
CERIAS Tech Report 2006-38

HOST INTEGRITY PROTECTION THROUGH USABLE NON-DISCRETIONARY ACCESS
CONTROL

by Ninghui Li, Ziqing Mao, Hong Chen

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086



Host Integrity Protection Through Usable Non-discretionary Access

Control

Ninghui Li Ziqing Mao Hong Chen

Center for Education and Research in Information Assurance and Security (CERIAS)

and Department of Computer Science

Purdue University

{ninghui,zmao,chen131}@cs.purdue.edu

November 22, 2006

Abstract

Existing non-discretionary access control systems (such as Security Enhanced Linux) are difficult to use

by ordinary users. We identify several principles for designing usable access control system and introduce

the Host Integrity Protection Policy (HIPP) model that adds usable non-discretionary access control to op-

erating systems. The HIPP model is designed to defend against attacks targeting network server and client

programs and to protect the system from careless mistakes users might make. It aims at not breaking ex-

isting applications or existing ways of using and administering systems. HIPP has several novel features to

achieve these goals. For example, it supports several types of partially trusted programs to support common

system administration practices. Furthermore, rather than requiring file labeling, it uses information in the

existing discretionary access control mechanism for non-discretionary access control. We also discuss our

implementation of the HIPP model for Linux using the Linux Security Modules framework, as well as our

evaluation results.

1 Introduction

Host compromise is one of the most serious computer security problems today. Computer worms propagate by

first compromising vulnerable hosts and then propagate to other hosts. Compromised hosts may be organized

under a common command and control infrastructure, forming botnets. Botnets can then be used for carrying

out attacks, such as phishing, spamming, distributed denial of service, and so on. These threats can be partially

dealt with at the network level using valuable technologies such as firewalls and network intrusion detection

systems. However, to effectively solve the problem, one has to also deal with the root cause of these threats,

namely, the vulnerability of end hosts. Two key reasons why hosts can be easily compromised are: (1) software

are buggy, and (2) the discretionary access control mechanism in today’s operating systems is insufficient

for protecting hosts against network-based attacks. Network-facing server and client programs may contain

software vulnerabilities, and users may download and run malicious programs. Often times programs are

running with system privileges, and malicious programs can abuse the privileges to take over the host.

There are a lot of research efforts on making computer systems more secure by adding non-discretionary

access control to operating systems, e.g., Janus [10], DTE Unix [3, 2], Linux Intrusion Detection System

(LIDS) [11], LOMAC [8], systrace [17], AppArmor [1], and Security Enhanced Linux (SELinux) [15]. Systems

such as systrace and SELinux are flexible and powerful. Through proper configuration, they could provide

highly-secure systems. However, they are also complex and intimidating for normal users. They are designed

by the experts and for the experts. For example, policies for systrace take the form of conditions on system call

1



parameters. Understanding and configuring policies require intimate knowledge about the operating system

programming interface. As another example, SELinux has 29 different classes of objects, hundreds of possible

operations, and thousands of policy rules for a typical system. The SELinux policy interface is daunting even

for security experts. While SELinux makes sense in a setting where the systems run similar applications,

and sophisticated security expertise is available, its applicability to systems used by ordinary users is unclear.

While SELinux has been included in Redhat’s Fedora Core Linux distribution since 2004, it is shipped with

the Targeted Policy, which confines several dozens of well-known daemon programs. This approach, however,

violates the fail-safe defaults principle [20], as a daemon program with no policy will by default run unconfined.

To protect more programs, system administrators still need to understand and configure the policy. While there

is ongoing research on developing tools to help the administration process, easy-to-use and effective tools are

still not available. There have been several books devoted to SELinux, e.g., [14, 13], and an annual SELinux

symposium since 2004. Many companies are offering consulting and training services for SELinux. While these

facts speak to the importance of adding non-discretionary access control mechanisms to operating systems and

the popularity of SELinux, it also shows that SELinux is complicated and difficult to use.

Our view is that in order to use a non-discretionary access control technology to deal with threats posed by

botnets, the technology must be usable by ordinary users with limited knowledge in systems security, as it is

the hosts used by these users that are more likely to be compromised and taken over. In this paper, we tackle

the problem of designing and implementing a usable non-discretionary access control1 system to protect end

hosts. In this paper we introduce a policy model that we call the Host Integrity Protection Policy (HIPP) model.

The objective of the HIPP model is to defend against attacks targeting network-facing servers and network

client programs (such as web browsers) and careless mistakes users might make. While HIPP is designed for

UNIX-based system, we believe that some ideas can be applied to other operating systems. HIPP classifies

processes into high-integrity and low-integrity, and aims at minimizing the channels that an attacker could

get control of a high-integrity process by exploiting program vulnerabilities or human engineering attacks. One

novel feature is that, unlike previous NonDAC systems, HIPP does not require labeling of files, and use existing

DAC information instead. For example, a low-integrity process (even if running as root) by default is forbidden

from writing to any file that is not world-writable according to DAC (i.e., the file is only owner-writable or

group-writable). Thus HIPP does not require changes to file system implementation and can reuse valuable

information in existing DAC setting, avoiding the process of labeling files, which can be both time-consuming

and error-prone. While HIPP focuses primarily on system integrity, it also has confidentiality protection, as

it forbids a low-integrity process from reading any file owned by a system account (such as root, bin, etc)

and is not readable by the world. This prevents attackers from reading files such as /etc/shadow. The design

of HIPP is very much practical-oriented. It aims at not breaking existing applications or existing ways of

using and administering systems. To achieve this, HIPP has several interesting features distinguishing from

previous integrity models. For example, while by default a process drops its integrity when receiving any

remote network traffic, certain programs (such as sshd) can be declared to be remote administration points, so

that processes running them do not drop integrity upon receiving network traffic. The policy model requires

only a relatively small number of exceptions and settings to be specified to support the needs of an individual

host. The specification is done through a policy file that uses concepts that ordinary system administrators are

familiar with.

We have implemented HIPP for Linux using the Linux Security Modules (LSM) framework [22], and have

been using evolving prototypes of the HIPP system within our group for a few months. We discuss and evaluate

our implementation in this paper. We plan to release the code to the open-source community in near future.

The contributions of this paper are three-fold.

1. We identify several design principles for designing usable access control mechanisms. Not all of these

1We use non-discretionary access control (NonDAC), rather than mandatory access control (MAC), to avoid any potential connota-

tion of multi-level security.

2



principles are new. Several of them have appeared before in the literature. However, we believe that

putting these principles together and illustrating them through the design of an actual system would

useful for other researchers and developers designing and implementing usable access control systems.

2. We introduce the HIPP model, a simple, practical nonDAC model for host protection. It has several novel

features compared with existing integrity protection models.

3. We report the experiences and evaluation results of our implementation of HIPP under Linux.

The rest of this paper is organized as follows. We discuss design principles in Section 2. The HIPP model

is described in Section 3. Our implementation and its evaluation are described in Section 4. We then discuss

related work in Section 5 and conclude in Section 6.

2 Design Principles for Usable Access Control Systems

Principle 1 Provide “good enough” security with a high level of usability, rather than “better” security with

a low level of usability.

Our philosophy is that rather than providing a protection system that can theoretically provide very strong

security guarantees but requires huge effort and expertise to configure correctly, we aim at providing a sys-

tem that is easy to configure and can greatly increase the level of security by reducing the attack surfaces.

Sandhu [21] made a case for good-enough security, observing that “cumbersome technology will be deployed

and operated incorrectly and insecurely, or perhaps not at all.” Sandhu also identified three principles that

guide information security, the second of which is “Good enough always beat perfect”2. He observed that the

applicability of this principle to the computer security field is further amplified because there is no such thing

as “perfect” in security, and restate the principle as “Good enough always beats ‘better but imperfect’.”

There may be situations that one would want stronger security guarantees, even though the cost of admin-

istration is much more expensive. However, to defend against threats such as botnets, what one needs to do is

to protect the most vulnerable computers on the Internet, i.e., computers that are managed by users with little

expertise in system security. One thus needs a protection system with a high level of usability.

While it is widely agreed that usability is very important for security technologies, how to design an access

control system that has high usability has not been explored much in the literature. One immediate conclusion

from this principle is that sometimes one needs to tradeoff security for simplicity of the design. Below we

discuss five other principles, which further help achieve the goal of usable access control. The following five

principles can be viewed as “minor” principles for achieving the overarching goal set by the first principle.

Principle 2 Provide policy, not just mechanism.

Raymond discussed in his book [19] the topic of “what UNIX gets wrong” in terms of philosophy, and

wrote “perhaps the most enduring objections to Unix are consequences of a feature of its philosophy first made

explicit by the designers of the X windowing system. X strives to provide ‘mechanism, not policy’. [...] But

the cost of the mechanism-not-policy approach is that when the user can set policy, the user must set policy.

Nontechnical end-users frequently find Unix’s profusion of options and interface styles overwhelming.”

The mechanism-not-policy approach is especially problematic for security, as security mechanisms may

be used incorrectly. A security mechanism that is very flexible and can be extensively configured is not just

overwhelming for end users, it is also highly error-prone. While there are right ways to configure the mechanism

to enforce some desirable security policies, there are often many more incorrect ways to configure a system.

And the complexity often overwhelms users so that the mechanism is simply not enabled.

2The first one is “Good enough is good enough” and the third one is “The really hard part is determining what is good enough.”

3



This mechanism-not-policy philosophy is implicitly used in designing non-discretionary access control

mechanism. For example, systems such LIDS, systrace, and SELinux all aim at providing a mechanism that

can be used to implement a wide range of policies. While a mechanism is absolutely necessary for implementing

a protection system, having only a low-level mechanism is not sufficient.

Principle 3 Have a well-defined security objective, and design the policy for it.

The first step of designing a policy is to identify a security objective, because only then can one make

meaningful tradeoffs between security and usability. To make tradeoffs, one must ask and answer the question:

if the policy model is simplified in this way, can we still achieve the security objective? Often times, non-

discretionary access control systems do not clearly identify the security objectives. A security objective should

identify two things: one is what kind of adversaries the system is designed to protect against, i.e., what abilities

does one assume the adversaries have, and the other is what security properties one wants to achieve even in

the presence of such adversaries. For example, often times achieving multi-level security is identified together

with defending against network attacks. They are very different kinds of security objectives. It is well known

that designing usable multi-level secure systems is extremely hard, and it seems unlikely that one can build a

usable access control system can achieve both objectives. See Appendix A for additional discussions about the

pitfalls of designing security mechanism without clear policy objective, using Chen et al.’s excellent paper on

setuid [6] as a case study.

Principle 4 Design a default policy for the objective that leaves a few special cases to be specified.

One key issue in making an access control system usable is to reduce the amount of configuration one needs

to do. Given the complexity of modern operating systems, no simple policy model can capture all accesses that

need to be allowed and forbid all dangerous accesses. One key to usability is to have a default policy that

captures the majority of the cases and leaves a few special cases specified as exceptions.

Principle 5 Rather than trying to achieve absolute least privilege, try to achieve “limited privilege”.

It is widely recognized that one problem with existing discretionary access control mechanisms is that it

does not support the least privilege principle [20]. For example, in traditional UNIX access control, many

operations can be performed only by the root user. If any program needs to perform some of these operations,

it needs to be given the root privilege. As a result, an attacker that exploits vulnerabilities in these programs

can abuse these privileges. Many propose to remedy the problem by supporting strict least privilege. For

example, the guiding principles for designing policies for systems such as SELinux, systrace, and AppArmor

is to identify all objects a program needs to access when it is not under attack and grants access only to those

objects. This approach results in large number of policy rules. We take the approach of separating operations

into sensitive ones and non-sensitive ones, and limits access only to sensitive operations. This principle can be

viewed as a corollary of the previous principle. We state it as a separate principle because of the popularity of

the least privilege principle.

Principle 6 Use familiar abstractions in policy specification interface.

Psychological acceptability is one of the eight principles for designing security mechanisms in the classical

paper by Salzer and Schroeder [20]. They wrote “It is essential that the human interface be designed for

ease of use, so that users routinely and automatically apply the protection mechanisms correctly. Also, to the

extent that the user’s mental image of his protection goals matches the mechanisms he must use, mistakes will

be minimized. If he must translate his image of his protection needs into a radically different specification

language, he will make errors.” This entails that the policy specification interface should use concepts and

abstractions that administrators are familiar with. This principle is violated by systems such as systrace and

SELinux.

4



3 The Host Integrity Protection Policies

We now introduce the Host Integrity Protection Policy (HIPP) model, which was guided by the principles

identified in Section 2. While the description of the HIPP model in this section is based on our design for

Linux, we believe that the model can be applied to other UNIX variants with minor changes. While some (but

not all) ideas would be applicable also to non-Unix operating systems such as the Microsoft Windows family,

investigating the suitability of HIPP or a similar model for Microsoft Windows is beyond the scope of this

paper.

Our focus is to provide a policy model that can be implemented using an existing mechanism (namely the

Linux Security Modules framework). We now identify the security objective of our policy model. We aim at

protecting the system integrity of the host system (hence the name HIPP) against network-based attacks. We

assume that network server and client programs contain bugs and can be exploited if the attacker is able to feed

input to them. We assume that users may make careless mistakes in their actions, e.g., downloading a malicious

program from the Internet and running it. However, we assume that the attacker does not have physical access

to the host to be protected. Our policy model aims at ensuring that under most attack channels, the attacker

can get limited privileges and cannot compromise the system integrity. For example, if a host runs privileged

network-facing programs that contain vulnerabilities, the host will not be completely taken over by an attacker

as a bot. The attacker may be able to exploit bugs in these programs to run some code on the host. However,

the attacker cannot install rootkits. Furthermore, if the host reboots, the attacker does not control the host

anymore. Similarly, if a network client program is exploited, the damage is limited. We also aim at protecting

against indirect attacks, where the attacker creates malicious programs to wait for users to execute them, or

creates/changes files to exploit vulnerabilities in programs that later read these files.

The usability goals for HIPP is that configuring it should not be more difficult than installing, administering,

and maintaining an operating system. Also, our goals are not to break existing application programs or common

ways for using the system. Depending on the needs of a system, the administrator of the system should be able

to configure the system in a less-secure, but easier-to-user manner.

3.1 Basic Design of The HIPP Model

An important design question for any access control system is: What is a principal? That is, when a process

requests to perform certain operations, what information about the process should be used in deciding whether

the request should be authorized. The traditional UNIX access control system treats a pair of (uid,gid) as a

principal. The effective uid and gid together determine the privileges of a process. As many operations can

be performed only when the effective uid is 0, many programs owned by the root user are designated setuid.

One problem with this approach is that it does not consider the possibility that these programs may be buggy.

If all privileged programs are written correctly, then this approach is fine. However, when privileged programs

contain bugs, they can be exploited so that attackers can use the privileges to damage the system.

As having just uid and gid is too coarse-granulated, a natural extension is to treat a triple of uid, gid, and

the current program that is running in the process as a principal. The thinking is that, if one can identify all

possible operations a privileged program would do and only allows it to do those, then the damage of an attacker

taking over the program is limited. This design is also insufficient, however. Consider a request to load a kernel

module3 that comes from a process running the program insmod with effective user-id 0. As loading a kernel

3A loadable kernel module is a piece of code that can be loaded into and unloaded from kernel upon demand. LKMs (Loadable

Kernel Modules) are a feature of the Linux kernel, sometimes used to add support for new hardware or otherwise insert code into the

kernel to support new features. LKMs run in kernel mode, and can augment or even replace existing kernel features, all without a

system reboot. However, by using LKMs the attackers are able to inject malicious code into the running kernel, such as modifying

the system call table. LKMs is one popular method for implementing kernel-mode RootKits on Linux. For example, some malicious

loadable kernel modules change the way that various system calls are handled by kernel.

5



module is what insmod is supposed to do, such access must be allowed. However, this process might be started

by an attacker who has compromised a daemon process running as root and obtained a root shell as the result

of the exploits. If the request is authorized, then this may enable the installation of a kernel rootkit, and lead

to complete system compromise. One may try to prevent this by preventing the daemon program from running

certain programs (such as shell); however, certain daemons have legitimate need to run shells or other programs

that can lead to running insmod. In this case, a daemon can legitimately run a shell, the shell can legitimately

run insmod, and insmod can legitimately load kernel modules. If one looks at only the current program together

with (uid,gid), then any individual access needs to be allowed; however, the combination of them clearly needs

to be stopped.

The analysis above illustrates that, to determine what the current process should be allowed to do, one has

to consider the parent process who created the current process, the process who created the parent process, and

so on. We call this the request channel. For example, if insmod is started by a series of processes that have

never communicated with the network, then this means that this request is from a user who logged in through

a local terminal. Such a request should be authorized, because it is almost certainly not an attacker, unless an

attacker gets physical access to the host, in which case not much security can be provided anyway. On the other

hand, if insmod is started by a shell that is a descendant of the ftp daemon process, then this is almost certainly

a result from an attack; the ftp daemon and its legitimate descendants have no need to load a kernel module.

The key challenge is how to capture the information in a request channel in a succinct way. The domain-

type enforcement approach used in SELinux and DTE Unix can be viewed as summarizing the request channel

in the form of a domain. Whenever a channel represents a different set of privileges from other channels, a new

domain is needed. This requires a large number of domains to be introduced.

The approach we take is to use a few fields associated with a process to record necessary information about

the request channel. The most important field is one bit to classify the request channel into high integrity or

low integrity. If a request channel is likely to be exploited by an attacker, then the process has low integrity. If a

request channel may be used legitimately for system administration, the the process needs to be high-integrity.

Note that a request channel may be both legitimately used for system administration and potentially exploitable.

In this case, administrators must explicitly set the policy to allow such channels for system administration. The

model tries to minimize the attack surface exposed by such policy setting when possible.

When a process is marked as low-integrity, this means that it is potentially contaminated. We do not try to

identify whether a process is actually attacked. The success of our approach depends on the observation that

with such an apparently crude distinction of low-integrity and high-integrity processes, only a few low-integrity

processes need to perform a small number of security critical operations, which can be specified using a few

simple policies as exceptions.

Basic HIPP Model: Each process has one bit that denotes its integrity level. When a process is

created, it inherits the integrity level of the parent process. When a process performs an operation

that makes it potentially contaminated, it drops its integrity. A low-integrity process by default

cannot perform sensitive operations.

In the rest of this section, we clarify and refine the above basic model. There are two main aspects: (1) when

does a process drops integrity (i.e., is considered been contaminated), and (2) what are the restrictions on a

low-integrity process. Section 3.2 discusses contamination through network and interprocess communications.

Section 3.3 discusses restrictions on low-integrity processes. Section 3.4 discusses contamination through files.

Section 3.5 discusses protecting files owned by non-system accounts. A summary of the HIPP model is given

in Section 3.6.

6



3.2 Dealing with Network and Inter-Process Process Communications

When a process receives remote network traffic (network traffic that is not from the localhost loopback), its

integrity should drop, as the program may contain vulnerabilities and the traffic may be sent by an attacker to

exploit such vulnerabilities. Under this default policy, system maintenance tasks (e.g., installing new softwares,

updating system files, and changing configuration files) can be performed only through a local terminal. Users

can log in remotely, but cannot perform these sensitive tasks. While this offers a high degree of security, it may

be too restrictive in many systems, e.g., in a colocated server hosting scenario. The HIPP model provides a way

to enable remote system administration.

Remote Administration Points A program may be identified as a remote administration point. If one wants

to allow remote system administration through, e.g., Secure Shell Daemon, then one can identify /usr/sbin/sshd

as a remote administration point, which will make the process running /usr/sbin/sshd maintain its integrity level

even if it receives network traffic. This enables a system administrator to login remotely and perform system

maintenance tasks such as upgrading the system, adding/removing users, etc. (Note that if a process descending

from sshd receives network traffic, its integrity drops.)

The concept of remote administration points is the result of trade-off between security with usability in favor

of usability. Allowing remote administration certainly makes the system less secure. If remote administration

through sshd is allowed, and the attacker can successfully exploit bugs in sshd, then the attacker can take over

the system, as this is specified as a legitimate remote administration channel. However, note that in this case

the attack surface is greatly reduced from all daemon programs, to only sshd. Some daemon programs (such as

httpd) are much more complicated than sshd and are likely to contain more bugs. Moreover, firewalls can be

used to limit the network addresses from which one can connect to a machine via sshd; whereas one often has to

open the httpd server to the world. Finally, techniques such as privilege separation [5, 18] can be used to further

mitigate attacks against sshd. The HIPP model leaves the decision of whether to allow remote administration

through channels such as sshd to the system administrators.

Dealing with inter-process communications We also need to consider what happens when a process receives

network traffic from another process on the same host through local loopback, and when a process receives

Inter-Process Communications (IPC) from another local process.

HIPP considers integrity contamination through those IPC channels that can be used to send free-formed

data, because such data can be crafted to exploit bugs in the receiving process. Under Linux, such channels

include UNIX Domain Sockets, Pipes, FIFOs, Message queues, shared memory, and shared files in the TMPFS

filesystem. When a process reads from one of these IPC channels which have been written by a low-integrity

process, then the integrity of the process drops. Note that even when a process is a remote administration point,

its integrity still drops by IPC contaminations.

Dealing with loopback network communication, however, turns out to require a design different from IPC.

Dropping integrity only when receiving traffic from low-integrity processes is insufficient. As many systems

would need to enable remote administration through sshd, the sshd process would often be a remote adminis-

tration point and have high integrity. On the other hand, ssh tunneling is often used for forwarding traffic to

daemon programs, such as ftp daemon and email servers. In this case, sshd is communicating with a daemon

program through local loopback, and sshd has high integrity, even though the traffic sshd forwards comes from

a remote host and is potentially generated by an attacker. We want a daemon’s integrity to drop when it receives

such traffic that is apparently from a local process but is actually from a remote host.

One may consider another design in which a process drops its integrity whenever it receives any network

traffic (whether it is from local loopback or not). One problem with this design is that during booting, some

processes will communicate with each other through local loopback (e.g., the booting script may communicate

with an X server and with the rhgb program for some Linux distributions). Under this design, both processes

will drop integrity to low, even though none of them has communicated with outside, and after booting the

7



system stays in a low-integrity state.

The key issue here is that when a process communicates with a high-integrity process P , we want to know

whether P is “actually” high integrity, i.e., whether P has never communicated remotely, or P is a remote

administration point that has communicated remotely (or the descendant of such a process). To do this, we

introduce another bit called “NET” to represent the state of a process.

The ‘NET’ bit and Administration Tunneling Points When a process receives remote network traffic, then

the “NET” bit is set. If a process communicates through loopback with a process whose “NET” bit is set, then

the process sets its “NET” bit and drops integrity. Another issue with this design arises if we want to allow

remote administration through X. The X Window System is based on a client-server architecture. The server

controls the display and input devices, the clients are the graphical applications that access those services.

Clients connect to the server via Unix domain sockets (if local) or TCP/IP (if remote). Remote X is typically

achieved through X forwarding via telnet or SSH, as illustrated in Figure 1.

Figure 1: Remote Administration Using X Applications Through SSH Tunneling

Many administration tasks can be performed by X applications. Suppose that the user wants to administer

the server machine remotely, then the X Client running on the server machine will connect to the SSH Daemon

to receive instructions from the user, and the X Client needs to maintain high integrity to perform administration

tasks. While remote administration through X applications may be considered a dangerous practice, we do not

want to make the policy decision that this is always forbidden. Note that in this case, sshd is used to tunnel

administrative traffic, and rather than connecting to the X application, it waits for the X application to connect to

it. HIPP allows one to define a program as an Administration Tunneling Point (ATP). If a process connects to a

high-integrity ATP through a TCP socket, then the process maintains its integrity, even if the ATP has performed

network communication. Note that if a process accepts a connection from an ATP who has performed network

communication, then the process drops its integrity. If one wants to allow remote administration through sshd,

but not remote X administration, then one should identify sshd as a RAP, but not an ATP.

In summary, when dealing with local loopback network communications, we have made two design de-

cisions that complicate the design, in order to provide better security and flexibility. These two designs are

necessitated by the need to enable remote administration through the SSH daemon and by the multiple roles

the SSH daemon can play. The first decision is to introduce the “NET” bit to handle ssh tunneling. The second

decision is to introduce the concept of ATP to allow an administrator to decide whether to turn on or off remote

8



X administration through ssh tunneling.

3.3 Restrictions on low-integrity processes

Our approach requires the identification of security-critical operations that would affect system integrity so that

our protection system can prevent low-integrity processes from accessing them. We classify security-critical

operations into two categories, file operations and operations that are not associated with specific files.

Example non-file administrative operations include loading a kernel module, administration of IP firewall,

modification of routing table, network interface configuration, rebooting the machine, ptrace other processes,

mounting and unmounting file systems, and so on. These operations are essential for maintaining system

integrity and availability, and are usually targeted by malicious code. In modern Linux, these operations are

controlled by capabilities, which were introduced since version 2.1 of the Linux kernel. Capabilities break

the privileges normally reserved for root down to smaller portions. As of Linux Kernel 2.6.11, Linux has 31

different capabilities. The default HIPP rule grants only two capabilities CAP SETGID and CAP SETUID to

low-integrity processes; furthermore, low-integrity processes are restricted in that they can use setuid and setgid

only in the following two ways: (1) swapping among effective, real, and saved uids and guids, and (2) going

from the root account to another system account. (A system, with the exception of root, does not correspond to

an actual human user and typically has an id below 500.) A low-integrity process running as root cannot set its

uid to a new normal user. We will discuss why this offers useful protection in Section 3.5.

It is much more challenging to identify which files should be considered sensitive, as a large number of

objects in an operating system are modeled as files. Different hosts may have different softwares installed, and

have different sensitive files. The list of files that need to be protected is quite long, e.g., system programs and

libraries, system configuration files, service program configuration files, system log files, kernel image files,

and images of the memory (such as /dev/kmem and /dev/mem). We cannot ask the end users to label files as

our goal is to have the system configurable by ordinary system administrators who are not security experts.

Our novel approach here is to utilize the valuable information in existing Discretionary Access Control (DAC)

mechanisms.

Using DAC info for NonDAC All commercial operating systems have built-in DAC mechanisms. For example,

UNIX and UNIX variants use the permission bits to support DAC. While DAC by itself is insufficient for

stopping network-based attacks, DAC access control information is nonetheless very important. For example,

when one installs Linux from a distribution, files such as /etc/passwd and /etc/shadow would be owned by root

and writable only by root. This indicates that writing to these files is security critical. And our policy prevents

a low-integrity process from writing these files, even if the process has effective uid 0. Similarly, files such

as /etc/shadow would be readable only by root, and our policy prevents a low-integrity process from reading

these files. Such DAC information has been used by millions of users and examined for decades. Our approach

utilizes this information, rather than asking the end users to label all files, which is a labor intensive and error-

prone process. HIPP offers both read and write protection for files owned by system accounts. A low-integrity

process is forbidden from reading a file that is owned by a system account and is not readable by world; such

a file is said to be read-protected. A low-integrity process is also forbidden from writing to a file owned by a

system account and is not writable by world. Such a file is said to be write-protected.

Exception policies: least privilege for sensitive operations Some network-facing daemons need to access

resources that are sensitive. Because these processes receive network communications, they will be low-

integrity, and the default policy will stop such access. We deal with this by allowing the specification of

policy exceptions for system binaries. For example, one policy we use is that the binary “/usr/sbin/vsftpd”

is allowed to use the capabilities CAP NET BIND SERVICE, CAP SYS SETUID, CAP SYS SETGID, and

CAP SYS CHROOT, to read the file /etc/shadow, to read all files under the directory /etc/vsftpd, and to read or

write the file /var/log/xferlog. This daemon program needs to read /etc/shadow file to authenticate remote users.

9



If an attacker can exploit an vulnerability in vsftpd and inject code into the address space of vsftpd, this code

can read /etc/shadow file. However, if the attacker injects shell code to obtain an shell by exploiting the vulner-

abilities, then the exception policy for the shell process will be reset to NULL and the attacker loses the ability

to read /etc/passwd. Furthermore, the attacker cannot write to any system binary or install rootkits. Under this

policy, an administrator cannot directly upload files to replace system binaries. However, the administrator can

upload files to another directory and login through a remote administration channel (e.g., through sshd) and

then replace system binary files with the uploaded files.

When a high integrity process loads a program that has an exception policy, the process has special priv-

ileges as specified by the policy. Even when the process later receives network traffic and drops integrity, the

special privileges remain for the process. However, when a low integrity process loads a program that has an

exception policy, the process should be denied the special privileges in the policy. Some network administration

tools (such as iptables) must perform network communications and will thus drop its integrity, so they need to

be given capability exceptions for CAP NET ADMIN. However, we would not want a low-integrity process

to invoke them and still have the special privileges. On the other hand, some programs need to invoke other

programs to perform tasks. For example, sendmail needs to invoke procmail when its integrity is low, and proc-

mail needs special privileges to do its job. We resolve this by defining loading relationships between programs.

When two programs X and Y have a loading relationship, and a process running X loads Y , then even if the

process is low integrity, the process will have special permissions associated with Y after loading.

3.4 Contamination propagation through files

As an attacker may be able to control contents in files that are not write-protected, a process’s integrity level

needs to drop after reading and executing files that are not write-protected. However, even if a file is write-

protected, it may still be written by low-integrity processes, due to the existence of exception policies. We use

one permission bit to track whether a file has been written by a low-integrity process. There are 12 permission

bits for each file in a UNIX file system: 9 of them indicate read/write/execute permissions for user/group/world;

the other three are setuid, setgid, and sticky bit. The sticky bit is no longer used for regular files (it is still useful

for directories), and we use it to track contamination for files. When a low-integrity process writes to a file that

is write-protected as allowed by an exception, the file’s sticky bit is set. A file is considered to be low-integrity

(potentially contaminated) when either it is not write-protected, or has the sticky bit set. When a process reads

a low-integrity file, the process’s integrity level drops. If a low-integrity process adds a file to a directory and a

high-integrity process reads the directory, we do not consider the high-integrity process to be contaminated, as

this process would read the directory through the file system, which should handle directory contents properly.

When a file’s permission is changed from world-writable to not world-writable, the sticky bit is set, as the file

may have been contaminated while it was world-writable. A low-integrity process is forbidden from changing

the sticky bit of a file. Only a high-integrity process can reset the sticky bit by running a special utility program

provided by the protection system. The requirement of using a special utility program avoids the problem that

other programs may accidentally reset the bit without the user intending to do it. This way, when a user clears

the sticky bit, it is clear to the user that she is raising the integrity of the file. Similar to the concept to remote

administration point, which allows a process to maintain integrity while receiving network traffic, we also need

to introduce file processing programs (FPP). A process that is an FPP will maintain its integrity even after

reading a low-integrity file. Programs that read a file’s content and display the file on a terminal need to be

declared to be FPP, e.g., vim, cat, etc.

The classes of files are given in Figure 2. As we can see, a file may be both write-protected and low-integrity.

The preconditions and effects of a process accessing a file is given in the Figure 3.

10



Figure 2: Classes of files in HIPP: D = A ∩B, C = A \B, E = B \A.

Read(f ) Write(f )

Preconditions Effects Preconditions Effects

High-integrity

process P

None if f ∈ B then

P drops to low

None None

Low-integrity

process P

f is world-readable OR

P is given special privilege

to read f

None f 6∈ A, OR

P is given special privi-

lege to write f

if f ∈ C then

set f ’s sticky

bit

Figure 3: The preconditions and effects of a process accessing a file. Refer to Figure 2 for the sets A,B,C.

3.5 Protecting files owned by non-system accounts

Not all sensitive files are owned by a system account. For example, consider a user account who has been given

privileges to sudo (superuser do) all programs. The startup script files for the account are sensitive. We follow

the approach of using DAC info in NonDAC. If a file is not writable by the world, then it is write-protected.

HIPP allows exceptions to be specified for specific users. Different users may have different exception policies.

An account’s exception policy may specify global exceptions that apply to all programs running with that user’s

user-id. For example, a user may specify that a directory can be written by any low-integrity process and use

the directory to store all files coming from the network.

If the system administrator does not want to enable integrity protection for a user, so that the user can use

the system completely transparently (i.e., without knowing the existence of HIPP), then the policy can specify a

global exception for the home directory of the user with recursion so that all low-integrity processes can access

the user’s files. We point out that even with such a global exception, HIPP still offers useful protection. First,

the exceptions for a user will be activated only if the process’s effective user id is that user. Recall that we

disallow a low-integrity process from using setuid to change its user id to another user account. This way, if an

attacker breaks in through one daemon program owned by account A, the attacker cannot write to files owned

by account B, even if a global exception for B is in place. Second, if the user is attacked while using a network

client program, and the users’ files are contaminated. These files will be marked by the sticky bit, and other

processes who happen to access them will drop integrity, so that the system integrity is still protected.

3.6 A summary of the HIPP Model

The HIPP model borrows concepts from classical work on integrity models such as Biba [4] and Clark and

Wilson [7]. Compared with previous integrity protection models, HIPP has several novel features.

First, HIPP supports a number of partially trusted programs that can violate the default contamination rule.

They are needed to ensure that existing applications and system administration practices can be used. They are

summarized as follows.

• A process running a program that is identified as a RAP does not drop integrity when receiving traffic

11



from the network.

• A process running a program that is identified as an FFP does not drop integrity when reading a low-

integrity file (i.e., a file whose DAC permission is world-writable or has the sticky bit set).

• A process connecting to a socket controlled by a high-integrity process P running a program that is

identified as an ATP does not drop its integrity (even if P has ‘NET’ bit set).

Second, a file is protected as long as its DAC permission is such that it is not writable by the world. Even if

a file has sticky bite set (i.e., considered to be low-integrity), a low-integrity process still cannot write to the file

unless a policy exception exists. In other words, the set of write-protected files and and the set of low-integrity

files intersect, as illustrated by Figure 2. Consider, for example, the system log files and the mail files. These

files would have the sticky bit set because they have been written by processes who have communicated with

the Internet. However, an attacker who broke into the system through, say, httpd, still cannot write to them, as

the attacker’s processes would be low integrity and do not have the policy exceptions. This is different from

traditional integrity models such as Biba, where a low-integrity file can be written by any low-integrity subjects.

Our design offers better protection.

Third, HIPP’s integrity protection is compartmentized. Even if one user has an exception policy that allows

all low-integrity processes to access certain files owned by the user, another user’s low-integrity process is

forbidden from such access, even if such access is allowed by DAC.

Fourth, HIPP allows low-integrity files to be upgraded to high-integrity. This means that low-integrity

information (such as files downloaded through the Internet) can flow into high-integrity objects (such as system

binaries); however, such upgrade must occur explicitly, i.e., by invoking a special program in a high-integrity

channel to remove the sticky bit. Allowing such channels is necessary for, e.g., patching and system ungrade.

Fifth, HIPP uses DAC information to determine integrity and confidentiality labels for objects. We believe

that this is one key to ease of deployment.

Finally, HIPP offers some confidentiality protection, in addition to integrity protection. For example, low-

integrity processes are forbidden from reading files owned by a system account and not readable by the world.

4 An Implementation under Linux

We have implemented the HIPP model in a prototype protection system for Linux using the Linux Security

Module (LSM) framework, and have been using evolving prototypes of the protection system within our group

for a few months. We describe the implementation of the system in Section 4.1 and the evaluation in Section 4.2.

4.1 Implementation

The basic design of our protection system is as follows. Each process has a security label, which contains

(among other fields) a field indicating whether the process is high integrity or low integrity. When a process

issues a request, it is authorized only when both the Linux DAC system and our protection system authorize

the request. A high-integrity process is not restricted by our protection system, and can perform any operation

authorized by the existing DAC policies. A low-integrity process by default cannot perform any sensitive

operation, even if it is running as root (i.e., with an effective uid 0). Any exception to the above default policy

must be specified in a policy file, which is loaded when the module starts.

The Policy Specification The policy file includes a list of entries. Each entry contains four fields: (1) a path

that points to the program that the entry is associated with, (2) the type of a program, which includes three

bits indicating whether the program is a remote administration point (RAP), an administration tunneling point

(ATP), and a file processing point (FPP) (3) a list of exceptions, and (4) a list of loading relationships, which

12



is a list of programs that can be loaded by the current program with the exception policies enabled, even if the

process is low integrity. If a program is not listed, the default policy is that the program is not a RAP, an ATP,

or a FPP, and the exception list and the loading relationship list are empty. An exception list consists of two

parts, the capability exception list and the file exception list, corresponding to exceptions to the two categories

of security critical operations. A file exception takes one of the following four forms.

Syntax Meaning

(f , read) f is a regular file or a directory Allowed to read f

(f , full) f is a regular file or a directory Allowed to do anything to f

(d, read, R) d is a directory Allowed to read any file in d recursively.

(d, full, R) d is a directory. Allowed to do anything to any file in d recursively.

The authorization provided by file exceptions includes only two levels: read and full. We choose this design

because of its simplicity. In this design, one cannot specify that a program can write a file, but not read. We

believe this is acceptable because system-related files that are read-sensitive are also write-sensitive. In other

words, if the attacker can write to a file, then he can pose at least comparable damage to the system as he can

also read the file. A policy of the form “(d, read, R)” is used in the situation that a daemon or client program

needs to read the configuration files in the directory d. A policy of the form “(d, full, R)” is used to define the

working directories for programs. See Appendix B for more details about file protection.

Process State Changes See Figure 4 for a specification of what information the label in a process contains and

how the label changes with events in the system.

4.2 Evaluation

We evaluate our design of the HIPP model and the implementation under Linux along the following dimensions:

usability, security, and performance.

Usability One usability measure is transparency, which means not stopping legitimate accesses generated

by normal system operations. Another measure is flexibility, which means that one can configure a system

according to the security needs. A third usability measure is ease of configuration. Several features of HIPP

contribute to a high level of usability: the use of existing DAC information, the existence of RAP, ATP, and FFP,

and the use of familiar abstractions in the specification of policies. To experimentally evaluate the transparency

and flexibility aspects, we established a server configured with Fedora Core 5 with kernel version 2.6.15, and

enabled our protection system as a security module loaded during system boot. We installed some commonly

used server applications (e.g., httpd, ftpd, samba, svn) and have been providing services to our research group

over the last few months. The system works with a small and easily-understood policy specification (given in

Appendix C. With this policy, we allow remote administration through SSH Daemon by declaring sshd as

RAP, and remote administration through X Tunnelling over SSH by declaring sshd as ATP. If one also want to

alow remote administration through VNC Tunnelling over SSH, then he can achieve that by declaring the VNC

Server as ATP.

Security Most attack scenarios that exploit bugs in network-facing daemon programs or client programs can

be readily prevented by our protection system. Successful exploitation of vulnerabilities in network-facing

processes often results in a shell process spawned from the vulnerable process. After gaining access, the attacker

typically try downloading and installing attacking tools and rootkits. As these processes are low-integrity, these

access to sensitive operations is limited to those allowed by the exception. Furthermore, if the attacker loads a

shell or any other program, the new process has no exception privileges. We conduct three types of attacks after

the attacker successfully breaks in through network programs. They are installing RootKits, stealing shadow

file and altering user’s web page files. All attacks failed in a system protected by our module. See Appendix

D for a detailed description of the test against attacks. Network client programs are under similar protections.

13



(a) File Policies. The policy file contains the following field for each entry:

Name Values Description

PATH a file path path of the binary file this entry is associated with

TYPE [000..111] three bits denoting whether this program is a RAP, a ATP, and/or a FPP

EL a list of operations a list of security operations that this program is authorized to perform

even when IL (integrity level) is low

LR a list of file paths a list of programs that can be started with exception policies enabled by

a low-integrity process running the current program

(b) Process States. The label of a process consists of the following fields:

Name Values Description

IL ‘high’ or ‘low’ integrity level; when ‘low’, the process’s access is restricted

NET ‘yes’ or ‘no’ whether has network communication before; when ‘yes’, may drop

other processes’ integrity via loopback network

BIN a file path path of the binary currently executing

TYPE [000..111] three bits denoting whether this program is a RAP, a ATP, and/or a FPP

EL a pointer to a special

data structure

a list of security operations that can be performed even when IL is low

LR a list of file paths a list of programs that can be loaded with exception policies enabled by

a low-integrity process running the current program

(c) Process state change rules

Operation Effect

creation by fork copy label from parent process

load file NBIN by exec if (NBIN is low-integrity) IL:=‘low’; EL:=NULL; LR:=NULL;

else if (IL=‘high’ OR NBIN in BIN.LR) EL:=NBIN.EL; LR:=NBIN.LR;

else EL:=NULL; LR:=NULL endif

BIN:=NBIN; TYPE:=NBIN.TYPE;

receive any remote commu-

nication

net taint();

net taint() { NET:=‘yes’; if (nonRAP(TYPE)) IL:=‘low’; endif }
connect to a loopback socket

listened by process X

if (X.INT=‘low’) net taint();

else if (X.NET=‘yes’) NET=‘yes’; if (nonATP(X.TYPE)) net taint(); endif

endif

conduct other loopback net-

work comm with process X

if (X.NET=‘yes’) net taint(); endif

conduct IPC with process X if (X.INT=‘low’) INT:=‘low’; endif

if (X.NET=‘yes’) NET:=‘yes’; endif

read a regular file F if (nonFFP(TYPE) AND (F is low-integrity)) INT=‘low’;

endif

Figure 4: The HIPP Model implemented under Linux.

14



Finally, any program coming from the network will have low-integrity. Before the user explicitly upgrade its

integrity, the damage caused by such programs are limited.

Performance We have conducted benchmarking tests to compare performance overhead incurred by our pro-

tection system. For most benchmark results, the percentage overhead is small (≤ 5%). The performance of

our module is significantly better than the data for SELinux as reported in [12]. See Appendix E for a detailed

description of the experiment setting and evaluation results.

5 Related Work

Existing systems that are closely related to ours include SELinux [16], systrace [17], LIDS [11], securelevel [9],

LOMAC [8], and AppArmor [1]. As we discussed in Section 1, SELinux, systrace, and LIDS, while flexible

and powerful, require extensive expertise to configure. These systems focus on mechanisms, whereas our

approach focuses on providing a policy model that achieve a high degree of protection without getting in the

way of normal operations. Both systrace and LIDS require intimate familiarity with UNIX system calls and

internals for configuration. SELinux adopts the approach that MAC information is independent from DAC. For

example, the users in SELinux are unrelated with the users in DAC, each file needs to be given a label. This

requires the file system to support additional labeling, and limits the applicability of the approach. Furthermore,

labeling files is a labor-intensive and error-prone process. Each installation of a new software requires update

to the policy to assign appropriate labels to the newly added files and possibly add new domains and types.

SELinux policies are difficult to understand by human administrators because of the size of the policy and the

many levels of indirection used, e.g., from programs to domains, then to types, and then to files. Our protection

system, on the other hand, utilizes existing valuable DAC information, requires much less configuration, and

has policies that are easy to understand.

AppArmor [1] is a Linux protection system that has similarities with our work. It confines applications

by creating security profiles for programs. A security profile identifies all capabilities and files a program is

allowed to access. It also uses file paths to identify programs and in the security profiles, which is similar

to our approach. AppArmor uses the same approach as the Targeted Policy in Fedora Core Linux, i.e., if a

program has no policy associated with it, then it is by default not confined, and if a program has a policy, then

it can access only the objects specified in the policy. This approach violates the fail-safe defaults principle, as a

program with no policy will by default run unconfined. By not confining high-integrity processes and allowing

low-integrity processes to access unprotected files, HIPP can afford to follow the fail-safe default principle and

only specify exceptions for programs. AppArmor does not maintain integrity levels for processes or files, and

thus cannot differentiate whether a process or a file is contaminated or not. For example, without tracking

contamination, one cannot specify a policy that system administration through X clients are allowed as long as

as the X server and other X clients have not communicated with the network. Also, AppArmor cannot protect

users from accidentally downloading and executing malicious programs.

Securelevel [9] is a security mechanism in *BSD kernels. When the securelevel is positive, the kernel

restricts certain tasks; not even the superuser (i.e., root) is allowed to do them. Any superuser process can raise

securelevel, but only init process can lower it. The weakness of securelevel is clearly explained in the FreeBSD

FAQ [9]: “One of its biggest problems is that in order for it to be at all effective, all files used in the boot process

up until the securelevel is set must be protected. If an attacker can get the system to execute their code prior to

the securelevel being set [...], its protections are invalidated. While this task of protecting all files used in the

boot process is not technically impossible, if it is achieved, system maintenance will become a nightmare since

one would have to take the system down, at least to single-user mode, to modify a configuration file.” HIPP

enables system administration through high-integrity channels, thereby avoiding the difficulty securelevel has.

HIPP also has file contamination rules to ensure that all files read during booting are high integrity for the

system to end up in a high-integrity state.

15



LOMAC [8] also aims at protecting system integrity and places emphasis on usability. HIPP has a number

of differences from LOMAC. First, each LOMAC installation requires the specification of a mapping between

existing files and integrity levels; whereas we use DAC information to determine this. Second, LOMAC does

not protect confidentiality, whereas HIPP forbids low-integrity process to read read-protected files. Third,

in the LOMAC model, once an object is created, its integrity level never changes. This, however, prevents

system updates. Fourth, in the LOMAC model, remote administration can be performed only through a network

interface that is identified as a remote management link. For a system with a single network interface, either one

forbids remote administration, or one has to assign the network interface a high integrity level, which means

that all network-facing daemons are high integrity. See Section 3.6 for additional features of HIPP.

6 Conclusions

We have identified six design principles for designing usable access control mechanisms. We have also in-

troduced the HIPP model, a simple, practical nonDAC policy model for host protection, designed using these

principles. The HIPP model defends against attacks targeting network server and client programs and protects

users from careless mistakes. It supports existing applications and system administration practices, and has a

simple policy configuration interface. HIPP also introduced several novel features in integrity protection pro-

tection. We have also reported the experiences and evaluation results of our implementation of HIPP under

Linux. We plan to continue testing and improving the code and release it to the open-source community in near

future. We also plan to develop tools that help system administrators analyze a HIPP configuration and identify

channels through which an attacker may get a high-integrity process (e.g., by exploiting a remote administration

point).

References

[1] Apparmor application security for linux. http://www.novell.com/linux/security/apparmor/.

[2] L. Badger, D. F. Sterne, D. L. Sherman, K. M. Walker, and S. A. Haghighat. A domain and type enforce-

ment UNIX prototype. In Proc. USENIX Security Symposium, June 1995.

[3] L. Badger, D. F. Sterne, D. L. Sherman, K. M. Walker, and S. A. Haghighat. Practical domain and type

enforcement for UNIX. In Proc. IEEE Symposium on Security and Privacy, pages 66–77, May 1995.

[4] K. J. Biba. Integrity considerations for secure computer systems. Technical Report MTR-3153, MITRE,

April 1977.

[5] D. Brumley and D. Song. PrivTrans: Automatically partitioning programs for privilege separation. In

Proceedings of the USENIX Security Symposium, August 2004.

[6] H. Chen, D. Dean, and D. Wagner. Setuid demystified. In Proc. USENIX Security Symposium, pages

171–190, Aug. 2002.

[7] D. D. Clark and D. R. Wilson. A comparision of commercial and military computer security policies.

In Proceedings of the 1987 IEEE Symposium on Security and Privacy, pages 184–194. IEEE Computer

Society Press, May 1987.

[8] T. Fraser. LOMAC: Low water-mark integrity protection for COTS environments. In 2000 IEEE Sympo-

sium on Security and Privacy, May 2000.

16



[9] Frequently Asked Questions for FreeBSD 4.X, 5.X, and 6.X. http://www.freebsd.org/doc/en US.ISO8859-

1/books/faq/.

[10] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A secure environment for untrusted helper appli-

cations: Confining the wily hacker. In Proc. USENIX Security Symposium, pages 1–13, June 1996.

[11] LIDS: Linux intrusion detection system. http://www.lids.org/.

[12] P. Loscocco and S. Smalley. Integrating flexible support for security policies into the Linux operating

system. In Proceedings of the FREENIX track: USENIX Annual Technical Conference, pages 29–42,

June 2001.

[13] F. Mayer, K. MacMillan, and D. Caplan. SELinux by Example: Using Security Enhanced Linux. Prentice

Hall PTR, 2006.

[14] B. McCarty. SELinux: NSA’s Open Source Security Enhanced Linux. O’Reilly Media, Inc., October 2004.

[15] NSA. Security enhanced linux. http://www.nsa.gov/selinux/.

[16] Security-enhanced Linux. http://www.nsa.gov/selinux.

[17] N. Provos. Improving host security with system call policies. In Proceedings of the 2003 USENIX Security

Symposium, pages 252–272, August 2003.

[18] N. Provos, M. Friedl, and P. Honeyman. Preventing privilege escalation. In Proceedings of the 2003

USENIX Security Symposium, pages 231–242, August 2003.

[19] E. S. Raymond. The Art of UNIX Programming. Addison-Wesley Professional, 2003.

[20] J. H. Saltzer and M. D. Schroeder. The protection of information in computer systems. Proceedings of

the IEEE, 63(9):1278–1308, September 1975.

[21] R. Sandhu. Good-enough security: Toward a pragmatic business-driven discipline. IEEE Internet Com-

puting, 7(1):66–68, Jan. 2003.

[22] C. Wright, C. Cowan, J. Morris, S. Smalley, and G. Kroah-Hartman. Linux security modules: General

security support for the linux kernel. In Proc. USENIX Security Symposium, pages 17–31, 2002.

A The Pitfalls of Security Mechanism without Clear Policy Objective: A Case

Study using setuid

One example security mechanism that has suffered from the lack of security objective is setuid . Chen et al. [6]’s

“Setuid demystified” provided an excellent history and analysis of the problems associated with setuid . In early

UNIX, a process has two user IDs, the real uid and the effective uid. Only one system call (setuid ) manipulates

them. This approach has the limitation that a process cannot drop its privilege temporarily and restore it later.

To address this problem, System V added a new user ID called saved uid to each process, and a new system call

seteuid . At the same time, BSD 4.2 continued to use read uid and effective uid, but changed the system call

from setuid to setreuid . As System V and BSD influence each other, they and other modern UNIX variants

support three user ids and implemented all three system calls: setuid , seteuid , setreuid , although different

variants often implement then with slightly different semantics. Some modern UNIX system introduced a new

call setresuid . Chen et al. [6] discussed the operating system specific differences and found several bugs by

17



Abstracted file operations When to allow when it is done by P with low-integrity Effect a

read(f1) f1 is not read-protected; OR

P has a read exception or a full exception over f1.

write(f1) f1 is not write-protected; OR

P has a full exception over f1.

set f1 as low-integrity

create(f1) P is able to write(f1’s parent directory); OR

P has full exception over f1.

set f1 as low-integrity

unlink(f1) b P is able to write(f1) and write(f1’s parent directory)

create link(f1, f2) c P is able to read(f1), write(f1) and create(f2) set f1 as low-integrity

rename(f1, f2) d P is able to create link(f1, f2) and unlink(f1) set f1 as low-integrity

set permissions(f1) e f1 is unprotected and P change it to be unprotected; OR

P has a full exception over f1.

set f1 as low-integrity f

Figure 5: The file system protection implemented under Linux.

aOnly when the object is a regular file and the subject process is low-integrity
bRemove a hard/soft link f1. Removing a hard link could remove the actual inode, if f1 is the one and only hard link to the inode.
cCreate a hard/soft link f2 to f1
dRename the file f1 to f2
eChange the owner, group and other permission bits of f1
fAlso apply when a high-integrity process change a file from not write-protected to write-protected.

reading the source code and using finite state machines to analyze. Chen et al. [6] suggested an improved

API, which includes three calls drop priv temp, drop priv perm, and restore priv and found that all uid-setting

system calls in OpenSSH 2.5.2 can be replaced by one of the three calls. These API calls return to the original

security objectives that motivated the security mechanisms. System V and BSD chose two different mechanisms

to implement the same policy objective. Then the mechanism evolved (and got more and more complicated)

independently of the initial security objective. As a result, the mechanism is very difficult to use.

B Details about File System Protection Design

We treat a file 4 f as read-protected if f is owned by a system account and is not readable by the world. We

treat a file f as write-protected if f is not writable by the world. We treat a file f as low-integrity if the sticky

bit of f is set or if f is world-writable. We abstract six file operations that are considered as security critical.

Figure 5 shows a specification of the conditions for a low-integrity process to perform those operations and the

effect of the operations.

Figure 6 shows the mapping from security hooks in LSM to the abstracted file operations given in Figure 5.

C Sample Policies

Sample policies for our experimental machine is given in Figure 7.

D Testing against Attacks

Experiment Settings In our experiments, we use the NetCat tool to offer an interactive root shell to the

attacker in the experiment. We execute NetCat in “listen” mode on target machine as root. When the attacker

4Here we use a file to denote a regular file, a directory, or a device file.

18



Security hooks for inode / file operations Abstracted file operations

inode create create(f1)

inode link create link(f1, f2)

inode unline unlink(f1)

inode symlink create link(f1, f2)

inode mkdir create(f1)

inode rmdir unlink(f1)

inode rename rename(f1, f2)

inode permission read(f1) or write(f1)

inode setattr set permissions(f1)

inode delete unlink(f1)

file permission read(f1) or write(f1)

file mmap read(f1) or write(f1)

file mprotect read(f1) or write(f1)

file fcntl write(f1)

Figure 6: Mapping from security hooks in LSM to the abstracted operation described in Section 4.1.

connects to the listening port, NetCat spawns a shell process, which takes input from the attacker and also

directs output to him. From the root shell, we perform the following three attacks and analyze what happens

in the case without our protection system and the case with our protection system.

Installing a RootKit RootKits can operate at two different levels. User-mode RootKits manipulate user-level

operating system elements, altering existing binary executables or libraries. Kernel-mode RootKits manipulate

the kernel of the operating system by loading a kernel module or manipulate the image of the running kernel’s

memory in the file system (/dev/kmem).

In terms of examining whether the system has been compromised after installing a RootKit, we apply two

methods. The first one is just to try to use the RootKit and see whether it is successfully installed. The second

one is to calculate the MD5 hash function for all the files (content, permission bits, last modified time) in the

local file system before and after installing the RootKit. Each time of the calculation we reboot the machine by

using an external operating system (e.g., from a CD) and mount the local file system. In this way we can ensure

that the running kernel, the libraries and programs used in the calculation are clean. A comparison between the

MD5 results can tell whether the system has been compromised. All changes are examined to see whether they

are legislate or not. Such a check can ensure that the system is clean after a reboot.

We tried the following two typical RootKits.

1. Adore-ng. It is a kernel-mode RootKit that runs on Linux Kernel 2.2 / 2.4 / 2.6. It is installed by loading

a malicious kernel module. The supported features include local root access, file hiding, process hiding,

socket hiding, syslog filtering and so on. Adore-ng provides also has a feature to replace an existing

kernel module that is loaded during boot with the trojaned module, so that adore-ng is activated during

boot.

When our protection is not enabled, we can successfully install Adore-ng in the remote root shell and

activate it. The system is being controlled by the attacker. We can also successfully replace any existing

kernel module with the trojaned module so that the RootKit module will be automatically loaded during

boot.

When our protection system is enabled, the request to load the kernel module of Adore-ng from the

19



Services and

Path of the Binary

Type File Exceptions Capability Exceptions Executing

Relationships

SSH Daemon

/usr/sbin/sshd

RAP

ATP

Automated Update:

/usr/bin/yum

RAP

/usr/bin/vim FPP

/usr/bin/cat FPP

FTP Server

/usr/sbin/vsftpd

NONE (/var/log/xferlog, full)

(/etc/vsftpd, full, R)

(/etc/shadow, read)

CAP SYS CHROOT

CAP SYS SETUID

CAP SYS SETGID

CAP NET BIND SERVICE

Web Server

/usr/sbin/httpd

NONE (/var/log/httpd, full, R)

(/etc/pki/tls, read, R)

(/var/run/httpd.pid, full)

Samba Server

/usr/sbin/smbd

NONE (/var/cache/samba, full, R)

(/etc/samba, full, R)

(/var/log/samba, full, R)

(/var/run/smbd.pid, full)

CAP SYS RESOURCE

CAP SYS SETUID

CAP SYS SETGID

CAP NET BIND SERVICE

CAP DAC OVERRIDE

NetBIOS name server

/usr/sbin/nmbd

NONE (/var/log/samba, full, R)

(/var/cache/samba, full, R)

Version control server

/usr/bin/svnserve

NONE (/usr/local/svn, full, R)

Name Server for NT

/usr/sbin/winbindd

NONE (/var/cache/samba, full, R)

(/var/log/samba, full, R)

(/etc/samba/secrets.tdb, full)

SMTP Server

/usr/sbin/sendmail

NONE (/var/spool/mqueue, full, R)

(/var/spool/clientmqueue,

full, R)

(/var/spool/mail, full, R)

(/etc/mail, full, R)

(/etc/aliases.db, read)

(/var/log/mail, full, R)

(/var/run/sendmail.pid, full)

CAP NET BIND SERVICE /usr/sbin/procmail

Mail Processor

/usr/bin/procmail

NONE (/var/spool/mail, full, R)

NTP Daemon

/usr/sbin/ntpd

NONE (/var/lib/ntp, full, R)

(/etc/ntp/keys, read)

CAP SYS TIME

Printing Daemon

/usr/sbin/cupsd

NONE (/etc/cups/certs, full, R)

(/var/log/cups, full, R)

(/var/cache/cups, full, R)

(/var/run/cups/certs, full R)

CAP NET BIND SERVICE

CAP DAC OVERRIDE

System Log Daemon

/usr/sbin/syslogd

NONE (/var/log, full, R)

NSF RPC Service

/sbin/rpc.statd

NONE (/var/lib/nfs/statd, full, R)

IP Table

/sbin/iptables

NONE CAP NET ADMIN

CAP NET RAW

Figure 7: Sample policy

20



remote root shell will be denied, getting an “Operation not permitted” error. We get the same error when

we try to replace the existing kernel module with the trojaned module. When we try to use the RootKit,

we get a response saying “Adore-ng not installed”. We check the system integrity using the methods

described above. The result show that the system remains clean.

2. Linux RootKit Family (LRK). It is one of the most well-known user-mode RootKits for Linux. It will

replace a variety of existing system programs and introduce some new programs, to build a backdoor,

to hide the attacker, and to provide other attacking tools. In this experiment, we only test the backdoor

feature in LRK5.

When our protection is not enabled, we can successfully install the trojaned SSH daemon and replace

the existing SSH daemon in the system. After that we can connect to the machine as root by using a

predefined password.

When our protection is enabled, we are failed to install the trojaned SSH daemon to replace the existing

SSH daemon, getting “Operation not permitted” errors. The backdoor is not opened. The system remains

clean when we apply the checking process.

Stealing the shadow File Without our protection system, the attacker can steal /etc/shadow file by send an

email with the shadow file as an attachment, e.g., by the command “mutt -a /etc/shadow alice@haker.net <

/dev/null”. When our protection is enabled, the request to read the shadow file will be denied, getting an error

saying “/etc/shadow: unable to attach file” .

Altering user’s web page files Another attack that usually happens is to alter the user’s web page files after

getting into a web server. In our experiment, we put the user’s web page files in a sub directory of the user’s

home directory “/home/Alice/www/”. That directory and all the web page files under the directory are set as not

writable by the world. When our protection is enabled, from the remote root shell, the attacker cannot modify

any web page files in the directory “/home/Alice/www/”. The attacker cannot create a new file in that directory.

Our module successfully protect user’s protected files from being changed by attackers who break in through

network.

E Performance Evaluation

Our performance evaluation uses the Lmbench 3 benchmark and the Unixbench 4.1 benchmark suites. These

microbenchmark tests were used to determine the performance overhead incurred by the protection system for

various process, file, and socket low-level operations. The low level of these tests provides the transparency

and precision required in order to make informed conclusions regarding performance.

We established a PC configured with RedHat Linux Fedora Core 5, running on Intel Pentium M processor

with 1400Hz, and having 120 GB hard drive and 1GB memory. Each test was performed with two different

kernel configurations. The base kernel configuration corresponds to an unmodified Linux 2.6.11 kernel. The

enforcing configuration corresponds to a Linux 2.6.11 kernel patched with our protection system.

The test results are given in Figure 8 and Figure 9. We compared our performance result with SELinux.

The performance data of SELinux is taken from [12].

21



Benchmark Base Enforcing Overhead (%) SELinux(%)

Dhrystone 335.8 334.2 0.5

Double-Precision 211.9 211.6 0.1

Execl Throughput 616.6 608.3 1 5

File Copy 1K 474.0 454.2 4 5

File Copy 256B 364.0 344.1 5 10

File Copy 4K 507.5 490.4 3 2

Pipe Throughput 272.6 269.6 1 16

Process Creation 816.9 801.2 2 2

Shell Scripts 648.3 631.2 0.7 4

System Call 217.9 217.4 0.2

Overall 446.6 435.0 3

Figure 8: The performance results of Unixbench 4.1 measurements.

Microbenchmark Base Enforcing Overhead (%) SELinux(%)

syscall 0.6492 0.6492 0

read 0.8483 1.0017 18

write 0.7726 0.8981 16

stat 2.8257 2.8682 1.5 28

fstat 1.0139 1.0182 0.4

open/close 3.7906 4.0608 7 27

select on 500 fd’s 21.7686 21.8458 0.3

select on 500 tcp fd’s 37.8027 37.9795 0.5

signal handler installation 1.2346 1.2346 0

signal handler overhead 2.3954 2.4079 0.5

protection fault 0.3994 0.3872 -3

pipe latency 6.4345 6.2065 -3 12

pipe bandwidth 1310.19 MB/sec 1292.54 MB/sec 7

AF UNIX sock stream latency 8.2 8.9418 9 19

AF UNIX sock stream bandwidth 1472.10 MB/sec 1457.57 MB/sec 9

fork+exit 116.5581 120.3478 3 1

fork+execve 484.3333 500.1818 3 3

for+/bin/sh-c 1413.25 1444.25 2 10

file write bandwidth 16997 KB/sec 16854 KB/sec 0.8

pagefault 1.3288 1.3502 2

UDP latency 14.4036 14.6798 2 15

TCP latency 17.1356 18.3555 7 9

RPC/udp latency 24.6433 24.8790 1 18

RPC/tcp latency 29.7117 32.4626 9 9

TCP/IP connection cost 64.5465 64.8352 1 9

Figure 9: The performance results of lmbench 3 measurements (in microseconds).

22


