
CERIAS Tech Report 2006-24

SCALABLE AND EFFECTIVE TEST GENERATION FOR ACCESS CONTROL SYSTEMS THAT
EMPLOY RBAC POLICIES

by Ammar Masood, Arif Ghafoor and Aditya Mathur

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

Scalable and Effective Test Generation for Role Based Access
Control Systems

Ammar Masood∗ Rafae Bhatti† Arif Ghafoor‡ Aditya Mathur§

January 27, 2009

Abstract

Conformance testing procedures for generating tests from the finite state model representation of Role
Based Access Control (RBAC) policies are proposed and evaluated. A test suite generated using one of
these procedures has excellent fault detection ability but is astronomically large. Two approaches to reduce
the size of the generated test suite were investigated. One is based on a set of six heuristics and the other
directly generates a test suite from the finite state model using random selection of paths in the policy model.
A fault model specific to the implementations of RBAC systems was used to evaluate the fault detection
effectiveness of the generated test suites; the model incorporates both mutation-based and malicious faults.
Empirical studies revealed that adequacy assessment of test suites using faults that correspond to first-order
mutations may lead to a false sense of confidence in the correctness of policy implementation. The second
approach to test suite generation, combined with one or more heuristics, is most effective in the detection
of both first-order mutation and malicious faults and generates a significantly smaller test suite than the one
generated directly from the finite state models.

Keywords: Role Based Access Control (RBAC), Finite state models, State explosion, Fault model, First-order
Mutants, and Malicious faults.

1 Introduction

Access control is essential for safe and secure access to software and hardware resources. An access control
implementation is responsible for granting or denying authorizations after the identity of a requesting user
has been validated through an appropriate authentication mechanism. Operating systems, database systems,
and other applications employ policies to constrain access to application functionality, file systems, and data.
Often these policies are implemented in software that serves as a front end guard to the protected resources or
is interwoven with the application. It is important that the access control software be correct in that it faithfully
implements the intended policy. Hereafter an implementation of access control policies is referred to as ACUT
(for Access Control Under Test).

The access control policy used in this work is based on the NIST standard Role Based Access Control
(RBAC) model [19, 27, 48]. By an access control policy, we mean a policy that conforms to the standard
RBAC model, and therefore has the following features: (i)Definition of Roles, (ii)Definition of Permissions,

∗Purdue University, Electrical and Computer Engineering; West Lafayette, IN 47907. ammarmasood@alumni.purdue.edu.
†Purdue University, Electrical and Computer Engineering; West Lafayette, IN 47907. rafae@ieee.org.
‡Purdue University, Electrical and Computer Engineering; West Lafayette, IN 47907. ghafoor@ecn.purdue.edu. Corresponding

Author.
§Purdue University, Computer Science; West Lafayette, IN 47907. apm@purdue.edu.

1

(iii)Definition of Users, (iv)Mapping of Users to Roles, (v)Mapping of Permission to Roles, (vi) Role Hi-
erarchies defined on roles, and (vi)Constraints defined on user-to-role and permission-to-role mappings. It
should also be clear that our focus in this paper is not the RBAC model itself, but rather one aspect of its
administration, i.e. testing of an RBAC implementation.

A number of reported common vulnerabilities and exposures [28] are related to design and/or coding flaws
in access control modules of an application. Testing remains indispensable despite advances in the formal
verification of secure systems [1, 35, 26] and in static or dynamic program-analysis based techniques [12, 33]
because verification only guarantees correctness of the design under certain assumptions. Any faults in the
implementation due to, for example, coding errors, incorrect configuration, and hidden or “backdoor” func-
tionality could jeopardize the effectiveness of corresponding (access control) specification [51]. It therefore
becomes critical to assure that the underlying implementation conforms to the desired policy, and hence test-
ing becomes essential. Given a safe and consistent policy P currently in effect, we ask: What tests, when
successful, would ensure that ACUT enforces P and no other policy ?

To answer the above question the use of a “complete Finite State Machine (FSM)” based conformance
testing strategy was investigated. The strategy was to construct an FSM model of the RBAC policy and then
generate tests from the model using the transition cover set.

RBAC enforces access control, controlling the rights of subjects on objects, through user-role assignments,
user-role activations and permission-role assignments. Thus at any time, the status of user-role assignments,
user-role activations and permission-role assignments encapsulate the rights of each subject with respect to
every other entity and hence, the status of assignments and activations naturally represent the protection state
of the system. The complete FSM therefore represents the desired security behavior of the system by encap-
sulating all the possible protection state change sequences. Evaluations of tests generated from FSM often
use Chow’s FSM-based fault model [9, 23, 43]. We examined the fault coverage of the complete FSM based
conformance testing technique with respect to an RBAC fault model that consists of faults derived from first
order mutations. The proposed technique provides complete fault detection with respect to the RBAC fault
model that can be mapped to Chow’s fault model as shown in Section 5.1.

The fault coverage of complete FSM strategy is further assessed by extending the RBAC fault model and
thus considering the non-mutation faults (referred as malicious faults). It is determined that tests so generated
are able to detect a particular class of malicious faults. The complete fault coverage for malicious faults can
only be achieved if white box coverage measures are used for test enhancement. In the absence of ACUT
code, usage of black box based technique cannot provide any guarantees about its effectiveness in detecting
malicious faults. Hence we suggest using white box coverage criterion such as one based on data flow or
mutation, to facilitate enhancement of FSM generated tests for providing complete coverage of malicious
faults. Certainly, code reviews [5] and inspection may also assist in detecting such faults.

While complete FSM based conformance testing turns out to be highly effective in detecting RBAC faults,
the size of the finite state model and that of the generated test suite is astronomical thereby rendering it un-
suitable for practical use. Thus we ask: How does one scale down a test suite generated from a finite state
model without “significant” degradation in the fault detection effectiveness of the scaled down test suite ? We
answer this question using two strategies, namely, heuristics based strategy and constrained random testing.
These two strategies are described in sections 6.2 and 6.3, respectively. We note that abstractions used in the
proposed heuristics are also used in formal verification [1, 26].

We conducted an empirical evaluation to assess the cost, effectiveness, and the cost-benefit ratio associated
with the usage of the three procedures in functional testing of a prototype RBAC system. The effectiveness
was measured using first-order mutation faults [16] and manually injected malicious faults. Usage of both the
mutation faults and malicious faults in effectiveness measurement provided insight into the inability of state

2

abstraction based heuristic procedure to provide complete fault coverage for malicious faults despite being
adequate with respect to mutation faults.
Contributions: (a) A fault model for RBAC implementations based on selective mutations and on (possibly)
malicious code. (b) Conformance testing strategy based on complete FSM, heuristic’s and Constrained Ran-
dom Test Selection (CRTS) procedures, (c) A technique for functional testing of ACUT, and (d) evaluation of
the usage of the three conformance testing procedures in the proposed functional testing technique through a
case study.
Organization: RBAC and construction of a finite state model from a given RBAC policy is reviewed in Sec-
tion 2. The testing context of the proposed test generation methods is described in Section 3. Section 4 dis-
cusses the conformance relation used as the basis for conformance testing procedures. A fault model used for
assessing the effectiveness of the tests generated is described in Section 5. We use a mutation-based approach
to define a fault model for our RBAC-based testing technique. The proposed conformance test generation
procedures are described in Section 6. Section 7 describes in detail the proposed functional testing technique.
Section 8 reports an empirical study conducted to assess the cost and fault detection effectiveness associated
with usage of proposed conformance testing procedures in functional testing of a system. Related work is
reviewed in Section 9. Section 10 summarizes the proposed approach.

2 Background

2.1 Role Based Access Control
Role Based Access Control (RBAC) model [19] is an ANSI standard for access control and is widely used
in many industrial and academic organizations to manage the protection of information resources. In RBAC,
permissions to access protected resources are not directly assigned to users. Instead, permissions are assigned
to roles, and users can access these permissions by being assigned to the corresponding roles.

An RBAC policy P is a 16-tuple (U, R, Pr, UR, PR,≤A,≤I , I, Su, Du, Sr, Dr, SSoD,DSoD,

Ss, Ds), where

• U and R are, respectively, finite sets of users and roles,

• Pr is a set of permissions,

• UR ⊆ U ×R is a set of allowable user-role assignments,

• PR ⊆ Pr ×R is a set of allowable permission-role assignments,

• ≤A⊆ R×R and ≤I⊆ R×R are, respectively, activation and inheritance hierarchy relations on roles,

• I = {AS, DS,AC, DC,AP, DP} is a finite set of allowable input requests for the ACUT, where
AS, DS,AC, DC,AP, DP are, respectively Assign, Deassign, Activate, and Deactivate requests for
user-role assignment and activation and Assign and Deassign for permissions-role assignments.

• Su, Du : U → Z+ are, respectively, static and dynamic cardinality constraints on U , where Z+ denotes
the set of non-negative integers.

• Sr, Dr : R → Z+ are, respectively, static and dynamic cardinality constraints on R.

• SSoD, DSoD ⊆ 2R are, respectively, static and dynamic Separation of Duty (SoD) sets

• Ss : SSoD → Z+ specifies the cardinality of the SSoD sets

3

• Ds : DSoD → Z+ specifies the cardinality of the DSoD sets

We explicitly parameterize each element of the above 16-tuple by the policy P when there is a need to
distinguish it from that of another policy P ′. For example UR(P) and UR(P ′) are the UR assignments
corresponding, respectively, to policies P and P ′.

The above definition of a policy is adequate to illustrate the test generation strategy proposed in this paper.
We only consider the role assignment mechanism of an RBAC policy for our work. However, we are aware that
the above policy is a variant of the standard RBAC model proposed in [19] and we provide here a comparison
of the concepts involved.

We define (u, r) ∈ UR to imply that an assignment of u to r is allowable, which is distinct from the
assignment defined in standard RBAC. The reason we consider (u, r) as only an allowable assignment is that
this assignment in our model is conditional upon satisfaction of associated constraints. In particular, u is in fact
assigned to r only when (i) an input request AS(u, r) is received and (ii) the static user and role cardinality
and SoD constraints are satisfied at the time the assignment request is received.

In addition, we also distinguish assignment from activation, which is another notion not found in standard
RBAC. In our model, the existence of an assignment (u, r) is not necessarily sufficient to let u activate r.
Instead, for user u to be authorized to activate role r, (i) input request AC(u, r) must be received, (ii) u must
be assigned to r or permitted via ≤A, and (iii) dynamic user and role cardinality and SoD constraints must be
satisfied. This is a key distinction between our model and the standard RBAC, and is vital to introduce the
constraint specification mechanism that we support in our policy.

Building on these two distinctions, we similarly extend the notion of separation of duty constraints. The
SSoD (DSoD) [2] specifies the sets of roles to which users can only be simultaneously assigned (can simul-
taneously activate) provided such assignments (activations) do not violate the SSoD (DSoD) set cardinality
constraint i.e. Ss(SSoD) (Ds(DSoD)). Ss(SSoD) (Ds(DSoD)) constrains the maximum number of roles
to which a user can be simultaneously assigned (can simultaneously activate) in the given SSoD (DSoD) set.
The static (dynamic) cardinality of a user specifies the maximum number of roles it can be assigned to (can
activate). Similarly, the static (dynamic) cardinality of each role specifies the maximum number of users who
can be assigned to (can activate) this role.

The notion of role hierarchy used in the policy is based on the notion of an activation and inheritance
hierarchy proposed in the literature. Role inheritance as per standard RBAC implies that a user assigned to
a senior role in a role hierarchy also inherits the permissions of the junior role. Formally, the inheritance
hierarchy relation (I-hierarchy) ri ≤I rj means that a permission pk assigned to ri is also accessible by
rj without being actually assigned to it i.e. (pk, rj) /∈ PR ([46]). Activation hierarchy is a variant of the
inheritance hierarchy. It distinguishes itself from inheritance hierarchy in that the junior role can in fact be
activated by a user who is assigned to a senior role in the hierarchy. Formally, the activation hierarchy relation
(A-hierarchy) ri ≤A rj implies that a user uk assigned to rj is also able to activate ri without being assigned
to it i.e. (uk, ri) /∈ UR ([46]). The distinction between the two primarily is whether or not the user assigned
to the senior role can use the permissions of a junior role in a hierarchy without explicitly activating the role.
This has consequences when analyzed in conjunction with separation of duty and cardinality constraints. For
a detailed discussion of advanced role hierarchies, we refer the reader to ([46]).

The notion of administration is also important for an access control model. The standard RBAC provides
guidelines on basic administrative features that are relevant to the RBAC model. Administration of the RBAC
model, as described in the literature ([2, 19, 31]) involves performing role activation through the notion of a
session. The concept of a session equates the traditional notion of a subject in access control. Traditionally,
administration of access control involves a sequence of steps that change the state of the system to reflect

4

whether to allow or disallow a subject to perform an action on an object, as prescribed by a policy based on the
underlying access control model. In the RBAC context, the administrative aspect of the model deals with the
sequence of steps necessary to ensure that the users and permissions are appropriately assigned to the roles,
and the necessary conditions are associated with these assignments. The access control usage of the model is to
manage the scenario when a user initiates a session and requests role activation in order to get the privileges to
perform certain actions on certain resources. A session maps a user to the possibly many roles he has activated
(which are a subset of his assigned roles), and a one-to-many mapping exists between a user and his sessions.

The finite state model of a given RBAC policy, described in Section 2.2, can be extended to model the user
sessions. Administrative constraints can also be integrated in the model. Three types of control flow depen-
dency constraints have been considered in [31] and a number of variants of the SSoD and DSoD relations
have been considered in [2] . These constraints can be represented in the finite state model of the given policy.

Lastly, the variant of RBAC policy considered in this work is closely related to the non-temporal version
of the X-GTRBAC policy framework [6]. A sample policy follows.
Example 1. Consider the following policy P with two users, one role, and two permissions.

U = {John, Mary} = {u1, u2}, R = {Customer} = {r1}, P r = {Deposit, Withdrawal} = {p1, p2},

UR = {(u1, r1), (u2, r1)}, PR = {(p1, r1), (p2, r1)},

Su(u1) = Su(u2) = Du(u1) = Du(u2) = 1, Sr(r1) = 2, Dr(r1) = 1,≤A=≤I= { }
As shown above, each permission p1 and p2 in Pr is associated with functions and resources related to the
application under consideration.

2.2 Modeling the expected behavior of the ACUT

The first step in the proposed test generation strategy is to model the expected behavior of the ACUT corre-
sponding to a specific policy P as a finite state machine (FSM) M = FSM(P). A state in M is a sequence of
pairs of bits, one pair for each user-role combination as in the table below. For example, given two users u1

and u2, and one role r1, a state is represented as a pattern of two consecutive pairs of bits. In this case, 1011
indicates that u1 is assigned to role r1 but has not activated r1 and u2 is assigned to r1 and has activated it. In
M AS, DS, AC and DC are respectively, abbreviations used for requests to assign a user to a role, activate a
user-role pair, deassign a user from a role, and deactivate a user-role pair and granted and denied denote two
possible responses of an ACUT to any of the four request types. The permission-role assignments are ignored
to simplify the presentation.

Pattern Role
Assigned Activated

00 No No
10 Yes No
11 Yes Yes
01 Not used Not used

Figure 1(a) shows an FSM model M that represents the behavior of the ACUT required to implement
policy P in Example 1. It consists of eight states corresponding to the different assignments and activations in
effect. In general, for u users and r roles, the upper bound on the number of states in the FSM corresponding
to a policy is 3ur. In Section 6.2 we propose heuristics to reduce the size of the model and hence that of the
test set.

5

AS11
0000

00101000

1010

1110

1110

……

……

……

……

AS21

AS21

AC11

AC21

…
…

(b)

AS11

0000

1000 0010

1100

1110

1010 0011

1011

AS21

AC11

AC21
AS21

AS21 AS11 AC21

AC11
AS11

DS11
DS21

DC11

DS21
DC11

DS11

DS21 DS11

DC21

DC21

DS21

DS11

DS11 DS21

(a)

Figure 1: (a) A complete finite state behavioral model derived from the RBAC policy in Example 1 and (b) its
partial testing tree. Expected response is not shown. For each transition between two states, the response is
granted. Self-loops corresponding to denied response are not shown to keep the figure uncluttered.

Policy (P)

Application

Resources

Request (r)Internal
representation of P

Test harness

Test
input

IUT
state/output

Access enforcement
module
(ACUT)

Policy
processor

Figure 2: Interaction between an application, access control enforcement module (ACUT), and the protected
resources. Test harness contains test cases generated using a finite state model. Test cases are to test the policy
enforcement mechanism, not the application.

3 Testing context

Figure 2 shows the context of the applicability of the proposed test generation approach. As shown, the access
enforcement module is the system under test (ACUT). Prior to testing, the ACUT is initialized with a policy
P . It is assumed that a Policy processor performs this initialization task. The Policy processor constructs an
internal representation of P for subsequent access by the ACUT. Often the internal representation is a table
containing various relations described in Section 2.1. This division of tasks between two submodules allows
for flexibility in the specification of policies. For example, P could be an XML file [6] or it could be specified
using a GUI [32] attached to the Policy processor.

A request received by the ACUT is authenticated against the policy and, if granted, passed to the Applica-
tion. While the ACUT is shown as a separate module, it could also be interfaced with the application in other
ways. For example, the incoming request could first enter the Application and then passed to the ACUT for
authentication.

The Test Harness in Figure 2 encapsulates the generated test cases. Each test case t could assume one of
two forms: (r, q) or (r, rp), where r = r1, r2, . . . , rk−1, rk is a sequence of k > 0 requests that belong to the
input alphabet I , q = q1q2, . . . , qk−1, qk is the expected state transition sequence, and rp = rp1, rp2, . . . , rpk

is the expected response sequence.
Each request is parameterized with appropriate inputs. For example, an Assign request AS(u, r) specifies

user u and a role r. The (r, q) form is selected to test ACUT where state transitions are observable. The
(r, rp) form is used when state transitions are not observable but response to each input request is. For each

6

RBAC policies

P

P’

.

.

.

.

P

P’

ACUT

ACUT’

Figure 3: Policy and implementation conformance. An arrow, in either direction, is to be read as “conforms
to.”

input request we use subscripts i and j to denote, respectively, user ui and role rj . For example ASij is an
abbreviation for “Assign u1 to role rj”.

Testing begins with the ACUT in its initial state. Test t is applied by sending each request in t to the ACUT.
The corresponding state transitions are observed and compared against the expected state transitions in q. The
behavior of the ACUT is assumed to conform to the expected behavior as per policy P when the observed state
sequence is identical to q. The ACUT is brought to its initial state prior to the application of the next test input.

In cases when the ACUT does not return its current state information it is reasonable to assume that the
granted and denied actions in response to each request are observable. However, in this case our test generation
strategy uses the state characterization set W [9] in the generation of the test cases.

The context described above, and the test generation strategy proposed herein, allows testing the ACUT for
a single policy. In general, it is important to test the ACUT for a variety of policies to ensure that it will indeed
correctly enforce access for any given policy. The functional test generation technique described in Section 7
uses multiple policies to test an ACUT.

4 Conformance Relation

Let R denote the set of all RBAC policies, O an organization that uses role based access control to protect its
resources, and ACUT′ an implementation used by O to enforce any RBAC policy over some duration. Given
the definition of an RBAC policy, R is infinitely large. It is reasonable to assume that, in any given duration,
O enforces one policy P ∈ R.

Now suppose that ACUT is an implementation that correctly enforces P . However, a faulty ACUT′ might
enforce P ′ ∈ R, where P ′ is not the same as P . The goal of conformance testing for access control is to
ensure that an implementation of a policy P is free of faults that correspond to policies different from P .
The proposed fault model is derived with this goal in view. Figure 3 illustrates the proposed conformance
relationship amongst policies and their respective implementations.

Let P be an RBAC policy in effect and ACUT a correct implementation that enforces P and no other policy.
Let URa ⊆ U ×R, URc ⊆ U ×R, and PRa ⊆ P ×R be sets of, respectively, current user-role assignments,
user-role activations, and permission-role assignments with respect to P . Let Rq(up, r), up ∈ (U ∪ Pr), be
a well formed request such that Rq ∈ I and (up, r) ∈ (U × R) for up ∈ U , and (up, r) ∈ (Pr × R) for
up ∈ Pr. Rq(up, r) is considered ill-formed when any one or more of the following conditions does not hold:
Rq ∈ I , up ∈ (U ∪ Pr), and r ∈ R. The combined treatment of user-role assignments, user-role activations,
and permission-role assignments through Rq(up, r) is though non-standard, yet has been done to simplify the
presentation of conditions for behavioral conformance.

The status S of an ACUT is the set {URa, URc, PRa}. Each of the three marked subsets of S is empty at

7

the start of ACUT execution, and hence S = {{ }, { }, { }}. S changes in response to requests Rq(up, r) ∈ I

and policy P . We write S′
ACUT = SACUT[Rq(up, r)] to indicate that the updated status of ACUT in response

to request Rq is S′
ACUT if the status prior to receiving Rq(up, r) was SACUT. Note that for ill-formed requests

SACUT[Rq(up, r)] = SACUT.
ACUT′, an implementation under test, is said to conform behaviorally to ACUT with respect to policy P ,

under the following conditions.

1. For all requests Rq(up, r) ∈ I , if S′
ACUT = SACUT[Rq(up, r)] then S′

ACUT′ = S′
ACUT = SACUT′ [Rq(up, r)].

2. For all ill-formed requests Rq(up, r), SACUT′ [Rq(up, r)] = SACUT′ .

For simplicity the above conditions do not consider conformance with respect to outputs; however, in
our future work we plan to investigate the inclusion of outputs in the conformance relation. Stated informally,
behavioral equivalence implies that ACUT′ (a) assigns (deassigns) and activates (deactivates) a role only if such
assignment (deassignment) and activation (deactivation) is allowable by the current policy in effect, (b) assigns
(deassigns) a set of permissions to (from) a role only if allowable by the current policy in effect, and (c) ignores
ill-formed requests. Here it is assumed that the part of ACUT′ software that controls the access to the resources
is free of any faults.

It is important to note that ACUT′ correctly enforces only the policy currently in effect and no other policy.
Certainly this is not to be interpreted in the sense that ACUT′ is capable of enforcing only one policy. In fact
an implementation of RBAC policies is expected to enforce any RBAC policy. However, at any instant in time
it only enforces the policy that is in effect. We assume the existence of a mechanism to change the currently
effective policy.

5 RBAC Fault model

In this section, we use a mutation-based approach to define the RBAC fault model. Assuming a fault model of
implementation restricts the total number of possible implementations to a finite set. The fault model depends
on the specification model and it specifies the types of faults that can be encountered in an implementation.
The mutation-based approach for determining fault model is centered on considering all the mutants of the
specification model.

Policies P and P ′ are considered conforming when ACUT and ACUT′ are behaviorally conformant. The
aim of conformance testing of ACUT′ is to establish the behavioral conformance between the ACUT′ and
ACUT. Conformance of ACUT′ with respect to the ACUT can also be intuitively thought of as absence of any
faults in the ACUT′ i.e. faults in P ′. Given a policy P ∈ R, where R is infinitely large and is the set of all
possible RBAC policies, R can be partitioned into two subsets; set of conforming (RP

conf) and faulty (RP
fault)

policies with respect to P . The conformance testing of ACUT′ thus implies verifying that P ′ does not belong
to the set of faulty policies i.e. P ′ /∈ RP

fault .
AsRP

fault can be infinite therefore devising a test strategy that guarantees detection of all types of faults, i.e.
guaranteeing that P ′ /∈ RP

fault can be impractical. Except possibly through exhaustive testing, it is impossible
to show through testing that ACUT′ is behaviorally equivalent to ACUT. Traditionally in conformance testing
of systems the total number of possible implementations is restricted to a finite set by assuming a fault model
for the implementation [43]. The fault model depends on the specification model and it specifies the types of
faults that can be encountered in an implementation.

It is important to note that faults are directly related to the conformance relation, in this case behavioral
conformance, used in between the implementation and the specification [7]. Fault model can thus be used for

8

Table 1: RBAC faults due to mutations of elements of P .

Structures Mutated Possible Impact on ACUT′ (Fault)
UR,Su, Sr, SSoD, Ss UR1, UR2

PR,≤I PR1, PR2
≤A, Du, Dr, DSoD, Ds UA1, UA2

fault coverage assessment of a testing technique [9, 34, 43]. We used mutation based approach, similar to the
one widely used for deriving fault models for FSM based specifications [43], to construct the fault model of
RBAC by considering all the mutants of P . The proposed fault model is based on behavioral conformance. It
is to assist in the evaluation of the fault detection effectiveness of tests generated for testing ACUT′.

The RBAC fault model restricts RP
fault to be finite by only considering such P ′ = (U, R, Pr, UR′,

PR′,≤′
A,≤′

I , I, S′
u, D′

u, S′
r, D

′
r, SSoD′, DSoD′, S′

s, D
′
s) ∈ RP

fault that can be derived from P = (U, R,

Pr, UR, PR,≤A,≤I , I, Su, Du, Sr, Dr, SSoD,DSoD, Ss, Ds) by making simple changes to P . Note that
all P ′ ∈ RP

fault have the same sets of users, roles, permissions and inputs and these sets are equivalent to the
corresponding sets in P .

The set RP
fault is obtained by recursively applying the set mutation operators to the sets UR,PR,

≤A,≤I , SSoD and DSoD in P and element modification operators to the range of functions Su, Du, Sr, Dr,

Ss and Ds. We consider three types of set mutation operators; modification of an element, addition of an ele-
ment and removal of an element. The semantics of element modification depends on the type of the element,
which in case of another set implies recursive application of set mutation operators on the element. The appli-
cation of modification operator to an integer z in the range of function F ∈ (Su, Du, Sr, Dr, Ss, Ds) would
change the value to z + 1 and z − 1.

For an element (u, r) ∈ UR, the effect of modification operator could be in three ways: exchange of u with
another u′ ∈ U, u′ (= u, exchange of r with another r′ ∈ R, r′ (= r, and exchange of both u and r. The impact
of modification operator on an element (p, r) ∈ PR would also be similar. For a role pair (ri, rj) ∈≤A,
the modification could cause replacement of either one role ri or rj with r′ (= ri, rj or of both roles with
(r′, r′′) (= (ri, rj). The modification would have similar effect on a role pair (ri, rj) ∈≤I . The set mutation
operators will be recursively applied on the SSoD and DSoD sets. Considering the individual element ri of a
set (ri, rj , . . . , rk) ∈ SSoD, the modification operator would result into exchange of ri with r′ (= ri, r′ ∈ R.

Table 1 illustrates that the application of above mentioned mutation operators on the elements of P would
result into a policy P ′ which implies possible presence of various faults in the ACUT′. As observed from
Table 1, the RBAC fault model consists of three types of faults: user-role assignment, user-role activation, and
permission-role assignment. As shown in Figure 4, each fault is further categorized into two subcategories.
Fault type UR1 restricts an authorized user from being assigned to a role or leads to an unauthorized deas-
signment. Fault type UR2 may lead to unauthorized role assignments. PR1 faults restrict a permission being
assigned to an authorized role or cause an unauthorized deassignment. PR2 faults assign a permission to an
unauthorized role. UA1 and UA2 faults are similar to UR1 and UR2 and impact role activation.

The proposed fault model is complete in that that any violation of an RBAC policy corresponds to at least
one of the six fault types. For example suppose that role r1 can be activated by at most one user at any instant.
Now, suppose that while u1 has activated r1, a request for activation of r1 by u2 is allowed. This is an instance
of the UA2 fault. Examples of other fault types can be constructed similarly.

9

Fault Types

UA2UA1UR1 UR2 PR1 PR2

Assignment Activation Permission

Figure 4: A fault model for evaluating the effectiveness of tests of RBAC implementations.

Table 2: Correspondence between RBAC fault model and FSM fault model

RBAC fault model FSM fault model[9]
UR1, UA1, PR1 Transfer fault, Missing state fault, Output fault
UR2, UA2, PR2 Extra state fault, Output fault, Transfer fault

5.1 Relation between FSM and RBAC Fault Model

Chow’s fault model for finite state machines [9], consists of four faults: operation, transfer, extra state, and
missing state. An operation fault occurs when implementation FSM has a transition with an incorrect input or
output label. A transfer fault occurs when implementation FSM has a transition that terminates at an incorrect
state. A missing (extra) state fault imply’s presence of missing (extra) state in the implementation FSM.

Table 2 shows the correspondence between the RBAC fault model in Figure 4 and the one proposed
by Chow for FSM. This correspondence is important in that it allows us to argue that tests generated from
FSM(P), as explained later in Section 6.1, are able to achieve complete fault coverage of the RBAC faults.
This correspondence can be easily established through comparison between FSM(P ′), where P ′ is the mu-
tated policy, and the FSM(P). As an example a P ′ obtained from P by adding a (u, r) /∈ UR(P) pair to the
UR(P ′), thus causing a UR2 fault, would lead to at least one extra state fault in the FSM(P ′).
Example 2. Figure 5 relates UA2 and UR1 faults to the corresponding faults in an FSM. Figure 5(b) illustrates
a UA2 fault. It shows an extra state and a transfer fault when the ACUT correctly denies an activation request
for u1 but moves to an incorrect state. Figure 5(c) illustrates a UR1 fault due to incorrect transfer and output
faults causing deassignment of an authorized user.

Figure 5(d) illustrates a case where the state of the ACUT is correct though an incorrect output is generated.
While we do not consider this as a fault, the test harness in Figure 2 will be able to detect such an inconsistency
in the ACUT.
It is easy to establish the correctness of fault correspondence between faults in the enforcement of a policy and
those in an FSM using Figure 5 as a guide.

5.2 Malicious faults

Faults that cannot be modeled as first order simple or higher order mutations of an RBAC policy are placed
in the malicious faults category. While a competent programmer makes programming mistakes that could
often be considered as combination of one or more simple mutations [16], a malicious programmer may inject
faults that simulate devious ways of tricking an ACUT into malicious behavior. A malicious fault leads an
ACUT into a malicious state only under certain conditions. If such faults remain undetected during testing,
then during operation they offer a loophole to a malicious user.

Certainly, some malicious faults could be modeled using first or higher order mutations, those that cannot

10

be modeled are of particular interest. Note that we are not implying that malicious faults cannot be detected
by a test adequate with respect to mutation or other white-box adequacy criterion. Rather, we are interested
in investigating the effectiveness of practically viable black-box test generation techniques in detecting such
faults.
Counter-based faults: A counter-based fault is said to exist in an ACUT if it contains reachable code that
incorrectly grants, denies, or aborts a request based on counts of events. Consider an ACUT that counts the
number of specific user-role pair activations. If this count is greater than some integer k > 0 then the ACUT
behaves in a devious way and not otherwise. This is an example of a counter-based fault. One could construct
a variety of examples of such counter-based faults.
I/O-based faults: An I/O-based fault is said to exist in an ACUT if it has reachable code that incorrectly grants,
denies, or aborts a malformed request. For example, consider an ACUT that allows a user with a special user
ID not in the set of authorized users in an RBAC policy to be assigned to a role and then activate the role. This
is an example of an I/O-based fault that violates an RBAC policy. A test generated using an automata theoretic
approach would not have any request of the kind AS(sid, r1) for some special ID sid and a known role r1. As
another example, an ACUT might process a special request, e.g. “deassign all users” that does not belong to
the input set I of RBAC. Other examples of I/O-based faults can be constructed easily by adding elements that
do not belong to sets U , R, and Pr. We ignore faults based on the output alphabet as these can be detected
easily by a test harness.

While code-coverage based test enhancement techniques, e.g. branch coverage, will likely force the con-
struction of a test case that reveals the presence of malicious code mentioned in the two examples above, this
may not be possible when using tests generated from an FSM model using automata theoretic technique such
as the W method. Also, this might not be possible when the ACUT is a unit of a large application, no unit
testing is performed, and there is no requirement to cover all branches or other elements of the code.
Sequence-based faults: A programmer could also inject one or more malicious sequences into the code. For
example, an ACUT might allow an invalid access when a specific sequence of user-role assignments have been
activated. Note that here it is not the count but a specific sequence of user-role assignment or activation inputs
that leads the ACUT into a malicious state. While such faults are malicious, any such sequence constitutes a
path in the FSM model and hence can be detected by at least one test generated using the automata theoretic
method.

It is to be noted that malicious faults are also categorized as per the fault classification given in Figure 4.
Sequence-based faults cannot be related with FSM faults as they are the result of non-FSM behavior of the

(a)

0011

1011

AS11/Allowed

AC11/Denied

(d)

Incorrect
output

0011

1011

AS11/Allowed

AC11/Alowed

(b)

AC11/Denied

0011

1011

AS11Allowed

Extra state

1111

Incorrect
transfer

(c)

0011

1011

AS11/Allowed

Incorrect
transfer

AC11/Allowed

Incorrect
output

Figure 5: Mapping of the UA2 and UR1 faults to those in FSM fault model. (a) Correct transitions extracted
from Figure 1. (b) Extra state and transfer fault. (c) Transfer and output faults. (d) Output fault that does not
correspond to the proposed fault model because the ACUT remains in a consistent state (1011).

11

AS11

0000

00101000

1010

1110

AS21

AS21

AC11

AS11

AS11

0000

00101000

1010

1110

AS21

AS21

AC11

AS11

1010

1011

AC11

FSM(P) (P)

(a)

AS11

0000

00101000

1010

1110

AS21

AS21

AC11

AS11

AS11

0000

00101000

1010

1110

AS21

AS21

AC11

AS11

AS11

0000

00101000

1010

1110

AS21

AS21

AC11

AS11

1010

1011

AC11

AS11

0000

00101000

1010

1110

AS21

AS21

AC11

AS11

1

1011

AC11

FSM(P) P)

(a)

AS11

0000

1000

1010

1110

AS21

AC11

AS11

0000

1000

1010

1110

AS21

AC11

1011

1010

AC11

FSM(P) FSM(P)

(b)

DC11

DC11

AS11

0000

1000

1010

1110

AS21

AC11

AS11

0000

1000

1010

1110

AS21

AC11

1011

1010

AC11

FSM(P) FSM(P)

(b)

DC11

DC11

MODEL

Figure 6: (a) Example of a sequence-based fault, (b) Mapping of counter-based fault to Chow’s fault model

ACUT. An example of sequence-based fault corresponding to FSM of Figure 1 is given in Figure 6(a). The
input sequences AS21, AC11 and AS11, AC11 given in the states (1000) and (0010) respectively, of FSM(P)
would always lead to the state (1110), whereas the later sequence would lead to the state (1011) in the
FSM(P ′). Counter-based faults can be related with extra state FSM fault, as illustrated in Figure 6(b). The
input sequence AC11, DC11, AC11 given in state (1010) of FSM(P) would always lead to the state (1110),
whereas same sequence applied in state (1010) of FSM(P ′) would lead to state (1011). I/O based faults cannot
be related to FSM faults.

6 Generation of Conformance Test Suite

In this section we propose four procedures, with varying cost and fault detection effectiveness, for generating
the test suite for conformance testing of the ACUT with respect to a specific RBAC policy. The upper bound
on cost is measured in terms of the total number of state variable queries performed in the execution of a test
suite. Cost effectively depends upon the total number of tests, their lengths and the number of state variables.
The fault detection effectiveness of these procedures is evaluated with respect to the faults in the RBAC fault
model proposed in Section 5. It is assumed that the policy P ′ implemented by the ACUT can be modeled as a
finite state machine FSM(P ′) and ACUT states are observable.

6.1 Procedure A: Complete FSM based

In this procedure tests are generated from the complete FSM (M = FSM(P)), derived from the policy P , by
using a transition cover set. The transition cover is obtained from the testing tree derived using the algorithm
given in[9]. The testing tree includes at least one path from the initial state to all other states in the FSM(P).
The transition cover consists of paths from the root of the testing tree to each leaf. For the FSM(P) of
Example 1 given in Figure 1(a), the testing tree is partially shown in Figure 1(b). The complexity of this
procedure depends on the size of M . The upper bound on the number of states in M and of the test execution
cost of this procedure is given in Table 4. For the RBAC policy of Example 1 the empirical comparison
between the cost of Procedure A and the cost of heuristics based Procedure B, discussed next, is also made on
the basis of the number of tests generated by each procedure, as given in Table 4.
State Observability: When the states in the the ACUT are not observable, W-method proposed by Chow[9]
can be used to construct the conformance test suite. W-method is based on concatenation of the sequences
obtained from the testing tree with the sequences in the state characterization set to determine whether correct
state has been reached. The procedure can thus be very costly and hence may not be practical as it also assumes
availability of reliable reset in the ACUT and a completely specified, minimal, and strongly connected FSM.

12

Table 3: A sample of test inputs obtained from the FSM in Figure 1. In all cases, we assume that the input
sequence is applied with the ACUT in its initial state, i.e. 0000.

Test input Fault detected
AS11, AC11, AS21 A transfer fault in state 1100 leading to self loop on AS21 input would

result in a UR1 fault where u2 is not assigned to r1 in a faulty ACUT.
AS21 A transfer fault in state 0000 which on input AS21 leads to transition to

state 1000 instead of 0010 leads to both UR1 and UR2 faults.
AS11, AS21, AC11 A transfer fault in state 1010 leading to self loop on input AC11 would

result in a UA1 fault where u1 is unable to activate r1 in a faulty ACUT.
AS11, AS21, AC11, AC21 An extra state fault in transition from state 1110 to 1111 would lead to a

UA2 fault where u2 can activate r1 despite Dr(r1) = 1.

Chow has shown that given an accurate estimate of the number of states in implementation FSM , W-method
detects all faults in the FSM fault model, which in case of observable states of M ′ = FSM(P ′) imply that
the test suite generated from the transition cover set detects all faults in the FSM fault model. Thus based on
mapping between the simple faults in the proposed RBAC fault model and the FSM fault model, established
in Section 5.1, it is claimed that Procedure A guarantees a test set that detects all simple faults in the ACUT
that correspond to the proposed RBAC fault model.

For malicious faults, it can be observed that Procedure A is unable to detect I/O-based faults, rather all the
procedures are unable to detect these. The counter-based faults can be detected by this procedure if the total
number of states in the ACUT is accurately estimated. The sequence-based faults are always detected as the
test tree contains at least one test case for each path in the FSM. Table 3 lists a sample of tests generated by
assuming state observability and the faults each test case is able to detect in a faulty ACUT.

Procedure A provides very good fault coverage but at the expense of very high cost as the size of FSM(P)
increases exponentially with the increase in the number of state variables. The next three procedures are aimed
at reducing the size of the conformance test suite. The reduction in test suite size can adversely effect the fault
detection effectiveness as discussed in the description of these procedures.

6.2 Procedure B: Heuristics based

In this procedure six heuristics, labeled H1 through H6, are used to reduce the size of the model and of the test
set. The proposed heuristics reduce the model size by only considering a localized view of the system behavior
as compared to the global view maintained by the complete FSM. The “security semantics” of considering a
localized view is that only a restricted set of protection state change sequences are considered in the reduced
model. This introduces coverage gaps in “security terms” by negatively affecting the effectiveness of generated
tests to detect faults with respect to the proposed fault model as discussed in Section 6.2.1. These heuristics
are similar to the concept of state abstractions as used in various verification techniques, some of which are
discussed later in Section 9. Each heuristic is explained with respect to Example 1 and the column labeled
“Complete FSM” in Table 4.
H1: Separating assignment and activation: Construct MAS and MAC1 , MAC2 , . . . ,MACk ,

k > 0. Here MAS is an FSM that models all assignment requests. For each state qi ∈ MAS , there is an
activation FSM MACi that models the expected activation behavior under the assumption that the assignment
state remains qi. Figure 7(a) and (b) show, respectively, MAS and MAC11 for the policy in Example 1.

Note that a state in MAS corresponds to assignments whereas that in MAC corresponds to activations. For
the model in Figure 1, application of this heuristic leads to an increase in the total number of states from 8 to

13

(b)

User u1 User u2

(a)

Assignment Activation

00

01

00

10

AC11

DC11

AC21

DC21
01

0000

10

AS11

DS11

AS21

DS21

11

AS11

DS11

AS21

DS21

AS11

00

10 11

DS11 DS11

DC11

AC11

AS21

00

10 11

DS21 DS21

DC21

AC21

Figure 7: Models constructed by applying (a) H1 and (b) H4. As in Figure 1, self loops and outputs are not
shown. Note that for H1 there are four activation FSMs though only MAC11 is shown here.

12. However, as in Table 4, the reduction in the number of tests is more than double. The reduction is due to
the separation of the FSMs.
H2: FSM for activation and single test sequence for assignment: Construct model MAC for activation requests
with respect to a single state qmax that has the maximum number of assignments in MAS . The single test
sequence is the concatenation of requests along a path from the initial state of MAS to qmax. For qmax = 11,
MAC = MAC11 as in Figure 7(a). Assignments and deassignments are covered using a sequence of AS and
DS requests. The number of test cases now reduces from 92 to 11 in the best case.
H3: Single test sequence for assignment and activation: Use one test sequence that includes assignment,
activation, de-activation, and deassignment requests for all the user-role pairs in any order. In this case the
behavior of the ACUT is tested using a mix of all four types of requests. Doing so reduces the number of tests
from 92 to 1 in the best case.
H4: FSM for each user: Construct Mu for each u ∈ U . Apply the test generation procedure separately to each
model. Figures 7(b) show Mu1 for user u1 and Mu2 for user u2 for the policy in Example 1. The reduction in
the number of states is from 8 to 6 and that in the size of the test set from 92 to 20.
H5: FSM for each role: Construct Mr for each r ∈ R. Apply the test generation procedure separately to each
model. As the policy in Example 1 contains only one role r1, Mr1 is the same as in Figure 1. Hence there is
no reduction in the size of the model or the test set. However, a reduction is expected when |R| > 1.
H6: Grouping users: Create user groups UG = {UG1, UG2, . . . , UGk}, k > 0, such that ∪k

i=1UGi = U and
UGi ∩ UGj = ∅, 1 ≤ i, j ≤ k, i (= j. The groups can be created using one or more common attributes, e.g.
all users that can be assigned to the same set of roles. The FSM is now constructed assuming that the user field
in each input request corresponds to a user group and not to a user. For example, AS(u2, r3) is a request to
assign a user from UG2 to role r3.

Under H6 the meaning of a “state” of an FSM needs reinterpretation. For example, given k = 2, “1011”
means that a representative from UG1 is assigned to r1 and a representative from UG2 is assigned to, and has
activated, r1. The FSM does not have any notion of a “user” this has been replaced by that of a “representative”
of a user group. This heuristic could lead to a significant reduction in the number of states and transitions
given the fact that a group assigned to a role cannot be reassigned to that role before it is deassigned. Similar
reduction occurs as the same group cannot reactivate a role until it has deactivated it. Note H6 can be combined
with the other heuristics above.

When using H6, the test harness randomly selects a representative u′ for the user group UG upon receiving
the first assignment request for UG. In all subsequent tests, it is this representative that is input to the ACUT.
u′ is deassigned when a DS request for the corresponding group is successful. Selection of a representative for
a user group leads to a significant reduction in the number of tests generated due to a reduction in the number
of states in the model. In Example 1, the number of tests generated reduces from 92 to 10.

In addition to the six heuristics in Table 4, one could also relax the FSM completeness assumption while

14

Table 4: Sizes of test sets obtained by applying various heuristics. |X| denotes the number of elements in set
X . T = |U |×| R|, Tg = |UG|×| R|

Heuristic Upper bound on |Tset| for Example 1
|Q| Cost Complete FSM Ignore AS, AC in

assigned and ac-
tive states

Ignore DS, DC in
unassigned and
inactive states

None 3T 2T (2T+1)(4T)2T+1 92 64 40
H1 2T +22T T (T+1)(2T)T+1(2T +1) 44 32 16
H2 2T T (T+1)(2T)T+1+4T 2 11 9 5
H3 No FSM 8T 2 1 1 1
H4 |U |3|R| 2T |U |(2|R|+1)(4|R|)2|R|+1 20 14 8
H5 |R|3|U| 2T |R|(2|U |+1)(4|U |)2|U|+1 92 64 40
H6 3Tg 2Tg(2Tg+1)(4Tg)2Tg+1 10 7 4

generating tests. In one case we do not consider the AS and AC requests in assigned and active states. In
another case, we do not consider DS and DC requests in unassigned and inactive states. The last two columns
in Table 4 show, respectively, the number of tests generated when the completeness assumption is relaxed.

6.2.1 Impact on fault detection effectiveness

In these heuristics model reduction is achieved by only considering a localized view of the system behavior
as compared to the global view maintained by complete FSM. It is obvious that scaling down the model
by applying H1 through H6 might have a negative impact on the fault detection effectiveness of the tests
generated. Quantifying this impact for arbitrary implementations is possible only in specific instances of an
implementation through empirical studies. Here we briefly review the impact due to each heuristic, considering
their application to FSM of Example 1 given in Figure 1.

It is possible for an ACUT to behave such that its response to activation requests is dependent on the specific
assignment sequence used to arrive at a state. For example, with reference to Figure 7(a), the implementation
corresponding to MAC11 might behave correctly in response to the request sequence AS21 → AS11 but not
with respect to AS11 → AS21. Such non-FSM like behavior of the ACUT could cause faults to remain
undetected when H1 is used.

Tests derived using H2, H3, H4, and H5 might miss faults located along certain paths of the complete FSM.
For example, heuristic H3 covers only one path along the complete FSM. Thus faults along other paths might
remain undetected.

When using H4, H5, or H6, incorrect implementation of cardinality constraints as well as other incorrect
assignments and activations, might go undetected. For example, if the number of users is 1000, and Sr(r1) =
750, a faulty ACUT might allow (a) F1: r1 to be assigned to more than 750 users or (b) F2: allow at most one
user to be assigned to r1. When using H6, fault F2 will be detected by the tests generated from the FSM, but
not F1.

When using H6, boundary value testing can be used to detect F1 and similar faults related to cardinality
constraints. The boundary points are derived from the cardinality constraints. In the example above, we need
to stress the ACUT so that it is asked to assign at least 751 users to role r1. Certainly, there are several different
sequences by which this can be done and that depend on the context of the assignments. Such variations in
tests could be covered using several randomly generated request sequences aimed at detecting cardinality and
sequence errors that correspond to the faults in the proposed fault model. While such fault are not guaranteed
to be revealed by boundary value and random tests, at least we hope that the chances of their detection are
improved.

15

6.3 Procedure C: The CRTS strategy

The CRTS strategy is aimed at reducing the number of test sequences without requiring reduction in the model
size. We use the term “constrained” to describe CRTS to stress that though tests are generated randomly
they are constrained by the model. As already mentioned, in contrast to the complete FSM considered in
Procedure A, the abstractions used by the heuristics only consider a local view of the system.

The CRTS strategy is to select tests of length k > 0 randomly. A test case of length k is constructed
by applying randomly generated sequence of requests r = r1, r2, . . . , rk−1, rk to FSM(P) and determining
the corresponding state sequence q = q1q2, . . . , qk−1, qk. Request ri, 1 ≤ r ≤ k, is generated by selecting
randomly user u ∈ U , role r ∈ R, and an input i ∈ {AS, DS,AC, DC,AP, DP} from P .

It is suggested that length k be at least equal to the length of the longest path in the test tree corresponding
to FSM(P). This allows tests to traverse a complete path from the root of the tree (corresponding to the start
state of the FSM) to the leaf. It is easy to see that the length of the longest path in the testing tree, and hence
k, corresponding to the complete FSM is bounded by 2|U ||R| + |Pr||R| + 1.

It is important to note that the CRTS strategy is applied to the non-reduced FSM model as in Procedure A.
While the original FSM is astronomically large, CRTS strategy can be easily coded without the need to actually
represent the model in internal memory. Procedure C has fixed cost evaluated as the product of the total number
of tests in a suite, the number of state variables in FSM(P) and the length of tests in that suite.

6.4 Procedure D: Combining Heuristics and CRTS

Let TS denote the set of all transitions in FSM(P). Application of any of the heuristics mentioned earlier
partitions TS. Figure 8 illustrates this partitioning for some FSM(P) into two subsets denoted as “Hx” and
“not Hx (nHx).” Subset Hx, above the dotted horizontal line, contains transitions corresponding to the FSM
generated by applying heuristic Hx, and subset nHX below the dotted horizontal line contains the remaining
transitions.

Similarly, the CRTS strategy partitions the transition space into two subsets as shown Figure 8: the tran-
sitions inside the dotted blob labeled RTy are the ones covered by the tests generated using CRTS and those
outside the blob are not covered. Note that the transition coverage could vary even for the same number and
length of tests in all the CRTS suites. Assuming state observability, all types of FSM faults can be associated
with any given transition. Thus a test case executing that transition will be able to detect the corresponding
fault.

As shown in Figure 8, Hx is able to detect faults f1 and f3 but misses f2. Figure 8(a) illustrates that the
combined test suite resulting from the addition of CRTS and Hx suites also includes the transition correspond-
ing to f2 and hence the fault is detected. Figures 8(b) and (c) represent the cases where the combined suite is
unable to detect all faults as in (b) CRTS based tests miss both faults f1 and f2, and in (c) miss all the faults.

It is easy to observe that the size of the transition set corresponding to a CRTS suite directly depends on the
total number of tests and length of the tests in the given suite. As the length of tests increase, random selection
of transitions is likely to result in the addition of transitions into the CRTS suite that correspond to the lower
levels of the testing tree thus increasing the chances of detecting all faults.

7 Functional Testing of ACUT

Conformance testing of ACUT only establishes its conformance with respect to a specific RBAC policy. Func-
tional testing is required to ensure that ACUT will correctly enforce all policies. Recall that the set R of all

16

Figure 8: Faults detected and missed by using strategies based exclusively on heuristics or CRTS. Tests gener-
ated from FSM generated using heuristic Hx detects faults f1 and f3 but misses fault f2. Tests generated using
CRTS misses (a) fault f3, (b) faults f1 and f2, and (c) all faults.

RBAC policies is infinite, thus functional testing implies guaranteeing ACUT conformance with respect to all
policies in R. As exhaustive testing is not a viable option, therefore only finite number of policies have to
be used for test generation with the intent to fully exploit the ACUT functionality. By restricting the space
of policies for which ACUT is tested, it is possible that some parts of the code may not be executed by the
generated tests; therefore, some white box adequacy criterion such as mutation or code coverage is required to
be used to establish correctness of ACUT functionality. Note that the importance of using white-box adequacy
criterion has been stressed by several researchers [16, 53].

7.1 Proposed Functional Testing Methodology

The functional test suite for an ACUT is a pair 〈Pset, Tset〉, where Pset = {P1, P2, . . . , Pk},
k > 0 is a finite set of organizational policies and Tset = {T1, T2, . . . , Tk} is a finite set of set of test
suites, where each Ti is generated from Pi, 1 ≤ i ≤ k. We refer to Pset as a meta test set as it derives Tset

that contains test suites that in turn contain test cases. It is to be noted that a T ∈ Tset can be generated by
using either Procedure A, B, C or D discussed in Section 6. The technique for functional testing of ACUT
proceeds in following steps.

1 Generate initial policy set Pset = {P1, P2, . . . , Pk}

2 Generate Tset = {T1, T2, . . . , Tk}

3 Test ACUT against each T ∈ Tset, remove any faults discovered

4 Evaluate Tset using one or more white-box criteria such as MC/DC coverage and mutation

5 Add a new policy P ′ to Pset if criterion not satisfied. Go to step 3

The feedback loop in step 5 terminates when the adequacy criterion is satisfied.

7.2 How to generate policies ?

The initial policy set is generated manually. There is no set of rules one could use to construct an initial Pset

and to decide how many policies should Pset be initialized with. The initial policy set should be as compre-
hensive as possible for it to cover a large portion of the ACUT code. This implies that collectively policies
should contain at least one instance of each constraint specified by RBAC policy definition (Section 2.1).

In the simplest case the policies can be generated according to the organization’s needs for resource pro-
tection. One could begin with a single policy that is to be implemented to protect a set of resources. e.g. data

17

in an organizational database. Additional policies are then added based on the results of adequacy criterion in
step 5. Policies can also be constructed by traditional techniques of equivalence partitioning, boundary value
analysis [39], and combinatorial design [13]. For example, one policy might have no DSoD constraints, an-
other one such constraint, and a third one two such constraints. Combinations of SSoD and DSoD constraints
can also be used to create additional policies. We consider a specific approach for policy generation i.e., mu-
tation based approach as discussed below, however we understand that further research is needed to determine
effectiveness of various policy generation approaches.

When program mutation is used as an adequacy criterion then mutants can be used in constructing the
initial policy set, as is the approach (Section 8.2.2) used in the case study discussed next. Program mutation
creates versions of the original program, known as mutants, through simple syntactic changes. Some of the
mutants could be semantically equivalent to the original program and are thus classified as equivalent mutants.

Other than the equivalent mutants all others can be related to the RBAC faults with respect to some policy
P . In order to understand this approach consider F = {f1, f2 . . . , fn} as set of all non-equivalent mutants.
Initially policy P1 is constructed based on organization access control requirements and is added to the Pset.
As F is the set of non-equivalent mutants therefore a subset F ′ ⊂ F of these faults would correspond to some
RBAC fault with respect to P1, unless P1 is trivial and does not exercise any constraints. Faults in the set
F ′′ = F − F ′ are then analyzed to construct more policies which are then added to the Pset. The Pset is
considered complete when all faults in F can be correlated with the RBAC faults with respect to at least one
policy P ∈ Pset.

8 Empirical evaluation

An empirical study was conducted to assess the fault detection effectiveness and cost-benefit ratio associated
with each of the four procedures described in Section 6. As mentioned, the cost is measured as the total number
of state variable queries performed in the execution of a test suite. Program mutation [16] and manual injection
of malicious faults were used to measure the fault detection effectiveness. The cost-benefit is measured as the
ratio of the cost of the tests generated using a procedure to the number of faults detected by the generated
tests. The study was based on an implementation of a general purpose access control framework named
X-GTRBAC [6]. Brief description of X-GTRBAC and details of the study follow.

8.1 The X-GTRBAC framework

X-GTRBAC is an access control policy specification framework with an associated enforcement mechanism.
It can serve as a front-end for policy specification to any application that needs to authorize users and enforce
access controls based on an RBAC policy. X-GTRBAC has been implemented in Java and the access control
portion consists of two sets of modules: a policy initializer and a policy enforcer. The initializer takes as
input an RBAC policy coded in XML, checks it for syntactic correctness, and saves the policy in a tabular
format. The enforcer accepts requests for user-role activations and deactivations, checks these against the
policy constraints, and either allows or denies an incoming request.

Only the policy enforcement subsystem of X-GTRBAC was the target of the case study. This subsystem
consists of seven classes listed in Table 5. Only activate and deactivate requests are accepted by the policy
enforcer. Assignment of users to roles is done by the policy initializer and hence user-role assignment and
deassignment requests are not dynamically accepted by the enforcer.

18

Table 5: Classes and their characteristics in the policy enforcement subsystem of X-GTRBAC and faults
injected.

Class Method
count

LOC
mutated

Mutants Mutant classification

Total Equivalent UR1 UR2 UA1 UA2
DSDRoleSet 3 15 20 8 0 0 4 8
GTRBAC module 5 95 82 20 21 0 31 10
Policy 9 121 113 14 63 30 1 5
Role 8 140 150 12 21 26 27 64
Session 3 27 9 4 0 0 2 3
SSDRoleSet 3 15 18 6 4 8 0 0
User 5 54 23 2 13 0 4 4

8.2 Method and Results

The case study followed the steps for functional testing of ACUT as described in Section 7.1. The steps and
results obtained follow.

8.2.1 Configure X-GTRBAC

We used program mutation as adequacy criterion and thus, as described earlier in Section 7.2, Pset was
obtained using analysis of the non-equivalent mutants. Section 8.2.2 describes in detail the application of this
approach in the case study. Two types of faults are injected into the policy enforcement module: first order
mutations [16], hereafter referred to as simple faults, and sequence-based malicious faults (Section 5.2). The
fault detection effectiveness of each procedure is studied with respect to both simple and malicious faults. The
set of program mutants is referred as F .

Program mutation creates versions of the original program, known as mutants, through simple syntactic
changes. The original program and the mutants are then executed against the test cases to assess their adequacy.
If the test cases are able to distinguish a mutant from the original program then that mutant is considered
distinguished. Mutants, other then the ones distinguished, are considered live.

A mutant could be live because of one of two reasons: (a) the test cases are not strong enough to distinguish
it from the original program and (b) the program logic does not change from the original in the mutated
program i.e. the mutant is semantically equivalent to the original program. The latter type of live mutants
are considered equivalent and in general their identification is an undecidable problem. Test effectiveness for
simple faults is measured as the ratio of distinguished mutants to the total number of non-equivalent mutants
and the test effectiveness for malicious faults is measured as the ratio of detected malicious faults to total
number of malicious faults.The policy enforcer module is mutated by applying all Java mutation operators to
the classes listed in Table 5. Mutation operators as defined in the muJava system are used [36]. These include
the five traditional operators and twenty three Java class related operators.

Not all methods in a class were subjected to mutation. The counts listed in Table 5 includes only methods
that were mutated. Methods that pertain to the enforcement of temporal constraints were ignored. Methods that
pertain to the initialization of policies are not mutated as these do not contribute to policy enforcement related
activities of X-GTRBAC. Also, methods that pertain to permission-role assignment were not mutated. We did
not consider permission role assignments in the case study. In addition, methods that support functionality to
be implemented in the future, were ignored. Methods dealing with role hierarchy were also not mutated.

Eight versions of the policy enforcement module are created by injection of sequence-based malicious
faults. Table 6 lists the eight malicious faults UA ∈ M , where M is the set of malicious faults. UA1 1 through

19

UA1 4 correspond to faults whereby the ACUT may deny a user-role activation request that is allowed by the
RBAC specification. UA2 1 through UA2 4 correspond to faults whereby the ACUT may allow a user-role
activation request that is not allowed by the RBAC specification.

Table 6: List of malicious faults injected into X-GTRBAC.
Fault Required effect on P Changes to the code∗
UA1 1 Allows activation by virtue of user-

role assignment but ACUT does not
Method activateUserRole in GTRBACModulemodified to
restrict U5 activation of an authorized role when U2 has already
activated R3

UA1 2 Allows activation by virtue of no
restriction from DSoD but ACUT
does not

Method checkDSoDValid modified to prevent activation of
(U3,R3) pair if {R2, R3} ∈ DSoD, even when U3 has not ac-
tivated R2.

UA1 3 Allows activation by virtue of no re-
striction from dynamic user cardi-
nality but ACUT does not

The change is in the activateUserRole method in
GTRBACModule. The fault would reduce the dynamic cardi-
nality of U2 by one, only under the case if U2 tries to activate a
role after activating R3 first

UA1 4 Allows activation by virtue of no re-
striction from dynamic role cardi-
nality but ACUT does not

The change is in the activateUserRole method in
GTRBACModule. The fault would make the check for the va-
lidity of role cardinality of the given role to false (even if it is
originally true), only when the user activating the given role has
already activated R4

UA2 1 Restricts the given activation by
virtue of violation of user-role as-
signment whereas the ACUT allows

The change is in the activateUserRole method in
GTRBACModule. The fault would allow U4 to activate role R2,
if not permitted by user-role assignment, for only the cases where
U4 has already activated R4

UA2 2 Restricts the given activation by
virtue of violation of DSoD but the
ACUT allows

The change is in the checkDSoDValid method of class Role.
This allows U3 activation of R2 even when U3 has already acti-
vated R3 and {R2, R3} ∈ DSoD, i.e. despite the violation of
DSoD constraint the activation request is granted

UA2 3 Restricts the given activation by
virtue of violation of dynamic user
cardinality but the ACUT allows

The change is in the activateUserRole method in
GTRBACModule. While activating the given role the fault in-
creases the dynamic cardinality of U4 by one, only when U4 has
already activated R1 and R4

UA2 4 Restricts the given activation by
virtue of violation of dynamic role
cardinality but the ACUT allows

The change is in the activateUserRole method in
GTRBACModule. The fault would make the check for the va-
lidity of role cardinality of the given role to true, even when it
is originally false, only under the case when U2 attempts to ac-
tivate R2 and U5 has already activated it, thus violating the role
cardinality constraints of R2

∗ Uk and Rm, respectively, denote user k and role m

8.2.2 Initialize Pset

This is Step 1 in the functional testing technique given in Section 7.1. Policy P1, shown in Table 7, is initially
derived under the pretext that the ACUT is a part of a medical center application. Four roles denoted r1 through
r4 are considered. The SSoD and DSoD constraints prevent, respectively, roles r1 and r2 and roles r2 and r3

to be simultaneously assigned to, or activated by, more than one user. The dynamic cardinality constraints on
roles (Dr) and users (Du) are also specified.

Each mutant f ∈ F created as in Section 8.2.1 was analyzed manually and classified as a UR1, UR2, UA1,
or UA2 fault or an equivalent mutant with respect to P1. The set of equivalent mutants with respect to P1 is
referred as EqvP1

where |EqvP1
| = 28 . Each f ∈ EqvP1

was manually analyzed to reveal the conditions to
distinguish it [16]. Given the complexity of an ACUT, this could turn out to be a rather daunting task as some

20

Table 7: Policies P1 and P2.
Policy Role Dr SSoD Ss DSoD Ds UR assignment
P1 Physician (r1) 3 {(r1, r2)} 1 {(r2, r3)} 1 u1, u2, u4

Resident (r2) 1 u1, u2, u5

Registered nurse (r3) 3 u1, u2, u4

Nurse practitioner (r4) 2 u4

P2 Physician (r1) 1 {(r1, r2, r3)} 2 {(r1, r2)} 1 u1

Resident (r2) 1 {(r4, r5)} 1 {(r2, r3, r4)} 2 u1, u2

Surgeon (r3) 1 u1, u2

Registered nurse (r4) 1 u1, u2

Nurse practitioner (r5) 1 u1, u2

Nurse on duty (r6) 1 u1, u2

P1 P2

User Du User Du

Alice (u1) 2 Alice (u1) 2
Bob (u2) 2 Bob (u2) 2
John (u3) 2
Mary (u4) 2
Elie (u5) 1

of these mutants could be semantically equivalent to original program and thus are equivalent with respect to
the complete set of RBAC policies R. In the case study two of the 28 equivalent mutants f ∈ EqvP1

were
determined to be semantically equivalent to original program and were thus removed from the set of mutants
F .

The analysis of remaining 26 mutants helped us in designing P2, also shown in Table 7, with the precise
aim of associating these mutants to RBAC faults with respect to P2. It is to be noted that some of the mutants
f ∈ F would still be equivalent with respect to P2, however the initial Pset would be considered adequate as
for all f ∈ F the condition f ∈ EqvP1

⇒ f /∈ EqvP2
could be satisfied. All the faults f ∈ F can now be

classified as a UR1, UR2, UA1, or UA2 fault with respect to either P1, P2 or both. The distribution of these
faults in various classes in X-GTRBAC is shown in Table 5.

The policy enforcement subsystem makes user-role assignments at the time of policy initialization. Thus
only user-role activations and deactivations are performed dynamically. While the code for user-role assign-
ment was mutated, the fault detection effectiveness of procedures used for functional testing would only vary
with respect to the simple faults generated by mutating the activation/deactivation code. This included a total
of 163 mutants listed under the columns labeled UA1 and UA2 in Table 5. Though the mutants under the
columns labeled UR1 and UR2 are used for constructing the Pset, they do not effect the fault detection of
procedures. Hence UR1 and UR2 mutants are not discussed further in this paper.

8.2.3 Generate Tset

This is Step 2 of the functional testing technique given in Section 7.1. Note that each T ∈ Tset could be
generated by using any of the four procedures A, B C or D. As the purpose of this case study is to perform
comparative analysis of the four procedures, four test sets TsetA, T setB, T setC , T setD were generated cor-
responding to the application of procedures A, B, C and D respectively.

In Procedure A one FSM is generated automatically for each policy in Pset. We refer to these as complete
FSM’s, FSM(P1) and FSM(P2). As there are no dynamic user-role assignments in X-GTRBAC, FSM(P1)
and FSM(P2) contain state transitions corresponding only to user-role activations and deactivations. In Pro-
cedure B, this characteristic of X-GTRBAC leads to complete FSM’s for H1 and H2. There is no FSM corre-

21

Table 8: Maximum length of tests
Policy Complete FSM H3 H4 H5
P1 8 40 3 4
P2 7 24 4 3

sponding to H3. For H4 there are five FSM’s for P1 and two for P2, one corresponding to each user. For H5
there are four FSM’s for P1 and six for P2, one corresponding to each role. As the number of users was small,
we did not group them further, hence H6 was not applied.

As the ACUT state was observable, the transition cover set as explained in Section 6.1 served as the test
sets TsetA and TsetB for procedures A and B. Each test is of the form (r, q), where r = r1, r2, . . . , rk−1, rk,
is a sequence of k > 0 requests that belong to the input alphabet I and q = q1q2, . . . , qk−1, qk is the expected
state transition sequence. For Procedure B tests generated by applying H3, H4, and H5 were combined in four
different ways: T (H3)∪ T (H4), T (H3)∪ T (H5), T (H4)∪ T (H5), and T (H3)∪ T (H4)∪ T (H5), where
T (x) denotes the test set generated by applying heuristic x.

In Procedure C, four pools of 1000 fixed-length tests were generated randomly corresponding to both
FSM(P1) and FSM(P2). We refer to these pools as RT4, RT6, RT10, and RT100 that contain, respectively,
tests of length 4, 6, 10, and 100. These specific lengths were selected as they are comparable with the length of
the longest paths in the test tree’s for P1 and P2 which are 8 and 7, respectively. We considered test sequences
of lengths smaller as well as significantly larger than the longest length. Note that tests generated by applying
Procedure A vary in length from 1 to 8 for P1 and 1 to 7 for P2. However, the distribution by length is not
uniform. Using various pools of fixed length permits investigation of the impact of length of a test suite on its
fault detection effectiveness.

A test t ∈ RTk of length k ∈ {4, 6, 10, 100} is constructed by applying randomly generated requests
r = r1, r2, . . . , rk−1, rk in succession to FSM(P), P ∈ {P1, P2} and determining the corresponding state
sequence q = q1q2, . . . , qk−1, qk. Request ri, 1 ≤ r ≤ k, is generated by selecting randomly user u ∈ U , role
r ∈ R and an input i ∈ {AC, DC} from P ∈ {P1, P2}.

Five test suites containing 100 tests each were created through random selection of tests from each pool.
This led to a total of 20 test suites–each containing 100 tests. We label these test suites as RTij where i ∈
{4, 6, 10, 100} is the length of each test in the suite, and 1 ≤ j ≤ 5, is its identifier. Table 9 shows the number
of tests in each test suite generated by applying each of the three test generation procedures to policies P1

and P2. The maximum length of tests generated using each of the three heuristics and the complete FSM is
given in Table 8. Note that the maximum length of tests generated from H1 and H2 is the same as that of tests
generated using the complete FSM.

8.3 Execute and evaluate tests

This corresponds to Steps 3 and 4 in the functional testing technique. Two test adequacy criteria were used.
One criterion is based on mutation. It required that an adequate Ti distinguish all non-equivalent mutants, i.e.
T1 and T2 should be able to distinguish all f ∈ F − EqvP1

and f ∈ F − EqvP2
, respectively. The second

criterion is based on malicious faults. It required that an adequate Ti detect all malicious faults, i.e. T1 and
T2 should be able to distinguish all m ∈ M − Eqvm

P1
and m ∈ M − Eqvm

P2
respectively. Eqvm

P ∈ {P1, P2}
denotes the set of malicious faults equivalent with respect to P .

All non-equivalent mutants and malicious versions of X-GTRBAC were executed against the generated
T ⊂ Tset. Mutant execution was done automatically by the muJava tool. The tool also reports counts of

22

Table 9: Size of test suites generated using Procedures A, B, and C and policies P1 and P2. T1 is generated
from P1 and T2 from P2. |T | denotes the number of elements in set T .

Procedure Heuristic |T1| |T2| Comments
A None 1,548,847 2,150,05 These tests are generated from complete FSM.
B H1 1,548,847 2,150,05 FSMs generated using H1 and H2 are identical

to complete FSM as X-GTRBAC uses static user-
role assignment.

H2 1,548,847 2,150,05
H3 1 1 Only a single sequence of activation and deactiva-

tion requests is used as a test. This sequence was
generated manually.

H4 159 849
H5 337 63
H3+H4 160 850
H3+H5 338 64
H4+H5 496 912
H3+H4+H5 497 913

C Random 500 500 There are 5 test suites for a given length i each
containing 100 tests. Test suites for a given length
i are not necessarily disjoint as these are selected
randomly from pool RTi.

distinguished and live mutants. Malicious versions were executed using a test harness. The harness integrated
three tasks: test generation as describe earlier, test execution by input to a malicious version, and response
analysis. The observed response was compared against the expected response, the latter being a part of a test
case itself.

Table 10: Fault detection effectiveness (in %) of test suites generated from policies P1 and P2.
Procedure Heuristic UA1 UA2 Malicious

P1 P2 P1 P2 P1 P2

A None 100 100 100 100 100 100
B H3 98.50 98.60 94.11 97.80 0 0

H4 96.92 95.65 74.11 84.61 75.00 100
H5 83.00 88.40 71.76 70.32 25.00 0
H3+H4 98.46 100 97.64 97.80 75.00 100
H3+H5 98.46 100 97.64 100 25.00 0
H4+H5 100 100 98.87 98.90 87.50 100
H3+H4+H5 100 100 100 100 87.50 100

C RT4 91.07 93.04 75.58 87.47 42.50 60.00
RT6 100 99.72 97.20 96.48 60.00 100
RT10 100 100 98.60 99.20 82.50 100
RT100 100 100 100 100 100 100

Under columns labeled P1 and P2, Table 10 lists the percentage of simple and malicious faults f ∈
F − EqvP1

, m ∈ M − Eqvm
P1

and f ∈ F − EqvP2
, m ∈ M − Eqvm

P2
detected by test suites T1 and T2

respectively for all the procedures. Note that as each RTi signifies a set of test suites {RTi1, RTi2 . . . , RTi5},
therefore the fault detection effectiveness of RTi in Table 10 represents the average effectiveness of test suites
{RTi1, RTi2 . . . , RTi5}.

23

Table 11: Fault detection effectiveness (in %) of combined test suites generated using P1 and P2.
Procedure Heuristic UA1 UA2 Malicious
A None 100 100 100
B H3 99.00 98.00 0

H4 96.00 82.00 75.00
H5 88.00 71.00 25.00
H3+H4 100 98.00 75.00
H3+H5 100 100 25.00
H4+H5 100 99.00 87.50
H3+H4+H5 100 100 87.50

C RT4 94.50 86.75 47.50
RT6 100 100 70.00
RT10 100 100 82.50
RT100 100 100 100

8.3.1 Enhance Pset

This corresponds to Step 5 in the functional testing methodology. Table 11 contains the fault detection effec-
tiveness results for the complete test sets Tsetx = {T1, T2}, x ∈ {A, B,C} corresponding to procedures A,
B and C. At this point we observe that only the versions of Tset generated using Procedure A, i.e. TsetA
and RT100, are adequate with respect to both the adequacy criteria. Note that the versions of TsetB generated
by applying H3, H4, and H5 are not adequate with respect to any of the two adequacy criteria. However,
combining the tests generated using the individual heuristics provides complete fault coverage with respect
to simple faults. As we considered our stopping criterion to be based on complete coverage of simple faults,
hence functional testing corresponding to all the procedures can be terminated.

If a tester were to use Procedure B, combining the test suites obtained by applying H3, H4 and H5 is the
best option. For Procedure C, if RT100, RT10 or RT6 is not used then additional iteration requiring a new
policy and starting at step 2 is needed for RT4. In the case study we terminated functional testing for all three
procedures as they were found adequate with respect to our stopping criterion of complete coverage of simple
faults.

8.4 Analysis of results

Number of tests generated: From Table 9 we observe a significant variation in the number of tests generated
from the three procedures. As expected, Procedure A generates the largest number of tests–about four thousand
orders of magnitude more than those generated using H4 and H5. The maximum length of tests generated using
H4 and H5 is also about one-half that of tests generated using the complete FSM. Note that it is by design that
only one test is generated when using H3 though it is the longest of all tests generated.
Fault detection effectiveness: We observe from Table 11 that as expected complete FSM based test generation
(Procedure A) has 100% fault detection effectiveness for both simple and sequence-based malicious faults.
Neither of the individual test suites generated through Procedure B using each of H3, H4, and H5 is adequate
with respect to any of the two adequacy criteria. Certainly one would expect this result given the “isolationist”
nature of each heuristic and the significantly smaller number of tests generated by these heuristics as compared
to the number of tests generated from the complete FSM. Despite this inadequacy, we stopped adding new
policies as the combined set of tests generated using H3, H4, and H5 is adequate with respect to simple faults.

Given that the FSMs generated using any heuristic contains only “local” information about a policy, we do
not expect any single heuristic to generate a fairly good test suite. However, combining their respective test

24

suites enables the exploitation of locality information across the FSMs that led to an adequate test suite. It is
interesting to observe that none of the test suites generated using Procedure B is able to detect all malicious
faults. This observation leads to the recommendation that black box testing without the use of code coverage
assessment, will likely be unable to detect some malicious faults.
The CRTS strategy: We observe from Table 11 that except for RT4, all randomly generated test suites are able
to achieve complete detection, on the average, of simple faults. What Table 11 does not show explicitly is that
for RT4 at least one of the five pools of 100 tests is unable to detect some simple faults. It can be observed that
the fault detection effectiveness of random test suites of same length is higher for an RTi ⊂ T2 in comparison
with corresponding RTi ⊂ T1. This observation support our assertion (Section 6.3) that random test suites
of lengths comparable with the longest test sequence generated using Procedure A (8 for P1 and 7 for P2)
are expected to have good fault detection. Moreover it can also be observed that fault detection effectiveness
increases with the increase in length of tests in the CRTS test suites.

Notice from Table 11 that the average effectiveness of randomly selected tests, each of length 6, in detecting
UA1 and UA2 faults is the same as that of similarly selected tests of sizes 10 and 100. This observation
indicates the existence of an optimal length of test suites that is good enough to obtain adequacy with respect
to simple faults. In the case study this length is close to 6. However, there is at least one pool of 100 tests
generated randomly each of length 4, 6, and 10, that is unable to detect all malicious faults; those of length 100
did detect all malicious faults. We performed additional experiments to find the least i such that each of the
five pools of 100 randomly generated test suite RTi detects all malicious faults injected. This number turned
out to be 26.
Cost-benefit analysis: While the cost of testing is comprised of several components, here we consider the
total number of state variable queries performed in the execution of a test suite as its cost. The cost of Tset

generated by a test generation procedure directly depends on lengths of tests in each test suite contained in
Tset. Recall that each test consists of a sequence of k requests–its length. We ignore the cost of generating
additional policies in the test enhancement phase, a largely manual and often a difficult task. We only consider
the cost associated with the Tset obtained when testing stops.

Table 12 lists the computed cost/benefit ratio (CBR) for all the procedures used in the case study. CBR of a
test suite is defined as the ratio of cost of the test suite and the total number of faults detected by that test suite.
It is useful to examine the CBR values in the context of the fault detection effectiveness shown in Tables 10
and 11. While the CBR is the least for H3, it is certainly not a recommended option alone due to its low fault
detection effectiveness for malicious faults. Clearly, among the heuristics the CBR for the combination of H3,
H4, and H5 is significantly less than that for Procedure A while its fault detection effectiveness is close to that
of Procedure A. However, RT10 also has a significantly lower CBR as compared to that for Procedure A and
almost the same effectiveness as that of the tests derived from a combination of H3, H4, and H5.

Given its high fault detection effectiveness and a cost reduction factor of over 700 against Procedure A,
RT100 appears to be the best option when Procedure A is impractical. While this conclusion seems the best for
the given case study, we recommend that both CRTS and a combination of H3, H4, and H5 be used. By doing
so CBR remains about 700 times less than that of Procedure A while the risk of faults remaining undetected
may reduce. In fact the cost could be reduced further without affecting the fault detection effectiveness by
removing the duplicate tests from the CRTS test suites as illustrated by CBR values given for Procedure C
(without duplicates) in Table 12, obtained by considering only distinct tests in the CRTS test suites.

25

Table 12: Cost–benefit for Procedures A, B, and C. All values are rounded to the nearest decimal.
Procedure Heuristic Simple Faults Malicious

P1 P2 Combined P1 P2 Combined
A None 1454422 99203 1444727 27452227 15872604 29436303
B H3 5 2 7 N/A N/A N/A

H4 11 129 130 234 17226 3105
H5 43 2 41 2477 N/A 2604
H4+H3 14 111 122 367 17514 3286
H5+H3 39 3 39 2877 N/A 3148
H4+H5 42 110 147 908 17480 3406
H4+H5+H3 47 111 153 1023 17768 3561

C RT4 65 34 88 2353 8000 3368
(with duplicates) RT6 81 47 118 2500 7200 3429

RT10 134 76 197 3030 12000 4848
RT100 1325 750 1964 25000 120000 40000

C RT4 62 33 85 2258 7840 3259
(without duplicates) RT6 78 46 114 2400 6984 3305

RT10 129 73 189 2909 11520 4654
RT100 1272 735 1900 24000 117600 38700

N/A: Cannot be computed as no faults were detected.
Combined: Cost/benefit ratio for Tset corresponding to Pset = {P1, P2}.

8.5 Impact of combining heuristics and CRTS based strategies

We examined the fault detection effectiveness and the cost-benefit ratio for Procedure D. Table 13 contains the
results for the combination of RT4, RT6, and RT10 with the heuristics H3, H4 and H5. The results correspond-
ing to the combinations of RT4 and RT6 with the heuristics indicate increased fault detection effectiveness
for the combinations, whereby the CBR also increases in most of the cases. For example, RT4+H4 has 91%
effectiveness for P1 with a CBR of 68, whereas RT4 alone has an effectiveness of 83% with a CBR of 65.

In contrast to RT4 and RT6, the combined use of RT10 and heuristics does not increase the fault detection
effectiveness though the CBR increases. As RT10 alone has a much higher fault detection effectiveness as
compared to that obtained through the application of heuristics, the combined use does not alter the effective-
ness whereas the CBR increases due to merger of the two suites. The results in Table 13 indicate that the effect
on fault detection effectiveness, as a consequence of the addition of test suites corresponding to heuristics and
the CRTS suites, depends on the length of the tests in the CRTS suite. For smaller length suites generated
using CRTS, one can expect gains in the fault detection effectiveness. However, this gain reduces as the length
of the CRTS generated tests increases.

8.6 Discussion

Test automation: Manual generation and execution of tests can be costly and error prone. Table 14 shows
automation used in the case study with respect to steps in the proposed functional testing technique described
in Section 7.1. Note that Step 3 is partially automated as fault removal requires human intervention. Steps 1
and 5 require manual construction of a new policy. While random generation of policies is feasible, we did not
take this course. Instead, policies were generated manually.
What test generation procedure to use?: It is obvious that Procedure A based on complete FSM is likely to be
impractical except in environments with a small number of users and roles. As a rule of thumb, Procedure A
is not recommended when the number of user-role combinations exceeds 20 leading to about 1.4 million tests.

26

Table 13: Fault detection effectiveness (Effec. in percent) and cost benefit ratio for combined test suites
generated by applying heuristics and the CRTS strategy. All values are rounded to the nearest decimal.

Technique P1 P2

Simple Malicious Simple Malicious
Effec. CBR Effec. CBR Effec. CBR Effec. CBR

H3 98 5 0 N/A 96 2 0 N/A
H4 84 11 75 234 89 129 100 17226
H5 72 43 25 2477 78 2 0 N/A
RT4 83 65 42.5 2353 90 34 60 8000
RT4+H3 98 60 42.5 2588 97 32 60 8488
RT4+H4 91 68 90 1306 98 140 100 22026
RT4+H5 86 100 47.5 3409 93 34 60 8423
RT6 98.4 81 60 2500 98 47 100 7200
RT6+H3 99.6 85 60 2667 99.4 47 100 7488
RT6+H4 99.7 89 95 1764 99.1 154 100 24426
RT6+H5 98.7 114 60 3532 98.5 47 100 7454
RT10 99.2 134 82.5 3030 99.4 76 100 12000
RT10+H3 99.2 139 82.5 3151 99.4 77 100 12288
RT10+H4 99.2 143 92.5 2892 99.4 184 100 29226
RT10+H5 99.2 167 87.5 3565 99.4 77 100 12254

Table 14: Functional testing steps automated
Step Automated ?
1 No
2 Yes
3 Yes, partially
4 Yes
5 No

For most organizations the best strategy seems to be a combination of heuristics based and CRTS strategies.
H3 alone is not sufficient, though as discussed later, a combination of H3, H4, and H5 would be a good choice.

The variation in fault detection effectiveness with the length of tests in a CRTS test suite, witnessed in
Table 11, highlights the obvious fact that tests of longer lengths are able to exercise more paths in FSM(P).
Another observation worth noting is that even a single test case used in H3 is able to provide good coverage
of simple faults but fails to detect any malicious fault– reason being that the effect of simple faults in P is
observed across much larger number of paths in FSM(P) as compared to the number of paths across which
malicious faults effect.
What heuristics to use ? In the case study we found that the fault detection effectiveness of a combined set
of tests generated from H3, H4, and H5 is superior to that of tests generated using any single heuristic. This
is likely to be the case in most testing environments that use Procedure B primarily due to the “isolationist”
nature of each heuristic. For example, heuristic H4 generates one FSM for each user and thus does not model
the dynamic role cardinality constraints. Hence it would not be possible to further improve fault detection
of H4 by selecting policies that fully exploit the dynamic role cardinality constraints. The results of the case
study support the obvious fact that scaling the model by applying H1 through H6 might have a negative impact
on the fault detection effectiveness of the tests generated.
State observability: In the case study we assumed state observability. This led to the use of testing tree as a
source for test generation. However, instead of using the testing tree, one could directly generate tests from

27

an FSM model using alternative methods such as transition tour [3] and the UIO [45]. As long as the methods
cover all transitions and states, the fault detection effectiveness for simple faults will remain the same as that
observed in the case study. However, the fault detection effectiveness for sequence-based malicious faults, as
injected in the case study, my change.

It is simple to observe from the FSM given in Figure 1, that if a transition tour covers the transitions
δ(0000, AS11), δ(1000, AS21) and δ(1010, AC11) corresponding to the path (0000) → (1000) → (1010) →
(1110) and does not cover the last transition, i.e. δ(1010, AC11) across the path (0000) → (0010) →
(1010) → (1110) then a sequence-based malicious fault that leads to a transfer fault in this transition, only
across the later path, will not be detected.

The most effective method to use [49] when states are not observable is the W-method [9]. Achieving state
observability might require access to source code. In the absence of such access, one needs to rely on the
W-method that uses the state characterization set to determine if an implementation has indeed moved to the
expected state. The fault detection effectiveness of the generated tests will now depend on the accuracy of the
estimate of the umber of states in the ACUT [9].
How to enhance Pset ? The functional testing technique (Section 7.1) requires an initial set Pset of policies,
which is enhanced in Step 5 if the adequacy criterion is not satisfied. Various approaches for the construction
of initial Pset have been already discussed in Section 7. Construction of additional policies, required during
the test enhancement phase when Tset is found inadequate, would require a careful analysis of the adequacy
data. The analysis would reveal the conditions required to satisfy the criterion, and would lead to a test case
t. However, one needs to go a step further and construct a policy that would lead to the generation of t or
any other test that satisfies the criterion. Given the complexity of the ACUT, this could turn out to be a rather
daunting task. Policies with empty user or role set, and their combinations, might also be useful in checking
whether the ACUT implements syntactically valid though practically useless policies.
What Adequacy Criterion to Use ? Step 5 in the functional testing procedure requires that test generation
stop when an adequate meta test set Pset and set of test suites Tset has been obtained. While the white-box
adequacy criterion used in the case study is based on first order mutations and malicious faults, one could use
other criterion in practice. For example, one could use one or more of a number of control flow [56] and data
flow [10, 44] based coverage criteria.

A number of studies [10, 21, 37] point to the fault detection effectiveness of various criteria [20, 40, 55].
Such studies should serve as a guide in making a decision on what stopping criterion to use. Depending on
the availability of resources, one might decide to use the less effective or the more effective of the coverage
criteria. Notice that not using a quantitative stopping criterion will likely lead to a weaker Tset as would be
the case had we performed testing with Pset = {P1} or Pset = {P2}.

Note that a second adequacy criterion in the case study was based on malicious faults. This obviously
cannot be used in practice as one does not know in advance whether or not any malicious faults are present in
the code. Nevertheless, the difficulty of detecting malicious faults, as is evident from the data in Tables 10 and
11, suggests that at least some form of code based adequacy criterion be used. Certainly, code inspections are
also recommended.

The above mentioned approach to stop testing is feasible when code for ACUT is available and can be
successfully compiled. If not, then one needs to resort to other approaches. One such approach is based on
statistical considerations [14]. We do not have sufficient data to to assess the goodness of such an approach
while testing an ACUT. In the absence of such data it becomes important that the ACUT be tested form a
variety of policies derived as discussed earlier.

28

8.7 Lessons Learned

Two key lessons are likely to be beneficial to a practitioner when selecting from and applying the proposed
approaches for test generation to an RBAC system.

1 Though conformance test generation for RBAC systems using FSM based behavior modeling provides
good fault coverage, it could be prohibitively expensive. A practical balance between cost and effective-
ness can be achieved by using the CRTS strategy. The CRTS strategy can also be effective in other test
generation problems where applications are modeled as FSM but the cost of generating the complete
test suite can be prohibitively high.

2 The case study reaffirms the usefulness of white-box criterion as a tool to enhance tests generated us-
ing a black box approach. Conformance testing of ACUT establishes its conformance with respect to
a specific RBAC policy. Functional testing is required to ensure that ACUT will correctly enforce all
policies. As exhaustive testing of ACUT for all possible RBAC policies is not a viable option, therefore
functional testing requires usage of white box coverage criterion as a feedback mechanism for establish-
ing correctness of ACUT functionality.

8.8 Threats to validity

The threats to validity [4, 54] of our case study are briefly summarized below.

Conclusion Validity: It is related with our ability to draw conclusion about the relation between CBR and fault
detection effectiveness of the usage of three procedures in functional testing of an ACUT. The case study used
only one initial Pset, derived using the program mutation adequacy criterion. The experiment described in
the case study could also be conducted by varying the initial Pset and the tests adequacy criterion. This might
effect the cost of various procedures and hence the CBR. However, we believe that in any case, the relative
CBR of various procedures will likely remain as in Table 12 because heuristics reduce the model size, and
hence the size of the test set and the size of randomly generated tests is fixed a priori.

The case study considered only one implementation (X-GTRBAC), the specific structure of which did not
permit evaluation of heuristics H1 and H2. Although based on the discussion about fault detection effectiveness
of various heuristics given in Section 6.2.1, it is expected that when employed H1 and H2 would demonstrate
better fault detection effectiveness than any other heuristic; yet no definite conclusion can be drawn about their
effectiveness through the current study.

Internal Validity: It is related with the concern that factors other than the variation in test suites can effect the
fault detection results for the usage of the three procedures in functional testing of an ACUT. The test suites
for all the procedures were executed against the same versions of X-GTRBAC which were either injected with
simple or malicious faults. Note that simple faults were injected automatically by muJava. The fault detection
for simple faults was measured by automatically executing the test suites from the three procedures against the
mutants under a common operating environment. Tests were executed manually against the malicious faults
under same operating environment.

External Validity: It is concerned with generalization of our results for other implementations of access control
systems. Evaluation of the proposed procedures for test generation was conducted using one implementation,
namely X-GTRBAC. Therefore, we cannot generalize the fault detection effectiveness results to other imple-
mentations. Further, X-GTRBAC is a stand alone policy enforcement application. While it can be used as
a front end to an application, it is not embedded in it. Our case study did not make any use of X-GTRBAC

29

features to actually enforce access control in an application such as a database engine. Fault detection effec-
tiveness of all procedures described might be different than reported in the case study in the event the access
control mechanism interacts in complex ways with the application.

The case study evaluates a proposed approach to test generation that is specific to access control imple-
mentations that employ RBAC policies. While the proposed approach could be adapted to support testing of
other forms of access control, such as DAC and MAC [47], we cannot generalize the results of our case study
to implementations of such protocols. Furthermore, new approaches to specifying secure information flow
make use of typed programming languages such as Jif [38].

Construct Validity: It is related with the validity of the “constructs” we used for measurement. Fault detection
effectiveness of a test suite was measured using the number of both simple and malicious faults detected by
that suite. A well known issue in using first-order mutations for effectiveness measurement is whether or
not the mutants are representative of real faults. Researchers have found that the use of mutation as a tool for
effectiveness evaluation achieves trustworthy results [4, 15]. Nevertheless, in addition to mutants, we also used
malicious faults in our case study.

Malicious faults were injected manually without any “real” malicious intention. There certainly exists the
possibility that a malicious programmer may inject faults that are much more difficult to find than the ones we
injected. It is hard to conduct a case study that would inject “really malicious” faults except when a set of such
faults, found in real systems, is available. While data on access control vulnerabilities is available [28], we do
not know what fault in code led to these. Further, these vulnerabilities are not specific to RBAC. Hence, we
did not have any “real life” data on malicious faults to consider in the case study.

The cost of a procedure was measured as a function of total length of all the tests in its test suite. Although
there are various other factors such as generation of initial set of policies and test enhancement that contributes
to the total cost of a procedure but there value would have been same for all the three procedures. Random test
generation is much less costly as compared to constructing a state machine and generating tests from it. Thus
by including the cost of test generation in the comparison of the procedures, the CBR of CRTS procedure is
likely to further go down.

9 Related Work

Ferraiolo and Kuhn [18] proposed Role Based Access Control (RBAC). RBAC has been extended in [30] to
include contextual and temporal constraints. Although some research has been reported in the verification of
RBAC and related policies [1, 17, 35, 26], little has been reported in the testing of software implementations
of access control policies. Chandramouli and Blackburn use model-based approach for security functional
testing of a commercial database system that employs Discretionary Access Control (DAC) [8]. Their work
differs substantially from ours in the creation of tests. In contrast to the FSM based approach proposed here,
Chandramouli and Blackburn create tests from system specifications, expressed as Software Cost Reduction
(SCR) language, by using predicate based testing approach. Their test generation approach does not consider
the issue of determining the fault detection effectiveness of generated tests.

The automata theoretic based approaches for test generation [9, 23] use a FSM model that explicitly cap-
tures the expected behavior of the implementation. The FSM model of a software design can be viewed as a
directed graph with vertices representing the program state and arcs indicating the input/stimuli that change
the program state. Each test case consists of a sequence of inputs which when applied to the implementation
under test would result in state changes and an expected behavior. The state changes are monitored for verify-
ing the adherence of implementation to its design. The FSM model representing a program can be very huge

30

as the number of states in the FSM grows exponentially. This phenomenon is traditionally referred to as state
explosion. The number of states increases as the model attempts to capture more software execution details.
State explosion would also result into test cases explosion.

Various techniques for state space reduction in FSM based testing and verification have been proposed.
Friedman et al. [22] consider a projected state machine of the original FSM from which tests are generated
using coverage criterion and test constraints. Heuristic H6 in Section 6.2 is similar to the projected state
machine concept used in [22]. Norris and Dill [29] present a state space reduction technique based on structural
symmetry information in the system description. Though their primary aim is to aid in verification but the
approach can also be used for testing. Test case reduction can also be achieved by a combinatorial approach in
which the generated tests ensure coverage of n-way combinations of the test parameters [11].

It is important to note that most verification techniques achieve state space reduction by using state abstrac-
tions and keep minimal necessary information that can permit verification of a property. However while testing
a system, it is essential that complete system information is checked for validity which may not be possible
by using state abstraction. To avoid test explosion, an alternate approach could be based on random selection
of a fixed number of paths from the non-reduced FSM [42, 50, 52]. We examined both these approaches, in
relation with test generation from complete FSM, to determine the impact of state abstraction and random path
selection on fault detection effectiveness. The path-oriented random testing reported in [24] is similar to our
proposed CRTS strategy in restricting the random path selection over a subset of the control flow paths of a
program to be tested. In [25] Hamlet highlights the circumstances under which random (path selection based)
testing could be a better choice then structured testing.

Policy can also be specified as a programmer can embed information flow policies in the program using
types that are extensions of existing types, e.g. type int is extended in Jif [38] by allowing the declaration
to include labels that express policy restrictions. In such cases there is no explicit policy P specification; the
policy is embedded in the implementation. Perhaps such specification is available, or could be derived based
on policy requirements.

10 Summary and conclusions

A functional test generation technique that uses one of the four conformance testing procedures is proposed
and evaluated. The technique raises the task of testing RBAC implementations from an ad hoc to a formal level
so that it can be automated. Exhaustive testing, proposed in Procedure A, of any but the simplest of RBAC
policies is impractical when the number of user-role combinations is large (say over 100). Procedure B utilizes
state abstraction and heuristics to model the expected behavior of an RBAC implementation. The heuristics
lead to a much smaller and, in many cases, practically executable set of tests. Though state abstraction reduces
the size of model, it results in a localized view of the system which raises the possibility of undetected faults in
the ACUT. In Procedure C, we investigated an alternate approach for test suite reduction by selecting random
paths of fixed length from the original non-reduced model of the system. Procedure D is based on combination
of test generation strategies proposed in Procedures B and C.

An empirical evaluation was carried out to assess the cost, fault detection effectiveness, and cost-benefit
ratio associated with the usage of the four proposed procedures in functional testing of an ACUT. Two types
of faults were injected into a prototype ACUT: first order mutants and malicious faults. Procedure A, as
expected, was able to provide complete fault coverage for both the simple and malicious faults, but led to
high CBR. Procedure B also achieved complete coverage for simple faults but failed to detect one malicious
fault. Despite the low CBR of Procedure B, its use is not recommended when ACUT code is not available

31

and white box coverage measures cannot be used. Procedure C detected all the simple and malicious faults
while exhibiting CBR slightly above the CBR of Procedure B. Procedure D, based on combining the test suites
generated using Procedures B and C, illustrated that the fault detection effectiveness of combined test suite
increases for most of the cases.

The heuristics only consider a local view of the system and therefore faults exhibited only across a small
number of paths in the complete FSM are difficult to detect. The CRTS procedure is better able to select
tests that traverse such paths as it randomly generates the tests through path selection from the complete FSM.
The case study indicates that Procedures C and D, based on CRTS strategy, can be most effective and cost
efficient in the detection of both types of faults in an access control system. However, generalization of the
observations to a broader range of implementations of access control systems would require further empirical
studies and evaluation. The effectiveness of random path selection based testing has also been reported in [41]
in the context of verification of formal software models.

The tests generation strategy proposed is with respect to a definition of RBAC. Though not explained in
this paper, the proposed strategy can also handle variations such as various control flow dependency constraints
and other non-temporal constraints in the finite state model. Also, the effectiveness evaluation described above
is with respect to the proposed RBAC fault model, other fault models could also be designed.

Acknowledgment

We thank the anonymous reviewers for constructive comments.

References
[1] T. Ahmed and A. R. Tripathi. Static verification of security requirements in role basedCSCW systems. In SACMAT

’03: Proceedings of the eighth ACM symposium on Access control models and technologies, pages 196–203, New
York, NY, USA, 2003. ACM Press.

[2] G-J. Ahn and R. Sandhu. Role-based authorization constraints specification. ACM Transactions on Information
Systems Security, 3(4):207–226, 2000.

[3] A. V. Aho, A. T. Dahbura, D. Lee, and M. U. Uyar. An optimization technique for protocol conformance test
generation based on UIO sequences and rural Chinese postman tours. IEEE Transactions on Communications,
39(11):1604–1615, 1991.

[4] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an appropriate tool for testing experiments? In ICSE ’05:
Proceedings of the 27th international conference on Software engineering, pages 402–411, New York, NY, USA,
2005. ACM Press.

[5] F. Belli and R. Crisan. Towards automation of checklist-based code-reviews. In Seventh International Symposium
on Software Reliability Engineering (ISSRE’96), pages 24–33, 1996.

[6] R. Bhatti, A. Ghafoor, E. Bertino, and J. B. D. Joshi. X-GTRBAC: an XML-based policy specification framework
and architecture for enterprise-wide access control. ACM Trans. Inf. Syst. Secur., 8(2):187–227, 2005.

[7] G. V. Bochmann, A.Das, R. Dssouli, M. Dubuc, A. Ghedamsi, and G. Luo. Fault models in testing. In Protocol
Test Systems, pages 17–30, 1991.

[8] R. Chandramouli and M. Blackburn. Automated testing of security functions using a combined model & interface
driven approach. In Proc. 37th Hawaii International Conference on System Sciences, pages 299–308, 2004.

[9] T. S. Chow. Testing software design modelled by finite state machines. IEEE Transactions on Software Engineering,
SE-4(3):178–187, May 1978.

[10] L. A. Clarke, A. Podgurski, D. J. Richardson, and S. J. Zeil. A formal evaluation of data flow path selection criteria.
IEEE Transactions on Software Engineering, 15(11):1318–1332, 1989.

[11] D. M. Cohen, S. R. Dalal, J. Parelius, and G. C. Patton. The combinatorial design approach to automatic test
generation. IEEE Software, 13(5):83–89, September 1996.

32

[12] C. Cowan, S. Beattie, J. Johansen, and P. Wagle. Pointguard: Protecting pointers from buffer overflow vulnerabili-
ties. In USENIX Security Symposium, 2003.

[13] S. R. Dalal and C.L. Mallows. Factor-covering designs for testing software. Technometrics, 40(3):234–243, 1998.

[14] S. R. Dalal and A. A. McIntosh. When to stop testing for large software systems with changing code. IEEE
Transactions on Software Engineering, 20(4):318 – 323, April 1994.

[15] M. Daran and P. Thèvenod-Fosse. Software error analysis: a real case study involving real faults and mutations.
In ISSTA ’96: Proceedings of the 1996 ACM SIGSOFT international symposium on Software testing and analysis,
pages 158–171, New York, NY, USA, 1996. ACM Press.

[16] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection. IEEE Computer, 11(4):34–41, April
1978.

[17] M. Drouineaud, M. Bortin, P. Torrini, and K. Sohr. A first step towards formal verification of security policy
properties for RBAC. In Proc. Of Fourth International Conference on Quality Software, (QSIC04), pages 60–67,
2004.

[18] D. Ferraiolo and R. Kuhn. Role-based access control. In Proceedings of the NIST-NSA National (USA) Computer
Security Conference, pages 554–563, 1992.

[19] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli. Proposed NIST standard for role-based
access control. ACM Trans. Inf. Syst. Secur., 4(3):224–274, 2001.

[20] P. G. Frankl, S. N. Weiss, and C. Hu. All-uses vs mutation testing: an experimental comparison of effectiveness.
Journal of Systems and Software, 38(3):235–253, 1997.

[21] P. G. Frankl and E. J. Weyuker. A formal analysis of the fault detection ability of testing methods. IEEE Transactions
on Software Engineering, 19(3):202–213, 1993.

[22] G. Friedman, A. Hartman, K. Nagin, and T. Shiran. Projected state machine coverage for software testing. In ISSTA
’02: Proceedings of the 2002 ACM SIGSOFT international symposium on Software testing and analysis, pages
134–143, New York, NY, USA, 2002. ACM Press.

[23] S. Fujiwara, G. v. Bochmann, F. Khendek, M. Amalou, and A. Ghedamsi. Test selection based on finite state
models. IEEE Transactions on Software Engineering, 17(6):591–603, June 1991.

[24] A. Gotlieb and M. Petit. Path-oriented random testing. In RT ’06: Proceedings of the 1st international workshop
on Random testing, pages 28–35, 2006.

[25] D. Hamlet. When only random testing will do. In RT ’06: Proceedings of the 1st international workshop on
Random testing, pages 1–9, 2006.

[26] F. Hansen and V. Oleshchuk. Lecture notes in computer science. chapter: Conformance checking of rbac policy and
its implementation. In R. H. Deng, F.Bao, H-H. Pang, and J. Zhou, editors, Proceedings of Information Security
Practice and Experience: First International Conference, ISPEC 2005, Singapore, volume Volume 3439 / 2005.
Springer Berlin/Heidelberg, 2005.

[27] http://ite.gmu.edu/list/journals/tissec/ANSI+INCITS+359 2004.pdf. ANSI RBAC standard.

[28] http://www.cve.mitre.org/. Common vulnerabilities and exposures.

[29] C. N. Ip and David L. Dill. Better verification through symmetry. Form. Methods Syst. Des., 9(1-2):41–75, 1996.

[30] J. B. D. Joshi, E. Bertino, U. Latif, and A. Ghafoor. A generalized temporal role-based access control model. IEEE
Transactions on Knowledge and Data Engineering, 17(1):4–23, 2005.

[31] J. B. D. Joshi, B. Shafiq, A. Ghafoor, and E. Bertino. Dependencies and separation of duty constraints in GTRBAC.
In SACMAT ’03: Proceedings of the eighth ACM symposium on Access control models and technologies, pages
51–64, New York, NY, USA, 2003. ACM Press.

[32] M. Koch and F. Parisi-Presicce. Visual specifications of policies and their verification. In Proc. FASE 2003 (M.Pezze,
ed.), Lect.Notes Comp.Sci. 2621, pages 278–293. Springer-Verlag, 2003.

[33] V. B. Livshits and M. S. Lam. Finding security errors in Java programs with static analysis. In Proceedings of the
14th Usenix Security Symposium, August 2005.

[34] G. Luo, G. V. Bochmann, and A. Petrenko. Test selection based on communicating nondeterministic finite-state
machines using a generalized wp-method. IEEE Trans. Software Eng., 20(2):149–162, 1994.

[35] E. C. Lupu and M. Sloman. Conflicts in policy-based distributed systems management. IEEE Transactions on
Software Engineering, 25(6):852–869, 1999.

33

[36] Y-S. Ma, J. Offutt, and Y-R. Kwon. MuJava: an automated class mutation system. Software Testing, Verification,
and Reliability, 15(2):97–133, 2005.

[37] A. P. Mathur and W. E. Wong. A theoretical comparison between mutation and data flow based test adequacy
criteria. In CSC ’94: Proceedings of the 22nd annual ACM computer science conference on Scaling up : meeting
the challenge of complexity in real-world computing applications, pages 38–45, New York, NY, USA, 1994. ACM
Press.

[38] A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust declassification and qualified robustness. Journal
of Computer Security, 14(2):157–196, 2006.

[39] G. J. Myers. The Art of Software Testing. John Wiley & Sons, New Jersey, 2004.

[40] A. J. Offutt, J. Pan, K. Tewary, and T. Zhang. An experimental evaluation of data flow and mutation testing.
Software Practice and Experience, 26(2):165–176, 1996.

[41] D. Owen, D. Desovski, and B. Cukic. Random testing of formal software models and induced coverage. In RT ’06:
Proceedings of the 1st international workshop on Random testing, pages 20–27, 2006.

[42] R. Pelánek, T. Hanžl, I. Černá, and L. Brim. Enhancing random walk state space exploration. In FMICS ’05:
Proceedings of the 10th international workshop on Formal methods for industrial critical systems, pages 98–105,
2005.

[43] A. Petrenko, G. v. Bochmann, and M. Yao. On fault coverage of tests for finite state specifications. Computer
Networks and ISDN Systems, 29(1):81–106, 1996.

[44] S. Rapps and E. J. Weyuker. Data flow analysis techniques for test data selection. In ICSE ’82: Proceedings of
the 6th international conference on Software engineering, pages 272–278, Los Alamitos, CA, USA, 1982. IEEE
Computer Society Press.

[45] K. K. Sabnani and A. T. Dahbura. A Protocol Test Generation Procedure. Computer Networks and ISDN Systems,
15:285–297, 1988.

[46] R. Sandhu. Role activation hierarchies. In RBAC ’98: Proceedings of the third ACM workshop on Role-based
access control, pages 33–40, New York, NY, USA, 1998. ACM Press.

[47] R. Sandhu and P. Samarati. Access control: Principles and practice. IEEE Communications, 32(9):40–48, 1994.

[48] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access control models. IEEE Computer,
29(2):38–47, 1996.

[49] D. P. Sidhu and T. K. Leung. Formal methods for protocol testing: a detailed study. IEEE Transactions on
Networking, 1(1):116–129, February 1993.

[50] H. Sivaraj and G. Gopalakrishnan. Random walk based heuristic algorithms for distributed memory model check-
ing. In 2nd International Workshop on Parallel and Distributed Model Checking (PDMC’03), 2003.

[51] H. H. Thompson. Why security testing is hard. IEEE Security and Privacy, 1(4):83–86, 2003.

[52] C. H. West. Protocol validation in complex systems. In SIGCOMM ’89: Symposium proceedings on Communica-
tions architectures & protocols, pages 303–312, 1989.

[53] E. J. Weyuker. In defense of coverage criteria. In 11th International Conference on Software Engineering, pages
361–361, May 1989.

[54] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and A. Wesslen. Experimentation in Software Engi-
neering: An Introduction. Kluwer Academic Publishers, Boston, 2000.

[55] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur. Effect of test set size and block coverage on the fault
detection effectiveness. In Proceedings of 5th International Symposium on Software Reliability Engineering, pages
230–238, November 1994.

[56] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test coverage and adequacy. ACM Computing Surveys,
29(4):366–427, December 1997.

34

