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Abstract

An important issue any organization or individual has toefaghen managing data containing sensitive
information, is the risk that can be incurred when releasingh data. Even though data may be sanitized before
being released, it is still possible for an adversary to metict the original data using additional informationghu
resulting in privacy violations. To date, however, a sysi@mapproach to quantify such risks is not available. In
this paper we develop a framework, based on statisticabibectheory, that assesses the relationship between the
disclosed data and the resulting privacy risk. We model ttoblpm of deciding which data to disclose, in terms
of deciding which disclosure rule to apply to a database. ¥é&ess the privacy risk by taking into account both
the entity identification and the sensitivity of the diseldsnformation. Furthermore, we prove that, under some
conditions, the estimated privacy risk is an upper boundhentitue privacy risk. Finally, we relate our framework
with the k-anonymity disclosure method. The proposed framework make assumptions behirganonymity
explicit, quantifies them, and extends them in several ahtlirections.

I. INTRODUCTION

Data sharing has important advantages in terms of improeedces and business, and also for the
society at large, such as in the case of homeland securityet#sr, unauthorized data disclosures can lead
to violations of individuals’ privacy, can result in finaatiand business damages as in the case of data
pertaining to enterprises, or can result in threats to natisecurity as in the case of sensitive geospatial
data.

Preserving the privacy of such data is a complex task driveriwm important privacy goals: (i)
preventing the identification of the entity relating to thegal and (ii) preventing the disclosure of sensitive
information. Entity identification occurs when the relehseformation makes it possible to identify the
entity either directly (e.g., by publishing identifiersdilSSNs), or indirectly (e.g., by linkage with other
sources). Sensitive information includes informatiort tmaist be protected by law such as medical data,
or is deemed sensitive by the entity to whom the data pertdmshe latter case, data sensitivity is a
subjective measure whose nature may differ across entities

In many cases, a careful evaluation needs to be carried oatdier to assess whether the privacy
risk associated with the dissemination of certain data eigis the benefits of such dissemination. As
pointed out in the recent guidelines issued by the [20], “8@mganizations have curtailed access without
assessing the risk to security, the significance of consemseassociated with improper use of the data, or
the public benefits for which the data were originally madailable. Contradictory decisions and actions
by different organizations easily negate each organiaatiactions.” [19] introduces a way for providing
privacy protection while constructing algorithms thatrleanformation from disparate data and introduces
the notion of privacy-enhanced linking. [5] shows that itngpossible to achieve privacy with respect to
worst-case external knowledge.

To date, however, most of the work related to data privacyfbessed on how to transform the data
so that no sensitive information is disclosed or linked tecsfic entities. Because such techniques are
based on data transformations that modify the original eath the purpose of preserving privacy, the
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Fig. 1. Adversarial framework for identity discovery

main focus of such approaches has been the tradeoff betvegapdvacy and data quality e.g., [16], [6].
Similar approaches based on output perturbation have begosed by [2] and [3].

An important practical requirement for any privacy solatie the ability to quantify the privacy risk that
can be incurred by the release of certain data. Even thoughnday be sanitized, before being released,
it is still possible for an adversary to reconstruct the ioad data by using additional information that
may be available, or by record linkage techniques [23]. Aspide adversarial scenario is depicted in
Figure 1: an attacker exploits data released by an orgamizhy linking it with previously obtained data
concerning the same entity to gain an enhanced insight dbsubrganization. Indeed, this insight would
help the attacker narrow down possible mismatches whencibngpared against a public dictionary, and
consequently raising the identification risk. The goal af thork presented in this paper is to develop,
for the first time, a comprehensive framework for quantifysuch privacy risk and supporting informed
disclosure policies.

The framework we propose is based on statistical decisienrythand introduces the notion of a
disclosure rule that is a function representing the datalaisre policy. Our framework estimates the
privacy risk by taking into account a given disclosure rulel gpossibly the knowledge that can be
exploited by the attacker. It is important to point out that ramework is able to assess privacy risks
also when no information is available concerning the knogée or dictionary that the adversary may
exploit. The privacy risk function naturally incorporatesth identity disclosure and sensitive information
disclosure. We introduce and analyze different shapeseoptlvacy risk function. Specifically, we define
the risk in the classical decision theory formulation anthie Bayesian formulation, for either the linkage
or the no-linkage scenario. We prove several interestiaglt® within our framework including that under
reasonable hypotheses, the estimated privacy risk is aerupgund on the true privacy risk. Finally, we
gain insight by showing that the privacy risk is a quantatiramework for exploring the assumptions
and consequences éfanonymity.

II. BASICS OFSTATISTICAL DECISION THEORY

Statistical decision theory [21] offers a natural framekvéor measuring the quantitative effect of
information disclosure. As the necessary modifications exfigion theory are relatively minor, we are
able to adapt a considerable array of tools and results freen 50 years of impressive research. We



describe below only the principal concepts of this theoriggnraditional abstract setting, and then proceed
to apply it to the information disclosure problem.

Statistical decision theory deals with the abstract prolbdé making decisions in an uncertain situation.
Decisions, their properties and the resulting effect aeciied formally, enabling their quantitative and
rigorous study. The uncertainty is encoded by a parantetdystractly called “a state of nature” which
is typically unknown. However, it is known th@t belongs to a se®, usually a finite or infinite subset
of R!. The decisions are being made based on a sample of obses/étio. .., z,), z; € X and are
represented via a functiah: X" — A where A is an abstract action space. The functiois referred to
as a decision policy or decision rule.

A key element of statistical decision theory is that theesta#t natured governs the distributiop, ()
that generates the observed data, ..., z,). Given the state of natur® the loss incurred by taking an
actiono(xy,...,x,) € A is determined by a non-negative loss function

(: Ax 0O —[0,+00] or  l(0(xy,...,x,),0) > 0.

We sometime denoté&(§(xy,...,z,),0) asde(z1,...,x,) when we wish to emphasize it as a function,
parameterized by, of the observed data.

Rather than measuring the loss incurred by a specific decrsie and a specific set of observations,
it makes sense to consider the expected loss, or risk, wherexpectation is taken over observations
being generated from the distribution generating the gat®enoting expectations in general as

) [y p(@)h(z)dz  continuousz
B () = {erx p(x)h(z) discretex

the expected loss or risk associated with the decisiond@edd € O is

R(6,0) = Epyz,...an)(L(0(21, ..., 20),0)) = B pp(an) (L(0(21, ..., 20),0))

where the last equality assumes independence of. ., x,,.

The two main statistical paradigms, classical statistivd Bayesian statistics, carry over to decision
theory. In the classical setting of decision theory, th& %4, ) is the main quantity of interest and its
properties and relations to different decision rudeand state® are studied. The Bayesian approach to
decision theory assumes that another piece of informaticavailable: our prior beliefs concerning the
possibility of various states of natufec ©. This prior belief is represented by a prior probability)
over possible states leading to the Bayes risk

R(6) = Ey9)(R(6,0)) = Ego){ Epy(ar,..an) L6 (21, -, 20),0)) - 1)

Much has been said in the statistics literature over theroveatsy between the classical and the Bayesian
points of view. Without going into this discussion, we simploint out that an advantage of the Bayes
risk is that we can compare different policiég é, based on a single number - their associated risks
R(61), R(62) leading to a partial order on all possible policies. An adage of the classical framework
is that there is no need for a prior distributignt which is often hard or impossible to specify. In both
cases, we need to have a precise specification of the pratigbihodelp,(z), a set of possible states
of nature© and a loss functiod. While p, and © depend on modeling assumptions or estimation from
data, the loss functionis typically elicited from a user and its subjective qualigflects the personalized
nature of risk-based analysis and decision theory.

[1l. PRIVACY RISK FRAMEWORK

As private information in databases is being disclosedeaindd effects occur such as privacy violations,
financial loss due to identity theft, and national securigdezhes. To proceed with a quantitative formalism
we assume that we obtain a numeric description, referred toss, of that undesired effect. The loss may



be viewed as a function of two arguments (i) whether the dssad information enables identification and
(ii) the sensitivity of the disclosed information.

The first argument of the loss function encapsulates whefieedisclosed data can be tied to a specific
entity or not. Consider for example the case of a hospitalakéng a list of patients’ gender and whether
they have a certain medical condition or not. Due to the preseof medical information, such data
is clearly sensitive. However, the data sensitivity doesprovide any information about the chance of
tying the disclosed data to specific individuals and as altréisel patients maintain their anonymity and
no harmful effect is produced. The clear distinction betwedata sensitivity and identification, and their
combination via a probabilistic framework, is a centraltpafrour framework. The quantification of the
identification probability depends on (i) the disclosedagldi) available side information such as national
archives or a phone-book, and (iii) an attacker model.

In contrast to the identification probability, the secongluanent of the loss function concerning the data
sensitivity depends on the entity associated with the da&a such as annual income, medical history,
internet purchases etc. relating to specific users may lyesegisitive to some but only marginally sensitive
to others. Such personalized or customized sensitivitysomea are important to take into consideration
when measuring harmful effects and deciding on a disclopotiey. Clearly, ignoring it may lead to
offering insufficient protection to a subset of people wifglying excessive protection to the privacy of
another subset. It is worth pointing out that we do not drawsértttion between sensitive attributes and
quasi-identifiers [13], [24], [12]. Rather, our frameworiopides more flexibility by enabling the owners
of the data to supply the sensitivity of their attributestsit discretion.

We assume that the data resides in a relational databaséheitklational schemed,, ..., A,,), where
each attributed; takes values in a domain Dewhich includes a possible missing value symhbolThe
space

X = Dom; x Dom, x --- x Dom,,

represents the set of all possible records, both origiralrds residing in a database and disclosed records.
We make the following assumption for the sake of notatiomap$icity, none of which are crucial to the
presented framework. First, we assume that one of the s, uniquely identifies the entity associated
with the record. This attribute will typically not be dissked, but is important for notational convenience.
Second, we assume that the symbole Dom; for all 7, corresponds to both a missing value in the
database and to attribute values that are suppressed dherdjsclosure procedure. Suppression of the
(non-missing)j-attribute in a recordy € X may thus be represented by a functibnX — X for which
[0(y)]; = L. Finally, we assume that the spageis sufficiently rich to denote attribute generalizations,
for example

North Ameri ca € DoMeounty

represents a generalization of the country attribute to eenmague concept.

We will usually refer to an arbitrary record asy or z and to a specific record in a particular database
using a subscripte; (note the bold-italic typesetting representing vectoration). The attribute values
of records are represented using the notafign, [x;]; or justz; or z;; respectively (note the non-bold
typesetting). A collection of. records, for example a database containingecords, is represented by
(x1,...,x,) C A"

A. Disclosure Rules and Privacy Risk

Adapting the decision theory framework described in thevipres section to privacy requires relatively
few changes. Instead of decision policiesX™ — A we have disclosure policigs: X — X representing
disclosing the data as i%z) = z, attribute suppression (e.g¢(z)]; = L), or attribute generalization
(e.9.,[6(2z)]; =North Ameri ca).

The state of naturé that influences the incurred logg = (-, 0) is the side information used by the
attacker in their identification attempt. Such side infotioraé is often a public data resource composed



Statistical decision theory

Privacy risk framework |

X Space of abstract data Space of disclosed or stored records

T1y-ee,Tn Available observations Records to be (partially) disclosed;
sampled frompg,,, . determinep(x)

0co Determines the data distributigmy () Side information; unrelated to data

1) Determines abstract action Determines what to disclose
based onzy,...,zn from a single recorde;

¢ Abstract loss; based any, ..., zn, Privacy loss incurred from disclosing(«; )
and the modeb in the presence of the side informatién

R(6,0) Abstract risk associated with decision Privacy risk associated with disclosure rule
rule § and the modeb and side informatior®

R(9) Bayes risk associated with decision rdle| Bayes risk associated with disclosure rdle|

Fig. 2. Similarities and differences between statisticadision theory and the privacy framework

of identities and their attributes, for example a phonekbdde record distribution is the distribution
that generates the disclosed data where we omit the depsmadad since in our case is independent
of the attacker’s side informatiof In the case of disclosing a specific set of recards. . ., x,, that are
known in advance a convenient choice foiis the empirical distributiorp over these records, defined
below.

Definition 1: The empirical distributiorp on X associated with a set of recoras, ..., x, is

_ 1 ¢
p(z) = E Z 1{z:wi}
=1

wherely,_,, is 1if z = z; and 0 otherwise.

Note that expectations undgrreduce to empirical means;(f(x,6)) = ~> ", f(x;,0) and the ex-
pected loss reduces to the average incurred loss with respelisclosingz, ..., z,: E;(ly(d(x))) =

% > o(z;). Taking expectation with respect to distributions othemth can lead to a weighted average
of losses, representing a situation in which some recorelsrare important than others (although this
effect can be more naturally incorporated ifitas described in the Section 11I-C). More generally, in case
of a streaming or sequential disclosure of records gergeffaben a particular distributiomp, we should
compute the expected loss over that distribution in ordestii@in a privacy risk relevant to the situation
at hand.

The following definitions complete the adaptation of stateéd decision theory to the privacy risk setting.
The similarities and differences between these definitemms their counterparts of the previous section
are summarized in Figure 2.

Definition 2: The loss functior! : X x © — [0, +o0c] measures the loss incurred by disclosing the data
d(z) € X due to possible identification based on the side informatien©.

Definition 3: The risk of the disclosure rulé in the presence of side informatighis the expected
loss R(6,0) = Ep»)(£(6(2),0)).

Definition 4: The Bayes risk of the disclosure ruleis R(0) = E,)(R(9,0)) whereg(d) is a prior
probability distribution ono.

B. Identification Probabilities, Data Sensitivity, and ksosunctions

We turn at this point to consider in detail the process of iif@ng the entity represented by the
disclosed record, the data sensitivity, and their relatmrihe loss function. The identification attempt
is normally carried out by the attacker who uses the disdaseordy = é(x) and additional side
information or dictionary whose role is tie the disclosed data to a list of possible ickatel identities.

The specification of the loss functidns typically entity and problem dependent. We can, howewake
significant progress by decomposing the loss into two péijtgshe attacker’s probability of identifying
the data owner based on the disclosed d&ig and side informatio, and (ii) the user-specified data
sensitivity. While the data sensitivity is a subjective sw@@ specified by users, the attacker’s probability
of identifying the data owner should be computed based orsittie informationf and a probabilistic



attacker model. We proceed below with describing a readergdyivation of the attacker’s identification
probability and then proceed with a description of the sgeified data sensitivity function.

Given a disclosed record{x), and available side information or dictionafythe attacker can narrow
down the list of possible identities to the subset of entitiries iné that are consistent with the disclosed
attributesd(x). For example, considet being(first-nane, surnanme, phone-nunber) and
the dictionaryd being a phone-book. The attacker needs only to considelodat entities that are
consistent with the disclosed recaf(r). For example, if there are no missing values and the entiarde
is disclosed i.e.§(x) = =, it is likely that only one entity exists in the dictionaryathis consistent with
the disclosed information. On the other hand, if the attabualue forphone- nunber is suppressed,
the phone-boold may yield more than a single consistent entity, dependinghenpopularity of the
combination {i r st - nanme, sur nane).

Formalizing the above idea we define the binary random viariabwhich equals 1 if the attacker
successfully identified the data owner and 0 otherwise. @katification probabilityp(Z = 1) depends
on the attacker, but in the absence of additional infornmatve may assume that the identification attempt
is a uniform selection from the set of entitiesficonsistent with the disclosédx), denoted by (é(x), 0),

_ oy JIe(o(@), )7t if p(6(x), 6) # 0 _0) = _
p(Z—l)—{O it p(5(z),0) = and p(Z=0)=1-p(Z=1).

The data sensitivity is determined by two user specifiedtfans &, ¥ : X — [0, +oc]. & measures
the harmful effect of disclosing the data assuming that ttiacker’'s identification is successful i.e.
O(x) = L(d(x),0) | {Z = 1}. Similarly, ¥ measures the harmful effect of disclosing the data assuming
that the attacker’s identification was unsuccessfullter) = ¢(6(x),0) | {Z = 0}.

Putting the identification probability and sensitivity fition together, we have that the harmful effect
is a random variable with two possible outcom®s$j(x)) with probability p(Z = 1) and ¥ (5(x)) with
probability p(Z = 0). Accounting for the uncertainty resulting from possiblendfication we define the
loss/(y, ) as the expectation

((0(x),0) = p(Z2 =1) - (d(z)) + p(Z = 0)¥(6(x)).

Allowing ®, ¥ to take on the value-oo enables us to model situations where the data sensitivigp is
high that its disclosure is categorically prohibited Wifd(x)) = +o0) of is prohibited under any positive
identification chance (ifb(6(x)) = +00).

It is often the case that no harmful effect is caused if thacktr’s identification attempt fails leading
to W = 0. For simplicity, we assume this is the case in the remaintitheopaper, leading t6(5(x), 0) =
p(Z =1)®(d(x)). The risk R(d, 8) with respect to the empirical distributighover the disclosed records
is

R(5.6) = By(£(3(2).0) =~ Y

P(d(x:))
n b
i p(3(:),0) 70

|p(0(:), 0)]
and the Bayes risk under the prigf?) is

R(6) = E3(R(5,0)) = %Z ®(0(:)) /@ L@ .oz % d0

or its discrete equivalent i® is a discrete space. Similar expressions can be computbd dgsumption
¥ =0 is relaxed.



C. Parametric Families of Sensitivity Functions

We now present several possible families of expressionthfodata sensitivity functio®. Since® is
defined on the set’ of all possible records, defining it by a lookup table is ingbical for a large number
of attributes. We therefore consider several options feath compact and efficient representations. Given
a disclosed recorg = §(x), perhaps the simplest meaningful form fbris a linear combination of non-
negative weightsv; > 0 over the disclosed attributes

Pi(y)= Y w; )
7y FL
where w; represents the sensitivity associated with the corredpgnaltribute A;. A weight of 400
represents critically sensitive information that may obéy/disclosed if there is zero chance of it leading
to identification.

In some cases, the data sensitivity significantly dependbe@entity associated with the record. In other
words attributesA; may be highly sensitive for some records and less so for eduards. Recalling the
assumption that one of the attributes, gayrepresents a unique identifier, we can construct the falgw
personalized linear sensitivity function

Ba(y) = D Wiy (3)
Jiyi#L
The weights{w, , : j = 1,...,n} should be elicited from the different entities correspogdo the records
or otherwise assigned by the database according to the gnogjuster they belong to. Normalization

constraints such as
vr Z Wy, =C or vr wa <c
j j

can be enforced to provide all entities with similar privgmptection, or to make sure that no single
entity dominates the privacy risk.

There are a number of ways to increase the flexibility of geityi functions beyond linear forms. One
way to do so is by forming linear expressions containirgrder interaction terms, e.g., féar= 2

Ci(y)= Y wit+ Y Y Wik (4)

j>1uy#L J>LyAL h>jaypAL

Expressions containing-order interaction terms use additional weights to capiuteractions of at most
k attributes that are not accounted for in the expressiong3)2)As k increases in magnitude, the class
of functions represented b$ becomes richer and in the case lof= m provides arbitrary flexibility.
However, increasing beyond a certain limit is impractical as both the number ofghts specified by
the users as well as the computational complexity assakiaith ¢, grow exponentially withk.

A possible alternative to the linear sensitivity functi@a multiplicative function

Pu(y)=exp | D wyy | = ] e (5)
Jy;#L Juys#EL
in which case increasing one weight; ; while fixing the others causes the sensitivity to increase
exponentially in contrast to (2)-(4). The precise choicehaf sensitivity functiond (and W is applicable)
ultimately depends on the database policy and entitiesingléo the data. A simple such as (3) or (5)
has the advantage of being easier to elicit and interpret.
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D. Data Suppression and Generalization and the Privacy Risk

A common practice in privacy preservation is to replace datards with suppressed or more general
values [16], [17] in order to ensure anonymity and prevertdisclosure of sensitive data. A disclosure
policy 6 : X — X can suppress an attribute by assigning aymbol to the appropriate attribute i.e.
6(@)]; = L.

Assuming that the spac&’ is rich enough to contain the necessary generalizatiomsbwge value
generalization may be accomplished by assigning a distleakie that is more general than the original
attribute valuex; < [d(x)];. Formally, we assume that Dons a partially ordered setS;, <) whose
smallest elements correspond to non-generalized atrimities and whose single maximum element is
the ultimate generalized value, which we identify with thgpgressed or missing value introduced earlier
1.

The partially ordered set Dgnmay be illustrated using its Hasse diagram in which everyenod
correspond to a member of Dgnand the edges correspond to the covering relatiorcoversy if
y <z andPz : y < z < x [18]. Furthermore when drawing the Hasse diagram we drawergeneral
nodes vertically higher than less general nodes. As an dearmgnsider the attribute value representing
a location or address and several levels of generalizecesaly partial Hasse diagram representing the
partial value generalization hierarchy for this attribigeallustrated in Figure 3. In this particular case,
the Hasse diagram is relatively simple and is graphicallycdbed using a tree structure. More general
examples and properties of partially ordered set may bedfonirj18].

Replacing an attribute value; by a more general valug; i.e. z; < z; increases the set of entities
consistent with that value in the attacker’s dictionérye.

r; 2%, = p((z1,..., 25, ..., 20),0) C p((z1,...,2,...,2m),0) (6)

where p(x, 0) is the set of entities i consistent withxz. Equation (6) indicates that as expected,
generalizing an attribute value (which includes suppossis a special case) reduces the identification
probability p(Z = 1).

Equation (6) together with the assumption that the dataiteatysfunction ¢ assigns smaller values
to more general data ensures that the I6g$x), ) decreases with the amount of data generalization.
The precise constraint ot depends on its parametric form e.g. (2)-(5). For exampléhéncase of a
personalized linear sensitivity (3) the appropriate c@msts on the weights are

1) w, >0

2) W, <wp, Va=<b Vr.
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3) w, = 0.

The last constraint above is not crucial, but it ensures thidy suppressed data have zero sensitivity
O(L,...,L)=0.

In summary, as we generalize or suppress data both the fidatitin probabilityp(Z = 1) and data
sensitivity ®(d(x)) decrease leading to lower log$i(x,0)) and lower risk R(9,8). Considering the
disclosure riskR (9, 0) by itself leads to the conclusion that in order to minimize tisk the data needs
to be completely suppressed or generalized. However, sgon@usion misses the point since it ignores
the benefit obtained from the data disclosure. In order toqgpately appreciate the trade-off between
the risk and benefit associated with private data discloagextend our discussion in the next section
to include a quantification of the benefit associated wittadasclosure.

IV. THE OPTIMAL DISCLOSUREPOLICIES

Apart from incurring a privacy risk, disclosing private datx) has some benefit, or else data would
never be disclosed. We represent this benefit by a utilitgtion v : X — R, whose expectation

U(0) = Epw (u(d()))

plays a similar but opposing role to the rigk(d, 8). While the loss¢(d(x),0) is user specified and
may change from user to user, the utility is typically specifby the disclosing organization or the data
recipient and is not user dependent.

The relationship between the risk and expected utility isestatically depicted in Figure 4 which
displays disclosure policiesby their 2-D coordinate$R, U) representing their risk and expected utility.
The shaded region in the figure correspond to the set of abiedisclosure policies i.e. every coordinate
(R,U) in that region correspond to one or more policderealizing it. The unshaded region correspond
to un-achievable policies i.e. there does not exist @amyith the corresponding risk and expected utility.
The vertical line in the figure correspond to all rules whosk s fixed at a certain level. Similarly,
the horizontal line correspond to all rules whose expectddyuis fixed at a certain level. Since the
disclosure goal is obtain both low risk and high expecteditytiwe are naturally most interested in
disclosure policies occupying the boundary or frontierted shaded region. Policies in the interior of the
shaded region can be improved upon by projecting them to dedary.

The vertical and horizontal lines suggest the following tways of resolving the risk-utility tradeoff.
Assuming that we cannot afford incurring risk higher thameacceptable level we can define the optimal
policy as

0" = argmax U(J) subjectto  R(4,0) <c. (7
5
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Alternatively, insisting on having expected utility no $ethan a certain acceptable level we can define
the optimal policy to be

0" = argmin R(4,0) subjectto  U(9) > c. (8)
é

A more symmetric definition of optimality is given by
§" = argmin R(0,6) — AU (0) 9)
é

where A € R, is a parameter controlling the relative importance of miging risk and maximizing
utility.

The formation and interpretation of optimality depends loa $ituation at hand and is ultimately up to
policy makers. We focus below on the case (8), but to simpltié/notation we denota = {6 : U(9) > ¢}
so that (8) becomes* = argming. 5 R(,6). Solving (8) may often be computationally challenging
as it is not easy to get a closed form definition of the constraet A = {0 : U(§) > c¢}. More
efficient computational search can usually be obtained bysidering instead* = argming_z R(9)
whereA = {0 : Vi, u(d(x;)) > ¢} C A,

Solving the optimization problems (7)-(9) requires knadge of the attacker's side informatich
Indeed, in some cases the attacker’s side information isvknofor example wher constitutes national
archives or some other publicly available dataset. In cagesre the attacker’'s side informatighis
unknown we can proceed instead using one of the followingagmhes.

« BayesRisk ReplacingR(é, ) in (7)-(9) with the Bayes rislR(5) = E, ) (R(0,0)) provides Bayesian-

optimal policies that are independent tbf R

« Estimating ¢ In some cases we can obtain an estimate of the attacker'sndatenation. In these
cases we can use expressions (7)-(9) witts, ¢) replaced byR(d, ). Mathematical analysis can
be used to study the quality of the approximatiB(y, #) ~ R(4,¢) in terms of the approximation
0~0.

« Worst Case Scenario In the absence of any information concernthgve can use (7)-(9) with the
worst case risknaxyeco R(6,0) instead ofR(d, #). The resulting policies, for example the minimax
risk 0* = arg ming. , maxgeo R(9, ), have the best worst case scenario.

« Bounding the Risk This approach is described in the next Section.

A. Bounding the True Risk by the Estimated Risk

As mentioned above, we can use an estinfaiiestead of the/™e and estimate the risk bi(s, §). In
some cases, as described below we can bound the true risknis té the estimated risk(9, §"™°) <
R(6,0) as well as the risk of the optimal policyrg ming. . R(d, 0"¢) < argming, R(,6).

A frequent situation is when the estimates obtained from the organization’s records while the at-
tacker’s dictionary™® is a more general-purpose dictionary. In other words, thismaged side information
¢ is more specific than the attacker’s dictionary. For examgilece /'® is more general, it contains the
records ind as well as additional records. Following the same reasowmgan also assume that for each
record that exists in both dictionarie®’"® will have more general attribute values thén

For example, consider a database of employee records foe sompany./ would be a dictionary
constructed from the database &t would be a general-purpose dictionary available to theclatta It
is natural to assume that“® will contain additional records over the recordsdirand that the attributes
in 0™ (e.g.,first-nane, surname, phone#) will be more general than the attributesénAfter all, some
of the record attributes are private and would not be digdas order to find their way into the attacker’s
dictionary (resulting in morel symbols ine).

Below, we consider dictionarie = (6,,...,0,) as relational tables, whe®, = (6;;,...,6;,) is a
record of a relatioriy(A,, ..., A,), with A, corresponding to the record identifier.
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Definition 5: We define a partial order relatioc between dictionaried = (6,,...,6,,) andn =
(My,...,my,) by saylng that) < n if for every 6;, In; such thatml = 921 andVy, 0 = njk.
Theorem 1:If § contains records that correspondate. . . ., =, andd < 6™, then

Vs R(6,6"€) < R(5,0).
Proof: For every disclosed recoré(x;) there exists a record if that corresponds to it and since
0 < 0"e there is also a record i that corresponds to it. As a result(d(x;),d) and p(5(x;), 6"e)
are non-empty sets.

For an arbitrarya € p(d(x;),0) we havea = 6, for somewv and sinced < 6" there exists a
corresponding record;"s. The record}"® will have the same (or more) general valuesiaand therefore
07" c p(6(x;), ™). The same argument can be repeated for every p(d(x;),6) thus showing that
p(6(:),0) C p(3(x:),8™°) or |p(3(a;), 0™) 7" < |p(d(:), )|

The probability of identifyingd(x;) by the attacker is thus smaller than the identification podity
based ory and it follows that

Vi 0(0(x;), 07 < 0(6(x;),0) =  R(6,6"€) < R(5,0).

B. Independence and Integrity Constraints

Computing and minimizing the risk may be computationallyndeding in the general case. In this
section we discuss how the independence assumption otatat®n by introducing integrity constraints
affect such computational efficiency considerations.

The assumption that different attributes are statisgidakllependent is somewhat questionable but still
often used in high dimensions due to its practicality. Fatance, returning to the simple phone-book
example, the independence assumption may imply that thelgay of first names does not depend on
the popularity of last names, e.g.,

p(first-name= Mar y|surname= Smi t h) = p(first-name= Mar y|surname= Johnson)
= p(first-name= Mary).

Clearly, some attributes are strongly correlated whilettare generally believed to be independent. The
introduction of integrity constraints to model correlataitributes (e.g., profession # = salarye C)
while assuming independence between uncorrelated dadshbs an effective relaxation of the complete
independence assumption. We first discuss the implicafi@omplete independence to risk computation
and then proceed to consider the presence of integrity IGnt.

Under the assumption of statistical independence on tlabdae attributes the identification distribution
factors as a product

(6 H‘pf IO o 3G, 0) = [T o5

for some appropriate functlortsj. As a result the loss function (assuming a parametric midéfve
form) decomposes to

eWiv1 eWiv1

iccow) _ jecrw) - 11 et I 1
0y, 0)] Tl an(yr.0) a;(y;,0) (L, 0)

J€Ca(y) leCi(y)

U(y,0) =

. w]‘,yl aJ<J‘79) . O 1
N H ¢ a;(y;,0) Hozl(J_Q

JECa(y) IAI 1=2

whereCy(y) ={j:j>1y; = L} andCo(y) = {j : j > Ly; # L}.
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To select the disclosure df attributes that minimizes the above loss it remains to séfecsetCs(y)
of k indices that minimizes the loss. This set corresponds ta th@allest elements gfe™iv: aJ((yl 69)) i
which may be efficiently computed in tim@(nNm) wheren, N, m are the number of disclosed records,
dictionary size, and number of attributes [11].

Extensions of the above decomposition are straightforwadren the attributes can be divided to several
clusters satisfying statistical dependence for attrbwighin the same cluster and statistical independence
for attributes belonging to different clusters. An altdive decomposition for more general integrity
constraints or dependencies may be obtained through thraugrdactorization of graphical models in
statistics [22].

V. PRIVACY RISK AND k-ANONYMITY

k-Anonymity [16] has recently received considerable attenby the research community [25], [1].
Given a relationl’, k-anonymity ensures that each disclosed record can beimzlgtmatched to at least
k individuals inT. It is enforced by considering a subset of the attributetedajuasi-identifiers and
forcing the disclosed values of these attributes to appebraatk times in the databasé-Anonymity
uses two operators to accomplish this task: suppressiomganeralization.

In its original formulation k-anonymity does not seem to make any assumptions on thebjmesgiernal
knowledge that could be used for entity identification anésloot refer to a privacy loss. Howevér,
anonymity does make strong implicit assumptions whoseepiess may undermine its original motivation.
Following the formal presentation étanonymity in the privacy risk context, we analyze theseaggions
and their possible relaxations.

Since thek-anonymity requirement is enforced on the relatigrthe anonymization algorithm considers
the attacker’s side informatiofi’*® as equal to the relation or databageRepresenting thé-anonymity
rule by §; we have that thé&-anonymity constraints may be written as

Vi |p(0x(z:), T)| = k. (10)

The sensitivity function is taken to be constant= ¢ as k-anonymity is concerned with only satisfying
the constraints (10). In fact it treats disclosure of défarattributes corresponding to different entities as
equal, as long as the constraints (10) hold.

As a result, the loss incurred by-anonymity ; is bounded by/(5;(x;),T) < ¢/k where equality
is achieved if the constrainp(d;(x;), )| = k is met. On the other hand, any rudg that violates
the k-anonymity requirement for some; will incur a loss higher (undefé = 7" and ® = ¢) than the
k-anonymity rule

C

|p(do(:), T)| —
We thus have the following result presentihganonymity as optimal in terms of the privacy risk frame-
work.

Theorem 2:Let §; be ak-anonymity rule and), be a rule that violates the-anonymity constraint,
both with respect tac; € 7. Then

((0(:),T) = > (0 (i), T).

00 (x;), T) < e/k < (do(x;),T).

As the above theorem implies, tikeanonymity rule minimizes the privacy loss per examspleand
may be seen asrgming., R(5,T) where A is a set of rules that includes bothanonymity rules and
rules that violate thé&-anonymity constraints. The assumptions underlyirgnonymity, in terms of the
privacy risk framework are:

1) etrue =T

2) & =¢, and

3) A is under-specified.
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The first assumption may be taken as an indication Ak@abonymity simply assumes that the database
relationT" is available as side information to the attacker. This aggiom can be expanded as described
earlier by assuming an estimatédusing a Bayesian averaging, worst case riskyco R(6,6) or that
g€ is a publicly available resource. Such adaptatiok-@honymity are likely to more faithfully protect
privacy and yet should not require a major conceptual chandke k-anonymity framework.

The second assumption of the sensitivity functibre ¢ being constant is a result é-anonymity’s
singular attention to protection from identification. Irhet words, disclosing data incurs the same loss
regardless of the data itself and the entity to whom the dattaims, as long as there exists a certain
protection from identification. This is a problematic asgtion since under imperfect identification protec-
tion, the notion of privacy preservation is not not synonusaith identification. Imperfect identification
protection occurs since a positive probability of idengéfion remains, whether by the original data’s
disclosure or by linkage as described in the next section.aA®sult, it is imperative to take into
consideration also the sensitivity of the disclosed infation.

As a simple example, consider facing two possible disclsptions: the disclosure of data containing
a substantial medical diagnosis (e.g., HIV positive) areldisclosure of data containing a recent grocery
shopping transaction. Intuitively, disclosing the firstadevould lead to a greater privacy violation than the
second data under non-zero identification probability. BNy k-anonymity, assuming a constant sensi-
tivity function, considers the disclosure of both data diguaarmful if they provide similar identification
protection. On the other hand, it may favor the disclosureverfy sensitive information if it provides
slightly better identification protection than relativaipn-sensitive data. Section VIII presents a case
study illustrating this point further in the context of a cmrcial organization’s customer transaction
database. For a diverse commercial organization such az@mwm transactions should be classified
according to varying sensitivity levelg-Anonymity protection would exert undesired privacy puabien
in some areas while lacking in other areas. The privacy rakéwork presented in this paper provides
a natural extension té-anonymity by makingb non-constant. The resulting privacy loss combines data
sensitivity and identification protection in quantitatipeobabilistic manner.

The third assumption implies that the s&tmay be specified in several ways. Recall that the risk
minimization framework is based on the assumption thattlern tradeoff in disclosing private informa-
tion. On one hand the disclosed data incurs a privacy lossoanithe other hand disclosing data serves
some benefit. The risk minimization framewatkg mins.» R(0, #) assumes thah contains a set of rules
acceptable in terms of their disclosure benefit, and frontivkve select the one incurring the least risk.
k-Anonymity ignores this tradeoff and the set of candidatesh may be specified in several ways, for
exampleA = Ay U {6;} whereA, contains rules that violate theanonymity constraints.

VI. PRIVACY RISK AND RECORD LINKAGE

We have thus far discussed the usage of a dictionary to fgiedht entity associated with a disclosed
record. Sometimes, side information is used in a differeay to link disclosed records with additional
data. The linkage, if successful, enlarges the availabiernmation thereby influencing both the data
sensitivity and subsequent identification probabilityeTgrobabilistic framework of the privacy risk can
be naturally extended to account for such cases. Figuraidtrifites the linkage process in the context of
the privacy risk framework.

We say that the linkage of the disclosed déta) and public record: is successful ib(x) and z are
records that relate to the same entity [7]. The linkagé(af;) and z creates an enlarged set of attributes
d(x;) V z combining information from both sources, which if succaksimproves identification based
on a dictionary. Note that while both linkage data and the¢iahary are side information known to the
attacker, they serve different roles. Linkage data typjcabmes from the organization that discloses
d(x;) or a related database. In particular, it does not typicadiytain identification information and yet
is used by the attacker in order to extend the disclosedatés of a certain entity. The dictionary is
typically a massive listing containing identification infioation that is not closely related to the disclosed



14

information. It is therefore considered as an identifiaatiesource for the disclosed and possibly linked
record.

The disclosed recorg = §(x) and the linked record are random variables with a joint distribution
p(x, z) = p(x)p(z|y) wherep(x) may be the empiricgl(x) described earlier and the conditiondk|y)
is the probability of linking recorck with recordy. In this case, it is important to estimate the linking
probability based on what a sensible attacker might do. énctise of linkingd(x;) V z, the risk is

Rink(6,0) = Ep@)p(zja) (£(6(x) V 2,0))

where the loss functiod((x;) V z) can be structured in a similar way to our previous discussion
Introducing a binary random variablé” representing successful linking we have that the loss redur
under successful linking and identification is equal to tees#ivity of the enlarged data

O(S(z)V 2,0) = ((5(z) V2,0) | {W=12=1}.

Continuing as before, we can define the 1668x) Vv z,0) as the expectation of the sensitivity taking
into consideration probabilities of successful linkingdadentification. As before, it is crucial that the
developed mechanism lead to easy and accurate calculdtitwe ¢oss.

VII. APPLICATIONS AND EXPERIMENTS

In this section, we define two operators that implement d&ale rules on relations (Section VII-A),
and then proceed to illustrate some experiments furthedatadg our framework (Section VII-B).

A. Implementation of Disclosure Rules

As described in Section 111-D, disclosure rules can leaddtadjeneralization or even to data suppression.
In this section we describe two operators that implementlassire rules in a relational setting. In
particular, we show that we can define such operators bynglgn relational algebra, thus enabling
the usage of relational technology. The definition in relail algebra allows us to prove some interesting
properties as well as to obtain consistent advantages imstef standardization and efficiency of the
disclosure rules implementation. More specifically, thgelfaic specification of the operators paves the
way for the realization of optimization strategies withelational technology.

Consider the relatiof’(A44, ..., A,,), and the sett = Dom; x --- x Dom,,. Recall that the attribute
Ay iIs supposed to be a record identifier for the relationLet F' be a formula involving: (i) a set of
operands that are either variables or constants, (ii) thefsarithmetic operatorg=, #, <, <, >, >}, and
(iii) the set of logical operatorgV, A, —}. Such formulas are used to specdisclosure conditionsi.e.
to identify the tuples of a relation which are subject to ady constraints and on which disclosure rules
must be enforced.

We first define the operatdrider that enables attribute-level suppression on the té@ble

Definition 6: Given an attributed; of the relationI’, and a formula F, the operatbider is defined as

hideT(Aj, F) = (H(Al,Aj>UFT) DXA=4, T

First, the operator selects the tuples satisfying the d¢mmdi#’ in the relation7. The selectiornog
specifies which tuples daot have privacy requirements on the attribute Second, the projectiolia, ;)
builds a partial result used to recompose the originalielawith L values replacing the values df; to
be kept private. For this latter step, the right outer joirmpor<= is applied over the record identifier
Ay, and is used to introduce the values wherever specified by the disclosure conditionse Nuwdt the
outer join operator is used in cases when it is required thatésulting relation contains all tuples from
both relations, even if they do not participate in the joim.such cases they are padded withvalues
[15].

The following proposition formally states the commutataved associative properties of the operator,
that are directly derived from properties of relationaleddp.
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(A ] A2 | A5 | A4 |

T[a 0| | = [ A1 ][ A2 ]
2 || a2 | b2 | e [2 ][ a2 ]
3 as b3 c3
The starting relatioril” T* =T(a,,4,)04, 210 A, #3T

4
[ AL [[ A2 [ A3 [ A4 |
1 1 b1 c1
2 a2 bo ()
3 1 b3 c3
The target relatioll” =T >a=4, T

Fig. 5. Thehider (A2, F' A F'") operator

(A A2 [ As [ A LA ][ 4> |
1 a1 | b1 | a 1 a1
2 az | b2 | c2 2 as
3 as b3 c3 3 as
The starting relatioril” The generalized relatioty

LA [ A2 [ A3 [ A4 | 45 |

1 a1 b1 c1 a1
2 a2 bo [ a2
3 as b3 c3 as

TF =T, Gr

U
[Ai ] A2 [ As | A4 |

1 a [ c1
2 a2 bo co
3 a3 | bs | c3

The target relatiori”’ = Pay/As (II<A17527A3’A4>T )

Fig. 6. Thegenr(As, F' A F") operator

Proposition 1: The operatohider is commutative and associative with respect to disclosonelitions.
Given two disclosure conditions” and £ with respect to thg -attribute A;, and a disclosure condition
F" with respect to th& -attribute A,:

o hideniger(a;, 7y (An, F") = hideniger(a,,rmy(Aj, F');

. hidehideT(Aj,F’)(Aju F”) = hideT(Aj, F’ VAN F”).

The commutative property is particularly relevant as it ngedhat the order according to which
disclosure rules are enforced on the original relation issignificant.

In the following, we provide an example of how ti&der operator is applied in order to enforce
suppression disclosure rules. Suppose that we want toaentbe rules: (i) “For tuple 1, the attribute
value a; of A, is private” and (ii) “For tuple 3, the attribute valug of A, is private” on the relation
T shown in Figure 5. Two disclosure conditio#¥ and " are formulated a$A; # 1) and (A; # 3),
respectively. Notice that the disclosure conditions armfdated such that they exclude the tuples requiring
privacy enforcement on a specific attribute from the pargsult. Provided the associativity property of
the disclosure conditions, we can apply the operaide,(A,, F' A F”) according to the steps shown in
Figure 5, thus obtaining the resulting relatidh

We next define the operatgeny that implements the generalization disclosure rules orbke t&.

Definition 7: Given an attributed, of the relationl’, a formulaZ’, and a table>(A;, A ;) that contains
the generalization values fot; (recall that4, is used as an identifier attribute). Such values are supposed
to have been chosen from the domain generalization higrarthl; in correspondence of tuples selected
by F, i.e., tuples affected by privacy constraints. The operata is defined as follows:

genr(A;, F) = py, oy (g, Ay Aj)—(A >(T P, Gr))
Notice that the relational algebra opera,bgr i, is used forrenamlngA asA;. In Figure 6, we provide
an example of how theen, operator is applled in order to enforce generallzatlonldﬁwe rules. We
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modify the example shown in Figure 5 such that the rules &éF¢r tuple 1, the attribute value; of

A, is to be released a&,” and (ii) “For tuple 3, the attribute value; of A, is to be released a&”.

The two disclosure conditions” and F” do not change and ared; # 1) and (A4, # 3), respectively.
We apply the operatogenr(A,, F' A F") according to the steps shown in Figure 6, thus obtaining the
resulting relationT”. The generalized relatioty is supposed to contain generalized values Agrin
correspondence of tuples selectedidyand F”. The (i) join of 7" and G, (ii) projection on all attribute
exceptA,, and (iii) renaming ofd, as A, are performed in this order to obtain the taleto be released.

Finally, we notice the following properties of then, operator:

« The commutative and associative properties proved fohitier operator are also valid for thgen
operator for it is easy to check by using relational algebaperties.

« Suppression as a special case of generalization is cohgitbnthe semantics specified for tlgen
operator. Indeed, if the tabl&r includes_L symbols, then such symbols will be released.

B. Experiments

The goals of our experiments are three-fold: (i) to validhterisk associated with different dictionaries,
(i1) to assess the impact of different parameters on theapyivisk, and (iii) to use the proposed framework
to assess the relationship between the estimated risk anglu risk.

We conducted our experiments on a real Wal-Mart database:tArm descri pti on table of more
than 400,000 records each with more than 70 attributes id uséhe experiments. Part of the table is
used to represent the disclosed data whereas the wholeisabted to generate a different dictionary.
Throughout all our experiments, the risk components arepeded as follows. First, the identification risk
is computed with the aid of the Jaro distance function [8] thased to identify dictionary items consistent
with a released record to a certain extent (we used 80% sitpitareshold to imply consistency.) Second,
the sensitivity of the disclosed data is assessed by mearendbm weights that are generated using a
uniform random number generator.

We use a simplified utility function.(y) to capture the information benefit of releasing a record
y: u(y) = >..°, Dist(Rootpcm,,y:) (i.e., the sum of the heights of all DGHsinus the number of
generalization steps that were performed to obtain therdegh For each record:;, the minimum risk
is obtained subject to the constraint get= {6 : V; u(d(x;)) > c¢}. The impacts of the parameterand
the dictionary size on the privacy risk are reported in Fegiia). Asc increases (i.e., more specific data
is being disclosed) and by fixing the dictionary size, thespgmbty of identifying the entity, to which
the data pertain, increases, thus increasing the priva&g.riWe increase from 0 to 10. On the other
hand, by fixinge = 8, the relation between the risk and dictionary size is inslgrselated. The larger the
size of the dictionary the attacker uses, the more consiséeords to the entity on hand he finds, and
consequently the lower the probability that the entity beniified. Different dictionaries are generated
from the original table with sizes varying from 10% to 100%tlé size of the whole table. Moreover,
the experimental data show that the multiplicative modelsensitivity is always superior in terms of the
modeled risk to the additive model.

We compare the risk and utility associated with a discloabtetbased on our decision theory framework
and arbitraryk-anonymity rules fork from 0 to 100. In Figure 7(b) we compare the utility and risk of
optimally selected disclosure policies and standaahonymity rules (averaged over a random selection
of 10 k-anonymity rules). The optimal disclosure policies cotesifly outperform standard-anonymity
rules. The arrows in the figure representing the risk diffeeebetween both approaches become larger
ask increases. R

The relationship between the true rigKd, 6"°) and the estimated risk(9, ¢) is reported in the scatter
plot in Figure 7(c). As we proved beforé (4, 0) is always an upper bound dt(é, 6™¢) (all the points
occur above the ling = x). Note that as the size of the true dictionary becomes sogmifiy larger than
the size of the estimated dictionary, the points seem t@ taasteeper line which means that the estimated
risk becomes a looser upper bound for the true risk.
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Fig. 7. (a) The risk associated with different dictionaraw ¢ values, (b) a comparison between our decision theory framewand
k-anonymity, and (c) the relationship between the true ristt the estimated risk.
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VIIl. CASE STUDY: AN ORGANIZATION RELEASING CUSTOMERS DATA

{0:0}
{0:0} T
' T o (0:0) {0:0} { [x, x+80K] : ws/80 }
{ Region R: w//[cities in R| } T T T
T , x-+40K]: ws/40
{ State S: w(/[cities in S| } { Asian, Non-Asian : { (yy): we/365} UL, x+40k]: w540 )
T wrl|races in category| } T T
{ County C: wd[cities in C| } T { (mm/yy) : wg/|days inmm| }  {[x, x+20K]: ws/20 }
T { White, African American, T
American Indian, Chinese,
{ City : w¢} Filipino,... : wg } { (mm/dd/yy): wg } { Salary ($k): ws}
(a) City (b) Race (c) Birthdate (d) Income

Fig. 8. Domain Generalization Hierarchies (DGHs) with theséciated Sensitivity Weights

In order to demonstrate the practical applicability of threvgcy risk framework, in this section we
provide an application on one of the common areas, custom@bdses of commercial organizations.
In such cases, the organizations often benefit from disgjosustomer records. This can be a result of
the organization outsourcing its datamining efforts tolyines specialists or otherwise sharing customer
records with partnering organizations. The initial custorsuspicion, caused by potentially sharing their
records, is often relaxed by offering them benefits such waltip cards or some other discount plans in
return for their participation.

Willing participants may rate the privacy of various parfstioeir data as non-private, semi-private
and very-private. For example, consider a customer databash as Amazon.com where some of the
customer transactions are non-private, some are senatprimnd some are very private (for example a
purchase disclosing a health condition or an embarrassiesy @f interest). The organization will treat
the transactions according to the user specified sengitnitich will in turn constitute a user specified
loss function. To prevent customers from registering alhgactions as very-private the organization may
enforce constraints on the supplied loss, which must beeab&yorder to participate in the discount plan.
It is the organizations’ responsibility to determine at @¥hlevel of generalization hierarchy each attribute
is to be disclosed such that: (i) minimizing the inheriteskrassociated with violating customers’ privacy
(e.g., the potential law suit resulting from releasing vpriyate information) and (ii) maximizing (or at
least establishing a floor for) the benefit of the releaseorimétion. Note that in this example, the utility
of disclosing data may be quantified by the monetary amownbtiganization can expect to obtain, for
example by selling the data or by projected increase in eff@y due to data mining activity.

An illustrative scenario is described as follows. Suppbse ¥al-mart needs to assess the risk associated
with releasing its members data while maximizing its bendfit carry out our experiments, a projected
Wal-martmrenber s table of5, 667, 004 records is used. The projection contains 4 attribufes:y, Race,

Bi rt hdat e, andHousehol d | ncone. Figure 8 depicts the used domain generalization hieraschi
for these 4 attributes with the associated sensitivity Wsigomputed as follows. First of all, we assume,
without loss of generality, that all leaf nodes belongindhte same DGH are equally sensitive. We use a
modified harmonic mean to compute the sensitivity of a paneadtew, with [ immediate children given
the sensitivities of these children;, 1 < i < [:

1
Tt
1<i<l w;

with the exception that the root node (corresponding to segsed data) has a sensitivity weight(Oof
Clearly, the modified harmonic mean satisfies the followimgpprties: (i) the sensitivity of any node
is greater than or equal provided that the sensitivity of all leaves are greater tbarqual0, (ii) the

Wp
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sensitivity of a parent node is always less than or equal gse®fl child) the sensitivity of any of its
descendent nodes, and (iii) the higher the number of cmldreode has the lower the sensitivity of this
node.

For example, given a constant city weight, the weight of theCount y node; in the DGH for the

Ctyis ﬁ = 7=, wherel; is the number of cities in the county Moreover, the sensitivity of
1<i<l; we J
the St at e nod]e in the same DGH is L — W _ — ¥ wherem is the number of counties
Yi<icm v, | 2i<i<mls n

in the state andv =}, _,,, ; is the number of cities in the state.

The multiplicative form®,(y) of the sensitivity function is used to compute the overatissivity of a
released record. The weights, w,, w,, andw, are set at the valugs3, 0.4, 0.5, and0.75, respectively.
Therefore, the sensitivity associated with the recoWiest Laf ayette, Wiite, 05/10/ 1975,
$52k) , for example, ig?3t0-4+05+0.75 — 7 03 ‘whereas the sensitivity associated with the re¢ondst
Lafayette, L, May 1975, [$20k, $99K]) is 03+0+50+%6" = 1.38.

We use the Adult databasehich is comprised of, 857, 623 records extracted from US Census data as a
dictionaryd. The database contains 5 attributége, Gender , Zi pcode, Race, andEducat i on. Each
recordy (and its generalizations) from Wal-marenber s table is matched with this dictionary to identify
the number of dictionary records consistent withp(6(y)). The matching process is performed on the
corresponding attributes representing age, race, aneéssldr both tables. For example, the recoviést
Laf ayette, Wite, 05/10/1975, $52k) has7 dictionary records consistent with it, whereas
the record West Lafayette, 1, May 1975, [$20k, $99k]) has198 dictionary records con-
sistent with it.

The loss function associated with releasing a reepisl /(y, 0) = |pq()?(fe))\- For example, from the above
results, the loss associated with releasing the reCodist Laf ayette, Wiite, 05/ 10/ 1975,
$52k) is 7.03/7 = 1.004, whereas the loss associated with releasing the recdést Laf ayette,

1, May 1975, [$20k, $99k]) is 1.38/198 = 0.007. The overall risk associated with releasing a
whole table is computed as the average loss associated eléthsing its individual records.

We use the same utility function explained in Section VIIf&r example, the utility function corre-
sponding to the recorW\est Laf ayette, White, 05/10/1975, $52k) is4+2+3+4 =
13 or equivalently(4 + 2 + 3 + 4) — (0) = 13, whereas the utility function corresponding to the
record(West Lafayette, 1, May 1975, [$20k, $99k]) is4+0+2+1 =7 or equivalently
(44+2+3+4)—(0+2+1+3)="T.

By following the procedure explained above, the organtragoal to determine the disclosure rule that
yields the minimal risk while maintaining the utility abowecertain threshold is achievable. For each
potentially disclosed tablé’, our model can be applied to assess both the risk and utd#gg@ated with
releasing this table. As the case with the risk, the utilityaogiven table is the average utility of all
individual records constituting this table rounded to tleanest integer. The table that poses the minimal
risk with an acceptable utility is released.

Figure 9 shows some plots of the risks and associated esilitir various disclosure rules. Recall that a
disclosure rule);(T") (or simply d;) is a combination of transformations (suppression, géizeteon, and
disclosure of actual data) performed on the attributes @bifiginal tablel” which results in the tablg&” to
be released Figures 9(a)(b) plot the computed risks (in increasingeordnd the corresponding utilities
for random instances of the released tableR = {(8;, R(6;,6)),i =1,2,---} andUd = {(6;,U(6;)),i =
1,2,---}, respectively. As pointed out earlier, the trend is thatutility increases as the risk increases.
However, sometimes this is not the case due to the settingseasensitivity weights and the topologies
of different DGHs. The scatter plot in Figure 9(c) depicts thgh positive correlations between risk and
utility with a computed correlation coefficient 0f858.

IDownloaded fromhttp://www.ipums.org
2An example of T’ is {(West Lafayette, Wiite, 05/10/ 1975, $52k), (I ndi ana, Asi an, 1948, 1),
(L, Chi nese, August 1965, [ $20k, $40k] ), ---}.
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(a) Risk for Different Variations of the Dataset (b) Utility for Different Variations of the Dataset

Risk
(c) Risk and Utility Scatter Plot

Fig. 9. Risks and Utilities for Different Disclosure Rules

Risk

6 8 10 12 Risk
Utility

(a) Minimizing the Risk (b) Maximizing the Utility

Fig. 10. The Optimal Disclosure Rule

Had the organization goal been focusing only on one facter, (minimize the risk or maximize the
utility), these 2 curves would have been sufficient to idgntthe optimal disclosure rule. However, the
goal has always been to optimize one of the factors while tamimg an acceptable level of the other
factor.

Figure 10 shows how the optimal disclosure rule is deterthifog the example on hand. By using
different values for the constantand obtaining the minimum risk, Figure 10(a) can be plottedhows
the optimal risk (and accordingly the optimal disclosur&eyuhat yields utility U > ¢. Specifically, it
helps determin@* = argming R(d) subject toU(d) > c. Likewise, by fixing the risk at different values
for the constant and obtaining the maximum utility, Figure 10(b) can be @dttlt shows the optimal
utility (and accordingly the optimal disclosure rule) tipaises a risk? < ¢. Specifically, it helps determine
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Fig. 11. Effect of Utility Threshold on the Level of AttribeitDisclosure

d* = argmax; U(0) subject toR(d) < c.

We implemented a heuristic discrete optimization algonitiBranch and Bound [10], to obtain the
heuristic optimum disclosure rule. Figure 12 shows thatdiserete optimization algorithm is superior in
terms of execution time compared to the brute-force allyoritvith no significant risk increase.

Figure 11 shows some statistics about the frequencies oérgkzation steps carried out on each
attribute at different utility levels to obtain the optinrédk. For instance, when setting the utility > 5,
Figure 11(d) indicates that the actual salaries of almdstalmbers are released. Clearly, the tendency
towards releasing the actual data increases as the u#iligl Increases. Moreover, depending on attribute
settings, the level of aggressiveness with which the terydemrelease the actual data occurs varies. The
statistics shows, for instance, that most of the time theadvirthdate is released when the required
utility U > 3. An organization that is willing to apply the disclosureguvhich has been applied the
most may elect to release the actual birthdate for a newlgéddcord when the utility is sought to be
no less thars.

IX. RELATED WORK

In [11] we consider the optimal disclosure rule, based gotel data suppression, that yields the
minimum risk subject to a maximum number of suppressed damasi Incorporating data generalization
into the privacy risk framework is a new contribution of tipiaper and was not part of the work presented
in [11]. Furthermore, utility functions were not addressedhe optimization model presented in [11].
The optimization model presented in this paper takes intm@aat both risk minimization and utility
maximization. A new set of experiments are conducted inghjgser that shows the superiority of privacy
risk obtained by applying our framework as opposed to thahiobd from k-anonymity for the same
utility level. A complete and detailed test case is providethis paper, and was not present in [11], that
walks the reader through various stages of our frameworletaildand clarifies different computations.



22

Risk

—%— optimal algorithm ]
discrete optimization

2 . 3 4 5 6
Table size (records) x 10"

—— optimal algorithm
discrete optimation 05f

L L
10 12 0 1

6
Utility
(@) Risk (b) Time

Fig. 12. The Discrete Optimization Algorithm

Section V relates the privacy risk framework keanonymity. In this section, we discuss additional
related work from statistical databases and data miningstatistical databases, queries result in some
statistical information, for example the average of a setadfies. The techniques for preserving privacy
can be divided into two categories: (i) query restrictiod &) input-output perturbation. Query restriction
methods pose limitations on query parameters while inpignd perturbations alter the data by introducing
noise to either the data or the query results. Unlike siegistlatabases that are concerned with disclosing
statistical data summaries, our framework focuses on alsuj elementary data and thus incorporates
a broader class of queries. Moreover, while recent propdsastatistical database [3], [2] focus on the
tradeoff between meaningfulness of information and pgvass, we are interested in the fundamentally
different tradeoff between disclosure benefit and privasgl In the data mining area, several approaches
have been developed for privacy preserving data miningikdmur approach, such approaches (e.g., [6])
are based on perturbing the original data and at the sameatiimeving correct data mining results.

Duncan et al. [4] describes a framework, called Risk-Wti{R-U) confidentiality map, which addresses
the tradeoff between data utility and disclosure. Lakshanaet al. [9] propose an approach to the risk
analysis for disclosed anonymized data; such approach Imaddatabase as series of transactions and
the attacker’s knowledge as a belief function. Our modeurgdmentally different since we deal exactly
with relational instances rather than data frequenciesjoveot consider simply anonymized data and we
incorporate the concept of data sensitivity into our frarmewMiklau and Suciu [14] provide a measure
of the privacy risk in the context of the query-view secumipblem, but such measure does not result
in a complete framework for privacy risk assessment.

In summary, the goal of avoiding privacy breaches has beessiigated by different communities.
Nevertheless, to the best of our knowledge, our approaclnesfitst in providing a comprehensive
theoretical framework for assessing privacy risks. Oumieork is based on statistical decision theory
and is a highly flexible tool for modeling the trade-off bemedisclosure benefits and risks. Moreover,
it incorporates the notion of data sensitivity. Besidesultesy in a clear probabilistic interpretation, the
connection to decision theory may be exploited in derividdigonal results based on the vast literature
in that topic.

X. DiscuUssION

Privacy Risk Framework Assumptions:

« Protection is provided in terms of masking values (data seggion and/or generalization) regardless
of the information that the attacker may imply by masking thése values.

« It is assumed that the adversarial external knowledge isrimg of a side information referred to as
a dictionary.
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« The average-case measure is used to formulate the privedcamd utility throughout the paper. This
measure could be easily changed to other measures such siscase notion.

« Sensitivity information is available at the attribute leve

« Initial risk resulting from successful guess by the attaakees not have an impact on the optimum
disclosure rule.

« The framework could be generalized to accountfeanonymity extensions such asliversity and
incremental privacy risk.

In this paper we have described a novel framework for agsggsivacy risk in a variety of situations.
We consider optimal disclosure rules in the contexts of ekxaowledge, partial knowledge, and no
knowledge with respect to the attacker’s side informatitime framework also naturally encompasses pre-
identification linkage. We discuss several forms for exgiregthe largely ignored role of data sensitivity in
the privacy risk. We have shown that the estimated privaslyig an upper bound for the true privacy risk,
under some reasonable hypotheses on the relationshipedretive attacker’s dictionary and the database
dictionary. Finally, we have proved the generality of ouanfirework by showing thak-anonymity is
a special case of it, and we have highlighted, in our decish@mory based formulation, the particular
assumptions underlying-anonymity.

At first glance it may appear that the privacy risk framewoekuires knowledge that is typically
unavailable or somewhat undesirable assumptions. Afteit akems possible to ugeanonymity without
making such compromising assumptions. This is a misleaiitegpretation as any attempt at forming a
sensible privacy policy or characterizing the result ovateé data disclosure requires such assumptions.
In particular, assumptions have to be made concerning taekat’s resources and the data sensitivity.
Existing algorithms such ak-anonymity typically make such assumptions implicitly. w&ver, in order
to obtain a coherent view of privacy it is essential to makeséhassumptions explicit, and discuss their
strengths and weaknesses.

While we believe that our framework overcomes several &tion of previous work, mainly due to
partial or not formally stated formulations, we would like point out that our work leaves room for
many future investigations. The problem of efficiently obitag or approximating the optimal policy
need to be further studied. A careful investigation showdsider the impact various assumptions such
as independence and integrity constraints have on this.igswther area for possible exploration is the
investigation of applying disclosure rules incrementalhd maintaining them over time. This corresponds
to an online setting, in contrast to the off-line or batchiegtdescribed in this paper. Finally, developing
an efficient tool for privacy risk incorporating our decisitheory framework is a topic of our future work.
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