoring tasks.
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Fig. 4.1. The Certimark architecture for watermark evaluation.

• Process-dependent Metrics evaluation module, where metrics concerning visual

quality, complexity, etc. are generated (raw data) and put into form (e.g.,

preliminary computations before plotting curves).

• Report writer is the module where all results are taken into account to write

a benchmark report, with tables and graphics. This module is out of the run;

it is called only once at the very end of a benchmarking session to compile the

results.

• Result and Certificate is the module where Certimark knowledge is taken into

account: results (curves. . . ) are replaced between performance specifications

of typical applications. This module is called after the report writer module.

Checkmark

Checkmark [44,54] is a benchmarking suite for digital watermarking technologies.

Checkmark has many attacks that are not included in StirMark. The attacks include

estimation based techniques to derive the optimal attacks for a given watermark

distribution. The attacks in Checkmark not in StirMark include: denoising (ML and

MAP), wavelet compression, watermark copy attack, active desynchronization, new

geometrical attacks (projective transforms, collage attacks, random line removal)

and copy attacks. Among 400 attacks in Checkmark, only 100 attacks are from
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StirMark version 3.1. It also uses the Watson metric to measure the quality of

images which is not included in StirMark. Running on MATLAB under UNIX and

Windows, it provides efficient and effective tools to evaluate and rate watermarking

technologies. Moreover, it takes the watermark application into account which means

that the scores from individual attacks are weighted according to their importance

for a given watermark usage. It uses Java for parsing XML files for the generation

of applications and parsing of results. Currently, Checkmark only evaluates false

negative probabilities for every attacks.

Optimark

Optimark [62] can be installed in any machine running Windows and it does not

provide the source code. Main features of Optimark are

• Graphical user interface.

• Detection and decoding performance evaluation using multiple trials utilizing

different watermarking keys and messages.

• Evaluation of the following detection performance metrics: For watermark

detectors that provide a float output, i.e., the value of the test statistic used

for detection:

– Receiver Operating Characteristic curves (ROC), i.e. plots of the proba-

bility of false alarm versus the probability of false rejection.

– Probability of false positive for a fixed, user defined, probability of false

negative.

– Probability of false negative for a fixed, user defined, probability of false

positive.
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• For watermark detectors that provide a binary output, i.e. a value that states

whether the watermark has been detected or not: Probabilities of false positive

and false negative.

• Evaluation of the following decoding performance metrics, for algorithms that

allow for message encoding (multiple bit algorithms): Bit error rate, and per-

centage (probability) of perfectly decoded messages.

• Evaluation of the mean embedding and detection time.

• Evaluation of the data payload (for multiple bit algorithms).

• Evaluation of the algorithm breakdown limit for a certain attack and a certain

performance criterion, i.e., evaluation of the attack severity where algorithm

performance exceeds (or falls below) a certain limit.

• Result summarization in multiple levels using a set of user defined weights on

the selected attacks and images.

• Option for both user defined and preset benchmarking sessions.

4.2 Watermark Evaluation Testbed

To facilitate the development of a universally adopted benchmark, we are devel-

oping at Purdue University a web-based system that will allow users to evaluate the

performance of watermarking techniques. This system consists of reference software

that includes both watermark embedders and watermark detectors, attack scenarios,

evaluation modules and a large image database. The ultimate goal of the current

work is to develop a platform that one can use to test the performance of water-

marking methods and obtain fair, reproducible comparisons of the results. We feel

that this work will greatly stimulate new research in watermarking and data hiding

by allowing one to demonstrate how new techniques are moving forward the state

of the art. We will refer to this system as the Watermark Evaluation Testbed or
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Fig. 4.2. The architecture of watermark evaluation testbed (WET ).

WET [58, 69]. Architecture of the testbed is shown in Figure 4.2. WET consists

of three major components: the front end, the algorithm modules, and the image

database. Each component will be described below. Currently, WET runs on a 2.4

GHz Xeon dual processor computer using the Fedora 2.0 operating system1.

4.2.1 Watermarking Benchmark Considerations

To design a watermarking evaluation system we have to consider the users, what

we are going to evaluate, and how we are going to show the results.

1The system is located at http://www.datahiding.org. To obtain access to use WET contact
wetbug@ecn.purdue.edu.
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Benchmark Users

It is useful to make a distinction with regard to its users. They have somewhat

different requirements as to what the benchmark should deliver, in particular in the

analysis, reporting and certification of results.

Choice Makers

These users employ the benchmark to compare a set of watermarking algorithms

for their appropriateness in a certain application scenario. Thus, the appropriate

metric are derived from satisfying application requirements, and certified results

may be required if a choice maker does not want to run the benchmark himself.

From this point of view, the platform must provide a GUI that allows herself to

specify the needs and requirements. To avoid user confusion, templates of typical

applications should be provided, and the user must be also able to modify only those

parameters he wants to study.

Developers

Developers use the benchmark to compare different versions of an algorithm, or

different settings of its parameters, for improvements of its performance: robustness,

error rates, imperceptibility, or execution speed. To this class of users, the internal

interface of the benchmark is important, as they need to insert their watermarking

algorithm into the platform. Thus, this interface should be as simple and as easy to

use as possible. Once a watermarking algorithm has been successfully integrated into

the platform, a developer might use it in a similar way to a choice maker, performing

various runs with different image, different parameters and different versions of the

watermarking algorithm, or he may use the raw results to perform tailored analysis

supporting his development goals.
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Students

Student is someone new to watermarking and wants to experiment with water-

marking techniques. This user will access the basic reference software and evaluation

tools to learn about watermarking.

Benchmark Design

The benchmark design has to manage the benchmark’s complexity, and provide

room for expansion, especially with a view to support watermarking algorithms for

new types of multimedia data. Because a benchmark has to simulate a complete wa-

termarking chain as shown in Figure 1.1, we can assume that data will pass through

this chain more than once, with various parameters. The data flow within the bench-

mark can therefore considered to be a pipeline. Nevertheless, as the user needs to

supply parts of this pipeline (i.e., the watermarking algorithms that are to be tested),

we need to make the benchmark modular so that pieces can be easily exchanged.

Every basic operation that is part of the classic watermarking chain needs to be

separated from the others into one isolated module. These modules will obviously

comply with a general detailed interface. Modularity provides several crucial ad-

vantages: modules can be exchanged easily; given well-defined interfaces, they can

be developed separately, and they can be upgraded when needed. Although this

flexibility allows a good understanding of every separate part of the benchmark, one

has to make them interface correctly together with some sort consistency all along

the benchmarking process. This implies that every module has to conform to cer-

tain rules for interoperability, and that the benchmark platform needs to guarantee

control and integrity of the benchmark as a whole.
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Evaluation Profile

The input of a benchmarking system is the watermark embedding and the detection-

decoding software and its outputs are performance values and plots that illustrate

the performance of the watermarking system under test against various attacks. The

benchmarking system’s parameters are

• Image data set: The images that should be used in the benchmarking system

should vary in size and frequency content, since these two factors affect the

watermarking system performance. Moreover, the types of images in the image

data set (indoor/outdoor scenes, graphic images etc.) should be consistent with

those that can be met in a real world application scenario. A fair benchmark

should use a wide range of picture sizes and different types of images. For fair

comparison, the same set of images should be used for different watermarking

algorithms.

• Keys and messages data set: The number of keys used in the benchmark is a

very important issue. The reason is that in several watermarking methods the

algorithm’s performance depends on the watermark key and the message. As

we use more keys and messages to evaluate an algorithm, we can reduce the

variability in our performance measurements.

• Fidelity: In order to rate the watermark visibility and the perceptual quality

of the watermarked image an objective measure should be used.

• Attacks: The attacks should include all attacks that are required by many

applications. It should include all distortions caused by normal image usage,

transmission, storage, etc.
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Benchmarking Protocol Modules

The benchmarking system comprises the watermark embedding module, the at-

tack module, the watermark detection-message decoding module and the perfor-

mance evaluation module.

• Image database: A requirement for a watermark benchmark is to have a image

database. It is important to test an image watermarking software on many

different images and for fair comparison the same set of sample images should

always be used. The images should also cover a broad range of contents, types

and sizes.

• User interface: this will be the ”window” into the system for users. Users will

be required to identify themselves (no anonymous use will be permitted) but

very little information about a user will be stored in the system. For example,

which components a given user has exercised will not be maintained. The user

interface will allow a researcher to chose several standard evaluation profiles or

develop their own profile. The user interface will also supply to the user the

results of the tests.

• Submission Interface: This will allow users to submit components that they

have designed and wish to have evaluated.

• Embedding module: The watermark embedding module utilizes the embedding

software and takes as inputs the image, quality, key and message sets.

• Attack module: The attack module is used to distort the watermarked images

that have been generated in the watermark embedding stage. It can perform

several sequential attacks.

• Performance evaluation module: The performance evaluation module is used

in order to extract the performance scores/plots of the watermarking algorithm

under test. It measures fidelity, costs, false negative and false positive rates.
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It could produce Receiver Operating Characteristic (ROC) curve based on the

false negative and positive rates.

4.2.2 Front End

Overview

The Front End is the end users’ main interface into WET. The user interface

abstracts much of the underlying architecture and allows the user to focus on the

tasks to be performed. The Front End consists of three major components: the web

server, the database server, and the GIMP-Perl server. It provides a web interface

whereby a user can select various tasks to be performed. These tasks include selecting

images to be watermarked, attacking a watermarked image, or detecting the presence

of a watermark in a particular image. It also has an administrative interface. The

administrative interface is provided to allow and administrator to perform various

tasks as image database management and security functions. Two versions of WET,

the initial version and advanced version are available.

The initial version provides a static image database of about fifty images and a

intuitive user interface. It is intended for either first time users to familiarize them-

selves with the system or for users who want to get a feel for how watermarking

works. Several watermarking algorithms and attack algorithms are available to the

user. A basic operations in the initial version are illustrated in Figure 4.3.The user

selects a single image from the available images, watermarks the image, optionally

attacks the watermarked image, and can detect the presence of a watermark in the

watermarked (and possibly attacked) image. Several statistics including the CPU

time used for embedding/detecting the watermark, the mean square error (MSE)

between the original and watermarked image, the difference image between the wa-

termarked and original image, and some algorithm specific statistics such as the

correlation value are provided as part of the result of these steps.
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Fig. 4.3. Watermarking procedure for the initial version in WET.

The advanced version provides an extensive image database. The user can select

images with particular attributes, i.e. chrominance, resolution, height, width, cate-

gory, etc., to work with. All metrics reported in the initial version are also reported

in the advanced version. The advanced version is available in two modes: interactive

and batch modes. The interactive mode allows the user to manually step through

the process illustrated in Figure 4.4. The process of the interactive mode is similar

to the initial version except that it can select up to 25 images, and multiple attacks

can be performed on the same watermarked image. The interaction between all com-

ponents that implements the interactive mode is illustrated in Figure 4.5. The batch

mode allows for user submitted jobs. The user selects the images, the watermarking

algorithm and corresponding parameters, the attack algorithms (in order of which

they should be performed), and the detection(s) to be performed. The user created

job is executed and the results are sent back to the user upon completion of the tasks

in the for of email.

Software Implementation

The programming languages used to implement the Front End are:
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Fig. 4.4. Watermarking procedure for the advanced version in WET.

Fig. 4.5. Interactions of major components in the advanced version of WET.
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JavaScript Used for validating user input before sending the request from the web

browser. It is also used to improve the user interface to the available options.

Perl Used for scripts that communicate with GIMP to execute the available algo-

rithms available in WET and report the result to the user. It is also used for

scripts that perform administrative tasks such as restarting WET and gener-

ating image thumbnails.

HTML Used for providing the static components of the user interface.

SQL Used for interacting with the database server to select images matching user

specified criteria.

PHP Used extensively in the advanced version. It communicates with the Database

Server, the Perl Scripts, and also generates pages to present results from other

components to the user. It is used to dynamically generate Perl scripts to

perform the tasks selected in the batch mode.

The MySQL database engine is used as the database server [101]. It maintains the

attributes of all images available in WET. We use PHP to interface with the database

server. Using PHP, we send queries and receive responses from the MySQL server.

The GIMP-Perl server is an add-on to the GNU Image Manipulation Program

(GIMP) [102] that performs batch mode image manipulations. It takes programs

written in Perl and executes them using GIMP and returns the result to the Perl

interpreter. We use the GIMP-Perl server to run Perl scripts that execute GIMP

plug-ins.

All the scripts used for the initial version are implemented in Perl. Each al-

gorithm requires an image and specific parameters from the user. The images and

parameters are selected on the user interface and passed to web server. The web

server in turn calls the appropriate Perl script with the parameters. All Perl scripts

used for embedding a watermark, detecting a watermark, or attacking a watermarked
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image have similar structures because algorithms are implemented as GIMP plug-

ins [102].

A similar approach is used for the interactive mode of the advanced version except

that the PHP engine acts as an intermediary between the web server and the Perl

scripts. Once the user selects the images to watermark along with the corresponding

parameters, the request is sent to the PHP engine via the web server and the PHP

engine executes the appropriate Perl scripts. The results from the Perl scripts are

passed back to the PHP engine. Upon completion of the Perl script, the PHP engine

generates a page with the results and sends it to the web server for onward display

to the user.

In the batch mode, the user selects the algorithms, images, other tasks to be

performed, and the correct order of execution and then submits the request to the

web server. The web server in turn forwards the request to the PHP Engine. The

PHP Engine creates a Perl script by using several functions that generate the required

code to perform the specific algorithms. Upon completion of the script generation,

the PHP Engine executes the scripts. Currently, the results obtained upon job

completion are sent to the user in the form of an electronic mail.

4.2.3 Algorithm Modules

It is desirable to develop tools that users can use standalone in their own test

environments, allowing them to validate their tests locally before submitting them to

a watermark benchmark site. To achieve this, the GNU Image Processing Program

(GIMP) [102] was selected for use in WET. GIMP is designed to be augmented with

plug-ins and extensions. Additionally, it provides full scripting support in various

languages (Scheme, Perl, Java, Python, etc.). The advanced scripting interface of

GIMP allows everything from the simplest task to the most complex image manipula-

tion procedures to be easily scripted. The combination of extensibility and scripting

support make GIMP a powerful environment for WET. The GIMP community also
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provides a large selection of plug-ins, which by their nature (geometric distortion,

difference image) could be used for attack or measurement components of WET.

As previously mentioned, by allowing users to duplicate the test environment

locally in a form they are familiar with, there is no distinction between their local

development components and the ones needed for WET. Stated another way, an

Experimenter can natively develop in GIMP and after they are ready for testing,

they can submit the same binary to a watermark benchmark site they used in their

local development. This eliminates the step of packaging the component for an

external benchmark and never knowing where a bug was introduced.

We have been implementing several plug-ins for GIMP. Our plug-ins can be used

in two different modes: Interactive Mode and Non-Interactive Mode. The former

has a user interface where the user can choose the input parameters and the output

parameters are displayed after using the plug-in. The Non-Interactive Mode performs

the same function as the Interactive Mode but allows the plug-in to be called from

another GIMP plug-in or scripts. The Non-Interactive Mode is used in WET.

Watermarking Algorithms

To extend watermarking algorithms to color images, we used the reversible color

transform (RCT) [103] developed for JPEG2000. The Red, Green and Blue compo-

nents of an image are transformed by RCT and we embed the watermark into the

luminance component. The RCT is shown in Figure 4.6. We chose RCT among

different color transforms because it preserves the image when a watermark is not

embedded. We watermarked the luminance component because a watermark should

be placed in the perceptually most significant components of an image [1].

One of the performance measures of a watermarking algorithm is computational

complexity. We currently measure the computational complexity in terms of CPU

execution time. Our GIMP plug-ins are written such that they return the CPU exe-
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cution time as an output parameter. The watermarking algorithms we implemented

as a GIMP plug-in include:

Secure spread spectrum watermarking [1]: This is a multiplicative spread spec-

trum watermarking algorithm and is based on the assumption that the water-

mark should be placed in the perceptually most significant components of an

image.

Blind wavelet watermarking [104]: This is a blind wavelet watermarking algo-

rithm. A typical problem with spread spectrum watermarking is that the or-

der and the number of significant coefficients can change due to various image

manipulations. This technique addresses this problem by using two different

thresholds to embed and detect the watermark.

Semi-Fragile watermarking [19]: This is a semi-fragile watermarking method

that can detect information altering transformations even after the water-

marked content is subjected to information preserving alterations. It is also

capable of tolerating some degree of change to the watermarked image.

Quantization Index Modulation (QIM) watermarking [105,106]: QIM em-

beds a message by using an ensemble of quantizers. Our algorithm is based on

low complexity method that is known as dither modulation.

LOT Based Adaptive Watermark [107] The LOT watermark algorithm embeds

an invisible, robust watermark in an image using the spread spectrum scheme.

The Lapped Orthogonal Transform (LOT) is chosen for the block-based or-

thogonal transform, instead of DCT, to avoid blocking effects. Moreover, the

Human Visual System (HVS) properties are exploited to adjust the intensity

of our embedded watermark according to the local features of the image.

Locktography [108] Locktography is a steganography technique which embeds

data into a color still image by modifying the least-significant bits (LSB) of

the image.
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Y = ⌊R + 2G + B

4
⌋

Dr = R − G

Db = B − G

(a) Forward RCT

G = Y − ⌊Dr + Db

4
⌋

R = Dr + G

B = Db + G

(b) Inverse RCT

Fig. 4.6. Reversible Color Transform (RCT).
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StirMark 3.1

StirMark 3.1 is from [51,52,109]. We implemented the default test mode in Stir-

Mark 3.1 as a GIMP plug-in. StirMark 3.1 implements the following possible attacks

on a watermarked image: linear filtering, median filtering, Frequency Mode Lapla-

cian Removal (FMLR), JPEG compression, color quantization, scaling, shear, aspect

ratio, general linear transform, rotate and crop, rotate and scale, cropping, flip, re-

move row and column and original StirMark attack (random bilinear geometrical

distortion).

StirMark 4.0

In addition to StirMark [51,52,89] 3.1 attacks we implemented the StirMark 4.0

attacks as separate GIMP plug-ins. The attacks are classified into geometric trans-

forms, signal processing operations and special transforms. Geometric transforms

include affine transform, rescale, rotation and small random distortions. Signal pro-

cessing attacks operations include adding dither noise, adding uniformly distributed

noise, filtering by convolution, median cut and self-similarities attack. Special Trans-

forms include flipping(horizontal, diagonal, and vertical), cropping, remove lines, and

special rotations (90, 180, and 270 degrees).

Mean Square Error Module

One important performance measure is fidelity. Fidelity is the perceptual sim-

ilarity between the original image and the watermarked image [5]. We currently

measure the fidelity in terms of Mean Square Error (MSE). Mean Square Error is

obtained as follows

MSE =
1

MN

M
∑

i=1

N
∑

j=1

(p(i, j) − p̂(i, j))2

where M is the number of color components, N is the number of pixels, p is the

original image and p̂ is the modified image. We implemented a plug-in that takes
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two same size images as input, and outputs the mean square error and the difference

image.

4.2.4 Image Database

WET use MySQL [101] as the database engine. The image database maintains

the attributes of all images available in the test-bed. We currently have 1301 im-

ages which are copyright free. The images are from variety of cameras and sensors

including scanned photographs, x-ray images, ultrasound images, astrometrical im-

ages, line drawings, digital cameras, maps, and computer generated images. Each

image in the database is stored with its attributes including chrominance, resolution,

height, width, and category. A sample of the images are shown in Figure 4.7. The

image size range from 120x120 thumbnail size images to 3848x5768 mammogram

images.

4.3 Conclusion

While digital watermarking has received much attention within the academic

community and private sector in recent years, it is still a relatively young technology.

As such there are few widely accepted benchmarks that can be used to validate the

performance claims asserted by members of the research community. This lack of a

universally adopted benchmark has hindered research and created confusion within

the general public. To facilitate the development of a universally adopted benchmark,

we are developing at Purdue University a web-based system that will allow users to

evaluate the performance of watermarking techniques. We refer to this system as the

Watermark Evaluation Testbed or WET [58, 69]. This system consists of reference

software that includes both watermark embedders and watermark detectors, attack

scenarios, evaluation modules and a large image database. The ultimate goal of the

current work is to develop a platform that one can use to test the performance of

watermarking methods and obtain fair, reproducible comparisons of the results. We
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Fig. 4.7. Sample images from the WET image database.
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feel that this work will greatly stimulate new research in watermarking and data

hiding by allowing one to demonstrate how new techniques are moving forward the

state of the art.
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5. CONCLUSIONS

Watermarks has many potential applications. One important part in facilitating the

wide adoption of watermarking is performance evaluation or benchmarking. The

role of benchmarking of watermarking is to provide a fair and automated evaluation

of important properties in watermarks such as robustness and fidelity. In this dis-

sertation, we investigated still image watermark evaluation in terms of fidelity and

robustness evaluation and design of a web based watermark benchmark system.

5.1 Contributions of this Dissertation

• Mean square error fidelity metric for presentation attacked images

Evaluating fidelity of the attacked images is important for attack development

and consequently watermark development. Presentation attacks are attacks

that does not remove the watermark but makes the watermark undetectable

by changing how it is presented to detector. We addressed the fidelity eval-

uation of special cases of presentation attacks. We described a technique to

measure fidelity for presentation attacked images in terms of mean square er-

ror by compensating these attacks. We compensate these attacks by using the

properties of the human visual system (HVS). Valumetric attacks are mono-

tonic increasing or decreasing function of pixel values and include contrast

enhancement and gamma correction. Since the nonlinearity does not change

the content of the image, we measure fidelity by compensating the attack using

conditional mean. We proved that conditional mean becomes a monotonically

increasing or decreasing function when used to compensate valumetric attacks.

For pixel loss attacks such as cropping or jitter attacks, the human visual sys-
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tem (HVS) can interpolate and extrapolate the lost pixels. We implemented

this property using error concealment developed in the video transmission lit-

erature [81]. For geometrical attacks, the human visual system (HVS) is not

affected much for minor geometrical distortions. To compensate geometrical

attacks, instead of using image registration techniques [57], we approximated

the mapping from the original image to the attacked image using the infor-

mation available for better image registration. This is true in a watermarking

evaluation framework.

• New summary statistics for still image watermark evaluation

Current watermarking benchmarks use summary statistics to summarize the

results. One example is the average. For example, average bit error rate is used

to summarize the bit error rates and average PSNR is used to summarize the

PSNR values. This does not reflect still watermarking scenarios where each

watermarked image is distributed to different people where the distribution of

the results become important.

Another approach to summarization is to use a threshold. We could measure

the maximum bit error rate and compare it against a threshold. For fidelity,

we could compare the fidelity results against the just noticeable difference

(JND) [5, 6] value. But requiring the watermarking system to meet a hard

threshold requirement puts too much restriction on the watermarking system.

In quality engineering [66,67], it is recommended that we should also consider

the variance of the distribution as well as the mean. We propose a summary

statistic for PSNR and BER using the Taguchi loss function [66, 67] which

considers both the mean and variance. We compare 3 watermarking algorithms

using the new summary statistics.

• Watermark Evaluation Testbed

While digital watermarking has received much attention within the academic

community and private sector in recent years, it is still a relatively young tech-
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nology. As such there are few widely accepted benchmarks that can be used to

validate the performance claims asserted by members of the research commu-

nity. This lack of a universally adopted benchmark has hindered research and

created confusion within the general public. To facilitate the development of a

universally adopted benchmark, we are developing at Purdue University a web-

based system that will allow users to evaluate the performance of watermarking

techniques. We refer to this system as the Watermark Evaluation Testbed or

WET [58, 69]. This system consists of reference software that includes both

watermark embedders and watermark detectors, attack scenarios, evaluation

modules and a large image database. The ultimate goal of the current work is

to develop a platform that one can use to test the performance of watermarking

methods and obtain fair, reproducible comparisons of the results. We feel that

this work will greatly stimulate new research in watermarking and data hiding

by allowing one to demonstrate how new techniques are moving forward the

state of the art.

5.2 Future Work

The future work can be explored from the following three perspectives:

• For evaluation of valumetric attacks, we used conditional mean to compensate

the attack. We need to extend conditional mean to consider the frequency

component of the image or correlation between adjacent pixels. For error con-

cealment, we need to employ a better technique than the neighborhood mean.

We could use multiresolution error concealment techniques to improve fidelity.

For forward mapping of the bilinear transform, we need to improve speed of

the mapping. We could use information from previous pixels to improve speed.

• We used bit error rate and receiver operating characteristic (ROC) for the

evaluation of a watermarking system. When the probability of error of a wa-

termarking system is claimed to be 10−12, it is almost impossible to check
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this claim because we would have to have more than 1012 images or try more

than 1012 different keys. We need a better way to extrapolate the probabil-

ities of error. Bit errors can be modeled by characterizing the transmission

channel [41]. There has been work in probability estimation in digital water-

marking by modeling the watermarking process. Hernandez et al. [110, 111]

gives a tighter bound than the Chernoff bound using the central limit theorem

arguments using Gaussian and generalized Gaussian models. Miller et al. [112]

predicts the false positive probability using the spherical method.

• In this dissertation, we only considered the evaluation of robust watermarks.

Authentication watermarks have different properties than robust watermarks.

Important properties of authentication watermarks is localization.
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