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A role hierarchy defines semantics related to permission acquisitions and role activations through
role-role relationships. It can be utilized for efficiently and effectively structuring functional roles
of an organization having related access control needs. Temporal constraints on role enablings and
role activations can have various implications on such a role hierarchy. The focus of this paper
is the analysis of hybrid role hierarchies in the context of the Generalized Temporal Role Based

Access Control (GTRBAC) model that allows specification of a comprehensive set of temporal
constraints on role, user-role assignments and role-permission assignments. We introduce the
notion of uniquely activable set (UAS) associated with a role hierarchy that indicates the access
capabilities of a user resulting from his membership to a role in the hierarchy. Identifying such
a role set is essential while making an authorization decision about whether or not a user should
be allowed to activate a particular combination of roles in a single session. Furthermore, when
separation-of-duty (SoD) constraints are present in the system, it is also essential to ensure that
there are no role combinations that can be allowed to be activated in a single user session. In
other words, knowledge about UAS can be used to facilitate enforcement of the principle of least
privilege. Because of the separation of permission inheritance and role activation semantics in
GTRBAC, a hybrid hierarchy that allows different hierarchy types to coexist, can give rise to a
complex semantics and identifying what role combinations can be allowed to be activated in a
session for a user may not be straight forward. We formally show how UAS can be determined
for a hybrid hierarchy. Furthermore, within a hybrid hierarchy, various hierarchical relations
may be derived between an arbitrary pair of roles. We present a set of inference rules that can
be used to generate all the possible derived relations that can be inferred from a specified set of
hierarchical relations and show that the set of these inference rules is sound and complete. Another
key issue we address in this paper is that of the evolution of role hierarchies through hierarchical
transformations. We present an analysis of hierarchy transformations with respect to role addition,
deletion and partitioning, and show how various cases of these transformations allow the original
permission acquisition and role activation semantics to be managed. The formal results presented
here provide a basis for developing efficient security administration and management tools.

1. INTRODUCTION

Role based access control (RBAC) has emerged as a promising alternative to tradi-
tional discretionary and mandatory access control (DAC and MAC) models [Giuri
1995], [Giuri 1996], [Joshi et al. 2001], [Nyanchama and Osborn 1999], [Osborn et al.
2000], [Sandhu et al. 1996], [Koch et al. 2002], which have inherent limitations [Joshi
et al. 2001]. Several beneficial features such as policy neutrality, support for least
privilege and efficient access control management are associated with RBAC models
[Ferraiolo et al. 1993], [Joshi et al. 2001], [Sandhu et al. 1996]. Such features make
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RBAC better suited for handling access control requirements of diverse organiza-
tions. RBAC models have also been found suitable for addressing security issues in
the Internet environment [Barkley et al. 1997], [Joshi et al. 2001], [Park et al. 2001]
and show promise for newer heterogeneous multi-domain environments that raise
serious concerns related to access control across domain boundaries [Biskup et al.
1998], [Joshi et al. 2001].

An essential part of an RBAC model is the notion of a role hierarchy. Role
hierarchies play a crucial role in authorization management and administration
[Moffett 1998], [Sandhu 1996], [Sandhu 1998], [Jaeger and Tidswell 2001] and in
the succinct RBAC representations of DAC and MAC policies [Osborn et al. 2000].
When two roles are hierarchically related, one is called the senior and the other
the junior. In the most commonly accepted RBAC96 family of models [Sandhu
et al. 1996], a senior role and its junior roles are related by an inheritance rela-
tion that has two semantic parts: permission-inheritance (also called permission-
usage [Sandhu 1998]) and role-activation semantics. Permission-inheritance se-
mantics allows a senior role to inherit all the permissions assigned to its junior
roles, whereas the role-activation semantics allows all the users assigned to a senior
role to activate its junior roles. The RBAC96 models use the combined hierarchy
semantics that allows both the permission-inheritance and the role-activation se-
mantics. This significantly reduces assignment overhead, as the permissions need
only be assigned to junior roles [Sandhu 1998], [Moffett 1998]. Sandhu showed
that, under the combined hierarchy semantics, certain separation of duty (SoD)
constraints cannot be defined on hierarchically related roles, thus, restricting its ef-
fectiveness in supporting a broader set of fine-grained constraint specification, and,
in particular, in representing MAC policies [Sandhu 1998]. To address such short-
comings of RBAC96, Sandhu [Sandhu 1998] has proposed the ER-RBAC96 model
that incorporates a distinction between a usage hierarchy that applies only the
permission-inheritance semantics and an activation hierarchy that uses the com-
bined hierarchy semantics. Later, Joshi et al. [Joshi et al. 2002] have established
a clear distinction between the three role hierarchies: permission-inheritance-only
hierarchy (I -hierarchy), activation-only hierarchy (A-hierarchy), and the combined
permission-inheritance and activation hierarchy (IA-hierarchy). The need for dif-
ferent semantics for hierarchical relations has also been recognized by Moffet et al.
in [Moffett 1998], [Moffett and Lupu 1999]. In particular, they have identified the
need for three types of organizational hierarchies - is a hierarchy, activity hierarchy
and supervision hierarchy - in order to address the needs of control principles in an
organization, such as SoD, decentralization of control and supervision and review
[Moffett 1998], [Moffett and Lupu 1999]. Use of a combined hierarchy semantics has
been found to limit a hierarchy in achieving these organizational control goals and,
hence, to address such control requirements it is desirable to configure a hybrid role
hierarchy that allows different hierarchical relations among roles [Joshi et al. 2002].
Such a hybrid hierarchy is provided as part of the recently proposed Generalized
Temporal RBAC model [Joshi et al. 2005b] and it is able to support a variety of
combinations of inheritance and activation semantics.

Another relevant functionality in access control is that of time-constraining ac-
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Fig. 1. An example hybrid hierarchy

cesses to resources for controlling time-sensitive activities in an application, for
instance, in a workflow management system (WFMS) [Bertino and Ferrari 1999],
where various workflow tasks, each having some timing constraints, need to be ex-
ecuted in some order. Bertino et al.’s Temporal RBAC model (TRBAC) provides
the first framework for modeling of time-constrained access policies [Bertino et al.
2001]. The GTRBAC model extends the TRBAC model and incorporates a set of
language constructs for specifying a large set of periodicity and duration constraints
including those on role enabling, user-role and role-permission assignments, and role
activations. An important issue in the GTRBAC model is the interplay between
the temporal constraints and role hierarchies, which has been first addressed in
[Joshi et al. 2002]. Accordingly, Joshi et al. identify various subtypes of the I, A
and IA-hierarchies that capture temporal semantics of a hierarchy in presence of
temporal constraints on roles. In presence of a hybrid hierarchy containing multiple
hierarchy types, a user may be able to activate different sets of junior roles in a
session. Sets of roles that can be activated or permissions that can be acquired by
a user at a particular time indicate the overall access capabilities of the user. From
the perspective of the principle of least privilege, it may be necessary to ensure that
such activable sets of roles do not result in granting users unnecessary access ca-
pabilities. Determining such sets can become very complex in presence of a hybrid
hierarchy. Furthermore, it is essential to know what indirect relations may exist
between roles that are not directly related so that when modifications are made to
the hierarchy, original relations can be maintained if possible. For example, con-
sider the relatively simple hybrid hierarchy of Fig. 1. Here, determining the sets of
roles that can be activated in a single session by a user assigned only to the role r3

is not straightforward. Similarly, when we delete the role s1, we need to make sure
that the original relations between r3 and t1, r3 and s2 or r3 and x1 are retained.

Flexible models, like GTRBAC, need formal tools for an efficient security ad-
ministration and management. In this paper, we present a formal basis for ana-
lyzing hybrid hierarchies in GTRBAC. The contributions of this paper include the
following:

—We define the notion of uniquely activable set of a hierarchy that can be used
by security administrators for determining access capabilities that a user can
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obtain from a role hierarchy in a single session and show formally how it can be
determined in a hybrid temporal role hierarchy.

—We introduce a set of inference rules that allows inferring the hierarchical re-
lationships between an arbitrary pair of roles that are not directly related and
show that it is sound and complete.

—We develop a set of hierarchy transformation algorithms to assist in administering
role hierarchies when the roles are added, deleted or modified.

The paper is organized as follows. In Section 2, we overview the GTRBAC
model. In Section 3, we introduce the three basic hierarchical relations that can
exist on a set of roles followed by their subtypes. In Section 4, we introduce the
notion of uniquely activable set and a formal technique for determining it. In
section 5, we introduce a set of inference rules for inferring derived relations between
an arbitrary pair of roles. In Section 6, we introduce hierarchy transformation
algorithms. Related work is discussed in Section 7. Conclusions and future work
are presented in Section 8. Appendix A provides the proofs of formal results in
section 4 whereas Appendix B provides the proofs of formal results of section 5.

2. GENERALIZED TEMPORAL ACCESS CONTROL MODEL (GTRBAC)

The GTRBAC model introduces the separate notion of role enabling and role ac-
tivation, and provides constraints and event expressions associated with both. An
enabled role indicates that a valid user can activate it, whereas an activated role
indicates that at least one user has activated it. The GTRBAC model allows the
specification of the following set of constraints:

(1) Temporal constraints on role enabling/disabling: These constraints allow the
specification of intervals and durations in which a role is enabled. When a
role is enabled, the permissions assigned to it can be acquired by a user by
activating it. When a duration constraint is specified, the enabling/disabling
of a role is initiated by a constraint enabling event that results from the firing
of a trigger or through an administrator initiated run-time event.

(2) Temporal constraints on user-role and role-permission assignments: These con-
straints allow specifying intervals and durations in which a user or a permission
is assigned to a role.

(3) Activation constraints: These constraints allow specification of restrictions on
the activation of a role. These include, for example, specifying the total dura-
tion for which a user may activate a role, or the number of concurrent activa-
tions of a role at a particular time.

(4) Run-time events: A set of run-time events allows an administrator to dynam-
ically initiate GTRBAC events, or enable duration or activation constraints.
Another set of run-time events allow users to request activation or deactivation
of a role.

(5) Constraint enabling expressions: The GTRBAC model includes events that
enable or disable duration and role activation constraints mentioned earlier.

(6) Triggers: The GTRBAC triggers allow expressing dependencies among events.
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Table I. Constraint Expressions

Constraint
categories

Constraints Expression

Periodicity
Constraint

User-role assignment (I, P, pr : assignU/deassignU r to u)

Role enabling (I, P, pr : enable/disable r)

Role-permission assignment (I, P, pr : assignP/deassignP p to r)

Duration
Constraints

User-role assignment ([(I, P )|D], DU , pr : assignU/deassignU r to u)

Role enabling ([(I, P )|D], DR, pr : enable/disable r)

Role-permission assignment ([(I, P )|D], DP , pr : assignP /deassignP p to r)

Duration
Constraints
on Role
Activation

Total active
role duration

Per-role ([(I, P )|D], Dactive, [Ddefault], pr : activeR total r)

Per-user-role ([(I, P )|D], Duactive, u, pr : activeUR total r)

Max role
duration per
activation

Per-role ([(I, P )|D], Dmax, pr : activeR max r)

Per-user-role ([(I, P )|D], Dumax, u, pr : activeUR max r)

Cardinality
Constraint
on Role
Activation

Total no. of
activations

Per Role ([(I, P )|D], Nactive, [Ndefault], pr : activeR n r)

Per-user-role ([(I, P )|D], Nuactive, u, pr : activeUR n r)

Max. no. of
concurrent
activations

Per-role ([(I, P )|D], Nmax, [Ndefault], pr : activeR con r)

Per-user-role ([(I, P )|D], Numax, u, pr : activeUR con r)

Trigger E1, . . . , En, C1, . . . , Ck → pr : E after ∆t

Constraint
Enabling

pr:enable/disable c where c ({(D,Dx, pr : E), (C), (D,C)})

Run-time
Requests

Users’ activation request (s : (de)activate r for u after ∆t))

(pr : assignU/de− assignU r to u after ∆t)

Administrator’s run-time (pr : enable/disable r after∆t)

request (pr : assignP /de− assignP p to r after∆t)

(pr : enable/disable c after ∆t)

Table I summarizes the constraint types and expressions of the GTRBAC model.
The periodic expression used in the constraint expressions is of the form (I, P),
where P is an expression denoting an infinite set of periodic time instants, and
I = [begin, end] is a time interval denoting the lower and upper bounds that
are imposed on instants in P. The function Sol(I, P ) is used to denote all the
time instants in (I, P). D expresses the duration specified for a constraint. In
the duration and role activation constraint expressions, Dx and Nx indicate the
duration and cardinality values. If the subscript x starts with u, then it is a
per-user-role constraint otherwise it is a per-role constraint. For instance, Dactive

indicates the duration for which the specified role can be active, whereas, Duactive

indicates the duration for which the specified user may activate the specified role.
The following example illustrates the specification of a GTRBAC policy. For more
details on the GTRBAC mode, we refer the readers to [Joshi et al. 2005b].

Example 1: Table II contains the GTRBAC policy for a hospital. The peri-
odicity constraint 1a specifies the enabling times of DayDoctor and NightDoctor

roles. For simplicity, we use DayTime and NightTime instead of their (I, P ) forms.
The periodicity constraint 1b allows the DayDoctor role to be assigned to Adams
on Mondays, Wednesdays and Fridays, and to Bill on Tuesdays, Thursdays, Satur-
days and Sundays. Similarly, Alice and Ben are assigned to the NightDoctor role
on the different days of the week. Furthermore, the assignment in 1c allows Carol
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Table II. An Example GTRBAC access policy for a medical information System

1

a. (DayTime, enable DayDoctor), (NightTime,enable NightDoctor)

b.

((M, W, F), assignU Adams to DayDoctor)

((T, Th, S, Su), assignU Bill to DayDoctor);

(M, W, F), assignU Alice to NightDoctor)

((T, Th, S, Su), assignU Ben to NightDoctor)

c. ([10am, 3pm], assignU Carol to DayDoctor)

2
a. (assignU Ami to NurseInTraining); (assignU Elizabeth to DayNurse)

b. (6 hours, 2 hours, enable NurseInTraining)

3

a. (enable DayNurse → enable c1)

b. (activate DayNurse for Elizabeth → enable NurseInTraining after 10 min)

c.
(enable NightDoctor → enable NightNurse after 10 min);

(disable NightDoctor → disable NightNurse after 10 min)

d.
(enable DayDoctor → enable DayNurse after 10 min);

(disable DayDoctor → disable DayNurse after 10 min)

to assume the DayDoctor role everyday between 10am and 3pm. In 2a, Ami and
Elizabeth are assigned to roles NurseInTraining and DayNurse respectively with
no temporal restriction, i.e., the assignment is valid at all times. 2b specifies a du-
ration constraint of 2 hours on the enabling time of the NurseInTraining role, but
this constraint is valid for only 6 hours after the constraint c1 has been enabled.
Because of this, Ami will be able to activate the NurseInTraining role at the most
for two hours whenever the role is enabled. In row 3, we have a set of triggers. Trig-
ger 3a indicates that constraint c1 is enabled when the DayNurse is enabled, which
means, now, the NurseInTraining role can be enabled within the next 6 hours.
Trigger 3b indicates that 10 min after Elizabeth activates the DayNurse role, the
NurseInTraining role is enabled for a period of 2 hours. This shows that a nurse
in training will have access to the system only if Elizabeth is present in the system,
that is, she may be acting as a training supervisor. It is possible that Elizabeth
activates the DayNurse role a number of times in 6 hours after the DayNurse role
has been enabled, and each time the NurseInTraining role will also be enabled if
these activations (by Elizabeth) are more than 2 hours apart. This will allow Ami
to activate the NurseInTraining role a number of times. The remaining triggers
in row 3 show that the DayNurse and NightNurse roles are enabled (disabled) 10
min after the DayDoctor and NightDoctor roles are enabled (disabled).

3. TEMPORAL ROLE HIERARCHIES

In earlier work, we introduced the following three hierarchy types: permission-
inheritance-only hierarchy (I -hierarchy), role-activation-only hierarchy (A-hierarch
y) and the combined permission-inheritance-activation hierarchy (IA-hierarchy)
[Joshi et al. 2002]. Table III shows the notation for various predicates used in
the definitions of these hierarchies. Predicates enabled(r, t), assigned(u, r, t) and
assigned(p, r, t) refer to the status of roles, user-role and role-permission assign-
ments at time t. Predicate can activate(u, r, t) indicates that user u can activate
role r at time t. This implies that user u is implicitly or explicitly assigned to
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role r. active(u, r, s, t) indicates that role r is active in user u’s session s at time
t whereas, acquires(u, p, s, t) implies that u acquires permission p at time t in ses-
sion s. The axioms below capture the key relationships among these predicates and
identify precisely the permission-acquisitions and role-activation semantics allowed
in GTRBAC [Joshi et al. 2002].

Table III. Various status predicates

Predicate Meaning

enabled(r, t) Role r is enabled at time t

u assigned(u, r, t) User u is assigned to role r at time t

p assigned(p, r, t) Permission p is assigned to role r at time t

can activate(u, r, t) User u can activate role r at time t

can acquire(u, p, t) User u can acquire permission p at time t

can be acquired(p, r, t) Permission p can be acquired through role r at time t

active(u, r, s, t) Role r is active in user u’s session s at time t

acquires(u, p, s, t) User u acquires permission p in session s at time t

Axioms: If r ∈ Roles, u ∈ Users, p ∈ Permissions, s ∈ Sessions, and time
instant t > 0, the following implications hold :

(1) p assigned(p, r, t) → can be acquired(p, r, t)

(2) u assigned(u, r, t) → can activate(u, r, t)

(3) can activate(u, r, t) ∧ can be acquired(p, r, t) → can acquire(u, p, t)

(4) active(u, r, s, t) ∧ can be acquired(p, r, t) → acquires(u, p, s, t)

Axiom (1) states that if a permission is assigned to a role, then it can be acquired
through that role. Axiom (2) states that all users assigned to a role can activate
that role. Axiom (3) states that if a user u can activate a role r, then all the
permissions that can be acquired through r can be acquired by u. Similarly, axiom
(4) states that if there is a user session in which a user u has activated a role r
then u acquires all the permissions that can be acquired through role r. We note
that axioms (1) and (2) indicate that permission-acquisition and role-activation
semantics is governed by explicit user-role and role-permission assignments.

3.1 Formal Definitions of Temporal Role Hierarchies

Semantically, the use of a role hierarchy is to extend the possibility of permission-
acquisition and role-activation semantics beyond the explicit assignments as indi-
cated by the definitions below [Joshi et al. 2002]. The GTRBAC model’s con-
straint enabling/disabling expressions can be used to specify when a hierarchical
relation can be enabled/disabled. Hence, if h is a hierarchical relation, we write
“enable/disable h” to enable/disable the relation. This allows administrators to dy-
namically change, if needed, the hierarchical relationships on a set of roles through
periodicity or duration constraints, run-time requests and triggers. The following
definitions do not consider the enabling times of the hierarchically related roles,
and hence the hierarchies are termed unrestricted.
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Fig. 2. Enabling intervals of Software Engineer and Programmer Roles

Definition 3.1. (Unrestricted I − hierarchy)[Joshi et al. 2002]: Let x and y
be roles such that (x>iy), that is, x has an inheritance-only relation over y at time
t. Then the following holds:

∀ p, (x>iy) ∧ can be acquired(p, y, t) → can be acquired(p, x, t) (c1)

Definition 3.2. (Unrestricted A− hierarchy) [Joshi et al. 2002]: Let x and y
be roles such that (x>ay), that is, x has an activation-only relation over y at time
t. Then the following holds:

∀ u, (x>ay) ∧ can activate(u, x, t) → can activate(u, y, t) (c2)

Definition 3.3. (Unrestricted IA − hierarchy) [Joshi et al. 2002]: Let x and
y be roles such that (x>y), that is, x has a general inheritance relation over y at
time t. Then the following holds: (x>y) ↔ (x>ay) ∧ (x>iy).

In the definitions above, x is said to be a senior of y, and conversely y is said to
be a junior of x. Thus, if (x>iy), the permissions that can be acquired through
x include all the permissions assigned to x (by axiom (1)) and all the permissions
that can be acquired through role y (by c1). Note that the axioms and condition
c1 do not allow u, a user assigned to x only, to activate y. Condition c2 states
that if user u can activate role x, and x has A-relation over y, then he can ac-
tivate role y also, even if u is not explicitly assigned to y. As condition c1 does
not apply to an A-hierarchy, u cannot acquire y’s permissions by just activating x.
The IA-hierarchy is the most common form of hierarchy. On a given set of roles,
various inheritance relations may be defined. Therefore, we require that the fol-
lowing consistency property be satisfied in a role hierarchy in order to ensure that
senior-junior relationship between two roles in one type of hierarchy is not reversed
in another. Note that all three hierarchies are transitive.

Property 1 (Consistency of hierarchies) [Joshi et al. 2005a]: Let 〈f1〉, 〈f2〉 ∈
{>i ,>a ,>}. Let x and y be two distinct roles such that (x〈f1〉y); then the condition
¬(y〈f2〉x) must hold.

In what follows, we will always assume that hierarchies are consistent. When
we consider the enabling times of hierarchically related roles, we obtain weakly
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restricted and strongly restricted forms of the hierarchies. Their meaning is exem-
plified by the diagrams in Fig. 2, dealing with two hierarchically related roles -
Software Engineer and Programmer - hierarchically related. Of those two roles,
only one is enabled in intervals τ1 and τ2. In a strongly-restricted hierarchy, inher-
itance is not allowed in these intervals. This is because in this type of hierarchy
both roles must be enabled for inheritance to take place. By contrast, in a weakly-
restricted hierarchy, inheritance may be allowed in these intervals. Table IV shows
the inheritance properties of restricted and unrestricted hierarchies in τ1 and τ2.

Table IV. Inheritance semantics for the restricted and unrestricted hierarchies

Interval τ → τ1 τ2

↓ Hierarchy Type r1 disabled, r2 enabled r1 enabled, r2 disabled

I -hierarchy Iw No inheritance in τ Permission-inheritance in τ

(by activating r2)

Is No inheritance in τ No inheritance in τ

A-hierarchy Aw Activation-inheritance in τ No inheritance in τ

(by activating r2)

As No inheritance in τ No inheritance in τ

IA-hierarchy IAw Activation-inheritance in τ Activation-inheritance in τ

(by activating r2) (by activating r2)

IAs No inheritance in τ No inheritance in τ

Note: Subscript w stands for weakly-restricted hierarchy and s stands for

strongly-restricted hierarchy.

When activation-time restrictions are to be enforced in GTRBAC, different hi-
erarchy types may need to be considered depending upon whether the constraint
is user-centric or permission-centric [Joshi et al. 2002]. An activation constraint
is user-centric if it is designed to control different aspects of users in the system
through role activations; for example, to control the number of users activating
a role. An activation constraint is permission-centric if it is aimed at controlling
distribution of the permissions through role activations. Joshi et. al. [Joshi et al.
2002] show that an I or IA-hierarchy is appropriate when an activation constraint is
user-centric, whereas an A-hierarchy is appropriate when the activation constraint
is permission-centric.

3.2 Examples of Temporal Role Hierarchies

We illustrate with the examples reported in Fig. 2(i) and Fig. 2(ii) the practi-
cal uses of the various kinds of hierarchies. A practical use of such dynamically
changing hierarchical relation is in a case where a senior (acting as a supervisor) is
allowed to inherit read-only permissions of its juniors as described in Example 3.1.
Moffet et. al. [Moffett 1998] has identified such a supervision-review capability as
an important organizational control principle.

Example 3.1: Consider the hierarchy in Fig. 3. Here, we see that the SeniorSec
urityAdmin role is enabled only in interval (8pm, 11pm). Neither of its junior roles
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Fig. 3. Hierarchy Examples

is enabled in the entire interval (8pm, 11pm). The Iw relation allows a user who
activates the SeniorSecurityAdmin role to acquire all the permissions of its junior
roles. This may be desirable if SeniorSecurityAdmin role is designed to perform
special security operations for checking and maintenance. In such a case, it is rea-
sonable to think that the user assigned to the SeniorSecurityAdmin role will need
all the administrative privileges of the junior roles. The temporal restrictions on
SecurityAdmin1 and SecurityAdmin2 restrict the users assigned to them to carry
out corresponding system administration activities only in the specified intervals.
However, here, the user assigned to SeniorSecurityAdmin cannot assume the role
of the junior roles SecurityAdmin1 and SecurityAdmin2. To remove this limita-
tion, we can use the IAw-hierarchy instead. The hierarchy in Fig. 3(b), on the
other hand, is of type I. The senior role is the PartTimeDoctor role, which has
two intervals in which it can be enabled, (3pm, 6pm) and (7am, 10am). If a user
activates the PartTimeDoctor role in the first interval, according to the Is relation,
he essentially gets all the privileges of the DayDoctor role, as the NightDoctor role
is disabled at that time. Now, consider the second interval. We see that it overlaps
with the enabling times of the two junior roles. Hence, if the user activates the
PartTimeDoctor role in the second interval, he acquires the privileges of only the
NightDoctor role in the sub-interval (7am, 9am) and that of only the DayDoctor

role in the sub-interval (9am, 10am). Thus, we see that the two different semantics
of an inheritance hierarchy can be used to achieve different needs. Again, a part
time doctor cannot work as a DayDoctor or a NightDoctor, although, he can ac-
quire the permissions assigned to them. If a user is also to be allowed to use the
junior roles, we can use IAs-hierarchy instead.

Now, consider Fig. 3(c). Here, we see that there is no interval in which the
GeneralDoctor role can be enabled. However, since the activation hierarchy is of
type Aw, any user assigned to the GeneralDoctor role can activate either of the ju-
nior roles when they are enabled. In effect, any user assigned to the GeneralDoctor
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role can activate both the DayDoctor and the NightDoctor roles whenever they
are enabled. Fig. 3(d) illustrates the use of an activation hierarchy of type A.
Here, a supervising doctor can assume the SupervisorDoctor role in intervals
(10am, 12noon) and (7am, 9am). In the first interval, the supervisor will be able to
acquire all the privileges of the DayDoctor role by activating it and in the second
interval, he will be able to acquire all the privileges of the NightDoctor role by
activating it along with the SupervisorDoctor role. The SupervisorDoctor role
may simply contain some extra privileges that are required for the supervision task
during daytime or nighttime.

Example 3.2: Consider the following requirements for a programming project.
A software tool is used for the programming task. The project leader mainly
supervises the programming tasks. Only the programmers do the coding. The
project leader can only look at the tasks the programmers have carried out on a
weekly basis, say on Fridays. Fig. 3(e) depicts the hierarchy that can be generated
for achieving the goal. Role TaskR contains the read-only permissions whereas
role TaskW contains all the write/modify permissions related to the programming
task. The Project Leader role becomes the senior of Programmer role only on
Fridays. Note that the users assigned to the Project Leader only inherit TaskR’s
permissions and cannot acquire any permissions of TaskW.

4. UNIQUELY ACTIVABLE SET OF A TEMPORAL HIERARCHY

In this section, we introduce the notion of uniquely activable set(UAS) and present
formal results for characterizing it for a hierarchy. The UAS associated with a
hierarchy is essentially the set of role sets that can be activated by a user assigned
to a role of the hierarchy. In a hierarchy that allows co-existence of the multiple
hierarchy types, the permission-inheritance and role-activation semantics can be
complex, thus making administration and management of large hierarchies difficult.
The UAS gives the role combinations that can be activated by a user in a single
session, and thus helps in determining the granularity of permission sets that can
be acquired by users through a role in the hierarchy. Thus, UAS is mainly relevant
from the perspective of the principle of least privilege. Here, we first determine
the UAS characteristics of a monotype hierarchy with only one type of hierarchical
relation over the roles, followed by that of a hybrid linear path and then formalize
results for the more general role hierarchy. The approach to determining the UAS
presented in this section is algorithmic in nature. A mathematical (declarative)
way of establishing the UAS is presented in Appendix C. We then introduce the
notion of acquisition equivalence to characterize equivalent hierarchies in order to
address the usefulness of a hybrid hierarchy. Here onwards we will only use the
unrestricted forms of hierarchies. Furthermore, although we consider unrestricted
forms of temporal hierarchies, the results directly apply to the non-temporal case
with the same three different hierarchy types.

4.1 Computing Uniquely Activable Set Of A Hierarchy

We represent by
⊔

(H) the uniquely activable set (UAS) of role sets associated with
a user assigned to the senior-most role of a hierarchy H at time instant t. For a given
role set X = {x1, x2, . . . , xn} and a set of hierarchy relations [f ] ⊆ {>i,>a,>}, we
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represent a general hierarchy H over X as (X, [f ]). If [f ] = {〈f〉} is a singleton
set with hierarchy relation 〈f〉, then we call H a monotype hierarchy and write (X,
〈f〉), else we call H a hybrid hierarchy. Furthermore, H is a linear path over X
if (X, [f ]) is an ordered sequence of relation x1〈f12〉x2〈f23〉x3 . . . xn−1〈f(n−1)n〉xn
where 〈fij〉 ∈ [f ]. We represent a monotype linear path as L = (X, 〈f〉) and a
hybrid linear path as Lh = (X, [f ]). We use LH to represent either Lh or LH. In
this paper, we assume that

(a) the set of permissions assigned to each role in Roles(H ) is distinct, and
(b) for each hierarchy H, there is only one senior-most role, indicated by SH .

The results can be easily extended to deal with a general hierarchy. We use JH
to denote the set of junior-most roles of H.
We use notation P(r) to refer to the set of permissions assigned to role r. Similarly,
given a set X of roles, we use P(X ) to denote

⋃

r∈X P (r). Now, we formally define
the UAS of a hierarchy as follows.

Definition 4.1. (Uniquely Activable Set of a Hierarchy H ): Let H = (X,
[f ]) be a hierarchy. Then, the uniquely activable set for a user u assigned only to
role SH ,

⊔

(H ), is the maximal set of role sets Y1, Y2, . . . , Ym , such that

(1 ) for each i ∈ {1, 2, . . . ,m},Ø ⊂ Yi ⊆ X, and all roles in each Yi can be activated
in a single session of u,

(2 ) for all pairs i, j ∈ {1, 2, . . . ,m} and i 6= j, P (Yi) 6= P (Yj), and,

(3 ) for each Z ⊆ X such that Z /∈ ⊔

(H), if P (Yi) = P (Z) for some i, then
(|Yi| < |Z|); where |A| denotes the cardinality of set A.

Note that each element Yi is a subset of X. Condition (2) indicates that each role
set of

⊔

(H) is unique in terms of the permissions that can be acquired through its
roles. Condition (3) considers the possibility of different role sets associated with
the same set of permissions. In such a case

⊔

(H ) contains the role set that has the
least number of roles. Conditions (2) and (3) prevent a pair of senior and junior
roles, e.g. of an IA-hierarchy, to be in a role set of

⊔

(H ). For instance, if relation
(x>y) is in H, then the set {x} and not {x, y} will be in

⊔

(H ), as P (x) = P ({x, y}).
The

⊔

(H) values for I, A and IA-hierarchy can differ significantly because of the
difference in permission-inheritance and role-activation semantics associated with
them.

As a hybrid linear path may have different types of hierarchical relations it can be
decomposed into a set of monotype linear paths. The following definition formalizes
the notion of monotype decomposition of a hybrid linear path (MDHP).

We denote the senior-most and the junior-most roles of a hybrid hierarchy Lh as
SLh and JLh.

Definition 4.2. (Monotype Decomposition of Hybrid Path - MDHP):
Let Lh = (X, [f ]) be a hybrid linear path over role set X. Then Lh can be decomposed
into an ordered set Lh = (L1, L2, . . ., Ln) with X = X1

⋃

X2

⋃

..
⋃

Xn, such that
Li = (Xi, 〈fi〉) is a monotype linear path, and the following conditions hold:

(1 ) for all i ∈ {1, . . . , n − 1}, (i) 〈fi〉 6= 〈fi+1〉, and (ii) Xi

⋂

Xi+1 = {JLi} =
{SL(i+1)

}, and

(2 ) for all i ∈ {1, . . . , n} and (i+ 1 < j 6 n) or (1 6 j < i− 1), Xi

⋂

Xj = φ,
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Fig. 4. Complete horizontal partition of a hybrid linear path

Here, (L1, L2, . . . , Ln) is minimal. Lh can also be written as (L1, Lh
′), (Lh”, Ln),

(Lhx, Lhy), etc., each of which is an MDHP of Lh, not necessarily minimal.

It is easy to see that SLh = SL1
, and JLh = JLn . As indicated, we will use L to

represent a monotype linear path, Lh to represent a hybrid linear path, and LH to
mean either of them. H represents any hierarchy. As indicated by definition 4.2, we
can break a hybrid linear path into an ordered set of monotype linear paths. Such
an MDHP of a hybrid path allows us to use the

⊔

(H) of the monotype linear paths
to determine the

⊔

(H) of a hybrid linear path. Note that the minimal MDHP
consists of monotype linear paths that are maximal in the sense that combining
any consecutive pair of component linear paths will give a component hybrid linear
path, as indicated by part (1) of the definition. The use of MDHPs of Lh that
are not minimal allows expressing a hybrid linear path as a combination of smaller
linear paths that may be of hybrid type. Example 4.1 illustrates the decomposition
of a hybrid linear path into its monotype components.

Consider the role hierarchy of Fig. 4(a). The complete MDHP of the hy-
brid linear path is (L1, L2, L3, L4, L5, L6) as shown in Fig. 4(c). We note that
if L4 is split into L4,1 = ({4, 5}, IA-type) and L4,2 = ({5, 6}, IA-type), then
L1, L2, L3, L4,1, L4,2, L5, L6 is not a complete MDHP, as L4,1 and L4,2 do not sat-
isfy part (1) of definition 4.2.

In this paper, we also use functions subL(LH) and subU (LH) that return the
lower and upper parts of a linear path LH. That is, if
LH = x1〈f 12〉x2〈f 23〉x3 . . . xn−1〈f(n−1)n〉xn, where 〈fi(i+1)〉 ∈ {>i,>a,>}. Then,

—subL(LH) = x2〈f23〉x3 . . . xn−1〈f(n−1)n〉xn;
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—subU (LH) = x1〈f12〉x2〈f 23〉x3 . . . 〈fn−2〉xn−1; For L = (x〈f〉y), subL(L) =
subU (L) = Ø;

—subL(LH) =subL(L1), L2, . . . , Ln, and,

—subU (LH)={L1, L2, ..., subU (Ln)}, where LH = (L1, L2, . . . , Ln) is the complete
MDHP of LH.

Here, subL(LH) and subU (LH) return the lower and the upper sub-paths of LH.
subL(x〈f〉y) = subU (x〈f〉y) = Ø indicates that path (x〈f〉y) has no sub-paths.

In other words, if LH = (L1, L2, . . . Ln) is the minimal MDHP then
subL(LH) = (subL(L1), L2, . . . , Ln), and
subU (LH) = (L1, L2, . . . , subU (Ln))

Because of the different activation semantics associated with each hierarchy type,
⊔

(H) associated with each type is also different. The following theorem formally
characterizes the

⊔

(H) of a monotype hierarchy:

Theorem 4.1. Let H = (X, 〈f〉) be a monotype linear hierarchy defined over
role set X = {x1, x2, . . . , xn} with 〈f〉 ∈ {>i,>a,>}

Then,

⊔

(H) =











{SH} if(〈f 〉 = >i)

{2X\Ø} if(〈f 〉 = >a)

{x1, x2, . . . , xn} if(〈f 〉 = >)

The theorem states that
⊔

(H) of a linear I -hierarchy contains the senior-most
role only.

⊔

(H) of a linear A-hierarchy contains the power set of the role set
X without the empty element, i.e., a user assigned to the senior-most role can
activate every combination of the roles in the hierarchy. Similarly,

⊔

(H) of a lin-
ear IA-hierarchy contains set elements containing individual roles of the hierarchy.
The proof for the theorem follows directly from the transitive properties of the hi-
erarchical relations and the permission inheritance-only and/or role activation-only
semantics of the three hierarchies. Example 4.2 illustrates the use of the results of
Theorem 4.1

Consider the monotype hierarchies of Fig. 3. For each of the monotype hierar-
chies in figures 3(a) and 3(b), the corresponding

⊔

(H)s only contain the set with the
senior-most role of the hierarchy, as each of them has the senior-most role related
to its junior(s) by I-relation(s). For hierarchies in figures 3(c) and 3(d), assuming
unrestricted forms in both the cases, instead of the restricted forms indicated in
the figures, the UASs are as follows:

Hierarchy of Fig. 3(c): Here,
⊔

(H)= {{GeneralDoctor}, {DayDoctor},{NightDoctor},
{GeneralDoctor,DayDoctor}, {GeneralDoctor,NightDoctor},
{GeneralDoctor,DayDoctor,NightDoctor}}.
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However, GeneralDoctor is never enabled. Furthermore, if we take the periodicity
constraints on the roles, we have,

in interval (9am, 9pm),
⊔

(H) = {{DayDoctor}},
and in interval (9pm, 9am),

⊔

(H)={{NightDoctor}}.

Hierarchy of Fig. 3(d): Here,
⊔

(H)= {{SupervisorDoctor}, {DayDoctor}, {NightDoctor},
{SupervisorDoctor,DayDoctor}, {SupervisorDoctor,NightDoctor},
{SupervisorDoctor,DayDoctor,NightDoctor}}.

However, the effective
⊔

(H) differ the temporal constraints. Hence,

in interval (9am, 10am)
⊔

(H) = {{DayDoctor}}
in interval (12noon, 9pm)

⊔

(H) = {{DayDoctor}};

in interval (10am, 12noon)
⊔

(H) = {{DayDoctor}, {SupervisorDoctor},
{SupervisorDoctor,DayDoctor}};

in interval (7pm, 9am)
⊔

(H) = {{NightDoctor}, {SupervisorDoctor},
{SupervisorDoctor,NightDoctor}};

in interval (9pm, 7am)
⊔

(H) = {{NightDoctor}}.

Next, we present a formal basis for characterizing
⊔

(H) for a hybrid linear path.
We first present the results for a hybrid linear path consisting of only two monotype
linear components in the following lemma and then use it to characterize arbitrary
hybrid linear paths.

Lemma 4.1. Let Lh = (L1, L2) be a hybrid linear path such that L1 = (X1, 〈f〉)
and L2 = (X2, 〈f2〉), where X = {x1, x2, . . . , xn} = X1

⋃

X2, and 〈f1〉 6= 〈f2〉.
Then for a user u assigned only to SL1 , we have:

⊔

(Lh) =











⊔

(L1) if >i ∈ {〈f1〉, 〈f2〉}
⊔

(LU1 )
⋃⊔

(L2)
⋃⊔

(LU1 )
⊗⊔

(L2) if(〈f1〉, 〈f2〉) = (>a ,>)
⊔

(L1)
⋃⊔

(LL2 )
⋃⊔

(L1)
⊗⊔

(LL2 ) if(〈f1〉, 〈f2〉) = (>,>a )

where, LL2 = subL(L2), LU2 = subU (L2) and A
⊗

B = {{x ⋃ y} | x ∈ A and y
∈ B}.

Note that, in the computation involving
⊔

(Lh), the components on the right
side are disjoint with respect to each other and hence |⊔(Lh)| is simply the sum of
the cardinalities of the components on the right side. Theorem 4.2 determines the
⊔

(H) for an arbitrary hybrid linear path.

Theorem 4.2. Let Lh = (L1, LH2) be a hybrid linear path such that L1 =
(X1, 〈f1〉), LH2 is a linear path over X2, and X = X1

⋃

X2, where X1 and X2

are role sets. Furthermore, let LH2 = (Lx, LH
′), where Lx = (Xx, 〈fx〉) over role
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set Xx such that 〈fx〉 6= 〈f1〉 and LH’ is a linear path, possibly empty. Then, we
have the following:

1. if 〈f1〉 = >i then
⊔

(Lh) =
⊔

(L1)
2. if 〈f1〉 = >a then

⊔

(Lh) =

{

⊔

(L1) if(〈fx〉 = >i)
⊔

(LU1 )
⋃⊔

(LH2)
⋃⊔

(LU1 )
⊗⊔

(LH2) if(〈fx〉 = >)

3. if 〈f1〉 = > then

⊔

(Lh) =

{

⊔

(L1) if(〈fx〉 = >i)
⊔

(L1)
⋃⊔

(LHL
2 )
⋃⊔

(L1)
⊗⊔

(LHL
2 ) if(〈fx〉 = >a)

The next example illustrates the use of the above theorem and refers to Fig.
5. We note that to compute

⊔

(H) for the hierarchy in case (c), we need to first
compute for cases (a) and (b).

Case (a): Here L1 = r3 > r2, and L2 = r2 >a r1. Hence, (〈f1〉, 〈f2〉) = (>, >a )
applies. Therefore, by lemma 4.1, we have,

⊔

(Lh) =
⊔

(L1)
⋃⊔

(LL2 )
⋃

(
⊔

(L1)
⊗⊔

(LL2 ))

= {{r2}, {r3}}
⋃{{r1}}

⋃

({{r2}, {r3}}
⊗{{r1}})

= {{r1}, {r2}, {r3}, {{r1}, {r2}}, {r1, r3}}

Case(b): Here L1 = r5>ar4>ar3, and LH2 is the hierarchy in (a). Now, we
apply Theorem 4.1. As 〈f1〉 = >a, case (2) of the theorem applies. Thus,

⊔

(Lh) =
⊔

(LU1 )
⋃⊔

(LH2)
⋃⊔

(LU1 )
⊗⊔

(LH2)

= {{r4}, {r5}, {r4, r5}}
⋃ {{r1}, {r2}, {r3}, {r1, r2}, {r1, r3}}

⋃

{{r4}, {r5}, {r4, r5}}
⊗ {{r1}, {r2}, {r3}, {r1, r2}, {r1, r3}}

= {{r1}, {r2}, {r3}, {r1, r2}, {r1, r3}, {r4}, {r5}, {r4, r5},

{r1, r4}, {r1, r5}, {r1, r4, r5}, {r2, r4}, {r2, r5}, {r2, r4, r5},

{r3, r4}, {r3, r5}, {r3, r4, r5}, {r1, r2, r4}, {r1, r2, r5},

{r1, r2, r4, r5}, {r1, r3, r4}, {r1, r3, r5}, {r1, r3, r4, r5}}

Case(c): Here L1 = r7 > r6 > r5, and LH2 is the hierarchy in (a). Again, we
apply Theorem 4.1. Computation can be carried out similarly using:

⊔

(Lh) =
⊔

(L1)
⋃⊔

(LHL
2 )
⋃⊔

(L1)
⊗⊔

(LHL
2 )

= {{r5}, {r6}, {r7}}
⋃ {{r1}, {r2}, {r3}, {r1, r2}, {r1, r3}, {r4},

{r1, r4}, {r2, r4}, {r3, r4}, {r1, r2, r4}, {r1, r3, r4}}
⋃

{{r5}, {r6}, {r7}}
⊗ {{r1}, {r2}, {r3}, {r1, r2}, {r1, r3},

{r4}, {r1, r4}, {r2, r4}, {r3, r4},{r1, r2, r4}, {r1, r3, r4}}
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Fig. 5. Computing UAS for a hybrid linear hierarchy

= {{r5}, {r6}, {r7}, {r1}, {r2},{r3}, {r1, r2}, {r1, r3}, {r4},

{r1, r4}, {r2, r4}, {r3, r4}, {r1, r2, r4}, {r1, r3, r4}, {r1, r5},

{r2, r5}, {r3, r5}, {r1, r2, r5}, {r1, r3, r5}, {r4, r5},

{r1, r4, r5}, {r2, r4, r5}, {r3, r4, r5}, {r1, r2, r4, r5},

{r1, r3, r4, r5}, {r1, r6}, {r2, r6}, {r3, r6}, {r1, r2, r6},

{r1, r3, r6}, {r4, r6}, {r1, r4, r6}, {r2, r4, r6}, {r3, r4, r6},

{r1, r2, r4, r6}, {r1, r3, r4, r6}, {r1, r7}, {r2, r7}, {r3, r7},

{r1, r2, r7}, {r1, r3, r7}, {r4, r7}, {r1, r4, r7}, {r2, r4, r7},

{r3, r4, r7}, {r1, r2, r4, r7}, {r1, r3, r4, r7}}

A hybrid general hierarchy can have complex inheritance and activation seman-
tics. We note that each hierarchical structure can be broken down into a list of linear
paths. We refer to such a decomposition of hierarchy as Linear Path Decomposition
of Hybrid Hierarchy (LPDHH). In the following, we consider a general hierarchy
rooted at a role and represent it using an LPDHH set of linear components.

Definition 4.3. (Linear Path Decomposition of Hybrid Hierarchy- LPDHH ):
Let H = (X, [f ]) be a hierarchy over role set X rooted at role SH with relation
set [f ] ⊆ {>i,>a,>}. We say that H is an ordered set of linear paths (hybrid or
monotype), that is, H = (LH1, LH2, . . . , LHm) where LHi is a linear path over Xi,
if, for i, j ∈ {1, 2, ...,m}, i 6= j and LHi is a linear path over Xi, and the following
conditions hold

1. SLHi = SH ; JLHi ⊆ JH ,

2. Xi 6= Xj ; X =
m
⋃

Xi

i=1
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Fig. 6. Computing UAS for a general hierarchy

3. for all J ∈ JH , there exists no linear path LH = ({SH , xπ1
, xπ2

, . . . , xπi , J},
[f ′]),where [f ′] ⊆ [f ] and {xπ1 , xπ2 , . . . , xπi} ⊆ X\{SH , J}, such that

LH /∈ {LH1, LH2, . . . , LHm}.
We say that LH1, LH2, . . . , LHm is the complete LPDHH of H. H can also be

written as (LH1,H
′), (H ′′, LHm), (Hx,Hy), etc., each of which is a decomposition

of H.
Based on the notion of LPDHH of a general hybrid hierarchy, the following theo-

rem shows how we can formally determine
⊔

(H) of a general hybrid hierarchy that
is not a simple linear path.

Theorem 4.3. Let H = (X, [f ]) = (LH1,H1) be a non-empty and non-linear
hierarchy. Then,

⊔

(H) = I\C, where

—I =
⊔

(LH1)
⋃

(H1)
⋃

(LH1)\B⊗⊔

(H1)\B
—B = (

⊔

(LH1) u⊔(H1)), where A uB = {S, T |S ∈ A, T ∈ B and S
⋂

T 6= φ}
—C = {Z|Z ∈ I, and ∃ x, y ∈ Z, x>y}.

The theorem determines
⊔

(H) of a general hierarchy that has at least one role
having multiple juniors, hence making it different from the linear paths. The com-
putation is based on the partitioning of the hierarchy into two components, in which
one is a linear component and the other is the remaining part of the hierarchy. This
allows us to compute

⊔

(H) recursively once we have the linear components. The
next example illustrates the working of Theorem 4.3.

Consider the hierarchy in Fig. 6. The linear components of the hierarchy are
shown in (a)− (d). Each component’s

⊔

(H) computed using Theorem 4.3 is shown
below, based on which we complete the

⊔

(H) of the entire hierarchy. We will write
H12 to mean the hierarchy formed by components L1 and Lh2,H13 to mean the
hierarchy formed by components L1, Lh2 and Lh3, and H14 to mean the overall
hierarchy. First, we get
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⊔

(L1) = {{r3}, {r2}, {r1}}
⊔

(Lh2) = {{t1}, {r2}, {r3}, {t1, r2}, {t1, r3}}
⊔

(Lh3) = {{r3}, {s1}, {t1}, {s1, r3},{r3, t1}}
⊔

(Lh4) = {{r3}, {s1}, {s2}, {s3} , {r3, s1},{r3, s2}, {r3, s3}, {s1, s2},

{s1, s3}, {r3, s1, s2}, {r3, s1,s3}}
Step 1: Consider components L1 and Lh2.

Here, B =
⊔

(L1) u⊔(Lh2)

= {{r3}, {r2},{t1, r2}, {t1, r3}}.

Therefore,
⊔

(L1)\B⊗⊔

(Lh2)\B = {{r1}}
⊗ {{t1}}

= {{r1, t1}}.

Note that C is empty.

Thus,
⊔

(H12) = I\ C = I

= {{r3},{r2}, {r1}, {t1}, {r1, t1}, {r3, t1},{t1, r2}}.

Step 2: Consider component H12 (result from Step 1) and Lh3.

Here, B =
⊔

(H12) u⊔(Lh3)

= {{r3}, {t1}, {r1, t1}, {r2, t1}, {r3, t1}, {r3, s1}}.

Therefore,
⊔

(H12)\B⊗⊔

(Lh3)\B = {{r2}, {r1}}
⊗ {{s1}}

= {{r1, s1}, {r2, s1}}}.

Hence, I = {{r3}, {r2}, {r1}, {t1}, {r1, t1}, {r3, t1}, {t1, r2}, {s1},

{r2, s1}, {r1, s1}, {r3, s1}}
Thus,

⊔

(H13) = I\C
= {{r3}, {r2}, {r1}, {t1}, {r1, t1}, {t1, r2}, {s1}, {r2, s1},

{r1, s1}, {r3, s1}} (C is empty)

Step 3: Consider component H13 (result from Step 2 ) and Lh4.

Here, B =
⊔

(H13) u⊔(Lh4)

= {{r3}, {s1}, {r1, s1}, {r2, s1}, {r3,s2}, {r3, s3}, {s1,s2},

{r3, s1, s2}, {r3, s1, s3}}
Therefore,

⊔

(H13)\B⊗⊔

(Lh4)\B
= {{r2}, {r1}, {t1}, {r1, t1}, {t1, r2}}

⊗

({{s2}})

= {{r2, s2} {r1, s2}, {t1, s2}, {r1, t1, s2}, {t1, r2, s2}}.

Hence,
⊔

(H13) = I\C
= {{r3}, {s1}, {s2}, {s3}, {r3,s1}, {r3,s2}, {r3,s3}, {s1,s2},

{s1, s3}, {r3, s1, s2}, {r3, s1,s3}
⋃ {{r3}, {r2}, {r1}, {t1},

{r1, t1}, {t1,r2}, {s1}, {r2, s1}, {r1, s1}, {r3,s1}}
⋃ {{r2, s2}

{r1, s2}, {t1,s2}, {r1, t1, s2}, {t1, r2, s2}}
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= {{r3}, {s1}, {s2}, {s3}, {r3, s1}, {r3, s2}, {r3, s3}, {s1, s2},

{s1,s3}, {r3, s1, s2}, {r3, s1, s3},{r2}, {r1}, {t1}, {r1, t1},

{t1, r2}, {r2, s1}, {r1, s1}, {r2, s2} {r1,s2}, {t1, s2},

{r1, t1, s2}, {t1, r2, s2}}
Based on the theorems, a recursive algorithm can be easily constructed.

4.2 Acquisition Equivalent Hierarchies

An important issue is whether or not we can use a hierarchy of one type to achieve
what a hierarchy of another type allows. To address such an issue, we need an
appropriate notion of equivalence between different hierarchies, as they may be
structurally and semantically different. We note that, central to the use of hi-
erarchies in a GTRBAC system is the efficient and fine-grained management of
permissions acquired by users assigned to the various roles in the hierarchy. A
notion of the equivalence between two hierarchies can be established if we show
that the maximum set of permissions that can be acquired by a user in the two
hierarchies is the same. The significance of using the maximum set of permissions is
that within the equivalent hierarchies, the users can carry the same set of accesses,
even though, within each hierarchy, the users may have to activate a different set of
roles. Here, we introduce the notion of acquisition-equivalence between two hierar-
chies. We say that two hierarchies are acquisition-equivalent if they allow the same
maximum set of permissions to be acquired by a user assigned to the senior-most
role. We use P

max
(H ) to refer to the maximum set of permissions that a user can

acquire through the senior-most role of the hierarchy H in a session. The notion of
acquisition-equivalence is formally defined as follows:

Definition 4.4. (Acquisition equivalence or AC-equivalence of two hierarchies):
Let H1 and H2 be two hierarchies over role set Roles. Then we say that H1 and H2

are acquisition-equivalent or AC-equivalent (written as H1=ACH2), if P
max

(H1) =

P
max

(H2). Furthermore, H1=ACH2 and H2=ACH3, then H1=ACH3.

The following theorem provides the formal characteristics of an AC-equivalent
set of hierarchies.

Theorem 4.4. (AC-equivalent hierarchies): Let H1 = (X, [f1]) = (LH1, LH2

, . . . , LHn) and H2 = (X, 〈f2〉) be two hierarchies over the role set X. If, for roles
x, y ∈ X and a relation 〈f〉 ∈ [f1], the condition (x〈f〉y) ∈ H1 ←→ (x〈f2〉y) ∈ H2)
holds, then H1=ACH2 (i.e. H1 and H2 are AC-equivalent) provided the following
holds

—for all i ∈ {1, 2, ..., n}, and for hierarchies LH’, LHmid, LH”, each possibly empty,
the following is satisfied for 〈fx〉 = >i and 〈fy〉 = >a

¬∃Lx, Ly such that LHi = (LH ′, Lx, LHmid, Ly, LH
′′),

The condition LHi = (LH ′, Lx, LHmid, Ly, L”) implies that in the linear com-
ponent LHi, there is an I -relation that precedes (not necessarily immediately, as
LHmid may not be empty) an A-relation. All hierarchies that do not have such a
component are AC-equivalent to a monotype hierarchy. As a consequence, first, the
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theorem implies that any two monotype hierarchies are AC-equivalent, as the con-
dition LHmid = (LH ′, Lx, LHmid, Ly, L

′′) cannot occur in a monotype hierarchy.
For example, consider a monotype I -hierarchy H1. Now construct an A-hierarchy
H2 such that it contains the same roles that are in H1, and for each I -relation
between a pair of roles in H1, H2 has an A-relation. The theorem indicates that
H1=ACH2. This is because all the permissions that can be used by a user assigned
to the senior-most role of H1, can also be used by a user assigned to the senior-
most role of H2. The only difference between the two is that the users may have to
activate a different set of roles from the

⊔

(H)s of the two hierarchies to do that.

Furthermore, the theorem indicates that every hierarchy that does not contain a
linear component shown above is AC-equivalent to a monotype hierarchy and hence
to each other. This is because if an I -relation precedes an A-relation in the hierar-
chy then the permissions associated with the roles below the A-hierarchy cannot be
acquired by any user assigned to the senior-most role, hence, reducing the permis-
sions that can be acquired. The significance of this result is that, in systems where
the principle of least privilege is not of much concern, any monotype hierarchy can
be used instead of a more complex hybrid hierarchy.

5. DERIVED RELATIONS IN A HIERARCHY

In a hierarchy where all the three types of hierarchies can co-exist, a hierarchical
relation between a pair of roles that are not directly related may be derived. From
the axioms and the hierarchy definitions presented in Section 3, it is easy to see
that the three hierarchy types are transitive. For instance, if (x>y) and (y>z) then
it implies (x>z). However, in a hybrid hierarchy, the derived relation between an
arbitrary pair of roles can have partial transitivity or special hierarchical semantics.
For instance, if (x>iy) and (y>z) then it implies (x>iz) i.e., transitivity exists only
with respect to the permission-inheritance semantics. Similarly, assume (x>ay) and
(y>iz). Here it appears that x and z are not hierarchically related because (1) if
a user u assigned to x activates x, he does not acquire z ’s permissions, and (2) u
cannot activate z to acquire its permissions. Note, however, that u can activate y
and acquire all the permissions that can be acquired through z. We call this special
derived type a conditioned derived relation, written as (x[A](B)〈f〉y), and, defined
as follows:

Definition 5.1. (Conditioned Derived relation): Let H be a role hierarchy, x,
y ∈ Roles(H ) and A, B ⊆ Roles(H ). Then (x[A](B)〈f〉y) is called a Conditioned
Derived Relation (also read as the derived relation (x〈f〉y) is conditioned on roles
in A and B”), if, for all a ∈ A and b ∈ B, the following holds:

(x>aa) ∧ (x〈f〉y) ∧ ((x = b) ∨ (x>ab)) ∧ (b>ay),
where 〈f〉 ∈ {>i,>}, |A| > 0, |B|>0, and (b>ay) is a direct relation.

Here, the condition indicates that x is related to each a ∈ A directly or through a
derived A-relation, whereas each a is related to y by the 〈f〉 relation. This implies
that a permission that can be acquired through role y can be acquired by a user
assigned to role x without activating y, but by activating any of the roles in A.
We note that B may be empty, in which case, the conditioned derived relation is
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Short forms of the role names are

given inside the circle, e.g., PD

stands for PartTimeDoctor

I-hierarcy between PD and DD is

restricted, all others are

unrestricted

 DayDoctor

(9am-9pm)

     Nurse

{AtAllTime}

 NightDoctor

(9pm-9am)

 EmergencyDoctor

    {AtAllTime}

 HeadDoctor

{AtAllTime}

        SupervisorDoctor

{(10am-12noon),(7am-9am)}
PartTimeDoctor

    (3 Hours)

HD

SDPD

DD ND

ED

N

Fig. 7. A hierarchy for a medical department

simply written as (x[A]〈f〉y). If B is not empty then for each b ∈ B, there is an
A-path from x to y through b. If C = A ∩ B then, for all c ∈ C, both (c>iy) and
(c>a y) hold and hence, (c>y). It is possible that (x[A]({x})〈f〉y), which means
(x[A]〈f〉y) holds and (x>ay) is a direct relation. As we shall see, it is not necessary
that each hierarchical path from x to each a ∈ A contain only A-relations; it is only
required that a user who is assigned to or can activate x can also activate a. This,
however, implies that the hierarchical path from x to each a does not contain any
I -relation as it prohibits activation of a junior role by users assigned to the senior
roles. Furthermore, we note that in (x[A](B)〈f〉y), 〈f〉 is either >i or >.

Consider the hierarchy of Fig. 7, representing a medical department. PD can
be enabled for three hours only. Since it has restricted -inheritance over DD, a user
assigned to PD can acquire DD’s permissions only in daytime. SD’s relation to DD and
ND are as discussed in Fig. 7. N can be I -inherited by DD and ND. ED is enabled at all
times. The A-relation between ED and N allows a user assigned to ED to explicitly
act as a nurse besides inheriting N’s permissions through DD or ND. Assume that the
HD role represents the head doctor of the medical department, which is enabled at
all times. HD can act as the supervisor role of doctors, because of the unrestricted
relations through SD. Two of the conditioned derived relations are as follows.

(1) (SD[{DD, ND}]>i N): This is because users assigned to SD can acquire permissions
of N only by activating DD or ND.

(2) (HD[{DD, ND, ED}]({ED}) >i N): This is because users assigned to HD can acquire
permissions of N by activating SD, ND or ED. Furthermore, the users can directly
activate N (because of the A-path through ED).

5.1 The Inference Rules

We now introduce the inference rules that allow derivation of indirect relations
between roles from a set of explicitly specified hierarchical relations. Such derived
relations can be used to determine the permissions that can be acquired through
the activation of a role in a hierarchy by a user. We use ISen(y) = {x| (x>a y)
is a direct relation} to denote the set of the immediate A-seniors of role y. The
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Table V. The inference rules

Rule Case Inference Rule

R1 (Monotype hierarchy)

(x〈f〉y) ∧ (y〈f〉z) → (x〈f〉z) for all 〈f〉 ∈ {>i ,>a ,>}

(Hybrid hierarchy with unconditioned relations)

R2 1 (x〈f1〉y) ∧ (y〈f2〉z) → (x>iz) for all 〈f1〉, 〈f2〉 ∈ {>i ,>}

such that 〈f1〉 6= 〈f2〉

2 (x>y) ∧ (y>az) → (x>az)

3 (x>ay) ∧ (x〈f〉y) → (x[{y}]〈f〉z) for 〈f〉 ∈ {>i ,>}

(Hybrid hierarchy with one unconditioned derived relation)

for 〈f〉 ∈ {>i ,>a ,>} such that 〈f1〉 6= 〈f2〉

1 a. (x[A](B)>iy) ∧ (y>iz) → (x[A ∪ C]>iz), where

C = {y} if |B| > 0, else C = φ

b. (x[A](B)>iy) ∧ (y>z) → (x[A ∪ C](C)>iz), where

C = {y} if |B| > 0, else C = φ

R3 for 〈f〉 ∈ {>i ,>a ,>} such that 〈f1〉 6= 〈f2〉

2 a. (x[A](B)>y) ∧ (y>iz) → (x[A ∪ C]>iz), where

C = {y} if |B| > 0, else C = φ

b. (x[A](B)>y) ∧ (y>z) → (x[A]>z)

3 for 〈f〉 ∈ {>i ,>}(x[A](B)〈f〉y) ∧ (y>az) → (x>az)

(Hierarchy with multiple paths between two roles; subscripts

indicate the path number)

1 (x〈f〉y)1 ∧ (x〈f〉y)2 → (x〈f〉y) for all 〈f〉 ∈ {>i ,>a ,>}

2 (x〈f1〉y)1 ∧ (x〈f2〉y)2 → (x>y) for all 〈f1〉, 〈f2〉 ∈ {>i ,>a ,>}

such that 〈f1〉 6= 〈f2〉

for all 〈f〉, 〈f1〉, 〈f2〉 ∈ {>i ,>} such that 〈f1〉 6= 〈f2〉

3 a. (x[A](B)〈f〉y)1 ∧ (x〈f〉y)2 → (x〈f〉y)

R4 b. (x[A](B)〈f〉y)1 ∧ (x>ay)2 → (x[A](ISen(y))〈f〉y)

c. (x[A](B)〈f1〉y)1 ∧ (x〈f2〉y)2 → (x>y)

for all 〈f〉, 〈f1〉, 〈f2 ∈ {>i ,>} such that 〈f1〉 6= 〈f2〉

4 a. (x[A1](B1)〈f〉y)1 ∧ (x[A2](B2)〈f〉y)2 → (x[A1 ∪A2]

(B1 ∪B2)〈f〉y)

b. (x[A1](B1)〈f1〉y)1 ∧ (x[A2](B2)〈f2〉y)2 → (x[A1 ∪A2]

(A ∪B1 ∪B2)>iy)

such that A = A1 if 〈f1〉 = > else A = A2

inference rules are as follows.

Definition 5.2. (Inference Rules): Let H be a role hierarchy, x, y, z ∈ Roles(H ),
and A, A1, A2, B1, B2 ⊆ Roles(H ). Then the inference rules for deriving indirect
relations are as shown in Table V.
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R1 is a trivial case of transitivity using a single hierarchy type. Thus, if 〈f〉 is
>a , then from the two relations (x>ay) and (y>az), relation (x>az) is inferred.
R2 applies to all the pairs with direct or derived relations. This can result in a
conditioned derived relation of the form (x[A]〈f〉z). R3 deals with each of the cases
in which an unconditioned relation follows a conditioned derived relation.

In a hierarchy, there may be more than one relation between a pair of roles. Such
a situation arises when there are multiple hierarchical paths between a given pair
of roles. R4 deals with such cases. Rule R4.1 is a trivial case in which both the
hierarchical paths are the same unconditioned relation (derived or direct). Rule
R4.2 captures all the possible combinations of two different unconditioned relations
between the same pair. Similarly, rule R4.3 captures all the possible combinations of
two different hierarchical relations between the same pair of roles in which one is an
unconditioned derived relation. Lastly, R4.4 captures all the possible combinations
of two different hierarchical conditioned derived relations between a pair of roles.
Table VI illustrates the application of these rules to determine the derived relations
for the hierarchy in Fig. 7.

Table VI. Application of inference rules over the hierarchy of Fig. 7

Rule applied Derive Relations

R1 (PD >i N), (HD >a N)

1 (ED > ND) ∧ (ND >i N) implies (ED >i N)

2 (HD > SD) ∧ (SD >a DD) implies (HD >a DD)

R2 (SD >a DD) ∧ (DD >i N) implies (SD[{DD}] >i N)

3 (HD >a ED) ∧ (ED > ND) implies (HD[{ED}] > ND)

(HD >a DD) ∧ (DD > N) implies (HD[{DD}] > ND)

R3 2a (HD[{ED}] > DD) ∧ (DD >i N) implies (HD[{ED}] >i N)

(HD[{ED}] > DD) ∧ (ND >i N) implies (HD[{ED}] >i N)

1 (ED >i N) (one through DD, another through ND)

2 (ED >i N)∧(ED >a N) implies (ED > N)

R4 3b (HD[{ED}] >i N) ∧ (ED >a N) implies HD[{ED}]({ED}) >i N)

which is the same as (HD[{ED}] > N)

4a (HD[{DD}] >i N) ∧ (HD[{ND}] > N) implies HD[{DD, ND}] >i N)

4b (HD[{DD,ND}] >i N) ∧ (HD[{ED}] > N) implies HD[{DD, ND, ED}] >i N)

5.2 Soundness and Completeness of the Inference Rules

In this section, we show that the set of inference rules introduced above is sound and
complete, using the notion of authorization consistent hierarchies, which is defined
below. In the definition, we use predicate can activate(u, r, H ) to mean that u can
activate role r in role hierarchy H. Similarly, we use predicate can be acquired(p,
r, H ) to mean that permission p can be acquired through role r using permission-
inheritance semantics in hierarchy H. Let UAH(H ) and PAH(H ) be sets of all the
user-role and role-permission assignments related to the roles in Roles(H ).
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Fig. 8. Example of AC-equivalence;H1 ≈ H2, H1 � H3 and H2 � H3

Definition 5.3. (Authorization consistent hierarchies): Let H1 and H2 be two
hierarchies such that Roles(H1) = Roles(H2), UAH(H1) = UAH(H2) and PAH(H1)
= PAH(H2). Then, we say that H1 and H2 are authorization consistent (written as
H1 ≈ H2) if for all r ∈ Roles(H1), the following conditions hold:
1. ∀u ∈ Users, can activate (u, r, H1) ←→ can activate (u, r, H2),
2. ∀p ∈ Permissions, can be acquired (p, r, H1) ←→ can be acquired (p, r, H2).

Here, we note that the two hierarchies considered have the same set of roles,
user-role assignments and role-permission assignments. Condition (1) implies that
if a user u can activate a role r in Roles(H1), then he can activate it even if H1 is
replaced by H2 (and vice versa). Similarly, the second condition says that the set
of permissions that can be acquired through a role under H1 is also the same set of
permissions that can be acquired through that role in H2 for any given user. This
signifies that if two hierarchies are authorization consistent then a user assigned
to a role can activate exactly the same set of roles and acquire the same set of
permissions under the two hierarchies. This means the permission-inheritance and
role-activation semantics in the two hierarchies are the same even if the sets of
hierarchical relations in the two hierarchies are different. Fig. 8 depicts an example
of the notion of authorization consistency. Here, the hierarchy relation h1 in H2

can be inferred from the hierarchical relations (r1>ar3) and (r3>ar5), whereas, h2

can be inferred from the two hierarchical paths from role r1 to r4. Hence, H2 adds
no new access capability compared to H1. However, h3 in H3 cannot be inferred
from the hierarchical relations (r1>ar3) and (r3>ar5). In H3, a user assigned to
r3 can activate r5 also, which is not possible in H1 or H2. Hence, (H1 � H3),
and (H2 � H3). We use this notion of authorization consistency between two
hierarchies to show that the set of rules presented above is sound, i.e., each new
derived relation that can be deduced from a given set of hierarchical relations using
the rules produces the same inheritance and activation semantics that is already
present in the original hierarchy. Within a hierarchy H, we use hxz to represent
(x〈f〉z) for 〈f〉 ∈ {>i , >a , >} or (x[A](B)〈f〉z) for 〈f〉 ∈ {>i , >a}, where x, z ∈
Roles(H ) and A,B ⊆ Roles(H ). The following theorem formally states this result.

Theorem 5.1. (Soundness of rules R1-R4): Given a role hierarchy H, if
a new hierarchical relation hxz is derived from hierarchical relations in H as per
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rules R1-R4, and H ′ = H ∪ {hxz}, then H and H’ are authorization consistent, i.e.
H ≈ H ′.

The theorem implies that the new relations derived using the rules do not allow
a user to inherit more (or less) permissions than was allowed to him before the
derived relation is added. Similarly, the new derived relation does not allow a user
to be able to activate more (or less) number of roles than that was allowed before
the derived relation is introduced. Next, we present the completeness theorem for
the rules R1-R4. We write H[R1-R4] ² hx,z to indicate that the relations in H can
logically derive relation hx,z using rules R1-R4.

Theorem 5.2. (Completeness of rules R1-R4): Given a role hierarchy H,
rules R1-R4 are complete; That is, if ¬H[R1-R4] ² hx,z, for any pair of roles
x, z ∈ Roles(H), then H� H ∪ {hx,z}, i.e., the hierarchies H and H’ = H ∪ {hx,z}
are not authorization consistent.

The theorem indicates that if a relation, say 〈f〉, between any two roles, say x
and z, of Roles(H ) cannot be derived from the hierarchical relations in H, then any
role hierarchy containing such a relation is not authorization consistent with H. In
other words, we can take every pair of roles (x, z ) of Roles(H ) and every possible
hierarchical relations between them, including conditioned derived relations and
extend H by adding it to get H’. If we get H ≈ H’, the theorem implies that the
rules R1-R4 will derive it. Hence, this shows that the rules are complete. Using the
transitivity of the hierarchical relations and considering all the cases of the rules,
we can easily construct the proofs. The proofs for both the theorems are provided
in Appendix B.

6. HIERARCHY TRANSFORMATION ALGORITHMS

In an organization, roles evolve with time, affecting the existing role hierarchies.
New roles may need to be added and old ones deleted or modified. Permission
sets of existing roles or their temporal properties may need to be altered. Making
such changes may require restructuring the hierarchies to avoid undesirable situa-
tions. In this section, we analyze transformations of a role hierarchy when a role is
added, modified, or deleted that best maintain the permission inheritance and role
activation semantics of the original hierarchy.

6.1 Role Addition

Typically, a new role is added to an existing hierarchy to distribute a set of new
permissions among the already existing roles in the hierarchy. Before we add a
new role to a hierarchy, we need to properly identify the existing sets of roles that
can be its seniors and juniors based on the permission distribution requirements.
Furthermore, we need to consider the existing constraints on and/or among roles
in the hierarchy to determine possible new relations between the existing roles and
the new role. While pre-existing hierarchical semantics may need to be maintained,
the permission acquisition and role activation semantics of the original hierarchy
may need to be relaxed to allow some desirable changes.

Let rn be the new role to be added in the original hierarchy Ho. Suppose rn is to
be added between roles s and j, and (s〈f〉j) ∈ Ho. By adding the new role, assume
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we obtain the new hierarchy Hn. That is, Hn= (Ho ∪ {(s〈f1〉rn), (rn〈f2〉j)})\(s〈f〉j)
for some hierarchy relations 〈f1〉 and 〈f2〉.

In general, when a new role is added, we require that the original permission
acquisition and/or role activation semantics of the hierarchy is maintained. These
semantic requirements can be represented as the conditional criteria shown in Table
VII that should be valid after the transformation has been made.

Table VII. Criteria for hierarchy transformations

Criteria

1 C1 ∀ u ∈ Users, r ∈ Roles(Ho)

can activate (u,r,t,Ho) ↔ can activate(u,r,t,Hn)

C2 ∀p ∈ P(Roles(Ho)), r ∈ Roles(Ho),

can be acquired (p,r,t,Ho) ↔ can be acquired (p,r,t,Hn)

2 C2r ∀ LH = ({x1, x2, . . . , xis, j}, [fLH ]),r ∈ {x1, x2, . . . , xi, s},

(r〈f〉j) ∈ Ho ↔ (r[rn]〈f〉j)∈ Hn, where {x1, x2, . . . , xis, j} ⊆ Roles(Ho),

[fLH ] ⊆ {>i ,>a ,>} and 〈f 〉 ∈ {>i ,>a}

Table VIII. Scenarios for hierarchy transformations

Scenarios for role addition

S1 No extra constraint is added with respect to the new role rn;

S2 A permission-centric activation constraint is added for the new role rn

S3 A user-centric activation constraint is added for the new role rn;

S4 (s, rn) is considered to be in DSoD

S5 (rn, j) is considered to be in DSoD

Criteria C1 states that a role of the original hierarchy Ho can be activated by
a user in the new hierarchy Hn if and only if the user can activate it in Ho.
Similarly, criteria C2 states that the permissions associated with the roles of the
original hierarchy Ho can be acquired by a user in the new hierarchy Hn if and
only if the user can acquire it in Ho. Ideally both C1 and C2 should apply after
the transformation is made as they imply that the permission acquisition and role
activation semantics of Ho are not changed. However, it may not be possible to
retain the original semantics. In such a situation, the default case may be to not
allow the role to be added at all. That is, however, too restrictive. Another option
is to try to retain partial semantics, i.e., we satisfy either criteria C1 or C2. It is
also possible to accommodate the new role in the existing hierarchy in such a way
that original acquisition and activation relations are replaced by the conditioned
derived relations between pre-existing roles. For example, assume that in Ho the
relation between s and j is (s〈f〉j), where 〈f〉 ∈ {>i ,>}, and that it is required to
add the new role rn so that (s>arn) and (rn>ij). If we replace (s〈f〉j) by these two
relations, the original semantics is lost, but it does not mean that users assigned
to s cannot acquire j ’s permissions. Hence, the original semantics is completely
lost. Such cases allow flexible transformations where the original semantics cannot
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be completely retained. Hence, we say that such a scenario results in a restricted
transformation. We represent such a scenario as criteria C2r indicating that criteria
C2 has been satisfied in a restricted sense.

When a new role is added, various new constraints related to the new role may
need to be added as well. It is important to note that the above criteria may not
be satisfied if we introduce new constraints along with the new role. We consider
the five scenarios (S1 through S5), shown in Table VIII to describe the addition
of constraints related to the new role and describe with regards to them various
transformations that satisfy criteria C1, C2 and/or C2r, as shown in Table IX.
Here,

√
indicates that the transformation satisfies the indicated criteria under

the given scenario and × indicates that the criterion is not satisfied. Note that
the static separation of duty (SSoD) constraint between hierarchically related roles
is not appropriate [Gavrila and Barkley 1998]. However, an A-hierarchy allows
dynamic SoD (DSoD) to be defined on a role [Joshi et al. 2002]. Note that DSoD
restricts a user from activating conflicting roles simultaneously. Hence, we only
consider DSoD between roles as a scenario.

Table IX. Transformation with criteria satisfied for different scenarios

(s〈f 〉j ) (s〈f1〉rn), (rn〈f2〉j) ∈ Hn Criteria S1 S2 S3 S4 S5

∈ Ho Satisfied

i (s>arn), (rn>a j )
√ √ × √ √

a ii (s>a j ) (s>rn), (rn>a j ) C1, C2
√ × √ × √

iii (s〈f 〉rn), (rn>i j ), for any 〈f〉 × × × × ×
i (s>arn), (rn>i j ) C1, C2r

√ √ × √ ×
(s>irn), (rn>i j ); C1, C2

√ × √ × ×
ii (s>rn), (rn>i j);

b (s>i j ) (s>irn), (rn>j )

(s> rn), (rn>j);

iii (s>arn), (rn>i j ); C1, C2 × × × × ×
(s〈f〉rn), (rn>a j ) for any 〈f〉

i (s>arn), (rn>i) C1, C2r
√ √ × √ ×

c ii (s>j ) (s>rn), (rn>j )
√ × √ × ×

(s〈f〉rn), (rn > j ); C1, C2

iii (s〈f〉rn), (rn>i j), or × × × × ×
(s〈f〉rn), (rn>a j ), for any 〈f〉

Fig. 9 illustrates various transformation cases and Table IX shows these transfor-
mations against various scenarios listed in Table VIII. They can be easily explained
by applying the inference rules to infer the derived relation between s and j in Hn.
Note that DSoD constraints are allowed among roles that are only A-hierarchically
related [Joshi et al. 2002]. Similarly, permission-centric activation constraints are
appropriate when A-hierarchy is used whereas user-centric activation constraint is
appropriate in an I or IA-hierarchy [Joshi et al. 2002].
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Fig. 9. Addition of a new role r between roles s and j

Fig. 9(a) depicts the addition of role rn when (s>a j ) for case (a) of Table VIII.
As Fig. 9(a) shows, only cases (i) and (ii) satisfy C1 and C2 under some scenarios.
Case (i) allows defining a permission-centric activation time constraint on role rn
(scenario S2) because of the new relation (s>arn). Defining a DSoD constraint
between roles s and rn, and r and j (scenarios S4 and S5) is allowed by the A-
relations between them. Case (ii) allows a user-centric activation-time constraint
on role rn because of the relations (s>rn), (rn>aj). Cases depicted in (iii) do not
retain original hierarchical properties, not even when no constraint is added for the
new role (scenario S1). The main reason is the introduction of an I -relation that
removes the original activation semantics. Note that, in cases depicted in (iii), if
we retain original relation (s>aj) instead of replacing with new ones as we have
discussed, the original semantics will be intact. Retaining (s>aj) in cases (i) and
(ii) would result in redundant relations between s and j.

Fig. 9(b) depicts the addition of role rn when (s>ij) is in Ho. Because of the
new relation (s>arn) for case (i), we see that C2r is satisfied for some scenarios
as s and j are related by an I -relation in Ho. Furthermore, (s>arn) allows the
permission-centric activation constraints on rn and DSoD constraints on s and
rn (scenarios S4 and S5). Cases depicted in Fig. 9(b)(ii) maintain the original
derived relation (s>ij). These choices allow defining a user-centric activation time
constraint on role rn (scenario S3). Cases depicted in Fig. 9(b)(iii) either introduce
an A-relation between s and j, which is not present in original hierarchy, or make
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them hierarchically unrelated, removing the original I -relation between s and j.
Hence, such transformations do not satisfy any criteria. As before, we could opt to
retain (s>ij). This would be useful in case (i). In cases depicted in Fig. 9(b)(ii),
it would be redundant. In cases shown in Fig. 9(b) (iii), it would be useful when
there is an I -relation between s and rn and an A-relation between rn and j.

Fig. 9(c) depicts the addition of role rn when (s>j) is in Ho. Case (i) introduces
an A-relation between s and rn, removing the I -relation between s and j ; hence,
only C2r can be satisfied for some scenarios. Case (ii) retains the original relation
between s and j. However, there is more restriction on Case (ii) in terms of what
constraints can be defined for rn than in Case (i). In cases depicted in (iii), the
I -relation between s and j is completely removed, hence the transformations do
not satisfy any criteria. As in the other cases, we can retain the original relation
(s>j). This is useful for all but case (ii), where it would be redundant. This is
because, in all other cases, only partial semantics can be retained by replacing the
relation by the two new relations. It is important to note that, in all three cases
discussed above, retaining the original (s〈f〉j) will provide less flexibility in terms
of the scenarios that we have considered.

6.2 Role Deletion

When a role is deleted from a hierarchy, the crucial issue is what to do with the
permissions associated with it and the users assigned to it. Generally, it will be
required that the permissions be retained in the system, and make them available
through other roles in the hierarchy. This requires redistributing the permissions
associated with the deleted role to other roles in the hierarchy, and reassigning
the users originally assigned to the deleted role. We identify the following three
approaches for the deletion of a role from a hierarchy with respect to the privilege
distribution: (1) the first approach is to reassign the permissions of the deleted role
to its immediate seniors; (2) the second approach is to reassign the permissions of
the deleted roles to its immediate juniors; and (3) the third approach is to reassign
the permissions of the deleted role to each of the senior roles through which the
permissions of the deleted role can be acquired within the original hierarchy.

One key problem with these approaches is the reassignment of the users who
were originally assigned to the deleted role. As users assigned to the deleted roles
need to be reassigned to junior roles or the senior roles, any reassignment will result
in either a privilege escalation or privilege depletion of some users assigned to the
roles in the hierarchy. The third approach is ad-hoc in nature and inefficient as
permissions are explicitly assigned to all senior roles through which they could be
acquired before the transformation. Hence, it defeats the purpose of a hierarchy
structure. In practice, this approach may be applicable when the whole hierarchy
needs to be restructured. We do not discuss the third approach further.

As before, let Ho be the original hierarchy and Hn the new hierarchy obtained
by deleting role r. Furthermore, let Ur and Pr be the sets of users and permissions
explicitly assigned to role r. For each immediate junior j of r, let Uj be the set of
users assigned to j. Let s be an immediate senior of r. Table X depicts different
cases of transformations for the first and the second approaches that attempt to
meet the criteria C1 and C2 introduced earlier.

As shown in the table, for both approaches, it is possible that the users are
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Table X. Deletion of a role using the first and second approach
The First Approach The Second Approach

For (r〈f〉j) ∈ Ho, For (s〈h〉r) ∈ Ho, For (s〈f〉j) ∈ Hn, For (s〈f〉r) ∈ Ho, For (s〈f〉j) ∈ Hn,

〈f〉 is 〈h〉 is 〈f〉 is 〈h〉 is 〈f〉 is

(for appropriate (for appropriate

transformation) transformation)

I -hierarchy (>i ) no relation I -hierarchy (>i ) none appropriate

A-hierarchy (>a ) A-hierarchy (>a ) A-hierarchy (>a ) A-hierarchy (>a ) A-hierarchy (>a )

IA-hierarchy (>) A-hierarchy (>a ) IA-hierarchy (>) A-hierarchy (>)

(restrictive)

I -hierarchy (>i ) any I -hierarchy (>i ) any I -hierarchy (>i )

IA-hierarchy (>) for any 〈h〉 〈h〉 for any 〈h〉 〈h〉

Reassignments → Pr is assigned to role s Pr is assigned to role j

Ur is assigned to role s Ur is assigned to role j Ur is assigned to role s Ur is assigned to role j

Result of Privilege escalation Privilege depletion Privilege escalation Privilege depletion

reassignment → for users in Ur for users in Ur for users in both Ur and Uj for users in Uj
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reassigned to senior or the junior roles. Privilege escalation of users in Ur occurs in
the first approach if they are re-assigned to senior roles, privilege depletion occurs
if the users in Ur are re-assigned to the junior roles. In practice, a choice can
be made based on the risk factor related to the privilege escalation and privilege
depletion resulting from re-assignment of Ur. Note that Us and Uj are not affected
in this case. In the second approach, if the users in Ur are reassigned to s, privilege
escalation similar to that in the first approach occurs with respect to Ur. In the
second approach, privilege escalation also occurs with respect to the users in Uj .
The table further shows what the appropriate transformations are for different sets
of relations between s and r, and r and j in Ho.

Fig. 10 depicts various transformations when (r>a j ) ∈ Ho under the first ap-
proach. Note that s may be related to its immediate senior by any of the three
hierarchical relations. To show the overall picture, we include roles x, y and z as se-
niors of s with respect to I, A and IA-relations, respectively. Let 〈h〉 be the original
relation between s and r. When 〈h〉 is an I -hierarchy, s and j are not hierarchically
related, as s does not inherit j ’s permissions, neither is any user assigned to s or its
seniors able to activate j in Ho. Hence, case (i) in Fig. 10(a) (i.e. “ no relation”
between s and j ) retains the original derived relation between s and j, (as indicated
in the table). The choices (ii), (iii) and (iv) in Fig. 10(a) result in undesirable
situations as each one makes something possible that was not originally possible.
Similarly, when 〈h〉 is an A or IA-hierarchy, s and j have a derived relation (s>a j ).
Hence, as shown in figures 10(b) and 10(c), after the deletion of role r, we can
introduce the direct relation (s>i j ) or (s>a j ). We note that after the deletion of
role r, if we have (s>j ), it makes the inheritance of j ’s permissions by s possible,
which was not originally allowed.

The cases for (r>i j ) or (r>j ) in Ho can be similarly explained. When (r>i j )
∈ Ho, for all relations between s and r, the resulting relation between s and j will
be (s>i j ) as shown in the table. It is straightforward to see that it is so when 〈h〉
is an I -relation. If 〈h〉 is an IA-relation, then (s>i j ) is the derived relation in Ho

and hence after the transformation, the relation is maintained. However, if 〈h〉 is
an A-relation, then the original relation between s and j would be (s[{r}]>i j ). If
in the transformed hierarchy, we use relation (s>i j ) then users who can activate s
cannot activate j, but still can acquire j ’s permission by activating s in place of the
deleted role r. Hence, the semantics about a user not being able to activate it but
being able to acquire its permissions by activating some senior role is still present
in the hierarchy with the new relation (s>i j ). It is, however, to be noted that this
transformation affects the original relations between j and role s or those above it.
The change is in terms of what needs be activated to acquire j ’s permissions.

Various cases for the second approach can be similarly explained. The key differ-
ence is when (r>a j ) ∈ Ho. Here, if (s>ir) ∈ Ho, no hierarchical relation between
s and j can be derived in Ho; hence, we cannot have any relation between s and
j. However, no relation between s and j means that the permission set Pr, now
assigned to j, cannot be used by any user who can activate s. Note that in Ho, a
user who can activate s can also activate r and hence acquire Pr. Hence, for this
case, there is no appropriate transformation. Similarly, if (s>r) ∈ Ho, the only
possible new relation is (s>a j ). However, it is somewhat restrictive in the sense
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Fig. 10. Deletion of role r when (r>a j )

that, in Ho, a user u who can activate s needs not explicitly activate j to acquire
its permissions, but in Hn, u needs to activate j to acquire its permissions.

6.3 Partitioning of an Existing Role

Sometimes, it is essential that an existing role be simply partitioned to change the
semantics of the hierarchy. In particular, partitioning may indicate the requirement
for separating the role’s permissions into different subsets. We identify the following
three ways to partition a role: (1) vertical partitioning: here a role is partitioned
into a set of new roles that form a linear path with the permission set of the old
role distributed among the new roles; (2) horizontal partitioning: here the role’s
permission set is partitioned into a number of disjoint sets, each of which is assigned
to a new role; the new roles do not have any hierarchical relations between them; and
(3) hybrid partitioning: here both vertical and horizontal partitioning are applied
on the role, which result in an arbitrary hierarchy over the new roles. Fig. 11
illustrates these partitions.

In each case, the set of new roles replaces the partitioned role in the hierarchy.
Once a role is partitioned, it is possible that an administrator completely redefines
the hierarchical relationships in the part of the hierarchy above the partitioned
role. Such a case requires offline redesign of the system. However, it may be neces-
sary to retain the original hierarchical semantics as defined by criteria C1 and C2
(Table VII). Table X lays out various transformation characteristics of the three
approaches with emphasis in retaining the original derived relation between s and
j. In particular, Table XI depicts cases where vertical partitioning creates a mono-
type linear path and hybrid partitioning creates multiple monotype linear paths.
We discuss hybrid linear paths resulting from vertical and hybrid partitioning at
the end of this section. Here, role r of the original hierarchy Ho is partitioned into
a set of new roles RP = {x1, x2, . . . , xn}. As usual, let s and j represent a senior
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Fig. 11. Partitioning a role r into three roles r1, r2 and r3

and a junior of r.

Row 1 shows various hierarchy characteristics associated with the roles in RP. As
already indicated above, in vertical partitioning, the new roles form a linear path.
As shown in the table, if originally (s>ir), (r〈f〉j ) ∈ Ho, or (s>r), (r>ij) ∈ Ho,
then in the new hierarchy Hn, the monotype hierarchy over the roles in RP should
be of type >i or > . This is necessary to retain the original derived relation (s>i j )
in the transformed hierarchy. If (s>r), (r>j ) ∈ Ho or (s>r), (r>aj) ∈ Ho, then
the new linear path over the roles in RP should be of type >. Similarly, if (s>ar),
(r〈f〉j) ∈ Ho, then the new linear path over the roles in RP should be of type >a

or >.

The original semantics as defined by criteria C1 and C2 are ensured in the verti-
cal partitioning by these transformations and by the new relations defined in rows
3 and 4. For horizontal partitioning, the roles in RP are not hierarchically related.
For hybrid partitioning, the roles in RP form multiple linear paths. The condition
for the hybrid partitioning states that at least one linear path must allow inferring
the derived relation (s〈f〉j) of Hn. For the linear path that maintains the origi-
nal derived relation (s〈f〉j), we can use the transformations outlined for vertical
partitioning in the if-then columns.

Entries in row 2 indicate the reassignments of the users in Ur originally assigned
to role r, to new role(s) in RP. The reassignments shown here are defined on the
basis that the original access capabilities of the users are to be retained, although
they may result in privilege escalation for some users. In practice, this may not
be the actual case, and the relations among roles in the partition shown in row 1
may need to be accordingly adjusted. Rows 3 and 4 indicate how the roles s and j
are related to the new roles in the partition. For a vertical partitioning approach,
the original relation between s and j is used between s and x1, and xn and j, as
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Table XI. Transformation characteristics for different approaches to role partitioning
Role r ∈ Roles(Ho)

is partitioned into Vertical Partitioning Horizontal Hybrid

RP = {x1, x2, . . . , xn} (Monotype Linear Path) Partitioning Partitioning

⊂ Roles(Hn)

LH = (RP, 〈f〉)

(i.e. forms linear path) H = (RP, [f ]) = {LH1, LH2, . . .,

if then LHn} for n > 1(i.e. a hierarchy

(s>i r), (r〈f〉j) ∈ Ho or No pair is which is not a linear path) such

1 Hierarchy (s>r), (r>i j) ∈ Ho 〈f〉 ∈ {>i ,>} hierarchically that Roles(LHi)⊂ RP

characteristics related

(s>r), (r>j ) ∈ Ho or 〈f〉 = > Condition:

(s>r), (r>a j ) ∈ Ho if (s〈f〉j ) is a derived relation in

Ho then at least one linear path

(s >ar), (r〈f〉j ) ∈ Ho 〈f〉 ∈ {>a ,>} LHi must allow deriving relation

(s〈h〉j ) ∈ Ho.

Reassignment For all u ∈ Ur , For all x ∈ RP, For all x ∈ {SLH1
, SLH2

, . . . , SLHn},

2 of Ur u is assigned to x1 u ∈ Ur , u is u ∈ Ur,

assigned to x u is assigned to x

Relation with s For all x ∈ RP, For all x ∈ {SLH1
, SLH2

, . . . , SLHn},

3 where (s〈f〉x1) (s〈f〉x) (s〈f〉x)

(s〈f〉r) ∈ Ho

Relation with r For all x ∈ RP, For all x ∈ {JLH1
, JLH2

, . . . , JLHn},

4 where (xn〈f〉j ) (x〈f〉j ) (x〈f〉j )

(r〈f〉j ) ∈ Ho
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indicated. Note that x1 and xn are the senior-most and the junior-most roles of
the new linear path created by the roles in RP. In case of horizontal partitioning,
s and j are made senior and junior of each of the roles in RP. The case for hybrid
partitioning is similar to that of the horizontal partitioning except that the role s
is made senior to the senior-most roles of each of the linear paths formed over the
roles in RP, whereas j is made the junior of each of junior-most roles of these linear
paths.

So far, we have considered monotype linear components during the vertical and
the hybrid partition. In general, the vertical partitioning and hybrid partitioning
may result in hybrid linear path components. In such a case, the users originally
assigned to the partitioned role need to be assigned to the role set from the parti-
tioned set. First, consider the vertical partitioning. Here, the original users of the
partitioned role is assigned to the maximal subset of the partition set, say MR, such
that the roles in MR do not belong to any elements of the

⊔

(H) of the senior-most
role. In the case of the hybrid hierarchy, the original users are assigned to the
set of roles that represents union of the MPs of individual elements of the complete
LPDHH.

As indicated above, the need for such partitioning is primarily to restructure or
redistribute permission sets in a hierarchy. Another reason for doing such parti-
tioning may be because of the temporal properties. For example, a role may need
to be vertically partitioned to arrange the temporal properties in such a way that
the intervals associated with a senior role contain the intervals associated with the
junior roles. Similarly, a horizontal partition may need to be done to create roles
with distinct non-overlapping intervals. Furthermore, a hybrid partitioning may be
needed to properly structure very complex temporal properties. Analysis of such
partitioning based on temporal properties has been considered in detail in a slightly
different context in [Joshi et al. 2005a], and also details the pros and cons of such
partitioning and provides design guidelines.

6.4 Edge Deletion and Insertion

GTRBAC allows events of type (enable/disable h), which essentially adds or re-
moves the hierarchical edge between a pre-specified pair of role. Using this event,
periodicity and duration constraints on hierarchical relation can be expressed.
Hence, edge deletion and insertion issues can be considered as related to the design
of the time-based RBAC policies that includes hierarchical relations. In a generic
non-temporal RBAC framework with hybrid hierarchy, edge deletion and insertion
are important operations. However, both these operations can be viewed as opera-
tions on role addition and deletion discussed above. For instance, an edge deletion
can be viewed as the deletion of the junior role of the edge and the addition of the
same role with all the edges other than the deleted edge reinserted by considering
the issues addressed earlier for role deletion. Similarly, an edge insertion can be
viewed as a role addition operation(s), if either or both of the roles in the edge did
not exist in the original hierarchy. Alternatively, if both the roles of the edges are
present in the hierarchy, then edge addition can be viewed as removing the junior
role of the edge and reinserting it with all its original hierarchical relations as well
as the new relation.
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7. RELATED WORK

Several researchers have addressed issues related to inheritance semantics in RBAC
[Giuri 1995], [Giuri 1996], [Moffett 1998], [Nyanchama and Osborn 1999], [Sandhu
1996], [Sandhu 1998]. Our earlier work has addressed issues concerning the inher-
itance relation when temporal properties are introduced [Joshi et al. 2002]. Fur-
thermore, to the best of our knowledge, no work has been reported in the literature
that thoroughly analyzes the coexistence of different types of hierarchical relations
on a set of roles. In [Joshi et al. 2002], [Joshi et al. 2005b], we use the separate
notion of hierarchy using permission-usage and role-activation semantics similar
to the one proposed by Sandhu [Sandhu 1998] and strengthen Sandhu’s argument
that the distinction between the two semantics is very crucial. Sandhu’s argument
is based on the fact that the simple usage semantics is inadequate for expressing
desired inheritance relation when certain dynamic SoD constraints are used be-
tween two roles that are hierarchically related, whereas, we emphasize the need
for such distinction to capture the inheritance semantics in the presence of vari-
ous temporal constraints. Sandhu’s notion of activation hierarchy extending the
inheritance hierarchy corresponds to the IA-hierarchy and our A-hierarchy corre-
sponds to Sandhu’s relation that relates two roles by activation hierarchy but not
by inheritance semantics [Sandhu 1998]. In [Giuri 1995], [Giuri 1996], Giuri has
proposed an activation hierarchy based on AND and OR roles. However, these
AND-OR roles can be easily simulated within Sandhu’s ER-RBAC96 model that
uses usage and activation hierarchies, making Giuri’s model a special case of ER-
RBAC96 [Sandhu 1998]. In order to address the needs of control principles in an
organization, which include separation of duty, decentralization and supervision and
review, Moffet et al. [Moffett 1998], [Moffett and Lupu 1999] have identified three
types of hierarchies - is a hierarchy, activity hierarchy and supervision hierarchies.
They show that for addressing more completely these control principles, we need a
dynamic access control model and a hierarchy that allows restrictive inheritance as
well as dynamic propagation of access rights [Moffett and Lupu 1999]. We believe
that GTRBAC’s temporal constraint framework with trigger and constraint en-
abling mechanisms, and temporal hierarchies can provide the modeling capabilities
to address such dynamic issues. Nyanchama et. al. address the transformation of
hierarchies in terms of addition, deletion and partitioning of roles in the context of
access rights administration [Nyanchama and Osborn 1994]. However, the analysis
is limited to monotype hierarchies and does not indicate how the transformations
are affected by the presence of other constraints on hierarchical roles.

In [Sandhu et al. 1999], Sandhu et al. have presented ARBAC97 model for
administrating RBAC policies using structural properties of RBAC96 hierarchy.
Similarly, in [Crampton and Loizou 2003], Crampton et al. have proposed a Scoped
Administration of RBAC (SARBAC) using the notion of an administration scope as
a unit of administration to impose conditions on hierarchy operations. The aim of
both the models has been to define administrative control by defining range or scope
of control for the administration of roles and hierarchical relations. By using the
flexible transformation primitives presented in Section 6, the development of a more
complete RBAC administration model than the ARBAC97 and SARBAC models
is possible and is left as a future work. Note that although both ARBAC97 and
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SARBAC emphasize hierarchy management, they do not consider the coexistence
of SoD constraints and role hierarchies, and applies to monotype hierarchies only.
Furthermore, role partitioning is a hierarchy transformation primitive that has not
been addressed in the literature before.

8. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an extensive analysis of hybrid temporal role hier-
archies for GTRBAC model. We have introduced the notion of uniquely activable
set of a hierarchy that identifies access capabilities of a user assigned to a role in
a hierarchy in a single session. The formal results we have presented allows de-
termining uniquely activable sets for hybrid temporal role hierarchies and provide
a basis for controlling privilege distribution to the users by restricting activable
sets associated with the roles they are assigned to. The results related to the AC-
equivalence between different role hierarchies also show that, in cases where the
principle of least privilege is not a concern, a monotype hierarchy may be used.
Furthermore, as an A-hierarchy does not allow direct permission-inheritance, the
results show that the A-hierarchy provides the most needed flexibility. In particu-
lar, an A-hierarchy allows DSoD constraints to be defined on hierarchically related
roles. Furthermore, the inherit-all-permission semantics of I -hierarchy as well as
IA-hierarchy has several pitfalls in terms of their ability to handle many organiza-
tional control principles [Moffett 1998]. We have also introduced a set of inference
rules which can be employed to infer hierarchical relationships between pairs of
roles that are not directly related. We have formally showed that the set of in-
ference rules is sound and complete. In a complex hybrid hierarchy, these rules
provide a formal basis for analyzing the permission acquisition and role activation
semantics. We have also introduced the notion of conditioned derived relation that
augments the three hierarchies (I, A and IA-hierarchies) and facilitates capturing
much fine-grained derived permission acquisition and activation semantics within
a hierarchy. We have also addressed the issue of hierarchy transformation with re-
spect to role addition, deletion and partitioning. These transformations essentially
form the basis for policy evolution in an organization. It is to be noted that trans-
formations that retain original hierarchical semantics in a hybrid hierarchy need to
be based on what type of additional role constraints exist or will be added in the
hierarchy. The results presented in this paper provide a formal basis for develop-
ing administrative tools for the management of GTRBAC systems. Such security
administrative functions are crucial for a well-planned, timely control of unautho-
rized accesses as well as for distributing least access capabilities to users in order
to allow them to carry out their activities and at the same time minimize damage
that may be caused by misuse of privileges. We plan to extend the present work
in various directions. We also plan to develop an SQL-like language for specifying
temporal properties for roles and to develop a prototype of such language on top
of a relational DBMS. Using the results presented here, we plan to develop efficient
security administration and management tools.
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Appendix A

Proof of Lemma 4.1:. Let u be assigned to SLh. By definition 4.4, SLh =
SL1 , JLh = JL2 and JL1 = SL2 .

Case 1:. First, consider (〈f1〉, 〈f2〉) = (>i , 〈f2〉) s.t. 〈f2〉 ∈ {>,>a}. As the first
hierarchy is an I-hierarchy,

⊔

(L1) = SL1 = x1 by theorem 4.1 and hence, none of
the roles in L2 can be activated by u. Therefore, we get

⊔

(Lh) =
⊔

(L1). Similarly,
let (〈f1〉, 〈f2〉) = (〈f1〉, >i), where 〈f1〉 ∈ {>,>a}. As L2 is an I − hierarchy,
u cannot activate any junior roles, but u acquires all the permissions of L2 when
he activates SL2 . Because of 〈f1〉, u can activate JL1 (= SL2) and acquire all the
permissions of L2. Hence,

⊔

(Lh) =
⊔

(L1). Therefore, if >i ∈ {>,>a}, then
⊔

(Lh)
=
⊔

(L1).

Case 2:. Consider (〈f1〉,〈f2〉) = (>a ,>). Here, first we note that
⊔

(Lh) must
contain the following:

1. all the activable elements of L1, i.e. all elements of
⊔

(L1),
2. all the activable elements of L2, i.e. all elements of

⊔

(L2), and
3. all the possible combinations of activable elements in L1 and L2.
From Theorem 4.1,

⊔

(L1) = 2X1\φ and
⊔

(L2) = {{JL1}, , . . . , {xn}}. We need
to show that

⊔

(Lh) =
⊔

(LU1 ) ∪ ⊔(L2) ∪ (
⊔

(LU1 ) ⊗ ⊔(L2)) exactly contains the
elements mentioned in 1-3. We see that

⊔

(L1) =
⊔

(LU1 ) ∪ (
⊔

(LU1 ) ⊗ JL1). But
as JL1 = SL2 , JL1 ∈ ⊔(L2). Therefore, (

⊔

(LU1 ) ⊗ {JL1}) ⊆ (
⊔

(LU1 ) ⊗ ⊔

(L2)).
Hence, elements of both

⊔

(L1) and
⊔

(L2) are in
⊔

(Lh). We further note that as
there are no common roles in LU1 and L2, hence,

⊔

(LU1 ) and
⊔

(L2) are disjoint.
It is easy to see that (

⊔

(LU1 ) ⊗ ⊔

(L2)) consists of all the combinations of the
activable sets of

⊔

(LU1 ) and
⊔

(L2). (
⊔

(LU1 ) ⊗ ⊔(L2)) is disjoint from
⊔

(LU1 ) and
⊔

(L2) as each of its role sets contains roles from the elements of both
⊔

(LU1 ) and
⊔

(L2). (Hence, cardinality computation is simply |⊔(Lh)| = |⊔(LU1 )|∪ |⊔(L2, t)|∪
|(⊔(LU1 , t) ⊗

⊔

(L2, t))|.
Case 3:. Case for (〈f1〉, 〈f2〉) = (>,>a) can be shown similarly.

Proof of Theorem 4.2:. Let u be assigned to SLh. By definition 4.4, SLh=
SL1 , JLh = JLH2 and JL1 = SL2 .

Case 1. (〈f1〉 = >i): As L1 is an I-hierarchy, by reasons similar to that of the
case for (〈f1〉, 〈f2〉) = (>i , 〈fx〉) in the proof for Lemma 4.1, the result follows
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immediately.

Case 2. (〈f1〉 = >a ): As L1 is an A-hierarchy, if 〈fx〉 = >i then no roles below
SLx can be in the set

⊔

(Lh); hence
⊔

(Lh) =
⊔

(L1). If 〈fx〉 = > then the case is
similar to that of lemma 4.1.

Case 3:. As L1 is an IA-hierarchy, if 〈fx〉 = >i then no roles below SL2 can be
in the set

⊔

(Lh), hence
⊔

(Lh) =
⊔

(L1). If 〈fx〉 = > then the case is similar to
that of Lemma 4.1 except for the fact that LH2 is not necessarily an A-hierarchy.
Hence, by following similar reasoning, the result follows.

Proof of Theorem 4.3:. Here,
⊔

(H1) has two parts, namely S1 and S2. S1

constitutes the subset of
⊔

(H) which is either from LH1 or from H1. Hence S1 =
(
⊔

(LH1) ∪ ⊔(H1)). Similarly, S2 constitutes the subset of
⊔

(H) resulting from
the combination of

⊔

(LH1) and
⊔

(H1). Here we note that there may be common
elements. At the least, the senior-most role is common to both. Therefore, S2

= (
⊔

(LH1)\B ⊗ ⊔

(H1)\B) contains all the combinations of the elements of the
components LH1 and H1 (Here B represent the elements of

⊔

(LH1) and
⊔

(H1)
that have common elements). However, I = S1 ∪ S2 may not still be the required
activable set. This is because in both LH1 and H1, the same two roles may have a
hierarchical relation (direct or derived) showing alternative relations between the
roles. The result of the two alternative relations is that we may have a new derived
relation (as discussed in Section 5). For example in LH1, x and y may be related by
an A-relation and hence appear together in an element of

⊔

(LH1), whereas in H1,
x and y may be related by an I -relation (or an IA-relation). As a result the derived
relation between x and y becomes an IA-relation in H. Thus, x and y should not
appear together in an element of

⊔

(H). C determines exactly those elements in
⊔

(H), that are IA-related (directly or derived), hence
⊔

(H, t) = I\C.

Proof of Theorem 4.4:. We note that H1 and H2 have the same pair-wise
related roles only differing in the hierarchical relation. Hence the hierarchy structure
is the same and H2 is a monotype whereas H1 can be monotype or hybrid type.
We prove this case wise. Let X = Roles(H2).

Case 1. (H1 is monotype): Let us assume that H2 is an I -hierarchy. Obviously,
Pmax(H2) = P (SH2)= P (X). We have three cases for H1. If H1 is also I -hierarchy
then by they are obviously same hierarchy. Let H1 be an A-hierarchy. Then a user
assigned to SH1 can activate all the roles at once in a session. Hence, Pmax(H1)
= P (X) = Pmax(H2). Now, let H1 be an IA-hierarchy. Thus, by activating role
SH2 , a user can acquire all the permissions of roles in X, i.e. Pmax(H1) = P (SH1)=
P (X) = Pmax(H2). Thus, all monotype hierarchies are AC-equivalent.

Case 2. (H1 is hybrid type): Here it is possible that H1 has a linear compo-
nent LHi = (LH’, Lx, LHmid, Ly, LH”). In such a case, a user assigned to the
senior-most role cannot acquire the permissions associated with roles in (Xy ∪ X ”)
(considering Ly = (Xy, 〈fy〉) and L” = (X ”, 〈f”〉)) as fx is an I -relation. Thus, a
user assigned to the senior-most role can acquire the permission set P (X) in H2,
whereas he can acquire only the permission set P (X \ (Xy ∪X”)) in H1. However,
if such a component is not present then by Theorem 4.1 and 4.2, the user acquires
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Fig. 12. Derived hierarchical relation for two consecutive types (rule R2)

the permission set P (X) in both H1 and H2. Hence, we get the result.

Appendix B

Proof of Theorem 5.1 (Soundness of rules R1R4):. We prove this by taking
all the possible cases of h that can be derived from each rule. Let us assume that
user u is assigned only to the senior-most role x.

Case 1: h is derived from rule R1:. Here (x〈f〉z) because (x〈f〉y) and
(y〈f〉z). Let us consider 〈f〉=>i . Assume that permission p can be acquired
through role z at time t, i.e., can be acquired(p, z, t) holds. As (y>iz ), p can be
acquired through role y at time t (by c1). Again, as (x>iy), p can also be acquired
through role x at time t (by c1). Similarly, (x>iz ) also indicates that p can also
be acquired through role x at time t. Hence, the result follows. The cases for the
A-hierarchy and IA-hierarchy can be shown similarly.

Case 2: h is derived from rule R2:. Fig. 12 depicts all the 6 possible com-
binations of (x〈f1〉y) and (x〈f2〉z). Fig. 12(a) - Fig. 12(e) correspond to the cases
R2.1(i), R2.1(ii, R2.3, R2.3(i) and R2.3(ii) respectively. Rule R2.1(i) is straightforward.
As both hierarchical relations allow permission inheritance, role x can inherit all
the permissions of role z. However, u cannot activate role y and hence he cannot
activate role z. Thus, roles x and z are related by an I -relation only. The rules
R2.1(ii) and R2.2 can be shown in a similar way.

In rule R2.3(i) (refer to Fig. 12(d)), x and y are related by an A-relation, hence, u
can also activate role y. However, as y and z are related by an I -relation, u cannot
activate role z. u can still acquire the permissions of role z without activating
it, but to do that he has to activate role y. Hence, we get a conditioned derived
relation (x [y ]>iz ), as per definition 5.1. In rule R2.3(ii) (refer to Fig. 12(e)), u can
activate z. However, u can also acquire z ’s permissions without activating it, but
to do that he has to activate role y. Hence, we again get, as per definition 5.1,
a conditioned derived relation x [y ](y)> z. We note that the combination shown
in Fig. 12(f) does not derive any relation between x and z. Here, the I -relation
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Fig. 13. Derived relations in a general linear using rules R3 with set B is empty

between x and y prohibits activation of role y and hence that of role z by u. The
A-relation between y and z prohibits inheritance of z’s permissions through y and
hence u cannot directly inherit z’s permissions. Thus, u can neither activate z nor
inherit its permissions. Hence, x and z are not hierarchically related. Thus, Fig.
12 shows all the possible cases in which a hierarchical relation (either direct or
unconditioned derived) of one type follows another type (direct or derived). Thus,
R2 captures completely all such cases.

Case 3: h is derived from rule R3:. R3 deals with cases in which a condi-
tioned derived relation is immediately followed by an unconditioned relation in a
hierarchical path. Fig. 13 illustrates graphically all such possible combinations for
A = a and B = φ. The combination labelled #1 that corresponds to (x [A]>iy) ∧
(y>az ) does not derive any new relation. This is because, (a>iy) is followed by
(y>az ) (see Fig. 12(f )). The remaining combinations correspond to the five cases
of R3 in Fig. 13.

In R3.1(i), corresponding to rule R3.1.a, the conditioned derived relation between
x and y is an I-relation. As the relation between y and z is also an I-relation, u can
still acquire the permissions of z through the activation of role a as z ’s permissions
can be acquired through y. Hence, the result is the conditioned derived relation
(x [{a}]>iz ). Similarly, in rule R3.1(ii), corresponding to rule R3.1.b, the presence of
a more restrictive conditioned I -relation before the IA-hierarchy between y and
z prohibits u to activate z. But, because of the IA-hierarchy, z ’s permissions
can be inherited through y and hence through the activation of role a. Thus,
the conditioned derived relation (x [{a}]>iz ) holds. In rule R3.2(i), corresponding
to rule R3.2.a, we see that a user assigned to x can acquire y ’s permissions by
activating role a. But the I -relation between y and z allows z’s permissions to
be inherited through y and hence by the activation of role a. However, the same



Formal Foundations for Hybrid Hierarchies in GTRBAC · 43

Non-empty Non-emptyx

a

3.1a 3.1b 3.1a

3.3

2 12 1

x

ba b bmbmna na
1b 2

ba
21

a

x

z

2
a naa

1

y

2
a naa

1

y
y

xx

z z

2
a naa

1

y

x

z

x

y

z

y

z

z

2
a naa

1

3.1b
R RR R

R

Fig. 14. Derived relations in a general linear hierarchy using rules R3 with set B is non-empty

I -relation between y and z prohibits the user from activating z. Hence, the result is
a conditioned I -relation (x[{a}]>iz). In rule R3.2(ii), corresponding to rule R3.2.b,
because of IA-relation between y and z, u can activate z. At the same time, u
can also acquire through y all of z ’s permissions by simply activating a role in A.
Hence, the inferred rule is (x [{A}]>z ). In rule R3.3, corresponding to rule R3.3, u
can activate y because of the IA-relation. The A-relation between y and z allows
u to activate z also. However, because of the A-relation between y and z, u cannot
acquire z’s permissions without activating z. Hence the result is (x >az ). Note
that it is not a conditioned derived relation. Again, we note that R3 captures
rules for deriving any new derived relations from all possible combinations of a
conditioned derived relation followed by an unconditioned relation. Fig. 14 shows
the same cases when set B is non-empty. The proof is similar to that for the above
case, except that whenever the new derived relation between x and z is an A or
IA-hierarchy, then the set is non-empty.

Case 4: h is derived from rule R4:. The first rule R4.1 is a trivial case and is
straightforward. In rule R4.2, we consider those alternate paths that have different
unconditioned relations. When we have (x>iy) and (x>ay), u can directly inherit
y ’s permissions through the first relation and at the same time u can activate y
using the second relation, hence (x>y). Similarly, when one of the two relations is
(x> y), u can inherit y ’s permissions directly as well as activate y. Thus, no matter
what the other relation is we have the derived relation (x>y). In rule R4.3, we have
various cases in which one relation is a conditioned derived relation and the other
is an unconditioned relation, as depicted in Fig. 15. In R4.3a, both the hierarchical
relations are of the same type. If the relation is I -hierarchy then the unconditioned
relation allows direct inheritance of role y ’s permissions through role x ; hence,
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the resulting derived relation is an unconditioned I -relation. Similarly, when the
relation is an IA-hierarchy, y ’s permissions are inherited by simply activating role x
using the unconditioned relation and hence the derived relation is not conditioned.

In rule R4.3b, the first relation is a conditioned one. When 〈f〉 is an I -relation,
as in Fig. 15, then it means that through that hierarchical path, u can acquire
y ’s permission by activating a role in A. Furthermore, x and y also are related by
A-hierarchy through sets B and C. Note that B and/or C may contain role x itself.
The activation path is simply the union of the two activation paths of the two
paths. The case where 〈f〉 is IA-relation, is similar. In rule R4.3c, we have I and
IA-relations, as shown in Fig. 15. In the first case, the first path allows A-relation
between x and y through the conditioned relation, either through roles in A or
B, whereas the alternate path allows the I -relation. Hence, the derived relation is
an IA-relation. In the second case, the IA-path allows both the semantics, hence
the result is the IA-relation between x and y. R4.4 captures cases where both the
alternate paths are conditioned (Fig. 16). Rule R4.4a deals with the cases where
both the alternate derived relations are same. In rule R4.4b, both the alternates have
conditioned derived relations but are of different types: I and IA-hierarchy. In the
first case, there is a conditioned I-hierarchy portion on the first hierarchical path
through A1 and a conditioned IA-hierarchy portion on the second hierarchical path
through A2. As the path through A2 provides IA-relation, this means A2 provides
both I and A-relations. Now, by taking union of the I and A-paths separately, we
get the result. The second case is the similar to the first one. Thus, the inference
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rules covers all possible combinations. Hence, the result follows.
To prove Theorem 5.2, we first prove the following lemmas:

Lemma 5.1 (Completeness of rules R1 in monotype linear hierarchy):.
Given a monotype linear hierarchy L, rule R1 is complete with respect to L; That
is, if for any pair of roles x, z ∈ Roles(L), ¬L[R1] ² hx,z, then L � L ∪ {hx,z},
i.e., the hierarchies L and L’ = L ∪ {hx,z} are not authorization consistent.

Lemma 5.2 (Completeness of rules R1-R3 in hybrid linear hierarchy):.
Given a hybrid linear hierarchy Lh, rules R1-R3 are complete with respect to Lh;
That is, if for any pair of roles x, z ∈ Roles(Lh), ¬ Lh[R1-R3] ² hx,z, then Lh
� Lh ∪ hx,z, i.e., the hierarchies Lh and Lh’ = Lh ∪ hx,z are not authorization
consistent.

Proof of Lemma 5.1: . Assume otherwise, i.e., there exists a relation hx,z =
(x〈f〉z ), such that¬L[R1] ² hx,z, but L ≈ L’. As ¬L[R1] ² hx,z, it implies that there
exists no y such that (x 〈f〉y)∧(y〈f〉z ) holds under L. It is easy to see that (x 〈f〉y)
∧ (y〈f〉z ) cannot hold iff the following hold under L:

1. for all y such that (x〈f〉y), we have ¬(y〈f〉z), or

2. for all y ’ such that (y′〈f〉z), we have ¬(x〈f〉y′),
Let us first consider 〈f〉 ∈ >i , i.e. hx,z = (x>iz ). Note that there is no direct

hierarchical relation between x and z as hx,z is not in L. The first condition above
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indicates that x can inherit permissions from y because of the relation (x>iy) but
because ¬(y〈f〉z) also holds for all such y, x cannot inherit from z. Similarly, the
second condition indicates that none of the roles that are senior to z is a junior
of x. Therefore, x cannot inherit z ’s permissions. Hence, it follows that u cannot
acquire permissions from z under hierarchy L. But as hx,z is in L’, u can acquire z ’s
permissions under L’. Hence, it follows that L � L’, contradicting our assumption.
Thus, if ¬L[R1] ² hx,z, then L and L’ are not authorization consistent.

Proof of Lemma 5.2:. As Lh is a hybrid linear hierarchy, by definition 4.2 we
can write Lh = (L1, L2, . . ., Ln), where each Li is a monotype linear hierarchy. Let
Li be (xi(1) 〈fi〉xi(2) 〈fi〉 . . . 〈fi〉 xi(|Li|)). Then by Lemma 5.1, we get the derived
relations (xi(πi)〈fi〉xi(ηi)) for 1 ≤ πi ≤ (|Li| − 2) and 3 ≤ ηi ≤ |Li|. For each linear
component, the derived set is complete as per Lemma 5.1. But, we know that for
i = 2 to n, SLi = JL(i−1)

by definition 4.2. To show completeness of R1-R3 with
respect to Lh, we show that any derived relation between a role in L1 with that
of a role in Lj for 2 ≤ j ≤ n can be inferred from R1-R3. To do that, we use
induction on the following hierarchical chain from an arbitrary role x1(π1) in L1 to
an arbitrary role xn(ηn) in Ln :

Lhc = x1(π1)〈f1〉x1(|L1|)〈f2〉x2(|L2|) . . . x(n−1)(|L(n−1)|)〈fn〉 xn(ηi)

Note that each hierarchical relation in this chain is a relation derived in each
component using R1.

Basis : Consider n = 2, i.e., Lhc = x1(π1)〈f1〉x1(|L1|)〈f2〉x2(η2). In the proof
for soundness of R2 (Fig. 12), we showed that R2 captures all possible com-
binations of 〈f1〉 and 〈f2〉. Hence, as R2 is sound, by employing an argument
similar to the proof of Lemma 5.1, it follows that R2 is complete with respect
to Lhc. Note that as x1(|L1|)〈f2〉x2(|L2|) by R1, rules R1-R3 are complete for
Lhc = x1(π1)〈f1〉x1(|L1|)〈f2〉x2(|L2|)

Induction Hypothesis : Assume that rules R1-R3 are complete for Lhc = x1(π1)

〈f1〉x1(|L1|)〈f2〉x2(|L2|) . . . x(n−1)(|L(n−1)|). Now we need to show that they are
complete for Lhc = x1(π1)〈f1〉x1(|L1|)〈f2〉x2(|L2|) . . . x(n−1)(|L(n−1)|) 〈fn〉 xn(ηn).
As R1-R3 are complete Lhc = x1(π1)〈f1〉x1(|L1|)〈f2〉x2(|L2|) . . . x(n−1)(|L(n−1)|), we
can deduce a derived relation between x1(π1) and x(n−1)(|L(n−1)|), which is either

1. (x1(π1)〈f〉x(n−1)(|L(n−1)|)) where 〈f〉 ∈ {>i ,>,>a}, or

2. (x1(π1)[A](B)〈f〉 x(n−1)(|L(n−1)|)), where 〈f〉 ∈ {>i ,>} and

A,B ⊆ {x1|L1|, x2|L2|, . . . , x(n−1)|L(n−1)|}.

Assume, (x1(π1)〈f〉x(n−1)(|L(n−1)|)) i.e. the derived relation is unconditioned.
But as pointed out in the proof for soundness of R1-R4, rule R2 can be employed
over (x1(1)〈f〉x(n−1)|L(n−1))) and (x(n−1)|L(n−1)| 〈fn〉 xn|Ln|) to derive any relation
between x1(π1) and xn|Ln| (i.e., as indicated earlier, all combinations of relations
〈f〉 and 〈fn〉 are captured by R2). As already argued in the induction basis, R2 is
complete for such cases.

Now suppose the derived relation is (x1(π1)[A](B)〈f〉x(n−1)|L(n−1)|). We know
that 〈f〉 can only be >i or >. But as mentioned in the proof of the soundness theo-
rem, R3 completely captures all the combinations where an unconditioned relation
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follows a conditioned derived relation. This argument can be easily extended to
any arbitrary pair of roles. Hence, using argument similar to that in the proof of
Lemma 5.1, it follows that R1-R3 is complete with respect to a (derived) hybrid
linear hierarchy Lhc. Using the same technique we can easily prove that a relation
between any role of Li with that of Lj , 1 ≤ i < j is completely determined by rules
R1-R3. Hence, R1-R3 is complete with respect to the hybrid linear hierarchy Lh.

Theorem 5.2 (Completeness of rules R1-R4):. We prove this by considering
various cases of H.

Case 1: H is a linear hierarchy:. If it is a monotype linear hierarchy, we can
see that only R1 applies as all other rules involve more than one hierarchy types or
more than one relations between the same pair of roles. Hence from Lemma 4.1, it
follows that R1-R4 is complete with respect to H. If H is a hybrid linear hierarchy
then that means only one relation can exit between a pair of roles, i.e. there are
no alternative hierarchical paths between the roles. Thus, only rules R1 through
R3 apply. Hence, from Lemma 5.2, it follows that R1-R4 is complete with respect
to H.

Case 2: H is a not a linear hierarchy:. By definition 4.3, we can write H =
(LH1, LH2, . . . , LHm), where each component LHi is a linear hierarchy (hybrid or
monotype). From Lemma 5.1 and Lemma 5.2, we can see that for each LHi,
rules R1-R3 are complete. The only remaining case is the case where two or more
hierarchical paths can exist between a pair of roles. Such a case can occur only in a
hierarchy that is not a linear hierarchy. Now, we need to show that when multiple
hierarchical paths exist between a pair of roles, rule R4 provides a basis for inferring
all derivable relations. First, let us consider the following n hierarchical relations
between roles x and y : hxy(π1), hxy(π2), . . . , hxy(πn), which corresponds to the linear
components LHπ1 , LHπ2 , . . . , LHπn for n ≤ m and {π1, π2, . . . , πn} ⊆ {1, 2, . . . ,m}.
It is easy to see that each of these relations between x and y can be completely
derived using rules R1 through R3 as each is derived within a linear component.
Now, we show that R4 completely covers all the possible derived rules that can be
inferred by using these relations between x and y. Again, we use induction.

Basis : Let n = 2. Then, we have only two relations between x and y deduced in
components LHπ1 , LHπ2 , which are hxy(π1), hxy(π2). We note that hxy(π1), hxy(π2)

can be any of the unconditioned relation or the conditioned derived relation. As
noted in the proof of the Soundness Theorem, all possible combination is captured
by the rules in R4. Hence, applying argument similar to that used in the proof for
Lemma 5.1, it follows that R4 is complete with respect to the two relations hxy(π1),
hxy(π2) between the same pair.

Induction hypothesis : Assume that R4 is complete w.r.t. the (n-1) relations
between the same pair of roles x and y.

Induction: Let hxy(π) be the derived relation between x an y from n-1 different
relations between them using rule R4. Now we have two relations between x and y:
hxy(π) and hxy(πn). It is easy to see that hxy(π) is one of the unconditioned relation
because of the application of rules R4.1, R4.2, R4.3a and R4.3c, or the conditioned
derived relation with possibly bigger set on which the relation is conditioned on
as is possible because of R4.3b and R4.4. But the same rules also apply to hxy(π)
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and hxy(πn). This is because, the rules in R4 covers all possible combinations
of conditioned and/or unconditioned alternate relations. Thus, by applying an
argument similar to that used to prove Lemma 5.1, it follows that R4 is complete
for all n different relations. Hence, it follows that rules R1-R4 is complete with
respect to a hierarchy.

Appendix C

Here, we present an alternate way to compute the
⊔

(H) of a hierarchy. The key
issue is that a hierarchy relation generates a partial order of role sets [posets]. That
is, for a role set R and 〈f〉 ∈ {>i, >a, >}, a hierarchy H = (R, 〈f〉) denotes a poset
of roles, which means for x, y, z ∈ R

1. (x〈f〉x) (We assume that a role is senior to itself) [reflexivity property]
2. (x〈f〉y) and (y〈f〉x) implies x = y; [anti−symmetry property]
3. (x〈f〉y) and (y〈f〉z) implies x〈f〉z; [transitivity property]

Note that cases (1) and (2) are actually not allowed in the RBAC models; however,
for mathematically viewing a role hierarchy as a poset, it does not introduce any
problem. Case (3) is implied from the definition of each hierarchy type. Based
on this, a hybrid hierarchy can be considered as a combination of the three posets
of a role set related to the three types of hierarchies. Furthermore, a set X is
called a chain or total order if, for all x, y ∈ X, either (x〈f〉y) or (y〈f〉x); and
X is called an antichain if, for all x, y ∈ X, (x〈f〉y) only if (x = y). Let an-
tichain set(H) be function that computes the set of all antichains of H. Further-
more, let can activate set(ASet) be the set of roles that a user assigned to the
senior-most role in H can activate according to the A-hierarchy relation defined in
ASet, which is a subset of H. Let Hs denote the senior-most role in H. Now, the
computation of

⊔

(H) is given by the following theorem:

Theorem 8.1. (
⊔

(H) using anti chain): Given a hybrid hierarchy H over roles
R.
⊔

(H) = antichain set(ISet)
⋂

2can activate set(ASet)

where ASet = (R,>a) and ISet = (R,>i) are posets defined on R that satisfy
the following criteria:

a. ∀(x〈f〉y) ∈ H, (〈f〉 ∈ {>a,>}) → ((x>ay) ∈ ASet)
b. ∀(x〈f〉y) ∈ H, (〈f〉 ∈ {>i,>}) → ((x>iy) ∈ ISet)

Proof : The proof follows as
⊔

(H) contains only those incomparable sets of roles
(antichains), indicated by antichain set (ISet), that can be activated together, as
indicated by the chains in the ASet. For instance, when there are no I -hierarchy,
the antichain set (ISet) is a set of all the combinations of the elements of R. Based
on this theorem, steps to complete

⊔

(H) will be as follows:
1. Given original hierarchy, create two hierarchies

a. An A-hierarchy (ASet) containing edges for each A and IA relation in H
b. An I-hierarchy (ISet) containing edges for each I and IA relation in H

2. Compute the antichain set for the ISet
3. Remove from ISet any role set that cannot be activated by the user assigned
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to Hs as per the ASet.

This approach characterizes the Uniquely Activable Set in a much simpler way.
However, to compute the

⊔

(H), it requires computing the antichain set and the
set of roles that the user assigned to HS can activate. The difference between this
approach and the one presented in section 4 is that the former computes

⊔

(H) of
the entire hierarchy incrementally from that of the sub-hierarchies, while the ap-
proach described above operates on the entire hierarchy. The approach described
in section 4 hence facilitates the maintenance of the

⊔

(H) of the hierarchy incre-
mentally. That is, a tool can be easily designed to compute and maintain the

⊔

(H)
information for any sub-hierarchy and use that to reconstruct the

⊔

(H) of the en-
tire hierarchy. The

⊔

(H) information for each role in the hierarchy is needed in
order to support the authorization decision process. This would not be easy using
the approach described here. Furthermore, the computation of the antichain-set for
a general I -hierarchy itself is not a straightforward task. The approach in section 4
essentially provides one incremental way to compute the antichains that form the
⊔

(H) of the given hierarchy.


