
CERIAS Tech Report 2006-40

DIRECT STATIC ENFORCEMENT OF HIGH-LEVEL SECURITY POLICIES

by Qihua Wang, Ninghui Li

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

Direct Static Enforcement of High-Level Security Policies

Qihua Wang Ninghui Li
Department of Computer Science and CERIAS

Purdue University
West Lafayette, IN, USA

{wangq, ninghui}@cs.purdue.edu

Abstract

A high-level security policy states an overall safety requirement for a sensitive task. One example of
a high-level security policy is a separation of duty policy, which requires a sensitive task to be performed
by a team of at least k users. Recently, Li and Wang [4] proposed an algebra for specifying a wide range
of high-level security policies with both qualification and quantity requirements on users who perform
a task. In this paper, we study the problem of direct static enforcement of high-level security policies
expressed in this algebra. We formally define the notion of a static safety policy, which requires that
every set of users together having all permissions needed to complete a sensitive task must contain a
subset that satisfies the corresponding security requirement expressed as a term in the algebra. The static
safety checking problem asks whether an access control state satisfies a given high-level policy. We study
several computational problems related to the static safety checking problem, and design and evaluate
an algorithm for solving the problem.

1 Introduction

A high-level security policy states an overall safety requirement for a sensitive task. One well-known high-
level security policy is Separation of Duty (SoD). In its simplest form, an SoD policy states that a sensitive
task should be performed by two different users acting in cooperation. More generally, an SoD policy
requires the cooperation of at least k (k ≥ 2) different users to complete the task. SoD is a high-level policy
because it does not place restrictions on which users are allowed to perform which individual steps in a
sensitive task, but instead states an overall requirement that must be satisfied by any set of users that together
complete the task. An SoD policy states only a quantity requirement and does not express qualification
requirements on users who complete a task. Recently, Li and Wang [4] proposed an algebra that enables
the specification of high-level policies that combine qualification requirements with quantity requirements.
To use the algebra to specify high-level security policies, the administrators first identify sensitive tasks
and then, for each sensitive task t, specifies a security policy of the form 〈t, φ〉, where φ is a term in the
algebra. This policy means that any set of users (we call userset) that together complete the task must
satisfy the term φ. The algebra has three kinds of atomic terms: a role (which implicitly identifies a set of
users), the keyword All (which refers to the set of all users), and an explicitly listed set of users. Two unary
operators, ¬ and +, and four binary operators, t, u, ¯, and ⊗, can be used with these atomic terms to form
more sophisticated terms. Li and Wang [4] gave many examples to illustrate the expressive power of the
algebra. For instance, a simple SoD policy that requires at least two different users can be expressed using

1

the term (All⊗ All+). A more sophisticated policy that requires two Clerks plus a third user who is either
a Treasurer or a Manager can be expressed using the term (Clerk⊗ Clerk⊗ (Treasurert Manager)).

A high-level policy can be enforced either statically or dynamically. In dynamic enforcement, one
identifies all steps in performing the task, and maintains, for each instance of the task, the history of which
user has performed which steps. When a user requests to perform the next step, the request is authorized
only when the overall security requirement can be met by allowing this user to perform the next step. In
static enforcement, one identifies the set of permissions that are necessary to perform the task, and ensures
that each access control state that can be reached is safe with respect to the policy for the task. An access
control state is safe if each userset such that users in the set together have all the permissions for the task
(in which case we say the userset covers the permissions for the task) satisfies the security requirement.
Static enforcement can be achieved either directly or indirectly. In direct static enforcement, before making
changes to the access control state, one checks that the resulting state is safe and makes the change only when
it is safe. In indirect static enforcement, one specifies constraints so that any access control state satisfying
the constraints is safe and thus only needs to check whether a resulting state satisfies the constraints during
state changes.

In this paper we study direct static enforcement of policies specified in the algebra proposed by Li and
Wang [4]. Direct static enforcement of SoD policies, which are a subclass of the policies that can be specified
in the algebra, has been studied by Li et al [3]. It has been shown that checking whether an access control
state satisfies an Static SoD (SSoD) policy, i.e., whether every userset that covers the permissions for the task
contains at least k users, is coNP-complete [3]. As a policy specified in the algebra can be more expressive
and sophisticated than an SSoD policy, it is expected that the problem considered in this paper is also in an
intractable computational complexity class. Computationally expensive notwithstanding, we argue that the
study of direct enforcement of static high-level policies should be given higher priority than indirect static
enforcement and dynamic enforcement for the following reasons. First, direct static enforcement is the
most simple and straightforward enforcement mechanism for high-level security policies. Its performance
will be used as a benchmark for comparison when evaluating other enforcement mechanisms. Second,
even though direct static enforcement is computationally intractable in theory, it is interesting and necessary
to study its performance for instances that are likely to occur practice. Third, direct enforcement cannot be
entirely replaced by indirect enforcement. It is oftentimes difficult or even impossible to generate efficiently-
verifiable constraints to precisely capture a high-level policy. For example, Li et al. [3] studied indirect
enforcement of using Static Mutually Exclusive Roles (SMER) to enforce SSoD policies in the context of
role-based access control (RBAC), and showed that there exist SSoD policies such that no set of SMER
constraints can precisely capture them [3]. Most of the time, the set of constraints generated for a security
policy is more restrictive than the policy itself. That is to say, some access control states that are safe with
respect the security policy will be ruled out by the constraints. In situations where precise enforcement is
desired, direct static enforcement is more desirable than indirect static enforcement. We consider dynamic
enforcement and indirect static enforcement interesting future research problems.

In direct static enforcement, we need to solve the following problem: Given an access control state,
determine whether each userset that covers all permissions for a task is safe with respect to the term asso-
ciated with the task, we call this the Static Safety Checking problem. To solve this, we must first solve that
problem of checking whether a given userset is safe with respect to a term; we call this the Userset-Term
Safety Checking problem.
Our contributions in this paper are as follows:

1. We formally define the notion of static safety polices and the Static Safety Checking problem. We

2

also give a necessary and sufficient condition for a static safety policy to be satisfiable.

2. We study the computational complexity of the Userset-Term Safety Checking problem.

3. We study computational complexity of the Static Safety Checking problem. We show that the Static
Safety Checking problem is both NP-hard and coNP-hard and is in NP

NP, a complexity class
in the Polynomial Hierarchy. Furthermore, we show that several subcases of the problem remain
intractable. Finally, we identify syntactic restrictions so that if the term in a safety policy satisfies the
restrictions, then determining whether a state satisfies the policy can be solved in polynomial time.

4. We present an algorithm for the Static Safety Checking problem. Our algorithm uses pruning tech-
niques that reduce the number of users and usersets needed to be considered. Furthermore, we design
an abstract representation of usersets that can reduce the memory storage requirement and accelerate
set operations, which leads to a fast bottom-up approach for solving the Userset-Term Safety Check-
ing problem.

The remainder of this paper is organized as follows. In Section 2, we review the algebra. In Section 3,
we define static safety policy, the Static Safety Checking problem and the notion of policy satisfiability. We
present computational complexities of the Static Safety Checking problem in Section 4, and an algorithm
for the problem as well as its evaluation in Section 5. We discuss related work in Section 6 and conclude in
Section 7.

2 Preliminary

In this section, we give a brief overview of the algebra introduced in [4] and then discuss potential enforce-
ment mechanisms for policies specified in the algebra. The algebra is motivated by the following limitation
of SoD policies: In many situations, it is not enough to require only that k different users be involved in a
sensitive task; there are also minimal qualification requirements for these users. For example, one may want
to require users that are involved to be physicians, certified nurses, certified accountants, or directors of a
company. Previous work addresses this by specifying such requirements at individual steps of a task. For
example, if a policy requires a manager and two clerks to be involved in a task, one may divide the task into
three steps and require two clerks to each perform step 1 and step 3, and a manager to perform step 2. This
approach, however, results in the loss of the several important advantages offered by a higher-level policy.
The algebra enables one to specify, at a high-level, a wide range of security policies with both qualification
and quantity requirements on users who perform a task. For more information on the algebra beyond that in
this section, readers are referred to [4].

We use U to denote the set of all users andR to denote the set of all roles. In the algebra, a role is simply
a named set of users. The notion of roles can be replaced by groups or user attributes.

Definition 1 (Terms in the Algebra). Terms in the algebra are defined as follows:

• An atomic term takes one of the following three forms: a role r ∈ R, the keyword All, or a set S ⊆ U
of users.

• An atomic term is a term; furthermore, if φ1 and φ2 are terms, then ¬φ1, φ+
1 , (φ1 t φ2), (φ1 u φ2),

(φ1 ⊗ φ2), and (φ1 ¯ φ2) are also terms, with the following restriction: For ¬φ1 or φ+
1 to be a term,

φ1 must be a unit term, that is, it must not contain +, ⊗, or ¯.

3

The unary operator ¬ has the highest priority, followed by the unary operator +, then by the four binary
operators (namely u, t, ¯, ⊗), which have the same priority.

Before formally assigning meanings to terms, it is necessary to assign meanings to the roles used in the
term. The following definition introduces the notion of configurations.

Definition 2 (Configurations). A configuration is given by a pair 〈U,UR〉, where U ⊆ U denotes the set of
all users in the configuration, andUR ⊆ U ×R determines role memberships. We say that u is a member
of the role r under a configuration〈U,UR〉 if and only if (u, r) ∈ UR.

Definition 3 (Satisfaction of a Term). Given a configuration〈U,UR〉, we say that a userset X satisfies a
term φ under 〈U,UR〉 if and only if one of the following holds1:

• The term φ is the keyword All, and X is a singleton set {u} such that u ∈ U .

• The term φ is a role r, and X is a singleton set {u} such that (u, r) ∈ UR.

• The term φ is a set S of users, and X is a singleton set {u} such that u ∈ S.

• The term φ is of the form ¬φ0 where φ0 is a unit term, and X is a singleton set that does not satisfy
φ0.

• The term φ is of the form φ+
0 where φ0 is a unit term, and X is a nonempty userset such that for every

u ∈ X , {u} satisfiesφ0.

• The term φ is of the form (φ1 t φ2), and either X satisfiesφ1 or X satisfiesφ2.

• The term φ is of the form (φ1 u φ2), and X satisfies bothφ1 and φ2.

• The term φ is of the form (φ1 ⊗ φ2), and there exist usersets X1 and X2 such that X1 ∪ X2 = X ,
X1 ∩X2 = ∅, X1 satisfiesφ1, and X2 satisfiesφ2.

• The term φ is of the form (φ1 ¯ φ2), and there exist usersets X1 and X2 such that X1 ∪ X2 = X ,
X1 satisfiesφ1, and X2 satisfiesφ2. This differs from the definition for⊗ in that it does not require
X1 ∩X2 = ∅.

It has been shown that the four binary operators are commutative and associative. We are thus able to
omit some parenthesis when writing the terms without introducing ambiguity. Note that term satisfaction
does not have the monotonicity property. In other words, a userset X satisfying a term φ does not imply
that any superset of X also satisfies φ. This design was chosen in [4] because it has more expressive
power. For example, a policy that requires (1) everyone involved in a task must be a Accountant, can
be expressed as Accountant+, and (2) there must be at least two users involved, can be expressed as
(Accountant ⊗ Accountant+). The policy cannot be expressed in an algebra that has the monotonicity
property, because this property mandates that a set containing two accountants and one non-accountant user
(which is a superset of the set containing just the two accountants) satisfies the term.

The following examples demonstrate the expressive power of the algebra.

• {Alice,Bob,Carl} ⊗ {Alice,Bob,Carl}

This term requires any two users out of the list of three.
1We sometimes say X satisfiesφ, and omit “under 〈U,UR〉” when it is clear from the context.

4

• (Accountant t Treasurer)+

This term requires that all participants must be either an Accountant or a Treasurer. But there is
no restriction on the number of participants.

• (Manager¯ Accountant)⊗ Treasurer

This term requires a Manager, an Accountant, and a Treasurer; the first two requirements can be
satisfied by a single user.

• (Physician t Nurse)⊗ (Manager u ¬Accountant)

This term requires two different users, one of which is either a Physician or a Nurse, and the other
is a Manager, but not an Accountant.

• (Manager¯ Accountant¯ Treasurer) u (Clerk u ¬{Alice,Bob})+

This term requires a Manager, an Accountant and a Treasurer. In addition, everybody involved
must be a Clerk and must not be Alice or Bob.

2.1 The Enforcement of High-Level Security Policies

A problem that naturally arises is how to enforce high-level security policies specified in the algebra. There
are two dimensions in policy enforcement. A high-level security policy specified in the algebra may be
enforced either statically or dynamically, and either directly or indirectly.

To dynamically enforce a policy 〈t, φ〉, where t is a task and φ is a term in the algebra, one identifies
the steps in performing the task t, and maintains a history of each instance of the task, which includes who
has performed which steps. Given a task instance, let Upast be the set of users who have performed at least
one step of the instance. A user u is allowed to perform a next step on the instance only if there exists a
superset of Upast∪{u} that can satisfy φ upon finishing all steps of the task. In direct dynamic enforcement,
the system solves this problem directly each time a user requests to perform a step. In indirect dynamic
enforcement, the system uses authorization constraints on the steps in the task (e.g., two steps cannot be
performed by the same user) to enforce that the policy is satisfied. For example, there are three users, say
Alice , Bob and Carl , in the system. Alice is a member of role r1; Bob is a member of both r1 and r3; Carl

is a member of r2 and r4. There is a task consisting of two steps and any user is authorized to perform any
step. Let φ = (r1 ⊗ r2) u (r3 ⊗ r4) be a term associated with the task. Either Bob or Carl may perform
the first step of the task. The reason is that ifBob (or Carl) performs the first step, thenCarl (or Bob) may
perform the second step to finish that task and the userset{Bob,Carl} satisfiesφ. However, Alice is not
allowed to perform the first step (nor the second step) of the task, as any superset of{Alice} in the system
does not satisfy φ.

To statically enforce the policy 〈t, φ〉, one identifies the setP of all permissions that are needed to
perform the task t and requires that any userset that covers P satisfies the termφ. We denote such a security
policy sp〈P, φ〉 and call it a static safety policy. A static safety policy can be satisfied by careful design (such
as careful permission assignments) of the access control state, without maintaining a history for each task
instance. In direct static enforcement, before making changes to the access control state, one checks that the
resulting state is safe with respect to the static safety policy and makes the change only when it is safe. In
indirect enforcement, one specifies constraints so that any access control state satisfying the constraints is
safe with respect to the policy (but possibly not the other way around) and thus only needs to check whether
a resulting state satisfies the constraints during state changes.

5

In this paper, we focus on direct static enforcement. Investigating other enforcement approaches for
policies specified in the algebra is beyond the scope of this paper.

3 The Static Safety Checking (SSC) Problem

Direct static enforcement requires solving the Static Safety Checking (SSC) Problem, which we formally
define through the following definitions.

Definition 4(State). An access control system state is given by a triple 〈U,UR,UP〉, where UR ⊆ U ×R
determines user-role memberships and UP ⊆ U × P determines user-permission assignment, where P is
the set of all permissions. We say that a userset X covers a set P of permissions if and only if the following
holds:

⋃

u∈X{ p ∈ P | (u, p) ∈ UP } ⊇ P.

Note that a state 〈U,UR,UP〉 uniquely determines a configuration〈U,UR〉 used by term satisfaction.
Hence, we may discuss term satisfaction in a state without explicitly mentioning the corresponding configu-
ration. Note that a user may be assigned a permission directly or indirectly (e.g. via role membership), and
the relation UP has taken both ways into consideration.

Definition 5(Term Safety). A userset X is safe with respect to a term φ under configuration〈U,UR〉 if and
only if there exists X ′ ⊆ X such that X ′ satisfiesφ under 〈U,UR〉.

Definition 6 (Static Safety Policy). A static safety policy is given as a pair sp〈P, φ〉, where P ⊆ P is a
set of permissions and φ is a term in the algebra. An access control state 〈U,UR,UP〉 satisfiesthe policy
sp〈P, φ〉, if and only if, for every userset X that covers P , X is safe with respect to φ. If a state satisfies a
policy, we say that it is safe with respect to the policy.

Note that in the above definition, we require that each usersetX that covers P is safe with respect
to φ (Definition 5) rather than thatX satisfiesφ (Definition 3). The reason is that permission coverage
is monotonic with respect to userset. In other words, if X covers P then any superset of X also covers
P . However, as we pointed out right after Definition 3, term satisfaction does not have the monotonicity
property. This means that static enforcement can be applied only for policies that have the monotonicity
property. We thus define safety with respect to a static safety policy in a monotonic fashion.

Definition 7(Static Safety Checking (SSC) Problem). Given a static safety policy sp〈P, φ〉, the problem of
determining whether a given state 〈U,UR,UP〉 is safe with respect to sp〈P, φ〉 is called the Static Safety
Checking (SSC) problem.

We will study the computational complexity of SSC in Section 4. In the rest of this section, we study
two other problems related to static safety policies.

3.1 Satisfiability of Static Safety Policies

Given a static safety policy, it is natural to ask whether it is possible to satisfy the policy at all. In particular,
if a static safety policy cannot be satisfied by any access control state, it is probably not what the designers
of the policy desire.

Definition 8(Policy Satisfiability). A static safety policy sp〈P, φ〉 is satisfiableif and only if there exists a
state 〈U,UR,UP〉 such that 〈U,UR,UP〉 satisfiessp〈P, φ〉 and there is at least one userset in 〈U,UR,UP〉
that covers P .

6

Note that the above definition requires that there exists at least one userset in〈U,UR,UP〉 that covers
P . Without this requirement, a state γ trivially satisfies sp〈P, φ〉, if γ does not contain any userset that
covers P . In particular, an empty access control state satisfies any static safety policy; and thus any static
safety policy is trivially satisfiable.

A term φ is satisfiableif there exists a userset X and a configuration〈U,UR〉, such that X satisfiesφ
under 〈U,UR〉. From Definition 8, it is clear that whenφ is unsatisfiable, a static safety policysp〈P, φ〉 is
unsatisfiable as well. However, even ifφ is satisfiable, it is still possible thatsp〈P, φ〉 is unsatisfiable. For
example, sp〈{p1, p2}, Clerk⊗ Accountant⊗ Manager〉 is unsatisfiable, as a minimal set of users having
all permissions in {p1, p2} contains at most two users, while a set of at least three users are required to
satisfy the term (Clerk⊗ Accountant⊗ Manager).

The following theorem states a necessary and sufficient condition for a static safety policy to be satisfi-
able. Intuitively, a policy sp〈P, φ〉 is satisfiable when the number of permissions inP is no smaller than the
size of the smallest userset that satisfiesφ.

Theorem 1. Let k be the smallest number such that there exists a size-k userset X and a configuration
〈U,UR〉, such that X satisfiesφ under 〈U,UR〉. sp〈P, φ〉 is satisfiable if and only if|P | ≥ k.

Proof. Let X be a sized-k userset that satisfiesφ under 〈U,UR〉. On the one hand, if |P | ≥ k, we can
construct an access control state 〈U,UR,UP〉 such that X ⊆ U and X is the only userset that covers P . In
this case, 〈U,UR,UP〉 satisfiessp〈P, φ〉. On the other hand, if |P | < k, assume by contradiction that there
exists a state 〈U,UR,UP〉 that satisfiessp〈P, φ〉. Then, there exists a userset X ′ ⊆ U such that X ′ covers
P and X ′ satisfiesφ. We have |X ′| ≤ |P | < k. This contradicts the assumption that there does not exist a
userset with less than k users that satisfiesφ. In general, sp〈P, φ〉 is satisfiable if and only if|P | ≥ k.

3.2 The Userset-Term Safety Problem

To solve the SSC problem, which asks whether every userset that covers a set of permissions is safe with
respect to a term φ, we need to solve the problem of determining whether a given userset is safe with respect
to a term.

Definition 9 (Userset-Term Safety (SAFE) Problem). Given a userset X and a term φ, the problem of
determining whether X is safe with respect to φ is called the Userset-Term Safety (SAFE) Problem.

SAFE is related to yet different from the Userset-Term Satisfaction (UTS) problem studied in [4]. SAFE

asks whether X contains a subset that satisfies a termφ under a configuration; this is monotonic in that
if X is safe, then any superset of X is also safe. UTS asks whether a userset X satisfies a termφ under
a configuration 〈U,UR〉; this is not monotonic, as discussed in Section 2. This difference has subtle but
important effects. For example, under SAFE, the operator ¯ is equivalent to logical conjunction, that is,
X is safe with respect to φ1 ¯ φ2 if and only if X is safe with respect to both φ1 and φ2. This is because
X is safe with respect to φ1 ¯ φ2 if and only if X contains a subset X0 that is the union of two subsets
X1 and X2 such that X1 satisfiesφ1 and X2 satisfiesφ2. This is equivalent to X contains two subsets X1

and X2 such that X1 satisfiesφ1 and X2 satisfiesφ2. On the other hand, the operator ¯ is different from
logical conjunction under UTS. That X satisfiesφ1 ¯ φ2 does not imply X satisfies bothφ1 and φ2. For
example {u1, u2} satisfiesAll ¯ All, but does not satisfy All, because term satisfaction is not monotonic.
Another difference regards the operation u. The operator u is equivalent to logical conjunction under UTS,
by definition of term satisfaction. On the other hand,u is stronger than logical conjunction under SAFE.
That X is safe with respect to φ1 u φ2 implies that X is safe with respect to both φ1 and φ2, but the other

7

SAFE〈¬,+,t,u,¯,⊗〉

NP-complete

. .

SAFE〈¬,+,t,u〉

in P

. .

SAFE〈¬,+,t,¯〉

in P

...
...

...
...

.

SAFE〈u,¯〉

NP-complete

...
...

...
...

.

SAFE〈t,⊗〉

NP-complete

............................

SAFE〈u,⊗〉

NP-complete

...

SAFE〈¯,⊗〉

NP-complete

...
...

...
...

.

...
...

...
...

.

. .

SAFE〈¬,+,t〉

in P

.......
.......

.......
.......

.....

..
..
..
..
..

. .

SAFE〈¬,+,u〉

in P

...

.....
.....

.....
.....

.....

. .

SAFE〈¬,+,¯〉

in P

......
......

......
......

.....

...
...

...
...

.

...
...

...
...

.

SAFE〈¬,+,⊗〉

in P

Figure 1: Various sub-cases of the Userset-Term Safety (SAFE) problem and the corresponding time-
complexity. Time-complexity of other subcases can be implied from the subcases shown in the figure.

direction is not true. For example, given UR = {(u1, r1), (u2, r2)}, X = {u1, u2} is safe with respect to
both r1 and r2, but is not safe with respect to r1 u r2.

Because of these and other differences, the computational complexity results about UTS do not naturally
imply computational complexity results for SAFE. In the rest of this section, we give the computational
complexities for SAFE and compare them with those of UTS. We show that SAFE in the most general case
(i.e., arbitrary terms in which all operators are allowed) is NP-complete. In order to understand how the
operators affect the computational complexity, we consider all sub-algebras in which only some subset of
the six operators in {¬,+,u,t,¯,⊗} is allowed. For example, SAFE〈¬,+,t,u〉 denotes the sub-case of
SAFE where φ does not contain operators ¯ or ⊗, while SAFE〈⊗〉 denotes the sub-case of SAFE where ⊗
is the only kind of operator in φ. SAFE〈¬,+,t,u,¯,⊗〉 denotes the general case.

Theorem 2. The computational complexities for SAFE and its subcases are given in Figure 1.

According to Figure 1, the computational complexities of all subcases of SAFE are the same as those
of UTS except for the subcase in which only operators in {¬,+,t,¯} are allowed. SAFE〈¬,+,t,¯〉 is
in P, while UTS〈t,¯〉 is NP-hard. Intuitively, UTS〈t,¯〉 is computationally more expensive than SAFE

{t,¯} for the following reason: given a term φ = (φ1 ¯ · · · ¯ φm) and a userset U , U is safe with respect
to φ if and only if U is safe with respect to φi for every i ∈ [1,m]. In other words, for SAFE, one may check
whether U is safe with respect to φi independently from φj (i 6= j). However, when it comes to UTS, such
independency no longer exists and one has to take into account whether every user in U is used to satisfied
some φi in the term φ.

Proofs for the P results in Theorem 2 To prove all the P results in Figure 1, it suffices to prove that
the three cases SAFE〈¬,+,u,t〉, SAFE〈¬,+,t,¯〉, and SAFE〈¬,+,⊗〉 are in P. We first prove the
following lemma, which will be prove useful. We need the following definition taken from [4].

Definition 10. A term is in level-1 canonical form (called a 1CF term) if it is t or t+, where t is a unit term.
Recall that a unit term can use the operators ¬, u, and t.

Lemma 3. The following Properties hold.

8

1. A userset X satisfies a unit termt if and only if X is a singleton set and the only user in X satisfiest.

2. A userset X satisfies a termt+, where t is a unit term, if and only if every user in X satisfiest.

3. If a userset X satisfies a termφ that uses only ¬,+,u,t, then every user in X satisfiesφ.

4. A userset X is safe with respect to a 1CF term φ if and only if there exists a user in X that satisfiest.

Proof. Properties 1 and 2 follow from the definition of term satisfaction. Observe that a unit term can be
satisfied only by a singleton set.

Property 3. The term φ can be decomposed into subterms in 1CF form, connected using u and t. By
definition,X satisfiesφ1 u φ2 if and only if X satisfies bothφ1 and φ2, and X satisfiesφ1 t φ2 if and only
if X satisfies eitherφ1 or φ2. Identify all 1CF subterms that X satisfies, it follows from Properties 1 and 2
that each user in X satisfies all these subterms. Therefore, each user satisfiesφ.

Property 4. For the “if” direction, if X contains a user u that satisfiest, then {u} satisfies the termφ,
and thus X is safe with respect to φ. For the “only if” direction, if X is safe with respect to φ, then X
contains a subset X0 that satisfiesφ, any user in X0 must satisfy t according to Properties 1 and 2.

Lemma 4. SAFE 〈¬,+,t,¯〉 is in P.

Proof. A userset X is safe with respect to (φ1 t φ2) if and only if either X is safe with respect to φ1 or
X is safe with respect to φ2. Furthermore, X is safe with respect to (φ1 ¯ φ2) if and only if X is safe
with respect to both φ1 and φ2. Therefore, one can determine whether U is safe with respect to φ that uses
only the operators in {¬,+,t,¯} by following the structure of the term until reaching subterms in 1CF.
From Property 4 of Lemma 3, checking whether U is safe with respect to such a term amounts to checking
whether there exists a user in U that satisfiest, which can be done in polynomial time.

Lemma 5. SAFE 〈¬,+,t,u〉 is in P.

Proof. Given a term φ using only operators in {¬,+,t,u}, we prove that a userset X is safe with respect
to φ if and only if there exists a user u ∈ X such that u satisfiesφ. The “if” direction follows by definition.
For the “only if” direction: Suppose that X contains a nonempty subset X0 that satisfiesφ, then by Property
3 of Lemma 3, every user in X0 satisfiesφ; thus X must contain a user that satisfiesφ. Therefore, to
determine whether X is safe with respect to φ, one can, for each user in X , check whether the user satisfies
φ. From [4], checking whether one user satisfies a term using only operators in{¬,+,t,u} can be done in
P.

Lemma 6. SAFE 〈¬,+,⊗〉 is in P.

Proof. Given a term φ that uses only the operator ⊗, we show that determining whether a userset X is
safe with respect to φ under a configuration 〈U,UR〉 can be reduced to the maximum matching problem
on bipartite graphs, which can be solved in O(MN) time, where M is the number of edges and N is the
number of nodes in G [6].

Let s be the number of 1CF terms in φ and t = |X|. Since ⊗ is associative [4], φ can be equivalently
expressed as (φ1 ⊗ φ2 ⊗ · · · ⊗ φs), where each φi is a 1CF term . Let X = {u1, · · · , ut}. We construct a
bipartite graph G(V1 ∪ V2, E), where each node in V1 corresponds to a 1CF term in φ and each node in V2

corresponds to a user in X . More precisely, V1 = {a1, · · · , as}, V2 = {b1, · · · , bt}, and (ai, bj) ∈ E if and
only if {uj} satisfiesφi. The resulting graph G has s+ t nodes and O(st) edges, and can be constructed in
time polynomial in the size of G. Solving the maximal matching problem for G takes time O((s+ t)st).

9

We now show thatX is safe with respect to φ if and only if the maximal matching in the graphG has size
s. If the maximal matching has size s, then each node in V1 matches to a certain node in V2, which means
that the s 1CF terms in φ are satisfied bys distinct users in X; thus X contains a subset that satisfiesφ. If
X is safe with respect to φ, by definition, there exists disjoint subsets X1, · · · , Xs such that Xi (i ∈ [1, s])
satisfiesφi and

⋃s
j=1 Xj ⊆ X . From our construction of G, we may match a node corresponding to a user

in Xi to the node corresponding to φi. In this case, a maximal matching of size s exists.

Proving the NP-completeness results in Figure 1. It suffices to prove that the general case
SAFE〈¬,+,t,u,¯,⊗〉 is in NP and that the four cases SAFE〈u,¯〉, SAFE〈t,⊗〉, SAFE〈u,⊗〉, and
SAFE〈¯,⊗〉 are NP-hard. Below we state lemmas that establish these results. The proofs to these lemmas
that are not included in this section are given in Appendix B. For each NP-hardness result, we discuss the
NP-complete problem used in the reduction.

Lemma 7. SAFE〈¬,+,t,u,¯,⊗〉 is in NP.

Proof. To determine whether a userset U is safe with respect to a term φ under a configuration〈U,UR〉, we
first compute the syntax treeT of φ. When constructing T , a 1CF term is treated as a unit and is not further
decomposed. In other words, the leaves in T correspond to sub-terms of φ that are 1CF terms and the inner
nodes correspond to binary operators connecting these sub-terms. If U is safe with respect to φ, then for
each node in the tree, there exists a subset of U that satisfies the term rooted at that node, and the root of
T corresponds to a subset of U . After these subsets are guessed and labeled with each node, verifying that
they indeed satisfy the terms can be done efficiently. From Lemma 3, verifying that a userset satisfies a 1CF
term is in P. When the two children of a node are verified, checking that node is labeled correctly can also
be done efficiently. Therefore, the problem is inNP.

In the following, (opkφ) denotes k copies of φ connected together by operator op and (opni=1ri) denotes
(r1 op · · · op rn). Given R = {r1, · · · , rm}, (opR) denotes (r1 op · · · op rm).

Lemma 8. SAFE〈u,¯〉 is NP-hard.

We use a reduction from the NP-complete SET COVERING problem [2]. The term we constructed for
reduction has the form ((

⊙

k All) u (
⊙n

i=1 ri)), where ri is a role.

Lemma 9. SAFE〈¯,⊗〉 is NP-hard.

We use a reduction from the NP-complete DOMATIC NUMBER problem [2]. The term we constructed
for reduction has the form (

⊗

k(
⊙n

i=1 ri)), where ri is a role.

Lemma 10. SAFE〈⊗,t〉 is NP-hard.

We use a reduction from the NP-complete SET PACKING problem [2]. The term we constructed for
reduction has the form (

⊗

k (
⊔m
i=1 (

⊗

Rj))), where Rj is a set of roles.

Lemma 11. SAFE 〈u,⊗〉 is NP-hard.

We use a reduction from the NP-complete SET COVERING problem. The term we constructed for
reduction has the form (un

i=1

(

ri ⊗
(
⊗

k−1 All
))

), where ri is a role.

10

SSC〈¬,+,t,u,¯,⊗〉

NP-hard, coNP-hard, in coNP
NP

. .

..

..

..

.........................

SSC〈t,¯〉

coNP-hard
SSC〈u,¯〉

NP-hard
SSC〈⊗〉

coNP-complete

..

..

..

. .

SSC〈¬,+,u,t〉

in P

..

..

..

.........................

SSC〈¬,+,¯〉

in P

Figure 2: Various sub-cases of the Static Safety Checking (SSC) problem and the corresponding time-
complexity. Time-complexity of other subcases can be implied from the subcases shown in the figure.

4 Computational Complexity of SSC

In this section, we study the computational complexity of SSC, which determines whether a state is safe
with respect to a static safety policy. We will show that SSC in the most general case (i.e., the policy uses an
arbitrary term in which all operators are allowed) is both NP-hard and coNP-hard, but it is in polynomial
hierarchy coNP

NP. A brief introduction on polynomial hierarchy can be found in Appendix A. Similar to
the discussion of SAFE in Section 3.2, we consider all subcases where only some subset of the operators in
{¬,+,u,t,¯,⊗} is allowed.

Theorem 12. The computational complexities for SSC and its subcases are given in Figure 2.

In the following, we prove that SSC is in coNP
NP. The proofs to those intractable cases in Figure 2 are

given in Appendix C. In Section 4.1, we identify a class of syntactically restricted terms such that SSC

for policies using these syntactically restricted terms is tractable. The class of syntactically restricted terms
subsumes both cases listed as in P in Figure 2.

Lemma 13. SSC〈¬,+,t,u,¯,⊗〉 is in coNP
NP.

Proof. We show that the complement of SSC〈¬,+,t,u,¯,⊗〉 is in NP
NP. Because SAFE is in NP

(see Figure 1), an NP oracle can decide whether a userset is safe with respect to a term. We construct a
nondeterministic Oracle Turing Machine M that accepts an input consisting of a state 〈U,UR,UP〉 and a
policy sp〈P, φ〉 if and only if 〈U,UR,UP〉 is not safe with respect to sp〈P, φ〉. M nondeterministically
selects a set U of users in 〈U,UR,UP〉. If U does not cover P , then M rejects. Otherwise, M involves
the NP oracle to check whether U is safe with respect to φ. If the oracle answers “yes”, then M rejects;
otherwise, M accepts, as it has found a userset that covers P but is not safe with respect to φ, which violates
the static safety policy. The construction of M shows that the complement of SSC〈¬,+,t,u,¯,⊗〉 is in
NP

NP. Hence, SSC〈¬,+,t,u,¯,⊗〉 is in coNP
NP.

Lemma 14. SSC〈t,¯〉 is coNP-hard.

We reduce the coNP-complete VALIDITY problem for propositional logic to SSC〈t,¯〉.

Lemma 15. SSC〈u,¯〉 is NP-hard.

11

Proof. There is a straightforward reduction from SAFE〈u,¯〉 to SSC〈u,¯〉. Given a term φ using only
operators u or ¯, in order to check whether a userset X is safe with respect to φ, we can construct a policy
sp〈P, φ〉 and a state 〈U,UR,UP〉 such that X is the only set of users in the state that covers P . In this case,
X is safe with respect to φ if and only if the state we constructed satisfiessp〈P, φ〉. Since SAFE〈u,¯〉 is
NP-hard (see Figure 1), SSC〈u,¯〉 is NP-hard.

Remind that a reduction from the NP-complete SET COVERING problem is used to prove that
SSC〈u,¯〉 is NP-hard. The term we constructed for the reduction has the form ((

⊙m
i=1 φi)u (

⊙n
j=1 φ

′
j)).

Such information on term construction will be useful in Section 4.1.

Lemma 16. SSC〈⊗〉 is coNP-hard.

We reduce the NP-complete SET COVERING problem to the complement of SSC〈⊗〉.

4.1 The Most General Tractable Form

From Figure 2, when the operator ⊗ is used or when the operator ¯ is used in conjunction with any other
binary operator, SSC is intractable in general. In this section, we show that if the term in a static safety
policy satisfies certain syntactic restriction, then even if all operators except⊗ appear in the term, one
can still efficiently determine whether a state satisfies the policy. Furthermore, we show that the syntactic
restriction presented in this section allows the most general form of terms such that SSC is tractable with
these terms.

Definition 11 (Syntactically Restricted Forms of Terms). The syntactically restricted forms of terms are
defined as follows:

• A term is in level-1 syntactically restricted form (called a 1RF term) if it is t or t+, where t is a unit
term. Recall that a unit term can use operators ¬, t and u.

• A term is in level-2 syntactically restricted form (called a 2RF term) if it consists of one or more
sub-terms that are 1RF terms, and (when there are more than one such sub-terms) these sub-terms are
connected only by operators in the set {t,u}.

• A term is in level-3 syntactically restricted form (called a 3RF term) if it consists of one or more
sub-terms that are 2RF terms, and these sub-terms are connected only by operator ¯.

We say that a term is in syntactically restricted form if it is in level-3 syntactically restricted form. Observe
that any term that is in level-i syntactically restricted form is also in level-(i + 1) syntactically restricted
form for any i = 1 or 2.

Theorem 17. Given an access control state 〈U,UR,UP〉 and a static safety policy sp〈P, φ〉 where φ is in
syntactically restricted form, checking whether 〈U,UR,UP〉 satisfiesφ can be done in polynomial time.

Proof. Let φ = (φ1 ¯ · · · ¯ φm) be a 3RF term, where φi (1 ≤ i ≤ m) is a 2RF term. The following
algorithm checks whether a state 〈U,UR,UP〉 satisfies a policysp〈P, φ〉, where P = {p1, · · · , pn}.

isSafe(P, φ, UR , UP)
begin

Γ = {φ1, · · · φm};

12

For every pi in {p1, · · · , pn} do
Gpi = ∅;
For every u ∈ U such that (u, pi) ∈ UP do

Gpi = Gpi ∪ { φi ∈ φ | {u} does not satisfy φi};
EndFor;
Γ = Γ ∩ Gpi;

EndFor;
if (Γ == ∅) return true;
else return false;

end

In the above algorithm, Gpi stores the set of 2RF sub-terms in φ such that there exists a user u having pi but
{u} does not satisfy the sub-term. At the end of the algorithm, on the one hand, if Γ contains a sub-term φi,
it means that for every permissions pj in {p1, · · · , pn}, there exists a user upj such that upj has permission
pj but {upj} does not satisfy φi. Furthermore, from Property 3 of Lemma 3, the fact that {upj} does not
satisfy φi implies that any superset of {upj} does not satisfy φi. (Note that 2RF terms use only the operators
¬,+,t,u.) Therefore, users in {up1

, · · · , upn} together have all permissions in {p1, · · · , pn} but does not
contain a subset that satisfiesφi, and hence does not contain a subset that satisfiesφ. The state is not safe.
On the other hand, Γ = ∅ indicates that if U covers permissions in {p1, · · · , pn}, then for every sub-term
φi, there exists u ∈ U such that {u} satisfiesφi. In other words, there exists U ′ ⊆ U such that U ′ satisfies
φ′. The state is safe.

The worst-case time complexity of the above algorithm is O(m × |U | × T), where T is the time taken
to check whether a singleton satisfies a 1RF term, which is known to be inP [4].

Finally, we would like to show that level-3 syntactically restricted form is the most general syntactic
form of terms that keeps SSC tractable. Fist of all, from Lemma 16, if ⊗ is allowed, SSC becomes in-
tractable. Furthermore, from the proof of Lemma 15, if u is allowed to connect sub-terms containing ¯,
SSC becomes intractable. Finally, in the proof of Lemma 14, the coNP-complete validity problem is re-
duced to SSC〈t,¯〉. Since checking validity for propositional logic formula in disjunct normal form (DNF)
remains coNP-complete, SSC is intractable when t is allowed to connect sub-terms containing¯. In sum-
mary, to make SSC tractable, operator⊗ cannot be used, and if¯ is used, it must appear “outside of” t and
u. Such a restriction is precisely captured by the level-3 syntactically restricted form.

5 An Algorithm for SSC

Despite the fact that SSC is intractable in general, it is still possible that many instances encountered in
practice are efficiently solvable. In order to study the efficiency of solvingSSC, we have designed and
implemented an algorithm, which is described in detail in this section.

5.1 Description of the Algorithm

To determine whether 〈U,UR,UP〉 is safe with respect to sp〈P, φ〉, a straightforward algorithm is to enu-
merate all usersets that cover P and for every such userset, check whether it has a subset that satisfiesφ. If
the answer is “no” for any such userset, then we know that 〈U,UR,UP〉 is not safe with respect to sp〈P, φ〉.
Otherwise, 〈U,UR,UP〉 is safe. Our algorithm is based on this idea but has a number of improvements that
greatly reduces the running time. Here is a summary of the improvement techniques in our algorithm on
determining whether 〈U,UR,UP〉 is safe with respect to sp〈P, φ〉.

13

• We preprocess the input and eliminates information in 〈U,UR,UP〉 that is irrelevant to the result of
static safety checking with respect to sp〈P, φ〉.

• Only minimal usersets that cover P will be checked for userset-term safety.

• We define a partial-order over sets of roles and perform static pruning to reduce the number of users
that need to be considered based on the partial-order over their role membership.

• We propose an abstract representation of sets which enables us to design an efficient bottom-up ap-
proach for determining userset-term safety.

In the rest of this section, for simplicity of discussion, the keyword All and user names in a term of the
algebra are also treated as roles. For instance, we may treat the atomic term Alice as a role such that user
Alice is the only member of the role, while All is treated as a role such that everybody in the system is its
member.

Preprocessing Given a state 〈U,UR,UP〉 and a policy sp〈P, φ〉, we first remove all pairs(u, p) from UP

if p 6∈ P , and all pairs (u, r) from UR if r does not appear in φ. We also remove all users u from U if u
does not have any permission in P .

Furthermore, we rewrite the term φ into an equivalent term where ¬ (if any) only applies to atomic term.
Such a rewriting is always possible, as the operators ¬,t and u satisfy the DeMorgan’s Law. (See [4] for
algebraic properties of the operators.) This will be useful in static pruning, which will be discussed later.

Minimal Usersets Only Given a policy sp〈P, φ〉, let X be a userset that covers P . It is clear that a superset
ofX covers P as well. IfX is safe with respect to φ, then any superset ofX is safe with respect to φ, but not
the other way around. Therefore, when considering whether the state satisfiessp〈P, φ〉, we may consider X
without considering the supersets of X . In other words, we check whether X satisfiesφ if and only if X
covers P and there does not exist X ′ ⊂ X such that X ′ covers P , and such a userset X is called a minimal
userset that covers P .

Static Pruning The number of all usersets in U is 2n, where |U| = n. But it is clear that not all these
subsets need to be considered. In particular, we are only interested in those minimal usersets that cover all
permissions in the policy. In the following, we describe a static pruning technique that aims at reducing the
number of users that need to be taken into account. Intuitively, given a policy sp〈P, φ〉, we try to ignore
those users who have a relatively small number of permissions in P but satisfy many sub-terms in φ.

Definition 12(Positive and Negative Dependance). We say that a term φ positively (or negatively) depends
on role r, if φ contains r (or ¬r). Rpos and Rneg denote the set of roles that φ positively and negatively
depends on, respectively.

For instance, if φ = (Accountant ¯ Clerk) ∪ (¬Manager u ¬Clerk), then Rpos =
{Accountant, Clerk} and Rneg = {Manager, Clerk}. Note that Clerk appears in both Rpos and Rneg.
Definition 13 defines a partial relation between role sets with respect to a term, and Lemma 18 states a
condition on which a user may be ignored without affecting the soundness of static safety checking.

Definition 13(Partial-Order ¹φ). Given a term φ and two sets of roles Ra and Rb, we have Ra ¹φ Rb (or
equivalently Rb ºφ Ra) if and only if Ra ∩Rpos ⊆ Rb ∩Rpos and Ra ∩Rneg ⊇ Rb ∩Rneg.

Note that the relation ¹φ is transitive, i.e. if R1 ¹φ R2 and R2 ¹φ R3, then R1 ¹φ R3.

14

Lemma 18. Given a policy sp〈P, φ〉, a state 〈U,UR,UP〉 and two users u1, u2 (u1 6= u2), let Pi and Ri be
the set of permissions and roles of ui (i = 1 or 2). If (P1∩P) ⊇ (P2∩P) andR1 ¹φ R2, then 〈U,UR,UP〉
is safe with respect to sp〈P, φ〉 if and only if 〈U/{u2},UR,UP〉 is safe with respect to sp〈P, φ〉. In other
words, u2 may be ignored without affecting the soundness of static safety checking.

Proof. Let X be a userset covering P . In the following, we prove that if u2 ∈ X , we can always find
another userset X ′ (u2 6∈ X

′) that covers P , and X is safe with respect to φ only if X ′ is safe with respect
to φ. Hence, we may consider X ′ and ignore X , which indicates that u2 may be ignored without affecting
the soundness of static safety checking.

On the one hand, assume that both u1 and u2 are in X . Since (P1 ∩P) ⊇ (P2 ∩P), X ′ = X/{u2} still
covers P and X ′ ⊂ X . Hence, if X ′ is safe with respect to φ, so is X .

On the other hand, assume that u2 ∈ X but u1 6∈ X . Let X ′ = (X/{u2}) ∪ u1. X covering P and
(P1 ∩ P) ⊇ (P2 ∩ P) imply that X ′ covers P . We would like to show that if X ′ is safe with respect to
φ, then so is X . Assume that X ′ contains a subset X ′1 that satisfiesφ. We are only interested in the case
where u1 ∈ X

′
1. By definition of term satisfaction,X ′1 satisfying φ indicates that {u1} is used to satisfy a

set of atomic terms and/or negation of atomic terms in φ. (Note that ¬ is only applied to atomic terms in φ
after preprocessing.) Let {γ1, · · · , γm} (m ≥ 1) be a set of atomic terms or negation of atomic terms in φ
such that {u1} satisfiesγi (1 ≤ i ≤ m). If γi = r, then u1 must be a member of role r, which means that
r ∈ R1. R1 ¹φ R2 indicates that r ∈ R2. Otherwise, if γi = ¬r, then r 6∈ R1. R1 ¹φ R2 indicates that
r 6∈ R2. In either case, {u2} satisfiesγi. In general, {u2} satisfies all elements in{γ1, · · · , γm}. Therefore,
X = (X ′/{u1}) ∪ {u2} satisfiesφ. In generale, we may only consider X ′ without considering X .

The above lemma may greatly reduce the number of users we need to considered. In particular, if
multiple users have the same set of permissions in P and roles in φ, then at most one of these users need to
be taken into account.

The following example illustrates how static punning works.

Example 1. Given a policy sp〈{p1, p2, p3}, (r1 ¯ ¬r2)〉 and a state 〈U,UR,UP〉, we have

U = {Alice,Bob,Carl ,Doris ,Elaine}
UP = {(Alice, p1), (Alice, p2), (Bob, p1), (Carl , p1), (Carl , p2), (Doris , p3), (Elaine, p3), (Elaine, p4)}
UR = {(Alice, r1), (Bob, r1), (Bob, r3), (Carl , r1), (Carl , r2)}

There are five users in the system altogether. However, according to Lemma 18, we only need to consider
two users Carl and Doris . First of all, Bob may be ignored as he has the same set of roles in {r1, r2} as
Alice , but his set of permissions is subsumed by Alice’s. Secondly, Alice does not need to be considered as
she has the same set of permissions as Carl , but RCarl ¹(r1¯¬r2) RAlice . Finally, since Doris and Elaine

have the same permissions and roles with respect to the given policy, only one of them should be taken into
account.

Determining Term Safety In [4], Li and Wang described an algorithm for the Userset-Term Satisfaction
(UTS) problem. Their algorithm employs both a top-down approach and a bottom-up approach based on
the syntax tree of the term. In the top-down approach, one starts with the root of the syntax tree and the
given userset and tries to split the userset into subsets so as to satisfy different sub-terms. The processing
is then performed recursively on those subsets and sub-terms. In the bottom-up processing, one starts with
unit terms. For each unit term, one calculates all subsets of the given userset that satisfy the term. One then
goes bottom-up to calculate that for each node in the syntax tree. We call the set of usersets that satisfy a

15

term the satisfaction set of the term. An example of bottom-up processing of a term in a given configuration
is given in Figure 3.

As to SSC, instead of determining whether a userset satisfies a term, we are only interested in whether
there exists a subset of userset X that satisfies the term. In this case, using a pure bottom-up design should
be more efficient than a combination of top-down and bottom-up processing.

A major challenge for bottom-up processing is that the number of subsets that satisfy a sub-term may be
very large, especially when + is used. The algorithm for UTS in [4] stops performing bottom-up processing
when + is encountered, as the sub-term t+ can be satisfied by2|Y | − 1 usersets, where t is a unit term and
Y = {u ∈ U | {u} satisfiest}.

In our algorithm for SSC, we introduce a novel abstract representation of sets, which greatly reduces the
number of elements generated during the computation. Intuitively, an abstract set is a set of sets and is repre-
sented as a pair of two disjoint sets, the explicit-element set (EES) and the possible-element set (PES), where
EES contains elements that must appear and PES contains elements that may or may not appear. For exam-
ple, an abstract userset 〈ees{Alice} :: pes{Bob,Carl}〉 indicates that Alice appears in the set for sure,
while Bob and Carl may be included in the set as well. In other words, 〈ees{Alice} :: pes{Bob,Carl}〉
is a set of four different usersets, {Alice }, {Alice,Bob }, {Alice ,Carl } and {Alice,Bob,Carl }.

Definition 14 (Abstract Set). An abstract set is given as a pair Ψ = 〈ees{a1, · · · , am} ::
pes{b1, · · · , bn}〉 (m ≥ 1, n ≥ 0), which stands for a set of sets. Ψ.ees = {a1, · · · , am} is the explicit-
element set of Ψ and Ψ.pes = {b1, · · · , bn} is the possible-element set of Ψ. A set S is in Ψ if and only if
{a1, · · · , am} ⊆ S ⊆ {a1, · · · , am} ∪ {b1, · · · , bn}.

Abstract sets are especially useful in representing satisfaction sets of terms containing sub-terms in
the form of t+. For example, assume that Alice, Bob and Carl are members of role r. The set
of usersets that satisfy r+ may be represented as {〈ees{Alice} :: pes{Bob,Carl}〉, 〈ees{Bob} ::
pes{Carl}〉, 〈ees{Carl} :: pes{}〉}. In general, |Y | rather than 2|Y | − 1 usersets are stored for t+,
where t is a unit term and Y = {u ∈ U | {u} satisfiest}.

Our bottom-up approach employs abstract sets and involves performing set operations over abstract sets.
The description of our bottom-up approach is given in Lemma 19.

Lemma 19. Given a userset X and a term φ, the satisfaction set Ψφ of φ can be computed as follows.
Initially, Ψφ = ∅.

• φ = r: For every u ∈ (X∧Xr), whereXr is the set members of r, Ψφ ← Ψφ∪{〈ees{u} :: pes{}〉}.

• φ = ¬φ1: For every u ∈ X , if 6 ∃α∈Ψφ1
({u} = α.ees), Ψφ ← Ψφ ∪ {〈ees{u} :: pes{}〉}.

• φ = φ+
1 : Let Xs = {u | ∃α∈Ψφ1

(α.ees = {u})} = {ua1
· · ·uam}, where ai (i ∈ [1,m]) is an integer

and ai < aj when i < j. For every i ∈ [1,m], Ψφ ← Ψφ ∪ {〈ees{uai} :: pes{uai+1
, · · · , uam}〉}.

• φ = φ1 u φ2: For every α ∈ Ψφ1
and every β ∈ Ψφ2

, if α.ees ⊆ β.ees ∪ β.pes and β.ees ⊆
α.ees ∪ α.pes, then Ψφ ← Ψφ ∪ {〈ees{α.ees ∪ β.ees} :: pes{α.pes ∩ β.pes}〉}.

• φ = φ1 t φ2: Ψφ ← Ψφ1
∪Ψφ2

.

• φ = φ1 ¯ φ2: For every α ∈ Ψφ1
and every β ∈ Ψφ2

, Ψφ ← Ψφ ∪ {〈ees{E} :: pes{P − E}〉},
where E = α.ees ∪ β.ees and P = α.pes ∪ β.pes.

16

⊗

{{Alice ,Bob },{Alice ,Carl },{Alice ,Doris }}

...............
...............

...........

...............
...............

.............

t

{{Alice },{Bob },{Carl },{Doris }}

u

{{Alice }}

.......
.......

.......
.

........
........

........
...

r1

{{Bob },{Carl }}

r2

{{Alice },{Doris }}

.......
.......

.......
.

........
........

........
..

r2

{{Alice },{Doris }}

(¬r3)+

{{Alice },{Carl },{Alice ,Carl }}

Figure 3: An example of the bottom-up process proposed in [4]. Let φ = ((r1 t r2) ⊗ (r2 u (¬r3)+)). In
configuration〈U,UR〉, UR = {(Alice, r2), (Bob, r1), (Bob, r3), (Carl , r1), (Doris , r2), (Doris, r3)}. For
each sub-term of φ, the subsets of {Alice,Bob,Carl ,Doris} that satisfies that sub-term is displayed.

• φ = φ1 ⊗ φ2: For every α ∈ Ψφ1
and every β ∈ Ψφ2

, if α.ees ∩ β.ees = ∅, then Ψφ ← Ψφ ∪
{〈ees{E} :: pes{P − E}〉}, where E = α.ees ∪ β.ees and P = α.pes ∪ β.pes.

The proof of correctness of our bottom-up approach can be found in Appendix D.
Besides making use of abstract sets to represent satisfaction sets of terms, an additional technique is

used to further accelerate the bottom-up processing. Given a term φ, we are only interested in whether the
satisfaction set of φ is empty or not. To acquire such information, it is sometimes unnecessary to explicitly
compute the satisfaction set for every sub-term of φ. In particular, if the satisfaction sets of both φ1 and φ2

are not empty, then the satisfaction sets of φ+
1 , φ1∪φ2 and φ1¯φ2 are not empty; if either of the satisfaction

sets of φ1 and φ2 is not empty, then the satisfaction set of φ1 t φ2 is not empty. Hence, we need to compute
the exact satisfaction set for a sub-term only if it is an atomic term or the path from the node corresponding
to the sub-term to the root of the syntax tree contains operators ¬, u or ⊗. For all other sub-terms, we just
need to mark whether the satisfaction set is empty or not. For example, given term (r1 ⊗ r2)¯ (r3 t ¬r4),
we just need to explicitly compute the satisfaction sets for sub-terms (r1 ⊗ r2), r3 and ¬r4.

5.2 Implementation and Evaluation

We prototyped the algorithm described in Section 5.1 and have performed some experiments. Our prototypes
are written in Java, and our experiments were carried out on a Workstation with a 3.2GHz Pentium 4 CPU
and 512MB RAM. The parameters we used in our experiments are chosen to be close to practical cases. In
particular, the number of permissions involved in a task will not be very large and the term used in the policy
will not be very complicated. However, the number of users in the system may be large.

Some of our experimental results are presented in Table 1. As we can see in Table 1, our algorithm
solves SSC efficiently when the number of users is small. The algorithm does not scale very well when the
number of users grows. However, it is still capable to solve SSC instances with nontrivial size in a relatively
short time. As SSC needs to be performed only when the access control state of the system changes, which is
not expected to happen frequently, relative slow running time may be acceptable in some situations. Further
research is needed on improving the performance of the algorithm and on assessing whether solving SSC is
practical in real-world scenarios.

17

Policy Size of P Users UR Size UP Size Safe? Runtime
sp〈P, ((r1+ ¯ r2)⊗ ¬r3)¯ (r1 u r4+)〉 5 10 18 15 Yes 47 ms
sp〈P, ((r1+ ¯ r2)⊗ ¬r3)¯ (r1 u r4+)〉 10 10 18 30 Yes 1.0 s
sp〈P, ((r1+ ¯ r2)⊗ ¬r3)¯ (r1 u r4+)〉 10 20 34 46 Yes 5.8 s
sp〈P, ((r1+ ¯ r2)⊗ ¬r3)¯ (r1 u r4+)〉 10 40 65 82 Yes 97.7 s
sp〈P, ((r1+ ¯ r2)⊗ ¬r3)¯ (r1 u r4+)〉 10 40 65 84 No 5.7 s

Table 1: A table that shows the runtime of testing whether a state is safe with respect to a static safety policy.

6 Related Work

The concept of SoD has long existed in the physical world, sometimes under the name “the two-man rule”
in the banking industry and the military. To our knowledge, in the information security literature the notion
of SoD first appeared in Saltzer and Schroeder [7] under the name “separation of privilege.” Clark and
Wilson’s commercial security policy for integrity [1] identified SoD along with well-formed transactions as
two major mechanisms of fraud and error control. There exists a wealth of literatures [5, 8, 9, 3] on the
enforcement of SoD policies. Nash and Poland [5] explained the difference between dynamic and static
enforcement of SoD policies. In the former, a user may perform any step in a sensitive task provided that
the user does not also perform another step on that data item. In the latter, users are constrained a-priori
from performing certain steps. Sandhu [8, 9] presented Transaction Control Expressions, a history-based
mechanism for dynamically enforcing SoD policies. A transaction control expression associates each step
in the transaction with a role. By default, the requirement is such that each step must be performed by a
different user. One can also specify that two steps must be performed by the same user. In Transaction
Control Expressions, user qualification requirements are associated with individual steps in a transaction,
rather than a transaction as a whole.

Li et al [3] studied both direct and indirect enforcement of static separation of duty (SSoD) policies.
They showed that directly enforcing SSoD policies is intractable (NP-complete). They also discussed
using static mutually exclusive roles (SMER) constraints to indirectly enforce SSoD policies. They defined
what it means for a set of SMER constraints to precisely enforce an SSoD policy, characterize the policies
for which such constraints exist, and show how they are generated. Our paper studies the enforcement of
a larger class of policies, which include SoD policies as a sub-class; however, we focus on direct static
enforcement.

Our paper studies enforcement of policies specified in the algebra introduced by Li and Wang [4]. They
mentioned static enforcement and dynamic enforcement as two possible enforcement mechanisms for high-
level security policies specified in the algebra, but they did not investigate enforcement in detail.

7 Conclusion

In this paper, we formally define and study direct static enforcement of high-level security policies specified
in the algebra proposed by Li and Wang [4]. We give comprehensive computational complexity results for
solving the Static Safety Checking problem and the related Userset-Term Safety problem. We also propose
a syntactically restricted form of terms such that if the term in a policy satisfies the syntactic restriction, the
direct enforcement of the policy is tractable. Finally, we design and evaluate an algorithm to solve the static
safety checking problem for high-level security policies.

18

In the future, we plan to study other enforcement approaches for policies specified in the algebra, includ-
ing indirect static enforcement, which uses constraints to rule out unsafe states, and dynamic enforcement,
which enforces the policy using history for each instance of a sensitive task.

References

[1] D. D. Clark and D. R. Wilson. A comparision of commercial and military computer security policies.
In Proceedings of the 1987 IEEE Symposium on Security and Privacy, pages 184–194. IEEE Computer
Society Press, May 1987.

[2] M. R. Garey and D. J. Johnson. Computers And Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, 1979.

[3] N. Li, Z. Bizri, and M. V. Tripunitara. On mutually-exclusive roles and separation of duty. In Proc. ACM
Conference on Computer and Communications Security (CCS), pages 42–51. ACM Press, Oct. 2004.

[4] N. Li and Q. Wang. Beyond separation of duty: An algebra for specifying high-level security policies.
In Proc. ACM Conference on Computer and Communications Security (CCS), Nov. 2006.

[5] M. J. Nash and K. R. Poland. Some conundrums concerning separation of duty. In Proceedings of IEEE
Symposium on Research in Security and Privacy, pages 201–209, May 1990.

[6] C. H. Papadimitrou and K. Steiglitz. Combinatorial Optimization. Prentice Hall, 1982.

[7] J. H. Saltzer and M. D. Schroeder. The protection of information in computer systems. Proceedings of
the IEEE, 63(9):1278–1308, September 1975.

[8] R. Sandhu. Separation of duties in computerized information systems. In Proceedings of the IFIP
WG11.3 Workshop on Database Security, Sept. 1990.

[9] R. S. Sandhu. Transaction control expressions for separation of duties. In Proceedings of the Fourth
Annual Computer Security Applications Conference (ACSAC’88), Dec. 1988.

A Background on Oracle Turing Machines and Polynomial Hierarchy

Oracle Turing Machines An oracle Turing machine, with oracle L, is denoted as ML. L is a language.
ML can use the oracle to determine whether a string is in L or not in one step. More precisely, ML is a
two-tape deterministic Turing machine. The extra tape is called the oracle tape. ML has three additional
states: q? (the query state), and qyes and qno (the answer states). The computation of ML proceeds like in
any ordinary Turing machine, except for transitions from q?. When ML enters q?, it checks whether the
contents of the oracle tape are in L. If so, ML moves to qyes . Otherwise, ML moves to qno . In other words,
ML is given the ability to “instantaneously” determine whether a particular string is in L or not.

Polynomial Hierarchy The polynomial hierarchy provides a more detailed way of classifying NP-hard
decision problems. The complexity classes in this hierarchy are denoted by ΣkP,ΠkP,∆kP, where k is a
nonnegative integer. They are defined as follows:

Σ0P = Π0P = ∆0P = P,

19

and for all k ≥ 0,
∆k+1P = P

ΣkP,
Σk+1P = NP

ΣkP,
Πk+1P = co-Σk+1P = coNP

ΣkP.

Some classes in the hierarchy are

∆1P = P , Σ1P = NP , Π1P = coNP,
∆2P = P

NP, Σ2P = NP
NP,

Π2P = coNP
NP.

B Proof of Theorem 2

In the following proofs, (opkφ) denotes k copies of φ connected together by operator op and (opni=1ri)
denotes (r1 op · · · op rn). Given R = {r1, · · · , rm}, (opR) denotes (r1 op · · · op rm).
Proof of Lemma 8: SAFE〈u,¯〉 is NP-hard.

Proof. We use a reduction from the NP-complete SET COVERING problem [2]. In the set covering prob-
lem, we are given a family F = {S1, · · · , Sm} of subsets of a finite setS and an integer k no larger than m,
and we ask whether there are k sets in family F whose union is S.

Given S = {e1, · · · , en} and a family of S’s subsets F = {S1, · · · , Sm}, we construct a configuration
〈U,UR〉 such that (ui, rj) ∈ UR if and only if ej ∈ Si. Let U = {u1, · · · , um} and φ = ((

⊙

k All) u
(
⊙n

i=1 ri)).
We now demonstrate that U is safe with respect to φ under 〈U,UR〉 if and only if there are no more than

k sets in family F whose union is S.
If U is safe with respect to φ, by definition, a subsetU ′ of U satisfies (

⊙

k All) and (
⊙n

i=1 ri). U ′

satisfying (
⊙

k All) indicates that |U ′| ≤ k, while U ′ satisfying (
⊙n

i=1 ri) indicates that users in U ′ together
have membership of ri for every i ∈ [1, n]. Without loss of generality, suppose U ′ = {u1, · · · , ut}, where
t ≤ k. Since (ui, rj) ∈ UR if and only if ej ∈ Si, the union of {S1, · · · , St} is S. The answer to the set
covering problem is “yes”.

On the other hand, without loss of generality, assume that
⋃k
i=1 Si = S. From the construction of UR,

users u1, · · · , uk together have membership of ri for every i ∈ [1, n], which indicates that {u1, · · · , uk} is
safe with respect to (

⊙n
i=1 ri). Also, any non-empty subset of {u1, · · · , uk} satisfies(

⊙

k All). Hence, U
is safe with respect to φ.

Proof of Lemma 9: SAFE〈¯,⊗〉 is NP-hard.

Proof. We use a reduction from the NP-complete DOMATIC NUMBER problem [2]. Given a graph
G(V,E), the Domatic Number problem asks whether V can be partitioned into k disjoint sets
V1, V2, · · · , Vk, such that each Vi is a dominating set for G. V ′ is a dominating set for G = (V,E) if
for every node u in V − V ′, there is a node v in V ′ such that (u, v) ∈ E.

Given a graph G = (V,E) and a threshold k, let U = {u1, u2, · · · , un} and R = {r1, r2, · · · , rn},
where n is the number of nodes in V . Each user in U corresponds to a node in G, and v(ui) denotes the
node corresponding to user ui. UR = {(ui, rj) | i = j or (v(ui), v(uj)) ∈ E}. Let φ = (

⊗

k(
⊙n

i=1 ri)).
A dominating set in G corresponds to a set of users that together have membership of all the n roles. U

is safe with respect to φ if and only if U has a subset U ′ that can be divided into k pairwise disjoint sets, each

20

of which have role membership of r1, r2, · · · , rn. Therefore, the answer to the Domatic Number problem is
“yes” if and only if U is safe with respect to φ.

Proof of Lemma 10: SAFE〈⊗,t〉 is NP-hard.

Proof. We use a reduction from the NP-complete SET PACKING problem [2], which asks, given a family
F = {S1, · · · , Sm} of subsets of a finite setS and an integer k, whether there are k pairwise disjoint sets in
family F . Without loss of generality, we assume that Si 6⊆ Sj if i 6= j.

Given S = {e1, · · · , en} and a family of S’s subsets F = {S1, · · · , Sm}, let U = {u1, · · · , un},
R = {r1, · · · , rn} and UR = {(ui, ri) | 1 ≤ i ≤ n}. We then construct a term φ = (

⊗

k (
⊔m
i=1 (

⊗

Rj))),
where Rj = {ri | ei ∈ Sj}. We show that U is safe with respect to φ under 〈U,UR〉 if and only if there are
k pairwise disjoint sets in family F .

As the only member of ri is ui, the only userset that satisfiesφi = (
⊗

Rj) is Uj = {ui | ei ∈ Sj}. A
userset X satisfiesφ′ = (

⊔m
i=1 φi) if and only if X equals to some Uj .

Without loss of generality, assume that S1, · · · , Sk are k pairwise disjoint sets. Then, U1, · · · , Uk are k
pairwise disjoint sets of users. U1 satisfiesφ1, and thus satisfiesφ′. Similarly, we have Ui satisfiesφ′ for
every i from 1 to k. Since Ui ⊆ U , U is safe with respect to φ.

On the other hand, suppose U is safe with respect to φ. Then, U has a subset U ′ that can be divided
into k pairwise disjoint sets Û1, · · · , Ûk, such that Ûi satisfiesφi. In order to satisfy φ′, Ûi must satisfy a
certain φai and hence be equivalent to Uai . The assumption that Û1, · · · , Ûk are pairwise disjoint indicates
that Ua1

, · · · , Uak are also pairwise disjoint. Therefore, their corresponding sets Sa1
, · · · , Sak are pairwise

disjoint. The answer to the Set Packing problem is “yes”.

Proof of Lemma 11: SAFE 〈u,⊗〉 is NP-hard.

Proof. We use a reduction from the NP-complete SET COVERING problem, which asks, given a family
F = {S1, · · · , Sm} of subsets of a finite setS and an integer k no larger than m, whether there are k sets in
family F whose union is S.

Given S = {e1, · · · , en} and a family of S’s subsets F = {S1, · · · , Sm}, let U = {u1, u2, · · · , um},
R = {r1, r2, · · · , rn} and UR = {(ui, rj) | ej ∈ Si}. Let φ = (un

i=1

(

ri ⊗
(
⊗

k−1 All
))

). We now
demonstrate that U satisfiesφ under 〈U,UR〉 if and only if there are k sets in family F whose union is S.

If U is safe with respect to φ, by definition, a subsetU ′ of U satisfies
(

ri ⊗
(
⊗

k−1 All
))

for every
i, which means users in U ′ together have membership of ri for every i ∈ [1, n]. For any i ∈ [1, n], U ′

satisfying (ri ⊗ (
⊗

k−1 All)) indicates that |U ′| = k. Suppose U ′ = {ua1
, · · · , uak}. As (ui, rj) ∈ UR if

and only if ej ∈ Si, the union of {Sa1
, · · · , Sak} is S. The answer to the Set Covering problem is “yes”.

On the other hand, without loss of generality, assume that
⋃k
i=1 Si = S. From the construction of UR,

users u1, · · · , uk together have membership of ri for every i ∈ [1, n], which indicates that {u1, · · · , uk}
satisfiesφi for every i ∈ [1, n]. Hence, {u1, · · · , uk} satisfiesφ and U is safe with respect to φ.

C Proof of Theorem 13

Proof of Lemma 14: SSC〈t,¯〉 is coNP-hard.

Proof. We reduce the coNP-complete VALIDITY problem for propositional logic to SSC〈t,¯〉. Given
a propositional logic formula ϕ in disjunctive normal form, let {v1, · · · , vn} be the set of propositional
variables in ϕ.

21

We create a state 〈U,UR,UP〉 with n permissions p1, p2, · · · , pn, 2n users u1, u
′
1, u2, u

′
2, · · · , un, u

′
n,

and 2n roles r1, r
′
1, r2, r

′
2, · · · , rn, r

′
n. We have UP = {(ui, pi), (u

′
i, pi) | 1 ≤ i ≤ n} and UR =

{(ui, ri), (u
′
i, r
′
i) | 1 ≤ i ≤ n}. We also construct a term φ from the formula ϕ by replacing each lit-

eral vi with ri, each literal ¬vi with r′i, each occurrence of ∧ with ¯ and each occurrence of ∨ with t.
Note that X is safe with respect to φ1 t φ2 if and only if X is safe respect to either φ1 or φ2, and X is

safe with respect to φ1 ¯ φ2 if and only if X is safe respect to both φ1 and φ2. Thus the logical structure of
φ follows that of ϕ.

We now show that the formula ϕ is valid if and only if 〈U,UR,UP〉 is safe with respect to the policy
sp〈{p1, p2, · · · , pn}, φ〉. On the one hand, if the formula ϕ is not valid, then there is an assignment I that
makes it false. Using the assignment, we construct a usersetX = {ui | I(vi) = true}∪{u′i | I(vi) = false}.
X covers all permissions in P , but X is not safe with respect to φ. On the other hand, if 〈U,UR,UP〉 is
not safe with respect to sp〈{p1, p2, · · · , pn}, φ〉, then there exists a set X of users that covers P but X is not
safe with respect to φ. In order to cover all permissions in P , for each i ∈ [1, n], at least one of ui, u′i is in
X . Without loss of generality, assume that for each i, exactly one of ui, u′i is in X . (If both ui, u′i are in X ,
we can remove either one, the resulting set is a subset of X and still covers P .) Then we can derive a truth
assignment I from X by assigning p1 to true if ui ∈ X and to false if u′i ∈ X . Then the formula evaluates
to false, because X is not safe with respect to φ.

Proof of Lemma 16: SSC〈⊗〉 is coNP-hard.

Proof. We can reduce the NP-complete SET COVERING problem to the complement of SSC〈⊗〉. In Set
Covering problem, we are given a family F = {S1, · · · , Sm} of subsets of a finite setS = {e1, · · · , en}
and a budget K, where K is an integer smaller than m and n. We are asking for a set of K sets in F whose
union is S.

Given an instance of the Set Covering problem, construct a state 〈U,UR,UP〉 such that UR = {(ui, ri) |
i ∈ [1,m]} and UP = {(ui, pj) | ej ∈ Si}. Construct a safety policy sp〈P, φ〉, where P = {p1, · · · , pn}
and φ = (

⊗

K+1 All). φ is satisfied by any set of no less thanK + 1 users.
On the one hand, if 〈U,UR,UP〉 is safe, no K users together have all permissions in P . In this case,

since ui corresponds to Si, there does not exist K sets in F whose union is S. The answer to the Set
Covering problem is “no”.

On the other hand, if 〈U,UR,UP〉 is not safe, there exist a set of no more than K users together have
all permissions in P . Accordingly, the answer to the Set Covering problem is “yes”.

Since the Set Covering problem is NP-complete, we conclude that the complement of SSC〈⊗〉 is NP-
hard. Hence, SSC〈⊗〉 is coNP-hard.

D Proof of Lemma 19

Let Sφ be the satisfaction set (in normal representation) of φ. Recall that Sφ is a set of usersets and an
abstract set α is a set of sets. To proof the correctness of our bottom-up approach, we need to show that
⋃

αi∈Ψφ
αi = Sφ. That is to say, for any s ∈ Sφ, there exists α ∈ Ψφ such that s ∈ α; and for any α ∈ Ψφ

and any s ∈ α, we have s ∈ Sφ.
The proofs to the case of φ = r and φ = ¬φ1 are straightforward. In the following, we prove other cases

by induction. We assume that the bottom-up approach correctly computes the satisfaction sets of φ1 and φ2.

• φ = φ+
1 : By Definition 3,Sφ = P (Sφ1

)/{}, where P (S) is the power set of S. Without loss of gen-
erality, assume that Sφ1

= {u1, · · · , um}. On the one hand, for any s ∈ Sφ, let s = {ua1
, · · · , uan}

22

where ai ∈ [1,m], ai < aj when i < j, and n ≤ m. According to our bottom-up approach,
α = 〈ees{ua1

} :: pes{ua1+1, · · · , um}〉 ∈ Ψφ. We have α.ees ⊆ s and s ⊆ α.ees ∪ α.pes.
By Definition 14, we haves ∈ 〈ees{ua1

} :: pes{ua2
, · · · , uan}〉. Therefore, Sφ ⊆

⋃

αi∈Ψφ
αi.

On the other hand, for any α ∈ Ψφ and any s ∈ α, s ∈ {u1, · · · , um}, which indicates that
s ∈ P ({u1, · · · , um})/{}. Hence,

⋃

αi∈Ψφ
αi ⊆ Sφ. In general,

⋃

αi∈Ψφ
αi = Sφ.

• φ = φ1uφ2: By Definition 3,Sφ = Sφ1
∩Sφ2

. We just need to prove that
⋃

αi∈Ψφ
αi =

⋃

βj∈Ψφ1

βj∩
⋃

γk∈Ψφ2

γk.

On the one hand, according to our bottom-up approach, for any α ∈ Ψφ, there exist β ∈ Ψφ1

and γ ∈ Ψφ2
such that β.ees ⊆ γ.ees ∪ γ.pes, γ.ees ⊆ β.ees ∪ β.pes, α.ees = β.ees ∪ γ.ees

and α.pes = β.pes ∩ γ.pes. We have β.ees ⊆ α.ees and α.ees ∪ α.pes ⊆ β.ees ∪ β.pes. By
Definition 14, for any sets ∈ α, α.ees ⊆ s and s ⊆ α.ees ∪ α.pes. Hence, we have β.ees ⊆ s and
s ⊆ β.ees ∪ β.pes, which indicates that s ∈ β. Since s is picked arbitrarily from α, we have α ⊆ β.
Thus,

⋃

αi∈Ψφ
αi ⊆

⋃

βj∈Ψφ1

βj . Similarly, we can prove that
⋃

αi∈Ψφ
αi ⊆

⋃

γk∈Ψφ2

γk. In general,
⋃

αi∈Ψφ
αi ⊆

⋃

βj∈Ψφ1

βj ∩
⋃

γk∈Ψφ2

γk.

On the other hand, for any s such that there exist β ∈ Ψφ1
and γ ∈ Ψφ2

such that s ∈ β and s ∈ γ,
by Definition 14, we haveβ.ees ⊆ s, γ.ees ⊆ s, s ⊆ β.ees ∪ β.pes and s ⊆ γ.ees ∪ γ.pes. Hence,
β.ees ∪ γ.ees ⊆ s and s ⊆ (β.ees ∪ β.pes) ∩ (γ.ees ∪ γ.pes) = (β.ees ∩ γ.ees) ∪ (β.ees ∩
γ.pes) ∪ (β.pes ∩ γ.ees) ∪ (β.pes ∩ γ.pes) ⊆ (β.ees ∪ γ.ees) ∪ (β.pes ∩ γ.pes). In this case,
s ∈ 〈ees{β.ees ∪ γ.ees} :: pes{β.pes ∩ γ.pes}〉. According to our bottom-up approach, we have
〈ees{β.ees∪γ.ees} :: pes{β.pes∩γ.pes}〉 ∈ Ψφ. Hence,

⋃

αi∈Ψφ
αi ⊇

⋃

βj∈Ψφ1

βj∩
⋃

γk∈Ψφ2

γk.

In general,
⋃

αi∈Ψφ
αi =

⋃

βj∈Ψφ1

βj ∩
⋃

γk∈Ψφ2

γk.

• φ = φ1 t φ2: By Definition 3,Sφ = Sφ1
∪ Sφ2

. The proof is straightforward.

• φ = φ1 ⊗ φ2: We have Sφ = {s1 ∪ s2 | s1 ∈ Sφ1
∧ s2 ∈ Sφ2

∧ s1 ∩ s2 = ∅}.

On the one hand, for any s ∈ Sφ, there exist s1 ∈ Sφ1
and s2 ∈ Sφ2

such that s = s1 ∪ s2 and
s1 ∩ s2 = ∅. By induction assumption, there exist α1 ∈ Ψφ1

and α2 ∈ Ψφ2
such that s1 ∈ α1

and s2 ∈ α2. By Definition 14, we haveα1.ees ⊆ s1, α2.ees ⊆ s2, s1 ⊆ α1.ees ∪ α1.pes and
s2 ⊆ α2.ees∪α2.pes. Hence, α1.ees∪α2.ees ⊆ s1 ∪ s2 and s1 ∪ s2 ⊆ α1.ees∪α1.pes∪α2.ees∪
α2.pes = (α1.ees∪α2.ees)∪((α1.pes∪α2.pes)−(α1.ees∪α2.ees)), which indicates that s1∪s2 ∈
〈ees{α1.ees∪α2.ees} :: pes{(α1.pes∪α2.pes)−(α1.ees∪α2.ees)}〉. According to our bottom-up
approach, we have 〈ees{α1.ees∪ α2.ees} :: pes{(α1.pes∪ α2.pes)− (α1.ees∪ α2.ees)}〉 ∈ Ψφ.
Therefore, Sφ ⊆

⋃

αi∈Ψφ
αi.

On the other hand, for any α ∈ Ψφ and any s ∈ α, by Definition 14, we haveα.ees ⊆ s and s ⊆
α.ees ∪ α.pes. According to our bottom-up approach, there exist α1 ∈ Ψφ1

and α2 ∈ Ψφ2
such that

α1.ees∩α2.ees = ∅, α.ees = α1.ees∪α2.ees and α.pes = (α1.pes∪α2.pes)− (α1.ees∪α2.ees).

Let s1 = s ∩ (α1.ees ∪ (α1.pes− α2.ees)) and s2 = s ∩ (α2.ees ∪ (α2.pes− (α1.ees ∪ α1.pes))).
We would like to show that s1 ∪ s2 ∈ Sφ and s1 ∪ s2 = s. Since α1.ees ⊆ s, we have α1.ees ⊆ s1.
Furthermore, α1.ees ∪ (α1.pes − α2.ees) ⊆ α1.ees ∪ α1.pes implies that s1 ⊆ α1.ees ∪ α1.pes.
Hence, s1 ∈ α1. Similarly, we can prove that s2 ∈ α2. But induction assumption, we have s1 ∈ Sφ1

and s2 ∈ Sφ2
. Also, since α1.ees ∩ α2.ees = ∅, it can be easily show that s1 ∩ s2 = ∅. Therefore,

23

s1 ∪ s2 ∈ Sφ. Finally, we have

s1 ∪ s2 = (s ∩ (α1.ees ∪ (α1.pes− α2.ees))) ∪ (s ∩ (α2.ees ∪ (α2.pes− (α1.ees ∪ α1.pes))))

= s ∩ (α1.ees ∪ (α1.pes− α2.ees) ∪ α2.ees ∪ (α2.pes− (α1.ees ∪ α1.pes)))

= s ∩ (α1.ees ∪ α2.ees ∪ α1.pes ∪ α2.pes)

Since s ⊆ α.ees ∪ α.pes = (α1.ees ∪ α2.ees ∪ α1.pes ∪ α2.pes), we have s1 ∪ s2 = s. In general,
s ∈ Sφ, which implies that Sφ ⊇

⋃

αi∈Ψφ
αi.

In general, Sφ =
⋃

αi∈Ψφ
αi.

• φ = φ1 ¯ φ2: The proof is similar to that of φ = φ1 ⊗ φ2.

24

