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ABSTRACT
We introduce the notion of resiliency policies in the context of ac-
cess control systems. Such policies require an access control sys-
tem to be resilient to the absence of users. An example resiliency
policy requires that, upon removal of any s users, there should
still exist d disjoint sets of users such that the users in each set
together possess certain permissions of interest. Such a policy en-
sures that even when emergency situations cause some users to be
absent, there still exist independent teams of users that have the per-
missions necessary for carrying out critical tasks. The Resiliency
Checking Problem determines whether an access control state sat-
isfies a given resiliency policy. We show that the general case of the
problem and several subcases are intractable (NP-hard), and iden-
tify two subcases that are solvable in linear time. For the intractable
cases, we also identify the complexity class in the polynomial hi-
erarchy to which these problems belong. We discuss the design
and evaluation of an algorithm that can efficiently solve instances
of nontrivial sizes that belong to the intractable cases of the prob-
lem. Finally, we study the consistency problem between resiliency
policies and static separation of duty policies.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Access con-
trols; K.6.5 [Management of Computing and Information Sys-
tems]: Security and Protection; F.2.2 [Analysis of Algorithms
and Problem Complexity]: Nonnumerical Algorithms and Prob-
lems—Complexity of proof procedures

General Terms
Security, Theory

Keywords
Access Control, Fault-tolerant, Policy Design

1. INTRODUCTION
While policy analysis has been a main research area in access

control for several decades, almost all existing work focuses on
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properties which ensure that users who should not have access do
not get access. For example, safety analysis [9, 17, 22] studies
whether an access right can be leaked to unauthorized users. Sepa-
ration of duty (SoD) policies [2, 20] ensure that no single user (or
a set of users of size less than some threshold) is able to perform a
sensitive task. Such focus on safety properties probably stems from
the fact that access control has been mostly viewed as a tool for re-
stricting access. However, an equally important aspect of access
control is to enable access (selectively).

We introduce the notion of resiliency policies which state prop-
erties about enabling access in access control. Resiliency policies
require that the access control state is resilient to absent users. For
example, the access control system of an institution has three sep-
arate permissions regarding release of funds: one permission is an
endorsement that the request for funds is legitimate, the second per-
mission is the issuance of a check, and the third one is for log-
ging the transaction. The institution’s financial office, which takes
charge of funding, is composed of a senior treasurer and a number
of junior treasurers. In compliance of the separation of duty princi-
pal, the senior treasurer has all permissions except the one for log-
ging, while each of the junior treasurers has only one of the three
permissions. Since issuing funds is a critical task, the institution
would like to ensure that even if a few (e.g., two) treasurers (that
may include the senior treasurer) are absent (e.g., due to sickness),
the remaining personnel in the financial office still have enough
privileges to release funds.

Another example resiliency policy requirement is as follows:
There must exist three mutually disjoint sets of users such that each
set has no more than four users and the users in each set together
have all permissions to carry out a critical task. Such a policy would
be needed when one needs to be able to send up to three teams of
users to different sites to perform a certain task, perhaps in response
to some events. One needs to ensure that each team has enough
permissions to perform the task, and each team consists of no more
than four users (e.g., due to the limit of transportation means).

Such policies are particularly useful when evaluating whether the
access control configuration of a system is ready for emergency re-
sponse. These policies ensure that even when emergency situations
cause some users to be absent, there still exist independent teams of
users that have the necessary permissions for carrying out critical
tasks. In other words, these policies mandate that there is a certain
level of redundancy in assigning permissions to users so that the
system can tolerate some users being absent.

Our contributions in this paper are as follows:

1. We introduce the notion of Resiliency Policies which express
requirements about enabling access rather than restricting ac-
cess. We give a concrete formulation for a resiliency policy
which captures the intuition discussed above.



2. We study computational complexities of the Resiliency
Checking Problem, which determines whether an access con-
trol state satisfies a given resiliency policy. We show that this
problem is NP-hard in the general case and is in coNP

NP,
a complexity class in the Polynomial Hierarchy. We show
that several subcases are NP-complete. We identify two
subcases that are solvable in linear time.

3. We show that, notwithstanding the intractability results,
many instances of the Resiliency Checking Problem of non-
trivial sizes may still be efficiently solvable. We present
an algorithm for the Resiliency Checking Problem. Our al-
gorithm uses a pruning technique that reduces the number
of combinations that need to be considered. The experi-
mental results show that this pruning technique can reduce
the search space by several orders of magnitude. Our algo-
rithm also takes advantage of the observation that the prob-
lem of checking whether the state can tolerate the removal
of a particular absent set can be naturally formulated as the
boolean satisfiability problem. This enables us to use ex-
isting SAT solvers in our implementation and benefit from
several decades of research in designing SAT solvers. Our
experimental results show that our algorithm can efficiently
solve instances of nontrivial sizes.

4. Resiliency policies may conflict with safety-oriented poli-
cies such as static separation of duty (SSoD) policies [14].
We study the policy consistency problem between resiliency
policies and SSoD policies. We demonstrate how to simplify
the problem and present criteria for determining consistency
for a number of special cases. Finally, we show that deter-
mining consistency is both NP-hard and coNP-hard, but is
in NP

NP.

The remainder of this paper is organized as follows. In Section 2,
we define resiliency policies and the Resiliency Checking problem.
We present computational complexities of the Resiliency Checking
problem in Section 3, and an algorithm for the problem and an
implementation of the algorithm in Section 4. In Section 5, we
explore the policy consistency problem. We discuss related work in
Section 6. Finally, we conclude and present open problems related
to the concept of resiliency in Section 7.

2. RESILIENCY POLICIES AND THE
RESILIENCY CHECKING PROBLEM

Definition 1 (Resiliency Policies). A resiliency policy takes the
form

rp〈P, s, d, t〉

where rp is a keyword, P = {p1, . . . , pn} is a set of permissions,
s ≥ 0 and d ≥ 1 are integers, and t is either a positive integer or
the special symbol∞.

We say that an access control state satisfies such a resiliency pol-
icy if and only if upon removal of any set of s users, there still exist
dmutually disjoint sets of users such that each set contains no more
than t users and the users in each set together are authorized for all
permissions in P .

Example 1. Consider the access control state from Figure 1.
It relates to the example we introduce in Section 1. To issue
funds, all three permissions Endorse, Issue and Log must be
possessed by a set of users. In our resiliency policy, we set
P = {Endorse, Issue, Log}. If we set s = 1 in our policy,
then we want the system to be resilient to the absence of any (one)

user. If we set d = 2, this means that we require two sets of users
such that users in each set together possess all permissions. If we
set t =∞, this means that the set of users that together possess all
permissions can be of any size.

We observe that in our example, rp〈P, 1, 2,∞〉 is satisfied. For
instance, after removing Alice , the two users Carl and Earl to-
gether have all three permissions, as are Bob and Doris . The cases
in which another user is removed can be verified similarly. How-
ever, rp〈P, 2, 2,∞〉 is not satisfied because ifAlice and Bob are
absent, the only user that possesses Endorse is Carl , and one user
cannot belong to two disjoint sets. Similarly, rp〈P, 2, 1,∞〉 is sat-
isfied, butrp〈P, 3, 1,∞〉 is not satisfied because ifAlice, Bob and
Carl are absent, then no user possesses Endorse . And finally, we
observe that rp〈P, 1, 1, 2〉 is satisfied, but notrp〈P, 1, 1, 1〉 because
for the latter case, there exists no single user that has all three per-
missions.

Intuitively, a resiliency policy rp〈P, s, d, t〉 specifies a fault tol-
erance requirement with respect to a certain critical task. The set P
includes all permissions that are needed to carry out the task. The
faults that we would like to tolerate are absent users. The parame-
ter s specifies the number of absent users that we want to be able
to tolerate. The parameter d is motivated by the requirement that
several teams may be needed to carry out multiple instances of the
task. If only one team is needed, then d can be set to 1. The para-
meter t specifies the size limit of each team. This is motivated by
limitations on the maximal number of users that can be involved in
any instance of task. If no such limitation exists, then t can be set
to∞.

The two parameters s and d are related. If an access control state
satisfies rp〈P, s, d, t〉, then it also satisfies rp〈P, s + i, d − i, t〉
for any i such that 0 < i < d. For example, if, after remov-
ing any 2 users, there exist 3 mutually disjoint sets of users such
that each set covers all permissions in P , then after removing any
3 users, there are at least 2 sets left. However, if a state satisfies
rp〈P, s + 1, d − 1, t〉, it may not satisfy rp〈P, s, d, t〉. For our
example shown in Figure 1, we observe that rp〈P, 1, 2,∞〉 is sat-
isfied. Howeverrp〈P, 0, 3,∞〉 is not satisfied because we need the
3 users Alice, Bob and Carl that possess Endorse to belong to
distinct sets; this still leaves one permission that needs to covered
by each set, and we have only two users that remain.

Resiliency policies can be defined in any access control system
in which there are users and permissions. This includes almost
all access control systems, including Discretionary Access Control
systems [13, 8] and Role Based Access Control systems [25]. We
assume that an access control state is given by a binary relation
UP ⊆ U ×P , where U represents the set of all users, and P repre-
sents the set of all permissions. Note that by assuming that a state
is given by a binary relation UP ⊆ U × P , we are not assuming
permissions are directly assigned to users; rather, we assume only
that one can calculate the relation UP from the access control state.

Definition 2 (Resiliency Checking Problem (RCP)). Given a re-
siliency policy r and an access control state UP , determining
whether UP satisfiesr is called the Resiliency Checking Problem
(RCP).

A resiliency policy has three parameters: s, d, and t. In some
situations, one may need to consider only those policies with one
or more of these parameters degenerated. The parameter s, which
denotes the number of absent users that the system needs to toler-
ate, may be degenerated to always be 0. The parameter d, which
denotes the number of sets of users required, may be degenerated to
always be 1. Finally, the parameter t, which denotes the size bound
on each set, may be degenerated to always be∞. There are eight
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Bob Doris

Alice Carl Earl

Figure 1: An example of an access control state with 5 users, Alice, Bob, Carl , Doris and Earl , and 3 permissions, Endorse, Issue

and Log . A line segment connects a user (e.g., Alice) to a permission (e.g., Endorse) to indicate that the user has the permission.
This corresponds to the example from Section 1 on releasing funds; all three permissions must be possessed by a group of users that
together want to release funds.

cases where some of the three parameters are degenerated. For
example, a resiliency policy in the subcase RCP〈s = 0, d = 1〉
has the form rp(P, 0, 1, t), which asks whether there exists a set
of users of size at most t that together have all permissions in P ;
while the subcase RCP〈t = ∞〉 asks whether there exist several
distinct sets of users (d sets) each of whose users together have all
permissions in P , even after any set of s users is removed from the
state. In particular, RCP〈 〉 is the general case of the problem.

3. COMPUTATIONAL COMPLEXITIES
OF THE RESILIENCY CHECKING
PROBLEM

The following theorem summarizes the computational complex-
ity results for RCP and its various subcases. These results are also
shown in Figure 2.

Theorem 1. The computational complexities of the Resiliency Pol-
icy Checking problem are as follows.

• RCP〈 〉, the most general case, is NP-hard and is in
coNP

NP, as are the two subcases RCP〈d = 1〉 and
RCP〈t =∞〉.

• RCP〈s = 0, d = 1〉, RCP〈s = 0, t =∞〉, and RCP〈s = 0〉
are NP-complete.

• RCP〈d = 1, t = ∞〉 and RCP〈s = 0, d = 1, t = ∞〉 can
be solved in linear time.

Our complexity results show that RCP is in coNP
NP. This

means that the complement of RCP can be solved by a nondeter-
ministic Oracle Turing Machine that has oracle access to a machine
that can answer any NP queries. (See Appendix A for a brief
overview of Oracle Turing Machines.) Intuitively, given an access
control state and a resiliency policy r = rp(P, s, d, t), to decide
nondeterministically that the state does not satisfy r, one can guess
a set of s users to removed, and then query the NP oracle whether
the remaining users contain d mutually disjoint sets of users such
that each set is of size at most t and the users in each set together
have all permissions in P .

Another way to understand the computational complexity of
RCP is to observe that an RCP instance has the form ∀ size-s sub-
set, ∃d sets of users that satisfy some requirements that can be ef-
ficiently verified. Problems inNP have the form of ∃ an evidence
that satisfies some polynomial-time verifiable requirements. Prob-
lems in coNP has the form ∀ choices, some polynomial-time ver-

ifiable requirements hold. RCP has one alternation of ∀ followed
by ∃, which makes it in coNP

NP.
We have shown that RCP (and its two subcases RCP〈d = 1〉

and RCP〈t =∞〉) are NP-hard and are in coNP
NP. It remains

open whether these three problems are coNP
NP-complete or not.

Readers who are familiar with computational complexity theory
will recognize that coNP

NP is a complexity class in the Poly-
nomial Hierarchy. (See Appendix A for a brief introduction to
the Polynomial Hierarchy.) Because the Polynomial Hierarchy col-
lapses when P = NP, showing that an NP-hard decision prob-
lem is in the Polynomial Hierarchy, although is not equivalent to
showing that the problem is NP-complete, has the same conse-
quence: the problem can be solved in polynomial time if and only
if P =NP.

In the rest of this section, we prove the results in Theorem 1. The
following lemmas prove that RCP〈s = 0〉 is in NP, RCP〈s =
0, d = 1〉 and RCP〈s = 0, t = ∞〉 are NP-hard, RCP〈 〉 is in
coNP

NP, and RCP〈d = 1, t = ∞〉 is in P. The complexities of
other subcases can be implied from these results.

Lemma 2. RCP〈s = 0〉 is in NP.

PROOF. An instance consists of an access control state UP and
a policy rp〈P, 0, d, t〉. UP satisfiesrp〈P, 0, d, t〉 if and only if there
exist d mutually disjoint sets of users such that the users in each set
together cover all permissions in P and each set has at most t users.
If these d sets are given, they can be verified in polynomial time.
Therefore, RCP〈s = 0〉 is in NP.

Lemma 3. RCP〈s = 0, d = 1〉 is NP-hard.

PROOF. We reduce the NP-complete SET COVERING prob-
lem [19] (also referred to as MINIMUM COVERING problem in [6])
to RCP〈s = 0, d = 1〉. In SET COVERING, we are given a set S, n
subsets of S: S1, . . . , Sn, and a budget K, and need to determine
whether the union of K subsets is the same as S. An instance of
RCP〈s = 0, d = 1〉 asks whether an access control state UP sat-
isfies a policy rp〈P, 0, 1, t〉. In our reduction, each element in S
is mapped to a permission in P and each subset Si is mapped to a
user ui. In other words, if the subset Si contains an element, then
ui is authorized for the permission corresponding to the element.
We now argue that the mapping ensures that there exists a set of
users of size at most K together have all the permissions in P if
and only if K subsets cover S. Assume that a set of users of size
at most K exists such that those users together have all the per-
missions in P . Then, we pick the subsets that are mapped to those
users, and their union gives us S. For the other direction, assume
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Figure 2: Time complexity of the Resiliency Checking Problem (RCP) and its various subcases.

that K subsets cover S. Then, the K users to which the subsets are
mapped together have all permissions in P .

Lemma 4. RCP〈s = 0, t =∞〉 is NP-hard.

PROOF. We reduce the NP-complete DOMATIC NUMBER
problem [6] to RCP〈s = 0, t = ∞〉. Given a graph G(V,E),
the DOMATIC NUMBER problem asks whether V can be parti-
tioned into k disjoint sets V1, V2, · · · , Vk, such that each Vi is a
dominating set for G. V ′ is a dominating set for G = (V,E) if
for every node u in V − V ′, there is a node v in V ′ such that
(u, v) ∈ E. An instance of RCP〈s = 0, t = ∞〉 asks whether an
access control state UP satisfies a policyrp〈P, 0, d,∞〉. Given a
graph G = (V,E), we construct an access control state UP with n
users u1, u2, · · · , un and n permissions p1, p2, · · · , pn, where n
is the number of nodes in V . Each user corresponds to a node in G,
and v(ui) denotes the node corresponding to user ui. In UP , user
ui is authorized for the permission pj if and only if either i = j
or (v(ui), v(uj)) ∈ E. Let P denote the set {p1, p2, · · · , pn}. A
dominating set in G corresponds to a set of users that together have
all permissions in P . UP satisfiesrp〈P, 0, k,∞〉 if and only if V
contains k disjoint dominating sets.

Lemma 5. RCP〈 〉 is in coNP
NP.

PROOF. We show that the complement of RCP〈 〉 is in NP
NP.

Assume that we have an oracle that decides the Resiliency Check-
ing problem when s = 0, which, as we know, is NP-complete. We
construct a nondeterministic oracle Turing machine M that accepts
UP and rp〈P, s, d, t〉 when UP does not satisfy rp〈P, s, d, t〉. M
nondeterministically removes s users, and then queries the oracle.
If the oracle machine returns “yes”, M rejects; otherwise, M ac-
cepts, because it has found a set of users, the removal of which
violates the Resiliency policy. The construction of M shows that
the complement of RCP〈 〉 is in NP

NP. Therefore, RCP〈 〉 is in
coNP

NP.

Lemma 6. RCP〈d = 1, t =∞〉 can be solved in linear time.

An instance in RCP〈d = 1, t = ∞〉 asks whether an access
control state satisfies a policyrp〈P, s, 1,∞〉. We observe that the
answer is “no” if and only if some permission in P is assigned to
no more than s users. In this case, removing the s users who have
that permission would result in no user having that permission. On
the other hand, if each permission is assigned to at least s+1 users,

after removing any set of s users, each permission is still assigned
to at least one user, which means that the set of all remaining users
together have all permissions in P .

Definition 3 (The Tolerance Bound). Given an access con-
trol state UP and a set {p1, · · · , pm} of permissions, we de-
fine the tolerance bound of UP and {p1, · · · , pm}, denoted by
tb(UP , {p1, · · · , pm}), to be min1≤i≤m #(pi), where #(pi) de-
notes the number of users who are authorized for pi in the state
UP .

Given an RCP〈d = 1, t = ∞〉 instance that asks whether UP

satisfiesrp〈P, s, 1,∞〉, the answer is yes if and only if the tolerance
bound is at least s+ 1. More generally, given an RCP instance that
asks whether UP satisfies rp〈P, s, d, t〉, if s + d > tb(UP , P ),
then the answer is “no”. On the other hand, when d ≥ 2 and
s + d ≤ tb(UP , P ), we do not immediately know whether UP

satisfiesrp〈P, s, d, t〉 or not.
We now give a linear-time algorithm for calculating the tolerance

bound. This, together with the above observations, suffices to prove
Lemma 6. The algorithm maintains a counter for each permission.
It first goes through all pairs inUP to count how many users each
permission is assigned to. It then returns the minimal value among
the counters.

4. AN ALGORITHM FOR RCP
The fact that RCP is intractable (NP-hard) means that there

exist difficult problem instances that take exponential time in the
worst case. Many instances that will be encountered in practice
may still be efficiently solvable. We now describe an algorithm for
RCP. We first describe an algorithm for the subcaseRCP〈t =∞〉,
i.e., there is no limit on the number of users in any of the dmutually
disjoint sets. We then describe how to extend the algorithm to deal
with the parameter t when it is not degenerated. In Section 4.2 we
discuss our implementation of this algorithm and its effectiveness
using experimental results.

4.1 Description of the algorithm
To determine whether UP satisfiesrp 〈P, s, d,∞〉, a straightfor-

ward algorithm is to enumerate all sets of s users, and for each such
setA (which we call an absent set), remove the users inA from UP

and check whether among the remaining users there are d mutually
disjoint sets of users such that each set covers the permissions. If
the answer is “no” for any absent set, then we know that UP does



not satisfy rp 〈P, s, d,∞〉. If we have enumerated through all ab-
sent sets, and the answer is “yes” for each of them, then we know
that UP satisfiesrp 〈P, s, d,∞〉. Our algorithm adds the following
improvements, which greatly reduces the running time.

Preprocessing Given the state UP and the policy rp〈P, s, d,∞〉,
we first remove(u, p) from UP if p 6∈ P , as we do not need to con-
sider permissions not in the policy. Also, we only consider those
users who are authorized for at least one permission in P . Finally,
we calculate the tolerance bound tb(UP , P ), using the methods
described in the end of Section 3. If s + d > tb(UP , P ), then we
know the answer is “no”.

Reduction to SAT A key step to solve RCP is to determine
whether, after removing a certain set of users, there still exist d
mutually disjoint sets of users such that each set covers all permis-
sions in P . We observe that such a problem can be translated into
a SAT instance. This enables us to benefit from the extensive re-
search on SAT and to use existing SAT solvers. SAT has been
studied extensively for several decades (see, for example, [5]), and
many clever algorithms have been developed. Problems in many
fields, including databases, planning, computer-aided design, ma-
chine vision and automated reasoning, have been reduced to SAT
and solved using SAT solvers. Often times, this results in better per-
formance than using existing domain-specific algorithms for those
problems.

The translation works as follows. Let U be the set of users after
removing users in an absent set. For each user ui in U and each
integer j from 1 to d, we have a propositional variable vi,j . This
variable is true if the i’th user is assigned to the j’th group. Then we
have the following two kinds of clauses. The first kind of clauses
ensure that all permissions are covered in each of the d groups: For
each permission p in P , let ui1 , ui2 , · · · , uix be users in U who
are authorized for p. Then for each j from 1 to d, we add the clause
vi1,j ∨ vi2,j ∨ · · · ∨ vix,j . There are |P | · d of such clauses. The
second kind of clauses ensure that no user is selected in two groups
at the same time: For each user ui, and for each pair k, ` such that
0 < k < ` ≤ d, we add the clause ¬vi,k ∨ ¬vi,`. There are
nd(d − 1)/2 such clauses, where n is the number of users. It is
clear that the total number of clauses added is polynomial to the
size of the RCP instance.

Static Pruning The number of size-s user sets among n users
is close to ns when s is small compared with n. For example,
there are more than one billion such sets for s = 6 and n = 100.
We observe that not all these sets need to considered. There is a
partial order relation among these sets such that if A1 dominates
A2, and the RCP instance can tolerate the removal of A1, then it
can also tolerate the removal of A2. This means that we only need
to consider A1. We now explain this pruning technique.

Definition 4(Absent Set Domination). Among all users in UP , we
say a user u1 dominates another user u2 if u1’s set of permissions
is a superset (not necessarily strict superset) of u2’s. We say a
set of users, A1, dominates another set A2 if there is a bijection
between users in A2 and A1 such that for every user u in A2, the
corresponding user in A1 dominates the user u.

Lemma 7. Assuming that A1 dominates A2, if an RCP instance
can tolerate removing A1, then it can also tolerate removing A2.

PROOF. We need to show that, if after removing A1, there are
d mutually disjoint sets of users such that each set covers all per-
missions in P , then after removing A2, there are also d mutually
disjoint sets each of which covers all permissions in P .

By definition, ifA1 dominates A2, then there exists a bijection
f between A2 and A1, such that f(u) = v implies user v ∈ A1

dominates user u ∈ A2. Without loss of generality, we assume that
f satisfies the property that ifu ∈ A1 ∩ A2, then f(u) = u. Ob-
serve that if f does not satisfy this property for some u ∈ A1∩A2,
then there exist u1 ∈ A1 and u2 ∈ A2 such that f(u) = u1 and
f(u2) = u. It follows that u1 dominates u and u dominates u2.
Because the domination relation is transitive, we have u1 domi-
nates u2. We can then assign f(u) = u and f(u2) = u1. By
repeating this process, we can arrive at a bijection f such that if
u ∈ A1 ∩ A2, then f(u) = u. This property implies that if
u ∈ A2\A1, then f(u) ∈ A1\A2.

Let S1, · · · , Sd be the disjoint sets of users after the removal of
A1, we now construct S′1, · · · , S′d such that (1) these sets consists
of only users not in A2, (2) they are mutually disjoint, and (3) users
in each set together have all permissions in P .

For each k ∈ [1, d], S′k is constructed as follows: for every user
u in Sk, if u ∈ A2, then u is replaced with f(u). Observe that
because u ∈ Sk, then u 6∈ A1, and thus u ∈ A2\A1 and f(u) ∈
A1\A2. Therefore, each S′k includes only users not in A2. To
show that they are mutually disjoint, we need to show, for each
w ∈ S′k, that w does not appear in S′j , where j 6= k. There are two
cases. Case 1: w is the result of replacing x ∈ A2, in which case
w = f(x) is a member of A1, implying w does not appear in Sj .
Hence, if w also appears in S′j , it must also be from replacement of
x. This is impossible, because x cannot appear both in Sk and Sj .
Case 2: w appears in Sk, in which case w 6∈ Sj . Furthermore, w 6∈
A1, and therefore w cannot be used as replacement for any other
user. Therefore, w does not appear in S′j . Finally, by definition
of dominance, user f(u)’s set of permissions is a superset of u’s.
Since Sk has all permissions in P , S′k also has all permissions in
P .

Enumerate all absent sets that need to be considered
We would like to systematically generate only size-s user sets

that we need to consider. That is, we need to ensure that (1) any
size-s user set is dominated by at least one generated user set, and
(2) we do not generate two sets such that one of them dominates the
other. The naı̈ve way of finding all such sets is to generate all size-s
user sets and, for each such set, check whether it is dominated by
any other size-s set. However, this would be very inefficient. We
now describe an algorithm that directly generates only the user sets
that need to be considered.

The algorithm works as follows. First of all, we sort all users
based on the number of permissions they have, in decreasing or-
der, and assign each user an index, that is, users are listed as
u0, · · · , un−1. If 0 ≤ i < j ≤ n − 1, then ui has at least as
many permissions as uj . By definition of dominance, ifui dom-
inates uj , then either i < j or ui and uj have exactly the same
set of permissions. Secondly, we use an index e that initially has
value s−1. We generate the first size-s set {u0, · · · , ue}, and then
increase the index e by one each time and generate all user sets that
include ue and are not dominated by any other set generated be-
fore. A key observation is that we only need to generate user sets
that have the closure property. We now explain this observation.

Definition 5 (Closure Property). Given a set of users U =
{u0, · · · , un−1}, we say a set A ⊆ U has the closure property
if and only if for any uk ∈ A, and any ui ∈ U such that i < k and
ui dominates uk, we have ui ∈ A.

In other words, if a set A has the closure property, then any user
that dominates a user in A and comes before that user must also be
in A. The relationships between the closure property and the set
dominance relation are established in the following two lemmas.



Lemma 8. LetA be a size-s user set that satisfies the closure prop-
erty and let e be the index of the user with largest index in A, then
there is no size-s subset of {u0, u1, · · · , ue−1} that dominates A.

PROOF. Because A satisfies the closure property, thenue and
all users among {u0, u1, · · · , ue−1} that dominate ue are also in
A. Let k be the number of users in {u0, u1, · · · , ue−1} that dom-
inate ue, then A has k + 1 users that dominate ue (including ue
itself). By the definition of set domination, any set that dominates
A must have at least k + 1 users that dominate ue. Whereas any
subset of {u0, u1, · · · , ue−1} has at most k users that dominate ue.
Therefore, no subset of {u0, u1, · · · , ue−1} dominates A.

Lemma 8 shows that ifA satisfies the closure property, then none
of the sets that have been considered so far dominates A, so A
needs to be considered.

Lemma 9. Let A be a size-s user set that does not satisfy the clo-
sure property and let e be the index of the user with largest index in
A, then there exists a size-s subset of {u0, u1, · · · , ue−1, ue} that
dominates A and satisfies the closure property.

PROOF. Since A does not have the closure property, there is a
user uk ∈ A such that there exists ui such that i < k, ui dominates
uk, and ui 6∈ A. We change A to A1 by substituting uk with ui,
that is, A1 = A\{uk}∪{ui}. Clearly, A1 dominates A. If A1 still
does not satisfy the closure property, we can repeat the substitution
process until the resulting set has closure property.

Lemma 9 shows that if A does not satisfy the closure property,
then there must exist a set that dominates A and either has been
considered or will be generated and considered, so there is no need
to consider A. The above two lemmas together show that we need
to generate only the users sets that satisfy the closure property.

Dynamic Pruning When an absent set A is generated, we invoke
a SAT solver to evaluate whether after users in A are removed,
the remaining users still satisfy the requirements. If the answer
is “yes”, then we would get back a solution, which consists of d
sets of users such that each set covers all permissions. Let E be
the set of all users that appear in any of the d sets; we call E a
solution set for A. Let U be the set of all users in UP . Clearly,
E ⊆ U − A. If E contains fewer users than U − A, then it is
possible that when another setA′ is generated we haveE∩A′ = ∅.
When this happens, we know that we do not need to consider A′,
as E is also a solution set for A′. Based on this observation, one
can store the solution sets returned by the SAT solver, and use them
to check whether absent sets generated later need to be considered.

Handling the case that t 6= ∞ The reduction to SAT described
above works only when t = ∞. To handle the case that t 6= ∞,
we can use pseudo boolean constraints. In Pseudo-Boolean (PB)
constraints, all variables take values of either 0 (false) or 1 (true).
Constraints are linear inequalities with integer coefficients, for ex-
ample, 2x + y + z ≥ 2 is a PB constraint. A disjunctive clause
encountered in SAT is a special case of PB constraints; for exam-
ple, x ∨ y ∨ z is equivalent to x + y + z ≥ 1. Many SAT solvers
also support PB constraints. In particular, the SAT solver we use,
SAT4J [4], supports PB constraints.

When t 6= ∞, we can translate the problem of determining
whether d sets of size no more than t exist to the satisfiability prob-
lem with PB constraints. The translation works as follows. For
each user ui and each integer j from 1 to d, we have a proposi-
tional variable vi,j . This variable is true if the i’th user is assigned
to the j’th group. Then we have the following three kinds of con-
straints. The first kind ensures that all permissions are covered:

For each permission p in P , let ui1 , ui2 , · · · , uix be the users who
are authorized for the permission p. Then, for each j from 1 to d,
we add the constraint vi1,j + · · · + vix,j ≥ 1. There are |P | · d
of such constraints. The second kind ensures that each set con-
tains at most t users: for each j from 1 to d, we add the constraint
v0,j + v1,j + · · ·+ vn−1,j ≤ t. There are d such constraints. The
third kind ensures that no user is selected in two groups: For each
user i, add the constraint vi,1 + · · · + vi,d ≤ 1. There are n such
constraints, where n is the number of users.

4.2 Implementation and Evaluation

We have implemented the algorithm described in Section 4.1,
and performed several experiments using randomly generated in-
stances. Our goals of implementing the algorithm and performing
these experiments are to understand the effectiveness of the prun-
ing techniques developed in Section 4 and to understand how well
the algorithm scales with different parameters.

The implementation of our algorithm was written in Java. We
use SAT4J [4], an open source satisfiability library in Java. Exper-
iments were carried out on a PC with an Intel Pentium 4 CPU run-
ning at 3.2 GHz with 1 GB of RAM running Microsoft Windows
XP Professional 2002. Our time units are milliseconds. In this sub-
section, n, s and d denote the number of total users, the number of
users that may be absent, and the number of disjoint sets of users
we seek after the removal a set of users respectively. The method-
ology that we use in generating testing instances is explained in
Appendix B.

Our experimental results show that our algorithm is able to solve
nontrivial size of RCP instance in reasonable amount of time. For
example, our implementation spent around 500ms on instances
with 60 to 100 users, 10 permissions, s = 3 and d = 6; and around
2 seconds on instances with 80 to 100 users, 10 permissions, s = 3
and d = 4. We discuss our observations from the experiments in
the rest of this section.

The algorithm scales reasonably well with n when d is small;
however when d is over about 8, the algorithm stops scaling.
The running time of the algorithm depends on the total number of
absent sets that need to be examined and the time it takes for the
SAT solver to solve each SAT instance. The time spent in the SAT
solver is greatly influences by d, which is the number of distinct
sets of users we seek after an absent set of users is removed. In
Figure 3, we plot the running time of the algorithm for cases in
which the instance is true, for increasing n (number of users) and
d. We observe that up to a particular value for d (7 in this case), the
algorithm scales well as n increases. For example, for n = 100 and
d = 6, the algorithm takes only about 1.7 seconds. However, as d
becomes larger, the algorithm stops scaling. A major reason is that,
as d increases beyond a certain threshold (8 in our case), each SAT
instance that is generated is time-consuming for the SAT solver to
solve. Consequently, lots of time is spent in the SAT solver, which
results in increase of running time of our algorithm. This threshold
of around 8 seems to hold for many other experiments we have
performed.

Static pruning is very effective Table 1 shows the effect of static
pruning for increasing values of n (number of users) and s (size
of absent sets). While static pruning always reduces the number of
absent sets to be considered, its effect is especially pronounced for
large values of n and s. For example, for n = 100 and s = 8, we
see a reduction of 7 orders of magnitude in the number of absent
sets that need to be considered. We point out also that the effect
of static pruning is increasingly pronounced for larger values of n
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Figure 3: This graph shows the effect on running time (in milliseconds) as the number of users n and the number of disjoint sets d
increase. The size of absent sets is 3 and there are 10 permissions. The value of n increases from 40 to 100 and the value of d increases
from 2 to 7. For smaller values of n (say, n = 40), increasing d has almost no effect on the running time so long as d is no larger than
7. The reason is that relatively few absent sets need to be considered. However, for larger values of n (say, n = 90), increasing d has
a pronounced effect on the running time.

when s is constant. For example, for s = 6 and increasing n from
40 to 100, the reduction in the number of absent sets that need to
be considered improves from a difference of 3 orders of magnitude
to 6. For a fixed number of permissions (10 in this case), occur-
rences of dominance may increase as n increases (because there
are likely more users who have a lot of permissions that dominate
other users). This explains why the number of absent sets after
pruning is fewer, for example, for s = 4, n = 100 (640 absent
sets) than for s = 4, n = 40 (1042 absent sets).

Dynamic pruning is not effective The basic idea of dynamic
pruning is to store, for each absent set A, the set E of users that
are used in the solution returned by the SAT solver. When encoun-
tering another absent A′, we check whether A′ ∩ E = ∅; if so,
then we can skip A′. Somewhat unexpected for us, it turns out that
dynamic pruning is not effective. In fact, using dynamic pruning
is often slower than without dynamic pruning. After analyzing this
effect, the reason became clear. Dynamic pruning adds additional
processing time for each absent set. It is cost effective only when
invoking the SAT solver is expensive so that it is worthwhile to take
more effort to further decrease the number of absent sets needed to
be examined. However, when invoking the SAT solver is expen-
sive, i.e., when it is difficult to findd mutually disjoint sets of users
such that each set has all permissions, the solution returned by the
SAT solver likely includes all users that are not in A, which means
that this solution set will not be able to prune any other absent set.

5. ON THE CONSISTENCY OF
RESILIENCY AND SEPARATION
OF DUTY POLICIES

As we have discussed in the introduction, resiliency policies are
a natural complement to traditional safety policies in access con-
trol. Consequently, a question arises regarding the consistency of
resiliency policies with other policies. In this section, we explore
the co-existence of resiliency policies with static separation of duty
(SSoD) policies.

The intent of an SSoD policy is to preclude any group of users

from possessing too many permissions. We adopt the concrete for-
mulation of such policies from Li et al. [14]. An SSoD policy
is of the form ssod〈P, k〉, where P is a set of permissions and
1 < k ≤ |P | is an integer. An access control state satisfies the
policy if there exists no set of fewer than k users that together pos-
sess all permissions in P . In the policy ssod〈P, k〉, P denotes the
set of permissions that are needed to perform a sensitive task, and
k denotes the minimal number of users that are allowed to perform
the task. If the policy is satisfied, then no set ofk − 1 users can
together perform the task, because they do not have all the permis-
sions; thus at least k users need to be involved, achieving the goal
of separation of duty. For example, the policy ssod〈{p1, p2}, 2〉
means that no single user is allowed to have both p1 and p2.

In many cases, it is desirable for an access control system to have
both resiliency and SSoD policies. If an access control system has
only resiliency policies, then they can be satisfied by giving all per-
missions to all users, resulting in each single user can perform any
task. Similarly, if an access control system has only SSoD policies,
then they can be satisfied by not giving any permission to any user,
resulting in no task can be performed. It is clear that neither kind of
policies by itself is sufficient to capture the security requirements.
When both kinds of policies coexist, safety and functionality re-
quirements can all be specified.

Due to their opposite focus, resiliency policies and separation of
duty policies can conflict with each other. For example, a sepa-
ration of duty policy ssod〈P, 2〉 requires that no user possess all
permissions in P . A resiliency policy rp〈P, s, d, 1〉 requires the
existence of a user that has all permissions in P . Clearly, the two
policies cannot be satisfied simultaneously. We formally define our
notion of consistency amongst such policies in the following defin-
ition.

Definition 6. Given a set F of resiliency and separation of duty
policies, the policies in F are consistent if and only if there exists
an access control state UP such that UP satisfies every policy in
F . Determining whether F is consistent is called the Policy Con-
sistency Checking Problem (PCCP).

The following lemma asserts that the actual value of s and d
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Table 1: A table that shows that static pruning is effective. The columns are values for n (number of users) and rows are values for s
(size of the absent set). The number of permissions is 10. For each cell in the table, the entry above the dotted line is the number of
absent sets that need to be considered with static pruning in effect, and the number below the dotted line is the number of absent sets
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). We observe that the effect of static pruning is pronounced, especially for large values of

n and s. There is always an improvement of at least 1 order of magnitude, and when n = 100 and s = 8, there is an improvement of
7 orders of magnitude.

in a resiliency does not affect its compatibility with SSoD poli-
cies. This enables us to replace all resiliency policies in the form
of rp〈Pi, si, di, ti〉 in F with the special form rp〈Pi, 0, 1, ti〉 when
studying PCCP〈F 〉. This greatly simplifies the problem.

Lemma 10. F is a set of policies and R = rp〈P, s, d, t〉 ∈ F . Let
R′ = rp〈P, 0, 1, t〉 and F ′ = (F − {R}) ∪ {R′}. F is consistent
if and only if F ′ is consistent.

PROOF. It is clear that if F is consistent then F ′ is consistent. In
the following, we prove that if F ′ is consistent then F is consistent.
Assume that state UP ′ satisfies all policies inF ′. UP ′ satisfying
R′ implies that there is a set U of no more than t users together
have all permissions in P . We then construct a new state UP by
adding s+ d− 1 copies of all users in U to UP ′. Note that adding
copies of existing users in UP ′ will not lead to violation of SSoD
policies in F ′. In this case, UP satisfiesR plus all policies in F ′.
In other words, UP satisfies all policies inF and F is consistent.

The following theorem gives the computational complexity re-
sults about general cases of PCCP. Observe that the case with
one SSoD policy and an arbitrary number of resiliency policies is
coNP-hard, and the case with one resiliency policy and an arbi-
trary number of SSoD policies is NP-hard. Therefore, it is un-
likely that the general case is in NP or in coNP; however, we
show that the problem is in NP

NP.

Theorem 11. The computational complexities for PCCP are as
follows:

1. PCCP 〈1, n〉 is coNP-hard, where PCCP 〈1, n〉 denotes
the subcase that there is a single SSoD policy, and an arbi-
trary number of resiliency policies.

2. PCCP 〈m, 1〉 is NP-hard, where PCCP 〈m, 1〉 denotes the
subcase that there is an arbitrary number of SSoD policies,
and a single resiliency policy.

3. PCCP 〈m,n〉, i.e., the most general case of PCCP, is in
NP

NP.

The proof for Theorem 11 is in Appendix C. It is of course
possible that there are special cases of PCCP that are efficiently
solvable. Detailed analysis of the tractable subcases of PCCP is
beyond the scope of this paper.

6. RELATED WORK
To our knowledge, there is no prior work in resiliency policies in

the context of access control. Prior analysis work in access control
deals mostly with safety and security analysis, and separation of
duty.

Simple safety analysis, i.e., determining whether an access con-
trol system can reach a state in which an unsafe access is allowed,
was first formalized by Harrison et al. [9] in the context of the well-
known access matrix model [8, 13], and was shown to be undecid-
able in the HRU model [9]. Following that, there have been various
efforts in designing access control systems in which simple safety
analysis is decidable or efficiently decidable, e.g., the take-grant
model [17], the schematic protection model [22], and the typed ac-
cess matrix model [24]. Koch et al. [11] considered safety in RBAC
with the RBAC state and state-change rules posed as a graph for-
malism [12]. Li et al. [15] proposed the notion of security analysis
which generalizes safety analysis; it was considered in the context
of a trust management framework. Security analysis has since been
considered also in the context of RBAC [16].

Separation of duty (SoD) has long existed in the physical world,
sometimes under the name “the two-man rule”, for example, in the
banking industry and the military. To our knowledge, in the infor-
mation security literature the notion of SoD first appeared in Saltzer
and Schroeder [20] under the name “separation of privilege.” Clark
and Wilson’s commercial security policy for integrity [2] identified
SoD along with well-formed transactions as two major mechanisms
of fraud and error control. Separation of Duty policies were also
studied in [1, 3, 7, 10, 14, 18, 21, 23, 26].

Another related concept is availability policies in [15, 16], which
asks whether a user always possesses certain permissions across
state changes. In that work, checking whether an availability policy
is satisfied in a state is straightforward; the challenges arises from
the fact that the access control state may be changed by administra-



tive operations, and the possible state space may be infinite. Unlike
availability policies, resiliency policies such as the ones we con-
sider in this paper do not specify a permission requirement on any
individual user; rather, they specify requirements about tolerating
absent users and the overall ability of groups of users to perform
critical tasks. Consequently, resiliency policies are more powerful
and checking whether a state satisfies a resiliency policy is a chal-
lenging problem in itself.

7. CONCLUSION AND FUTURE WORK
We have introduced the notion of resiliency policies in the con-

text of access control systems. Unlike most existing work on pol-
icy analysis in access control, resiliency policies are about enabling
access rather than restricting access. Resiliency policies are partic-
ularly useful when evaluating whether the access control configu-
ration of a system is ready for emergency response. To the best of
our knowledge, such resiliency policies have not been previously
studied in access control.

We have shown that the problem of checking whether an ac-
cess control state satisfies a resiliency policy in the general case
is intractable (NP-hard), and is in the Polynomial Hierarchy (in
coNP

NP). We have shown also that several subcases of the prob-
lem remain intractable. Notwithstanding these intractability re-
sults, many instances that will be encountered in practice may be
efficiently solvable. In an effort to seek an efficient solution for
practical instances of the problem and to understand what the hard
instances are, we have designed and implemented an algorithm for
RCP. Our algorithm takes advantages of an effective static pruning
approach and the existence of fast SAT solvers. Our experimental
results have shown that the algorithm is capable to solve RCP in-
stances of nontrivial sizes in a reasonable amount of time. We have
also explored the co-existence of resiliency policies with static sep-
aration of duty (SSoD) policies. In particular, we have presented
several computational complexity results on checking whether a
set of resiliency policies and SSoD policies are consistent.

Open problems To our knowledge, this is the first work in access
control research to clearly formulate properties on enabling access,
rather than restricting access. Because this work opens up a new
area, even though we have presented a number of results in this
paper, many more interesting problems remain open. One fruit-
ful area of future research lies in the interaction between resiliency
policies and other policies. In the study of the consistency prob-
lem with SSoD policies and resiliency policies, we do not consider
the total number of available users as a limiting factor. In practice,
the number of users in any organization is bounded. This makes
it harder to satisfy both resiliency policies (which require users to
possess more permissions) and SSoD policies (which require users
to possess fewer permissions). Hence, it would be interesting to
consider the consistency problem with an upper bound on the num-
ber of users in the access control state.

In addition to resiliency and separation of duty policies, other
kinds policies may exist. For example, an assignment range policy
states that a set of permissions can be possessed only by a certain
set of users. This may be motivated by the fact that not all users
are qualified to receive these permissions. For example, the per-
mission to install software on campus-wide network servers may
be assigned only to qualified and authorized staff, and should not
be given to others. The interaction among resiliency policies, SSoD
policies, and assignment range policies is an interesting and chal-
lenging problem for future work.

Another open area lies in designing techniques for enforcing re-
siliency policies: if a state does not satisfy an existing set of poli-

cies, how do we alter the state to make it satisfy these policies?
This problem seems to be particularly interesting in the context of
Role-Based Access Control systems, where one changes the role
assignments of users to satisfy existing policies. Another approach
for achieving resiliency is to use delegation; that is, when a user
is absent, some of his permissions can be automatically and tem-
porarily assigned to one or more other users. However, we may
require such delegation to satisfy other coexisting policies such as
separation of duty.
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APPENDIX
A. BACKGROUND ON ORACLE TURING

MACHINES AND POLYNOMIAL HIER-
ARCHY

Oracle Turing Machines An oracle Turing machine, with oracle
L, is denoted as ML. L is a language. ML can use the oracle to
determine whether a string is in L or not in one step. More pre-
cisely, ML is a two-tape deterministic Turing machine. The extra
tape is called the oracle tape. ML has three additional states: q?

(the query state), and qyes and qno (the answer states). The compu-
tation of ML proceeds like in any ordinary Turing machine, except
for transitions from q?. When ML enters q?, it checks whether the
contents of the oracle tape are in L. If so, ML moves to qyes . Oth-
erwise, ML moves to qno . In other words, ML is given the ability
to “instantaneously” determine whether a particular string is in L
or not.

Polynomial Hierarchy The polynomial hierarchy provides
a more detailed way of classifying NP-hard decision prob-
lems. The complexity classes in this hierarchy are denoted by
ΣkP,ΠkP,∆kP, where k is a nonnegative integer. They are
defined as follows:

Σ0P = Π0P = ∆0P = P,
and for all k ≥ 0,

∆k+1P = P
ΣkP,

Σk+1P = NP
ΣkP,

Πk+1P = co-Σk+1P = coNP
ΣkP.

Some classes in the hierarchy are

∆1P = P , Σ1P = NP , Π1P = coNP,
∆2P = P

NP, Σ2P = NP
NP,

Π2P = coNP
NP.

B. METHODOLOGY FOR GENERATING
TESTING INSTANCES

Our goals of implementing the algorithm and performing experi-
ments are to understand the effectiveness of the pruning techniques
developed in Section 4 and to understand how well the algorithm
scales with different parameters. To achieve such goals, We try to
generate instances to approximate realistic instances. We gener-
ate instances for testing using combinations of the following ap-
proaches.

• Purely Random: For each permission pi and user uj , we as-
sign pi to uj with a certain probability. The probability is an
adjustable parameter which is called the density parameter.
• With Constraints: Often times, an access control system may

include (explicit or implicit) constraints that restrict user-
permission assignment. For example, there may be require-
ment that no user is authorized for permissions pi and pj at
the same time. To model this aspect, mutual exclusion con-
straints among permissions are randomly generated. Two per-
missions are mutually exclusive if no user can be authorized
for both permissions. The total number of pairs of permis-
sions is p(p − 1)/2. The number of constraints to be gener-
ated is determined by an adjustable parameter that specifies
the ratio of the the constraints to p(p− 1)/2. After the gener-
ation of constraints and user-permission assignment, if a user
is assigned to two permissions that are mutually exclusive, we
randomly remove one permission from the assignment.
• Density Variation: In situations where resiliency is an issue,

it is likely that some permissions are assigned only to a small
number of people. To model these situations, we assign dif-
ferent permissions with different densities. We have two pa-
rameters that specify the lower bound and the upper bound
for the permission assignment densities respectively. The se-
quence of all permissions p1, · · · , pm will be assigned with
nondecreasing density, with p1 being assigned with the lower
bound density and pm with the upper bound density.

Finally, if a user is not assigned any permission, we randomly
assign one permission to the user, so that we do not have a useless
user in the generated instance.

C. PROOFS FOR THEOREM 11
Without loss of generality, we assume that for any static separa-

tion of duty policy ssod〈P, k〉, we have k ≤ |P |. We also assume
that in any resiliency policy rp〈P, s, d, t〉, we have either t =∞ or
t ≤ |P |.



Lemma 12. PCCP 〈1, n〉 is coNP-hard, where PCCP 〈1, n〉 de-
notes the subcase that there is a single SSoD policy, and an arbi-
trary number of resiliency policies.

PROOF. We reduce the NP-complete SET COVERING prob-
lem [19] (also referred to as MINIMUM COVERING problem in [6])
to the complement of PCCP. In SET COVERING, we are given a
set X = {e1, · · · , em}, n subsets of X: X1, . . . , Xn, and a bud-
get b, and need to determine whether the union of b subsets is the
same as X . Given an instance of the SET COVERING problem, we
construct one SSoD policy S = ssod〈P, b + 1〉 and b rp policies
Ri = rp〈Pi, 0, 1, 1〉 (1 ≤ i ≤ b), where P = {p1, · · · , pm} cor-
responds to X and Pi = {pj | ej ∈ Xi} corresponds to Xi. Let
F = {S,R1, · · · , Rn}. In the following, we prove that F is in-
consistent if and only if the answer to the SET COVERING problem
is “yes”.

On the one hand, if F is inconsistent, there does not exist any
state that satisfies all polices inF . In other words, if a state satis-
fies all resiliency policies inF , there exists no more than b users
in the state who together have all permission in P . Let UP be a
state with n users u1, · · · , un such that (ui, pj) ∈ UP if and only
if pj ∈ Pi. It is clear that UP satisfies all resiliency policies inF ,
and hence there exist no more than b users together have all per-
missions in P . In other words, there exist no more than b elements
in {P1, · · · , Pn} whose union is P . Thus, the answer to the set
covering problem is “yes”.

On the other hand, if the answer to the set covering problem is
“yes”, then there exist no more than b elements in {P1, · · · , Pn}
whose union is P . For any state UP that satisfies all resiliency
policies in F , let U be the set of users that satisfy at least one re-
siliency policy. u ∈ U if and only if there exists Pi such that u has
all permissions in Pi. In this case, there exist no more than b users
in U who together have all permissions in P . Hence, UP does not
satisfy S, which implies that no state satisfies all policies inF .

Lemma 13. PCCP 〈m, 1〉 is NP-hard, where PCCP 〈m, 1〉 de-
notes the subcase that there is an arbitrary number of SSoD poli-
cies, and a single resiliency policy.

PROOF. We reduce the NP-complete SET SPLITTING problem
to PCCP〈F 〉. In the SET SPLITTING problem, we are given a set
X = {e1, · · · , en}, m subsets of X: X1, . . . , Xm, and need to
determine whether there exist Y1 and Y2 such that Y1∪Y2 = X and
there does not exist Xi (1 ≤ i ≤ m) such that Xi ⊆ Y1 or Xi ⊆
Y2. Given an instance of the SET SPLITTING problem, construct
a resiliency policy R = rp〈P, 0, 1, 2〉 and m SSoD policies Si =
ssod〈Pi, 2〉 (1 ≤ i ≤ m), where P = {p1, · · · , pn} corresponds
to X and Pi = {pj | ej ∈ Xi} corresponds to Xi. Let F =
{R,S1, · · · , Sm}. In the following, we prove that F is consistent
if and only if the answer to the SET SPLITTING problem is “yes”.

On the one hand, if F is consistent, then there exists a state UP

that satisfies all policies inF . UP satisfying R implies that there
exist two users u1 and u2 in UP such that u1 and u2 together
have all permissions in P . Furthermore, UP satisfying Si implies
that neither u1 nor u2 has all permissions in Pi. Let Y1 = {ei |
(u1, pi) ∈ UP} and Y2 = {ei | (u2, pi) ∈ UP}. We have
Y1 ∪ Y2 = X and neither Y1 nor Y2 is a superset of any Xi. The
answer to the set splitting problem is “yes”.

On the other hand, if the answer to the set splitting problem is
“yes”, then such Y1 and Y2 exist. We construct a state UP contain-
ing only two users u1 and u2 such that (ui, pj) ∈ UP (1 ≤ i ≤ 2)
if and only if pj ∈ Yi. Since Y1 ∪ Y2 = X , u1 and u2 together
have all permissions in P . Furthermore, since there does not exist
Xi such that Xi is a subset of Y1 or Y2, neither u1 nor u2 has all
permissions in Pi, which implies that UP satisfiesSi. Therefore,
UP satisfies all policies inF .

Lemma 14. Let F = {S1, S2, · · ·Sm, R1, · · · , Rn}, where Si =
ssod〈Pi, ki〉 (1 ≤ i ≤ m) and Rj = rp〈Qj , sj , dj , tj〉 (1 ≤ j ≤
n). PCCP〈F 〉 is in NP

NP.

PROOF. We construct a set of policies F ′ by replacing every
Ri (1 ≤ i ≤ n) in F with rp〈Pi, 0, 1, ti〉. From Lemma 10, F is
consistent if and only if F ′ is consistent.

We construct a nondeterministic Oracle Turing machine M that
makes use of an NP oracle machine to determine whether F ′ is
consistent. M first nondeterministically selects an integera such
that max(k1, · · · , km) ≤ a ≤ Σn

i=1|Qi| and then generates a
users. Note that at least max(k1, · · · , km) users are needed to sat-
isfy all SSoD policies in F ′, and at most Σn

i=1|Qi| users are needed
to satisfy all resiliency policies in F ′. (The state can have more than
Σn
i=1|Qi| users, but in order to show that all resiliency policies in

F ′ are satisfied, at mostΣn
i=1|Qi| users need to be involved.) Then

M constructs a state UP by nondeterministically assigning a subset
of Q to u, where Q =

⋃n

i=1
Qi is the set of all permissions appear

in the resiliency policies. Next, M nondeterministically construct
n sets U1, · · · , Un of users in UP , and then, for every i ∈ [1, n],
checks whether users in Ui together have all permissions in Pi and
|Ui| ≤ ti. If the answer is “no”, then M returns False. Finally,
M invokes the NP oracle to to check whether UP violates any
SSoD policy. (In order to prove that a state violates a static separa-
tion of duty policy ssod〈P, k〉, we just need to present a set of no
more than k users in the state who together have all permissions in
P . Therefore, checking whether a state violates an SSoD policy is
in NP.) If the oracle machine answers “yes”, M returns False.
Otherwise, M returns True, which means that UP satisfies all
policies in F ′ and hence F ′ is consistent. It is clear that M termi-
nates in polynomial time if the oracle machine returns an answer
instantaneously. Therefore, PCCP is in NP

NP in general.


