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ABSTRACT

Li, Zhihong. Ph.D., Purdue University, December, 2006. Elliptic Curve Factoring
Method via FFTs with Division Polynomials. Major Professor: Samuel S. Wagstaff,
Jr..

In 1985, H. W. Lenstra, Jr. discovered a new factoring method, the Elliptic Curve

Method (ECM), which efficiently finds 20- to 30- digit prime factors. On January

15, 2001, C. P. Schnorr proposed an idea to apply division polynomials for ECM. In

this thesis, we modify and implement the idea in detail, analyze the complexity of

the algorithm and the probability of success.

We first extend the concept of division polynomial to a univariate case with the

parameter a in the Weierstrass form y2 = x3 + ax+ b as the variable. We generalize

a result about the degree of this implied univariate division polynomial. Then we

discover an algorithm to efficiently generate the m-th univariate division polynomial

and determine the complexity of the algorithm.

We then present the main algorithm of this thesis, which is the main result of the

thesis as well. We demonstrate in both algebraic and geometric ways the sufficient

conditions for the algorithm to be successful. We analyze the probability of success

and prove the related results. To demonstrate the structure of the main algorithm,

we divide it to several parts and introduce every part in detail. Then we propose

and prove a theorem about the complexity of the main algorithm.

We also present an optimization of the main algorithm for a family of numbers

with specific form. This family is of great interest as well. We show that for this

family, the optimal algorithm can factor numbers even faster and also remove the

memory restriction of the multiple m of the point on the elliptic curves, which is

also the index of the implied division polynomial being used.
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At the end, we address some issues related to the implementation of the algo-

rithm. With the algorithm, we can find some 40-digit primes on a 1.86GHz 1066FBS

PC with 4GB DDR2 SDRAM at 533MHz. It also finds some 50-digit primes. Now

we are trying the algorithm on 60-digit primes and we hope that the algorithm will

find some 70-digit primes.
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1. Introduction

1.1 Algorithms for Factoring Integers

Integer factorization is a classical problem in number theory. It has been studied

for centuries. It is stated in the Fundamental Theorem of Arithmetic that any

positive integer can be uniquely factored into primes. A prime number is p > 1 such

that the only divisor of p is 1 and p. Two main problems about prime numbers are

primality proving and integer factorization. These two problems were studied by

Gauss [10]. The latest algorithms for primality testing run in polynomial time while

none of the integer factoring algorithms are that fast.

The solution of the integer factorization problem is not simple. Although re-

markable progress has been achieved, the problem is still difficult.

Factoring large integers is a theoretical problem. However, many practical is-

sues depend on it. One of them, which I will focus on, is cryptography or more

precisely the public-key cryptosystem. RSA [18] is by far the easiest to understand

and implement public-key cryptosystem. The security of RSA lies in the supposed

intractability of factoring large integers. One can break RSA if one can find the

factors of the integer n given as a public key.

The three most efficient factorization algorithms are Quadratic Sieve (QS), El-

liptic Curve Method (ECM) and Number Field Sieve (NFS).

The NFS [12] is the fastest known method for factoring large integers. The

Multiple Polynomial Quadratic Sieve (MPQS) [7] is faster than NFS for numbers up

to 110 decimal digits.

ECM [13] is very similar to Pollard’s p− 1 algorithm [17]. The difference is that

ECM uses elliptic curves instead of using powers of a constant modulo N in Pollard’s

p− 1 algorithm. One advantage of ECM over Pollard’s p− 1 algorithm is that there
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are many elliptic curve groups modulo p, where p is a prime factor of N . The run

time for ECM depends strongly on the size of the least prime factor p of N and

weakly on the size of N , while the run time of QS and NFS depend on the size of

N only. The worst case for ECM occurs when N is the product of two primes with

similar magnitude. ECM works better than QS and NFS for very large numbers as

long as the least prime factor of N is reasonably small. However, we have no idea

about the size of the factors of N before we factor it. So a good strategy is to try

ECM first after some trial division, and switch to QS or NFS in case of failure after

a reasonable amount of tries.

1.2 ECM and an FFT Extension

In ECM, one chooses a random rational point P = (x0, y0), then a. Finally, b is

determined by b = y2
0 − x3

0 − ax0 (mod N). Suppose that p 6= 2, 3 is a prime divisor

of N . Denote the elliptic curve with parameters a, b by Ea,b. Then the rational

points on Ea,b over Z/pZ form an Abelian group called the Mordell-Weil group. If

we denote the order of the Mordell-Weil group as #Ea,b[p], we have p + 1 − 2
√
p <

#Ea,b[p] < p + 1 + 2
√
p by Hasse’s theorem. Then one evaluates the multiple MP ,

where M is the product of the primes up to some pre-selected bound B1, raised to

some suitable power. If MP is the identity of Ea,b modulo p but not the identity of

Ea,b modulo N , a prime factor p of N is found. If B1 is larger than the largest prime

divisor of #Ea,b[p], ECM will usually succeed. However, the reason why ECM is not

a deterministic algorithm is that people have no idea about #Ea,b[p]. This brings

up an important issue about ECM, which is optimizing the parameter selection.

Silverman and Wagstaff [22] have posed a very precise analysis about this.

Another major question is what to do if ECM fails to find a prime factor for the

upper bound B1. In this case, #Ea,b[p] might have the property that all its prime

factors are less than B1 except for the largest prime factor to lie between B1 and some

larger bound B2. To discover such p, the two-step version of ECM was introduced.



3

Montgomery [15] applied the Fast Fourier Transform (FFT) for the second step and

it is a great success. The algorithm generates two polynomials from the resulting

multiples of the first step. It then finds the greatest common divisor of these two

polynomial by FFT. This process either produces a polynomial that divides both

polynomials or finds a factor of N .

1.3 ECM by Division Polynomials

The Weierstrass form of elliptic curve is used through this thesis. It is not hard

to transform other forms to Weierstrass form

Ea,b : y2 = x3 + ax+ b. (1.1)

The basic idea of ECM is hoping that some multiple m · P is the infinity of the

elliptic curve modulo p while it is not the infinity of the elliptic curve modulo N . It

turns out that it is sufficient to consider the x-coordinate only. Division polynomials

are introduced in an elliptic curve and defined inductively. The x-coordinate of m ·P
has the square of the m-th division polynomial as its denominator. Denote by ψm the

m-th division polynomial. Then the above goal will be achieved if ψm ≡ 0 (mod p)

and ψm 6≡ 0 (mod N) for some m. That is, gcd(ψm, N) is non-trivial. Therefore,

one can implement ECM by evaluating the division polynomials and checking the

greatest common divisor between the values and N .

This thesis differs from the other work in that we evaluate division polynomials

at many points all together by FFT and then check the gcd between the product

and N . If the gcd is N , then we truncate the product. If the gcd is 1, we increase

the index m of the division polynomial.

1.4 Organization of the Thesis

Chapter 2 goes over some basic properties of elliptic curves and introduces ECM.
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We define division polynomials as well as implied univariate division polynomials

of elliptic curves and demonstrate some facts about them in Chapter 3. We state and

prove a theorem about their degrees and design an algorithm to efficiently generate

high-order implied division polynomials.

Chapter 4 is the core chapter of this thesis. We explain the innovative main

algorithm for factoring large integers by ECM thoroughly, propose some theorems

about the conditions for the algorithm to be successful as well as the probability of

success. Then prove the result about the complexity of the algorithm, which is the

main result of this thesis. At the end of the chapter, we illustrate that the main

algorithm can be optimized for prime numbers with some specific form. We then

propose and analyze this optimized algorithm.

In Chapter 5 we demonstrate the main algorithm in more detail by focusing on

how to implement and test it. Then we summarize the main results.

Chapter 6 suggests directions for further research.
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2. Elliptic Curve Method

2.1 Elliptic Curve and Its Arithmetic

Let K and L be two fields with K ⊆ L. We say α ∈ L is algebraic over K if

there exists a nonconstant polynomial

f(x) = xn + an−1x
n−1 + · · · + a0

with a0, . . . , an−1 ∈ K such that f(α) = 0.

Definition 2.1.1 Given two fields K and L, L is said to be algebraic over K if

every element of L is algebraic over K. A field K is called algebraically closed

if every nonconstant polynomial g(x), with coefficients in K, has a root in K. An

algebraic closure of K is the smallest algebraically closed field containing K and

denoted by K.

The general form of an elliptic curve E over a field K is given by the following

cubic equation:

Y 2Z + a0XY Z + a1Y Z
2 = X3 + b0X

2Z + b1XZ2 + b2Z
3. (2.1)

Notice that ∞ = (0, 1, 0) is a solution of (2.1). It is the basepoint and called a point

at infinity. In (2.1), we require a0, a1, b0, b1, b2 ∈ K. If we set x = X/Z, y = Y/Z,

(2.1) will become

y2 + a0xy + a1y = x3 + b0x
2 + b1x+ b2. (2.2)

If char(K) 6= 2, 3, the replacement x → x− (a2
0/4 + b0)/3 and y → y − (a0x+ a1)/2

gives the Weierstrass form of an elliptic curve.

Definition 2.1.2 The Weierstrass form is

E : y2 = x3 + ax+ b, (2.3)
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where a, b ∈ K and 4a3 + 27b2 6= 0. The discriminant is ∆ = 4a3 + 27b2. The

j-invariant is defined by

j = 1728
4a3

4a3 + 27b2
.

Under the transform x∗ = α2x and y∗ = α3y, with α be a nonzero element of the

multiplicative group of K, the j-invariant is unchanged. In fact the two elliptic curves

are isomorphic over an algebraically closed field if they have the same j-invariant.

However, this is not the case for the non-algebraically closed field.

The elliptic curve in Weierstrass form is defined as the set of all the points in

K ×K satisfying (2.3) and the point at infinity ∞.

Now let’s consider the arithmetic of elliptic curves. If P = (x1, y1), Q = (x2, y2)

are two points on the elliptic curve E given by (2.3), the inverse of P is defined as

−P = (x1,−y1). The following is the idea for defining the sum. If Q = −P , define

P +Q = ∞. If P +Q 6= ∞, then the line L through P and Q is not vertical so that

it intersects with E at a third point −R. In this case, we define P +Q = R.

Let R = (x3, y3), then we have the following formal definition for addition:

1. If Q = ∞, then R = P + ∞ = P .

2. If P = ∞, then R = Q+ ∞ = Q.

3. If Q = −P , then R = P + (−P ) = ∞.

4. If x1 6= x2, then define

m =
y2 − y1

x2 − x1

, (2.4)

x3 = m2 − x1 − x2, y3 = m(x1 − x3) − y1.

5. If x1 = x2, y1 = y2 and y1 6= 0, which means P = Q,R = 2P , then define

m =
3x2

1 + a

2y1

, (2.5)

x3 = m2 − 2x1, y3 = m(x1 − x3) − y1.

6. If x1 = x2, y1 = y2 and y1 = 0, then R = P +Q = 2P = ∞.
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It’s not hard to prove that the addition defined above satisfies the commutativity,

existence of identity, existence of inverses. There are several ways to prove the

associativity. It can be done by the formulas for addition. It can also be proved by

algebraic geometry. Please refer to Section 3.2 of [21] for more details.

Theorem 2.1.1 The points on the elliptic curve E with the addition defined above

forms an abelian group with identity ∞. It is called the Mordell-Weil group.

Figure 2.1 is the graph of the elliptic curve determined by y2 = x3 − x+ 1. And

it illustrates the way that addition and scalar multiplication are done for the points

on an elliptic curve. In Figure 2.1,

P = (0, 1) Q = (1, 1) P +Q = (−1,−1)

2P = (1/4,−7/8) − 2P = (1/4, 7/8)

2P +Q = (1/4,−7/8) + (1, 1) = (5,−11)

P + (P +Q) = (0, 1) + (−1,−1) = (5,−11)

To locate −P given P , just reflect P around the x−axis. To find P + Q, draw

a line passing through P and Q. The intersection point of the line and the curve is

−(P +Q) so that P +Q can be located by reflecting −(P +Q) around x−axis. To

find 2P , draw the tangent line of the curve passing P , and the intersection point of

the tangent line and the curve is −2P . Then we can find 2P = −(−2P ).

Notice that a multiple of a point P can be computed by several additions and

fast multiplication. The calculation of Q = mP is as follows.

1. Let i = m, Q = ∞, R = P .

2. If i is even, let i = i/2. Set R = 2R = R +R.

3. If i is odd, let i = i− 1. Set Q = Q+R.

4. If i 6= 0, go to Step 2.

5. Return Q.
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2.2 The Order of Elliptic Curve over Finite Field

An elliptic curve over a finite field is what we deal with in ECM. Its order is very

important. If p is the prime factor of N , ECM will likely succeed if all prime factors

of #Ea,b[p] are less than some upper bound B. In this case, the order is said to be

smooth up to B. Two questions come up now. First, how to find the order #Ea,b[p]

of the elliptic curve over Fp. Second, how to determine the size of the largest prime

factor of an integer. We will answer the first question in this section and the second

in the next section.

Theorem 2.2.1 (Hasse’s Theorem) Let Ea,b[p] be an elliptic curve over the finite

field Fp and its order be denoted by #Ea,b[p]. Then

p+ 1 − 2
√
p ≤ #Ea,b[p] ≤ p+ 1 + 2

√
p.

The proof can be found in Section 5.1 of [21]. For large p, the size of
√
p is much

smaller than the size of p, so we can conclude that the order of the elliptic curve over

Fp is close to p. Actually, for any integer K in interval [p + 1 − 2
√
p, p + 1 + 2

√
p],

we can choose some specific parameters a, b such that K is the order of the elliptic

curve y2 = x3 + ax + b over Fp. Please see Deuring [8] for more details. This fact

explains the advantage of ECM over Pollard’s p − 1 method [17]. Pollard’s p − 1

method finds the prime factor p of N by evaluating gcd(aM−1, N), where M is some

suitable multiple of p − 1. So in order for the method to succeed, all prime factors

of p− 1 have to be less than some suitable upper bound. This restricts the method

to find those primes p for which p− 1 has no large prime factor. ECM works as long

as all prime factors of #Ea,b[p] are less than some suitable upper bound. But the

difference is that we have many choices of #Ea,b[p]. If one curve fails, we can choose

another curve.

The following theorem by Cassels [5] describes the structure of an elliptic curve

over finite field.
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Theorem 2.2.2 Let Ea,b[p] be the elliptic curve over the finite field Fp. Then

Ea,b[p] ' Zn or Ea,b[p] ' Zn1
⊕ Zn2

where n, n1, n2 ≥ 1 are integers and n1 | n2.

2.3 Smoothness and Dickman’s Function

Now let’s answer the second question proposed in the previous section. In ECM,

the factor p will be discovered by a curve Ea,b if the largest prime factor of #Ea,b[p]

is smaller than B. The reason for this is that we evaluate MP with P ∈ Ea,b,

M =
∏n

i=1 q
ei
i , and q1, . . . , qn are all the primes less than B. The algorithm will

succeed if MP is the infinity of Ea,b[p] but not the infinity of Ea,b[N ]. So we need to

get an estimation of the size of the largest prime factor of a given integer.

Definition 2.3.1 A positive number n is called B-smooth if the largest prime factor

of n is less than B.

If we denote the number of B-smooth integers in the interval [1, x] as λ(x,B),

and denote by p(x,B) the probability that an integer in [1, x] is B-smooth, then we

have p(x,B) = λ(x,B)/x.

Definition 2.3.2 Dickman’s function ρ(t) for t ≥ 0 is defined as

ρ(t) = lim
x→∞

p(x, x1/t) = lim
x→∞

λ(x, x1/t)/x.

It is easy to prove the limit exists and derive ρ(t) = 1 for 0 ≤ t ≤ 1. Dickman [9]

showed that

ρ′(t) = −ρ(t− 1)/t for t > 1. (2.6)

Then we can get the following result for 1 ≤ t ≤ 2

ρ(t) =

∫ t

0

ρ′(s)ds = 1 −
∫ t

1

ρ(s− 1)

s
ds = 1 −

∫ t

1

1

s
ds = 1 − ln t.

By (2.6) and integrating by parts, we can get the following important theorem.
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Theorem 2.3.1 For t > 1, ρ(t) =
∫ t
t−1

ρ(s)ds/t.

A good approximation by Knuth and Trabb Pardo [11] is ρ(t) ≈ t−t. Now let’s

consider the smoothness. If B = n1/t, then t = (lnn)/(lnB). We can conclude that

the probability that #Ea,b[p] is B-smooth is

ρ(t) ≈ t−t with t =
ln #Ea,b[p]

lnB
≈ ln p

lnB
.

Dickman’s function can also be calculated with greater accuracy. Bach and Per-

alta [2] gave an effective method by noticing that ρ(t) is analytic on [m − 1,m] for

any integer m ≥ 1. There is an analytic function ρm(t) that is equal to ρ(t). Then

they use a Taylor expansion for ρ(t) = ρm(t) = ρm(m− ξ) on [m− 1,m] to get

ρ(t) =
∞∑

i=0

c
(m)
i ξi

where the coefficients are given by

c
(1)
0 = 1, c

(1)
i = 0 for i > 0,

c
(2)
0 = 1 − ln 2, c

(2)
i =

1

i2i
for i > 0,

and

c
(m)
0 =

1

m− 1

∞∑

j=1

c
(m)
j

j + 1
for m > 2,

c
(m)
i =

i−1∑

j=0

c
(m−1)
j

imi−j for i > 0,m > 2.

G. Marsaglia, Zaman and J. C. W. Marsaglia [14] gave an even more accurate

method by expanding ρ(t) at m− 1
2

instead of m.

In the next section, we will see that a second step can be added to ECM to make

it more efficient. This step 2 deals with the case that #Ea,b[p] is B2-smooth but its

second largest prime factor is less than B1 (< B2).

Definition 2.3.3 An integer n is called k-semismooth with respect to y and z if

the largest prime factor of n is ≤ y and its (k + 1)st largest prime factor is ≤ z.
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Let λk(x, y, z) denote the number of k-semismooth integers in [1, x]. If we denote

by pk(x,B2, B1) the probability that an integer in [1, x] is k-semismooth with respect

to B2 and B1, then we have pk(x,B2, B1) = λk(x,B2, B1)/x. Define

ρ(t1, t2) = lim
x→∞

p1(x, x
t2/t1 , x1/t1) for t1 > t2 > 1.

Knuth and Trabb Pardo [11] gave the functional equation for ρ(t1, t2) as

ρ(t1, t2) =
1

t1 − t2

∫ t1−1

t1−t2
ρ(t)dt

where ρ(t) is Dickman’s function. The probability that the 2-step ECM with param-

eters B1, B2 succeeds in finding p is approximately ρ( ln p
lnB1

, lnB2

lnB1
).

Zhang [25] gave a rigorous proof for the recurrence formulae to limx→∞ pk(x, x
t, xs)

and some numerical results for calculating it.

2.4 Lenstra’s Algorithm

In February 1985, H. W. Lenstra, Jr. [13] invented the ECM algorithm. He

published it in 1987. It is obtained from Pollard’s p − 1 method by replacing the

multiplicative group by the Mordell-Weil group. If the parameters are chosen prop-

erly, the expected number of group additions performed is L(p)
√

2+o(1) where

L(p) = exp(
√

ln p ln ln p).

Silverman and Wagstaff [22] suggested an optimal parameter selection technique and

run-time guidelines for 2-step ECM. The worst case for ECM happens when N = p·q
with p and q sharing the same order of magnitude. In this case, the complexity of

ECM becomes L(N)1+o(1).

Lenstra’s method revises the addition on elliptic curve over Z/NZ. Given P =

(x1, y1), Q = (x2, y2), let R = (x3, y3) = P + Q with xi, yi < N for i = 1, 2, 3, and

that p|N is one of the prime factors for the number N we want to factor, the revised

addition algorithm by Lenstra is
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1. If Q = ∞, then set R = P + ∞ = P and stop by asserting failure and choose

another point.

2. If P = ∞, then set R = Q + ∞ = Q and stop by asserting failure and choose

another point.

3. Calculate d = gcd(x1 − x2, N) by the extended Euclidean algorithm, we will

get the follow 3 subcases:

(a) If 1 < d < N , then set p = d and stop by declaring success for factoring.

(b) If d = 1, then the extended Euclidean algorithm gives (x1−x2)
−1 modulo

N and we can apply (2.4) to get R.

(c) If d = N , then x1 = x2. In this case, calculate d = gcd(y1 + y2, N) by the

extended Euclidean algorithm and we will get 3 more subcases here:

i. If 1 < d < N , then set p = d and stop by declaring success for

factoring.

ii. If d = N , then y1 = −y2 ⇒ Q = −P and set R = ∞ and stop by

asserting the failure for factoring.

iii. If d = 1, then by the symmetry, we can conclude y1 = y2 ⇒ P = Q.

The extended Euclidean algorithm gives (y1+y2)
−1 = (2y1)

−1 modulo

N and we can apply (2.5) to get R.

In Lenstra’s method, a random point P = (x, y) with 1 ≤ x, y < N is selected

first, then an elliptic curve Ea,b[N ] is chosen such that P ∈ Ea,b[N ] (this is done by

choosing a < N randomly and letting b ≡ y2−x3−ax(mod N)). Then one calculates

R =
∏l

i=1 q
ei
i · P , where q1, . . . , ql are all the primes less than some suitable upper

bound B and e1, . . . , el are suitable powers. A good choice for the ei is the largest e

so that qei <
√
N . Compute R by the formulas P0 = P , Pj = q

ej
j ·Pj−1 for 1 ≤ j < l,

and R = Pl. Use fast multiplication to compute q
ej
j · Pj−1. Each point addition or

doubling in the fast multiplication is done using Lenstra’s revised addition algorithm.

In case N is factored in Step 3(a) or 3(c)i, then of course R will not be computed.
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If a failure is asserted in some step, then change a (x, y can also be changed but not

necessarily) and start over. If R is successfully computed, save it and start step 2 of

ECM.

Now let’s go back to the addition algorithm. Case 1 and case 2 will never happen

for factoring algorithm since the algorithm will be stopped with asserting a failure

when the ∞ of Ea,b[N ] is hit. Case 3(b) and case 3(c)iii will lead to the next step of

computing R for the current curve. Case 3(c)ii asserts a failure and asks for a new

curve. Case 3(c)i means x1 = x2 and y1 = −y2 if we reduce them to Ea,b[p]. That

is, k · P = −P in Ea,b[p] for some k. Then (k + 1) · P = ∞ in Ea,b[p]. Case 3(a)

means x1 = x2 in Ea,b[p]. That is, k · P = P or k · P = −P in Ea,b[p]. If k · P = P ,

then (k− 1) ·P = ∞. So if the algorithm succeeds, some multiple of P must hit the

infinity of the elliptic curve over Fp but not the infinity of the curve over Z/NZ.

2.5 The Second Step of ECM

Lenstra pointed out the possibility and necessity of adding a second step to his

algorithm. Both Montgomery [16] and Brent [3] proposed methods to implement this

second step. Both methods use the output of the first step in case of its failure. It’s

a point R = m · P on Ea,b[N ]. Assume that #Ea,b[p] is 1-semismooth with respect

to B2 and B1 and that the largest prime factor of #Ea,b[p] is q with B1 < q < B2.

Then #Ea,b[p]|mq ⇒ (mq) · P = ∞ of Ea,b[p]. So q ·R is the infinity over Ea,b[p].

In the second step of each method, a sequence of multiples of R, {ni · R}ri=1,

is computed so that for each prime q1 ∈ [B1, B2] there exist integers i and j with

q1|(ni − nj). When this happens, ni · R and nj · R are the same modulo p, and

then p can be found if its largest prime factor q equals q1 since these two points are

unlikely to be the same modulo N . If we consider the x-coordinates {xi}ri=1 of this

sequence of points, the problem we will face in step 2 is to find xi and xj such that

gcd(xi−xj, N) is non-trivial. Montgomery [15] constructed a polynomial from these

values and applied the FFT to implement checking for a match.
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2.6 Optimal Parameter Selection

When applying ECM to factor a large number N , since we have no idea about

the size of #Ea,b[p] or p, we have to find a way to optimally choose the parameter

B1, B2 and the number of curves L. Silverman and Wagstaff [22] elaborated on this

issue and proposed a good way for choosing parameters and changing them after

failure. They constructed a table and suggested values for B1 and B2 for each size

of prime factor p expected to be found.

Up to now, we reviewed the basic idea of Lenstra’s ECM and the second step as

well as the way to select parameters B1, B2. To finish this chapter and make things

clearer, let’s quote the guidelines to implement ECM, provided by Silverman and

Wagstaff [22].

1. Do trial division up to some prime around ln2 N .

2. Guess a possible size for the least prime factor of N based on the effort ex-

pended so far to try to factor N .

3. Select B1 and B2 based on this guess and run a 2-step ECM. If it succeeds,

then stop the algorithm. If it fails to find a prime factor, choose another curve

and run ECM with B1 and B2 again until the algorithm succeeds or a certain

number of curves have been tried.

4. If the algorithm fails at the end of Step 3, go back to Step 2.

5. If the previous 4 steps have not succeeded for a reasonable runtime, switch

ECM to MPQS.

This thesis tells how to do Step 3 efficiently with many curves computed simul-

taneously. Our algorithm is most useful for factoring number N known to have no

small prime factors.
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3. Division Polynomials

3.1 Definition and Properties

The key point at which the elliptic curve factoring method proposed in this

thesis differs from Lenstra’s method is the use of division polynomials. Division

polynomials are defined inductively.

Definition 3.1.1 For the Weierstrass form y2 = x3 + ax + b, the m-th division

polynomial ψm(a, b, x, y) ∈ Z[a, b, x, y] by

ψ1 = 1, ψ2 = 2y, (3.1)

ψ3 = 3x4 + 6ax2 + 12bx− a2, (3.2)

ψ4 = 4y(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− 8b2 − a3), (3.3)

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1 (m ≥ 2), (3.4)

2yψ2m = ψm(ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1) (m ≥ 3). (3.5)

Further, two more polynomials are defined by

φm = xψ2
m − ψm+1ψm−1, (3.6)

4yωm = ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1. (3.7)

Recall that ∆ = 4a3 + 27b2.

Theorem 3.1.1 For the division polynomial ψm, we have

1. ψm, φm, y−1ωm (for m odd) and (2y)−1ψm, φm, ωm (for m even) are poly-

nomials in Z[a, b, x, y2]. Using the Weierstrass form y2 = x3 + ax + b, these

polynomials may be considered in Z[a, b, x].
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2. The highest order terms with respect to x of φm(a, b, x) and ψm(a, b, x)2 are

xm
2

and m2xm
2−1 respectively.

3. If ∆ 6= 0, then φm(x) and ψm(x)2 are relatively prime.

4. If ∆ 6= 0 and P = (x, y), then

m · P =

(
φm(a, b, x)

ψm(a, b, x)2
,
ωm(a, b, x)

ψm(a, b, x)3

)
. (3.8)

5. The endomorphism of Ea,b given by multiplication by m has degree m2.

The proof of these properties can be found in Section 9.5 of Washington [24].

(3.8) is the most important to the factoring method presented in this thesis. We

sketch the proof of it here.

If ω1, ω2 ∈ C are linearly independent over R, then call

L = Zω1 + Zω2 = {n1ω1 + n2ω2|n1, n2 ∈ Z}

a lattice. Then C/L is a torus. A doubly periodic function

f : C→ C ∪∞

is one for which

f(z + ω) = f(z) for all z ∈ C and all ω ∈ L.

Now we consider a special doubly periodic function, called Weierstrass ℘-function

and defined by

℘(z) = ℘(z;L) =
1

z2
+

∑

ω∈L,ω 6=0

(
1

(z − ω)2
− 1

ω2

)
. (3.9)

In fact every doubly periodic function can be written as a rational function of ℘ and

its derivative ℘′. By setting

Gk =
∑

ω∈L,ω 6=0

ω−k,
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we can rewrite

℘(z) =
1

z2
+

∞∑

j=1

(2j + 1)G2j+2z
2j. (3.10)

And it is not hard to prove by direct calculation that

℘′(z)2 = 4℘(z)3 − 60G4℘(z) − 140G6.

Therefore, we can regard (℘(z), 1
2
℘′(z)) as a point on an elliptic curve over C. Then

we have the following important theorem about elliptic curves.

Theorem 3.1.2 Let L be a lattice and E(C) be the elliptic curve y2 = 4x3−60G4x−
140G6 over C. The map

C/L → E(C)

z 7→ (℘(z), ℘′(z)), 0 7→ ∞

is a group isomorphism.

The proof can be found in Section 9.2 of Washington [24].

Now to finish the proof of (3.8), we define

fm(z)2 = m2
∏

u∈(C/L)[m],u 6=0

(℘(z) − ℘(u))

and can prove that fm(z) is a doubly periodic function. There are some relationships

between ℘(z) and fm(z) such as

℘(nz) = ℘(z) − fn−1(z)fn+1(z)

fn(z)2
, (3.11)

f2n+1 = fn+2f
3
n − f 3

n+1fn−1, (3.12)

℘′f2n = fn(fn+2f
2
n−1 − fn−2f

2
n+1), (3.13)

fn(z) = ψn(℘(z),
1

2
℘′(z)), (3.14)

℘′(nz) =
f2n

f 4
n

. (3.15)

(3.8) can be proved for an elliptic curve over C by noticing

(x, y) = (℘(z),
1

2
℘′(z)), m · (x, y) = (℘(nz),

1

2
℘′(nz))
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for some z.

For an elliptic curve Ea,b over a field K with non-zero characteristic (not 2), the

proof is done by constructing a homomorphism between RM and K(x, y), where

R = Z[α, β,X, Y ] for α, β,X being independent transcendental elements of C, M

is a maximal ideal of R, and RM is the localization of R at M . Then the multiple

of (X,Y ) on the elliptic curve Y 2 = X3 + αX + β over RM is equivalent with the

multiple of (x, y) on the elliptic curve Ea,b[K]. It has been proved that (3.8) holds for

the former case. Hence, (3.8) holds for elliptic curve over any field with characteristic

not equal to 2.

3.2 Implied Univariate Division Polynomials

Provided that the base field K is infinite, notice that for the same point P =

(x, y), we can find infinitely many elliptic curves passing through it by changing the

parameter a. So can we vary the elliptic curves passing through some fixed point

by varying a. If we choose and fix the point P = (x, y), then we can regard the

division polynomials as polynomials with a being the independent variable since b

can be expressed by b = y2 − x3 − ax. This polynomial is called the m-th implied

univariate division polynomial and denoted by ψ̄m(a). It is obvious that (3.8)

is also true for ψ̄m(a).

In the factoring algorithm I am presenting in this thesis, ψ̄m plays an important

role. Choose a number a. Then by (3.8) the value ψ̄2
m(a) gives the denominator of

the x-coordinate of m · P . This value will tell us whether m · P is the infinity point

of the elliptic curve with a as the parameter. To evaluate ψ̄m(a) efficiently, we need

to know the degree of the implied univariate division polynomial. I have deduced

the following theorem about the degree of ψ̄m.

Theorem 3.2.1 If deg(ψ̄m) denotes the degree of ψ̄m, then

deg(ψ̄m) =





(m
2
− 1)(m

2
+ 1) = m2

4
− 1 if m is even

m−1
2

m+1
2

= m2−1
4

if m is odd
(3.16)
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Proof For future reference, let’s write out ψ̄m for m = 1, 2, 3, 4.

ψ̄1 = 1, ψ̄2 = 2y, (3.17)

ψ̄3 = −a2 + 6x2a+ 12xb+ 3x4

= −a2 + 6x2a+ 12x(y2 − x3 − ax) + 3x4

= −a2 − (6x2)a+ (12xy2 − 9x4), (3.18)

ψ̄4 = 4y(x6 + 5x4a+ 20x3b− 5x2a2 − 4xab− 8b2 − a3)

= 4y(x6 + 5x4a+ 20x3(y2 − x3 − ax) − 5x2a2 − 4xa(y2 − x3 − ax)

−8(y2 − x3 − ax)2 − a3)

= −(4y)a3 − (36x2y)a2 + (48xy3 − 108x4y)a

+(144x3y3 − 108x6y − 32y5). (3.19)

We see that (3.16) is true for ψ̄1, ψ̄2, ψ̄3, ψ̄4.

Assume (3.16) is true for m ≤ 2k. It suffices to prove that (3.16) is true for

m = 2k + 1 and m = 2k + 2.

1). ψ̄2k+1 = ψ̄k+2ψ̄
3
k − ψ̄k−1ψ̄

3
k+1

If k is even,

deg(ψ̄2k+1) = max(deg(ψ̄k+2) + 3 deg(ψ̄k), deg(ψ̄k−1) + 3 deg(ψ̄k+1))

= max

(
(k + 2)2

4
− 1 + 3

(
k2

4
− 1

)
,
(k − 1)2 − 1

4
+ 3

(k + 1)2 − 1

4

)

= max(k2 + k − 3, k2 + k) = k2 + k =
(2k + 1)2 − 1

4
.

If k is odd,

deg(ψ̄2k+1) = max(deg(ψ̄k+2) + 3 deg(ψ̄k), deg(ψ̄k−1) + 3 deg(ψ̄k+1))

= max

(
(k + 2)2 − 1

4
+ 3

k2 − 1

4
,
(k − 1)2

4
− 1 + 3

(
(k + 1)2

4
− 1

))

= max(k2 + k − 4, k2 + k) = k2 + k =
(2k + 1)2 − 1

4
.
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2). ψ̄2k+2 = (2y)−1ψ̄k+1(ψ̄k+3ψ̄
2
k − ψ̄k−1ψ̄

2
k+2)

If k is even,

deg(ψ̄2k+2) = deg(ψ̄k+1) + max(deg(ψ̄k+3) + 2 deg(ψ̄k), deg(ψ̄k−1) + 2 deg(ψ̄k+2))

=
(k + 1)2 − 1

4
+

max

(
(k + 3)2 − 1

4
+ 2

(
k2

4
− 1

)
,
(k − 1)2 − 1

4
+ 2

(
(k + 2)2

4
− 1

))

=
k2 + 2k

4
+ max

(
3k2 + 6k

4
,
3k2 + 6k

4

)

= k2 + 2k =
(2k + 2)2

4
− 1.

If k is odd,

deg(ψ̄2k+2) = deg(ψ̄k+1) + max(deg(ψ̄k+3) + 2 deg(ψ̄k), deg(ψ̄k−1) + 2 deg(ψ̄k+2))

=
(k + 1)2

4
− 1+

max

(
(k + 3)2

4
− 1 + 2

k2 − 1

4
,
(k − 1)2

4
− 1 + 2

(k + 2)2 − 1

4

)

=
k2 + 2k − 3

4
+ max

(
3k2 + 6k + 3

4
,
3k2 + 6k + 3

4

)

= k2 + 2k =
(2k + 2)2

4
− 1.

Now, by induction, (3.16) is true for every m. This proves the theorem.

3.3 Algorithm to Effectively Generate Implied Division Polynomials

We need to evaluate the m-th implied univariate division polynomial in the fac-

toring algorithm. Since division polynomials get large rapidly in the sense of the

sizes of both coefficients and the degree as m gets larger, we need to find a technique

to control this growth in order to save the storage in the memory.

First of all, the large numbers are stored in 1-dimensional arrays with the first

element indicating the size and sign of the number and the radix being some appro-

priate large number such as 230. Assume the size of the array to be 50. To control

the size of the coefficients, we implement all the calculations modulo N . To store the
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m-th implied univariate division polynomial, we need a 2-dimensional array with the

size m2

4
× 50. Obviously we cannot store all the implied division polynomials up to

some index m. The good news is that we only need several implied division polyno-

mials with lower index in order to deduce the one with higher index. After carefully

inspecting the inductive definition, we find that only 7 adjacent implied division

polynomials have to be stored. Therefore, we can use dynamic memory allocation

to save storage. The algorithm is given below.

Algorithm 3.3.1 (Defining the m-th implied division polynomial) Given a positive

integer m and a pair (x, y) ∈ ZN × ZN , the algorithm generates a 2-dimensional

array which represents the coefficients of the m−th implied division polynomial.

1. [Initialization]

Factor m − 3, . . . ,m + 3 to the form of d · 2e with d, e ∈ N and d being odd.

From these seven d values, select the smallest and call it d∗;

round=e (corresponding to d∗);

if (d∗==1) {New (ψ1, ψ2, ψ3, ψ4, ψ5, ψ6, ψ7) and initialize them by setting ψi =

ψ̄i for ψ̄i in (3.17), (3.18), (3.19), (3.4), (3.5);}

if (d∗==3) {New (ψ1, ψ2, ψ3, ψ4, ψ5, ψ6, ψ7) and initialize them by setting ψ1=1

and ψi = ψ̄i−1 for i = 2, . . . , 7 in (3.17), (3.18), (3.19), (3.4), (3.5);}

else {Find ψ̄d∗−3, ψ̄d∗−2, ψ̄d∗−1, ψ̄d∗ , ψ̄d∗+1, ψ̄d∗+2, ψ̄d∗+3 by calling algorithm 3.3.1;

New (ψ1, ψ2, ψ3, ψ4, ψ5, ψ6, ψ7) and initialize them by

(ψ̄d∗−3, ψ̄d∗−2, ψ̄d∗−1, ψ̄d∗ , ψ̄d∗+1, ψ̄d∗+2, ψ̄d∗+3); }

2. [Loop]

for (i=0; i<round; i++) {New (ψ′
1, ψ

′
2, ψ

′
3, ψ

′
4, ψ

′
5, ψ

′
6, ψ

′
7) with size of (d∗2i −

2)(d∗2i−1), (d∗2i−1)2, (d∗2i−1)(d∗2i), (d∗2i)2, (d∗2i)(d∗2i+1), (d∗2i+1)2, (d∗2i+

1)(d∗2i + 2);

Map (ψ1, ψ2, ψ3, ψ4, ψ5, ψ6, ψ7) to (ψ′
1, ψ

′
2, ψ

′
3, ψ

′
4, ψ

′
5, ψ

′
6, ψ

′
7) by the relation de-

scribed in (3.4),(3.5);
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Free (ψ1, ψ2, ψ3, ψ4, ψ5, ψ6, ψ7);

New (ψ1, ψ2, ψ3, ψ4, ψ5, ψ6, ψ7) with the same size as current

(ψ′
1, ψ

′
2, ψ

′
3, ψ

′
4, ψ

′
5, ψ

′
6, ψ

′
7);

Copy (ψ′
1, ψ

′
2, ψ

′
3, ψ

′
4, ψ

′
5, ψ

′
6, ψ

′
7) to (ψ1, ψ2, ψ3, ψ4, ψ5, ψ6, ψ7);

Free (ψ′
1, ψ

′
2, ψ

′
3, ψ

′
4, ψ

′
5, ψ

′
6, ψ

′
7); }

3. [Selecting ψ̄m]

Locate ψ̄m by checking the degree of the 7 polynomials;

Free (ψ1, ψ2, ψ3, ψ4, ψ5, ψ6, ψ7);

return ψ̄m.

We must now show that Algorithm 3.3.1 is correct.

Theorem 3.3.1 Algorithm 3.3.1 computes the m-th implied division polynomial.

Proof Given ψ̄l, . . . , ψ̄l+6 for some positive integer l, we can get ψ̄2l+3, . . . , ψ̄2l+9 in

the first step by (3.4),(3.5). By the same argument, we can get ψ̄4l+9, . . . , ψ̄4l+15 in

the second step. Now I claim that we can get ψ̄index−3, . . . , ψ̄index+3 in the i-th step,

where

index = 2il + 3(1 + 2 + 22 + . . .+ 2i−1) + 3 = 2il + 3
2i − 1

2 − 1
+ 3 = 2i(l + 3).

We can prove this statement by induction. By the argument at the beginning, it is

true for i = 1, 2. Assume it is true for the i-th step. This means that we have 7

implied division polynomials ψ̄index−3, . . . , ψ̄index+3 computed, where

index = 2il + 3(1 + 2 + 22 + . . .+ 2i−1) + 3 = 2il + 3
2i − 1

2 − 1
+ 3 = 2i(l + 3).

By (3.4) and (3.5), we can compute ψ̄2(index−3)+3, . . . , ψ̄2(index−3)+9 in the (i + 1)-th

step. By simplification, these 7 implied division polynomials are ψ̄2·index−3, . . . , ψ̄2·index+3.

Therefore the corresponding value for index is

index∗ = 2 · index = 2 · 2i(l + 3) = 2i+1(l + 3).
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This finishes the proof of the claim.

Notice that if any of ψ̄m−3, . . . , ψ̄m+3 can be computed, ψ̄m can be computed also

since the difference of indices is at most 3. Step 1 of the algorithm is just to make

sure that the index has the form 2k(l + 3).

In step 2, l = d∗ − 3. Since the number of steps in the loop is round = e, the 7

implied division polynomials we get at the last step of the loop are ψ̄m∗−3, . . . , ψ̄m∗+3

with m∗ = d∗ · 2e. And it has been shown that ψ̄m is one of them. So the algorithm

works correctly.

The polynomial multiplication in this algorithm can be implemented by fast

Fourier transform (FFT). Please see Chapter 4 for more details about FFT. Since

dynamical memory allocation is used a lot in the algorithm, the memory consumption

is reduced from O(m3) to O(m2) and storage is the main issue when we are dealing

with division polynomials.

In Algorithm 3.3.1, we apply the dynamic programming technique in the com-

putation. The algorithm uses only O(m2 lnm) arithmetic operations including addi-

tions, subtractions and multiplications. We state this as the following theorem and

prove it. This result is important for concluding the time complexity of the main

algorithm in the thesis, which is Algorithm 4.1.1 in Chapter 4.

Theorem 3.3.2 For any positive integer m, Algorithm 3.3.1 can compute the m-th

implied division polynomial ψ̄m by O(m2 lnm) arithmetic operations.

To generate ψ̄m, we need to generate up to 5 implied division polynomials with

indices around m/2. For these 5 adjacent polynomials to be generated, we need

to compute up to 7 implied division polynomials with indices around m/4. So we

only need to go through lnm recursion levels. The misleading way is to think that

in each recursion level we need to apply FFT to do polynomial multiplications for

polynomials with degree O(m2), so that the total time cost of the algorithm is

O(m2(lnm)2). This is not correct since in the early recursion levels, the degree of
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the implied division polynomials are quite small. The following is the proof of the

theorem.

Proof Without losing generality, we assume m = 2e. Then there are e loops. In the

i-th loop, the degree of the 7 implied division polynomials is O(22i). We implement

the polynomial multiplication by FFT. For degree 22i polynomials, the FFT can be

done by O(22i ln 22i) = O(i · 22i) arithmetic operations. Therefore, the total time

needed by the algorithm is

O(2 · 22·2) +O(3 · 22·3) + · · · +O(e · 22e) = O(e · 22e) = O(m2 lnm).

3.4 Evaluating m-th Implied Division Polynomial

At the next stage of factoring after we get the m-th implied division polynomial

by algorithm 3.3.1, we evaluate ψ̄m at m2/4 values of a. We will choose a = 2i for

0 ≤ i < m2/4. For these values the evaluation can be done effectively by FFT.

The polynomial evaluation algorithms will be discussed in the next chapter. In this

section, I will only briefly discuss the feasibility of the factoring algorithm presented

in this thesis. More details can be found in later chapters.

Given P = (x, y), by evaluating ψ̄m at m2/4 values of a, we actually try to find

m · P for m2/4 different elliptic curves at the same time. In Lenstra’s method, m is

the product of all the primes less than some upper bound B1 raised to some suitable

power. But only one elliptic curve is tried at a time. An intuitive conclusion is

that m in the algorithm shown in this thesis should be much smaller than the m in

Lenstra’s ECM since we try many elliptic curves all at a time. Theoretically this

conclusion is also reasonable. As discussed in chapter 2, ECM will succeed if #Ea,b[p]

is B1-smooth. By trying m2/4 curves all together, we hope that some curve has its

order over Fp being very smooth. That is #Ea,b[p] is B1-smooth for some reasonably

small B1. Then the scalar multiple m does not have to be very large. We can choose
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m to be the product of the primes less than B1. Recalling Dickman’s function ρ(t),

we need to inspect the distribution of ρ(t) for large t. Zhang [25] gave some good

result about this.

Another concern is how hard it is to have #Ea,b[p] being very smooth given

randomly chosen a. Lenstra [13] proved that #Ea,b[p] is well distributed in [p+ 1 −
2
√
p, p + 1 + 2

√
p] when the point P = (x, y) is fixed, a is chosen randomly and

b = (y2 − x3 − ax) mod N .

We will give some rigorous discussion about these issues in Chapter 4.
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4. ECM with Division Polynomials

4.1 Factoring Algorithm by ECM with Division Polynomials

C. P. Schnorr [19] proposed a new idea to apply division polynomials in ECM

on January 15, 2001. When it was proposed, it was believed that the new method

required too much memory to work. In this thesis, we reconsider this new algorithm

for factoring a large number N by ECM with division polynomials, solve the memory

problem and make it work in a practical way. Now we state the main outline of the

algorithm in this section. We will analyze the feasibility and go through some more

details in the later sections.

Algorithm 4.1.1 (Factoring N by ECM with division polynomials) Given a positive

integer N , the algorithm finds a factor p of N or stops by asserting a failure to factor

N .

1. [Selecting the point and s]

Choose 0 < x, y < N and a small prime s.

2. [Setting bound]

Choose an appropriate upper bound B. Let R be the set of primes less than B.

Define m =
∏

r∈R r
e(r), where e(r) is some suitable exponent.

3. [Generating implied division polynomials]

Generate ψ̄m by Algorithm 3.3.1.

4. [Pretesting]

Compute g = gcd(si− 1, N) for 0 ≤ i < m2

4
. If 1 < g < N , declare success and

the factor p = g; If g = N , go to Step 1; If g = 1, go to Step 5.
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5. [Polynomial evaluation]

Evaluate ψ̄m at s0, s1, . . . , s
m2

4
−1 by Algorithm 4.4.1. Denote gi ≡ ψ̄m(si)

(mod N) for 0 ≤ i < m2

4
.

6. [Locating p]

Compute g = gcd(
∏m2

4
−1

i=0 gi, N). If 1 < g < N , declare success and the factor

p = g; If g = 1, go to Step 2 and increase B; If g = N , split the product
∏m2

4
−1

i=0 gi into two products each with half of the factors. Repeat Step 6 with

the two shorter products as input. The splitting procedure is implemented the

way as in Step 7.

7. [Binary Splitting]

Split
∏m2

4
−1

i=0 gi by f1 =
∏m2

8
−1

i=0 gi and f2 =
∏m2

4
−1

i=m2

8

gi. If 1 < gcd(fi, N) < N

for i = 1 or 2, call success and the factor p = gcd(fi, N) for the respective i.

If gcd(f1, N)(or gcd(f2, N))= N , split f1(or f2) and rename f1 =
∏m2

16
−1

i=0 gi(or

f1 =
∏ 3m2

16
−1

i=m2

8

gi) and f2 =
∏m2

8
−1

i=m2

16

gi(orf2 =
∏m2

4
−1

i= 3m2

16

gi). Then repeat Step 7. In

case further splitting is necessary, split the polynomial to two new polynomials

with half of the degree of the previous polynomial similar as the argument stated

above.

The following theorem states that under certain circumstances, the algorithm

will successfully find a non-trivial divisor of N.

Theorem 4.1.1 Let N,B ∈ Z, R = {r is a prime : r ≤ B}, e(r) = d lnB
ln r

e, m =
∏

r∈R r
e(r) and x, y ∈ Z/NZ. Let d be a small prime number, and ai = di mod N ,

bi = y2 − x3 − aix mod N for i = 0, 1, . . . , m
2

4
− 1. Then P = (x, y) ∈ Eai,bi [N ].

Suppose that N has prime divisors p and q satisfying the following conditions

1. gcd(6(4a3
i + 27b2i ), N) = 1 for i = 0, 1, . . . , m

2

4
− 1;

2. ∃ai such that each prime number r dividing #Eai,bi [p] satisfies r ≤ B so that

r | m;
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3. for the same ai as in Condition 2, m is not divisible by the largest prime number

dividing the order of P ai,bi
q , which is the point P considered in Eai,bi [q].

Then Algorithm 4.1.1 is successful in finding a non-trivial divisor of N .

Proof From 2, if B is chosen sufficiently large, we can get (m · P )ai,bip = ∞p. By

(3.8), ψ̄m(ai) ≡ 0 (mod p).

From 3, (m · P )ai,biq 6= ∞q. By (3.8), ψ̄m(ai) 6≡ 0 (mod q). Therefore, p divides

gcd(ψ̄m(ai), N). If gcd(ψ̄m(ai), N) 6= N , the algorithm succeeds in finding a divisor

not less than p of N . If gcd(ψ̄m(ai), N) = N , since 2 and 3 are for the same ai, after

sufficient truncation, a non-trivial divisor not less than p of N will be found.

In the algorithm, we have m2/4 different elliptic curves. It is important to study

the relationships between those curves before we use them to implement the factoring

algorithm. There is a type of map between elliptic curves, which is called isogeny.

Definition 4.1.1 An isogeny between two elliptic curves E1 and E2 over a field K

is a homomorphism from E1(K) to E2(K) that is given by rational functions.

By the above definition, we can see that ζ(P + Q) = ζ(P ) + ζ(Q) and ζ(m · P ) =

m · ζ(P ) for all P , Q in E1.

There is an important result about the structure of elliptic curves.

Lemma 4.1.1 Let n1 and n2 be odd integers with gcd(n1, n2) = 1. Let E be an

elliptic curve defined over Zn1n2
. Then there is a group isomorphism

E[n1n2] ' E[n1] ⊕ E[n2].

For more details of the proof, please refer to Section 2.10 of [24].

Theorem 4.1.2 If p is a prime divisor of N and there exist i, j with 0 ≤ i < j <

m2/4 such that Eai,bi [p] is isogenous to Eaj ,bj [p] and (m · P )ai,bip = ∞ai,bi
p . Assume

also that there exists an isogeny ζ between Eai,bi [p] and Eaj ,bj [p] such that P = (x, y)

is a fixed point under ζ, that is ζ(P ) = P . Furthermore, if Eai,bi [N ] is not isogenous

to Eaj ,bj [N ], then Algorithm 4.1.1 is successful in finding a non-trivial divisor of N .
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Proof Apply ζ to both sides of (m · P )ai,bip = ∞ai,bi
p , we can get

(ζ(m · P ))aj ,bjp = (ζ(∞ai,bi
p ))aj ,bjp = ∞aj ,bj

p .

The second equality is because ζ is an isogeny. Then (ζ(m ·P ))
aj ,bj
p = (m · ζ(P ))

aj ,bj
p .

Notice that P is a fixed point under ζ. Therefore,

(m · P )aj ,bjp = (m · ζ(P ))aj ,bjp = ∞aj ,bj
p . (4.1)

If (m · P )ai,biN 6= ∞ai,bi
N , then by (3.8), p divides ψ̄m(ai) but N does not divide

ψ̄m(ai). So Algorithm 4.1.1 succeeds in finding a non-trivial divisor of N .

Now assume that (m · P )ai,biN = ∞ai,bi
N . By Lemma 4.1.1,

Eai,bi [N ] ' Eai,bi [p] ⊕ Eai,bi [N/p]

Eaj ,bj [N ] ' Eaj ,bj [p] ⊕ Eaj ,bj [N/p].

Let P1 ∈ Eai,bi [p] and P2 ∈ Eai,bi [N/p]. Expand ζ to ζ∗

ζ∗ : Eai,bi [N ] −→ Eaj ,bj [N ]

(P1, P2) 7−→ (ζ(P1), ζ(P2)).

We have

(m · P )
aj ,bj
N = m · ζ∗(P )

aj ,bj
N = (ζ∗(m · P ))

aj ,bj
N = ζ∗(∞ai,bi

N ) 6= ∞aj ,bj
N .

The last equality is true because Eai,bi [N ] is not isogenous to Eaj ,bj [N ]. Therefore,

N does not divide ψ̄m(aj). By (4.1), we can see that p divides ψ̄m(aj). So Algorithm

4.1.1 is successful in finding a non-trivial divisor of N .

From Theorem 4.1.1, for some chosen B, if one of the m2/4 curves has B-smooth

order over Fp and condition 3 in Theorem 4.1.1 is satisfied, then the algorithm is

successful. Condition 3 can be fulfilled by choosing B properly. So in order to study

the probability of success, we need to know the probability of a number to be B-

smooth and some properties of Dickman’s function ρ(t). For definition and notation,

please refer to Section 2.3. Here we denote λ(x, x1/t) = λ1(x, x
1/t).
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From results of Knuth and Trabb Pardo [11], we know that

λ(x, x1/t) = xρ(t) +
xσ(t)

lnx
+O(

x

ln2 x
) (4.2)

where

σ(t) = (1 − γ)ρ(t− 1)

and γ = 0.5772 . . . is Euler’s constant. It was shown in Knuth [11] that if ρ is a good

approximation to the smoothness distribution, then σ is a good approximation to

the semismoothness distribution.

We can use this to deduce the probability of success of Algorithm 4.1.1. But

we can get a more insightful view from the following result by Canfield, Erdös and

Pomerance [4].

Lemma 4.1.2 If ε > 0 is arbitrary and 3 ≤ t ≤ (1 − ε) ln x/ ln ln x, then

λ(x, x1/t) = x · exp

[
−t
(

ln t+ ln ln t− 1 +
ln ln t− 1

ln t
+ E(x, t)

)]

where

|E(x, t)| ≤ cε
(ln ln t)2

ln2 t

with cε being a constant that depends only on the choice of ε.

Now let’s state and prove one of the most important theorems in this thesis. It

is about the probability of Algorithm 4.1.1 to be successful.

Theorem 4.1.3 Let N , p, B and m be defined as in Algorithm 4.1.1 and B = p1/t so

that t = ln p/ lnB. Then the success probability of Algorithm 4.1.1 is 1−(1−ε(t))m2/4

where

ε(t) = t−t · η(t) (4.3)

with

η(t) ≈ e(1−ln ln t)(t+t/ ln t). (4.4)
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Proof By Theorem 4.1.1, we can see that the probability of Algorithm 4.1.1 to

succeed is the same as the probability that at least one elliptic curve has its order

to be B-smooth.

There are 4b√pc+1 integers in the interval (p+1−2
√
p, p+1+2

√
p). Now let’s

count the number of integers which are B-smooth in this interval. By the definition

of λ(x), we can get that this number is λ(p+1+b2√pc, B)−λ(p+1−b2√pc−1, B).

Here we use the approximation (p+1+b2√pc)1/t ≈ (p+1−b2√pc−1)1/t ≈ p1/t = B.

By Lemma 4.1.2, we have

λ(p+ 1 + b2√pc, B) − λ(p+ 1 − b2√pc − 1, B)

= [(p+ 1 + b2√pc) − (p+ 1 − b2√pc − 1)] · e−t(ln t+ln ln t−1+ ln ln t−1

ln t ) · eE(x,t)

≈ (4b√pc + 1) · t−t · e−t(ln ln t−1)(1+1/ ln t)

= (4b√pc + 1)ε(t).

Therefore the probability that a random integer chosen from (p+1−2
√
p, p+1+2

√
p)

is B-smooth is (4b√pc + 1)ε(t)/(4b√pc + 1) = ε(t).

Now we assume that the distribution of orders over Fp of different elliptic curves

for a = s0, . . . , sm
2/4−1 are independent. If not, we can use another way of choosing a

such as choosing m2/4 a values randomly. Then we will use a different algorithm for

polynomial evaluation with the same type of complexity. See Section 4.4 for more

information.

Since we are assuming that different elliptic curves have independent probabilities

of having their orders over Fp being B-smooth, the probability that at least one

curve has B-smooth order over Fp, which is the probability that Algorithm 4.1.1 is

successful, is

1 − the probability that any curve has non-B-smooth order over Fp

= 1 − (1 − ε(t))m
2/4.

Let’s put some more consideration to ε(t) before we move on. Notice

f(t) = ln(ε(t)) = −t ln t+ ln η(t) = −t ln t+ t− t ln ln t+
t

ln t
− t ln ln t

ln t
.



35

We have

f ′(t) = − ln t− ln ln t− 2

ln2 t
− ln ln t

ln t
+

ln ln t

ln2 t

f ′′(t) =
1

t

(
5

ln3 t
− 1

ln2 t
− 1 − 2 ln ln t

ln3 t
+

ln ln t

ln2 t
− 1

ln t

)
.

Let v = ln t, then

f ′(t) = g1(v) = −v − ln v − 2

v2
− ln v

v
+

ln v

v2

f ′′(t) = g2(v) = e−v
(

5

v3
− 2 ln v

v3
− 1

v2
+

ln v

v2
− 1

v
− 1

)
.

Notice

g1(v) = − v − 2

v2
− ln v(1 +

1

v
− 1

v2
)

= − v − 2

v2
− ln v(1 +

1 +
√

5

2v
)(1 +

1 −
√

5

2v
).

If v > 1 and 1 + 1−
√

5
2v

> 0, i.e. v >
√

5−1
2

≈ 0.6180 ⇔ t > 1.8553, g1(v) < 0. In the

algorithm, t is normally greater than 1.8553. Therefore, f ′(t) < 0, so that f(t) is

decreasing as t increases. Now set g2(v) = 0 to find the inflection point candidates

of f(t). We can solve the equation numerically. By using Matlab and checking the

change of signs of g2(v) while v passes the candidate points from left to right, we can

see that t = 3.5177 is the inflection point. Therefore, f(t) is decreasing and concave

up for t ∈ (1.8553, 3.5177) and concave down for t ∈ (3.5177,∞). In the algorithm,

t is normally greater than 3.5177. So we can conclude that while B increases, the

probability of success of Algorithm 4.1.1 will increases. Now let’s see whether we

can find a specific range of B values such that the success probability can have a

lower bound. The following corollary of Theorem 4.1.3 answers this question.

Corollary 4.1.1 Let N , p, B and m be defined as in Algorithm 4.1.1 and t =

ln p/ lnB. Then the probability of Algorithm 4.1.1 to be successful is at least 1 −
exp((−m2(t−t)1+ln ln t/ ln t−1/ ln2 t)/4).

Proof Consider ε(t). We can get

ln ε(t) = −t ln t+ ln η(t) = −t ln t+ t− t ln ln t+
t

ln t
− t ln ln t

ln t

= −t ln t(1 +
t ln ln t

ln t
− 1

ln2 t
) + t(1 − ln ln t

ln t
).
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Since 1 − ln ln t
ln t

= ln t−ln ln t
ln t

> 0 and 1
ln t

> 0 for t > 1. we have ln ε(t) > −t ln t(1 +

ln ln t
ln t

− 1
ln2 t

). So that

ε(t) >e−t ln t(1+ln ln t/ ln t−1/ ln2 t)

=(t−t)1+ln ln t/ ln t−1/ ln2 t.

By Taylor expansion and applying the above inequality, we have

(1 − ε(t))m
2/4 ≤ e−m

2ε(t)/4 < exp((−m2(t−t)1+ln ln t/ ln t−1/ ln2 t)/4).

By Theorem 4.1.3, the probability of success of Algorithm 4.1.1 is greater than

1 − exp((−m2(t−t)1+ln ln t/ ln t−1/ ln2 t)/4). This concludes the proof.

In the following sections, we will analyze Algorithm 4.1.1 in some more details.

We will go over the algorithms to do FFT and polynomial evaluations for both

geometric progression and random chosen values. Then at the end of this chapter,

we will come back to Algorithm 4.1.1 by analyzing its complexity and proposing a

more efficient version for some specific type of p values.

4.2 The Fast Fourier Transform and its Applications

The Fast Fourier Transform (FFT) is a fast algorithm to compute the discrete

Fourier transform (DFT) of a vector. It is vastly used in both science and engineering.

DFT can be defined over both the complex numbers and a commutative ring R.

Definition 4.2.1 An element ω ∈ R is called a principal D-th root of unity if

1. ω 6= 1.

2. ωD = 1.

3.
∑D−1

k=0 ω
ke = 0, for 1 ≤ e < D.

Definition 4.2.2 Let a = (a0, a1, . . . , aD−1) be a vector with elements from a com-

mutative ring R, and suppose D has a multiplicative inverse in R. Let ω be a

principal D-th root of unity. The vector DFT (a) = (a∗0, a
∗
1, . . . , a

∗
D−1), where a∗i =
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∑D−1
k=0 akω

ik for 0 ≤ i < D, is called the discrete Fourier transform of a. The

vector DFT−1(a) = (a′0, a
′
1, . . . , a

′
D−1), where a′i = D−1

∑D−1
k=0 akω

−ik for 0 ≤ i < D,

is called the inverse discrete Fourier transform of a.

It’s not hard to prove that DFT (DFT−1(a)) = DFT−1(DFT (a)) = a. The

Fourier transform and inverse Fourier transform of a length-D vector can be com-

puted inO(D2) time. However, we have a much faster algorithm with timeO(D lnD),

which is called the fast Fourier transform (FFT). If we consider the polynomial

f(x) =
∑D−1

i=0 aix
i, then finding DFT (a) is equivalent to evaluating f(x) at D points

ω0, ω1, . . . , ωD−1. To evaluate f(x) at some given point ωi, we can divide f(x) by

x− ωi. The remainder is f(ωi).

Instead of dividing f(x) by each x− ωi, FFT does the division after multiplying

some x − ωi together. Notice that after multiplying the x − ωi together in pairs,

we will get D/2 polynomials. Then we do the same multiplication to these D/2

polynomials, and so on. Finally we can get two polynomials, q1 and q2. They are

both with degree D/2. Now we divide f by q1 and by q2. Denote the remainder

by r1 and r2 respectively. If (x − ωi) | q1, then it is not hard to prove that f ≡ r1

(mod x − ωi). Similar result is true for q2. Now dividing a polynomial of degree D

by a linear term is reduced to dividing a polynomial of degree D/2− 1 by the same

term.

The principal D-th root of unity ω has a property that can make the multi-

plication of x − ωi have a good form. Let d0, d1, . . . , dD−1 be a permutation of

ω0, ω1, . . . , ωD−1. Consider the case of D = 2α. If D is not a power of 2, we can

add some higher degree term to the polynomial to make D a power of 2. For integer

0 ≤ β ≤ α and an integer multiple of 2β s with 0 ≤ s < D, we define a polynomial

qs,β =
s+2β−1∏

i=s

(x− di).
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All these qs,β’s form a binary tree, with q0,0 = x− d0, q1,0 = x− d1, . . . , qD−1,0 =

x−dD−1 as the leaf nodes and q0,α =
∏D−1

i=0 (x−di) as the root. By simple calculation

we can prove that

qs,β = qs,β−1 · qs+2β−1,β−1. (4.5)

This result tells us that each node is the product of its two children. Constructing

these polynomials is the way we multiply the x− ωi together in pairs.

Now we need to know how to rearrange ω0, ω1, . . . , ωD−1 to get d0, d1, . . . , dD−1

with some desirable property. Let b0b1 · · · bα−1 be the binary representation of the

integer 0 ≤ i < D. Define ĩ to be the integer whose binary representation is

bα−1bα−2 · · · b0. Let di = ωĩ, then by induction, we can prove that

qs,β = x2β − ωs̃/2
β
. (4.6)

We need to find the remainder of f(x) when divided by qs,0 for each 0 ≤ s < D.

In FFT, we compute the remainder rs,β of f(x) when divided by each qs,β. We

run the loop from β = α − 1 to β = 0. For β = 0, s will traverse all through

0, 1, . . . , D− 1. From (4.5), we can prove that rs,β−1 is the same as the remainder of

rs,β when divided by qs,β−1 and rs+2β−1,β−1 is the same as the remainder of rs,β when

divided by qs+2β−1,β−1.

The degree of rs,β is 2β − 1. By (4.6), qs,β−1 and qs+2β−1,β−1 are both binomials

x2β−1−c with degree 2β−1 and c be the corresponding constant. Let rs,β =
∑2β−1

i=0 rix
i.

Then we have

rs,β =
2β−1−1∑

i=0

ri+2β−1xi+2β−1

+
2β−1−1∑

i=0

rix
i

=




2β−1−1∑

i=0

ri+2β−1xi


 (x2β−1 − c) +

2β−1−1∑

i=0

cri+2β−1xi +
2β−1−1∑

i=0

rix
i

=




2β−1−1∑

i=0

ri+2β−1xi


 (x2β−1 − c) +

2β−1−1∑

i=0

(ri + cri+2β−1)xi.

So the remainder of rs,β when divided by x2β−1 − c is
∑2β−1−1

i=0 (ri + cri+2β−1)xi.
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From the above analysis, we can get the following algorithm to implement FFT.

For more details, please refer to Section 7.2 of [1]. The algorithm is for D = 2α for

some integer α, but it works well for other D values just by adding sufficiently many

zeros after aD−1 in the vector a.

Algorithm 4.2.1 (Finding a discrete Fourier transform of a vector a by FFT)

Given a vector a = (a0, a1, . . . , aD−1) with D = 2α for some integer α, the algo-

rithm finds the discrete Fourier transform of a DFT (a) = (a∗0, a
∗
1, . . . , a

∗
D−1), where

a∗i for 0 ≤ i < D is defined as in Definition 4.2.2.

1. [Initialization]

Set r0,α =
∑D−1

i=0 aix
i.

2. [Outer loop]

for (β = α− 1; β ≥ 0; β −−){

3. [Inner loop] for (s = 0; s < D; s = s+ 2β+1){
Compute the remainders rs,β+1 =

∑2β+1−1
i=0 aix

i;

Generate s̃/2β;

Define rs,β =
∑2β−1

i=0 (ai + ω
˜s/2βai+2β)x

i;

Define rs+2β ,β =
∑2β−1

i=0 (ai + ω
˜s/2β+D/2ai+2β)x

i;}
}

4. [finalization]

Set a∗
ĩ

= ri,0 for 0 ≤ i < D.

By Definition 4.2.2, if we replace ω by ω−1 in step 3 and divide a∗
ĩ

by D in step 4,

we can get the algorithm to implement inverse FFT. We can to prove that the time

complexities of Algorithm 4.2.1 and the corresponding algorithm for inverse FFT are

both O(D lnD).

There are different ways to implement FFT. We can do it recursively, by bit

operations. See Crandall and Pomerance [6] for more details.
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4.3 Cyclic Convolutions

We need to evaluate the division polynomial at many points. A good way to

achieve this is to use the cyclic convolution.

Definition 4.3.1 Let x = (x0, x1, . . . , xD−1) and y = (y0, y1, . . . , yD−1) be two vec-

tors with D elements. The cyclic convolution x ⊗ y is defined to be a vector

z = (z0, z1, . . . , zD−1) with D elements where

zk =
∑

i+j≡k (mod D)

xiyj (0 ≤ k ≤ D − 1).

If we consider vectors x, y as the coefficients of two D − 1-degree polynomials f, g

with respect to the same variable t, we can prove that z = x⊗y gives the coefficients

of the polynomial h = fg (mod (tD − 1)).

If we define an operation ? by x ? y = (x0y0, x1y1, . . . , xD−1yD−1), we have

x⊗ y = DFT−1(DFT (x) ? DFT (y)). (4.7)

Therefore cyclic convolution can be done by 2 Fourier transforms and 1 inverse

Fourier transform. So that the complexity of cyclic convolution is O(D lnD).

4.4 Polynomial Evaluation

In Algorithm 4.1.1, we need to evaluate the m-th implied division polynomial at

m2/4 points. Crandall and Pomerance [6] (Section 9.6.3) gives several methods for

different cases. In this thesis, we will use the following algorithm.

Algorithm 4.4.1 (Evaluating a polynomial at several values with geometric pro-

gression) Given a polynomial f(x) =
∑D−1

i=0 aix
i with degree D − 1 and a set of

values {s0, s1, . . . , sD−1} with s being some small prime number, the algorithm finds

D values {f(s0), f(s1), . . . , f(sD−1)}.

1. [Initialization]

Choose the smallest value D∗ = 2k such that D∗ ≥ 2D;
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Redefine ai by ai = ais
i(i+1)/2 for 0 ≤ i < D;

Zero-pad a = (ai)0≤i<D∗ so that a is a vector with length D∗;

Define another vector b = (s(D∗/2−i−1)(i/2−D∗/4)) for 0 ≤ i < D∗.

2. [Cyclic Convolution]

Let c = a⊗ b.

3. [Finalization]

Return (f(si)) = (si(i−1)/2cD∗/2+i−1) for 0 ≤ i < D.

Now let’s see how the algorithm works.

Theorem 4.4.1 Algorithm 4.4.1 evaluates f(x) at {s0, . . . , sD−1} correctly.

Proof Notice that

i(i+ 1)

2
+
j(j − 1)

2
− ij =

(i− j)[(i− j) + 1]

2
.

Therefore

f(sj) =
D∗−1∑

i=0

ais
ij = sj(j−1)/2

D∗−1∑

i=0

(ais
i(i+1)/2)s(j−i)(i−j+1)/2.

Now we just need to prove that

D∗−1∑

i=0

(ais
i(i+1)/2)s(j−i)(i−j+1)/2 = cD∗/2+i−1 (4.8)

for all 0 ≤ j < D. By the definition of cyclic convolution, the right-hand side of

(4.8) is

cD∗/2+j−1 =
D∗−1∑

i=0

(ais
i(i+1)/2)bD∗/2+j−1−i

=
D∗−1∑

i=0

(ais
i(i+1)/2)s(D∗/2−(D∗/2+j−1−i)−1)(D∗/2+j−1−i)/2−D∗/4

=
D∗−1∑

i=0

(ais
i(i+1)/2)s(i−j)(j−1−i)/2.

This is the left-hand side of (4.8). So Algorithm 4.4.1 is correct.
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For length D vectors, the complexity of FFT is O(D lnD). So that the complexity

of Algorithm 4.4.1 is also O(D lnD) since the main part of Algorithm 4.4.1 is the

convolution which essentially is two times of FFT and one time of inverse FFT .

In the proof of Theorem 4.1.3, we require the probability distribution of suc-

cessfully factoring N with different elliptic curves to be independent. We assumed

the independence for the geometrical progression parameters for simplicity. How-

ever, randomly choosing a is a more convincing way. These arguments rely on the

following conjecture.

Conjecture 4.4.1 The probability distribution of Algorithm 4.1.1 to be successful

for any two elliptic curves with parameters a and a′ is independent as long as the

two elliptic curves have different orders over Fp for the prime factor p of N .

If a more general way to choose the values is desirable such as choosing them

totally randomly, which means we cannot use Algorithm 4.4.1 to implement poly-

nomial evaluation any more, we can still do so with Algorithm 9.6.7 in [6]. Let’s

demonstrate the rough idea of the algorithm here. Assume that D is a power of 2

and we want to evaluate f(x) with degree D−1 at D values x0, x1, . . . , xD−1. Define

g1(x) = (x− x0)(x− x1) . . . (x− xD/2−1),

g2(x) = (x− xD/2)(x− xD/2+1) . . . (x− xD−1).

Divide f(x) by g1(x) and g2(x), we can get

f(x) = q1(x)g1(x) + r1(x) = q2(x)g2(x) + r2(x).

Then f(ti) = r1(ti) for 0 ≤ i < D/2 and f(ti) = r2(ti) for D/2 ≤ i < D. Therefore,

we reduce the polynomial degree in the evaluation problem to half of the original. By

setting a break-over threshold and doing the evaluation recursively, we can implement

the following algorithm with a good complexity.

Algorithm 4.4.2 (Evaluating a polynomial at random values) Given a polynomial

f(x) =
∑D−1

i=0 aix
i with degree D− 1 and a set of values X = {x0, x1, . . . , xD−1}, the

algorithm finds D values {f(x0), f(x1), . . . , f(xD−1)}.
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1. [Initialization]

Choose the smallest value D∗ = 2k such that D∗ ≥ 2D;

Zero-pad a = (ai)0≤i<D∗ so that a is a vector with length D∗;

Zero-pad X at the end so that X has length D∗;

Set threshold τ = 4.

2. [Recursion]

eval(f,X){
Let d be the degree of f ;

If (d ≤ τ), return (f(x0), f(x1), . . . , f(xd−1));

L = (x0, x1, . . . , xd/2−1);

R = (xd/2, xd/2+1, . . . , xd−1);

g1(x) =
∏d/2−1

i=0 (x− xi);

g2(x) =
∏d−1

i=d/2(x− xi);

r1(x) = f(x) (mod g1(x));

r2(x) = f(x) (mod g2(x));

Return eval(r1, L) ∪ eval(r2, R);

}

In the algorithm, eval is the recursive function and ∪ is the concatenation operator.

Algorithm 4.4.2 runs a bit longer than Algorithm 4.4.1 for the same D.

Theorem 4.4.2 Algorithm 4.4.2 correctly evaluation a polynomial f(x) with degree

D − 1 at D random values with time complexity O(D ln2 D).

Proof Let’s prove that Algorithm 4.4.1 works first. Without losing generality, let’s

assume D = D∗ = 2k. We will use induction on D.

If D = 4, then the algorithm returns f(x0), f(x1), f(x2), f(x3) directly. Suppose

the algorithm works for D = 2i with 2 < i < k. Now let’s prove that it also works

for D = 2i+1. When the function eval is first entered, d = D = 2i+1 and we have

L = (x0, x1, . . . , x2i−1), R = (x2i , x2i+1, . . . , x2i+1−1),
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r1(x) = f(x) (mod g1(x) =
2i−1∏

j=0

(x− xj)),

r2(x) = f(x) (mod g2(x) =
2i+1−1∏

j=2i

(x− xj)).

So when eval(r1, L) and eval(r2, R) are entered, they both have d = 2i. By the induc-

tion assumption and the argument before the algorithm, we see that eval(r1, L) and

eval(r2, R) return f(x0), f(x1), . . . , f(xD/2−1) and f(xD/2), f(xD/2+1), . . . , f(xD−1)

respectively. Together, they return the values of f(x) on those D points. By in-

duction, we see that Algorithm 4.4.2 works.

Now let’s prove the complexity to be O(D ln2 D). It suffices to assume D = 2k.

The steps that take most of the operations are expanding g1(x), g2(x) and comput-

ing r1(x), r2(x). First of all, we prove that expanding g(x) =
∑D−1

i=0 (x − xi) takes

O(D ln2 D) field operations.

We calculate (x − x2i)(x − x2i+1) for i = 0, . . . , 2k−1 − 1. At this first step, the

required numbers of additions and multiplications are both 1 ∗D/2 = 2k−1 so that

the total number of field operations is 2k. At the second step, there are 2 ∗ 22 ∗D/22

additions and multiplications totally. It’s not hard to see that at the i-th step, we

need to do 2 ∗ i2 ∗ D/2i operations. The total number of operations we need to

expand g(x) is

2
k∑

i=1

i2D

2i
= 2

k∑

i=1

i22k−i < 2(k2

k−1∑

i=1

2i) = 2(k2(2k − 1)) <
2

ln2 2
(D ln2 D).

Therefore it is O(D ln2 D).

In Section 8.5 of [1], Aho, Hopcroft, and Ullman prove that the total number of

operations to implement polynomial remaindering modulo a polynomial with degree

D is O(D lnD). So the totally operation we need in Algorithm 4.4.2 is

k−2∑

i=0

1

2i
O(D ln2 D) = O(D ln2 D).
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4.5 Complexity of the Factoring Algorithm

After our review of important related issues, now let’s return to the main factor-

ing algorithm in this thesis. The following crucial theorem tells the complexity of

Algorithm 4.1.1.

Theorem 4.5.1 If we choose values in a geometric progression to do polynomial

evaluation, Algorithm 4.1.1 needs O(m2 lnm) arithmetic operations to succeed or

report failure.

Proof By Theorem 3.3.2, the complexity of step 3 in Algorithm 4.1.1 is O(m2 lnm).

From Theorem 3.2.1, we can see that the degree of the m-th implied division poly-

nomial is at most m2/4 − 1. Therefore by Theorem 4.4.1 it will take O(m2 lnm)

arithmetic operations to do the polynomial evaluation. So the total number of arith-

metic operations Algorithm 4.1.1 needs is O(m2 lnm). This finishes the proof.

By Theorem 4.4.2, we can get the following result.

Corollary 4.5.1 In more general case, if we choose random values and implement

polynomial evaluation by Algorithm 4.4.2, then Algorithm 4.1.1 requires O(m2 ln2 m)

arithmetic operations to succeed or report failure.

4.6 Optimization of the Factoring Algorithm for Some Specific Prime

Numbers

In Schnorr’s proposal [19], the memory cost is left arguable. Algorithm 4.1.1

also has the same problem. The integer m is the multiple of the point P = (x, y)

while m2/4 is the number of curves being used. It is also the degree of the m-th

implied division polynomial. Since every coefficient is stored as an array of integers,

if m gets large, which is what the program requires since it is the multiple as well,

the memory cost to store the m-th implied division polynomial will get huge and a

memory overflow may happen.
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Intuitively, even though the multiple and the number of curves do have some

relation, it should not be as explicit as shown by m vs m2/4. In this section, we

modify Algorithm 4.1.1 so that we could isolate the multiple and the number of

curves. Before bringing up this innovative idea, let’s demonstrate the advantage of

the Algorithm 4.1.1, which is also one of the reasons we developed it. Algorithm

4.1.1, as well as the optimized one in this section, is appealing since it separates

the factoring process to two parts: division polynomial generation and polynomial

evaluation. The former takes longer than the latter. Therefore, we can apply parallel

computation to optimize the algorithm. This will save a lot of time.

Notice that the m-th implied division polynomial has degree at most m2/4. To

evaluate ψ̄m at m2/4 points, we use fast Fourier transform. Therefore, if we can

control the degree of the implied division polynomials, we can reduce the memory

cost as well as the runtime.

Consider a family Fn of numbers with the form sn ± 1 where s is some small

prime number such as 2, 3, 5, 7, 11. These numbers are interesting and their study

is important for the development of computational number theory. Two types of

numbers known as the Mersenne numbers Mp = 2p − 1 and the Fermat numbers

Fn = 22n + 1 are in Fn. Some good results have been concluded for these numbers

and primality testing of them is of great interest.

The factoring algorithm in this thesis can be optimized for Fn. Let N = sn±1 ∈
Fn, for some small prime number s, be the number we want to factor. Consider a

degree n polynomial xn ± 1. We can get that

(si)n ≡ 1 (mod N) for 0 < i < n (4.9)

for N = sn − 1 and

(si)n ≡ −1 (mod N) for 0 < i < n and i is odd (4.10)

for N = sn +1. In the implied division polynomial generating algorithm (Algorithm

3.3.1), if we do every polynomial operation modulo m(x) = xn±1, then the result of
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Algorithm 4.1.1 will not change since p divides N and (4.9), (4.10). For the Fermat

number N = 22n + 1, we can make the degree even smaller. Since we evaluate the

m-th implied division polynomial modulo m(x) = x2n−1

+ 1 at 2n−1 points 2i for

0 ≤ i < 2n−1, we can see that N divides m(2i) for 0 < i < 2n−1 and i being odd.

Algorithm 4.6.1 (Factoring N by ECM with division polynomials with N in some

specific form and bm2

4n
c curves) Given a positive integer N = sn± 1 with some small

prime number s, the algorithm finds the factor p of N or stops by asserting a failure

to factor N .

1. [Setting bound]

Choose an appropriate upper bound B, let R be the set of primes less than B.

Define m =
∏

r∈R r
e(r), where e(r) ≥ 0 is some suitable exponent. Also define

a product calculation variable π = 1 and a variable κ = 0 to record the number

of loops.

2. [Selecting the point]

Choose 0 < x, y < N .

3. [Generating implied division polynomials]

Generate ψ̄m by calling modified Algorithm 3.3.1 with doing all the calculations

modulo xn ± 1.

4. [Pretesting]

Compute g = gcd(si − 1, N) for 0 ≤ i < n. If 1 < g < N , call success and the

factor p = g; If g = 1, go to Step 5.

5. [Polynomial evaluation]

Evaluate ψ̄m at s0, s1, . . . , sn−1 by Algorithm 4.4.1. Denote gi ≡ ψ̄m(si) (mod N)

for 0 ≤ i < n.
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6. [Locating p]

Define a temporary variable τ = π and set π = π · ∏n−1
i=0 gi. Compute g =

gcd(π,N). If 1 < g < N , call success and the factor p = g; If g = 1, go to

Step 7; If g = N , split
∏n−1

i=0 gi, set π = τ , and repeat Step 6 with the truncated

product as the input value. The splitting procedure is implemented the same

way as Step 7 in Algorithm 4.1.1.

7. [Going back for another loop]

Set κ = κ + 1. If κ = bm2

4n
c, go to Step 8. If κ < bm2

4n
c, go back to Step 2 and

choose a different pair of 0 < x, y < N .

8. [Renewing]

If the program runs within the expect runtime, go back to Step 1 and choose a

larger B. If not, quit and report failure.

In the algorithm, Step 7 is executed in order to make sure we try m2/4 curves.

Algorithm 4.6.1 calls Algorithm 3.3.1 bm2

4n
c times. And in each call, the polynomials

are all with degree n. By similar argument as the proof of Theorem 3.3.2, the total

time for division polynomial generation is m2O(n lnn lnm)/(4n) = O(m2 lnm lnn).

The total time taken by polynomial evaluation is m2O(n lnn)/(4n) = O(m2 lnn).

Summing them up, we get the following theorem.

Theorem 4.6.1 Algorithm 4.6.1 will factor N ∈ Fn with O(m2 lnm lnn) arithmetic

operations or report failure.

For large m, m2/4 is very large. In most cases, we don’t have to try that many

curves. So we can ease the restriction of the number of curves a bit to get the

following modified algorithm.

Algorithm 4.6.2 (Factoring N by ECM with division polynomials with N in some

specific form and k curves) Given a positive integer N = sn ± 1 with some small
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prime number s, the algorithm finds the factor p of N or stops by asserting a failure

to factor N .

In Step 1, choose an integer k. All the other parts of Step 1 are the same as Step

1 in Algorithm 4.6.1. Step 2-6 and Step 8 are all the same as the ones in Algorithm

4.6.1, Step 7 is the same as Step 7 in Algorithm 4.6.1 except for changing bm2

4n
c to

b k
n
c.

By the similar arguments above Theorem 4.6.1 and in the proof of Corollary

4.1.1, we can get the following theorem about the complexity of Algorithm 4.6.2.

Theorem 4.6.2 Algorithm 4.6.2 will factor N ∈ Fn with O(k lnm lnn) arithmetic

operations by using k elliptic curves or report failure. Let t = ln p/ lnB, then the

probability of success is at least 1 − e−k(t
−t)1+ln ln t/ ln t−1/ ln

2 t
.

Notice that in Algorithm 4.1.1, 4.6.1 and 4.6.2, s does not have to be a prime.

In fact, s can be any number as long as it has an inverse in the arithmetic domain.

From the argument in Section 5.2, we can see that if s is not a multiple of any of

the prime numbers we used to implement Chinese remainder theorem, then s can

be used. Please refer to Section 5.2 for more details. Practically we choose s to be

some small number in Algorithm 4.1.1. For Algorithm 4.6.1 and 4.6.2, we choose s

to be the same as in N = sn ± 1.

This optimized algorithm makes the choice of the multiple m not being restricted

by the memory cost so that we can use very large m to increase the probability of

success without increasing the size of required memory at the same time.
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5. Implementation and Results

5.1 Multiple-Precision Arithmetic

While implementing the algorithms in the thesis, most of the numbers are greater

than 232. We need a multiple-precision mechanism to deal with this. I used the

Multi-Precise Arithmetic Package written by R. D. Silverman. C. Zhang modified it

to support negative multi-precision integers. I modified some of the routines so that

they could deal with some special cases such as zero exponent.

In the package, all the multiple-precision integers are stored in an array with

some radix such as 230, with most significant digits to the left and least to the right.

The absolute value of first element in the array, denoted by array[0], is the length of

the array including array[0]. The sign of it is the sign of the integer.

5.2 Chinese Remainder Theorem and Its Application to the Algorithm

Since our purpose is to factor some large integer N , we can take the remainder

modulo N and keep all the numbers in the algorithm less than N .

Theorem 5.2.1 Let m1, . . . ,mt be positive integers with gcd(mi,mj) = 1 for any

1 ≤ i, j ≤ t and M =
∏t

i=1 mi. Let r1, . . . , rt be any t integers. Then the system

comprising the k congruences

x ≡ ri (mod mi), 1 ≤ i ≤ t

has a unique solution in [0,M − 1]. Furthermore, this solution is given explicitly by

the least nonnegative residue modulo M of

t∑

i=1

risiMi

where Mi = M/mi and si = M−1
i (mod mi) for 1 ≤ i ≤ t.
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The complexity of implementing Chinese remainder theorem is O(t(lnM)3). See

Section 5.3 of Wagstaff [23] for details.

The factoring algorithm in this thesis does all the computation modulo N . The

reason we do this is that the coefficients of the implied division polynomials will get

extremely large when the index is getting large and we need to restrict the values

of them within some upper bound. This technique is similar with the one we use in

Section 4.6 to optimize the algorithm for some integers with specific form.

The routines in the multiple-precision package to implement modular arithmetic

are faster and easier if the modulus is a single-precision number rather than a

multiple-precision number. So what we did is generating several primes p1, . . . , pt

less than 230 such that
∏t

i=0 pi > N . We implement Algorithm 3.3.1, 4.1.1, 4.2.1,

4.4.1 all modulo pi for 1 ≤ i ≤ t. Then use Chinese remainder theorem to get the

resulting value modulo N .

In Algorithm 4.4.1, the size of the vector in the FFT is D∗. To ensure that the

D∗-th root of unity exists modulo pi, we use the following scheme to choose the pi.

1. By the size of N , determine the total number of primes that will be needed.

Denote it by t.

2. Set r = b229/D∗c.

3. Test the numbers D∗ ∗ (r+ j) + 1 for j = 0, 1, 2, . . . , for primality until t such

primes have been found. Call them p1, . . . , pt.

5.3 Results

The algorithm is implemented on a 1.86GHz 1066FBS PC with 4GB DDR2

SDRAM at 533MHz.

Within several minutes Algorithm 4.6.2 succeeded in finding a 13-digit prime

p|N where p = 5625767248687 and N = 2139 − 1. The parameters are B = 146 and

k ≈ 104.
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With B = 719 and k ≈ 105, a 20-digit prime

p = 86656268566282183151

is found for N = 2149 − 1 with 24 minutes.

By applying the optimized method in Section 4.6, N = 5430 + 1 is successfully

factored within 1 week. The prime factor of it is a 47-digit number

p = 29523508733582324644807542345334789774261776361.

The parameters used are B = 166810 and k ≈ 109.

By using B = 12915 and k ≈ 107, the algorithm also factors N = 2353 + 1 in

about 20 hours. The prime factor is 37-digit

p = 3803909572078746837295094051706948091.

A 48-digit prime factor

p = 694579497316894264425661243659806371972188318857

from N = 2373 + 1 was found in about 10 days. The parameters are B = 63096 and

k ≈ 1010. For this number N , the first prime factor found by the algorithm is 60427.

Then I tried the algorithm in Section 4.6 on N/60427 and it succeeded. Therefore,

we can see that the method in Section 4.6 works as long as the number we want to

factor divides some number in Fn.

My goal is to find some prime factor with more than 60 digits. Compare this suc-

cess with the Web Page http://wwwmaths.anu.edu.au/~brent/ftp/champs.txt of

Richard Brent. That page lists the all-time champions for factoring with conven-

tional ECM. It represents the greatest successes of hundreds of people using tens of

thousands of computers for hundreds of thousands of hours. It shows that the first

48-digit prime discovered by ECM was found less than ten years ago. At that time,

factorers had already spent tens of thousand of hours trying ECM. The current ECM

record is a 67-digit prime factor.
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5.4 Future Research Goals

We propose a new extension of ECM by using division polynomials. This algo-

rithm only has one step. So far if we have a report for failure, we just start the

whole algorithm all over for another B. But if we could add a second step to reuse

the information we get from the failure, we can save a lot of resources and make the

algorithm more efficient.

Another open problem is about the choice of the point. I’m still working on

finding a relation between the point (x, y) and the property of the elliptic curve.

Does the choice of (x, y) really not matter? Since every elliptic curve we use in

the algorithm has to pass through (x, y), it has to have some specific property such

that we can have enough elliptic curves with different order modulo p. But how to

rationalize this property?

The last problem is the way we choose elliptic curves. That is the way we choose

s in Algorithm 4.4.1. If we are dealing with N ∈ Fn or N dividing some number

in Fn, then the best choice of s is just the same as the base of the specific number

in Fn. But what s should we choose if we are trying to factor a random N? By

saying random, I mean we have no exact idea of the form of N after applying trial

division to eliminate the small factors. At least we should pick s so that the elliptic

curves we get have enough different orders modulo p. But we have no idea about

p. We can use some methods such as Shanks’ [20] baby-step-giant-step algorithm to

get some idea about the order. But I think this problem is still open and possesses

some research interest.
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6. Summary

We have demonstrated the new factoring method by applying division polynomials to

ECM. It is a one step algorithm. Choosing a point P and an integer m, the algorithm

finds the denominator in the x-coordinate of m · P on many elliptic curves at the

same time. This process is implemented by evaluating the m-th implied division

polynomial on many values. At the end, it evaluates the greatest common divisor of

multiplication of the polynomial evaluation result and the number N which is to be

factored.

We also proposed an optimization of the main algorithm, which works for numbers

with the form sn±1 with s being some prime number. With this optimized algorithm,

we can choose much larger m without wasting much memory and the speed of the

algorithm is faster.

With this new method, we can find 40-digit prime factors and several 50-digit

prime factors. We are working on 60-digit primes and we expect to find some 70-digit

prime factor soon.
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