
CERIAS Tech Report 2006-47

A Construction for General and Efficient Oblivious Commitment Based Envelope Protocols

by Jiangtao Li, Ninghui Li

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

Dynamic Virtual Credit Card Numbers

Ian Molloy1, Jiangtao Li2, and Ninghui Li1

1 Purdue University
{imolloy,ninghui}@cs.purdue.edu

2 Intel Corporation
jiangtao.li@intel.com

Abstract. Theft of stored credit card information is an increasing threat
to e-commerce. We propose a dynamic virtual credit card number scheme
that reduces the damage caused by stolen credit card numbers. A user
can use an existing credit card account to generate multiple virtual credit
card numbers that are either usable for a single transaction or are tied
with a particular merchant. We call the scheme dynamic because the vir-
tual credit card numbers can be generated without online contact with
the credit card issuers. These numbers can be processed without chang-
ing any of the infrastructure currently in place; the only changes will be
at the end points, namely, the card users and the card issuers. We ana-
lyze the security requirements for dynamic virtual credit card numbers,
discuss the design space, propose a scheme using HMAC, and prove its
security under the assumption that HMAC is a PRF.

Key words: e-commerce, credit card theft

1 Introduction

Credit cards are one of the most widely used payment mechanisms for both
business-to-consumer and business-to-business commerce today. Credit card trans-
actions account for billions of dollars in transactions daily [18], and these trans-
action records are often stored in various kinds of databases. Many e-commerce
websites store credit card information for user convenience, as users will use these
sites multiple times over a period time and would prefer not to enter the credit
information for each transaction. Examples of such sites include PayPal, online
shopping websites such as Amazon.com, and online travel sites such as Expedia.
Online merchants may also keep records of credit card numbers for dealing with
charge-backs and other disputes. Credit card processing centers will also store
credit card numbers and transactions in an attempt to detect fraud. Anomalies
in purchase characteristics such as amounts, retailers, frequencies, and locations
can be an indication of fraud. Detecting these anomalies more quickly can be
beneficial to both the cardholder and card issuer. Other organizations such as
hotels, will store credit card numbers for liability from damages and incidentals.

The extensive databases kept by numerous parties quickly become highly
desirable targets for those wishing to steal credit card numbers and commit
fraud. There have been several high-profile cases in recent years. For example, in
2001 attackers stole the customer records (including credit card information) of

the online merchant Bibliofind, a subsidiary of Amazon.com [9]. In 2005 attackers
broke into credit card processing center CardSystems Solutions Inc. and stole
over 40 million credit card numbers [12]. Not all losses are the result of an
online attack. Recently, stolen laptops have resulted in the loss of credit card
numbers for 243,000 Hotels.com customers [1] and 80,000 Department of Justice
employees [19].

In this paper, we propose a dynamic virtual credit card number scheme that
reduces the damage caused by theft of stored credit card information. A user can
use an existing credit card to generate a “virtual credit card (VCC) number”
that is restricted in a number of ways. For example, it may be usable for a single
transaction, or be linked with a particular merchant and have a lower credit limit
and a shorter expiration date than the actual card. Such a VCC number can be
generated using devices carried by the user, e.g., a cell phone or a PDA, without
online contact with the card issuing bank. In our scheme, VCC numbers have
the same format as normal credit card numbers. Merchants should be able to
process a transaction with a VCC number in the same manner they use today;
no change to their existing databases and applications is needed. Only the end
points, i.e., the cardholders and the card issuers, need to be aware that a VCC
is used. We also point out that a card holder can still use the actual card the old
fashioned way. Our design aims at facilitating deployment. We have implemented
a prototype for generating VCC numbers using Java 2 MicroEdition (J2ME) that
runs on MIDP2.0 compliant cell phones. We have tested our MIDlet on Sony
Ericsson z520a and Nokia 6102i model phones.

Several credit card issuers (CitiBank, Discover, and MBNA) already offer
services similar to the concept of VCC. However, they all require users to install
software onto a computer and communicate with the credit card issuer to get a
new VCC number, and such numbers cannot be tied with a particular merchant.

The rest of this paper is organized as follows. We review current attempts to
secure credit card transactions online in Section 2. In Section 3, we analyze the
necessary security properties for a VCC scheme and examine the solution space.
We present our approach and discuss real-world considerations in Section 4, and
give proofs of security in Section 5. We conclude with 6.

2 Related Work

There have been several attempts to reduce the usefulness of stolen card num-
bers. One widely adopted solution is security codes, also known as card verifica-
tion values. A card verification value (CVV)3 is a three- or four-digit value stored
on the magnetic strip, allowing for verification of the card when read. A second
code, known as the CVV2, is not stored on the magnetic strip of a card, and
is printed on the back of a card instead. Merchants can ask for the CVV2 code
during transactions, but are forbidden from storing them in their databases [17].
This has the potential to reduce the usefulness of a stolen credit card number in

3 The card verification value goes by many different names according to different credit
card companies

situations where “face-to-face” verification is not possible, such as online, mail
order, and telephone transactions. While CVV2 required a change to the card
acceptor infrastructure, it is now ubiquitous.

CVV2 doesn’t provide a perfect solution. Not all merchants or card issuers
require CVV2 to approve a transaction. Flaws in an online processing center
or merchant may allow attackers to gain CVV and CVV2 codes that are stored
either inadvertently or temporarily while awaiting authorization. Finally, similar
checksum codes used in Cartes Bancaires cards has been compromised [7], and
other vulnerabilities have been found in ATM cards in the past [2].

A second approach requires the cardholder to enter an additional username
and password for online transactions. Two examples are “Verified by Visa” for
Visa credit cards [16] and “MasterCard SecureCode” for MasterCard credit
cards [13]. These solutions require changes to the card acceptor infrastructure,
which are not yet commonplace. These schemes do not work with telephone or
mail-order transactions, hindering usage.

A third solution is to use proxy or virtual transaction numbers instead of the
real credit card number [10]. This scheme has been developed by Orbiscom and
is in use by MBNA, Citi Bank and Discover [15, 8, 6]. When a cardholder wishes
to make a transaction, she contacts her issuing bank and requests a temporary
number. The bank generates a new number not currently in use, associates it with
the cardholder’s current account, and returns the proxy number. The cardholder
can then use the proxy number in exactly the same manner as her real credit
card number. The card acceptor does not need to know the credit card number
given is a proxy number; the translation is performed by the card issuer.

The proxy numbers are an attractive solution for the problem of credit card
theft. One disadvantage is that the proxy number must originate from the credit
card issuing institution and must be done online. We propose a proxy number
that can be generated offline, without any per transaction communication be-
tween cardholder and card issuer and no changes to the infrastructure currently
in place.

3 Problem Description

3.1 How Credit Cards Work

Because we would like a solution that does not require any changes to the cur-
rent infrastructure and protocols, we first examine how credit card processing
currently works.

Credit Card Number Format A credit card number is a maximum of nineteen
digits that can be broken into three pieces: issuer, account number, and check-
sum. Most numbers (including Visa, MasterCard, and Discover) are sixteen dig-
its while AmericanExpress numbers are fifteen. The first six digits make up the
issuing bank and the last single digit is the Luhn check digit. The Luhn code
is a one-digit checksum of the credit card number which can be calculated and
verified by anyone [20]. This yields a maximum of twelve digits for the account

number. As most credit cards have 16 or 15 digits, the limit of the account num-
ber is 9 or 8, respectively. This is a limit we have to take into consideration as we
want to generate virtual card numbers that work with the current infrastructure.

Parties in Credit Card Processing Credit card transactions involve several par-
ties. The three of interest are: cardholder, card issuer, and merchant (card ac-
ceptor).

Cardholder Merchant Issuer

Billing and Shipping Info
Merchant, Billing,

and Transaction Info

Accept / Deny,

AVS response, CVV2 response
Confirmation / Rejection

Fig. 1. Traditional Credit Card Processing

Credit Card Processing Parameters Figure 1 shows the card processing steps.
The cardholder sends credit card information including name, billing address,
account number, expiration date, and CVV2 to the merchant. The merchant send
this together with merchant information, (which is configured when a business
gains merchant status, and includes the merchant’s bank and account numbers,
merchant name and number), and transaction information (including the date
and time, the amount of the transaction, a merchant-specified order number, and
often specific information such as the point of sale device used) to the issuer.

The issuer may return several pieces of information to the merchant (e.g.
authorization or rejection, address verification service (AVS) and CVV2 match
responses). AVS tells the merchant how well the billing address supplied by the
cardholder matches the billing address on record. A rejection notice overrides any
decision the merchant may make to accept the transaction, while the treatment
of AVS and CVV2 responses are up to the discretion of the merchant [17].

3.2 Security Properties for VCC Schemes

In a VCC scheme, the cardholder is able to generate a VCC number that is bound
to a single transaction, or with a single merchant and maximum transaction
amount. We require such a scheme to have the following properties.

1. Complete - Any cardholder can generate a VCC number from her credit card
account number, the transaction information and/or limitation on usage of
the VCC, and any other information the cardholder may have.

2. Sound - Given the public transaction information and VCC number, the card
issuer is able to uniquely identify the associated account.

3. Account Hiding - Knowing the public transaction information and the VCC
number, no adversary has a non-negligible advantage in recovering the orig-
inal credit card account number.

This is motivated by the original motivation of having VCC numbers, that
is, to hide the actual credit card numbers.

4. Forgery Resistant - Knowing an account number and some virtual credit card
transaction information associated with the account, no adversary has a non-
negligible advantage in forging a valid VCC associated with this account.
Even with a VCC scheme, the original credit card number may still be
stolen, because customers may choose to use the original card number in
some transactions and because of card loss. We would like to ensure that a
stolen card does not enable one to easily construct valid VCC numbers.

In other words, we are concerned with two types of threats: finding out the
cardholder’s original account number through transaction information involving
VCCs, and the generation of valid VCC numbers if an attacker obtains account
numbers. We are not concerned with malicious merchants who attempt to abuse
a VCC (such as multiple submissions), as such threats are dealt with by existing
dispute resolution procedures and laws.

Note that when VCC numbers are generated online by the card issuer, the
sound and complete properties are no longer needed. One solution that would
satisfy the other two properties is to randomly generate account numbers until
encountering one that has not already been used. Such a solution would not
work when we allow VCC numbers to be generated offline.

3.3 Examining the Solution Space

Our desired security properties impose limitations on the potential solution
space. The sound property states that the card issuer must be able to recover
the account number from the VCC transaction information, whereas the account
hiding property states that an attacker must not be able to recover the account
number. This indicates that the card issuer must know something that the at-
tacker doesn’t know. Such a secret can be shared between the cardholder and
the card issuer, or known only by the card issuer.

One potential solution is to use the account number to derive a secret key,
and to use some keyed-MAC of a message containing the transaction information
to generate the VCC number and the CVV2 code for the VCC. There are two
problems with this solution. First, this violates the forgery resistant property,
because knowing the account number enables one to forge virtual credit card
numbers. Second, the account hiding property can also be broken easily, because
an attacker can perform an exhaustive search over the space of valid account
numbers. Credit card numbers are highly structured and have a small space,
making exhaustive search attacks feasible.

One attempt to fix the above solution is to add additional secret information
that is currently shared between a card issuer and a cardholder, such as social
security number or mother’s maiden name, to derive a secret key. Under this
design, when an attacker obtains an account number, the attacker would still
needs to know additional information to be able to construct a virtual credit card
number. However, this design suffers from another weakness. An attacker who

somehow obtains one’s account number can use an exhaustive search attack
to try to recover other secrets that are used in the process of generating the
key. Such a design protects account numbers at the cost of increasing danger of
revealing this other sensitive information, which is arguably more sensitive than
credit card numbers. We thus choose not to adopt this design.

Another potential approach is to use public key cryptography. This has the
advantage of eliminating the need for a shared secret between each cardholder
and the card issuer. The card issuer would have a public key, and the cardholders
would encrypt their account numbers with the issuer’s public key. There are
several problems with this approach. This does not satisfy the forgery resistant
property, as anyone knowing the account number and the issuer’s public key
can generate a valid VCC number. Also, most public key cryptography systems
produce ciphertexts much larger than the bits allowed by the space of virtual
credit card numbers, typically on the order of 160-1024 bits and above. As a
VCC number plus the CVV2 code may contain only 12 digits, the ciphertext
must be truncated, making decryption infeasible.

We thus decided to use a design where each cardholder shares a secret with
the card issuer for each account, and this secret is beyond the long-term secrets
(such as an SSN or mother’s maiden name) already shared between a card issuer
and a cardholder.

4 Our Proposed Scheme

4.1 A Dynamic Virtual Credit Card Scheme

We assume the cardholder already has an account with the card issuer. The
card issuer knows the cardholder’s name and address, which we shall call the
billing information, B. The card issuer will have provided the cardholder with an
account number, C. Finally, they negotiate a shared secret, such as a password
P . Note that the cardholder may already have a password through web access to
their account information. A bank can choose to use this password or a different
password for the VCC scheme. The advantage of using one password is ease of
use. The disadvantage is that if an attacker gets access to the VCC number,
then the attacker can use dictionary attack to try to recover the password.

In the description of our scheme below, we use two functions: H, a function
that generates a key from a shared secret, and F, which can be thought as a
keyed MAC function. This description is for generating a one-time VCC number,
which can be used for a single transaction. We will describe how to generate a
usage-limited VCC number in Section 4.2.

Generation The cardholder will:

– Choose an expiration date, E, for the virtual card. This is usually the current
month.

– Generate a string for the transaction, σ = E||B||M ||T , where M is merchant
information, and T is transaction amount.

– Generate the shared key K = H(C||P)
– Calculate V = FK(σ) mod 10n, in which n is the length of the account

number plus the length of the CVV2 code.
– Divide V into V1 and V2. Prepend the card issuer code to V1 and append a

valid Luhn code to get the VCC number. V2 is the CVV2 code.

Verification To verify that a merchant submitted VCC number is valid for a
given transaction, the card issuer will:

– Identify the original account C ′, using the billing information (name and
address) supplied in the AVS.

– Find the password P ′ associated with the account C ′, and calculate the
shared secret K ′ = H(C ′||P ′).

– Calculate V ′ = FK′(σ′) mod 10n, using σ′ from the merchant supplied val-
ues.

– If the submitted VCC number and CVV2 code match V ′, then process the
transaction as usual, otherwise reject the transaction.

The above scheme is complete, as any cardholder can generate a VCC num-
ber. It is sound assuming that an account number can be uniquely identified
given the name and address of a cardholder. In section 4.2 we discuss how to re-
lax this restriction. In section 5.4 we show that using any pseudorandom function
for F and H will satisfy the account hiding and forgery resistant properties.

We have written a prototype implementation of the card generation process
in J2ME that is lightweight, fast, and capable of running on a wide variety of
hardware, including cellular phones. In our current implementation, we use SHA1

for the function H and HMAC-SHA1 for the function F.

4.2 Real World Considerations

Multi-use VCC Numbers In some situations, a cardholder may wish to generate
a VCC number that can be used for multiple transactions with one merchant,
for example in systems such as PayPal or Amazon.com’s 1-Click. In this case,
the cardholder may want to set a credit limit lower than the limit of the account.
As we would like to use the existing infrastructure, the credit limit chosen by
the cardholder must be encoded in the VCC number.

Since we have a limited message space, we cannot allow all possible limits.
Our design is to use one digit ℓ (we call this the VCC type) to encode whether
this is a one-use card number, and if not, what is the credit limit. For example,
ℓ = 0 means single transaction, ℓ = 1 means a limit of $50, ℓ = 2 means a
limit of $100, and so on. Using one digit, we can accommodate 9 different credit
limit values. The VCC type digit can be in the VCC number (or the CVV2
code, if almost all merchants use it). Note that this digit must be appropriately
encrypted, so that the credit limit cannot be learned by an attacker who gets the
VCC number. To accommodate this, we change the design so that the VCC type
digit is not generated from V = FK(σ) mod 10n. Instead, we use bits in FK(σ)
that have not been used in generating V to randomly select a permutation π
over Z10, and use π(ℓ) as the VCC type digit.

Collisions Between Actual and Virtual Credit Numbers The sets of possible ac-
tual and virtual credit card numbers do not need to be disjoint, under the con-
dition that the VCC scheme is used only when AVS information is provided
to the card issuer. If a merchant does not provide AVS information, we must
assume we are given an actual card number. If AVS information is provided,
then we assume we can uniquely identify the cardholder’s account information.
There are now two possibilities: either the card number and CVV match the
real card, or they do not. If they do not, we process the card as a VCC num-
ber. If they do match, then the card number given was either actual, or C ≡ V
for the given transaction; neither case violates the soundness or completeness
properties, and a second account cannot be incorrectly charged. The attack in
which an adversary provides the AVS information of someone else’s account and
tries to generate a valid VCC number is no easier than the attack of guessing
someone else’s credit card number and using it, and can be handled by current
dispute resolution procedures.

Non-Unique Name-Address Pairs Our scheme relies on the assumption that
each name-address pair uniquely identify an account number. When this is not
possible, then the probability that the VCC number generated using a second
account also matches is about 1/10n, where n is the number of digits used in the
VCC scheme. There are several approaches to enable us to relax this assumption.
One approach is to reject a VCC when a collision occurs, in which case the client
generates another VCC, taking a sequence number as an additional input. The
probability that a collision occurs after a few rounds is extremely small. Another
approach is to change the scheme so that the CVV2 code of the actual credit
card is used to as the CVV2 code for the VCC. The bank thus only needs to
ensure that name, address, and the CVV2 code together uniquely identify an
account. This allows one name-address pair to have multiple accounts.

5 Security

We now present formal definitions of security for a virtual credit card scheme
and prove our proposed scheme is secure.

5.1 Security Model

We use the following notations. We say that µ(k) is a negligible function, if
for every polynomial p(k) and for all sufficiently large k, µ(k) < 1/p(k). We
say ν(k) is overwhelming if 1 − ν(k) is negligible. If S is a probability space,
then the probability assignment x ← S means that an element x is chosen at
random according to S. If S is a finite set, then x← S denotes that x is chosen
uniformly from S. Let A be an algorithm, we use y ← A(x) to denote that y is
obtained by running A on input x. In the case that A is deterministic, then y is
unique; if A is probabilistic, then y is a random variable. Let p be a predicate
and A1, A2, . . . , An be n algorithms then Pr [{xi ← Ai(yi)}1≤i≤n : p(x1, · · · , xn)]

denotes the probability that p(x1, · · · , xn) will be true after running sequentially
algorithms A1, . . . , An on inputs y1, . . . , yn.

We next describe our security model for VCC schemes. Let C ∈ {0, 1}ℓc

be the original credit card number and V ∈ {0, 1}ℓc be the virtual credit card
number, where ℓc is the bit-length of the credit card number. Let A ∈ {0, 1}ℓa

be the account information, B ∈ {0, 1}ℓb be the customer billing information,
T ∈ {0, 1}ℓt be the transaction information, and S ∈ {0, 1}ℓs be the secret that is
known to the cardholder and the bank; where ℓa is the (maximum) length of the
account information, ℓb is the length of the billing information, ℓt is the length
of the transaction information, and ℓs is the length of the secret. The secret S
has two parts: the first part is the original credit card C, and the second part is
a password P ∈ {0, 1}ℓp , where ℓp is the length of the password and ℓs = ℓc + ℓp.

There are three deterministic algorithms in the VCC scheme: Identify, VirGen,
and Verify. The algorithm Identify : {0, 1}ℓb × {0, 1}ℓc → {0, 1}ℓa is the personal
account identification algorithm, i.e., given B and V , Identify(B, V) outputs an
account information A. The algorithm VirGen : {0, 1}ℓt×{0, 1}ℓs → {0, 1}ℓc is the
virtual credit card generation algorithm, i.e., given T and S, VirGen(T, S) outputs
a virtual credit card V . The algorithm Verify : {0, 1}ℓt × {0, 1}ℓs × {0, 1}ℓc →
{true, false} is the virtual credit card verification algorithm, i.e., given T, S, V ,
Verify(T, S, V) outputs either true or false.

The virtual credit card scheme has the following phases:

– Customer-Bank initialization: In this phase, the customer first sends the
billing information B to the bank. The bank then creates the original credit
card number C and the account information A for the customer. The bank
and customer jointly choose the password P and set the secret S = C||P .

– Customer-Merchant interaction: In this phase, the customer and merchant
jointly determine the transaction information T . The customer then com-
putes V = VirGen(T, S), and sends V and B to the merchant.

– Merchant-Bank interaction: In this phase, the merchant sends T , B, and
V to the bank. The bank uses Identify(B, V) to identify the customer ac-
count A, then obtains the shared secret S based on A, and finally computes
Verify(T, S, V). If the output of the Verify algorithm is false, the bank rejects
the transaction.

5.2 Security Properties

The virtual credit card must satisfy the sound property, the complete property,
the security against forgery property, and the security against account recovery
property:

The sound property can be stated as:

Pr

[

B ← {0, 1}ℓb , T ← {0, 1}ℓt , S ← {0, 1}ℓs , V ← VirGen(T, S),
x← Identify(B, V) : x = ⊥

]

= 0

where ⊥ is a symbol that represents empty output. In other words, given the
billing information and the virtual credit card number, we can always identity
the corresponding account number.

The complete property can be stated as:

Pr
[

A← {0, 1}ℓa , T ← {0, 1}ℓt , S ← {0, 1}ℓs , x← VirGen(T, S) : x = ⊥
]

= 0

In other words, we can always generate a VCC number given the transaction
information and the secret.

The secure against forgery can be stated as follows. We consider forgery
under adaptive chosen-message attacks. Our scheme is secure against forgery
if an adversary cannot win the following game between a challenger and the
adversary:

1. Setup. The challenger runs a setup algorithm to output an account informa-
tion A and a secret S. The challenger sends the account information to the
adversary.

2. Queries. Proceeding adaptively, the adversary requests VCC numbers for
at most q messages (transactions) of her choice T1, . . . , Tq ∈ {0, 1}ℓt . The
challenger responds to each query with a virtual credit card number Vi =
VirGen(Ti, S).

3. Outputs. Eventually, the adversary outputs a pair (T, V) and wins the game
if T is not any of T1, . . . , Tq and Verify(T, S, V) = true.

Since the space for the virtual credit card is rather small, the adversary can
do random guessing. Our security definition (in the following equation) states
that the adversary cannot do better than random guessing:

Pr

[

S ← {0, 1}ℓs , (T, V)← A(T1, V1, . . . , Tq, Vq) :
Verify(T, S, V) = true

]

≤ 2−ℓc + µ(t).

where µ(t) is a negligible function in time t.
The secure against account recovery property can be stated as follows. We

consider account recovery under chosen-message attacks. Our scheme is secure
against account forgery if an adversary cannot win the following game between
a challenger and the adversary:

1. Setup. The challenger runs a setup algorithm to output an account infor-
mation A and a secret S, which comprises of a credit card number C and a
password P . The challenger sends the account information to the adversary.

2. Queries. Proceeding adaptively, the adversary requests VCC numbers for
at most q messages (transactions) of her choice T1, . . . , Tq ∈ {0, 1}ℓt . The
challenger responds to each query with a VCC number Vi = VirGen(Ti, S).

3. Outputs. Eventually, the adversary outputs C, the original credit card num-
ber.

Since the space for the credit card number is rather small, the adversary can
do random guessing. Our security definition (in the following) states that the
adversary cannot do better than random guessing:

Pr

[

C ← {0, 1}ℓc , P ← {0, 1}ℓp , S = C||P,
C ′ ← A(T1, V1, . . . , Tq, Vq) : C ′ = C

]

≤ 2−ℓc + µ(t)

where µ(t) is a negligible function in time t.

5.3 Our Abstracted Scheme

We now give an abstract of our scheme that is presented in Section 4, then prove
our scheme is secure in the next subsection. Let H : {0, 1}ℓs → {0, 1}ℓk be a
collision-free hash function, and F : {0, 1}ℓk × {0, 1}ℓt → {0, 1}ℓk be a family of
functions that can be modeled as a pseudorandom function (PRF), where ℓs is
the length of the secret, ℓt is the length of the transaction information, and ℓk

is the key length of F . Here we also use ℓk to denote the output length of the
pseudorandom function F and the hash function H.

– Identify(B, V): This algorithm takes B ∈ {0, 1}ℓb and V ∈ {0, 1}ℓc as input
and outputs the account information A. Here, we assume the bank keeps
a database of the clients’ information, including billing information and ac-
count information. Given the billing information B, the bank can lookup the
database to identify the corresponding account information A.
Note that in this abstraction, V is not used in the algorithm Identify since
we assume there is only one bank. In practice, V is used to identify the bank
who issues the credit card, and then B is used to identify the account in that
bank.

– VirGen(T, S): This algorithm takes the transaction information T and the
secret S as input, and outputs the VCC number V . It performs the following
steps:
1. Computes K = H(S).
2. Sets V to be the last ℓc bits of FK(T)4.

– Verify(T, S, V): This algorithm takes the transaction information T , the se-
cret S, and the virtual credit card number V as input, and outputs either
true or false. It performs the following steps:
1. Computes V ′ = VirGen(T, S).
2. If V = V ′ outputs true, otherwise outputs false.

In our proposed scheme, H is SHA1 and F is an HMAC or a CBC-MAC
scheme. HMAC was originally shown to be a PRF under the assumption that
the underlying hash function was collision resistant [4], and later if the underlying
hash function was a PRF [3]. It should be noted that recent work has shown
HMAC to not be a PRF when instantiated with certain hash functions, such as
MD4, MD5, SHA0 and SHA1 [11]. Differentials for MD4, MD5, SHA0 and SHA1
discovered by Biham et al. and Wang et al. were used to produce a distinguisher
of HMAC and a random function when instantiated with these hash functions.
While they were able to produce a distinguisher for HMAC-SHA1, they were
only able to do so when SHA1 was reduced to 43 rounds, and a probability of
2−73.4 (more than the general attack of 2−80) and a data complexity of 2154.9

(more than the general attack of 280) [14]. We do not feel their results adversely
affect our work.
4 Note that in our proposed scheme, V = FK(T) mod 10n where n is the number of

digits in the virtual credit card. In our security model, since we assume V to be a
value of length ℓc, we set V = FK(T) mod 2ℓc . This simplication will not affect our
security proof.

5.4 Security Proofs

In this subsection, we formally prove that our virtual credit card scheme is
secure under the definition in Section 5.1. The sound property of our scheme is
guaranteed if the bank maintains a proper customer database. Our scheme is
also complete as the algorithm VirGen always returns an output. We now focus
on the secure against forgery property and the secure against account recovery
property.

Theorem 1. Our virtual credit card scheme is secure against forgery.

Proof. Let F : {0, 1}ℓk × {0, 1}ℓt → {0, 1}ℓk be a pseudorandom function, we
now build a family of functions F ′ : {0, 1}ℓk × {0, 1}ℓt → {0, 1}ℓc as follows:
Given K ∈ {0, 1}ℓk and T ∈ {0, 1}ℓt ,

F ′(K, T) = F (K, T) mod 2ℓc .

It is clear that V = F ′(K, T) = F ′(H(S), T). In the next two claims, we first
show that if F is a pseudorandom function, then F ′ is a pseudorandom function
as well. We then show that if F ′ is a pseudorandom function, then our scheme
is secure against forgery.

Claim. If F : {0, 1}ℓk × {0, 1}ℓt → {0, 1}ℓk is a pseudorandom function, then
F ′ : {0, 1}ℓk×{0, 1}ℓt → {0, 1}ℓc , which is defined above, is also a pseudorandom
function.

Proof. To prove this claim, we first review the definition of pseudorandom func-
tions. Pseudorandomness of the function family F measures the ability of a
distinguisher to tell whether its given oracle is a random instance of F or a
random function of {0, 1}ℓt to {0, 1}ℓk . For a distinguisher A, let

Adv
prf
F (A) = Pr

[

f ← F : Af = 1
]

− Pr
[

f ← Randℓt→ℓk : Af = 1
]

.

For any integer q, t ≥ 0, let

Adv
prf
F (q, t) = max

{

Adv
prf
F (A)

}

,

where the maximum is over all distinguishers A that make at most q oracle
queries and use at most t running time. Intuitively, if F is a pseudorandom
function, then F ′, the last ℓc bits of F , should also be a pseudorandom function.
We prove this by showing that

Adv
prf
F ′ (q, t) ≤ Adv

prf
F (q, t).

Let A be a distinguisher that is given an oracle for a function f ′ : {0, 1}ℓt →
{0, 1}ℓc . Assume A invoked at most q queries and ran at most t time. We can
design a distinguisher B for F versus Randℓt→ℓk such that

Adv
prf
F (B) = Adv

prf
F ′ (A).

Given a distinguisher A, we can build a distinguisher B as follows. Recall that,
given an oracle for a function f : {0, 1}ℓt → {0, 1}ℓk , B must determine whether
f is chosen randomly from F or from Randℓt→ℓk .

1. When A asks its oracle for query Ti, for i ∈ {1, . . . , q}, B queries its own
oracle using Ti and obtains f(Ti). B computes f ′

i(Ti) = f(Ti) mod 2ℓc and
return f ′

i(Ti) back to A.
2. If A outputs 1 then B returns 1, otherwise B returns 0.

We show that

Adv
prf
F (B) = Pr

[

f ← F : Bf = 1
]

− Pr
[

f ← Randℓt→ℓk : Bf = 1
]

= Pr

[

f ′ ← F ′ :

Af ′

= 1

]

− Pr

[

f ← Randℓt→ℓc , f ′(T) = f(T) mod 2ℓc :

Af ′

= 1

]

= Pr
[

f ′ ← F ′ : Af ′

= 1
]

− Pr
[

f ′ ← Randℓt→ℓc : Af ′

= 1
]

= Adv
prf
F ′ (A)

In the above equations, it is clear that if a function f is randomly chosen from
Randℓt→ℓk , then f ′, which outputs the last ℓc bits of f , is a random function
from Randℓt→ℓc . We finish the proof by showing:

Adv
prf
F ′ (q, t) = max

{

Adv
prf
F ′ (A)

}

≤ max
{

Adv
prf
F (B)

}

= Adv
prf
F (q, t)

Claim. If F ′ : {0, 1}ℓk × {0, 1}ℓt → {0, 1}ℓc is a pseudorandom function, then
our scheme is secure against forgery.

Proof. In this proof, we show that if there exists a forger who can forge a virtual
credit card, then we can build a distinguisher to distinguish F ′ from random
functions. Our proof is similar to the proof in [5]. More formally, let

Advvc
F ′ (q, t) = max

{

Pr

[

S ← {0, 1}ℓs , (T, V)← A(T1, V1, . . . , Tq, Vq) :
Verify(T, S, V) = true

]}

= max

{

Pr

[

S ← {0, 1}ℓs , (T, V)← A(T1, V1, . . . , Tq, Vq) :
F ′(H(S), T) = V

]}

We want to show that

Advvc
F ′ (q, t) ≤ Adv

prf
F ′ (q, t) + 2−ℓc .

Let A be a forger who tries to forge a virtual credit card. Assume A invoked at
most q queries and ran at most t time. We can design a distinguisher B for F ′

versus Randℓt→ℓc such that

Adv
prf
F ′ (B) ≥ Advvc

F ′ (A)− 2−ℓc .

Given a forger A, we can build a distinguisher B as follows. Recall that, given
an oracle for a function f ′ : {0, 1}ℓt → {0, 1}ℓc , B must determine whether f ′ is
chosen randomly from F ′ or from Randℓt→ℓc .

1. When A asks its oracle for query Ti, for i ∈ {1, . . . , q}, B answers with
Vi = f ′(Ti).

2. A outputs a (T, V) pair such that T 6∈ {T1, . . . , Tq}.
3. If V = f ′(T) then return 1 else return 0.

It is easy to see that

Pr [f ′ ← F ′ : B = 1] = Advvc
F ′ (A)

Pr
[

f ′ ← Randℓt→ℓc : B = 1
]

≥ 2−ℓc

Subtract the above two equations, we obtain Adv
prf
F ′ (B) ≥ Advvc

F ′ (A)− 2−ℓc .
The above reduction shows that the probability of a successful forgery is less than
the probability of distinguishing F ′ from a random function plus 2−ℓc . Therefore,
our scheme is secure against forgery if F ′ is a pseudorandom function.

Theorem 2. Our virtual credit card scheme is secure against account recovery.

Proof. Recall that the algorithm VirGen takes T ∈ {0, 1}ℓt and S ∈ {0, 1}ℓs as
input, computes K = H(S) and V = F ′

K(T), and outputs V . Let S = C||P ,
where C is the original credit card and P is a password. We want to show that
no adversary can compute C with a probability more than random guessing.
Note that the adversary can query the oracle multiple times with Ti and obtains
the corresponding Vi, so that she can try to learn K then learn C. What we
prove next is that, even if the adversary learns K, the adversary cannot guess
C correctly, i.e.,

Pr
[

C ← {0, 1}ℓc , P ← {0, 1}ℓp ,K = H(C||P), C ′ ← A(K) : C ′ = C
]

≤ 2−ℓc+µ(t)

for any polynomial-time adversary A, where µ(t) is a negligible function in t.
This is quite obvious given H is a one-way hash function, that is,

Pr [M ← {0, 1}∗,K = H(M),M ′ ← A(K) : M ′ = M] ≤ µ(t)

Given K = H(C||P), the adversary can either do a random guessing, i.e., pick
C ′ ← {0, 1}ℓc or find the pre-image of K. Therefore, the overall success proba-
bility for the adversary is bounded by 2−ℓc + µ(t).

6 Closing Remarks

Theft of stored credit card information is an increasing threat to e-commerce. We
propose the concept of dynamic virtual credit card (VCC) numbers to mitigate
this threat. Dynamic VCC numbers can be generated by credit card holders
without online contact with the issuing bank. Using VCC numbers requires no
change to the merchant’s credit card processing infrastructure and reduces the
damage caused by stolen credit card numbers. We have identified the security
requirements for VCC schemes and proposed a scheme that offers flexibility as
well as security. We have also discussed how to address issues related to real-
world deployment of the scheme, and proved that our scheme is secure under
commonly used cryptographic assumptions. We believe this is a viable solution
to the problem of credit card information theft.

References

1. Hotels.com credit-cad numbers stolen. CNN Money, June 2 2006. http://money.
cnn.com/2006/06/02/news/companies/hotels.com theft/index.htm.

2. R. Anderson. Why cryptosystems fail. Communications of the ACM, 37(11):32–40,
November 1994.

3. M. Bellare. New proofs for NMAC and HMAC: Security without collision-
resistance. Cryptology ePrint Archive, Report 2006/043, 2006. http://eprint.

iacr.org/.
4. M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message

authentication. Advances in Cryptology — CRYPTO’96, 1996.
5. M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chaining

message authentication code. Advances in Cryptology — CRYPTO’94, 1994.
6. Citigroup. Citi identify theft solutions: Virtual account numbers. http://www.

citibank.com/us/cards/cardserv/advice/van.htm.
7. S. Dennis. French banks hacked, March 2000. http://www.computeruser.com/

newstoday/00/03/11/news4.html.
8. Discover Bank. Discover card: Secure online account numbers. http://www2.

discovercard.com/deskshop?icmpgn=200512 dc wp hk drpdwn sec nap soa 2.
9. J. Evers. Amazon unit loses credit card data to hackers. In-

foWorld, March 6 2001. http://www.infoworld.com/articles/hn/xml/01/03/

06/010306hnbiblio.html?0306alert.
10. D. C. Franklin and D. Rosen. Electronic online commerce card with transaction-

proxy number for online transactions. Patent 5883810.
11. J. Kim, A. Biryukov, B. Preneel, and S. Hong. On the security of HMAC and

NMAC based on HAVAL, MD4, MD5, SHA-0 and SHA-1. Cryptology ePrint
Archive, Report 2006/187, 2006. http://eprint.iacr.org/.

12. J. Krim and M. Barbaro. 40 Million Credit Card Numbers Hacked. Washington

Post, page A01, June 18 2005.
13. MasterCard. Mastercard securecode. http://www.mastercard.com/securecode/.
14. B. Preneel and P. C. van Oorschot. MDx-MAC and building fast MACs from hash

functions. Lecture Notes in Computer Science, 963:1–14, 1995.
15. D. Transactions. Discover redoubles its commitment to single-use card numbers.

http://www.orbiscom.com/news9.php.
16. Visa International Service Association. Visa security progam: Verified by visa.

https://usa.visa.com/personal/security/vbv/index.html.
17. Visa International Service Association. Rules for visa merchants - card acceptance

and chargeback management guidelines. Technical report, Visa International Ser-
vice Association, 2005.

18. Visa International Service Association. Visanet fact sheets, 2006. http://www.

corporate.visa.com/md/fs/corporate/visanet.jsp.
19. T. Weiss. Laptop with credit card info for 80,000 DOJ workers stolen. Comput-

erWorld, March 31 2005. http://www.computerworld.com/governmenttopics/

government/legalissues/story/0,10801,102146,00.html.
20. J. Ziegler. Everything you ever wanted to know about CC’s. http://euro.ecom.

cmu.edu/resources/elibrary/everycc.htm.

