
CERIAS Tech Report 2006-19

ACCESS CONTROL MANAGEMENT AND SECURITY IN
MULTI-DOMAIN COLLABORATIVE ENVIRONMENTS

by Basit Shafiq

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

ACCESS CONTROL MANAGEMENT AND SECURITY IN MULTI-DOMAIN

COLLABORATIVE ENVIRONMENTS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Basit Shafiq

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2006

Purdue University

West Lafayette, Indiana

ii

This thesis is dedicated to my parents.

iii

ACKNOWLEDGMENTS

I would like to sincerely thank my PhD advisor Professor Arif Ghafoor for his

invaluable guidance and support at each step of my graduate studies at Purdue University.

I am highly indebted to Professor Elisa Bertino for her unequivocal help. I relied heavily

on her feedback throughout my research. I would also like to express my gratitude to

Professors Mary P. Harper and Yu C. Hu for their participation in my PhD committee.

Their guidance and suggestions have been very valuable.

I am also indebted to Center of Education and Research in Information Assurance

and Security (CERIAS) at Purdue University for the unfettered support provided

throughout my doctoral studies. I would like to thank all my colleagues in the Distributed

Multimedia Systems Laboratory at Purdue University for their assistance,

encouragement, and discussions. I am grateful to Wasfi Al-Khatib, Husni Fahmi, James

Joshi, Rafae Bhatti, Ammar Masood, Arjmand Samuel, Hasib Siddiqui, Mohammed

Shehab, and Hasib Amjad for their valuable help and friendship. Finally, I would like to

acknowledge the support provided by the National Science Foundation through Grants

IIS-0209111, IIS-0242419, and ITR-0428554.

iv

TABLE OF CONTENTS

 Page

LIST OF TABLES... vii

LIST OF FIGURES .. ix

ABSTRACT... xii

1 INTRODUCTION ..1

 1.1 Research Motivation and Problem Statement...1
 1.2 Summary of Contributions..4
 1.3 Outline of Dissertation 6

2 OVERVIEW. ..8

 2.1 Role Based Access Control (RBAC) ..8
 2.1.1 The NIST RBAC model..10
 2.2 Generalized Temporal Role Based Access Control (GTRBAC) Model 11
 2.3 Taxonomy of Multi-Domain Collaborative Systems.................................... 17
 2.3.1 Collaboration metrics..17
 2.3.2 Collaboration types. ..18

3 GLOBAL META-POLICY FOR SECURE INTEROPERATION IN FEDERATED
ENVIRONMENT25

 3.1 Policy Composition...25
 3.2 Role Based Access Control for Secure Interoperation27
 3.3 Graph Based Specification Model for RBAC...28
 3.4 Security Requirements in a Multi-Domain RBAC System30
 3.5 Information Sharing Policy...34
 3.6 Heterogeneity Issues in Policy Integration...38
 3.7 RBAC Policy Integration...40
 3.7.1 Policy integration requirements (PIR)...............40
 3.7.2 Merging of RBAC Policies............... ..43
 3.7.3 Policy merging algorithm............... ..46

v

 Page

 3.7.4 Properties of RBAC-integrate...50
 3.7.5 Time complexity of RBAC-integrate..54
 3.8 Optimal Conflict Resolution...55
 3.8.1 IP formulation of a multi-domain RBAC policy...............56
 3.8.2 Optimality criteria and weight assignment...............59
 3.8.3 Autonomy consideration............... ..60
 3.8.4 Conflict resolution algorithm............... ...64
 3.9 An Illustrative Example...66
 3.10 Verification of Meta-Policy...73
 3.10.1 Authorization and order independence...............77
 3.10.2 Security constraints............... ..78
 3.11 Meta-Policy Composition and Mediation Process...81
 3.12 Related Work ...83
 3.13 Conclusions..85

4 WORKFLOW COMPOSIBILITY VERIFICATION ..86

 4.1 Issues and Challenges in Workflow Specification..86
 4.2 Interaction Model for Workflow Specification...90
 4.2.1 Workflow sequence diagram (WSD)..90
 4.2.2 Domain-specific projected workflow specification...............93
 4.3 FSM of a domain’s access control policy ...95
 4.3.1 Preliminaries and assumptions..95
 4.3.2 GTRBAC policy specification............... ...97
 4.3.3 State-based representation of GTRBAC policy...............102
 4.3.4 Definition of state path and timing constraints...............107
 4.4 Composibility Verification ...111
 4.4.1 Workflow composibility conditions...............113
 4.4.2 Inter-domain workflow composibility condition...............114
 4.4.3 Overall criteria for workflow composibility...............117
 4.5 Composibility Verification Algorithm..119
 4.5.1 PW consistency verification............... ..120
 4.5.2 Cross-domain dependency verification algorithm and complexity ..125
 4.6 Conclusions...127

5 A FRAMEWORK FOR COMPARISON OF POLICY-BASED DISTRIBUTED
SYSTEMS...129

 5.1 Comparative Analysis of The Proposed Approaches for Secure
 Composition of Collaborative Applications ...129

vi

 Page

 5.1.1 Metrics............... ...130
 5.1.2 Global meta-policy vs. distributed multi-policy...............133
 5.2 Policy Based Composition and Verification of Distributed Collaborative
 Applications ..138
 5.2.1 Web-service composition and verification...............140
 5.2.2 Distributed protocol verification...143
 5.2.3 Distributed real-time system verification..145

6 CONCLUSION AND FUTURE WORK ...149
 6.1 Research Contributions...149
 6.2 Future Work ..151
 6.2.1 Policy verification of individual domains...151
 6.2.2 Policy partitioning for enterprise splitting ..152
 6.2.3 Software testing of access control mechanisms................................153
 6.2.4 Digital identity and privacy management...............153

LIST OF REFERENCES..155

APPENDICES

A. PROOFS OF THEOREMS OF CHAPTER 3...167
B. PROOFS OF THEOREMS OF CHAPTER 4...181

VITA...186

vii

LIST OF TABLES

Table Page

2.1: GTRBAC Constraints ...14

2.2: GTRBAC events and status predicates...15

2.3: GTRBAC policy of a medical information system (MIS)......................................16

3.1: Functions/predicates used for policy composition..42

3.2: Description of roles involved in collaboration among county offices....................69

3.3: Information sharing policy of collaborating domains...68

3.4: Cardinality and user assignment of roles used in autonomy loss measurement of
Fig. 3.16 ..70

4.1: GTRBAC Constraints considered for specification of domains’ policies..............98

4.2: Event and status predicates used in the restricted GTRBAC Model99

4.3: GTRBAC Policies of CTO and CCO domains...100

4.4: Constraints on all valid status predicate assignment to GTRBAC states107

4.5: Symbols and notations used in defining workflow composibility conditions112

4.6: Constraints on the initiation and completion times of component services
 imposed by state paths π1 and π2 ...118

4.7: Path relations...123

5.1: Global meta-policy vs. distributed multi-policy ..138

5.2: Comparative analysis of approaches verifying service composition146

viii

Table Page

5.3: Comparative analysis of distributed protocol verification approaches.................147

5.4: Approach for verification of distributed real-time system....................................148

ix

LIST OF FIGURES

Figure Page

2.1: Constraints and hierarchy in RBAC ...8

2.2: Characterization of collaboration in multi-domain environment19

3.1: An inconsistent meta-policy because of cycles in domain-specific hierarchies.....26

3.2: Policy composition framework...27

3.3: RBAC type graph..29

3.4: An example of RBAC graph...30

3.5: A multi-domain access control policy defining interoperation between County
Treasurer Office (CTO) and District Clerk Office (DCO) ...32

3.6: Example of a cross-domain separation of duty (SoD) constraint33

3.7: An abstract view of inter-domain information sharing...35

3.8: Information exchange between the CTO and DCO..36

3.9: Hierarchical Heterogeneity ...40

3.10: Policy merging algorithm ...45

3.11: Procedures used by Role-Integrate during policy merging.46

3.12: An example of induced SoD...50

3.13: IP formulation of multidomain RBAC policy shown in Fig.3.1465

3.14: (a) RBAC policy graph of domain A and B in example 4, (b) Integrated
RBAC policy defining interoperation between domains A and B..................................65

x

Figure Page

3.15: Conflict resolution algorithm..66

3.16: (a-c) RBAC policy graph of CTO, CCO, and CAO prior to role mapping.
(d-f) RBAC policy graph of CTO CCO, and CAO after to role mapping......................74

3.17: Security violations of the meta-policy of Fig. 3.16 ..75

3.18: Interoperability versus autonomy loss ...76

3.19: Overall process of policy composition and mediation...82

4.1: Overall process for workflow verification...89

4.2: (a) WSD of a distributed workflow involving urgent processing of tax
redemption request for delinquent real-estate property. (b) component services
required for performing tax redemption processing. (c) PW specification for each
domain...92

4.3: Procedure for generating the timed graph of a GTRBAC policy105

4.4: (a) Timed graph of the GTRBAC policy of IDCTO. (b) Timed graph of the
GTRBAC policy of IDCCO. (c) GTRBAC status predicate assignment to the states
of IDCTO. (d) GTRBAC status predicate assignment to the states of IDCCO.
(e) Events associated with the edges of timed graph of IDCTO and IDCCO.106

4.5: Procedure for computing the minimum or maximal residence time of states in
a state path...109

4.6: Procedure for determining the edge weights in a MRTG.....................................110

4.7: Procedure for computing the earliest and latest initiation time of each task in a
projected workflow ...116

4.8: Algorithm for discovering valid state paths of a given PW..................................121

4.9: Functions used by the WPS algorithm..122

4.10: Mapping between PW graph and state paths of a domain’s FSM......................123

4.11 Algorithm for verifying distributed workflow with respect to cross-domain
dependencies among component services ..127

A.1: Cases of role-specific SoD violations involving cross-domain paths175

xi

Figure Page

A.2: User-specific SoD violation through a cross-domain path179

B.1: ..183

xii

ABSTRACT

Basit Shafiq. Ph.D.. Purdue University, August 2006. Access Control Management and
Security in Multi-Domain Collaborative Environments. Major Professor: Arif Ghafoor.

With the increase in information and data accessibility, there is a growing concern

for security and privacy of data. In large corporate Intranets, the insider attack is a major

security problem. Numerous studies have shown that unauthorized accesses, in particular

by insiders, pose a major security threat for distributed enterprise environments. This

problem is highly magnified in a multi-domain environment that spans multiple

enterprises collaborating to meet their business requirements. The challenge is in

developing new or extending existing security models for efficient security management

and administration in multi-domain environments that allow extensive interoperation

among individuals or systems belonging to different security domains.

In this dissertation, we have addressed the issue of secure interoperation from

policy management perspective. In particular, we have developed a policy-based

framework that allows secure information and resource sharing in multi-domain

environments supporting both tightly-coupled and loosely-coupled collaborations. The

level of coupling in such environments is characterized by the degree of interoperation,

the level of trust among domains, and the security, autonomy, and privacy requirements

of the collaborating domains. The proposed framework provides efficient solutions and

strategies for ensuring secure interoperation in both tightly-coupled and loosely-coupled

multi-domain environments. This framework is designed for distributed systems that

employ role based access control (RBAC) policies, and therefore addresses the secure

interoperability requirements of emerging distributed application systems.

1

1. INTRODUCTION

1.1. Research Motivation and Problem Statement

The rapid proliferation of the Internet and the cost effective growth of its key

enabling technologies such as database management systems, storage and end-systems,

and networking are revolutionizing information technology and have created

unprecedented opportunities for developing large scale distributed applications and

enterprise-wide systems. At the same time, there is a growing need for information

sharing and resource exchange in collaborative environments that spans multiple

enterprises.

Various businesses, government, and other organizations have realized that

information and resource sharing is becoming increasingly critical to their success. In the

commercial sector, companies collaborate with each other for supply chain management,

subcontracting relationships, or joint marketing ventures [38]. In the public sector,

government has taken various initiatives to increase collaboration among government

agencies and non-government organizations (NGOs) in order to provide better public

service to citizens, and provide accurate and comprehensive information to relevant

government agencies and general public in a timely manner. Two major initiatives in this

regard are Digital Government Program and Integrated Justice Information Systems. The

aim of the Digital Government Program is to use information and communication

technologies for empowering citizens with greater access to services and increase their

involvement in decision making process, leading to improved citizen-government

interaction [43]. Integrated justice is an initiative taken by Department of Justice to

improve information management and sharing between justice system agencies at all

levels of government [68]. Whether collaboration is solely among government agencies,

2

or incorporates both government and commercial organizations, information and resource

exchange beyond the individual domain boundary is crucial to meet the business

requirements of organizations in today’s world.

With the increase in information and data accessibility, there is a growing concern

for security and privacy of data. In large corporate Intranets, the insider attack is a major

security problem. Numerous studies have shown that unauthorized accesses, in particular

by insiders, pose a major security threat for distributed enterprise environments [105].

This problem is highly magnified in a multi-domain system that spans multiple

enterprises collaborating to meet their business requirements [75, I3P]. The challenge is

in developing new or extending existing security models for efficient security

management and administration in multi-domain environments that allow extensive

interoperation among individuals or systems belonging to different security domains. A

security domain, in the context of collaborative environment, is a bounded group of

protected objects and users to which applies a single security policy executed by a single

security administrator [60].

In a multi-domain environment, domains may use different models, semantics,

classification schemes, and constraints for representing their information security policies

[26, 40, 106, 101, 61]. The underlying objective of any domain’s security policy is to

protect the information systems, managed by the domain, against unauthorized accesses

and against denial of service to authorized users. Any solution for secure interoperation

in a multi-domain environment must be designed based on this objective, which can be

elaborated as the following set of security goals [75, 88]:

Confidentiality: assuring that information is not disclosed without proper

authorization from the owner domain.

Integrity: assuring that information is not modified without proper authorization

from the owner domain.

Availability: assuring that information is accessible to authorized users when

required.

3

Accountability: assuring that every action of a user in the multi-domain

environment is uniquely traced back to that user.

Authentication, access control, and auditing have been considered as the key

security services employed by domains to meet the above security goals [110b, 108].

Authentication establishes the identity of a user and is a prerequisite for access control.

Access control deals with the authorization management and limits the actions or

operations that a legitimate user can perform in the system. The auditing mechanism

collects data about the system’s activity and detects possible security breaches. The focus

of this dissertation is to develop solutions for secure interoperation among collaborating

domains based on the authorizations specified in the domains’ security policies.

Therefore, we only consider the security issues related to access control and authorization

management in multi-domain environments.

Several access control models have been proposed in literature to address the

diverse security requirements of information systems. Traditional access models can be

classified into two broad categories: discretionary access control (DAC) [62, 65, 72, 85,

108] and mandatory access control (MAC) [16, 25, 86, 94]. DAC Models allow subject to

grant their privileges over their owned objects to other subjects. The subjects in this

model can be users, groups, or processes that act on behalf of other subjects. This high

degree of flexibility in DAC models can let unauthorized users to find ways to access

protected objects. Therefore, DAC models do not provide adequate mechanisms to

support secure information and resource sharing in multi-domain systems. MAC models

use a classification approach for labeling subjects and objects. These security

classifications lead to various clearance levels for access control. To avoid unauthorized

flow of sensitive information, the MAC model prohibits users with low clearance level to

read information objects at higher security levels (no read-up). In addition, MAC can

also enforce the no write-down rule that prohibits users, at high classification level to

write to objects at lower level.

MAC only addresses the multi-level security aspect of secure interoperation [61,

28]. Multi-level security or Bell-Lapadula [15] model is more suitable for environments

4

which have static security constraints and cannot be used to capture the dynamic

constraint requirements of emerging applications and information systems [74, 75, 19].

Separation of duty (SoD), event dependencies, and time-dependent authorizations are

example of such dynamic constraints and are required in most commercial applications,

including digital government, e-commerce, health-care systems, and workflow

management systems [12, 54, 55, 42, 19]. Role based access control (RBAC) [110, 47]

and its time-based extended models [Ber01a, 78, 79] provide a promising approach to

satisfy the access control requirements of the afore-mentioned applications [19, 3].

Furthermore, RBAC is capable of modeling a wide range of access control policies

including discretionary access control (DAC) and mandatory access control (MAC)

[101].

In this dissertation, we have addressed the issue of secure interoperation from

policy management perspective. In particular, we have developed a policy-based

framework that allows secure information and resource sharing in multi-domain

environments supporting both tightly-coupled and loosely-coupled collaborations. The

level of coupling in such environments is characterized by the degree of interoperation,

the level of trust among domains, and the security, autonomy, and privacy requirements

of the collaborating domains. For instance in a digital government setting, a tightly-

coupled collaboration is needed to support sharing of sensitive and time-critical

information among various government agencies. On the other hand, a company that

outsources its non-core business processes to external partners creates a loosely-coupled

environment with the external partners. The proposed framework provides efficient

solutions and strategies for ensuring secure interoperation in both tightly-coupled and

loosely-coupled multi-domain environments. This framework is designed for distributed

systems that employ role based access control (RBAC) policies, and therefore addresses

the secure interoperability requirements of emerging distributed application systems

including distributed service-based systems and workflow management systems.

5

1.2. Summary of Contributions

In this research, we address the issue of secure interoperation in multi-domain

environment with varying degree of coupling and association among collaborating

domains. Our main objectives are:

To develop a framework that allows secure information and resource sharing

among heterogeneous and autonomous policy domains.

To develop a methodology that guides the development of secure and verifiable

distributed applications based on the policies of collaborating domains.

The contributions of the research reported in this dissertation can be summarized

as follows:

We have developed a policy composition methodology that generates a secure

and conflict-free global meta-policy from the access control policies of individual

domains. This methodology is designed for federated systems employing RBAC policies.

Two key aspects of this methodology include: composition of a global meta-policy from

the RBAC policies of domains with diverse and possibly conflicting security

requirements, and optimal resolution of conflicts in the global-meta policy.

We have proposed a policy merging algorithm that resolves the constraint

heterogeneities among the RBAC policies of different domains and establish cross-

domain role mappings based on the permission assignment and hierarchical ordering of

corresponding roles. Such a mapping enables inter-domain information and resource

sharing via mapped roles. In addition to the automated generation of role mapping

between cross-domain roles, the proposed approach allows security policy administrators

to map cross-domain roles based on the requirements of collaborative applications.

The meta-policy generated by merging the RBAC policies of domains may not be

consistent and may not satisfy the security constraints of collaborating domains. For

resolution of such policy conflicts, we have proposed a novel integer-programming based

approach. The proposed approach generates a secure and consistent meta-policy by

finding a set of non-conflicting role-mappings that maximizes inter-domain accesses

6

according to the specified optimality criterion. The notion of optimality is further

analyzed in terms of trade-offs between autonomy and the level of interoperation.

We have proposed an approach for verifying secure composibility of distributed

applications requiring interactions among autonomous domains in a loosely-coupled

multi-domain environment. The proposed approach is designed for verifying the

specification of distributed services or workflows for conformance with the time-

dependent access control policies of collaborating but autonomous domains. The time-

dependent policies of domains are represented using generalized temporal role based

access control (GTRBAC) model.

We have analyzed the trade-off between the proposed meta-policy composition

approach for federated collaboration and the service composibility verification approach

for loosely-coupled collaborative systems. For this analysis we have proposed a set of

metrics. We have also performed a comparative analysis between the policy composition

and verification approaches proposed in this dissertation and the existing approaches for

composition and verification of distributed systems, protocols, and services.

1.3. Outline of Dissertation

The dissertation is organized as follows. In Chapter 2, we first present a brief

overview of the RBAC and GTRBAC models and then discuss the characterization of

multi-domain collaborative environments with respect to the degree of coupling among

the domains. In Chapter 3, we describe the proposed policy composition framework that

generates a global meta-policy to facilitate secure information and resource sharing in

federated multi-domain environments. In Chapter 4, we present a multi-policy based

approach for verifying secure composibility of distributed workflow based applications

requiring interactions among autonomous domains in a loosely-coupled multi-domain

environment. In Chapter 5, we first discuss the trade-off between the global meta-policy

based approach and distributed multi-policy based approach with respect to various

collaboration metrics. In addition, we present a comparison between the proposed policy

composition and verification framework and the existing approaches for verification of

7

distributed systems and services. Finally, in Chapter 6, we provide conclusion and

discuss the future work.

8

2. OVERVIEW

In this chapter, we provide a brief overview of the RBAC model and its temporal

extensions. In addition, we discuss the characterization of multi-domain systems with

respect to the degree of coupling among the domains.

2.1. Role Based Access Control (RBAC)

Role based access control (RBAC) models are receiving increasing attention as a

generalized approach to access control [47, 58, 59, 74, 75, 81, 98, 99, 101, 109, 110, 111,

112, Tar97b]. In RBAC, users are assigned memberships to roles and these roles are in

turn assigned permissions as shown in Fig. 2.1. A user can acquire all the permissions of

a role of which he/she is a member. Role-based approach naturally fits into organizational

contexts as users are assigned organizational roles that have well-defined responsibilities

and qualifications [48].

Role Hierarchies

Roles PermissionsUsers

Constraints

Manager

Senior
Engineer

Junior
Engineer

Employee

Senior
Administrator

Administrator

Fig. 2.1 Constraints and hierarchy in RBAC

9

According to a survey conducted by the U.S. National Institute of Standards and

Technology (NIST) [48], RBAC has been found to address many needs of the

commercial and government sectors. This study showed that access control decisions in

many organizations are based on “the roles that individual users take on as part of the

organization.” Many surveyed organizations indicated that they had unique security

requirements and the available products did not have adequate flexibility to address them.

RBAC approach has several advantages, the key among which include [75, 110]:

• Security management: The role in the middle approach to access control removes the

direct association of the users from the objects. This logical independence greatly

simplifies management of authorization in RBAC systems. For example, when a user

changes his role, all that needs to be done is to remove his membership from the

current role and assign him to the new role. In case authorizations were specified in

terms of direct associations between the user and the individual objects, this change

would require revoking permissions granted to all the objects and explicitly granting

permissions to the new set of objects. Using a role-based approach, the number of

assignments of users to permissions is considerably reduced. Generally, a system has

a very large number of subjects and objects, and hence, using RBAC has benefits in

terms of managing permissions.

• Role hierarchy: Natural role hierarchies exist in many organizations based on the

principle of generalization and specialization [114]. For example, there may be a

general Employee role in a Consulting Firm as shown in Fig. 2.1: Employee,

Engineer, Senior Engineer, Administrator, Senior Administrator and Manager. Since

everyone is an employee, the Employee role models the generic set of access rights

available to all. A Senior Engineer role will have all the permissions that an Engineer

role will have, who in turn will have the permissions available to the Employee role.

Thus, permission inheritance relations can be organized in role hierarchies. This

further simplifies management of access permissions. Fig. 2.1 shows a simple

hierarchy.

• Principle of Least Privilege: RBAC can be configured to assign the least set of

privileges from a set of roles assigned to a user when that user signs on. Using least

10

privilege set minimizes the damage incurred to a system if someone not assigned to a

role acquires its permissions through other means, or if someone masquerades as

another user [75, 110].

• Separation of Duties: Separation of duties (SoD) has been considered a very desirable

organizational security requirement [3, 20, 21, 23, 84, 99, 107, 121]. SoD constraints

are enforced mainly to avoid possible fraud in organizations. RBAC can be used to

enforce such requirements easily – both statically and dynamically. For example, a

user can be prevented from being assigned to two roles to prevent possible fraud by

using a static SoD which says that a user cannot be assigned to two roles, one of

which prepares a check and the other authorizes it.

• Grouping Objects: Roles classify users according to the activity or the access needs

based on the organizational functions they carry out. Similar classifications can also

be possible for objects. For example, a secretary generally has access to all the

memos and letters in his/her office, whereas an accountant has access to all the bank

accounts belonging to his/her organization. Thus when permissions are assigned to

roles, it can be based on object classes instead of individual objects [110]. This

further increases the manageability of authorizations.

• Policy-neutrality: Role-based approach is policy-neutral and is a means for

articulating policy [75, 110]. Role-based systems can be configured to represent many

useful DAC, MAC policies [Nay95, Osb97, 101b] and user-defined and

organizational security policies.

2.1.1. The NIST RBAC model

The RBAC model [47], currently being used as the basis for the NIST RBAC

model, consists of the following four basic components: a set of Users, a set of Roles,

a set of Permissions, and a set of Sessions. A user is a human being or a process

within a system. A role is a collection of permissions associated with a certain job

function within an organization. Permission defines the access rights that can be

exercised on a particular object in the system. A session relates a user to possibly many

11

roles. When a user logs in the system, the user establishes a session by activating a set of

enabled roles that the user is entitled to activate at that time. If the activation request is

satisfied, the user issuing the request obtains all the permissions associated with the

requested roles.

Several functions are defined for the sets Users, Roles, Permissions,

and Sessions. The user role assignment (UA) and the role permission assignment

(PA) functions model the assignment of users to roles and the assignment of permissions

to roles, respectively. The user function maps each session to a single user, whereas the

role function establishes a mapping between a session and a set of roles activated by the

corresponding user in the session.

One of the most important aspects of RBAC is the use of role hierarchies to

simplify management of authorizations. The original RBAC model supports only

inheritance or usage hierarchy, which allows the users of a senior role to inherit all

permissions of junior roles. In order to preserve the principle of least privilege, RBAC

model has been extended to include activation hierarchy which enables a user to activate

one or more junior roles without activating senior roles [114, 113, 78].

2.2. Generalized Temporal Role Based Access Control (GTRBAC) Model

The GTRBAC model [78] incorporates a set of language constructs for

specification of various temporal and periodicity constraints on role, including constraints

on role enabling, role activation, user-to-role assignment, and permission to role

assignment. In particular, GTRBAC makes a clear distinction between role enabling and

role activation. A role is enabled if a user can acquire the permissions assigned to the

role. An enabled role becomes active when a user acquires its permissions in a session.

By contrast, a disabled role cannot be activated by any user. The GRTBAC model allows

specification of the following set of constraints:

1. Temporal constraints on role enabling/disabling. These constraints are used to

specify time intervals during which a role is enabled. It is also possible to specify

enabling duration for a role.

12

2. Temporal constraints on user-role and role-permission assignments. These

constraints allow specification of intervals and durations in which a user or

permission is assigned to role.

3. Activation constraints. These constraints are used to specify restrictions on the

activation of a role. These include, for example, specifying the total duration for

which a user is allowed to activate a role or the number of users that can be allowed

to activate a particular role in concurrent sessions.

4. Runtime events. A set of run-time events allows an administrator to dynamically

initiate GTRBAC events or a user to issue role-activation requests.

5. Triggers. Triggers are used to specify dependency among GTRBAC events.

6. Separation of duties (SoD). SoD constraints are used to prevent conflicting users from

assuming the same role or to prohibit assumption of conflicting roles by same user.

The temporal constraint expressions in GTRBAC are summarized in Table 2.1.

The GTRBAC events and status predicates used in the GTRBAC constraint expressions

are listed in Table 2.2. The periodicity constraints on various GTRBAC events are

specified using the expression (I, PE), where PE is a periodic expression denoting an

infinite set of periodic time instants, and I = [begin, end] is a time interval denoting the

lower and upper bounds that are imposed on instants in PE [20, 21, 78]. The periodic

time uses the notion of calendar defined as a countable set of contiguous intervals [20,

21]. The GTRBAC model consider a set of calendars with granularities in minutes, hours,

days, weeks, months, and years. A subcalendar relation can be established among these

calendars. Given two calendars Cal1 and Cal2, Cal1 is said to be a subcalendar of Cal2,

written as Cal1 ⊑ Cal2, if each interval of Cal2 is covered by a finite number of intervals

of Cal1. A periodic expression PE is formally defined as:

1
.

n

i i d
i

PE O Cal x Cal
=

= ∑ �

Where Cald, Cal1, Cal2,…,Caln are calendars and On = all, Oi ∈ 2 ∪ {all}, Cali-1

⊑ Cali, and x ∈ . The symbol � separates the first part of the periodic expression that

distinguishes the set of starting points of the intervals, from the specification of the

13

duration of each interval in terms of the calendar Cald. As an example consider the

periodic expression {all.days, {9, 15, 23}.Hours, {20, 50}.Minutes � 15.Minutes}. This

periodic expression represents the following set of intervals {[09:20, 09:35], [09:50,

10:05], [15:20, 15:35], [15:50, 16:05], [23:20, 23:35], [23:50, 23:59], [00:00, 00:05],

[09:20, 09:35], [09:50, 10:05]…..}.

A set of time instants corresponding to a periodic constraints expression (I, PE) is

denoted by Sol(I, PE). Similarly, the set of time intervals in (I, PE) is denoted by Γ(I,

PE). For example, for I = [0, 1440 minutes (1 day)] and PE = {all.days, {9, 15,

23}.Hours, {20, 50}.Minutes � 15.Minutes}, Γ(I, PE) = {[09:20, 09:35], [09:50, 10:05],

[15:20, 15:35], [15:50, 16:05], [23:20, 23:35], [23:50, 23:59], [00:00, 00:05]}.

Example 2.1: Consider the GTRBAC policy of a medical information system

(MIS) given in Table 2.3. Row 1 of this table lists all the periodic expressions that are

used to constrain the assignment and enabling of roles in the MIS policy. In row 2A, the

enabling times of the role DayDoctor is restricted to DayTime (9:00am-9:00pm) and

the enabling time of NightDoctor is restricted to NightTime (9:00pm-9:00am). In row

2B, Adams is assigned the role DayDoctor on every Monday, Wednesday, and Friday

of the year 2006. In row 2C, Carol is assigned the role of HeadNurse in the second

shift of every day. Trigger 3A in Table 2.3, indicates that the role NurseinTraining

is enabled ten minutes after the HeadNurse role is activated by Carol. As a result, a

nurse-in-training can have access to the system only if Carol is on duty. Trigger 3B

captures the dependency relationship between NightDoctor and NightNurse roles.

Accordingly, enabling of NightDoctor role enables NightNurse role after ten

minutes. Similarly, disabling of NightDoctor role triggers disabling of NightNurse

role. The activation constraint 4A limits the activation duration of NurseinTraining

role to two hours. Row 4B specifies that at most ten users can activate the DayNurse

role at any time.

14

Table 2.1
GTRBAC constraints

r ∈ R, u ∈ U, p ∈ P, tg ∈ TRG
R is a set of roles, U is a set of users, P is a set of permissions, and TRG is a set of Triggers
Constraints Expression Semantics
User-role assignment ([(I,PE)|D], assignU r to u) Role r is assigned to user u. This user-to-

role assignment is valid for all intervals
contained in Γ(I, PE) for a duration D

Role-Permission
assignment

([(I,PE)|D], assignp p to r) Permission p is assigned to role r. This
permission-to-role assignment is valid for
all intervals contained in Γ(I, PE)

Role enabling ([(I,PE)|D] enable r) Role r is enabled during the time intervals
contained in Γ(I, PE) for a duration D.

Duration constraint on
role activation

(D, active r) The activation duration of role r in any
session must be less than or equal to D.

Users’
request

(activate/deactivate r for u) request for activation/deactivation of role
r for u

Run-time
Request

Adminis-
trator’s
request

(enable/disable r)
(assignU r to u)
(assignp p to r)

administrator’s request for role
enabling/disabling or user-to-role
assignment, or permission-to role
assignment

Trigger ev, sp1,…spk → ev’ after Δt Event ev is followed by the event ev’ after
a time duration of Δt, provided that all
status predicates sp1,…spk hold at the time
of the occurrence of ev.

Role-
specific

SSoDRole(R’, u) ∀ r1, r2 ∈ R’ ⊆ R,
ur-assigned(u, r1) ⇒
 ¬ur-assigned(u, r2) Static SoD

 User-
specific

SSoDUser(r, U’) ∀ u1, u2 ∈ U’ ⊆ U,
ur-assigned(u1, r) ⇒
 ¬ur-assigned(u2, r)

Role-
specific

DSoDRole(R’, u) ∀ r1, r2 ∈ R’ ⊆ R,
u-active(u, r1) ⇒
 ¬u-active(u, r2) Dynamic

SoD User-
specific

DSoDUser(r, U’) ∀ u1, u2 ∈ U’ ⊆ U,
u-active(u1, r) ⇒
 ¬ u-active(u2, r)

15

Table 2.2
GTRBAC events and status predicates

r ∈ R, u ∈ U, p ∈ P, tg ∈ TRG
 R is a set of roles, U is a set of users, P is a set of permissions, and TRG is a set of
Triggers
Simple Event Status Predicate Semantics
enable r ur-assigned(u, r) u is assigned to r
disable r pr-assigned(p, r) p is assigned to r
activate r for
u

r-enabled(r) r is enabled

r-active(r) r is active in at least one user’s session
u-active(u, r) r is active in u’s session

De-activate r for u

trg-enabled(tg) Trigger tg is enabled, i.e., the event ev
defined in the body of the trigger tg has
occurred and the status predicates hold.

16

Table 2.3
GTRBAC policy of a medical information system (MIS)

Policy Specification Explanation

A

Daytime = (all.Days, + 10.Hours ⊲
12.Hours)

Day time is from 9:00am to 9:00pm

B

Nighttime = (all.Days, + 22.Hours ⊲
12.Hours)

Night time is from 9:00pm to 9:00am

C

(M, W, F) = (all.Weeks, + {1, 3, 5}.Days +
1. Hours ⊲ 24.Hours)

Monday, Wednesday, and Friday of every
week.

1

D

Second-Shift = (all.Days, + 13.Hours ⊲
5.Hours)

Second Shift starts from 12:00 noon and ends
at 5:00pm

A
(DayTime, enable DayDoctor), (NightTime,
enable NightDoctor)

Enable DayDoctor during day time, Enable
NightDoctor during night time

B

(([1/1/2006,12/31/2006] (M, W, F)),
assignU Adams to DayDoctor)

Adam is assigned the role DayDoctor on
Monday, Wednesday and Friday of every
week of the year 2006. 2

C (Second-Shift, assignU Carol to HeadNurse) User Carol is assigned the role of HeadNurse
everyday from 12 noon to 5 pm (second-shift)

A
(activate HeadNurse for Carol → enable
NurseInTraining after 10 min)

When Carol activates the HeadNurse role,
NurseInTraining role is enabled after 10
minutes

3

B

(enable NightDoctor → enable NightNurse
after 10 min);
(disable NightDoctor → disable
NightNurse)

When the NightDoctor role is enabled, the
Night nurse is also enabled after 10 minutes.
similarly, disabling of NightDoctor role
triggers disabling of NightNurse role.

A (2 hours, activeR_total NurseInTraining) Nurse in training role can be activated for a
total of 2 hours

4

B (10, activeR_n DayNurse); At most 10 users can activate the role
DayNurse

17

2.3. Taxonomy of Multi-Domain Collaborative System

The strategies and techniques used for assuring secure information and resource

sharing depend on the basic structure of the collaborative environment which is

determined by the following metrics: degree of interoperation, degree of autonomy,

degree of privacy, and verification complexity (complexity of assuring secure interaction

among collaborating domains). Based on these metrics, we can define three types of

collaborations: Federated (tightly-coupled) collaboration, loosely-coupled collaboration,

and ad-hoc collaboration. These collaboration types are depicted in Fig. 2.2. In the

following, we briefly describe the above metrics used for characterizing collaboration

types. These metrics are formally defined in Chapter 5 with reference to the formal model

for policy analysis proposed in this dissertation. After introducing these metrics, we

describe the key issues and challenges related to secure interoperation in all three types of

collaboration.

2.3.1. Collaboration metrics

We use the following metrics to characterize any collaboration. These metrics

include: i) degree of interoperation, ii) degree of autonomy, iii) degree of privacy, and iv)

verification complexity. Note that these metrics can also be used to determine the

effectiveness of policies and mechanisms employed by the collaborative systems to

satisfy the interoperability and security requirements.

The degree of interoperation is a measure of information and resource sharing in

a multi-domain environment. We evaluate the degree of interoperation in terms of the

number of cross-domain accesses supported by the collaborative system. These cross-

domain accesses may correspond to querying of a collaborating domain’s database by

external users/agents or use of a domain’s computational and storage resources for

processing of distributed services.

Autonomy refers to the ability of a domain to carryout its local operations and

activities without any interference from cross-domain accesses or services provided to

external users. An autonomous domain can deny any cross-domain access if such access

18

violates its local policy constraints or conflicts with its local operations. In other words,

the local operations of an autonomous domain are logically unaffected by its participation

in the collaborative environment. This notion of autonomy is similar to the notion of

execution autonomy in federated database systems, which allows component database

systems to abort or delay any transaction that does not meet its local constraints [118].

The degree of privacy specifies how much information a domain is willing to

disclose about its internal (access control) policies and constraints. Generally, the access

control policy of any domain is considered as a protective object as it contains

information about the domain’s organizational structure, business strategies, security

mechanisms, and other protective resources [133, 134, 128, 129, 89, 116]. Therefore,

disclosing the contents of domain’s access control policy may leak sensitive information

which can be misused by adversaries.

Verification complexity refers to the overhead associated with verifying the

correctness of distributed applications that require interaction among different systems or

domains. This overhead can be evaluated in terms of the algorithmic complexity of the

verification approach. In addition, we also consider the overhead associated with

structuring, organization, and management of data and policies for facilitating secure

information and resource sharing.

2.3.2. Collaboration types

In the following, we describe the three types of collaboration depicted in Fig. 2.2.

2.3.2.1. Federated collaboration

Federated collaborations are characterized by the high degree of mutual

dependence and trust among the collaborating domains and are used to support long-term

interactions. In this respect, a digital government can be considered as a federated

collaborative system that provides a set of services by integrating several government

agencies. Similarly, the integrated information system for sharing criminal records among

justice and public safety agencies can be characterized as federated collaboration.

19

D
es

ig
n

-ti
m

e
ve

rif
ic

at
io

n
co

m
pl

ex
ity

Policy Composition Module
(Optimization and Mediation)

Full view of Access
Control policies from
Individual domains

Consistent Global
Meta-Policy

Distributed Workflow
Specification

Domain-Specific
Projected Workflow

(PW)
Specification

PW Verification
(Mapping PW specifications

Into valid state paths of
Local policy’s FSM)

Semantic Mapping
(Mapping PW specifications
into security policy context

Semantics (tasks, roles, time)

Cross-domain dependency
Verification

Resource Discovery
(Updating GDS)

Establishing secure
Collaboration on a per

user basis

Global Directory
Service (GDS)

(Limited advertised
view of domains’

Policies and
interfaces

Federated Collaboration

Loosely-Coupled
Collaboration

Ad Hoc Collaboration

D
eg

re
e

of
 A

ut
on

om
y

Le
ve

l o
f I

nt
er

op
er

at
io

n

Le
ve

l
of

 P
riv

ac
y

R
un

 -t
im

e
ve

rif
ic

at
io

n
co

m
pl

ex
ity

Collaboration
Metrics

Fig. 2.2 Characterization of collaboration in multi-domain environment

Federated collaborations are designed to support time-critical and safety critical

distributed applications requiring high degree of information sharing among collaborating

domains. To facilitate secure and timely access to information in a federated multi-

domain environment, a global meta-policy is needed that defines the access rights of

individuals in one domain over the information resources in other domains. There are two

key advantages of using a meta-policy based approach: i) it provides a single interface for

accessing information and data resources distributed across multiple domains, thus hiding

the heterogeneities and semantic differences among the local policies of domains. ii) The

meta-policy can guide the development of secure distributed applications in the federated

system. Accordingly, any distributed application that conforms to the meta-policy can be

supported by the domains forming the federated system. However, for secure

interoperation, the global meta-policy needs to be consistent with the local policies of

domains. In particular, the global meta-policy should not allow any inter-domain access

that violates the local policy constraints of any domain.

20

Composition of a global meta-policy is a challenging problem and requires

extensive mediation among domains for resolution of policy conflicts. These conflicts

may arise because different domains may use different models, semantics, schema

format, data labeling schemes, and constraints for representing their local access control

policies [26, 40, 106, 101, 61]. Resolution of these conflicts requires full disclosure of

domains’ policies, thereby reducing their privacy. The meta-policy may also restrict the

autonomy of domains by adding new constraints in their local policies.

For federated collaboration, we have developed policy composition framework

that generates a global meta-policy from the access control policies of individual

domains. This policy composition framework corresponds to the topmost block of Fig.

 2.2 and is designed for federated systems employing role-based access control (RBAC)

policies. In this framework, the global meta-policy is generated from RBAC policies of

the collaborating domains by defining inter-domain role mappings across domains. Such

mappings enable inter-domain information and resource sharing via mapped roles. In

addition to the automated generation of role mappings between cross-domains roles, the

framework also allows security policy administrators to map cross-domain roles based on

the interoperation requirements of the federated system. The RBAC policies of

collaborating domains may have conflicting security and access control requirements

which may cause serious security implications in terms of unauthorized accesses and

erroneous system behavior. To resolve such inconsistencies and conflicts in the meta-

policy, we have proposed a systematic approach for policy synthesis and conflict

resolution with various optimality measures, including, maximizing information and data

sharing, maximizing prioritized accesses, and minimizing constraint relaxation.

As discussed above, conflict resolution may require strong mediation among

domains’ policies, and may trigger policy transformations to support secure

collaboration. Such transformation in policies, although increases interoperation among

collaborating domains, may result in a loss of their autonomy. A key requirement for

developing the global meta-policy is to allow maximum autonomy. Although, violations

of domain’s security policy are generally not permissible, some domains may concede

their autonomy for allowing an increased level of interoperation. In the proposed

21

approach, the problem of secure interoperation is formulated as an optimization problem

with an objective of maximizing interoperability with minimum autonomy losses and

without causing any security violations of collaborating domains. This optimization

problem is solved using 0-1 integer programming based technique with the given

optimality measure. The overall process for composition of a secure and conflict-free

meta-policy is described in Chapter 3 of this dissertation.

2.3.2.2. Loosely-coupled collaboration

In a loosely-coupled collaborative environment, the interactions among domains

are governed by the local policies of domains and do not require a mediated global meta-

policy. A loosely-coupled multi-domain environment provides an alternate approach to

achieve collaboration that is more flexible in terms of individual domains’ participation

and is more autonomous as compared to a federated collaborative system. In a loosely-

coupled system, the collaborating domains provide interfacing mechanisms and ontology

description to facilitate access to their resources without revealing their security and

access control policies completely. The information about domains’ shareable resources

and interfaces through which such resources can be accessed are stored in a global

directory service (GDS). (The GDS is similar to UDDI which is used in discovery of web

services [39]).

Loosely-coupled system, despite providing a lower degree of interoperation than

federated system, can be used to support tightly integrated and time-critical business

processes and distributed applications requiring long-term collaboration among domains.

Such collaborative applications are widely used in e-commerce, supply-chain

management, health-care administration, and web services. The main challenge is that

when the resource access requirements of distributed applications and the policies of

collaborating domains are not aligned correctly due to lack of full knowledge, security

and privacy of information is jeopardized. Accordingly, security assurance must be

incorporated in the design of distributed applications from the onset, and such design

22

must be verified for conformance with the information security and privacy policies of

individual domains.

Due to the autonomous nature of domains and the absence of a global meta-policy

in loosely-coupled environment, the conformance verification of a distributed application

needs to be performed independently for each domain. A key aspect of this conformance

verification is to identify domain-specific tasks from the application specifications and

determine whether or not these tasks can be allowed to access domain resources

according to their local policy constraints. In addition, such verification entails

determining the satisfiability of inter-domain synchronization constraints for execution of

the distributed application. Verification of such synchronization constraints becomes

highly challenging when domains employ time-dependent policies.

To address the above-mentioned issues, we have proposed an approach for

verifying secure composibility of distributed applications in an autonomous and loosely-

coupled multi-domain environment. The approach is designed for distributed-services or

workflow based applications that are invoked on a recurrent basis and requires

interactions among a pre-selected set of collaborating domains. The overall verification

process, depicted in the middle block of Fig. 2.2, consists of four steps: i) specification

modeling of distributed workflows, ii) state-based representation of domains’ time-

dependent policies, iii) domain-specific workflow verification, and iv) inter-domain

dependency verification.

Workflow specification modeling involves defining the interactions and

information flow among collaborating domains using the interfaces provided by the GDS.

The workflow specification model is also used to decompose a distributed workflow into

domain-specific projected workflows. A projected workflow specifies the domain-

specific tasks and their interdependencies which need to be verified against the respective

domain’s time-dependent access control policy. We use Generalized Temporal Role

based Access Control (GTRBAC) model to specify the time dependent access control

policies of domains. These GTRBAC policies are represented using time augmented

finite state machines (FSMs) to capture the time-dependent authorizations for the

23

underlying resources. The correctness of a domain-specific projected workflow is

verified by finding traces in the FSM of each domain that support execution of domain-

specific tasks under the given temporal constraints. After verification of projected

workflows, the synchronization and dependency constraints amongst the workflow tasks

performed by different collaborating domains are verified. The timing information

computed in the projected workflow verification phase is used to determine an

interleaving of projected workflow tasks that satisfies the synchronization constraints of

the distributed workflow. This timing information is also used to determine a feasible

schedule for the overall verified distributed workflow.

2.3.2.3. Ad-hoc collaboration

Ad-hoc collaborations are similar to loosely-coupled collaboration in terms of

establishing interoperation based on the local policies of domains without considering

any policy mediator. However, unlike loosely-coupled systems, domains involved in an

ad-hoc collaboration are more autonomous in disassociating themselves from the

collaborative system. Therefore, ad-hoc collaborations cannot be used to support time-

critical and/or safety critical distributed applications that requiring extensive

interoperation among a pre-selected set of domains. A large number of distributed

applications including, web-services, peer-to-peer computing, and peer-to-peer filing

sharing can be supported by ad-hoc collaborative system.

In an ad-hoc collaboration, a domain is only aware of a few other domains to

which direct information sharing can be carried out. Two key issues need to be addressed

to establish secure ad-hoc collaborations: i) discovery of domains for resource sharing

and ii) establishing a secure mediator-free collaboration between mutually unknown

domains. The discovery process involves finding all the cross-domain resources/services

that can be accessed from a given domain. For ensuring secure and authorized access to

the discovered cross-domain resources/services in a dynamically changing environment,

appropriate authentication and authorization mechanisms need to be developed.

24

An approach that supports secure ad-hoc collaboration in a RBAC environment

has been proposed in [119, 120]. The approach uses a novel role-based routing technique

for discovering domains and determining authorization for cross-domain resource

accesses. The authorizations for cross-domain resources are determined for individual

users on a session basis. The approach relies on the access history of a user’s session to

determine the authorizations of users for requested resource accesses. The access history

is maintained in form of a sequence of roles accessed during the current session.

25

3. GLOBAL META-POLICY FOR SECURE INTEROPERATION IN
FEDERATED ENVIRONMENT

In this chapter, we describe the proposed policy composition framework that

integrates the access control policies of collaborating domains to facilitate secure

information and resource sharing in a federated environment. For policy composition, we

assume that the local policy of each domain is consistent and is specified using role based

access control (RBAC) model. The proposed policy composition framework generates a

secure and conflict-free meta-policy policy that governs all the inter-domain accesses. In

the following, we provide a brief introduction to the overall process of policy

composition and then discuss the details of each step involved in the generation of the

global meta-policy.

3.1. Policy Composition

Composition of a global meta-policy governing interoperation among

heterogeneous domains is a challenging task leading to various types of conflicts. These

conflicts may arise because different domains may use different models, semantics,

schema format, data labeling schemes, and constraints for representing their access

control policies [26, 40, 106, 22, 61]. In this chapter, we mainly focus on the conflicts

related to access control constraints. In particular, we consider constraint conflicts arising

as a result of integrating RBAC policies of multiple domains. An example of access

control constraint conflict in the context of RBAC policy integration is the introduction

of cycles in domain-specific role-hierarchies as depicted in Fig. 3.1. Such cycles in role

hierarchy enable junior roles to inherit the permission of senior roles leading to violation

of domain specific security constraints [61]. In addition, the interplay of role hierarchy

and SoD constraints may lead to other types of constraint conflicts which are described in

26

Section 3.4 of this chapter. These conflicts, if remain undetected and unresolved, expose

the collaborating systems to numerous vulnerabilities and risks pertaining to the security

and privacy of their data and resources.

rA3

rA2 rA2

rB2

rB1

Domain A Domain B

Fig. 3.1 An inconsistent meta-policy because of cycles in domain-specific
hierarchies

The proposed policy composition framework generates a secure and conflict-free

meta-policy policy in two steps as shown in Fig. 3.2. In the first step of policy

composition, the RBAC policies of domains are merged by establishing role mapping

across-domains. Such a mapping enables inter-domain information and resource sharing

via the mapped roles. In addition to the automated generation of role mapping between

cross-domain roles, the framework also allows security policy administrators to map

cross-domain roles based on the interoperability requirements of collaborating domains.

The resulting meta-policy may not be consistent and may not satisfy the security

constraints of collaborating domains. In particular, three types of security violations,

discussed in Section 3.4, may occur as a result of an inconsistent role-mapping. These

include: role-assignment violation, role-specific-SoD violation, and user-specific SoD

violation. These conflicts are resolved in the next step by removing some of the mapping

links specified in the role-mapping step. Resolving policy conflicts in an arbitrary manner

may significantly reduce interoperation in terms of data sharing and cross-domain

accesses. The proposed policy integration framework uses an integer programming (IP)

27

based approach for optimal resolution of meta-policy conflicts. The optimality criterion is

to maximize information and data sharing via assumption of cross-domain roles.

AC Policy
(Domain 1)

AC Policy
(Domain 2)

AC Policy
(Domain n) Administrator

specified
constraints

Conflict ResolutionPolicy Integration

Fig. 3.2 Policy composition framework.

An important consideration in composing an optimal meta-policy policy is the

preservation of domains’ autonomy. Ideally, both security and autonomy of collaborating

domains need to be preserved. However, satisfaction of both security and autonomy

requirements may not be feasible. In almost every collaborative environment, violation of

any domain’s security constraints is not permissible. Domains may compromise their

autonomy for establishing more interoperability provided the autonomy losses remain

within the acceptable limits. The proposed IP-based approach for conflict resolution

provides the flexibility of autonomy relaxation in favor of greater interoperability.

Accordingly, in a collaborative environment in which certain autonomy violations can be

tolerated, the objective of the conflict resolution phase is to generate a global meta-policy

policy that maximizes inter-domain role accesses and keep the autonomy losses within

the acceptable limits.

3.2. Role Based Access Control for Secure Interoperation

In the proposed policy composition framework, the access control policies of

domains are specified using RBAC model with support for role hierarchies and

28

separation of duties (SoD) constraints. We consider two types of role hierarchies

including, inheritance hierarchy and activation hierarchy. The inheritance hierarchy,

denoted by I-hierarchy, allows a user activating a senior role to inherit all permissions of

junior roles without activating them. Activation hierarchy, denoted by A-hierarchy, does

not support the permission inheritance semantics. In A-hierarchy semantics, any user

assigned to a senior role is entitled to activate all its junior roles, and by activating a role

a user is only authorized to acquire the permissions that are directly assigned to the

activated role. The A-hierarchy semantics is incorporated in the RBAC model to support

the principle of least privilege, which requires that a user be given no more privilege than

necessary to perform a job. We use the symbols *
I≥ and *

A≥ to express I and A hierarchy

relationship between two roles respectively. Accordingly, * , where { , }i f jr r f I A≥ ∈ ,

implies that role ri is senior to rj and the hierarchical relationship between them can be

either inheritance only or activation. If role ri is immediately senior to role rj then the

superscript * is omitted from the relation symbol *
f≥ .

RBAC can be used to enforce SoD constraints to prevent possible fraud in

organizations. We consider two types of SoDs namely: role-specific SoD and user-

specific SoD. A role-specific SoD disallows assumption of conflicting roles by the same

user. Similarly, a user specific SoD constraint prohibits conflicting users from assuming

the same role simultaneously.

3.3. Graph-based Specification Model for RBAC

A graph based formalism can be used to specify the RBAC policy of a domain. In

the graph based model, users, roles, and permissions are represented as nodes and the

edges of the graph describe the association between various nodes. In order to capture the

RBAC semantics, the nodes cannot be connected in an arbitrary manner. The type graph

shown in Fig. 3.3, defines all possible edges that may exist between different nodes. An

edge between a user node u and a role node r indicates that role r is assigned to user u.

Self edges on the role node r models the role hierarchy. In the type graph, I-hierarchy and

A-hierarchy are represented by solid and dashed edges respectively. There can be edges

29

between role and permission nodes. A permission is a pair (object, access mode), which

describes what objects can be accessed and in which mode (read, write, execute, approve

etc).

The graph model also supports specification of separation of duty (SoD)

constraints. In the graph model, a role-specific SoD constraint between two roles is

represented by a double arrow between the corresponding roles. To represent conflicting

users ui and uj for a role rk, a double headed edge with a label rk is drawn between the

user nodes ui and uj. The label rk specifies that the corresponding users are conflicting for

role rk and cannot acquire permissions over rk simultaneously (user specific SoD

constraint).

u p

SoD

S
oD r r

I

A

Fig. 3.3 RBAC type graph

30

rd

rb

rc

ra

SoD

ua

uc

ub

p1

p2

p4

p3

SoD

r c

Fig. 3.4 An example of RBAC graph

Fig. 3.4 shows the graphical representation of an RBAC policy instance. The

RBAC graph in Fig. 3.4 consists of four roles ra, rb, rc and rd,

with , , and a A c a I d d A br r r r r r≥ ≥ ≥ . User ua is assigned to ra, ub assigned to rb, and uc

assigned to rc. Note that user ua although inherits the permissions of role rd, is not

authorized to activate role rb which is junior to rb in the activation hierarchy semantics.

There exists a role-specific SoD constraint between role rb and rc, shown as a double

headed arrow between these two roles in Fig. 3.4. Also users ua and uc are conflicting

users for role rc and are not allowed to access rc simultaneously.

3.4. Security Requirements in a Multi-domain RBAC System

The goal of policy composition is to enable information and resource sharing

without violating the security of individual domains or of the multi-domain system as a

whole. The security and autonomy requirements of the individual domains can be

extracted from their respective RBAC policies. Additional security requirements of the

multi-domain system can be specified by administrators with global security

responsibility. The global security policy constructed from the domains’ policies and

31

administrator specified role mappings may be inconsistent and may violate the security

constraints of constituent domains as well as of the multi-domain system.

We focus on three types of security policy violations:

1. violation of role assignment constraint.

2. violation of role-specific SoD constraint.

3. violation of user-specific SoD constraint.

Definition 3.1 (role assignment violation): A global meta-policy causes a

violation of role assignment constraint of domain k if it allows a user u of domain k to

access a local role r even though u is not directly assigned to r or any of the roles that

are senior to r in the role hierarchy of domain k.

Definition 3.2 (role-specific SoD violation): A global meta-policy causes a

violation of role-specific SoD constraint of domain k if it allows a user to simultaneously

access any two conflicting roles ri and rj of domain k in the same session or in concurrent

sessions.

Definition 3.3 (user-specific SoD violation): Let Ur
c denote the conflicting set of

users for role r belonging to domain k. A global meta-policy causes a violation of user-

specific SoD constraint of domain k if it allows any two distinct users from the set Ur
c to

access role r in concurrent sessions.

Following example illustrate the three types of security violations defined above.

Example 3.1: Fig. 3.5 shows a meta-policy that allows collaboration between

County Treasurer Office (CTO) and County Clerk Office (CCO). The County Treasure

Office has following roles: Tax Collection Manager (TCM), Tax Assessment Clerk

(TAC), Tax Billing Clerk (TBC), Tax Collection Clerk (TCC), and Junior Tax Collection

Clerk (JTCC). TCM inherits all permissions of TCC which further inherits the

permissions of JTCC. The roles TAC and TBC are junior to TCM in the activation

hierarchy semantics, implying that a user assigned to TCM can assume the roles TAC

and TBC without actually activating TCM. However, an SoD constraint is specified for

TAC and TBC meaning that these roles cannot be assumed by same user simultaneously.

There is a user-specific SoD constraint between user u1 assigned to TCM, and u2 assigned

to TAC. This SoD constraint prohibits u1 and u2 to assume the role TAC concurrently.

32

The County Clerk Office has only two roles, namely: Property Tax Manager (PTM) and

Property Tax Clerk (PTC) with PTM inheriting the permissions of PTC. The meta-policy

shown in Fig. 3.5 defines the following interoperation between CTO and CCO:

1. TCM in the County Treasure Office inherits all the permissions available to

PTM in the County Clerk Office.

2. JTCC in the County Treasure Office inherits all the permissions available to

PTC in the County Clerk Office.

3. PTM in the County Clerk Office inherits all the permissions of TAC in the

County Treasurer Office.

4. PTC in the County Clerk Office inherits all the permissions of TCC in the

County Treasurer Office.

TCM

TAC TBC TCC

JTCC

PTM

PTC

u1

u2

SoD

So
D

T
A

C

CTO

CCO

u3

Fig. 3.5 A multi-domain access control policy defining interoperation between

CTO and CCO

Example 3.1 considers security constraints that are specific to a particular domain.

The security constraints can also be defined between cross-domain entities (roles and

users). Following example presents a case where cross-domain security constraints are

needed.

33

Example 3.2: Consider Corporate Audit Department that performs tax auditing of

public companies for Internal Revenue Service (IRS). For each such company there is a

separate auditor role which is authorized to check the books and audit records maintained

by the company. IRS may also hire private auditing firms to perform tax auditing.

Companies are also required to document their financial information every year and they

may also contract private audit firms to perform their internal auditing. The internal

auditor is allowed to access all the financial records and books of the company being

audited. However, the internal auditor cannot acquire any permission that is exclusively

assigned to the IRS auditor. If the meta-policy is not carefully designed then there may

arise a situation in which same audit firm performs IRS auditing and internal auditing of

the same company. To avoid this security flaw, an SoD constraint needs to be defined

between the IRS auditor role and the internal auditor role. Note that this SoD is defined

between two cross-domain roles. This is illustrated in Fig. 3.6.

E&E Corp.
Auditor

XY Inc
Auditor

AB Corp.
Auditor Internal

Auditor

SoD

IRS cannot hire
A&A Consultants

to audit E&E Corp.

Corporate
Audit Dept.

(IRS)

E&E Corp.

SS Audit
Firm

A&A
Consultants

KPM
INC

Fig. 3.6 Example of a cross-domain separation of duty (SoD) constraint

34

3.5. Information Sharing Policy

In the policy composition step of Fig. 3.2, domain policies are composed to form

a global meta-policy. Note that a domain may not allow complete sharing of its data and

resource objects. We will use the word object interchangeably for both data and

resources. An object can be a file, a database relation/view, or an I/O device etc. For each

of the sharable objects the following information needs to be provided by the

controller/owner domain of that object.

• Domains which can access the object.

• Sanitization requirements of an object before it is shared with other domains. For

instance, an object can be completely shared, or partially shared or the object cannot

be shared as is but only certain derived properties of the object are shareable

(statistical information).

• Access permissions (read, write, execute etc.) over an object that are available to

subjects of foreign domains.

• Any specific condition for sharing. For instance, an object can be shared (completely

or partially) with a cross domain subject only if a cross domain subject has local

access to certain attributes of the object in its own domain.

35

Sharable informationSharable information

Local and cross-domain information
available to a subjects of domain B after
integration

Local and cross-domain information
available to subjects of domain A after
integration

Information local to
domain B

Information local to
domain A
Information common to
domains A & B

The overlapping
region decides what
information can be
shared between cross
domain subjects

Fig. 3.7 An abstract view of inter-domain information sharing.

36

Property
Index

Other Properties Owned
by the Defaulter

Tax Sale PleaRedemption
Cost

Delinquent Tax
Amount

NameSSN Property
Index

Other Properties Owned
by the Defaulter

Tax Sale PleaRedemption
Cost

Delinquent Tax
Amount

NameSSN
Delinquent Tax Holder Record (CTO)

Court Proceeding/Order Record (DCO)

Common information that relates
cross-domain information/data
objects

Shareable information/data
objects

Restricted information/data
objects

Information/data
objects can be
decomposed to
allow secure cross-
domain data access

Ocom Osh
Orh

Ocom
Osi Ori

Arraign-
ment
Record

Family
dispute
record

Court
Fee/Fines

Tax
Indictment
Record

Court
Warrants

State/Fed
Tax liens

Local Tax
Liens

Tax Sale
Order

NameSSN Arraign-
ment
Record

Family
dispute
record

Court
Fee/Fines

Tax
Indictment
Record

Court
Warrants

State/Fed
Tax liens

Local Tax
Liens

Tax Sale
Order

NameSSN

Ocom Osh
Orh

Fig. 3.8 Information exchange between the CTO and DCO

37

Based on the above information, each object can be logically partitioned into

multiple objects and only shareable sub-objects of a domain are presented to the policy

merging module. Fig. 3.7 describes an abstract view of inter-domain information sharing.

This figure depicts partial sharing, which is the most common form of interoperation and

is exhibited in almost every collaborative environment. Note that in this figure, access to

local information resources is also reduced as a result of cross-domain resource sharing.

This reduction in local accesses results in decreasing the autonomy of corresponding

domains.

Fig. 3.8 depicts information sharing policy related to delinquent property tax

between County Treasurer Office (CTO) and District Clerk Office (DCO). CTO

maintains electronic records of tax defaulters containing information such as tax

defaulters name and social security number (SSN), delinquent property index and tax

amount owed to local govt. redemption cost, tax sale plea filed in district court, and

details of other property/properties owned by the tax defaulter. Delinquent taxes can be

sold to third parties after obtaining the tax sale order issued by the district court. The

District Clerk office (DCO), which keeps record of all court proceedings, is responsible

for providing the tax sale orders and other court documents related to delinquent tax

holder to CTO and other concerned agencies/departments. Similarly, DCO is allowed to

access the information of delinquent property, maintained by CTO, for record keeping. In

order to keep privacy of personal/unrelated information, not all the information about the

tax defaulter needs to be shared between the two domains. For instance, the information

about other real-estate property owned by the tax defaulter is kept private and is not

shared with DCO unless such property is declared delinquent. Similarly, CTO is not

allowed to access any information from DCO other than tax indictment record, tax sale

order, and local tax lien records. For this purpose, the tax defaulter record in the CTO is

partitioned into three objects: Ocom, OsT, and OrT. OrT is classified information that cannot

be shared with the DCO. OsT is a shareable object and can be accessed by DCO.

Similarly, the record in the DCO is partitioned into Ocom, OsC and OrC, where OrC is

confidential information, and OsC can be released to CTO. The object Ocom contains the

information about the name and social security number of the defaulted person and is

38

common to both domains. CTO can access only those records from DCO domain for

which there is a corresponding Ocom object in the delinquent tax table. Similarly, DCO

can access tax/property information of only those tax holders for which the Ocom from

court records matches with the Ocom of the delinquent tax record.

3.6. Heterogeneity Issues in Policy Integration

One key challenge in the composition of a multi-domain access control policy is

resolving semantic heterogeneity among the local policies of collaborating domains.

There are various types of heterogeneity that need to be addressed in the context of policy

integration. The heterogeneity may arise because of naming conflicts, schema mismatch,

and differences in constraint representation by different domains.

Naming Conflicts arise because of the use of synonyms, or identical names, to

represent different conceptual entities, and homonyms, or different names, to represent

same conceptual entities. Accordingly, there may be naming conflicts among different

inter-domain entities, which may cause security violations if not resolved before

establishing interoperation. Resolution of naming conflicts has been addressed in the

literature in the context of schema integration in the database area [63, Vet98]. These

techniques require the use of a global lexicon to extract the conceptual meaning of

attributes from their names. Additionally, domain-based and value-set-based comparisons

can be performed for refinement [90].

Schema mismatch is another type of semantic heterogeneity that is characterized

by representation conflicts, meta-model conflicts and meta-meta-model conflicts [104].

The term model is used to formally describe a complex application, such as a database

schema, an application interface, or an access control policy. Representation conflicts are

caused by conflicting representations of same real-world concept. For instance, in one

domain the attribute Name is represented by the element “Person Name,” while in

another domain, it is represented by two elements: “First Name” and “Last Name”. Meta-

model conflicts occur due to the use of different models for the same schema. For

example, one domain uses the relational model and the other uses the object oriented

39

model to specify the same schema. Conflicts also exist at the meta-meta-model level due

to the use of different relationship orderings and cross-relation implication among the

domain’s entities. Schema and model merging techniques [13, 118, 104] address the issue

of reconciliation of semantic differences at the schema level.

In addition to naming and schema conflicts, heterogeneity may appear in the

specification of various access control policy constraints, including: hierarchy, SoD,

cardinality and other dynamic constraints. Reconciliation of semantic differences

becomes more challenging in presence of constraint heterogeneity.

Hierarchical heterogeneity among domains’ policies may exist because of two

reasons: a) use of different role hierarchies (inheritance I, activation A, inheritance-

activation IA, hybrid [76]) by different collaborating domains; b) domains may use

different hierarchical ordering to represent same authorizations for a given role. The

following example illustrates the two types of hierarchical heterogeneity that may exist

between two or more cross-domain roles.

Example 3.3: Consider the Senior Clerk (SC) and Junior Clerk (JC) roles of the

City Clerk Office shown in Fig. 3.9(a). The hierarchical relationship between SC and JC

is given by A-hierarchy, SC≥AJC, i.e., SC cannot directly inherit the permissions

associated with the role JC. Suppose permission p1 is assigned to role SC and p2 to JC.

Figure 3.9(b) shows the RBAC graph of County Clerk Office with two roles Clerk (C)

and Assistant Clerk (AC). The Clerk role (C) inherits all the permissions of Assistant

Clerk, C≥IAC. Note that the roles C and AC are assigned same permissions as the roles

SC and JC. However, roles SC and C are not equivalent because SC is not authorized for

permission p2, whereas, C can directly access p2 without activating any junior roles. The

difference in authorization of the two roles is because of different types of hierarchy used

in the two domains.

It can also be noted in Fig. 3.9 that the Accountant role in the City Clerk Office

has the same permission authorization as the Clerk role in the County Clerk Office, even

though the hierarchical ordering for the two roles is different.

40

SC

City Clerk
Office

JC

u1

u2

p1

p2

C

County Clerk
Office

AC

uc

uac

p1

p2

(a) (b)

A
p1

p2

Fig. 3.9 Hierarchical heterogeneity

3.7. RBAC Policy Integration

In this section, we focus on the issue of composing a global meta-policy from the

access control policies of collaborating domains. The global meta-policy governs both

intra-domain and inter-domain information and resource exchange. As mentioned earlier,

the access control policies of collaborating domains are specified using RBAC

framework. The domains’ policies are combined based on the similarity between the

permissions associated with the cross-domain roles. Before presenting the proposed

policy integration mechanism, we first introduce the general requirements for policy

integration.

3.7.1. Policy integration requirements (PIR)

The following PIRs define the correctness semantics of a global meta-policy

composed from the RBAC policies of collaborating domains. In order to be consistent

with the RBAC semantics, we define the policy integration requirements using the graph

based formalism described in Section 3.3.

41

1. Element preservation: Each element (role, user, permission) in the input RBAC graph

should have a corresponding element in the multi-domain graph G.

2. Relationship preservation: Each relationship in the input graph should be preserved in

the multi-domain graph G.

3. User authorization preservation: In the multi-domain graph G, for any user u of a

domain k, the authorization set of u over the objects of domain k should not be

different from the authorization set specified or implied in the input RBAC policy of

domain k.

4. Order independence: The order in which policies are integrated should not influence

the output of policy integration operation.

5. Constraint satisfaction: The multi-domain RBAC graph G must satisfy all the

constraints of the input RBAC policies. In particular, no access that results in a

violation of security constraints of collaborating domains can be enabled from the

multi-domain RBAC graph. The security constraints in RBAC policy include role

assignment, role hierarchy, and SoD constraints.

The first three PIRs are important in ensuring that the authorizations of users to

local resources remain unaffected in the multi-domain environment and any modification

in the domain policies as a result of interoperation remains transparent to the users. In

particular, the access privileges of users to local resources and the access methods by

which such privileges are acquired prior to interoperation should not be changed in the

meta-policy. PIR 4 entails that the final outcome of the policy integration step should not

be influenced by the order in which policies are integrated. If the integration mechanism

depends on the order in which policies are combined, then one must find an integration

order that gives maximum interoperation with minimum overhead. However, restricting

the integration order may not be an attractive option as in most collaborative

environments domains join or leave collaboration any time.

42

Table 3.1
Functions/predicates used for policy composition

Function/predicate Description
Pset(r) Returns the set of all permissions either directly assigned to role r or are inherited by r.
Psetassign(r) Returns the set of permissions directly assigned to role r.
Class(O) Returns the conceptual class of object O.
Conf-rset(r) Returns the set of all roles conflicting with role r i.e., roles that cannot be acquired

along with role r by any user.
Conf-user(r) Returns the set of the sets of user that cannot acquire role r simultaneously.
Shareable(O ,a, X) Returns True if permission (O, a) can be shared with domain X
Seniormost-role(G) Returns the senior-most role of the RBAC graph G
Children(r) Returns all roles r’ such that ' '

I A
r r r r≥ ∨ ≥

Common-
permissions(r1,r2)

Returns the set of all directly assigned permissions that are common to the cross-
domain roles r1 and r2.

Common-juniors-
I(r1,r2)

Returns the set of roles Rj

(){ }j 1 2R : and ' _ (, ') '
I I

r r r r eq role r r r r= ≥ ∃ ∧ ≥ , r1 and r2 are cross-domain

roles.
New-role(r) Returns True if r is a newly created role as a result of role splitting.
Redundant(r) Returns True if r is a redundant role.
Not-compared-
previously(r1,r2)

Returns True if the cross-domain roles r1 and r2 are not compared by the algorithm
Role-integrate

Already-
linked(r1,r2)

Returns True if r1 and r2 are cross-domain roles and 1 2 2 1 and
I I

r r r r≥ ≥

Eq_role(r1,r2) Returns True if the following hold
1 2

1 1 1 2 2 2 1 2

1 1 1 2 2 2 1

() ()
for all such that there exists for which and _ (,)

for all such that there exists for which and _ (

assign assign

j j j j j jI I

j j j j jA A

pset r pset r
r r r r r r eq role r r

r r r r r r eq role r

= ∧
⎡ ⎤≥ ≥ ∧⎣ ⎦

≥ ≥ 2,)jr⎡ ⎤
⎣ ⎦
i.e., the roles r1 and r2 set of directly assigned permissions and are also equivalent in
their hierarchical structure.

contained(r1,r2) Returns True if the following hold

() ()*
1 2 1 2 2() () ()assign assign k k kI I

p Pset r p Pset r r r r r r r∈ ⇒ ∈ ∧ ≥ ∧ ≠ ⇒ ≥

i.e., the set of directly assigned permissions of r1 must be contained in the set of
directly assigned permissions of r2 and all the roles junior to role r1 must also be junior
to r2 in the same hierarchy semantics.

Overlap(r1,r2) Returns True if the following hold

() ()1 2 1 2 | () () , | (_ (,)assign assign k m k m k mI I
p p Pset r p Pset r r r r r r r eq role r r∃ ∈ ⇒ ∈ ∨ ∃ ≥ ⇒ ≥ ∧

u-assign(u,r) Returns True if user u is assigned role r.
Conf-role(r1,r2) Returns True if r1 and r2 are conflicting roles

43

PIR 5 defines the security requirements of the meta-policy in terms of the

constraints of access control policies of collaborating domains. In the context of RBAC,

the security constraints are defined with respect to user-role assignment, role hierarchy,

and SoD constraints. All these security constraints of collaborating domains need to be

preserved in the composed meta-policy.

3.7.2. Merging of RBAC policies

In this sub-section, we focus on the issue of composing a global access control

policy from the access control policies of collaborating domains. The global policy

governs both intra-domain and inter-domain information and resource exchange. In

RBAC context, integration of access control policies involves defining a mapping

between cross-domain roles. A role mapping MAB is a function that maps a role of

domain A to a role of domain B (:AB A BM R R→). By virtue of this role mapping, any

user authorized for a role, say ra, in domain A is allowed to access all the permissions of

the mapped role, say rb, in domain B (()AB a bM r r=).

We propose a policy merging algorithm, RBAC-integrate, that merges the RBAC

policies of component domains by comparing and mapping cross-domain roles. The

proposed policy merging algorithm finds an inter-domain role mapping based on the

permission assignment and hierarchical ordering of corresponding roles. The permission

assignment includes both directly assigned permissions as well as inherited permissions.

A permission p is a pair p(o, a), where o is the object and a is the access mode. We

assume that objects in the RBAC model are organized into conceptual classes, e.g.,

account tables, insurance claims, and audit reports etc. Two cross-domain permissions

pA:(OA, aA) and pB:(OB, aB) of domains A and B respectively, are termed equivalent if

the cross domain objects OA and OB belong to the same conceptual class and the

permissions pA and pB are declared shareable in their respective domain policies.

Using the above assumptions and the permission assignments of roles over

objects, four types of relations can be defined between two cross-domain roles rA and rB

44

belonging to domain A and domain B respectively. The functions and predicates used in

defining these relations are listed in Table 3.1.

1. Equivalent: rA is equivalent to rB (rA ≈ rB), if the following conditions hold.

a. The permission sets Pset(rA) and Pset(rB) of roles rA and rB are equivalent.

Formally:

, : () () [(,) () (,) ()]
i j i jA B A A B Bi j class O class O O a Pset r O a Pset r∀ = ∧ ∈ ⇔ ∈

b. All the permissions in the sets Pset(rA) and Pset(rB) are shareable with the

domain of rA and rB respectively. Formally:

 , (, ,) (, ,)
i jA Bi j shareable O a B shareable O a A∀ ∧ .

2. Contain: rA contains rB (rA ⊃ rB) if the following hold:

a. The permission set Pset(rB) of role rB is included in the permission set

Pset(rA) of role rA.

 (): (,) () (,) () () ()
j i i jB B A A A Bj i O a Pset r O a Pset r class O class O⎡ ⎤∀ ∃ ∈ ⇒ ∈ ∧ =⎣ ⎦

b. All the permissions in the set Pset(rB) are shareable with domain A.

3. Overlap: rA overlaps rB (rA O rB) if Pset(rA) and Pset(rB) have some common

shareable permissions and neither rA contains rB nor rB contains rA. Formally:

()

, : () () [(,) ()

 (,) () (, ,) (, ,)]

 () ()

i j i

j i j

A B A A

B B A B

A B B A

i j class O class O O a Pset r

O a Pset r shareable O a B shareable O a A

r contain r r contain r

∃ = ∧ ∈ ∧⎛ ⎞
⎜ ⎟ ∧
⎜ ⎟∈ ∧ ∧⎝ ⎠

¬ ∧ ¬

4. Not related: rA is not related to rB (rA ≠ rB) roles rA and rB do not share any

common permissions. Formally:

, : () () [(,) () (,) ()]
i j i jA B A A B Bi j class O class O O a Pset r O a Pset r¬∃ = ∧ ∈ ∧ ∈

45

RBAC-integrate(G1,G2,…,Gn)
1. G = {V[G1], E[G1]}
2. for i ← 2 to n
3. r1 ← seniormost-role(G)
4. r2 ← seniormost-role(Gi)
5. G ← Role-integrate(r1, r2)
6. for each r ∈ G
7. if (new-role(r) and redundant(r))
8. then Remove-Role(G, r)
9. return

Role-integrate(r1, r2)
1.for each rc ∈ children(r1)
2. do if ((Pset(rc) ∩ Pset(r2) ≠ φ) and not-compared-previously(rc,r2))
3. then Role-integrate(rc,r2)
4.for each rc ∈ children(r2)
5. do if ((Pset(r1) ∩ Pset(rc) ≠ φ) and not-compared-previously(r1,rc))
6. then Role-integrate(r1,rc)
7.► return without doing anything if r1 and r2 are already linked
8.if already-linked(r1,r2)
9. then return
10. ► () ()*(,)=True, if () () ()i j assign i assign j i k k j j kI I

contained r r p Pset r p Pset r r r r r r r∈ ⇒ ∈ ∧ ≥ ∧ ≠ ⇒ ≥

11. if contained(r2, r1) and contained(r1, r2)
12. then if linking r1 and r2 do not violate RBAC consistency properties
13. then link(r1, r2)
14. return
15. else if contained(r2, r1)
16. then r1j=split(r1, common-permissions(r1,r2), common-juniors-I(r1,r2))
17. if linking r1j and r2 do not violate RBAC consistency properties
18. then link(r1j, r2)
19. return
20. else if contained(r1, r2)
21. then r2j=split(r2, common-permissions(r1,r2), common-juniors-I(r1,r2))
22. if linking r1 and r2j do not violate RBAC consistency properties
23. then link(r2j,r1)
24. return
25. ► () ()(,)=True, if | () () , | ((,)i j assign i assign j k m i k j m k mI I

overlap r r p p Pset r p Pset r r r r r r r already linked r r∃ ∈ ⇒ ∈ ∨ ∃ ≥ ⇒ ≥ ∧ −

26. else if overlap(r1,r2)
27. then r1j=split(r1, common-permissions(r1,r2), common-juniors-I(r1,r2))
28. r2j=split(r2, common-permissions(r1,r2), common-juniors-I(r1,r2))
29. if linking r1j and r2j do not violate RBAC consistency properties
30. then link(r1j, r2j)
31. return
32. return

Fig. 3.10 Policy merging algorithm

46

split(r, common-permissions, common-juniors)
1. rj ← createrole()
2. insert(r->childrenlist-I,rj)
3. for each p ∈ common-permissions
4. do remove(r->plist, p)
5. insert(rj->plist,p)
6. for each rc ∈ common-juniors
7. do remove(r->childrenlist-I, rc)
8. insert(rj->childrenlist-I, r)
9. return rj

link(r1, r2)
1. insert(r1->childrenlist-I,r2)
2. insert(r2->childrenlist-I,r1)
3. for each ri s.t. *

1 1()i i I
r r r r= ∨ ≥

4. do for each rj s.t.
*

1 1(()) (())j j c cI
r conf rset r r r r conf rset r∈ − ∨ ≥ ∧ ∈ −

 do conf-rset(ri)=conf-rset(ri)∪rj
5. conf-rset(rj)=conf-rset(rj)∪ri
6. for each ri s.t. *

2 2()i i I
r r r r= ∨ ≥

7. do for each rj s.t.
*

2 2(()) (())j j c cI
r conf rset r r r r conf rset r∈ − ∨ ≥ ∧ ∈ −

8. do conf-rset(ri)=conf-rset(ri)∪rj
9. conf-rset(rj)=conf-rset(rj)∪ri
return

Remove-role(rd)
1. Rp ← Rp ∪ {r}, for all r such that
2. Rc ← Rc ∪ {r}, for all r such that
3. for each rp ∈ Rp

4. for each rc ∈ Rc
5. If ∃r’ :
6. continue
7. insert(rp->childrenlist-I, rc)
8. remove(rc->parentlist-I, rd)
9. insert(rp->parentlist-I, rp)
10. for all re: re ∈ equivalent(rd)
11. remove(re->parentlist-I, rd)
12. remove(re->childrenlist-I, rd)
13. for all rs: rd ∈ conf-rset(rs)
14. remove(rs->conf-rset, rd)

15. for each rp ∈ Rp
16. for each p ∈ Pset(rd)
17. insert(rp->Pset, p)
18. deallocate(rd)

' ' 'd p cI I
r r r r r r≠ ∧ ≥ ∧ ≥

Fig. 3.11 Procedures used by Role-Integrate during policy integration.

3.7.3. Policy merging algorithm

Fig. 3.10 shows the proposed policy merging algorithm, RBAC-integrate, that

merges RBAC policies of n domains to produce a global meta-policy. The input

parameter Gi represents the RBAC policy of domain i specified in graphical form. This

algorithm iteratively combines the RBAC policies of component domains in a pair-wise

manner. In the first iteration, an integrated RBAC policy is composed from domains 1

and 2 by calling the procedure, role-integrate, with the senior-most roles of domains 1

and 2 respectively. In the subsequent iterations, RBAC policy of a new domain is

combined with the merged RBAC policy obtained in previous iteration. After n-1

iterations, the RBAC policies of all n domains are merged to produce a global meta-

policy. In each iteration, after calling role-integrate, all the newly created redundant

47

roles are removed from the integrated RBAC graph. Redundant roles, formally defined in

Section 3.7.4, are roles that do not have any permissions assigned to them nor can any

user activate them. Removal of redundant roles is essential to satisfy the order

independence (PIR 4) requirement in the merged policy.

The procedure, role-integrate, integrates inter-domain roles based on their

permission assignment and hierarchical ordering. role-integrate is a recursive algorithm

that uses bottom-up strategy to establish role equivalence across two domains. The

algorithm basically checks all inter-domain roles for one of the above four relations. If

the roles do not share any permission, then it returns without doing anything. If the inter-

domain roles say, r1 and r2, are equivalent in their permission assignment and hierarchical

ordering then they are linked together by defining a bidirectional role mapping between

r1 and r2, i.e., r1 ≥I r2 and r2 ≥I r1. A role mapping r1 ≥I r2 is represented in the RBAC

graph by an I-hierarchy edge from r1 to r2. Linking two inter-domain roles r1 and r2

through a bidirectional role mapping implies that a user say ui, authorized for role r1

inherits all the permissions of role r2. Similarly, a user uj authorized for role r2 inherits all

permissions in the authorization set of r1. Role-integrate calls link function (shown in Fig.

 3.11) for bidirectional mapping cross-domain equivalent roles r1 and r2. In addition,

conflicting role sets of r1 and r2 and all their senior roles that have an inheritance path to

r1 and r2, and all the roles that conflict with r1 and r2 and their senior roles are updated in

the link function. This update in the conflicting role sets is essential to preserve the

hierarchical consistency property of RBAC model which requires that the conflicting role

set of a junior role must be contained in the conflicting role set of the senior role [56]. As

a result of this update in conflicting role sets, new SoD constraints are added between two

or more roles which do not conflict with each other in their original domain RBAC

policy. We will use the term induced SoD constraint to denote such SoD constraints that

are not present in the domains’ original RBAC policies. A formal definition of induced

SoD constraint is given in Section 3.8.3.

In presence of multiple hierarchy types, addition of roles in the conflicting role

sets may lead to a situation in which two conflicting roles, say r1 and r2, have a common

48

ancestor, say ra, which inherits both roles r1 and r2, (i.e., * *
1 2, a I a Ir r r r≥ ≥). This

situation can be avoided by making r1 and r2 conflicting roles only if they do not have a

common ancestor role that inherits them. This is illustrated in Fig. 3.12 which shows how

mapping inter-domain roles change the conflicting set of linked roles. Fig. 3.12(a) shows

roles r1, r2, r3, r4 and r5, with r1, r2 and r3 belonging to domain A, and r3 and r4 belonging

to domain B. The role r1 inherits all the permission of r2 and r3. As shown in Fig. 3.12(a)

roles r4 and r5 are conflicting roles. Roles r2 and r4, and r3 and r4 are equivalent in terms

of their permission assignment and can be linked through bidirectional mapping. Fig.

 3.12(b) shows the merging of RBAC graph of Fig. 3.12(a). Note that after linking, no role

specific SoD constraint is defined between r2 and r3 because they both have a common

ancestor r1 in the inheritance hierarchy semantics. In contrast, a SoD constraint is defined

between r2 and r3 in Fig. 3.12(d) which have a common ancestor role r1 in the activation

hierarchy semantics. The meta-policy shown in Fig. 3.12(b) is conflicting and can be

made consistent by removing one of the role mappings r2 – r4 or r3 – r5.

Two cross-domain roles may also have a subset-superset (containment) or

overlapping relationship. Role r1 is contained in r2 if the set of all permissions directly

assigned to r1 is contained in the set of permissions directly assigned to r2, and all the

roles that are junior to r1 in the I-hierarchy semantics are also junior to r2 in the I-

hierarchy semantics. Note that containment relation mentioned here is slightly different

from the containment relation defined earlier. In this case, hierarchical ordering is also

considered in addition to permission assignment in defining the containment relationship

between two roles. If r2 contains r1, then a junior role r2j is created by calling split

function shown in Fig. 3.11. In the split function, all the permissions and junior roles (I-

hierarchy semantics) common to both r1 and r2 are removed from r2 and are assigned to

r2j. Splitting a role does not change the permission authorization set of user and is

formally proved in lemma 3.1. After permission reassignment, r2j and r1 are linked

together through a bidirectional mapping i.e., r1 ≥I r2j and r2j ≥I r1. If r1 and r2 overlap but

none of the roles contain each other, then two new roles r1j and r2j are created and made

junior to r1 and r2 respectively. Permissions and junior roles common to both r1 and r2 are

49

removed from the senior roles r1 and r2 and assigned to the roles r1j and r2j. After this

permission and role assignments, a bidirectional mapping (r1j ≥I r2j and r2j ≥I r1j) is

defined between r1j and r2j.

In Section 3.9, we provide an example of a global meta-policy generated by

merging the access control policies of various county offices including County Clerk

Office (CCO), County Treasurer Office (CTO), and County Attorney Office (CAO).

These county offices collaborate with each other for collection and sale of real-estate

taxes on property parcels located within the jurisdiction of the concerned county. Fig.

 3.16(a – c) show the graphical representation of RBAC policies of CCO, CTO, and CAO

domains prior to merging and Fig. 3.16 (d – e) depict the RBAC graph of these domains

after defining cross-domain role mappings.

Note that some of the roles in Fig. 3.16 are split into two or more roles with their

permissions redistributed among the newly created junior roles. For instance, the DTM

role in Fig. 3.16(a) gets split into three roles DTM, DTM10 and DTM12 with DTM as the

senior of the remaining two (shown in Fig. 3.16(d)). The following lemma maintains that

role splitting does not change the authorization set of users provided that no user is

assigned to the newly created junior roles. Before stating the lemma, we would like to

informally introduce the notion of a uniquely activable set (UAS) of a role. Interested

readers are referred to [77] for a formal definition of UAS of a role. Uniquely activable

set (UAS) of a role r is the set of role sets that can be concurrently activated by a user

assigned to role r. In other words, UAS gives the role combinations that can be activated

by a user concurrently.

Lemma 3.1: Let a role r is split into roles rs and rj with s I jr r≥ . Then r and rs

verify the following conditions:

• pset(r) = pset(rs)

• UAS(r) = UAS(rs)

The above lemma states that all the permissions that can be acquired through role

r (before splitting) can also be acquired through role rs.

50

Proof of Lemma 3.1 is given in Appendix A.

r1

r2 r3

pa pb

r5 r4

pb pa

SoD r1

r2 r3

pa pb

r5 r4

pb pa

SoD

(a) (b)

r1

r2 r3

pa pb

r5 r4

pb pa

SoD r1

r2 r3

pa pb

r5 r4

pb pa

SoD

(c) (d)

SoD

u1 u1

u1 u1

A B

A B

A B

A B

Fig. 3.12 Example of induced SoD

3.7.4. Properties of RBAC-integrate

In this section, we analyze the properties of the policy integration algorithm

RBAC-integrate in the context of the policy integration requirements discussed in Section

 3.7.1. RBAC-integrate satisfies all the policy integration requirements (PIRs) except

PIR5. Since conflict resolution is not included in RBAC-integrate, therefore the resulting

meta-policy may not satisfy all the constraints of input RBAC policies. However, the

meta-policy obtained after conflict resolution, discussed in Section 3.8, satisfies all the

integration requirements. Theorems 3.1, 3.2, and 3.3 provide a formal proof of this claim.

In the following, we first formally define the notion of redundant role and then

prove that RBAC-integrate satisfies the policy integration requirements except PIR 5.

51

Definition 3.4: Let rd be a role; rd is said to be a redundant role if the following

conditions hold:

1. rd is not assigned to any user.

2. rd is not assigned any permission.

3. rd has at least one senior role r such that dI
r r≥

4. No role r’ exists such that ' dA
r r≥

5. No role r’’ exists such that "d A
r r≥

Redundant roles may be created during the process of policy integration.

However, these roles can be removed from the integrated RBAC graph using the remove-

role algorithm shown in Fig. 3.11. Following lemma states that removal of a redundant

role rd from a multi-domain RBAC graph G does not affect the security, autonomy, and

interoperability allowed in G.

Lemma 3.2: Let G be a multi-domain RBAC graph and rd be a redundant role in

G. Let G’ be the RBAC multi-domain graph obtained by removing rd from G using the

remove-role algorithm given in Fig. 3.11. The following properties hold with respect to G

and G’:

• For any user u such that u ∈ domain(rd), the authorization set of u over all the

permissions associated with all the inter-domain roles r ∉ domain(rd) remains

unchanged.

• For any two roles rx ∈ domain (rd) and rx ≠ rd and ry ∈ domain (rd) and ry ≠ rd, if ry ∈

conf-rset (rx) before the removal of rd, then ry ∈ conf-rset (rx) after the removal of rd.

• For any user u such that u ∈ domain(rd), the authorization set of u over all the

permissions associated with all the intra-domain roles r ∈ domain(rd) remains

unchanged.

• For any user u such that u ∉ domain(rd), the authorization set of u over all the

permissions associated with all the roles r ∈ domain(rd) remains unchanged.

52

• For any two roles rx ≠ rd and ry ≠ rd, if ry ∈ conf-rset (rx) before the removal of rd,

then ry ∈ conf-rset (rx) after the removal of rd.

1 and 2 imply that removal of a redundant role does not affect the security and

autonomy of the domain containing the redundant role. 3, 4, and 5 imply that removing a

redundant role does not affect the interoperation among the component domains

Proof of Lemma 3.2 is given in Appendix A.

Lemma 3.3: The meta-policy produced by RBAC-integrate satisfies PIRs 1 – 3.

Proof of Lemma 3.3 is given in Appendix A.

One key requirement in composing a meta-policy is that the final outcome of the

policy integration step should not be influenced by the order in which policies are

integrated. If the integration mechanism depends on the order in which policies are

combined, then one must find an integration order that gives maximum interoperation

with minimum overhead. However, restricting the integration order may not be an

attractive option as in most collaborative environments, domains join or leave

collaboration any time. Nevertheless, the proposed policy integration mechanism is

independent of the order in which policies are integrated. We prove this by showing that

the policy integration algorithm RBAC-integrate is both commutative and associative.

Theorem 3.1 (Commutativity of RBAC-integrate): The policy integration

operation performed by RBAC-integrate is commutative.

Proof: RBAC-integrate is commutative if for any two domains A and B, RBAC-

integrate(GA,GB) = RBAC-integrate(GB,GA), where GA and GB are the RBAC graphs of

domain A and B respectively.

The commutativity of RBAC-integrate depends on the commutativity of role-

integrate. Therefore, we first analyze the algorithm role-integrate. Role-integrate

performs role comparison and linking in a recursive manner. Roles are linked through

bidirectional mapping by calling link function which is symmetric. Linking of equivalent

roles (lines 11 -14 of role-interate) and overlapping roles (lines 27 – 31) is symmetric

53

and hence commutative. For the containment case, assume that contained(rB, rA) is true.

When role-integrate(rA, rB) is called then the code in lines 15 – 18 is executed, and when

role-integrate(rB, rA) is called, the code in lines 21 – 24 is executed. In both cases, role rA

is split and a junior role rAj is created with A I Ajr r≥ , and rAj is linked to rB with same

permission assignment and junior roles. This implies that the containment case is also

symmetric and commutative.

 It can be proved using induction that role-integrate(rA, rB) and role-integrate(rB,

rA) produces same number of roles during the process of integration and they have same

permission assignment and role-hierarchy. Hence, role-integrate is commutative,

implying that RBAC-integrate is commutative. ■

Theorem 3.2 (Associativity of RBAC-integrate): The policy integration

operation performed by RBAC-integrate is associative.

Proof:

Let GA, GB, and GC be the RBAC graph of domain A, B, and C respectively.

P = RBAC-integrate(GA, GB)

Q = RBAC-integrate(GB, Gc)

X = RBAC-integrate(P, Gc)

Y = RBAC-integrate(GA, Q)

To prove that policy integration operation is associative, we need to prove that the

graph X is isomorphic to Y. Two policy models are said to be isomorphic if there is 1:1

onto correspondence between their elements and they have the same relationships [104].

To show that two final integrated policy models X and Y are isomorphic, we define a

morphism ϕ(X→Y) as follows:

• For a user ui ∈ X, ϕ(ui) = ui

• For a permission pj ∈ X, ϕ(pj) = pj

• For a role r’ ∈ X, ϕ(r’) = r such that psetassign(r’) = psetassign(r)

54

In order to prove that ϕ is an isomorphism we need to show the following:

• (i) ϕ is 1:1 and onto

• (ii) R(U) ∈ RX if and only if R(ϕ(U)) ∈ RY (RX and RY are relations in X and Y

respectively).

Appendix A contains a detailed proof of (i) and (ii).

Theorems 3.1 and 3.2 imply that the meta-policy composed by RBAC-integrate is

independent of the order in which domain policies are integrated.

3.7.5. Time complexity of RBAC-integrate

The algorithm RBAC-integrate runs in polynomial time, as evident from the

following two Lemmas.

Lemma 3.4: If role graphs representing domains’ RBAC policies are acyclic,

then the algorithm role-integrate terminates.

 Proof: Given two acyclic role graphs to be integrated, suppose that the algorithm

does not terminate, i.e., role-integrate is called recursively for an infinite number of

times. This implies that there is a cycle in one or both of role graphs. Creation of new

roles does not create any cycle as a newly created role is never made a parent of an

existing role. Therefore, the cycle must be present in the input role graph(s) which is a

contradiction of our initial assumption. Hence the algorithm role-integrate terminates.

Lemma 3.5: The worst case complexity of role-integrate is O(|P|3), where |P| is

the cardinality of the permission set.

Proof: According to the above lemma, the recursive algorithm role-integrate

terminates. Therefore, we can build a recursive tree in which each node corresponds to

the pair of cross-domain roles to be compared. The predicate not-compared-previously in

lines 4 and 7 ensures that inter-domain roles are compared only once. If |R1| and |R2|

denotes the total number of roles in their respective domains, then the total number of

role comparisons made by role- integrate while merging the two domains are |R1| ×|R2|.

55

Note that |R1| and |R2| also include newly created roles. However, no more that |P|

number of roles can be created. Therefore at most O(|P|2) comparison are made in the

integration step. Suppose that all the comparisons result in linking the roles under

consideration. In the process of linking roles, the conflicting role sets are updated. In the

worst case the conflicting set is updated for all roles. This implies that the time

complexity of link is O(|P|). In the worst case, link is called after each comparison.

Therefore, the complexity of role-integrate is O(|P|3).

Corollary: The worst case complexity of RBAC-integrate is O(n|P|3), where n is

the number of input domains.

3.8. Optimal Conflict Resolution

The policy merging algorithm described above takes as input the RBAC policies

of the domains and composes a meta-policy which allows inter-domain role accesses and

is homogeneous in terms of role hierarchies and permission assignments. However, the

meta-policy created in this phase may be inconsistent and may not completely satisfy the

collaborating domains’ security requirements. Moreover, security administrator(s), in

charge of the global security policy, can define additional inter-domain accesses in form

of role mappings. These administrator-specified role mappings may also conflict with the

access control policies of individual domains. For instance, in Fig. 3.16(d, e), mapping

the role LSO of CCO domain to the role DTA of CTO domain violates the role-specific

SoD constraint between roles DTA and DTM10 of CTO. This role mapping enables user u6

to access role DTA through the role LSO. Also the bidirectional role mapping between

R1011 and DTM10 allows user u6 to access role DTM10 through R1011. This is a violation

of the SoD constraint defined between roles DTA and DTM in the original RBAC policy

of CTO domain shown in Fig. 3.16(a).

The solution to this problem is to remove one of the following role mappings: i)

LSO:CCO
I
≥ DTA:CTO, ii) R1011:CCO

I
≥ DTM10:CTO. This raises an important

question: which role mapping from the set of conflicting mappings should be removed so

that the security and autonomy constraints of collaborating domains are not violated?

56

Although, removal of cross-domain role mappings resolves conflicts in the given meta-

policy, it also changes the set of allowable accesses and an arbitrary selection of

removable role mappings may significantly reduce interoperation. A conflict resolution

mechanism is needed that resolves policy conflicts among the collaborating domains in

an optimal manner. The problem of conflict resolution in a given meta-policy can be

formulated as an optimization problem with the objective of maximizing permitted

accesses according to some pre-specified optimality criterion. Various optimality

measures such as maximum data sharing, maximum prioritized accesses, and minimum

representation [61] can be used.

3.8.1. IP formulation of a multi-domain RBAC policy

In the following, we describe an approach for formulating the meta-policy

integration problem into an integer program (IP) [131]. The proposed IP formulation is

generic in the sense that it can work for any of the above mentioned optimality criteria.

Changing the optimality measure in our formulation only requires changing the weights

in the objective function.

In the IP formulation of meta-policy, all the constraints such as role-assignment,

SoD, permitted and restricted access constraints are defined using linear equations. The

variables used in these equations convey both user and role information. For instance, the

variables are of the form
jiru where the first subscript i identifies the user and the second

subscript rj specifies the role. The variable
jiru is a binary variable, i.e., it can take a value

of ‘0’ or ‘1’ only. If the variable 1
jiru = then user ui is authorized for role rj, otherwise ui

is not authorized for rj and cannot access role rj by any means. If user ui and role rj are

from different domains and 0
jiru = then in the role graph, there should not be any path

from the user node ui to the role node rj. Note that the given multi-domain RBAC policy

may be inconsistent and a path may exist between user ui from one domain and role rj

from another domain, and in the solution to the IP problem 0
jiru = . This inconsistency is

57

resolved by dropping an inter-domain role mapping edge that lies in the path between the

user node ui and role node rj.

3.8.1.1. Constraint transformation rules

In the following, we list the transformation rules to generate IP constraint

equations for an RBAC meta-policy. In specifying the rules we denote by Uk and Rk the

set of users and roles of domain k respectively; we also denote by U the union of all Uks

and by R the union of all Rks.

1. For each domain k, if a user ui ∈ Uk is not authorized for a role rj ∈ Rk by the

access control policy of domain k then 0
jiru = .

2. For a user ui ∈ U and role rj ∈ R, if domain(ui) ≠ domain(rj) and ui cannot inherit

the permissions of role rj then 0
jiru = .

3. Let Au be the set of users assigned to a role rj. At least one user from the set Au

must be able to access role rj. Formally, 0
j

i u

ir
u A

u
∈

>∑ .

4. Let 1
jiru = and a role rk exists such that domain(rj) = domain(rk) and j kI

r r≥ , then

ui is also authorized to access role rk, i.e., 1
kiru = .

5. Consider a user ui and a role rk such that domain(ui) ≠ domain(rk). Let Rm be a set

of roles such that for all rm ∈ Rm, domain(rm) = domain(rk). Also, in the RBAC

graph, there is a path from ui to rm and m kI
r r≥ . We define two roles sets Rc and Rpc

as follows:

)})()((
)),(_such that(R|{R

)}()(|{R

cpc

c

pIp

pp

kkI

rdomainrdomainrr
ruassignurrrr

rdomainrdomainrrr

=∧≥∨

∧=∈∃=

≠∧≥=

The following constraint equations define the conditions for a user ui to access

role rk.

a. mR , 0
m km ir irr u u∀ ∈ − ≤

58

b.
cR

0
m n k

m m n

ir ir ir
r R r

u u u
∈ ∈

+ − ≥∑ ∑

c.
pcR

0
m p k

m p

ir ir ir
r Rm r

u u u
∈ ∈

+ − ≥∑ ∑

The above set of constraint implies that a user ui may access a cross domain role rk

only if one of the following two conditions holds:

i. ui is authorized for a cross domain role rm such that domain(rm) =

domain(rk) and m kI
r r≥ .

ii. ui is authorized for role rn and there is an inter-domain role mapping from

rn to rk.

Condition 5c is necessary to avoid any localized assignment of 1 to variables

cR where, and ∈
nnk iririr uuu

6. Consider any two users ui and uj and a role rk. Suppose ui is authorized to access

role rk, i.e. .1=
kiru Suppose that a cross-domain role mapping exists from role rk

to role rl. If user ui is able to access rl through the cross domain mapping link (rk,

rl), then user uj, if authorized for role rk, can also access rl through the mapping

link (rk, rl). Formally:

if domain(ui) = domain(uj) = domain(rk) then () () 0
k l k lir ir jr jru u u u− − − =

else () () 0
k l k lir ir jr jru u u u− − − ≥

7. A role specific SoD constraint may exist between two intra-domain or inter-

domain roles. In the graph model, SoD constraint between two conflicting roles rj

and rk is represented by a double-headed arrow between roles rj and rk. In the IP

formulation, this SoD constraint can be written as:

1, for all users such that can access either or
j kir ir i i j ku u u u r r+ ≤

8. Suppose that a SoD constraint exists between two intra-domain roles rm and rn

induced by cross-domain roles rk and rl. This induced SoD constraint can be

written in equation form as:

3, for all users such that can access either or
m n k lir ir ir ir i i m nu u u u u u r r+ + + ≤

59

9. Let Ukc be the set of conflicting users for role rk. At most one user in the set Ukc is

allowed to access/activate role rk at any given time. Formally:

1u
U

irk
≤∑

∈ kciu

3.8.2. Optimality criteria and weight assignment

The IP constraints described in the above section are used to define security

requirements of collaborating domains’ RBAC policies. Once the RBAC constraints are

transformed into linear IP constraints by using the above transformation rules, the multi-

domain RBAC policy can be formulated as the following integer programming problem.

maximize
Subject to
 , 0 or 1

j j

T
r

r

ir r ir

c u
Au b
u u u

≤
∀ ∈ =

where, A is the constraint matrix and c is a vector defining the optimality criteria

in terms of the weight of the decision variables corresponding to user-role authorizations.

The main purpose of formulating the meta-policy into an IP problem is to find a feasible

solution (a set of users to role authorization) that maximizes the objective function

according to the given optimality criterion without violating the security constraints of

underlying domains. Various optimality measures such as maximum data sharing and

maximum prioritized accesses can be used. Maximum data sharing does not consider any

priority among the inter-domain accesses and involves maximizing the overall inter-

domain accessibility. Maximum data sharing can be specified in the objective function as

a sum of all decision variables representing inter-domain user to role accesses, i.e., all cis

corresponding to the cross-domain user-role variables are assigned a value of ‘1’ and the

remaining cis are set to ‘0’.

In some cases, certain cross-domain accesses have a higher priority than the

others. Therefore, such accesses need to be assigned a higher weight for increasing their

chances of retention in the final policy. The weight of a given cross-domain access is

defined relative to the weights of conflicting accesses that can be removed in favor of the

given access. We assume that domains may specify their preference for retention of some

60

of the cross-domain accesses by indicating which accesses should supersede conflicting

accesses. Based on this priority specification, the weights of the corresponding user-role

access variables in the objective function are determined. For instance, consider the

following four conflicting cross-domain accesses represented by the following user-role

variables: ur1, ur2, ur3, and ur4. Let c1, c2, c3 and c4 respectively denote their weights.

Suppose the following rules specify the relative priorities of these accesses: i) ur1

supersedes the individual accesses ur2, ur3, and ur4, implying that either ur2 or ur3 or ur4

can be removed in favor of ur1. ii) ur1 also supersedes ur2 + ur3, implying that if there is a

choice of retaining the single cross-domain access ur1 or two cross-domain accesses ur2

and ur3, then ur1 is retained and both ur2 and ur3 are removed. iii) ur2 + ur4 and ur3 + ur4

supersede the cross-domain access ur1, implying that the single cross-domain access ur1

can be removed in favor of joint accesses ur2 and ur4 or ur3 and ur4. iv) ur4 supersedes the

individual accesses ur2 and ur3. The weight assignment corresponding to this priority

specification is given by: c4 > max{c2, c3} and max{c4, c2 + c3} < c1 < (c2 + c3 + c3).

It can be noticed that changing the weights of decision variables impact the

degree of interoperability and autonomy of individual domains. In Section 3.9, we

explain that a trade-off exist between the two metrics which depends on weight selection.

3.8.3. Autonomy consideration

One key requirement of policy composition is to maintain the autonomy of all

collaborating domains. However, preserving the autonomy of individual domains may

significantly reduce interoperation and in some cases may not allow interoperation at all.

In other words, there is a trade-off between seeking interoperability and preserving

autonomy. In the RBAC policy integration framework, violation of a domain’s autonomy

occurs because of the following two reasons:

Induced SoD constraint: An induced SoD constraint is a SoD constraint between

two intra-domain roles ra and rb which do not conflict with each other in their original

domain’s RBAC policy. Such a SoD constraint is caused by cross-domain roles rc and rd

for which the following hold:

a. domain(rc) ≠ domain(ra) = domain(rb)

61

b. domain(rd) ≠ domain(ra) = domain(rb)

c. (,) () ()c d a c b d b c a dI I I I
conf rset r r r r r r r r r r⎡ ⎤− ∧ ≥ ∧ ≥ ∨ ≥ ∧ ≥⎣ ⎦

Fig. 3.12(b) illustrates an induced SoD constraint between roles r2 and r3 of

domain A caused by roles r4 and r5 of domain B. Note that in the original RBAC policy

of domain A, shown in Fig. 3.12(a), r2 and r3 are non-conflicting. As a result of this

induced SoD constraint, user u1 who in the domain A’s original policy is authorized to

access role r2 and r3 simultaneously, cannot access these roles concurrently in the multi-

domain system.

Asymmetric cardinality of mapped roles: There are various types of cardinalities

associated with a given role, for instance, role-assignment cardinality, role-activation

cardinality, per-user role-assignment cardinality, and per user role activation cardinality

[78, 79]. For simplicity of discussion, we only consider role-activation cardinality which

is defined as the maximum number of concurrent accesses of a role allowed by a given

RBAC policy. For a consistent RBAC policy, the cardinality of a senior role should not

be greater than the cardinality of any of the junior roles that are related to the senior role

in the I-hierarchy semantics [56]. Accordingly, a role mapping relation ra:A ≥I rb:B

between the cross domain roles ra and rb of domains A and B respectively, becomes

inconsistent if the cardinality of ra is greater than the cardinality of rb. In order to avoid

an inconsistent role mapping due to asymmetric cardinalities of mapped roles, the

cardinality of the senior role in the mapping relation is reduced to the cardinality of the

junior role. For instance, in the mapping relation ra:A ≥I rb:B, if ra has a cardinality

constraint of three and rb has a cardinality constraint of one, then the cardinality of ra is

decreased to one to ensure a consistent mapping. This reduction in the role cardinality of

ra can be considered as a violation of domain A’s autonomy as the number of concurrent

accesses of ra allowed in the original RBAC policy of domain A are not permitted under

this meta-policy. On the other hand, retaining the original cardinalities of interoperable

roles may lead to security violations. Obviously, the third option is to disallow any cross-

domain accesses via roles with asymmetric cardinalities. This option reduces

interoperation between two otherwise similar cross-domain roles. Fig. 3.18 depicts the

62

trade-off between interoperability and autonomy in a graphical manner. A discussion of

this graph is presented in Section 3.9.

In general, composition of a global meta-policy that allows interoperation among

multiple domains without any violation of collaborating domains’ security and autonomy

is not a feasible task. In almost any collaborative environment, violation of any domain’s

security policy is not permissible. However, domains may be willing to compromise their

autonomy for the sake of establishing more interoperability provided the autonomy losses

remain within the acceptable limits. In the following, we describe how this autonomy

relaxation condition can be incorporated as a constraint in the IP problem.

Let LA denote the set of all cross-domain role mappings that either reduces role

cardinalities of domain A or adds induced SoD constraints between roles of domain A.

The overall autonomy loss of domain A caused by LA is given by:

() ()Total number of local accesses inTotal number of local accesses without
presence of all role-mapping links in any cross-domain role mapping link

()
Total number of local accesses without
any cro

A
A

L
AL L

−
=

()ss-domain role mapping link

.

The above expression can also be used for computing autonomy losses of a

domain caused by individual role-mappings. However, the aggregate of all link level

autonomy losses may be greater than the overall autonomy loss of a domain, i.e.,

() ({ })
A

A
l L

AL L AL l
∈

≤ ∑ . The reason for this discrepancy is that some common local accesses

may be reduced by multiple cross-domain role-mapping links; therefore, reduction of

these accesses is considered multiple times in the link-level aggregate. Based on the

commonality of reduction of local accesses, we define a set Si (Si ⊆ LA) for every cross-

domain role mapping link li such that all local accesses of domain A reduced by li are also

reduced by each role mapping link lk ∈ Si. In order to keep the autonomy losses of a

domain within a certain threshold value, say α, the following autonomy constraint can be

added in the IP problem:

,
(,)

()

(1) ({ }) ({ , }) i p qk
p qi iA Ak

p q

r p q r rr i
l L l l Ll S

ind sod l l

u AL l u AL l l u u α
∈ ∈ ∧∈

−

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

− + ≤∑ ∑∏ .

63

The first sum in the above constraint captures the autonomy losses due to role

cardinality reduction. The decision variable uri (urk) corresponds to the retention of cross-

domain role mapping link li (lk), i.e. the link li (lk) is retained in the final policy if uri =1

(urk =1). The term [∏(1- urk)]AL({li}) uri implies that the role mapping link li causes an

autonomy loss of AL({li}) if no other role mapping link in the set Si is retained in the final

policy. If a role mapping link lk ∈ Si is retained, then the autonomy loss due to li is not

considered in computing the overall autonomy loss, because all the local accesses

reduced by li are also reduced by lk, implying that the autonomy loss due to the link li is

covered by the autonomy loss due to link lk. The second sum ({ , })
p qp q r rAL l l u u∑ in the

above constraint captures the autonomy loss caused by all role mapping pairs which

results in addition of induced SoD constraints in domain A. The binary predicate ind-sod

holds for any two cross-domain mappings lp, and lq if their retention in the final policy

requires addition of induced SoD constraint.

The following example illustrates the formulation of IP constraints including the

autonomy relaxation constraint for the multi-domain RBAC policy of Fig. 3.14.

Example 3.4: Consider two collaborating domains A and B with their respective

RBAC policies shown in Fig. 3.13(a). The multi-domain RBAC policy that allows inter-

domain accesses between A and B is shown in Fig. 3.13(b). The bidirectional role

mapping between r3 and r5 and the administrator-specified mapping r3:A ≥I r5:B that

allows role r5 to inherit permission of role r1 makes this meta-policy inconsistent. These

two role mappings enable user u3, assigned to the junior role r3, to assume the senior role

r1, which is a violation of role-assignment constraint. This conflict can be resolved by

either removing the role mapping r3:A ≥I r5:B or r5:B ≥I r1:A. In both cases the number of

cross-domain accesses will remain the same. Note that the SoD constraint between r2 and

r3 is an induced SoD constraint. This SoD constraint is caused by the role mappings r3:A

≥I r5:B and r2:A ≥I r4:B, and reduces local accesses of domain A from six to five, causing

an autonomy loss of 16.67%. Suppose the maximum autonomy loss allowed by domain

A is 10%. This autonomy relaxation constraint can be specified as: 16.67(u3r5 u2r4) ≤ 10,

where u3r5 = 1 (u2r4 = 1) implies that the role mapping r3:A ≥I r5:B (r2:A
I
≥ r4:B) is

64

retained in the final meta-policy. The IP formulation of the meta-policy of Fig. 3.13(b) is

shown in Fig. 3.13. Note that in the objective function, all the decision variables

representing cross-domain role accesses are assigned a weight of one, implying that the

optimality criterion is to maximize all cross-domain role accesses. An optimal solution to

the IP problem shown in Fig. 3.13, has following values of cross-domain variable:
41ru =0,

51ru =0,
42ru =1,

53ru =0,
24ru =1,

15ru =1,
35ru =1, and 5 6ru =1. Since

33ru =1 (constraint c9 in

Fig. 3.13), and
53ru =0, the cross-domain role mapping r3

I
≥ r5 needs to be removed from

the multi-domain RBAC graph of Fig. 3.13(b). Removal of the role mapping r3 ≥I r5 also

invalidates the induced SoD constraint between r2 and r3. Thus, the resulting meta-policy

does not cause any autonomy loss of domain A.

3.8.4. Conflict resolution algorithm

Fig. 3.15 shows an algorithm ConfRes for resolving conflicts from the RBAC

graph G representing the meta-policy. This algorithm first transforms the RBAC policy

constraints into IP constraints using the rules given in Section 3.8.1. Before transforming

RBAC policy constraints into IP constraints, dummy users are assigned to two classes of

roles which do not have any user assigned to them. Class one includes those roles which

do not have any senior role in the inheritance hierarchy semantics. Assignment of dummy

users to class one roles ensures that all the roles appear in the IP constraint equations,

which is essential for conflict resolution. Class two includes roles which have a non-

empty set of conflicting users. The dummy user udj assigned to a class two role rj is also

included in all the conflicting sets of users for role rj. Since udj is the only user assigned

to rj therefore 1=
jdjru (by transformation rule 2).This prohibits any user uk that conflicts

with udj for role rj to inherit the permissions of rj through a senior role rs without

activating rj. Once all the IP constraints are defined, the IP problem is solved using the

optimality criterion embedded in the objective function. Based on the solution of the IP

problem, the meta-policy graph G is modified by removing the conflicting cross-domain

edges and induced SoD constraints. The resulting graph defines the meta-policy that

65

satisfies the security requirements of all collaborating domains. This is formally proved

in Section 3.10.

4 5 4 5 2 1 3 6

1 6 1 2 3 6

1 1 2 3 4 5 5 5

1 1 2 2 2 2

3

Maximize 2 2 2 2
Subject to
Constraints derived from rules 1, 2, 3, and 4
c1: 1, c2: 1, c3: 0, c4: 1, c5: 0, c6: 0,
c7:

r r r r r r r r

r r r r r r

r

u u u u u u u u

u u u u u u
u

+ + + + + + +

= = = = = =

1 2 3 6 4 5

4 5 5 4 1 3

6 2

3 3 3 4 4

5 5 2 3 4 4

4 5

0, c8: 0, c9: 1, c10: 0, c11: 1, c12: 0,
c13: 0,c14: 1,c15: 0, c16: 0, c17: 0, c18: 0,
c19: 0,c20: 0

Constraints derive

r r r r r

r r r r r r

r r

u u u u u
u u u u u u
u u

= = = = = =
= = = = = =
= =

2 4 3 5 2 4 3 5

5 1 5 3 1 6 4 2

1 1 1 1 2 2 3 3

5 5 5 5 5 5 4 4

d from rule 5
c21: 0, c22: 0, c23: 0, c24: 0,

c25: 0, c26: 0, c27: 0, c27: 0

Constraints

r r r r r r r r

r r r r r r r r

u u u u u u u u

u u u u u u u u

− ≥ − ≥ − ≥ − ≥

− ≥ − ≥ − = − ≥

3 5 3 5 2 4 2 4

5 1 5 1

4 5 4 5 4 5

3 3 1 1 2 2 1 1

5 5 3 3

4 4 5 5 1 1 2

derived from rule 6
c28: 0, c29: 0

c30: 0

Constraints derived from rule 7
c31: 1, c32: 1, c33: 1, c34:

r r r r r r r r

r r r r

r r r r r r r

u u u u u u u u

u u u u

u u u u u u u

− − + = − − + =

− − + ≥

+ ≤ + ≤ + ≤
4 5

4 5 2 5 2 5 2 5

3 4 3 4 3 4

2

2

3 3 1 1 2 2 4 4

3 3 1 1 5 5

1 1

1,

c35: 1, c36: 1, c37: 1, c38: 1,

c39: 1, c40: 1: c41: 1

Induced SoD Constraint derived from rule 8
c42:

r

r r r r r r r r

r r r r r r

r

u

u u u u u u u u

u u u u u u

u u

+ ≤

+ ≤ + ≤ + ≤ + ≤

+ ≤ + ≤ + ≤

+
3 4 5

5 4

1 1

3 2

3

Autonomy Relaxation constraint
c43: 16.67() 10

r r r

r r

u u

u u

+ + ≤

≤

Fig. 3.13 IP formulation of multidomain RBAC policy shown in Fig.3.14

r1

r2 r3

pa pb

r5 r4

pb pa

SoD

u1

r6 pd

u3u2

u5 u5

r1

r2 r3

pa pb

r5 r4

pb pa

SoD

u1

r6 pd

u3u2

u5 u5

SoD

SoD

SoD

A B A B
(a) (b)

Fig. 3.14 (a) RBAC policy graph of domain A and B in example 4, (b) Integrated
RBAC policy defining interoperation between domains A and B.

66

ConfRes(G)
1. Assign a dummy user udi to all roles ri for which the following hold:

a. No user is assigned to ri.
b.There does not exist any role rk for which iIk rr ≥ .

2. Assign a dummy user udj to all roles rj for which have a non-empty set of conflicting
users.

3. For each role rj that is being assigned a user udj in step 2, set 1=
jdjru and update the

conflicting set of users by doing the following:
a. Define user-specific SoD constraint between udj and all the conflicting users

for role rj that are not assigned to rj.
b. add new conflicting set(s) of user for role rj containing the dummy user udj and

a user uk for which the following holds:
∃ ui∈U, rl ∈R such that [(rl

*

A
≥ rj) ∧ conf-user(ui, uk, rl) ∧ (ui ∈ conf-user(rj))]

4. Using the constraint transformation rules, write the RBAC policy constraints in
algebraic form.

5. Define the objective function.
6. Find an optimal feasible solution for the integer programming (IP) problem.
7. From the multi-domain RBAC policy graph G, remove the inter-domain edge (ri, rj)

for which there exists a user uk such that 1=
ikru and 0=

jkru in the optimal feasible
solution.

)}()(and 0 and 1such that |),{(jikrkrkji rdomainrdomainuuUurrGG
ji

≠==∈∃−=
8. For an edge (ri, rj) removed from G, if rj induces an SoD constraint between ri and

any role rk, then remove that induced SoD constraint from RBAC policy graph G
9. From the graph G, remove the conflicting set of users added in step 3b.

Fig. 3.15 Conflict resolution algorithm

3.9. An Illustrative Example

In this section, we illustrate the proposed policy composition framework by

considering interoperation/collaboration among various offices of a county for collection

and sale of real-state tax on property parcels located within the jurisdiction of concerned

county. The concerned county offices include: County Clerk Office (CCO), County

Treasure Office (CTO), County Attorney Office (CAO), District Clerk Office (DCO), and

District Courts (DC). These offices/departments share information among each other for

budget planning, tax billing and collection, sale of delinquent taxes, auditing and other

67

legal purposes. Each county office keeps the information owned by it in its local

databases. Integration of these local databases is needed to provide inter-domain

information access capability. Such an integration not only expedite the process of tax

collection and sale by providing immediate access to timely, accurate, and complete

information, but also improves the productivity of existing staff by reducing redundant

data collection efforts among the county departments.

In order to establish interoperation among various county offices, the access

control policies of the collaborating county offices need to be integrated. Due to space

limitation, we only focus on interoperation among three county offices: CCO, CTO, and

CAO. Table 3.2 lists the roles, job description and permissions associated with each role

of all three county offices. The permission authorization in Table 3.2 defines the access

rights or permissions available to the corresponding roles on local as well as cross-

domain information objects. As mentioned in Section 3.5, an information sharing policy

is needed that explicitly specifies the access rights available to cross-domain-roles over a

local object and the conditions under which such access is granted. Table 3.3 shows the

information sharing policy of information/data objects that can be shared among the

collaborating county offices. The letters W, R, and A in the access mode columns

indicate write, read, and approve respectively. Note that in the information sharing policy

listed in Table 3.3, domains that own information objects do not indicate the actual

foreign domain roles that can inherit the permissions of their local objects. Rather the

owner domains only specify the conditions that must be fulfilled by cross-domain roles in

order to access foreign objects. Identifying the prospective cross-domain roles that can

access a given object requires the knowledge of the organization hierarchy and access

control policies of other collaborating domains. Acquisition of this knowledge may not

be feasible as domains may not be willing to reveal their access control policies to others.

It is therefore the responsibility of the policy integration mechanism to determine the

roles that satisfy the condition for accessing each others information objects and map

them accordingly.

The RBAC policy graphs of the county offices (CTO, CCO, and CAO) prior to

role mapping are shown in Fig. 3.16 (a), (b), and (c). Fig. 3.16 (d), (e), and (f) depict the

68

policy graphs of these county offices after mapping cross-domain roles. The proposed

role-mapping algorithm RBAC-integrate generates a bidirectional mapping between

cross-domain roles that are equivalent in their permission assignment and have similar

role hierarchy. In addition, the global security policy administrator(s) may also define

cross-domain role mapping for specifying interoperation requirements. In Fig. 3.16 (d –

f) the edge from a local role to a foreign role defines the cross-domain role mapping. A

local role, in Fig. 3.16 (d – f) is shown as a shaded oval with solid outline, whereas a

foreign role is depicted with a dashed-outlined oval. The annotations within the dashed

oval describe both the names and domains of the foreign roles to which a local role is

mapped. For instance, in Fig. 3.16 (d) the dashed oval with annotations PLAT09:CAO and

ACAT:CAO represent two foreign roles PLAT09 and ACAT of domain CAO. A local

role DTM of Domain CTO is mapped to both PLAT09 and ACAT as shown by the edge

from DTM to the corresponding foreign roles PLAT09:CAO and ACAT:CAO. The

mapping from DTM to ACAT:CAO is an administrator-specified mapping as indicated

by the annotation ‘admin’. The role mapping defines inheritance relationship between

cross-domain roles. For instance, in Fig. 3.16(d) the role mapping from DTM:CTO to

ACAT:CAO (DTM:CTO
I
≥ ACAT:CAO) implies that a user, say u1, authorized for the

local role DTM can inherit the permissions of a foreign role ACAT of domain CAO

through DTM. Note that cross-domain roles are related by the I-hierarchy semantics

only, which implies that user u1 of CTO cannot access the permissions of role ACAT

without gaining access to role DTM.

69

Table 3.2
Description of roles involved in collaboration among county offices

Role Domain Job Description Permission Authorization
Treasurer CTO Supervises all operations of

treasurer office
Inherits all permissions of TCM,
TRM, and DTM

Tax Assessor (TA) CTO Assess/prepare tax bills P6, P9, P10, P11
Tax Bill Approver (TBA) CTO Reassess & approve of tax bils P6, P9, P10, P11, P12
Tax Collector (TC) CTO Tax collection & tax sale, record

keeping of tax bidders
P11, P13, P14, P31, P32

Tax Collection Manager
(TCM)

CTO supervises TA, TBA, and TC Inherits all authorized
permissions of TA, TB, and TC

Tax Refund Assessor
(TRA)

CTO Assess tax refunds, prepare tax
refund orders

P6, P9, P11, P17, P18

Tax Refund Examiner
(TRE)

CTO Reassess/approve refund orders P6, P9, P11, P18, P19

Tax Refund Clerk (TRC) CTO Prepare refund vouchers P42, P43
Tax Refund Manager
(TRM)

CTO Approve refund vouchers P42, P43, P44

Delinquent Tax Clerk
(DTC)

CTO Keep record of delinquent taxes P11, P14, P20, P21

Delinquent Tax Assessor
(DTA)

CTO Assess delinquent tax records P11, P14, P20, P21,P22

Delinquent Tax Manager
(DTM)

CTO Approve delinquent taxes for
sale/resale (supervises DTC &
DTA)

Inherit permissions of DTC &
DTA, P24P26P27 ,P29, P31, P32, P34,
P36

County Clerk CCO Supervises all operations of clerk
office

Inherits all permissions of PTAM
& PDTM

Property Value
Assessment Officer
(PVAO)

CCO Property value assessment P1, P2, P4

Tax Assessment Clerk
(TAC)

CCO Determine property tax rates P2, P4, P5, P6, P9

Tax Assessment Officer
(TAO)

CCO Reassess/approve tax rates P2, P4, P6, P7, P9

Property Tax Assessment
Manager (PTAM)

CCO Supervise TAC & TAO Inherits permissions of TAC &
TAO

Property Indexing Officer
(PIO)

CCO Property indexing P2, P3, P4

Delinquent Taxes & Lien
Officer (DTLO)

CCO Record keeping of delinquent
taxes and other tax liens

P2, P4, P11, P14, P21, P24, P27

Lien Sale Officer (LSO) CCO Sale of delinquent taxes, keep
record of tax buyers

Inherit permissions of DTLO, P28,
P29, P30, P31, P32, P34, P36

Redemption Cost Assessor
(RCA)

CCO Prepare redemption cost estimates
for delinquent taxes

Inherit permissions of DTLO, P29,
P31, P34, P35, P36

Property Delinquent Tax
Manager (PDTM)

CCO Reassess/approve tax redemption
cost estimates (supervises LSO &
RCA)

Inherit permissions of RCA &
LSO, P33, P37

County Attorney CAO Heads county attorney department Permissions of all junior roles
Deputy County Attorney
Tax Section (DCAT)

CAO Assess/approve tax sale plea Inherits permissions of ACAT,
P45

Asst. County Attorney
Tax Section (ACAT)

CAO Prepare tax sale pleas for
delinquent taxes and other liens/
Supervise tax sales

Inherits permissions of PLAT, P25

Para Legal tax Section
(PLAT)

CAO Keep records of information
obtained from CCO & CTO for
tax related affairs, assists
attorneys in preparing tax sale
pleas

P2, P4, P6, P9, P11, P14, P16, P21,
P24, P26, P27, P29, P31, P32, P34,P36

70

Table 3.3
Information sharing policy of collaborating domains

Information/data
Object

Owner
domain

Foreign
domain

Access
Mode
available
to owner
domain

Access
mode
available
to foreign
domain

Purpose of access of
foreign domain

Condition for cross-domain
access

Property value record
(O1)

CCO CTO,
CAO

W:P1, R:P2 R:P2 Property value & tax rate
assessment

Access available to subjects dealing
with property tax assessment and
billing

Property ownership
and location record
(O2)

CCO CTO,
CAO

W:P3, R:P4 R:P4 Tax billing, notification Access available to subjects dealing
with tax billing and tax auditing

Tax rate record (O3) CCO CTO,
CAO

W:P5, R:P6,
A:P7

R:P6 Tax billing Access available to subjects dealing
with tax billing and tax auditing

Tax exemption record
(O4)

CCO CTO,
CAO

W:P8, R:P9 R:P9 Tax adjustment, billing Access available to subjects dealing
with tax billing, adjustments,
refunds and tax auditing

Tax Bill (O5) CTO CCO,
CAO

W:P10,
R:P11,
A:P12

W:P10,
R:P11

Auditing, tax
readjustment, imposing
penalties and fines for non
payment or late payment
of taxes, checking
payment record of tax
payers for other purposes

Access available to subjects dealing
with tax billing, adjustments,
refunds, tax auditing and delinquent
taxes and redemption

Tax Payment record
(O6)

CTO CCO,
CAO

W:P13,
R:P14

W:P13,
R:P14

Auditing, receive payment
in certain cases
(delinquent taxes, tax/lien
sale)

Access available to subjects dealing
with tax billing, adjustments,
refunds, tax auditing and delinquent
taxes and redemption

Refund order (O8) CTO CCO W:P17,
R:P18,
A:P19

W:P17,
R:P18

Refunds for unsuccessful
tax bidders

Access available to subjects dealing
with tax refunds and tax sale
refunds

Delinquent tax record
(O9)

CTO CCO,
CAO

W:P20,
R:P21,
A:P22

W:P20,
R:P21

Preparing tax sale plea,
redemption cost estimates,
tax sale, auditing

Access available to subjects dealing
with delinquent taxes, tax sale, tax
redemption, and tax auditing

Tax Liens (O10)

DCO CCO,
CTO,
CAO

 R:P24 Preparing tax sale plea,
redemption cost estimates,
tax sale, auditing

Access available to subjects dealing
with delinquent taxes, tax sale, tax
redemption (write), and tax auditing

Tax Sale Plea (O11)

CAO CCO,
CTO

W:P25,
R:P26,
A:P45

R:P26 Record keeping,
identifying pending tax
sales awaiting court
orders, auditing

Access available to subjects dealing
with delinquent taxes, tax sale, tax
redemption, and tax auditing

Tax Sale Judgement
Order (O12)

DCO CCO,
CTO,
CAO

 R:P27 Record Keeping, tax sale
and redemption, auditing

Access available to subjects dealing
with delinquent taxes, tax sale, tax
redemption, and tax auditing

Tax Sale Record (O13) CTO CCO,
CAO

W:P28,
R:P29

W:P28,
R:P29

Record Keeping, tax sale
and redemption, tax
refunds

Access available to subjects dealing
with delinquent taxes, tax sale, tax
redemption (write), and tax auditing

Tax Buyer Record
(O14)

CTO CCO,
CAO

W:P30,
R:P31

R:P30 Record Keeping, tax
redemption, tax refunds,
auditing

Access available to subjects dealing
with delinquent taxes, tax sale, tax
redemption and refunds, and
auditing

Tax Redemption
Record (O15)

CTO CCO,
CAO

W:P33,
R:P34

W:P33,
R:P34

Record Keeping, tax
redemption and refunds,
auditing

Access available to subjects dealing
with delinquent taxes, tax sale,
redemption (Write) and refunds,
and tax auditing

Redemption Cost
record (O17)

CCO CTO,
CAO

W:P35,
R:P36,
A:P37

W:P35,
R:P36

Redemption of delinquent
taxes, refunds, auditing

Access available to subjects dealing
with delinquent tax redemption
(Write) and refunds, and tax
auditing

71

The role mappings shown in Fig. 3.16 (d – f) represents an inconsistent meta-

policy and do not satisfy the security requirements of the collaborating county offices.

For instance, the administrator-specified mappings : :
I

TA CTO TAO CCO≥ (Fig. 3.16(d))

and PIO:CCO
I
≥ TRA:CTO (Fig. 3.16(e)) causes a violation of role-specific SoD

constraint defined between roles TRE and TRA of CTO domain. These mappings allow

user u2 to access role TRA via the cross-domain path

TA:CTO
I
≥ TAO:CCO

I
≥ PIO:CCO

I
≥ TRA:CTO. Moreover, u2 by accessing the local role

TA inherits the permission of TRE because of the intra-domain relationship TA
I
≥ TRE.

As a result, u2 by accessing role TA inherits the permission of conflicting roles TRE and

TRA. Similarly the role mapping DTLO:CCO
I
≥ DTC:CTO, LSO:CCO

I
≥ DTA:DTC,

and R1011:CCO
I
≥ DTM10:CTO (Fig. 3.16(e)) enables user u6 to access conflicting roles

DTA and DTM10 of CTO domain (Fig. 3.16(d)). Note that in the original RBAC policy of

CTO, an SoD constraint is defined between DTA and DTM (Fig. 3.16(a)). Since DTM

splits into roles DTM10 and DTM12, therefore these roles also conflict with DTA as

shown in Fig. 3.16(d). Another violation of role-specific SoD constraint between roles

DTM and DTA of CTO domain occur because of the role mappings DTM:CTO
I
≥

ACAT:CAO (Fig. 3.16(d)), ACAT:CAO
I
≥ TAC:CCO (Fig. 3.16(f)), and TAC:CCO

I
≥

DTA:CTO (Fig. 3.16(e)). These cross-domain role mappings enable u1 to access the

conflicting roles DTM and DTA of domain CTO. A role-assignment violation occurs

because of cyclic hierarchy created by the mappings DTA:CTO
I
≥ ACAT:CAO (Fig.

 3.16(d)), PLAT09:CAO
I
≥ DTM:CTO and the intra-domain hierarchy constraint ACAT

I
≥

PLAT
I
≥ PLAT09 of CAO domain (Fig. 3.16f)). This cycle in role hierarchy allows user

u4 assigned to role DTA to access the permissions of the senior role DTM. The security

vulnerabilities caused by the role-mappings of Fig. 3.16(d), (e), and (f) are tabulated in

Fig. 3.17.

72

Conflicts in the meta-policy shown in Fig. 3.16 (d – f) are resolved by applying

the conflict resolution algorithm ConfRes. ConfRes first transforms the RBAC policy

constraints into IP constraints. This IP constraint transformation process produces almost

1500 constraints for the meta-policy of Fig. 3.16. The resulting IP problem is solved with

the objective of maximizing all cross-domain accesses. The solution thus obtained

removes the following cross-domain role mappings from the meta-policy graphs of Fig.

 3.16 (d – f): DTM:CTO
I
≥ ACAT:CAO, TAC:CCO

I
≥ DTA:CTO, DTA:CTO

I
≥

ACAT:CAO, PIO:CCO
I
≥ TRA:CTO, and LSO:CCO

I
≥ DTA:CTO. A maximum of 102

cross-domain accesses are obtained if the above role mappings are removed. Note that in

this case, all the cross-domain accesses are assigned equal weight in the objective

function. If some cross-domain accesses are more important than others then such

accesses can be prioritized by assigning them a higher weight in the objective function.

This will increase the likelihood of retaining high priority accesses in the meta-policy as

discussed in 3.8.2. However the total number of accesses cannot exceed the maximum

value obtained by assigning uniform weights to all cross-domain accesses.

 Fig. 3.18(a-b) shows the trade-off between interoperability and autonomy for the

domains CTO and CCO respectively. For this study/analysis, interoperability of a domain

is defined as a measure of the number of cross-domain accesses to that domain. The

autonomy losses of domains CTO and CCO for the given meta-policy with cross-domain

links LCTO and LCCO are determined using the AL expression given in Section 3.8.3. In

the interoperability versus autonomy loss graph, depicted in Fig. 3.18, the acceptable

limit for autonomy loss for both domains is set to 50% and the level of interoperability is

varied by varying the weights of decision variables in the objective function. The

maximum interoperability occurs when all cross-domain accesses have a uniform weight.

The graph shown in Fig.3.18 contains two curves defining the upper bound and

lower bound for the autonomy losses at various interoperability levels. At any given

interoperability level, there can be multiple values of autonomy losses corresponding to

different selection of cross-domain role-mappings. However, all the autonomy loss values

73

are confined to the region bounded by the upper bound and lower bound curves shown in

Fig. 3.18.

It can be noticed that the trade-off between the level of interoperation and degree

of autonomy depends on the selection of weights in the objective function. Weight

selection is an important issue and depends on the type of application. For example, in

digital government application, achieving a high degree of interoperability among

government agencies is preferable than maintaining autonomy of individual domains. In

this case, uniform weights can be selected for maximizing interoperability. On the

contrary, for collaborations requiring higher degree of autonomy for participating

domains such as health-care applications, higher weights can be assigned to those cross-

domain access variables that do not cause any autonomy loss. In addition, an upper bound

on the autonomy loss can be specified as an additional constraint in the IP problem

formulation. In summary, weight selection is an open research issue requiring further

exploration.

3.10. Verification of Meta-policy

In this section, we formally analyze the proposed policy integration mechanism

with respect to the five policy integration requirements (PIRs) discussed in Section 3.7.1.

The PIRs define the correctness criteria for verifying the consistency of meta-policy. The

first four PIRs state the conformance requirements for the meta-policy in terms of

authorization preservation, relationship preservation, and order independence. The last

PIR stipulates the security aspect of meta-policy. The meta-policy generated by the

proposed policy composition framework satisfies all the above integration requirements.

To prove this claim, we first analyze the compliance of proposed framework with respect

to non-security PIRs (PIR 1 – 4) and then assess the correctness of the composed meta-

policy with respect to the security constraints of collaborating domains.

74

Treasurer

TCM TRM

TA
TBA TC

TRE TRA

TRC

DTC

R1

P11

R2

P6, P9
R3

P18

P19

P17

P10 P12

R4

P31, P32

R5

P14

P13

P42, P43

P44

R6

P21

P20 P22

P24, P26, P27,
P29, P34, P36SoD

SoD

SoD

u1

u2
u3

u4 u5

DTM

DTA

So
D

CTO

County Clerk

PTAM

P3

TAC TAO PVAO

PIO

P2, P4R7

P6

R8
P9

R9

P5 P7 P1

PDTM

LSO

DTLO

RCA

P11, P14, P21, P24, P27

P28, P30, P32

R10 P29, P31, P34, P36

P35

P33, P37

SoD

u6

u7

u7

CCO

County
Attorney

DCAT

ACAT

PLAT

P2, P4, P6, P9, P11, P14,
P16, P21, P24, P26, P27, P29,

P31, P32, P34, P36

P25

P45

u9

u10

CAO

ACAT:CAO
(Admin)

Treasurer

TCM TRM DTM

TA
TBA TC

TRE TRA

TRC

DTA DTC

R1

P11

R2

R3

P18

P19

P17

P10 P12

R4

P32

R5

P14

P13

P42, P43

P44

R6 P21

P20 P22

P26SoD

SoD

SoD

R402

P31

DTM12

P24, P27

DTM10

P29, P34
P36

R207

R205

P9

P6

PLAT03:CAO
LSO04:CCO

TAO:CCO
(Admin)

PLAT09:CCO

PLAT02:CAO
DTLO01:CCO

PLAT06:CAO
DTLO09:CCO

PLAT01:CAO
DTLO00:CCO

PLAT 00:C
AO

R10 03:C
CO

PLAT04:CAO
R806:CCO

PLAT05:CAO
R908:CCO

PLAT08:CAO
R1011:CCO

PLAT07:CAO
DTLO13:CCO

ACAT:CAO (Admin)

ACAT:CAO (Admin)

SoD

SoD

So
D

u1

u2

u3

u4

u5

CTO

County Clerk

PTAM

P3

TAC TAO PVAO

PIO

P2, P4R7

R8

R9

P5

P7 P1

PDTM

LSO

DTLO

RCA

P28, P30

R10

P29, P34, P36

P35

P33, P37

SoD

LSO04

P32

DTLO01 P14

DTLO00 P11

DTLO09 P21

DTLO13 P27, P24

R806

P6

R908P9

R1011

P31R1003

PLAT02:CAO

PLAT00:CAO
R402:CTO

PLAT03:CAO
R4:CTO

PLAT04:CAO
R205:CTO

PLAT05:CAO
R207:CTO

PLAT06:CAO
R6:CTO

PLAT08:CAO
DTM10:CTO

PLAT07:CAO
DTM12:CTO

DTA:CTO
(Admin)

DTC:CTO
(Admin)

PLAT10:CAO

DTA:CTO
(Admin)

TRA:CTO
(Admin)

PLAT01:CAO
R1:CTO

u6

u7 u8

CCO

CA

DCAT

ACAT

PLAT

P25

P45

P16

PLAT09 P26

PLAT03 PLAT07
PLAT08P32 P24,P27 P29,P34,P36

PLAT02P14

PLAT00 P31

PLAT01P11

PLAT06

P21

PLAT10

P2,P4

PLAT05

P9

PLAT04P6

u10

u11

TAC:CCO
(Admin)

R1003:CCO
R402:CTO

DTLO00:CCO
R1:CTO

DTLO01:CCO
R5:CTO

LSO04:CCO
R4:CTO

R806:CCO
R205:CTO

R908:CCO
R207:CTO

DTLO09:CCO
R6:CTO

DTLO13:CCO
DTM12:CTO

R1011:CCO
DTM10:CTO

DTM04:CTO

R7:CCO

CAO

(a) (b) (c)

(d) (e) (f)

Treasurer

TCM TRM

TA
TBA TC

TRE TRA

TRC

DTC

R1

P11

R2

P6, P9
R3

P18

P19

P17

P10 P12

R4

P31, P32

R5

P14

P13

P42, P43

P44

R6

P21

P20 P22

P24, P26, P27,
P29, P34, P36SoD

SoD

SoD

u1

u2
u3

u4 u5

DTM

DTA

So
D

CTO

County Clerk

PTAM

P3

TAC TAO PVAO

PIO

P2, P4R7

P6

R8
P9

R9

P5 P7 P1

PDTM

LSO

DTLO

RCA

P11, P14, P21, P24, P27

P28, P30, P32

R10 P29, P31, P34, P36

P35

P33, P37

SoD

u6

u7

u7

CCO

County
Attorney

DCAT

ACAT

PLAT

P2, P4, P6, P9, P11, P14,
P16, P21, P24, P26, P27, P29,

P31, P32, P34, P36

P25

P45

u9

u10

CAO

ACAT:CAO
(Admin)

Treasurer

TCM TRM DTM

TA
TBA TC

TRE TRA

TRC

DTA DTC

R1

P11

R2

R3

P18

P19

P17

P10 P12

R4

P32

R5

P14

P13

P42, P43

P44

R6 P21

P20 P22

P26SoD

SoD

SoD

R402

P31

DTM12

P24, P27

DTM10

P29, P34
P36

R207

R205

P9

P6

PLAT03:CAO
LSO04:CCO

TAO:CCO
(Admin)

PLAT09:CCO

PLAT02:CAO
DTLO01:CCO

PLAT06:CAO
DTLO09:CCO

PLAT01:CAO
DTLO00:CCO

PLAT 00:C
AO

R10 03:C
CO

PLAT04:CAO
R806:CCO

PLAT05:CAO
R908:CCO

PLAT08:CAO
R1011:CCO

PLAT07:CAO
DTLO13:CCO

ACAT:CAO (Admin)

ACAT:CAO (Admin)

SoD

SoD

So
D

u1

u2

u3

u4

u5

CTO

County Clerk

PTAM

P3

TAC TAO PVAO

PIO

P2, P4R7

R8

R9

P5

P7 P1

PDTM

LSO

DTLO

RCA

P28, P30

R10

P29, P34, P36

P35

P33, P37

SoD

LSO04

P32

DTLO01 P14

DTLO00 P11

DTLO09 P21

DTLO13 P27, P24

R806

P6

R908P9

R1011

P31R1003

PLAT02:CAO

PLAT00:CAO
R402:CTO

PLAT03:CAO
R4:CTO

PLAT04:CAO
R205:CTO

PLAT05:CAO
R207:CTO

PLAT06:CAO
R6:CTO

PLAT08:CAO
DTM10:CTO

PLAT07:CAO
DTM12:CTO

DTA:CTO
(Admin)

DTC:CTO
(Admin)

PLAT10:CAO

DTA:CTO
(Admin)

TRA:CTO
(Admin)

PLAT01:CAO
R1:CTO

u6

u7 u8

CCO

CA

DCAT

ACAT

PLAT

P25

P45

P16

PLAT09 P26

PLAT03 PLAT07
PLAT08P32 P24,P27 P29,P34,P36

PLAT02P14

PLAT00 P31

PLAT01P11

PLAT06

P21

PLAT10

P2,P4

PLAT05

P9

PLAT04P6

u10

u11

TAC:CCO
(Admin)

R1003:CCO
R402:CTO

DTLO00:CCO
R1:CTO

DTLO01:CCO
R5:CTO

LSO04:CCO
R4:CTO

R806:CCO
R205:CTO

R908:CCO
R207:CTO

DTLO09:CCO
R6:CTO

DTLO13:CCO
DTM12:CTO

R1011:CCO
DTM10:CTO

DTM04:CTO

R7:CCO

CAO

(a) (b) (c)

(d) (e) (f)

Fig. 3.16 (a) RBAC policy graph of County Treasurer Office (CTO), (b) of County Clerk Office (CCO), of County Attorney Office
(CAO) prior to role mapping. (d) RBAC policy graph of CTO, (e) of CCO, and (f) of CAO after to role mapping.

 75

Role mapping Security Violation Violation
Type

Affected
Domain

TA:CTO
I
≥ TAO:CCO

PIO:CCO
I
≥ TRA:CTO

Enables u2 to inherit the
permissions of conflicting
role TRE and TRA by
accessing the role TA

Role-
specific SoD

CTO

DTLO:CCO
I
≥ DTC:CTO

LSO:CCO
I
≥ DTA:DTC

R1011:CCO
I
≥ DTM10:CTO

Enables u6 to access
conflicting cross-domain
roles DTA and DTM10.

Role-
specific SoD

CTO

DTM:CTO
I
≥ ACAT:CAO

ACAT:CAO
I
≥ TAC:CCO

TAC:CCO
I
≥ DTA:CTO

Enables u1 to inherit the
permissions of conflicting
roles DTM and DTA
concurrently.

Role-
specific SoD

CTO

DTA:CTO
I
≥ ACAT:CAO

PLAT09:CAO
I
≥ DTM:CTO

Allows user u4 assigned to
role DTA to access the
permissions of the senior
role DTM.

Role-
assignment

CTO

Fig. 3.17 Security violations of the meta-policy of Fig. 3.16.

 76

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0 5 10 15 20 25 30 35 40

Interoperability (cross-domain accesses to CTO)

%
ag

e
Au

to
. l

os
s

of
 C

TO
Upper Bound

Low er Bound

C(39,38%)

D(39,33%)A(31,33%)

B(30,17%)

0%

10%

20%

30%

40%

50%

60%

0 10 20 30 40 50

Interoperability (cross-domain accesses to CCO)

%
ag

e
Au

to
 lo

ss
 o

f C
C

O

Upper Bound

Low er Bound

(a)

(b)

Fig. 3.18 Interoperability versus autonomy loss

 77

Table 3.4

Cardinality and user assignment of roles used in autonomy loss measurement of
Fig. 3.16

Role Cardinality User
assigned

Role Cardinality User
assigned

Role CardinalityUser
assigned

Treasurer 1 U1 R2 11 R7 12
TCM 2 U2 R1 11 TAC 4 u33
TRM 2 U3 R402 7 TAO 4 u34
DTM 2 U4 R205 11 PVAO 4 u35
TA 3 U5 R207 11 PIO 8 u38
TBA 3 U6 DTM10 4 R9 11
TC 3 U7 DTM12 5 DTLO00 11
TRE 4 u8 CC 1 u30 DTLO01 11
TRA 4 u9 PTAM 2 u31 R1003 7
DTA 4 u10 PDTM 2 u32 LSO04 7
DTC 4 u11 LSO 5 u36 R806 11
TRC 8 u12 RCA 5 u37 R908 11
R6 11 DTLO 6 u39 DTLO09 11
R5 11 R10 9 DTLO13 5
R4 7 R8 9 R1011 4

3.10.1. Authorization and order-independence

During the process of policy composition the access control policies of

collaborating domains may get modified; however, such modifications should not change

the access privileges of local users over local objects. In addition, the integrated policy

should be independent of the order in which the collaborating domains’ policies are

merged. These requirements are stated for RBAC policy composition in PIRs 1 – 4 in

Section 3.7.1.

The first PIR, stipulating element preservation, holds trivially in the merged

policy graph as the policy merging algorithm, RBAC-integrate, does not remove any

element except the newly created redundant roles which are not present in the original

RBAC policy graphs of collaborating domains. Similarly, all the relations specified in the

original RBAC policy graphs of collaborating domains are implied in the meta-policy

graph. These relations include user-role assignment, role-permission assignments,

separation of duties, and role hierarchy. The user-role assignment, permission

assignment, and SoD relations remain unaltered in the multi-domain RBAC graph.

 78

However, the role hierarchy and permission assignment may get change in the process of

mapping equivalent cross-domain roles. During this process, new roles may be created

by splitting existing roles. As a result of this role splitting, some of the permissions

assigned to the parent role, say r, may get reassigned to the newly created child role, say

rj. Also, the newly created junior role rj may inherit the permissions of some of the roles

junior to the parent role r in the I-hierarchy semantics. However, the I-hierarchy relation

jI
r r≥ preserves all the hierarchy relationships between the parent role r and all its junior

roles. This means that all the permissions that can be acquired through r prior to role

splitting can also be acquired after splitting of r. Hence, the user authorizations specified

in the original RBAC policies of collaborating domains are preserved in the meta-policy

graph.

To prove that the composed meta-policy is independent of the order in which

domains’ policies are merged, we need to show that the policy integration algorithm,

RBAC-integrate, is both commutative and associative. The commutativity and

associativity properties of RBAC-integrate are discussed in Section 3.7.4.

3.10.2. Security constraints

In this sub-section, we formally prove that the meta-policy composed by the

proposed policy integration mechanism is secure. In particular, we show that no security

vulnerability due to role-assignment violation (Definition 3.1), role-specific SoD

violation (Definition 3.2), and user-specific SoD violation (Definition 3.3) can occur in

the meta-policy. Note that in the context of RBAC, these are the only three security

vulnerabilities that may lead to unauthorized accesses. The consistency conditions

defined in [56] also check the correctness of RBAC policy specification against the

violation of the above three constraints.

3.10.2.1. Notations

 For stating the above claim about security of meta-policy in a formal manner, a

state-based representation is needed. Since it is difficult to comprehend the state-

 79

transition semantics of RBAC policy from the graph-based specification, we introduce

some matrix based notations and definitions for specifying the security properties of

meta-policy.

Let Ak denote the adjacency matrix corresponding to the RBAC graph (with only

user-role nodes) of domain k and Ak
+ be the transitive closure of adjacency matrix Ak.

dim(Ak) = dim(Ak
+) = (|Uk|+| Rk|) × (|Uk|+| Rk|), where Uk is the set of user and Rk is the

set of roles of domain k. The authorization of users over roles can be determined by

applying the projection operator πur over the corresponding closure matrix.

Projection operator: A projection operator πur takes an adjacency or closure

matrix as input and returns a matrix with users along the rows and roles along the

column.πur:{Ak, Ak
+} → Uk × Rk. Projection of a closure matrix Ak

+ defines all possible

user to role authorizations in domain k.

+
k

1, if there is an access path from to
(A), =

0, otherwise
i j

ij ur ij

u r
a aπ

⎧
∀ ∈ ⎨

⎩

Note that a SoD or cardinality constraint may prevent ui from accessing rj even

though aij=1 in the projected closure matrix.

State matrix: A state matrix S is a matrix of dimension |U| × |R|

(k
k

U= U∪ , k
k

R= R∪) and it describes the user to roles accesses in the multi-domain

environment. Note that the state matrix captures both intra-domain and inter-domain role

accesses.

1, if role is being accessed by user
For any S, =

0, otherwise
j i

ij ij

r u
s s

⎧
∈ ⎨

⎩

3.10.2.2. Verification of security constraints

Any access control state derived from the meta-policy is secure if it does not

violate the security constraints of collaborating domains’ RBAC policies. This is formally

stated in the following definition.

 80

Definition 3.5: A state S is secure with respect to the role-assignment, role-

specific SoD, and user-specific SoD constraints of domain k if and only if following

conditions hold in S:

1. aij ∈ πur(Ak
+) and sij ∈ S, sij ≤ aij.

2. There does not exist any user ui ∈ U who accesses two or more roles in the

conflicting role set Rcon = {r1,..,rn|conf-role(ri,rj), 1 ≤ i,j ≤ n and i ≠ j}.

Formally, U, 1
j con

i ij
r R

u s
∈

∀ ∈ ≤∑ .

3. Let Ur_con be the set of conflicting user sets (λr) of role r. Ur_con = {
m
∪ λr

m } and λr
m

={
1mu ,..,

pmu | conf-user(
imu ,

jmu ,r) , 1 ≤ i ,j ≤ p and i ≠ j}. For each role r ∈ Rk which

have a non-empty set Ur_con, at most one user from each of the conflicting user sets (λr

∈ Ur_con) accesses role r in sate S. Formally, _R U , 1
i

j k r con ij
u

r s
λ

λ
∈

⎛ ⎞
∀ ∈ ∀ ∈ ≤⎜ ⎟

⎝ ⎠
∑ .

The first condition in the above definition captures the role assignment constraint,

i.e., in any secure state a user can access a local role if and only if there is an intra-

domain access path from the user node to the role node in the local access control policy

of corresponding domain. The second condition specifies that conflicting roles cannot be

accessed by same user in any secure state, and the third condition defines the user-

specific SoD constraint implying that conflicting users of a role cannot access that role

concurrently in any secure state.

Having defined the necessary and sufficient conditions for a secure access control

state, we claim in the following theorem that the meta-policy generated by the proposed

policy integration framework is secure. In particular, any state that can be derived from

the meta-policy will not cause any violation of role-assignment, role-specific SoD, and

user-specific SoD constraints specified in the local RBAC policies of collaborating

domains.

Theorem 3.3: Given G1,…,Gn, n ≥ 2, the RBAC policy graphs of n collaborating

domains. Let G be the multi-domain RBAC graph composed from G1,…,Gn by applying

the role-mapping algorithm, RBAC-integrate, and conflict resolution algorithm, ConfRes.

 81

Assuming all Gis are consistent and conflict-free, any state S reachable from the meta-

policy graph G is secure with respect to the role-assignment, role-specific SoD, and user-

specific SoD constraints defined in each Gi (1 ≤ i ≤ n).

Proof of Theorem 3.3 is given in Appendix A.

3.11. Meta-policy Composition and Mediation Process

In this section, we describe an overall process of policy integration and mediation.

The process, shown in Fig. 3.19, consists of following phases: policy comparison,

merging and resolution, and policy mediation.

The policy comparison phase deals with the reconciliation of semantic differences

among the access control policies of collaborating domains. In this phase, domains’

access control policies are analyzed to identify shareable cross-domain objects and to

resolve the semantic conflicts among these objects. The technical challenges related to

the resolution of semantic heterogeneity are discussed in Sections 3.6 and 3.7. We have

not described any specific strategies for resolution of semantic heterogeneity as it is

beyond the scope of this dissertation. However, this issue has been extensively

investigated by the database community [132, 90, 104, Vet98, 13].

In the merging and resolution phase, the access rights of users over the cross-

domain objects are established and the resulting authorization conflicts are resolved. In

the context of RBAC, inter-domain authorizations are defined by mapping cross-domain

roles. Role mappings can be established automatically based on the correspondence

among cross-domain shareable objects as discussed in Section 3.7.2. In addition the

security policy administrators, responsible for global meta-policy, may also specify such

mapping. For resolution of authorization conflicts due to inconsistent role mapping, the

IP based approach discussed in Section 3.8, can be used. The solution to the underlying

IP problem may not be feasible implying that a meta-policy with the given security,

autonomy, and interoperability constraints cannot be composed. In this case, a new meta-

policy needs to be composed after revising the local policies and interoperability

constraints. Such revision may include relaxation of autonomy requirements, relaxation

of local privileges and constraints, and reduction in the degree of interoperability. The

 82

revised policies and interoperability constraints are analyzed in the mediation phase and

need to be approved by the respective domains’ policy administrators. For automating the

mediation process, the policy administrators may specify the possible policy relaxations a

priori, in decreasing order of preference, along with the acceptable bounds or thresholds

on such relaxations.

Policy
Comparison Role Mapping Conflict Resolution

(IP based approach)

Merging and Resolution

Mediation Options
• Relaxation of autonomy
• Relaxation of local privileges and constraints
•Reduction of degree of interoperation

Reconciliation of
semantic differences

Interoperation Policy Document

Induced
SoD

Cardin
-ality

RolePre-
condition

Permi-
ssions

Role

Local DomainForeign Domain

Interoperation Policy Document

Induced
SoD

Cardin
-ality

RolePre-
condition

Permi-
ssions

Role

Local DomainForeign Domain

Solution Feasible

Solution Infeasible

Fig. 3.19 Overall process of policy composition and mediation.

If a feasible solution to the IP problem exists, the IP-based conflict resolution

module generates a consistent and secure meta-policy with maximal interoperation

support under the given optimality measure and interoperation constraints. For analyzing

the implications of the resulting policy, a global policy document can be generated from

the composed meta-policy for each collaborating domain. A possible schema for such

document is shown in Fig. 3.19. This document facilitates a domain policy administrator

in assessing the degree of interoperability and the level of autonomy offered by the

composed meta-policy. For instance, the document shown in Fig. 3.19 contains

information about the cross-domain roles that can be accessed by local users of a domain,

the permissions associated with the accessible cross-domain roles, and the pre-conditions

for accessing shareable cross-domain roles. The pre-condition may specify what local

role a user must assume before accessing a cross-domain role. In addition, the

implications of the composed policy with respect to a domain’s autonomy can be

assessed from the local domain sub-schema of the policy document of Fig. 3.19. This

 83

sub-schema specifies the local roles with reduced cardinalities or local roles with induced

SoD constraints. As mentioned above, both reduction in role cardinalities and addition of

induced SoDs, amount to autonomy loss for a given domain.

3.12. Related Work

Several research efforts have been devoted to the topic of policy composition in

federated multi-domain environment [61, 93, 40, 26]. In particular, major emphasis is

given on the detection and resolution of conflicts in interoperation policies. Conflicts

appearing in a multi-domain meta-policy can be divided into four types: i) modality

conflicts, ii) multiple management, iii) cyclic inheritance, and iv) separation of duties

(SoD).

Modality conflicts in a policy arise because of the existence of both positive and

negative authorizations for a given subject-object pair. Multiple management conflicts

occur when multiple administrators having authority over a common set of subjects and

objects, specify conflicting authorizations in their respective policies. In that sense,

multiple management conflicts are similar to modality conflicts. Modality conflicts are

resolved based on the policy precedence relationship which implies that the most specific

authorization overrides the less specific one [93, 26, 22]. In case the precedence

relationship cannot be established between the conflicting authorizations, the negative

authorization dominates the positive one. Modality conflicts cannot occur in RBAC

policy specification because negative authorizations are not supported in RBAC model.

Cyclic inheritance conflicts mainly occur in interoperation of systems employing

multi-level security policies such as lattice-based access control (LBAC) and role-based

access control (RBAC) [61, 40]. In such interoperation, the cross-domain hierarchy

relationship may introduce a cycle in the interoperation lattice enabling a subject lower in

the access control hierarchy to assume the permissions of a subject higher in the

hierarchy. Dawson et. al. [40] have discussed a mediator-based framework for

establishing secure interoperation among heterogeneous systems with LBAC policies. In

this framework, cyclic conflicts in the interoperation lattice are resolved by the manual

intervention of a policy editor. The policy editor allows the integrator/administrator to

 84

incrementally specify the cross-domain lattice relationships. After addition of each

relationship, the editor determines the consistency of resulting meta-policy and identifies

all relationships involved in potential security violation. Interoperation conflicts are thus

resolved by withdrawing all cross-domain relationships resulting in potential security

violation or removing one or more relationships until the violation is corrected.

Resolution of interoperation conflicts by manual intervention of policy administrator is a

slow and ad-hoc process and provides no guarantee on the optimality of the resulting

interoperation system. In case there are multiple policy administrators, a consensus on the

resolution needs to be obtained. Gong et. al. [61] have investigated interoperation of

systems employing multi-level access control policies. They have proposed several

optimization techniques for resolution of interoperation conflicts. However, these

resolution techniques are specific to cyclic inheritance conflicts and do not consider other

types of interoperation conflicts.

 Separation of duties (SoD) prevent two or more subjects from accessing an object

that lies within their conflict of interests or disallow a subject from accessing conflicting

objects or permissions, e.g., same managers cannot authorize payments and sign the

payment checks [93, 76]. Violations of SoD constraints may occur in a global meta-

policy because of the interplay of various policy constraints across domains. The

resolution of interoperation inconsistencies related to separation of duty constraints has

not been adequately investigated and the existing approaches rely on manual intervention

of policy administrators to resolve SoD conflicts [93]. As mentioned earlier, manual

resolution is a tedious process and may not yield optimal interoperation. The policy

composition methodology proposed in this chapter provides a single framework for

optimal and automated resolution of interoperation conflicts related to RBAC policies.

These conflicts include both cyclic inheritance and SoD violations.

Gavrilla et. al. [56] have defined a set of necessary and sufficient conditions for

composition of a consistent RBAC policy. The criterion for consistent policy composition

is defined in terms of cardinality, hierarchy, and SoD constraints. Accordingly, a

consistent meta-policy can be composed by incrementally checking the consistency of

cross-domain role mappings. A role mapping that satisfies all the consistency conditions

 85

with respect to the resulting policy can be added to the final meta-policy. Such

incremental composition of meta-policy depends on the order in which role mappings are

evaluated and therefore the resulting meta-policy may not be optimal.

3.13. Conclusions

In this chapter, we have addressed the issue of secure interoperation in a multi-

domain environment. In particular, we focused on the problem of integrating the access

control policies of heterogeneous and autonomous domains to allow inter-domain

information and resource sharing in a secure manner. The proposed policy composition

mechanism is a two step process including composition of a global meta-policy from the

access control policies of collaborating domains and removing conflicts from the global

policy in an optimal manner. Another key requirement of policy composition is to

maintain the autonomy of all collaborating domains. However, there is a trade-off

between seeking interoperability and preserving autonomy. Violation of a collaborating

domain’s security policy in general is not permissible. However, domains may tolerate

some autonomy loss for establishing more interoperability. In this chapter, we have

formulated the problem of secure interoperation as an optimization problem with an

objective of maximizing interoperability without causing any security violation of

collaborating domains and keeping the autonomy losses within acceptable limits

 86

4. VERIFICATION OF DISTRIBUTED WORKFLOWS IN AN
AUTONOMOUS MULTI-DOMAIN ENVIRONMENT

In Chapter 3, we proposed a global meta-policy based approach for establishing

secure interoperation in a federated multi-domain environment. The meta-policy based

approach requires complete disclosure of the local policies of all collaborating domains.

However, in an autonomous and loosely-coupled multi-domain environment, domains

may not disclose their policies due to security and privacy concerns. The key challenge in

absence of a global meta-policy is to design collaborative applications that are consistent

with the policies of all collaborating domains.

To address this challenge, we propose an approach for verifying secure

composibility of distributed applications requiring interactions among autonomous

domains in a loosely-coupled multi-domain environment. This approach is designed for

verifying the specification of distributed workflows for conformance with the time-

dependent access control policies of collaborating but autonomous domains. The

objective of workflow composibility verification is to ensure that all the users or

processes executing the designated workflow tasks conform to the security policy

specifications of all collaborating domains.

4.1. Issues and challenges in workflow verification

Supporting distributed workflow based applications in an autonomous multi-

domain environment in the absence of a global meta-policy is a challenging task. The

individual domains in such environment operate according to their own security and

access control policies which may be context driven [124, 78]. Depending upon the type

of workflow applications, several contextual parameters such as time, location,

environment, and agenda may be considered and can pose substantial challenges in

 87

assuring secure execution of such applications [9, 19a, 126]. In particular, the resource

access requirements of distributed workflows may conflict with the access control

policies of collaborating domains, which may cause deadlock or erroneous execution.

For ensuring secure and correct execution of a distributed workflow, the workflow

specifications need to be verified for conformance with the context-driven access control

policies of all collaborating domains.

The proposed verification approach is designed for distributed workflow

applications that require long-term interactions among various domains and are executed

on a recurrent basis. Examples of such recurrent workflow applications include: check

clearance processing among banks, insurance claim processing, health-care

administration, real-time process control systems, and distributed data processing for

stream data warehouses [57, 130, 96, 80, 135, 123]. In all these applications, a predefined

workflow specifies a logical sequence of activities or tasks that needs to be performed by

collaborating and possibly autonomous domains. Some of these applications have strict

deadlines for workflow completion which may not always be satisfied because of the

time dependent access control policies of domains. These workflow applications are

recurrent in a sense that they need to be invoked repeatedly after a fixed or variable time

interval. For instance, the check clearance workflow among banks is invoked regularly to

process a batch of check clearance requests [57, 34]. Similarly, the distributed data

processing workflow for zero latency data stream warehouse is periodically invoked for

mining the continuous data streams in near real-time [96]. For verifying secure

composibility of such workflows, the following two questions need to be answered:

• Does the security and authorization policies of collaborating domains, support

execution of the distributed workflow under the given timing constraints?

• What are the possible time instants at which the distributed workflow can be invoked

recurrently?

A major challenge in the verification of distributed workflows is posed by the

time-dependent non-reentrant behavior of collaborating domains [2, 53]. The behavior of

a domain is characterized as reentrant or non-reentrant based on the underlying software

 88

system enforcing a time-dependent access control policy. We use Generalized Temporal

Role Based Access Control (GTRBAC) [78] model to specify the time dependent access

control policy of a domain. In the software engineering terminology, a non-reentrant

system does not allow its multiple simultaneous, interleaved, or nested invocations and

only one instance of such system exists at any time [53]. The non-reentrant behavior of a

system is governed by its finite state model (FSM) and any interaction with such system

has to be compatible with its current state [53]. At any time, a domain can have only one

instance of its GTRBAC policy against which all access requests are evaluated. In

addition, the GTRBAC policy instance has a finite number of authorization states.

Therefore, according to the above criterion a domain is a non-reentrant system.

For verifying workflow composibility, the distributed workflow specifications

need to be analyzed for being consistent with the individual as well as with the collective

behavior of collaborating domains. Accordingly workflow composibility verification

entails two steps: i) verification of workflow specifications with respect to the FSM of

individual domains, and ii) verification of dependencies among domains for execution of

workflow tasks. These two steps can either be carried out separately in the above order,

or can be performed simultaneously by using a unified global meta-policy that captures

all intra-domain and inter-domain authorizations [14, 117, 118]. The methodology

proposed in this chapter uses the two step verification approach and does not consider the

meta-policy based approach for the following reasons:

The unified global meta-policy is composed by integrating the access control

policies of all collaborating domains; however, domains may not disclose their policies

due to privacy concerns.

More importantly, domains are autonomous in deciding when to join or leave the

collaborative environment. Whenever a new domain joins the collaboration, the meta-

policy needs to be reconfigured. Consequently, all the workflows verified with respect to

the previous meta-policy need to be verified again. Such re-verification of existing

workflows due to joining of new domains is not needed in the proposed methodology.

The meta-policy is also reconfigured when any domain leaves the collaboration or

changes/updates its access control policy. Again such reconfiguration of meta-policy

 89

triggers re-verification of all previously verified workflows including the ones that do not

have any task assigned to the departing domains or domains that have changed/updated

their policies. In the proposed approach, a workflow is re-verified only if a domain

participating in workflow execution updates its policy or leaves the collaboration.

Domain-Specific
Projected Workflow

Specification

Distributed
Workflow

SpecificationGTRBAC policy PW specification
in GTRBAC semantics

State Mapping
(mapping GTRBAC-based

PW specification into
Valid state paths of FSM)

Projected Workflow (PW)
Verification

Cross-Domain
Dependency
Verification

Interaction Model (IM)FSM of a Domain

Fig. 4.1 Overall process for workflow verification

Fig. 4.1 depicts the proposed two step approach for verification of secure

workflow composition. The approach relies on decomposition of a distributed workflow

into domain-specific workflows called projected workflows. These projected workflows

are verified by the respective domains in terms of the authorization and execution time

requirements. After verification of projected workflows, the cross-domain dependencies

amongst the workflow tasks performed by different collaborating domains are verified.

The timing information computed in the projected workflow verification phase is used to

determine an interleaving of projected workflow tasks that satisfies the cross-domain

dependencies of the distributed workflow. This timing information is also used to

determine a feasible schedule for the overall verified distributed workflow. For

workflow composibility verification, we assume that the FSM of each domain’s

GTRBAC policy is given and the distributed workflow is specified using interaction

model (IM).

 90

4.2. Interaction Model for Workflow Specification

 For verifying workflow composibility, a formal and precise specification of the

distributed workflow is needed. In particular, the specification should be able to capture

the collaboration requirements among the domains performing the tasks of the distributed

workflow. We use the term component service to refer to a task or set of tasks in a

distributed workflow that can be executed by a domain independently. More precisely, a

component service encapsulates a set of domain-specific tasks that are advertised to other

interacting domains as a single capability/functionality of the domain.

Interaction models, such as Unified Modeling Language (UML) sequence

diagrams [100] and International Telecommunication Union (ITU) message sequence

charts (MSC) [69], have been widely used to model specifications of distributed

workflows requiring communication among collaborating domains for service

provisioning [49, 83]. We use UML 2.0 sequence diagrams to model the distributed

workflow specification. A sequence diagram, shown in Fig. 4.2, specifies the

communication among the interacting entities as message exchanges. The vertical line in

a sequence diagram represents time and is called the lifeline of the corresponding

interacting entity. Message exchange between two entities is shown by an arrow from the

sender to the receiver. The communication between the interacting entities can be either

synchronous or asynchronous. In synchronous communication the sender blocks for the

subsequent action to complete, whereas, there is no nesting of control in asynchronous

communication. We consider all the message exchanges to be synchronous for the sake

of simplicity.

In the following, we provide a formal definition of workflow sequence diagrams.

4.2.1. Workflow sequence diagram (WSD)

In WSD, we consider the interacting entities of a sequence diagram as interacting

domains (IDs) defined in the following definition. In this definition, the incoming and

outgoing messages at an ID corresponds to input and output events respectively.

 91

 Definition 4.1 (ID). An Interacting Domain (ID) is a tuple {EV,≤, CS, T }

where,

• EV= In ∪ Out is a set of events which are partitioned into input and output events.

• ≤ ⊆ EV × EV is a partial ordering of events such that i j i jev ev ev occurs beforeev< ⇒

• CS: {c1,c2, …cr} is a set of component services offered by the ID

• T: In→ (CS × 2Out) maps the input event to the corresponding CS and set of output

events.

Definition 4.2 (WSD). A Workflow Sequence Diagram (WSD) is a tuple WSD=

{ID, TR} such that:

• ID= {ID1, ID2, ID3 ,……….IDr } is a finite set of interacting domains IDi={EVi ,≤i,,

CSi, Ti} 1 ,i r r d≤ ≤ ≤ where d is the total number of domains and EVi are disjoint sets

of events. Without loss of generality that ID1 always initiates the interaction.

• For a given IDj, TR maps a pair of events to the minimum and maximum duration

allowed between them. TR(evi, evj)= [dl, du] where dl, du ∈ Z+ , evi < evi and i ≠ j.

The set ID in a WSD contains all the interacting domains that provide the

required component services for workflow composition. The set of component services

offered by an ID is specified in its definition. A component service is associated with one

or more input events. An input event occurs with the arrival of an incoming message. The

mapping function T in the ID definition maps the input event to a component service and

a set of output events (output messages). The second element in the WSD tuple TR is a

function that maps any pair of events (evi, evj) to a finite time interval. This interval

specifies the minimum and maximum duration allowed between evi and evj provided that

evi occurs before evj. The WSD considered in this chapter supports the notion of parallel

interactions through concurrent message transmission as specified in UML 2.0 sequence

diagrams [103]. Such parallel interactions are needed to model the parallel invocation of

component services in different IDs. For instance, the concurrent messages “Tax

Exemption Query” and “Tax Sale Charge Query” corresponds to parallel invocation of

 92

the tax exemption processing service in County Treasurer Office (CTO) and tax sale

charges processing service in District Clerk Office (DCO).

Redemption
Payment

Exemption
Processing

Refund
Adjustment

Payment
Processing

Initial
Assessment

Final Estimate

Clearance
Processing

Tax Sale
Charges

PSCTO

[20min,55min]

60 min

[40min,170min]

10 min

5 min

[60min,235min]

[0min,40min]

20 min

10 min

10 min

5 min

PSCCO PSDCO

Property
owner CCO CTO DCO

Tax Estimate Request

Tax Exemption Query Tax Sale Charges Query

Tax Exemption Response

Tax Sale Charges response

Tax Estimate

Tax Payment Info

Tax Payment Confirmation

Clearance Certificate
Request

Clearance Certificate
issued

[8
5m

in
, 2

35
m

in
]

[20min,55min]
[5min,,55min]

[0, 60 min]

Initial
Assessment

(CCO)

Tax Sale
Charges
(DCO)

Final Estimate
(CCO)

Redemption
Payment
(CTO)

Clearance
Processing

(CCO)

Exemption
Processing

(CTO)

[0, 60 min]

[8
5m

in
, 4

80
m

in
]

 (a) (b) (c)

Fig. 4.2. (a) WSD of a distributed workflow involving urgent processing of tax
redemption request for delinquent real-estate property. (b) component services required
for performing tax redemption processing. (c) PW specification for each domain.

Example 4.1: Fig. 4.2(a) shows the WSD of a distributed workflow involving

urgent processing of tax redemption request for delinquent real-estate property. The

urgent processing entails that the entire business process of tax redemption be completed

in one business day. The domains involved in provisioning of this distributed workflow

include: property owner, County Clerk Office (IDCCO), County Treasurer Office (IDCTO),

and District Clerk Office (IDDCO) as shown in Fig. 4.2(a). The distributed workflow of

Fig. 4.2(a) is initiated by the property owner by filing a tax estimate request for the

delinquent property with IDCCO. This request invokes the initial assessment service in

IDCCO. After completion of the initial assessment, the IDCTO and IDDCO are queried for

exemption processing and tax sale charges for the given delinquent property index.

Based on the exemption amount and tax sale charges returned by IDCTO and IDDCO

respectively, the final estimate for the tax redemption amount is calculated and is

submitted to the property owner. Upon receiving the redemption cost estimate, the

property owner initiates the payment processing service for tax redemption with IDCTO.

 93

After the payment processing is completed, the property owner requests for issuance of

delinquent tax clearance certificate which launches the clearance processing service in

IDCCO.

The component services associated with the events of the WSD of Fig. 4.2(a) are

shown in Fig. 4.2(b). The time interval between events in the WSD of Fig. 4.2(a)

corresponds to the interval returned by the TR function for the corresponding events pair

as specified in the WSD definition. For instance, the time interval [85min, 480min]

between the tax exemption request, initiating the tax redemption processing workflow,

and the clearance certificate issued event implies that the distributed workflow must

complete within 480 minutes (8 hours) relative to the initiation time of the workflow. The

lower bound of 85 minutes implies that processing of this distributed workflow takes at

least 85 minutes.

4.2.2. Domain-specific projected workflow specification

The WSD specifies a high level description of the distributed workflow and

considers the component services as atomic operations provided by domains. However, a

component service may encapsulate a workflow process comprising multiple tasks. For

example the redemption payment service, shown in Fig. 4.2(c) comprises two tasks,

namely, refund adjustment and payment processing. The refund adjustment task precedes

the payment processing task in the workflow associated with the redemption payment

service. This low level description of the component service is specific to a domain and is

not required for distributed workflow specification. However, as discussed later, such

description is needed for composibility verification, which is performed for each domain

separately. In the following we formally define a component service of an ID.

Definition 4.4 (CS). For an ID, a component service (c ∈ CS) is a tuple c = {Tc,

≤, λ, β} where Tc is a set of tasks included in the workflow of c, and ≤ ⊆ Tc x Tc specifies

partial ordering between the tasks such that τ1≤τ2 (τ1,τ2 ∈ Tc) implies that τ1 precedes τ2

in the execution order. λ: Tc Ø Ζ+ is a function that maps a task to the time duration

required for its completion. β: Tc x TcØ Ζ+ x Ζ+ maps a task pair (τ1,τ2) to an interval

 94

[dl, du] (dl, du ∈ Ζ+) that specify the minimum and maximum duration between the

completion and initiation of τ1 and τ2 respectively.

 Each task of the component service has certain authorization constraints specified

in the corresponding domain’s access control policy. In order to verify workflow

composibility, we need to ensure that all the authorization constraints associated with

each task of the component service are satisfied. As discussed in the Introduction, each

domain is autonomous and may not reveal its access control policy to other domains for

security and privacy concerns. To facilitate workflow composibility verification with

respect to the access control policy of each domain, a domain-specific projected

workflow (PW) specification is generated from the WSD of the distributed workflow.

The PW specification provides the following information related to the corresponding

domain’s involvement in the distributed workflow: i) component services provided by the

domain in the WSD, ii) temporal constraints between the component services, and iii) the

task workflow associated with each component service as defined above. We model the

PW of a domain as a directed acyclic graph, which is constructed from the WSD and the

component service specification. Each node of PW graph represents a task and an edge

(τ1, τ2) represents the precedence relationship between the tasks τ1 and τ2. The node of a

PW graph is annotated with a non-negative integer specifying the time duration for

completion of the corresponding task. This information is obtained from the task duration

mapping function λ given in the respective CS specification. Each edge in a PW graph is

annotated with an interval that specifies the minimum and maximum duration between

the completion and initiation of successive tasks connected by the edge. In case the

successive tasks belong to the same CS the interval mapping function β provides this

information; otherwise, the interval is computed from the WSD specification.

Fig. 4.2(c) shows the PW graph of IDCTO, IDCCO and IDDCO for the tax redemption

workflow described in Example 4.1. The dashed arrows in Fig. 4.2(c) are not a part of

any PW graph and are used to illustrate the temporal ordering of cross-domain

component services in the distributed workflow specification.

 95

4.3. FSM of a domain’s Access Control Policy

To analyze the consistency of the workflow specification against a domain’s

dynamic and non-reentrant behavior, a state based representation of the domain’s access

control policy is needed. We use GTRBAC model for specification of the time-dependent

access control policies. In the following we first describe the GTRBAC semantics and

constraints used for modeling access control policies of domains and then describe a

finite state model (FSM) for state based representation of GTRBAC policies.

4.3.1. Preliminaries and assumptions

A domain’s GTRBAC policy specifies the authorizations for its component

services. As mentioned in Section 4.2, a component service is essentially an

encapsulation of one or more tasks with certain temporal and ordering constraints. At the

interaction modeling level, a task is viewed as an operation on a resource by an

authorized subject without considering who is authorized for the resource access and how

such operation can be executed. In the GTRBAC model, a task can be represented as an

activation of a particular role by an authorized user, where the role is a collection of

permissions required to perform the requested operation on the underlying resource

object(s) and the user corresponds to the subject executing the task. For establishing the

semantics relationship between a component service and the underlying user-role

activation in the GTRBAC policy, we define a function called domain role mapper

(DRM) that maps each task of the component service to a set of user role activation pairs

(u, r) such that each role r in the pair (u, r) has all the relevant permissions required for

processing of the task and the user u is authorized for role r. Formally: DRM(τ) = {(u, r) |

u is authorized for r and r contains all permission required for processing τ }.

As discussed in the Section 4.1, we are interested in verification of distributed

workflows that are executed recurrently. For supporting such workflows a domain’s

GTRBAC policy must allow access to its roles on a recurrent basis. Therefore, we

consider only those roles that can be accessed infinitely often and have a periodic

enabling time. For instance, a tax filing role in the tax payment workflow is enabled daily

 96

from 9:00 am to 5:00pm and can be accessed any time within its enabling interval.

GTRBAC allows specification of periodic time intervals for various role-related events

including role enabling. These periodic intervals are specified using periodic expressions

described in Section 2.2 of Chapter 2.

We assume that the periodic expressions corresponding to enabling of each role

are specified using the same number of calendars. For instance, if

1
1

.
n

i i d
i

PE O Cal x Cal
=

= ∑ � and 2
1

.
m

j j d
j

PE O Cal y Cal
=

= ∑ � denote the periodic expressions

for enabling of any two roles then Caln = Calm. If Calm < Caln, the left slicing operation

defined in [97] can be used to expand PE2 to Caln or vice versa. The duration of the

calendar Caln in terms of the basic calendar Cal1 is given by duration(Caln/Cal1). Let In =

[0, duration(Caln/Cal1)] denote the interval associated with the calendar period Caln. We

assume that the calendar Caln is the smallest calendar that contains the enabling intervals

of all roles of the given GTRBAC policy. Therefore, In corresponds to the smallest

interval that covers the enabling interval of all roles in one calendar period. We denote

the set of all intervals of a periodic expression PE that are contained in In by Γ(In, PE).

For example, for In = [0, 1440 minutes (1 day)] and PE = {all.days, {9, 15, 23}.Hours,

{20, 50}.Minutes � 15.Minutes}, Γ(In, PE) = {[09:20, 09:35], [09:50, 10:05], [15:20,

15:35], [15:50, 16:05], [23:20, 23:35], [23:50, 23:59], [00:00, 00:05]}. For computing

Γ(In, PE), we divide any interval I = [a , b] of a PE that overlaps with In but is not fully

contained in In, into two intervals I1 = [a, duration(Caln/Cal1)] and I2 = [0, b -

duration(Caln/Cal1)].

Periodic intervals can be specified for various constraints such as, role enabling,

role assignment, and role activation. However, for simplicity we consider periodic

intervals for role enabling events only. Given a role set R and an interval In, the enabling

intervals of all roles in R that are contained in In is denoted by the set EIR.

R
R R

(,) {[,]}n r r r
r r

EI I PE a b
∈ ∈

= Γ =∪ ∪ ,

where, PEr is the periodic expression for enabling of role r. We assume that each

role has only one enabling interval in EIR. If a role r has multiple enabling intervals, say

 97

m, then we create roles r1, r2,…, rm, one for each of the m intervals. Each role rj is similar

to r in user-role assignment, role permission assignment, SoD, and trigger constraints.

4.3.2. GTRBAC policy specification

In this section, we discuss the syntax and semantics of various GTRBAC constraints

used to specify the time dependent access control policies of domains. As discussed in

Chapter 2, the GTRBAC constraints can be divided in to six types: i) user-role

assignments and role-permission assignments, ii) periodicity constraints on role enabling,

iii) role activation constraints, iv) run-time events, v) triggers, and vi) separation of duty

(SoD) constraints. For specification of domains policies, we consider a restricted set of

GTRBAC constraints. These constraints are listed in Table 4.1. The user-role and role-

permission assignment expressions, listed in Table 4.1, specify the authorizations of users

over the GTRBAC roles and the underlying resources. For simplicity, we do not consider

any temporal and periodicity constraints on user-role and role permission assignments.

Omission of these constraints does not restrict the expressiveness of the GTRBAC model

considered in this dissertation, as the temporal constraints on user-role and role

permission assignments can be specified using role enabling constraints [79]. The

periodicity constraints on role enabling/disabling are specified using periodic expressions

as Table 4.1, specifies a lower and upper bound on the activation duration of a given role

by any user. Accordingly, the activation duration of a role in any session must be greater

than or equal to dr
min and less than or equal to dr

max, where dr
max ≥ dr

min > 0. The original

GTRBAC model does not constrain the activation of a role to a minimum duration.

However for state-based analysis of a GTRBAC policy, we require that a role be

activated for a finite number of times in any finite time interval. To satisfy this

requirement, we have introduced the minimum activation duration constraint for each

role.

 98

Table 4.1
GTRBAC Constraints considered for specification of domains’ policies

r ∈ R, u ∈ U, p ∈ P, tg ∈ TRG
R is a set of roles, U is a set of users, P is a set of permissions, and TRG is a set of Triggers
Constraints Expression Semantics
User-role
assignment

(assignU r to u) Role r is assigned to user u

Role-Permission
assignment

(assignU p to r) Permission p is assigned to role r

Periodicity
constraint on role
enabling

(PEr enable r) Role r is periodically enabled
during the intervals contained in the
periodic expression PEr

Duration constraint
on role activation

([dr
min, dr

max] active r) The activation duration of role r in
any session must be greater than or
equal to dr

min, and less than or equal
to dr

max.
Run-time request (activate/deactivate r for u) User’s/administrator’s request for

role activation or deactivation.
Trigger ev, sp1,…spk → ev’ An event ev must be immediately

followed by ev’ provided that all
status predicates sp1,…spk hold at
the time of the occurrence of ev.

Role-
specific

∀ r, r’ ∈ R-SoD(u), u-active(u,
r) ⇒ ¬u-active(u, r’)

R-SoD(u) is a set of conflicting
roles for user u, i.e., u can activate
at most one role in R-SoD(u) at any
given time.

SoD

User-
Specific

∀ u, u’ ∈ U-SoD(r), u-active(u,
r) ⇒ ¬u-active(u’, r)

U-SoD(r) is a set of conflicting
users for role r, i.e., r can be
activated by at most one user in U-
SoD(r) at any given time.

 99

Table 4.2.
 Event and status predicates used in the restricted GTRBAC Model

R ∈ R, u ∈ U, p ∈ P, tg ∈ TRG
 R is a set of roles, U is a set of users, P is a set of permissions, and TRG is a set of
Triggers
Simple Event Status Predicate Semantics
enable r ur-assigned(u, r) u is assigned to r
Disable r pr-assigned(p, r) p is assigned to r
activate r for u r-enabled(r) r is enabled

r-active(r) r is active in at least one user’s session
u-active(u, r) r is active in u’s session

de-activate r for u

trg-enabled(tg) Trigger tg is enabled, i.e., the event ev
defined in the body of the trigger tg has
occurred and the status predicates hold.

 100

Table 4.3
GTRBAC Policies of CTO and CCO domains

County Treasurer Office (IDCTO)
User-role
assignment

1 assignU u1 to {TEP, TPP}; assignU u2 to TPP; assignU u3 to TRP

Role-
permission
assignment

2 assignp p1(Tax Exemption Records, {read,write,approve}) to TEP;
assignp p2(Tax Refund Records, {read,write,approve}) to TRP;
assignp p3(Tax Payment Records, {read,write,approve}) to TPP;
assignp p4(Tax Billing Records, {read,write,approve}) to TRP and
TEP;
assignp p5(Tax Billing Records, {read) to TPP and TRP

Periodicity
constraints on
role enabling

3 PETEP: all.Days+ 10.Hours+1.Minutes@
420.Minutes; Γ(In, PETEP) = [09:00, 16:00]
PETPP: all.Days+ 11.Hours+1.Minutes@
240.Minutes; Γ(In, PETEP) = [10:00, 14:00]
PETRP: all.Days+ 11.Hours+1.Minutes@
240.Minutes; Γ(In, PETEP) = [10:00, 14:00]

(PETEP, enable TEP)
(PETPP, enable TPP)
(PETRP, enable TRP)

Role-
activation
constraint

4 ([120min, 420min] active TEP); ([240min, 240min] active TPP);
([240min, 240min] active TRP)

Separation of
Duty

5 U-SoD(TPP) = {u1, u2}

County Clerk Office (IDCCO)
User-role
assignment

6 assignU u4 to {TAP1, TAP2}; assignU u5 to {DTP1, DTP2}

Role-
permission
assignment

7 assignp p6(Tax Delinquency Records, {read}) to {TAP1, TAP2};
assignp p7(Property ownership Records, {read}) to {TAP1, TAP2};
assignp p8(Tax Exemption Records, {read}) to {DTP1, DTP2};
assignp p9(Tax Sale Records, {read}) to {DTP1, DTP2};
assignp p10(Redemption Invoice, {read,write,approve}) to {DTP1,
DTP2}

Periodicity
constraints on
role enabling

8 PETAP1: all.Days+ 9.Hours+1.Minutes@
240.Minutes; Γ(In, PETAP1) = [08:00, 12:00]
PETAP2: all.Days+ 15.Hours+1.Minutes@
180.Minutes; Γ(In, PETAP2) = [14:00, 17:00]
PEDTP1: all.Days+ 9.Hours+1.Minutes@
240.Minutes; Γ(In, PEDTP1) = [08:00, 12:00]
PEDTP2: all.Days+ 15.Hours+1.Minutes@
180.Minutes; Γ(In, PEDTP2) = [14:00, 17:00]

(PETAP1, enable
TAP1)
(PETAP2, enable
TAP2)
(PEDTP1, enable
DTP1)
(PEDTP2, enable
DTP2)

Role-
activation
constraint

9 ([240min, 240min] active TAP1); ([240min, 240min] active DTP1);
([180min, 180min] active TAP2); ([180min, 180min] active DTP2)

 101

The run-time events allow an administrator or a user to request the activation or

deactivation of a role. GTRBAC triggers are used to specify the dependence relationship

among events. The expression for a trigger considered in this chapter has the following

form: ev, sp1,…spk → ev’, where ev is a simple event expression and spis are GTRBAC

status predicates listed in Table 4.2. The event ev in the body of the trigger is called the

triggering event and ev’ is called the triggered event. We consider the triggered event ev’

to be a role deactivation event. Note that the original GTRBAC model allows ev’ to be

role enabling or disabling event [78]. However, we assume that roles are automatically

enabled during the specified time intervals. Therefore, defining triggers for role enabling

or disabling event will violate this assumption.

Separation of duty (SoD) constraints, listed in Table 4.1, are used to prevent

conflicting users from accessing same role concurrently or to prohibit conflicting roles

from being accessed by same user at the same time. Although SoD constraints can be

specified for user-role assignment, role enabling, and role activation, we consider SoDs

that are specific to role activations only. We assume that the user-role assignment

remains fixed throughout the policy life time and no periodic or temporal constraint is

defined on such assignments, therefore, assignment-specific SoDs are not considered.

Example 4.2: Table 4.3 shows the GTRBAC policies of domains IDCTO and

IDCCO collaborating for tax collection and payment processing. The roles of the IDCTO

include Tax Exemption Processor (TEP), Tax Refund Processor (TRP), and Tax Payment

Processor (TPP). The user role assignments of the GTRBAC policy of IDCTO are as

follows: u1 is assigned all three roles, u2 is assigned the TPP role, and u3 is assigned the

TRP role. TEP is authorized for accessing the tax exemption records for verification and

approval of exemptions claimed by property owners. TRP performs tax refund adjustment

in the tax bills due for payment. For this purpose, TEP has appropriate authorization for

accessing tax billing and refund records. TPP processes payments of adjusted tax bills by

property owners. For processing such payments, TPP is assigned a read permission on

tax billing records and read/write permission on tax payment records as shown in Table

4.3 TEP is enabled daily from 9:00am to 4:00 pm, while TRP and TPP are enabled from

10:00am to 2:00pm every day. For security reasons, IDCTO does not allow a single user to

 102

perform both exemption processing and payment processing for the same property index.

This constraint is defined as a role-specific separation of duty (SoD) constraint between

TEP and TRP roles, prohibiting any user (in this case u1) to activate both roles TEP and

TRP simultaneously.

The GTRBAC policy of the domain IDCCO includes four roles, namely: Tax

Assessment Processor (TAP) and Delinquent Tax Processor (DTP). TAP is authorized to

access tax delinquency and property ownership records for performing an initial

assessment of tax redemption cost. DTP is responsible for preparing the final estimate for

tax redemption. In addition, DTP also performs clearance processing. Both TAP and

DTP can be enabled from 8:00am to 12:00pm and from 2:00pm to 5:00pm. Since we

have assumed that a role can have only one enabling interval in a single calendar period,

therefore both TAP and DTP are split into two roles, namely: TAP1, TAP2, DTP1, and

DTP2. TAP1 and DTP1 are assigned the enabling interval of [8:00am, 12:00pm],

whereas, TAP2 and DTP2 are assigned the enabling interval [2:00pm, 5:00pm].

4.3.3. State-based representation of GTRBAC policy

We model the GTRBAC policy of a domain as a timed graph introduced by Alur

et. al.[4, 5]. Timed graphs have been widely used to characterize behavior of real-time

systems having finite number of states. A timed graph is a directed graph consisting of a

finite set of nodes, a finite set of edges, and a finite set of real-valued clocks. The

following definition characterizes the state space of the FSM of GTRBAC policy.

Definition 4.5 [GTRBAC Timed graph]: A GTRBAC timed graph is represented

by a tuple TG = <S, SP, μ, s0, E, C, c0, bmax, γ, δ >, where

• S is a finite set of nodes representing GTRBAC states.

• SP denote the set of GTRBAC status predicates. SP={r-enabled(r)| r ∈ R} ∪ {u-

active(u, r)| u∈ U, r∈R, and u-assigned(u, r)} ∪ {trg-enabled(tg)| tg is a trigger in

GTRBAC policy}.

 103

• μ: S → A ⊆ 2SP is a labeling function assigning to each state the set of status

predicates that are true in that state. Where, A is the maximal subset of 2SP such that

predicate assignment a ∈ A satisfies all the GTRBAC constraints listed in Table 4.4.

• E ⊆ S x S is a set of edges. The edges represent the events causing the domain to

move from one GTRBAC state to another.

• s0 ∈ S is the initial state and sreset ∈ S is the calendar clock reset state. In state s0 and

sreset all roles are disabled. For all state s ∈ S – {s0, sreset}, (s, sreset) ∉ E.

• C is a finite set of clocks.

• c0 is a calendar clock which is reset with the occurrence of clock reset event

represented by the edge from s0 to sreset.

• bmax =
R

max
r∈

{br}, where br is the end point of the interval during which role r is

enabled.

• γ is a function labeling each edge with an enabling condition of the form

1 0 2 1 2'
(c) ()x xx C
d d d x d

∈
≤ ≤ ∧ ≤ ≤ , where C′ ⊆ C and d1, d2, d1x, d2x ∈ Z+ with d1 ≤ d2 ≤

bmax and d1x ≤ d2x < bmax. For the edge ereset from s0 to sreset, γ(ereset) = bmax ≤ c0 ≤ bmax,

and for the edge e0 from sreset to s0, γ(e0) = 0 ≤ c0 ≤ 0.

• δ: E → 2C is a function mapping an edge to a set (possibly an empty set) of clocks

that are reset with the edge. The function δ maps the edge ereset from s0 to sreset to c0,

i.e., δ(ereset) = c0.

A node in a GTRBAC timed graph models the access control state of a domain

characterized by the status predicates true in that state. All states in S satisfy the

GTRBAC policy constraints including separation of duty constraints, dependence

constraint between role enabling and role activation, dependence constraint between role

assignment and activation, and trigger enabling constraint. These constraints are listed

Table 4.4. Edges in the GTRBAC timed graph represent the state transition events,

which are listed in Table 4.3. Each edge is labeled with an enabling condition defined

using clock values. At any point in time, the domain can make a transition from its

 104

current state si to a next state sj, if the enabling condition associated with the edge (si, sj)

is satisfied by the current values of clock. A clock can be reset with any state transition.

At any instant, the value of a clock is equal to the time elapsed since the last time the

clock was reset. Each edge in the GTRBAC timed graph is mapped to a set (possibly an

empty set) of clocks that are reset when the corresponding state transition event occurs.

In states s0 and sreset all roles are disabled. The state sreset is visited when no role can be

enabled during the current calendar period. By visiting state sreset, the calendar clock c0 of

a domain is reset/initialized to the starting point of next calendar period in which the

enabling and activation of roles follow the pattern of previous calendar periods.

The procedure for generating the FSM of a GTRBAC policy in a timed graph

representation is depicted in Fig. 4.3. This procedure first generates the state space of the

given GTRBAC policy by considering all valid status predicate assignments that satisfy

the GTRBAC constraints listed in Table 4.4. After generating the state space, the state

transitions in the GTRBAC timed graph are defined by creating the edge set E. For all

pairs of GTRBAC states si and sj, an edge is created from si to sj only if there exists a

GTRBAC event evij such that si satisfies all the precondition of evij and sj satisfies the

post conditions of evij. Next the edges in the set E are labeled with appropriate enabling

conditions and clock reset function.

The timed graph of the GTRBAC policy of the IDCTO generated by this procedure

is shown in Fig. 4.4(a). The initial state of this timed graph is s0
CTO and the calendar clock

reset state is sreset
CTO. The status predicates that are true in the GTRBAC states of Fig.

 4.4(a) are tabulated in Fig. 4.4(c). The events corresponding to the edges of Fig. 4.4(a)

and Fig. 4.4 (b) are listed in Fig. 4.4(e). Each edge is labeled with an enabling condition

defining the timing constraints for the corresponding GTRBAC event. For instance, the

edge e2, representing the event activate TEP for u1, is labeled with the enabling condition

‘540 ≤ c0 ≤ 840’. This enabling condition implies that the TEP role can be activated by u1

from the state s2 within an interval of [540, 840] minutes. This interval is defined with

respect to the calendar clock c0 which is initialized (reset) in state sreset
CTO.

 105

 GTRBAC-FS M
INPUT: GTRBAC Policy Instance
OUTPUT: Timed graph
1. Let SP={r-enabled(r)| r ∈ R}∪{u-active(u, r)| u∈U, r∈ R, and u-assigned(u,

r)}∪{trg-enabled(tg)| tg is a trigger in GTRBAC policy}
2. Let A be a maximal subset of 2SP such that each a ∈ A satisfies all the GTRBA C constraints listed

in Table 4.
3. Generate a set of states S such that |S| = |A| + 1.
4. Create a one-to-one mapping μ from states in the set S-{sreset} to predicate assignments in the set A.

Name the state that is mapped to an assignment in which all roles are disabled as s0. Let μ(sreset) =
μ(s0).

5. For each pair of states si and sj, if there is a GTRBAC event ev that can cause state transition from
si and sj, then create an edge eij from si and sj.

a. If ev is an enabling event of a ro le r then define the fo llowing mapping:
 γ(eij) = ar ≤ c0 ≤ ar
b. If ev is a disabling event of ro le r then define the fo llowing mapping:
 γ(eij) = (br ≤ c0 ≤ br)
c. If ev an act ivation event of role r by user u then define the following mappings:
 γ(eij) = ar ≤ c0 ≤ (br – dr

min)
 δ(eij) = cur

act, where, cur
act

 ∈ C is a clock that measure the time elapsed since activation of
role r by u.

d. If ev is a deactivation event of role r by user u then define the following mapping:
 γ(eij) = (ar + dr

min ≤ c0 ≤ br) ∧ (dr
min

 ≤ cur
act

 ≤ dr
max)

e. For each GTRBA C trigger tg: ev1, sp1,…spk → deactivate r for u, such that t-
enabled(tg) ∈ μ(si), t-enabled(tg) ∉ μ(sj), and (ev == deactivate r for u),
then γ(eij) = et(si).

6. Delete all edges eij corresponding to some event ev, if there exists a GTRBAC trigger tg: ev1,
sp1,…spk → deactivate r for u, such that one of the following holds:

a. t-enabled(tg) ∈ μ(si) and t-enabled(tg) ∈ μ(sj).
b. t-enabled(tg)∈ μ(si) and (ev ≠ deactivate r for u).
c. (ev ≠ ev1) and t-enabled(tg) ∈ μ(sj).

7. Create an edge e0 from sreset to s0 and define the following mapping:
γ(e0) = 0 ≤ c0 ≤ 0

8. Create an edge ereset from s0 and sreset and define the following mapping:
γ(ereset) = bmax ≤ c0 ≤ bmax
δ(ereset) = c0

Fig. 4.3 Procedure for generating the timed graph of a GTRBAC policy

 106

disable TAP2

disable DTP2

activate DTP2 for u5

enable DTP2

activate TAP2 for u4

enable TAP2

disable TAP1

disable DTP1

activate DTP1 for u5

enable DTP1

Events

e35

e34

e33

e32

e31

e30

e29

e28

e27

e26

Edges

activate TAP1 for u4e25disable TRPe9,e18

enable TAP1e24deactivate TPP for u2e8

Reset event for c0 in CTOe23deactivate TRP for u3e7,e16

New Periode22activate TRP for u3e6,e15

Reset event for c0 in CTOe21activate TPP for u2e5

disable TEPe20enable TRPe4,e13

deactivate TPP for u1e17enable TPPe3,e12

activate TPP for u1e14activate TEP for u1e2,e19

disable TPPe10New Periode0

deactivate TEP for u1e11enable TEPe1,

EventEdgesEventEdges

disable TAP2

disable DTP2

activate DTP2 for u5

enable DTP2

activate TAP2 for u4

enable TAP2

disable TAP1

disable DTP1

activate DTP1 for u5

enable DTP1

Events

e35

e34

e33

e32

e31

e30

e29

e28

e27

e26

Edges

activate TAP1 for u4e25disable TRPe9,e18

enable TAP1e24deactivate TPP for u2e8

Reset event for c0 in CTOe23deactivate TRP for u3e7,e16

New Periode22activate TRP for u3e6,e15

Reset event for c0 in CTOe21activate TPP for u2e5

disable TEPe20enable TRPe4,e13

deactivate TPP for u1e17enable TPPe3,e12

activate TPP for u1e14activate TEP for u1e2,e19

disable TPPe10New Periode0

deactivate TEP for u1e11enable TEPe1,

EventEdgesEventEdges

(600≤c0≤ 600)?
δ(e15) = c3

e15

e2 (540≤c0<840)?
δ(e1) = c1

e3 (600≤c0≤ 600)?

e1
(540≤c0≤ 840)?

sreset
CTO

s0
CTO

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

(600≤c0≤ 600)?

(600≤c0≤ 600)?
δ(e5) = c2

(600≤c0≤ 600)?
δ(e5) = c3

(600≤c0≤ 600)?

(600≤c0≤ 600)?

(600≤c0≤ 600)?
δ(e14) = c4

(0≤c0≤0)?
(960≤c0≤960)?

δ(e0) = c0 e0

e4

e5

e6

e12

e13

e14

e21

(840≤c0≤ 840) ∧
(240≤c3≤ 240)?

(840≤c0≤ 840) ∧
(240≤c2≤ 240)?

e7

e8

(840≤c0≤840)?

(840≤c0≤840)?

e9

e10

e11(960≤c0≤960)?

(960≤c0≤960)?
e20

(840≤c0≤ 840) ∧
(240≤c3≤ 240)?

e16

e17

(840≤c0≤ 840) ∧
(240≤c4≤ 240)?

e18
(840≤c0≤ 840)

(540≤c0<840)?
δ(e1) = c1

e19

sreset
CCO

s0
CCO

(0≤c0≤0)?
(960≤c0≤960)?

δ(e0) = c0 e22e23

s20

s21

s22

s23

s24

s25

s26

s27

(480≤c0≤480)?

(480≤c0≤480)?

(480≤c0≤480)?

(480≤c0≤480)?

(7
20
≤c

0≤
72

0)
?

(7
20
≤c

0≤
72

0)
?

(840≤c0≤840)?

(840≤c0≤840)?

(840≤c0≤840)?

(840≤c0≤840)?

(840≤c0≤840)?

(7
20
≤c

0≤
10

20
)?

10
(7

20
≤c

0≤
10

20
)?

10

e24

e25

e26

e27

e28

e29

e30

e31

e32

e33
e34

e35

1010111s11

0010111s10

1101111s7

0001111s5

0

0

0

0

0

0

0

000111s9

000011s8

101111s6

001011s4

001001s3

000001s2

000000s0
CTO, sreset

CTO

1010111s11

0010111s10

1101111s7

0001111s5

0

0

0

0

0

0

0

000111s9

000011s8

101111s6

001011s4

001001s3

000001s2

000000s0
CTO, sreset

CTO

en
ab

le
(T

E
P)

u-
ac

tiv
ee

(u
1,T

E
P)

en
ab

le
(T

PP
)

en
ab

le
(T

R
P)

u-
ac

tiv
ee

(u
1,T

PP
)

u-
ac

tiv
ee

(u
2,T

PP
)

u-
ac

tiv
ee

(u
3,T

R
P)

St
at

es

00000100s24

01000100s25

01001100s26

11001100s27

00110011s23

00010011s22

00000000s0
CCO, sreset

CCO

0

0

0

0

010001s21

000001s20

00000100s24

01000100s25

01001100s26

11001100s27

00110011s23

00010011s22

00000000s0
CCO, sreset

CCO

0

0

0

0

010001s21

000001s20

St
at

es

en
ab

le
(T

A
P 1)

en
ab

le
(D

T
P 1)

en
ab

le
(T

A
P 2)

en
ab

le
(D

T
P 2)

u-
ac

tiv
ee

(u
4,T

A
P 1)

u-
ac

tiv
ee

(u
5,D

T
P 1)

u-
ac

tiv
ee

(u
4,T

A
P 2)

u-
ac

tiv
ee

(u
5,D

T
P 2)

Fig. 4.4. (a) Timed graph of the GTRBAC policy of IDCTO. (b) Timed graph of the
GTRBAC policy of IDCCO. (c) GTRBAC status predicate assignment to the states of
Fig. 4.4(a). (d) GTRBAC status predicate assignment to the states of Fig. 4.4(b). (e)
Events associated with the edges of Fig. 4.4(a) and 4(b).

 107

Table 4.4
Constraints on all valid status predicate assignment to GTRBAC states

SP={r-enabled(r)| r ∈ R}∪{u-active(u, r)| u∈U, r∈R, and u-assigned(u, r)}∪{trg-
enabled(tg)| tg is a trigger in GTRBAC policy}
∀a ∈ A such that A is a maximal subset of 2SP, the following constraints must be satisfied:
 Constraints Meaning

1 u-active(u, r) ∈ a ⇒ r-enabled(r) ∈ a A disabled role cannot be activated
by any user in any GTRBAC state.

2

∀r, r’ ∈ R such that Γ(In, PEr) ∩ Γ(In, PEr’) = φ,
r-enabled(r) ∈ a ⇒ r-enabled(r’) ∉ a

Two roles with disjoint enabling
intervals cannot be enabled
simultaneously in any GTRBAC
state.

3
∀r, r’ ∈ R such that Γ(In, PEr)=[ar, br], Γ(In, PEr’)
= [ar’, br’], and ar’ ≤ ar ≤br ≤ br’,
r-enabled(r) ∈ a ⇒ r-enabled(r’) ∈ a

If the enabling interval of r is
contained in the enabling interval
of r’, then in any GTRBAC state in
which r is enabled, r’ is also
enabled.

4 ∀ r, r’ ∈ R-SoD(u),
u_active(u, r) ∈ a ⇒ u_active(u, r’) ∉ a

In any GTRBAC state, a user u can
activate at most one role in R-
SoD(u).

5 ∀ u, u’ ∈ U-SoD(r),
u_active(u, r) ∈ a ⇒ u_active(u’, r) ∉ a

In any GTRBAC state, at most one
user in the set U-SoD(r) can
activate r.

For any trigger tg: ev1, sp1,…spk → deactivate r for u

6

trg-enabled(tg) ∈ a ⇒
1

k

i=
∧ spi∈ a ∧

u-active(u, r) ∈ a ∧[(u-active(u’, r’) ∈ a if
ev1==activate r’ for u’) ∨ (u-active(u’, r’) ∉ a if
ev1==deactivate r’ for u’) ∨ (r-enable(r’) ∈ a if
ev1==enable r’) ∨ (r-enable(r’) ∉ a if ev1==disable
r’)]

Trigger tg is enabled only if the
event ev1 occurs and at the time of
occurrence of ev1, all status
predicates defined in the triggers
body hold.

After enabling of trigger tg, the
only event that can occur is
deactivate r for u.

4.3.4. Definition of state path and timing constraints

In this section, we define state path and the state timing constraints. These timing

constraints are used to determine the composibility of a given distributed workflow with

respect to the FSM of domains as discussed in Section 4.4.

Definition 4.6 (State Path): A state path π is a sequence s1.e1.s2.e2……,en-1.sn, n

> 0, such that the symbol si (1 ≤ i ≤ n) in path π denotes a GTRBAC state, and the

 108

symbol ej (1 ≤ j ≤ n-1) denotes an edge in the timed graph of GTRBAC policy. The edge ej

represents the event that causes a transition in the GTRBAC system from state sj to sj+1.

Definition 4.7 (State Entry Time): The time instant at which a GTRBAC state,

say sj, can be visited is called the entry time of state sj and is denoted by et(sj). The entry

time of a state is measured relative to the domain’s calendar clock c0, which is initialized

and reset in state sreset only.

For computing et(sj), we need to determine the enabling and activation times of

all roles that are enabled and active in state sj. Let Rj
en and Rj

act, respectively, denote the

set of roles that are enabled and active in state sj. The following constraint defines an

upper and lower bound on value of et(sj).
min

" "
R " R

max{ } () max{ }
en act
i i

r j r r
r r

a et s b d
∈ ∈

≤ ≤ − ,

where, [ar, br] is the enabling interval of role r, and dr
min is the minimum duration

for which r can be activated by any user.

Definition 4.8 (State Residence Time): The time a domain stays in a particular

GTRBAC state, say sj, in a state path, say π, is called the residence time of state sj in π.

Let tπ
sj denote the residence time of state sj in path π: s1.e1……ej-1sj.ejsj+1.…,en-

1.sn. Suppose γ(ej) =
'x C∈

∧ d1x ≤ x ≤ d2x is the enabling condition for the event represented

by edge ej, where C’ ⊆ C and c0 ∈ C’. For a clock x ∈ C’, let ej-kx be an edge in π such

that x ∈ δ(ej-kx), (i.e., clock x is reset at the edge ej-kx) and there is no other edge ep

between ej-kx and ej in π for which x ∈ δ(ep). The following inequalities provides a bound

on the residence time tπ
sj with respect to the residence time of the predecessor states of sj

in path π.

∀x ∈ C’, d1x ≤
0

kx

p=
∑ tπ

sj-p ≤ d2x

We refer to the above inequality as residence time constraint. Note that in the

GTRBAC timed graph definition, the enabling condition for each event is defined with

respect to the calendar clock c0 of the domain, which is reset when the domain make a

transition from state s0 to sreset by traversing the edge ereset. However, the edge ereset may

not be included in the state path π. To ensure that a valid residence time constraint can be

 109

defined for each state in π, we concatenate a dummy path πd: sd1.ed1.sd2.ed2 to the

beginning of π, where δ(ed1) = c0 and γ(ed2) = et(s1). It can be easily proved that the entry

time of all states in π remains unchanged with the concatenation of path πd. The main

reason for this concatenation is that the calendar clock c0 is initialized just before the first

state of π is visited, therefore, the residence time constraint can be defined for all states in

π.

Definition 4.9 (Traversal time of a state path): The traversal time of a state

path π is defined as the sum of the residence times of all states included in π.

Given a state path π: s1.e1……ej-1sj.ejsj+1.…,en-1.sn, we can compute its minimal or

maximal traversal time using the procedure given in Fig. 4.5. This minimal and maximal

value for state path traversal is used to determine if the given state path π satisfies the

duration and temporal constraints associated with the component services as discussed in

Section 4.4.

path-traversal-time(π)
1. π’ ← πd. π, where πd is a dummy path sd1.ed1.sd2.ed2 with δ(ed1) = c0 and
 γ(ed2) = et(s1).
2. p ← index(first-state(π’)) and q ← index(last-state(π’))
3. for i ← p to q
4. do define the residence time constraints for state si and add it to the set of

equations/inequalities for path π’.
5. Solve the system of residence time constraint generated in steps 2 and 3 for minimal

or maximal value of
q

i p=
∑ tπ’

si

Fig. 4.5 Procedure for computing the minimum or maximal residence time of

states in a state path.

In Section 4.5.1, we present an algorithm for verifying the correctness of a PW

with respect to the GTRBAC policy of a domain. This algorithm iteratively discovers all

state paths with traversal time less than a given threshold value between a given pair of

sates. To discover such paths, we need to have a priori information about the residence

time of all the states in the corresponding domain’s FSM. For this purpose, we define a

 110

minimum residence time graph (MRTG) which is generated from the GTRBAC timed

graph.

Definition 10 (Minimum Residence Time Graph): A minimum residence time

graph (MRTG) of a domain is a tuple MRTG = <S, E, w>, where, S and E respectively

denote the sets of states and edges defined in the GTRBAC timed graph, and w is a

weight function that maps each edge in the set E to a non-negative real number. For an

edge ej from state sj to sj+1, w(ej) denotes the minimum time the domain stays in GTRBAC

state sj before moving to the next state sj+1.

For computing w(ej), we evaluate the minimum residence time of state sj over all

over all possible state paths passing through edge ej. Fig. 4.6 shows a procedure for

determining the weight w for each edge in MRTG.

MRTG-Edge-Weights
1.Set w(ej) ← ∞ for all ej ∈ E.
2.For each pair of states sp, sq ∈ S (p ≠ q), find a set of all simple paths ∏pq from sp

to sq.
3.For each π in ∏pq compute the minimum traversal time of π. Let tπ

ej denote the
residence time of state sj such that sj is connected to its successor state sj+1 in π
by the edge ej.
 if tπ

ej < w(ej), then w(ej) ← tπ
ej

4.Repeat step 3 for all state pairs sp, sq ∈ S

Fig. 4.6 Procedure for determining the edge weights in a MRTG

Note that the length of any path in the minimum residence time graph defines a

lower bound on the traversal time of the corresponding path in the GTRBAC timed

graph. Therefore, the set of all MRTG paths between state nodes si and sj that are shorter

than a given threshold value T includes all state path from si to sj with traversal time less

than T.

 111

4.4. Composibility Verification

In this section, we describe the proposed approach for verification of workflow

composibility. For verifying secure composibility of a distributed workflow, the

correctness of the workflow specification needs to be evaluated against the individual as

well as the collective behavior of all collaborating domains. This requirement provides a

general guideline for analyzing the composibility of a given distributed workflow. In

Section 4.4.1, we translate this requirement into a set of workflow composibility

conditions against which the correctness of the distributed workflow is evaluated.

We use a two-step approach for verifying secure workflow composibility. In the

first step, the distributed workflow specifications are analyzed for conformance with the

security and access control policy of each collaborating domain. In the next step, the

cross-domain dependencies amongst the component services of the workflow are

verified. We use the term cross-domain dependency to refer to the precedence

relationship between component services of the workflow that are provided by different

domains. For instance, in Fig. 4.2 there is a cross-domain dependency between the final

estimate preparation service provided by IDCCO and the redemption payment processing

service provided by IDCTO. For a given distributed workflow, the set CSdep defined in

Table 4.5 captures all the cross-domain dependencies of the workflow.

 112

Table 4.5
Symbols and notations used in defining workflow composibility conditions

Symbol/Notation Description
PWi Projected workflow assigned to domain IDi
CSi Set of component services provided by domain IDi
CSdep Set of all cross-domain component services that have a precedence

relationship.
CSdep = {(cq , cr) | cq ∈ CSi, cq ∈ CSj (i ≠ j), and cq precedes cr in the
execution order of the distributed workflow}

πi State path of domain IDi that satisfies WC1, WC2, and WC3 for PWi
Π(i) Set of all paths that satisfies conditions WC1, WC2, and WC3 for the

projected workflow PWi
, 1

min
q qT + (, 1

max
q qT +) Minimum (maximum) time between completion of intra domain

component services cq and cq +1
φq

πI (θq
πi) Initiation (completion) time of component services cq in path πi

[min(φq
πi), max(φq

πi)] Time interval during which component services cq can be initiated in path
πi

[min(θq
πi), max(θq

πi)] Time interval during which component services cq can be completed in
path πi

Δi Duration of the smallest calendar period that contains the enabling
intervals of all role of IDi

CS(i)
init Time interval during which each component service of domain IDi can be

initiated. CS(i)
init={[min(φq

π), max(φq
π)] | cq ∈ CSj and π ∈ Π(i)}

CS(i)
end Time interval during which each component service of domain IDi can be

completed. CS(i)
end={[min(θq

π), max(θq
π)] | cq ∈ CSj and π ∈ Π(i)}

The overall process of workflow composibility verification is depicted in Fig. 4.1.

In this process, first a projected workflow (PW) specification is generated from the

distributed workflow specification for all domains. The PW specification of a domain is

represented in form of a task graph as discussed in Section 4.2. Next a mapping is

established between each task of the PW and the user-role activation required for

execution of the corresponding task. After establishing the semantic mapping, a state-

based representation of a PW is generated by mapping the GTRBAC based specification

of the PW to all valid state paths that satisfy all the constraints included in the PW

specification. The procedure for state mapping is given in Section 4.5.1. Mapping of a

PW to valid state paths verifies the consistency of the distributed workflow with respect

to the access control policy of the corresponding domain. However, this PW to state path

mapping does not imply that the domain can satisfy the cross-domain dependency

constraints amongst the component services of the distributed workflow. For this

 113

purpose, all combinations of valid state paths from all domains are analyzed for

satisfaction of cross-domain dependencies. In Sections 4.4.2 and 4.2.2, we discuss how

the state paths from different domains are verified for preservation of cross-domain

dependencies among the component services.

4.4.1. Workflow composibility conditions

In this section, we specify the criteria for workflow composibility verification in a

formal manner. In particular, we define a set of conditions against which a distributed

workflow specification is evaluated. We classify these conditions as intra-domain and

inter-domain workflow composibility conditions.

4.4.1.1. Intra-domain workflow composibility conditions

The intra-domain workflow composibility conditions are used to verify domain-

specific projected workflow for conformance with the local GTRBAC policy of the

domain. Let TGA denote the timed graph of the GTRBAC policy of domain IDA, and

PWA be the task graph corresponding to the projected workflow of IDA. For a task τi ∈

PWA, let φi
π’ denotes the time instant at which the processing of τi is initiated. We say

PWA is consistent with respect to TGA if there exist a state path π’ = (πd).(π) =

(sd1ed1sd2ed2).(s1e1s2….en-1sn), such that δ(ed1) = c0, γ(ed2) = et(s1), for all k < n, (sk, sk+1) ∈

E and the following conditions hold:

WC1. For each task τi ∈ PWA, there exists a sub-path, πi = si
1ei

1si
2…. ei

m-1si
m, of π that

satisfies the following properties:

a. index(si
k+1) = index(si

k) + 1 for 0 < k < m, where the function index(s) returns

the index of state s in the sequence π.

b. There exists (u, r) ∈ DRM(τi) such that role r is active for user u in all the

states of the sub-sequence πi. As discussed in Section 4.3.1, the function

DRM(τi) maps τi to a set of user role activation pair (u’, r’) such that each r’

has the required permissions for processing task τi and u’ is authorized for r’.

 114

1
'

d2
1 1

()
i

p q

s sk sk i
k k

t t t durationπφ τ
−

= =
+ ∑ ≤ ≤ ∑ −

Where p = index(si
1), q = index(si

m), and tsk is the residence time of state sk in path

π and tsd2 is the residence time of state sd2 in π’ (see Section 4.3.3).

WC2. For any pair of tasks τi and τj of PWA such that τi precedes τj in the task

execution order, the time associated with the completion of task τi is less than or

equal to the time associated with the initiation of task τj. Formally:
' '()

i jidurationπ πφ τ φ+ ≤ ,

WC3. For any pair of tasks τi and τj of PWA such that τi precedes τj in the task execution

order with the temporal constraint requiring the delay between the completion of

τi and initiation of τj to be bounded by the interval [Tmin, Tmax], the following

inequalities must hold:
' '()

i jidurationπ πφ τ φ+ ≤

' '
min maxT (()) T

j i idurationπ πφ φ τ≤ − + ≤ .

Intuitively, the first condition (WC1) implies that for a PW to conform with the

corresponding domain’s policy, at least one state path must exist that satisfies duration

constraints of each task of the PW. The workflow composibility conditions WC2 and

WC3 imply that such state path must also satisfy the temporal constraints between all

task pairs of the PW. These constraints include the precedence relationship and the timing

constraints between task pairs of a PW as discussed in Section 4.2.2.

4.4.2. Inter-Domain workflow composibility condition

The inter-domain workflow composibility condition defines the criterion for

evaluating the correctness of workflow specification with respect to the collective

behavior of all collaborating domains. In particular, this condition stipulates that the

cross-domain dependencies among the component services in a distributed workflow

specification needs to be satisfied. For this purpose, the state paths of all collaborating

domains that satisfy the intra-domain workflow composibility conditions (WC1, WC2,

and WC3) need to be analyzed for satisfaction of cross-domain dependencies. This

 115

analysis requires comparing the earliest and latest initiation/completion time of inter-

domain component services or tasks that are involved in cross-domain dependencies. As

mentioned in Section 4.2, a component service may itself be a workflow process

comprising multiple tasks. The initiation time of a component service corresponds to the

initiation time of the first task of the workflow associated with the component service.

Similarly, the completion time of a component service is the completion time of the

last/final task of the component service workflow.

With reference to the state path π’=(πd).(π)=(sd1ed1sd2ed2).(s1e1s2….en-1sn)

considered in Section 4.4.1.1, The expression
1

'
d2

1 1
()

i

p q

s sk sk i
k k

t t t durationπφ τ
−

= =
+ ∑ ≤ ≤ ∑ − defines a range of values for the initiation time of

each task τi in π’ with respect to the calendar clock of the domain performing this task.

We assume that the calendar clocks of all collaborating domains are synchronized at the

time their policy instances are created. Note that this assumption does not restrict

domains to have different periods for resetting of their calendar clocks. For instance the

calendar clock of one domain may reset on a daily basis, whereas the calendar clock of

another may reset on a weekly basis. With this assumption, the calendar clock values of

all domains can be compared and so the cross-domain dependencies amongst the

component services can be verified based on the timing information provided by the

domains. This timing information includes the earliest and latest time for

initiation/completion of tasks that are involved in cross-domain dependencies. Fig. 4.7

depicts the procedure for computing earliest and latest initiation times for each task of the

PW. The earliest and latest completion time of any task τ can be easily computed by

adding duration(τ) to the task initiation time values returned by the procedure.

 116

task-initiation-time
INPUT: π’ = (πd).(π) = (sd1ed1sd2ed2).(s1e1s2….en-1sn), such that δ(ed1) = c0, γ(ed2) =
et(s1)
 PW
OUTPUT: min(φi

π’) for each τi ∈ PW
 max(φi

π’) for each τi ∈ PW
1 Generate a system of linear inequalities by adding:
a residence time constraints for each state included in π’.
b task initiation time constraint (composibility condition WC1) for each τi ∈

PW
c precedence constraint between all pairs of tasks τi, τj ∈ PW such that τi

precedes τj in the task execution order with the temporal constraint
requiring the delay between the completion of τi and initiation of τj to be
bounded by the interval [Tmin, Tmax] (composibility conditions WC2 and
WC3).

2 Solve the system of constraints generated in step 1 with the objective of
minimizing Σiφi. The value assigned to each φi equals min(φi

π’).
3 Solve the system of constraints generated in step 1 with the objective of
maximizing Σiφi. The value assigned to each φi equals max(φi

π’).

Fig. 4.7. Procedure for computing the earliest and latest initiation time of each
task in a projected workflow.

Proposition 4.1: Given a task τi ∈ PW, the time min(φi
π’) (max(φi

π’)) computed

using the task initiation time procedure is the earliest (latest) time at which the task τi can

be initiated in state path π’ that satisfies intra-domain workflow composibility conditions

WC1, WC2, and WC3 for PW.

Proof of this proposition is provided in the Appendix B.

The cross-domain dependencies amongst the component services can be

represented in an algebraic form based on the task initiation and completion information

provided by collaborating domains. The notations and symbols used in this representation

of cross-domain dependencies are listed in Table 4.5.

For any pair of cross-domain component services cq and cr such that (cq, cr) ∈

CSdep, the following set of inequalities captures both the intra-domain and cross-domain

dependency constraints between cq and cr.

 117

i j
i q j yv wπ πθ φΔ + ≤ Δ + (v, w ∈ Z+) (I)

min() max()i i i
q q q
π π πθ θ θ≤ ≤ (II)

min() max()i i i
q q q
π π πφ φ φ≤ ≤ (III)

min() max()j j j
r r r
π π πθ θ θ≤ ≤ (IV)

min() max()j j j
r r r
π π πφ φ φ≤ ≤ (V)

, 1 , 1
min max
q q i q q

q qT i Tπ πφ θ+ +≤ − ≤ (VI)

1, 1,
min max
r r j j r r

r rT Tπ πφ θ− −≤ − ≤ (VIII)

Constraint (I) implies that the component service cq must be completed before cr is

initiated in any calendar period. The variables θq
πiand φr

πj denote the completion and

initiation times of component services cq
 and cr in state paths πi and πj respectively. The

bounds on these two variables are specified in constraints (II) - (V) given above.

Constraints (VI) and (VII) specify timing constraints between the intra-domain

component services. These timing constraints are computed while generating PW

specification as discussed in Section 4.2.

If the solution set of the above system of inequalities generated for all (cq , cr) ∈

CSdep is non-empty then the state paths πi and πj jointly satisfy all the cross-domain

dependencies between PWi and PWj. Based on this implication, the following condition

for verifying the workflow composibility with respect to temporal dependencies among

the component services can be defined.

WC4. Two state paths πi and πj, respectively satisfying conditions WC1, WC2, and

WC3 for the projected workflows assigned to IDi and IDj, are consistent if they

satisfy all the cross-domain dependencies included in the set CSdep.

4.4.3. Overall criteria for workflow composibility

Based on the intra-domain and inter-domain workflow composibility conditions,

we provide the following overall criteria for workflow composibility.

Given a distributed workflow S, a set of S’s projected workflows PW =

{PW1,…,PWn}, a set of cross-domain dependencies among component services CSdep =

 118

{(ci
q

 , cj
r)| ci

q
 precedes cj

r and 1≤ i,j ≤ n and i≠j}, and a set F of FSMs, modeling domains’

GTRBAC policies. Let Π(i) denote the set of state paths of IDi such that each path in Π(i)

satisfies workflow composibility conditions WC1, WC2, and WC3 for PWi. We say that

S is composable with respect to F if the following hold:

• For any IDi, the set of paths Π(i) is non-empty.

• There exists a tuple (π1, π2, …,πn) ∈ Π(1)
 × Π(2)

 × …× Π(n)
 such that (π1, π2,

…,πn) satisfy all cross-domain dependencies (ci
q
 , cj

r) ∈ CSdep, where 1≤ i,j ≤ n.

Table 4.6
Constraints on the initiation and completion times of component services imposed

by state paths π1 and π2.
ΔCTO 1440 ΔCCO 1440

[min(φEP
π1), min(φEP

π1)] [540, 740] [min(φIA
π2), min(φIA

π2)] [480, 585]

[min(φRA
π1), min(φRA

π1)] [620, 800] [min(φFE
π2), min(φFE

π2)] [505, 610]
[min(θEP

π1), min(θEP
π1)] [560, 760] [min(φCP

π2), min(φCP
π2)] [605, 710]

[min(θPP
π1), min(θPP

π1)] [680, 840] [min(θIA
π2), min(θIA

π2)] [485, 590]
[min(θFE

π2), min(θFE
π2)] [565, 670]

[min(θCP
π2), min(θCP

π2)] [615, 720]
φFE

π2-θIA
π2 ≥ 20 and ≤55

φRA
π1-θEP

π1 ≥ 60 and ≤235

φCP
π2-θFE

π2 ≥ 40 and ≤170

Example 4.3: Consider the projected workflows PWCTO and PWCCO assigned to

IDCTO and IDCCO as shown in Fig. 4.2. The GTRBAC policies of these domains are listed

in Table 4.3 and the corresponding FSMs (FCTO and FCCO) are shown in Fig. 4.4. For

IDCTO, we consider the state transition path π1 = s3.e3.s4.e4.s5.e5.s6.e6.s7.e7.s6 of FCTO that

satisfies the composibility conditions WC1, WC2, and WC3 for PWCTO. In the path π1,

all the states s3, s4, s5, s6, and s7 support execution of exemption processing (EP) task that

requires activation of the role TEP by an authorized user (in this case u1). The task of

payment processing (PP) can be performed in states s6 or s7 in which the role TPP is

active for user u2. Finally, in state s7 the refund adjustment (RA) task can be processed by

u3 assuming the role TRP. For the projected workflow PWCCO, the state path π2 =

s21.e26.s22.e27.s23.e28.s21 of FCCO satisfies the composibility conditions WC1, WC2, and

WC3. In the path π2, the initial assessment (IA) task can be processed in all states

 119

included in π2. The tasks of preparing final estimate (FE) and clearance processing (CP)

can only be performed in state s23. The constraints on the initiation and completion times

of the component services imposed by state paths π1 and π2 are listed in Table 4.6.

To verify whether the state paths π1 and π2 satisfy all the cross-domain

dependencies between IDCTO and IDCCO, the following system of constraints is generated

and solved for a feasible solution.
2 1 1 2

2 1 1 2

2 2 2

(a1) ; (a2) ;
(a3) ; (a4) ;

(a5) 480 585; (a6) 505 610; (a7) 605 710;

(a8) 485

CCO IA CTO EP CTO EP CCO FE

CCO FE CTO RA CCO PP CCO CP

IA FE CP

IA

v w w v
v w v w

π π π π

π π π π

π π π

π

θ φ θ φ
θ φ θ φ

φ φ φ

θ

Δ + ≤ Δ + Δ + ≤ Δ +
Δ + ≤ Δ + Δ + ≤ Δ +

≤ ≤ ≤ ≤ ≤ ≤

≤ 2 2 2

1 1 1 1

2 2 2 2

590; (a9) 565 670; (a10) 615 720;

(a11) 540 740; (a12) 620 800; (a13) 560 760; (a14) 680 840;

(a15) 20 55; (a16) 40 170; (a17) 60

FE CP

EP RA EP PP

FE IA CP FE R

π π

π π π π

π π π π

θ θ

φ φ θ θ

φ θ φ θ φ

≤ ≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

≤ − ≤ ≤ − ≤ ≤ 1 1 235;
(a18) 0 and integer; 0 and integer

A EP

v v

π πθ− ≤
≥ ≥

One of the feasible solutions to the above system of inequalities have the

following assignment: v = w = 1, φIA
π2 =580, θIA

π2 = 590, φEP
π1=590, θEP

π1 = 610, φFE
π2

=610, θFE
π2 =670, φRA

π1=670, θPP
π1 = 710, φCP

π2 = 710, θCP
π2 = 720. With this assignment

the initiation time of the tax redemption workflow of Fig. 4.2 is 580 minutes with respect

to the calendar clock of IDCCO, i.e., the tax redemption workflow can be initiated at 9:40

am. Note that the above system of inequalities is satisfied if we add the term km’ to both

sides of constraints a1 - a4, listed above. Where m′ is the lowest common multiple of

vΔCTO and wΔCCO, and k is any non-negative integer. For the above assignment, m′ equals

1440. With reference to the FSM of Fig. 4.4, m′ corresponds to a periodic time instant at

which IDCTO returns to state s3 (first state of π1) and IDCCO returns to state s21 (first state

of π2). This means that the tax redemption workflow can be repeatedly initiated after

every 1440 minutes (24 hours) since its previous initiation. In other words, the workflow

can be initiated every day at 9:40 am.

4.5. Composibility Verification Algorithm

In this section, we present two algorithms for verifying the composibility of a

given distributed workflow. The first algorithm, presented in Section 4.5.1, verifies the

 120

correctness of a domain specific projected workflow by finding all valid state paths that

satisfy the intra-domain workflow composibility conditions. We use the term valid state

path to refer to a path that satisfies composibility conditions WC1, WC2, and WC3 for

the given projected workflow. The second algorithm, presented in Section 4.5.2, analyzes

all inter-domain path combinations for satisfaction of the inter-domain workflow

composibility condition.

4.5.1. PW consistency verification

For discovering all valid state paths for a given PW, we use functions smap and

emap iteratively. The function smap maps a given task of a PW to a set of GTRBAC

states that have the appropriate user-role activation required for task execution. We refer

to such states as the entry states of the task. Formally: smap(τ) = {s | s ∈ S and ∃ (u, r) ∈

DRM(τ) such that role r is active for u in state s}. The function emap maps an edge (τi

,τj), representing successive tasks in a PW graph, to a set of state paths Πij that satisfy the

composibility conditions WC1, WC2, and WC3 for tasks τi andτj.

Fig. 4.9 shows the pseudo-code for the edge-mapping procedure. This procedure

first discovers all state paths with traversal time less than a threshold value between all

entry states of tasks τi andτj. The threshold value corresponds to the maximum time

allowed for completion of tasks τi andτj. The discovered paths are then analyzed for

satisfaction of composibility conditions WC1, WC2, and WC3 for tasks pair (τi ,τj). We

use the minimum residence time graph (MRTG) defined in Section 4.3.4 to discover

these state paths. As mentioned in Section 4.3.4, the set all MRTG paths between state

nodes s1 and s2 that are shorter than a given threshold value T includes all state paths

from s1 to s2 with traversal time less than T.

 121

WPS
INPUT: PW (project workflow graph of a domain)
 TG (GTRBAC timed graph of domain)
 MRTG (Minimum residence time graph of a domain)
OUTPUT: Π1n (set of all state paths that satisfy all the intra-domain
composibility conditions for PW)
1 for τi ∈ PW
2 do color[τi] ← white
3 for each τj ∈ PW
4 do Πij ← φ
5 color[τ1] ← dark gray
6 Q ← τ1
7 while Q ≠ φ
8 do τi ← dequeue(Q)
9 for each τj such that (τi, τj) ∈ E[PW]
10 do if color[τj] = white or color[τj] = light gray
11 then Πij ← edge-mapping(TG, MRTG,τi,τj)
12 if τi ≠ τ1
13 then if color[τj] = light gray
14 then Π1j←path-extend(Π1i, Πij) ∩ Π1j
15 else Π1j←path-extend(Π1i, Πij)
16 if there exists τk such that (τk, τj) ∈ E[PW]
17 and τk≠τi and color[τk] ≠ black
18 then color[τj] ← light gray
19 else color[τj] ← gray
20 Q ← Q ∪ τj
21 color[τi] ← black

Fig. 4.8 Algorithm for discovering valid state paths of a given PW.

 122

edge-mapping(TG, MRTG, τi, τj)
1. for each p ∈ smap(τi) and q ∈ smap(τj)
2. do Π ← find-all-paths(p, q, MRTG)
3. for each π’ ∈ Π
4. do if π’ does not satisfy any of the composibility conditions

WC1, WC2, and WC3 for τi and τj
5. then Π← Π - π’
6. return Π

path-extend(PW, Π1i, Πij)

1. Π’1j ← φ
2. for each π’, π such that π’∈ Π1i and π∈ Πij
3. do πi ← maximal sub-path of both π’ and π
4. such that finish(πi, π’) and start(πi, π)
5. if πi = π then π1j ← π’

else π1j ← concat(π’/πi, π)
6. if π1j satisfies the conditions WC1, WC2, and WC3 for all task

pairs τp, τq such that (τp, τq) ∈ E[PW] and color[τp] ≠ white and (τq
=τj or color[τq] ≠ white)

7. then Π’ 1j←Π’ 1j∪ π1j
8. return Π1j

Fig. 4.9 Functions used by the WPS algorithm

 123

 τ1

 τ3 τ2

 τ4

 τ5

∏24

∏12

∏14
Temporal gap between completion
of τ2 and initiation of τ4 should lie

within the interval β(τ2,τ4)

Entry states for
task τ2

Entry states for
task τ4

Entry states for
task τ1

States completing
tasks τ4

States completing
tasks τ2

π1 π2 π3 π4

π8 π5 π6 π7

∏12= {π1, π2, π3, π4}, ∏24= {π5, π6, π7, π8}

∏14= Path-compose(∏12, ∏24)
= {concat(π2\ π25, π5), concat(π3\ π36, π6)}

π25
π36

 τ6

Fig. 4.10 Mapping between PW graph and state paths of a domain’s FSM

Table 4.7
Path relations

YZ

YZ

Y Z

Y Z XThere exists an index p of path X, such
that for all i = 0, 1, ..., n-1, and for all j =
0, 1, ..., k-1, yi = xp+i, zj = xp+n+j.

Meet(Z, Y, X)

For all j = 0, 1, ..., k-1, zj = y(n-1)-(k-1)+j ,
where y(n-1) is the last element of the
state transition path Y.

finish(Z, Y)

For all j = 0, 1, ..., k-1, zj = yjStart(Z, Y)

There exists an index i of Y, such that
for all j = 0, 1, ..., k-1, zj = yi+j.

during(Z, Y)

IllustrationDefinitionRelation
Predicate

Let X = <x0=(s0,e0), ….. xm-1=(sm-1,em-1)>, Y = <y0=(s0’,e0’),… .. yn-1=(sn-1’,en-1’) >,
and Z = <z0=(s0”,e0”),…., zk-11=(sk-1”,ek-1”) > be state paths.

There exists an index p of path X, such
that for all i = 0, 1, ..., n-1, and for all j =
0, 1, ..., k-1, yi = xp+i, zj = xp+n+j.

Meet(Z, Y, X)

For all j = 0, 1, ..., k-1, zj = y(n-1)-(k-1)+j ,
where y(n-1) is the last element of the
state transition path Y.

finish(Z, Y)

For all j = 0, 1, ..., k-1, zj = yjStart(Z, Y)

There exists an index i of Y, such that
for all j = 0, 1, ..., k-1, zj = yi+j.

during(Z, Y)

IllustrationDefinitionRelation
Predicate

Let X = <x0=(s0,e0), ….. xm-1=(sm-1,em-1)>, Y = <y0=(s0’,e0’),… .. yn-1=(sn-1’,en-1’) >,
and Z = <z0=(s0”,e0”),…., zk-11=(sk-1”,ek-1”) > be state paths.

 124

The complete state path of a PW can be composed by incrementally extending the

state paths corresponding to successive edge mappings as shown in Fig. 4.10. In this

figure, π2 ∈ Π12 represents a state path from the initiation of task τ1 to the completion of

task τ2, and π5 ∈ Π24 is a state path from the initiation of task τ2 to the completion of task

τ4. These two state paths overlap for the execution duration of task τ2 and therefore can

be combined to compose a state path from τ1 to τ4. Let π25 be the overlapping sub-path of

π2 and π5 such that the following path relations, defined in Table 4.6, hold: finish(π25, π2)

and start(π25, π5). Moreover, for all states s in π25, s ∈ smap(τ2). The state path π2 can be

written in a concatenated form as π2 = π’.π25, where π’ is a sub-path of π2 such that

meet(π’, π25, π2) is true. A state path π14 can be composed by concatenating π5 to the end

of π’. The path π14 need to be checked for satisfaction of composibility conditions WC1,

WC2, and WC3 for both task pairs (τ1 ,τ2) and (τ2 ,τ4).

Fig. 4.8 shows an algorithm workflow path search (WPS) for discovering all valid

state paths for a given PW. The algorithm takes input the task graph of a PW, the FSM of

a domain’s GTRBAC policy represented as timed graph TG, and the minimum residence

time graph of TG. During the path search, the PW graph is traversed in a breadth first

manner to explore all the state paths from the source node τ1 to all other nodes of the PW

that satisfy the composibility conditions WC1, WC2, and WC3 for all successive pairs of

tasks in the PW. The path set ∏ is indexed by the indices of source and destination nodes

of the PW graph. For a given source τ1 ∈ PW and destination τi ∈ PW, ∏1i denotes the

set of all valid state paths that satisfy all the temporal ordering and duration constraints

for successful completion of a PW with τ1 as a source node and τi as a terminal node in

the PW graph.

To keep track of the tasks whose state paths from the source node have been

discovered, the algorithm WPS colors each vertex in the PW graph as white, dark gray,

light gray, or black. All task vertices in the PW graph start out as white. A task vertex τi

becomes dark gray after the discovery of all the valid state paths from the source vertex

τ1 to τi. Incase a task has multiple adjacent vertices that precedeτi in the execution order,τi

becomes light gray after its first discovery and remains light gray until the consistency of

 125

the path set ∏1i has been verified for all the adjacent vertices preceding τi in the

workflow execution order. After this consistency verification, vertex τi is colored from

light gray to dark gray. A dark gray vertex τi becomes black after all the valid state paths

from τ1 to all the adjacent vertices of τi have been discovered. The algorithm terminates

when all the vertices of the PW have been colored black. At this point all the valid state

paths from τ1 to the final task have been discovered.

Correctness of the algorithm: To verify that a PW conforms to the GTRBAC

policy of the designated domain, we need to find at least one state path that satisfies all

the intra-domain workflow composibility conditions WC1, WC2, and WC3 described in

Section 4.4.1. The set of all state paths returned by the WPS procedure meet this

requirement for PW verification. It can also be noted that the set of state paths returned

by WPS are exhaustive, i.e., if any path satisfies the intra-domain composibility

conditions for a given PW, then it is included in the set of paths discovered by WPS.

Theorem 4.1: Let GX be a graph representing the specification of a PW assigned

to domain IDX. Suppose τ1 is a distinguished source vertex of GX that initiates the PW.

Let τj (≠τ1) be any task vertex in GX. In the WPS procedure, after the task vertex τj is

colored dark gray, following properties hold for each state transition path π in the path set

∏1j.

• Composibility condition WC1 is satisfied for task τj and all tasks τi preceding τj in

task execution order.

• Composibility conditions WC2 and WC3 are satisfied for all task pairs (τi, τj) such

that (τi, τj) ∈ E[GX]. In addition, WC2 and WC3 are also satisfied for all task pairs

(τp, τq) such that (τp, τq) ∈ E[GX] and τp, τq precedes τj in the task execution order.

Proof given in Appendix B.

4.5.2. Cross-domain dependency verification algorithm and complexity

In this section, we present a simple algorithm, shown in Fig. 4.11, for verification

of distributed workflow with respect to cross-domain dependencies. The symbols and

notations used in this procedure are described in Table 4.5. The cross-domain

 126

dependency verification is performed by a central site. Given Π(i), CS(i)
init, and CS(i)

end (1

≤ i ≤ n) for all collaborating domains, and the set CSdep, the algorithm analyzes all cross-

domain path combinations for satisfaction of the precedence relationship between

component services specified in CSdep. In this analysis, a system of inequalities defining

precedence relationship among the component services is generated and solved for each

n-ary tuple y = (π1, π2, …,πn). A feasible solution to this system of inequalities implies

the following:

• The state path combination (π1, π2, …,πn) corresponding to the tuple y, satisfies all

the cross-domain dependency relationships specified in the distributed workflow

specification.

• For the above path combination, the projected workflow in IDi can be supported at

any time included in the solution space of the system of inequalities generated for y.

If no feasible solution exists for any tuple y ∈ (Π(1)
 × Π(2)

 × …× Π(n)), then the

verification procedure returns No. In this case, the given distributed workflow cannot be

supported. This is stated in the following theorem.

Theorem 4.2: Given Π(i), CS(i)
init, and CS(i)

end for each domain IDi (1 ≤ i ≤ n) and

the set CSdep, if the cross domain verification procedure fails, then the cross domain

dependencies in the given set CSdep cannot be satisfied, Accordingly, the corresponding

distributed workflow cannot be supported.

Proof of this theorem is given in Appendix B.

The proposed workflow composibility verification approach has a high

computational complexity as observed in many other similar problems [91, 127, 32, 31,

30]. This high complexity is mainly due to the exhaustive state path searches performed

in the projected workflow verification step. In this step, all state paths of length less than

a given threshold value are discovered between the entry states of successive tasks of the

projected workflow. The problem of finding all length limited paths between any two

nodes in a graph is at least as difficult as solving the S-T PATH problem, which is

defined as finding all simple paths from a node s to another node t in a graph. The S-T

PATH problem is proved to be #P-Complete [125].

 127

The complexity of the composibility verification problem discussed in this

chapter can be significantly reduced, if instead of discovering all valid state paths, only

m-shortest paths are discovered, where m > 1. However, this heuristic will consider a sub-

set of all valid state paths for workflow verification and in the worst case may declare a

correct workflow specification as incomposable.

cross-domain-dependency-verification
INPUT: Π(i) for all IDs (1≤ i ≤ n)
 CS(i)

init for all IDs (1≤ i ≤ n)
 CS(i)

end for all IDs (1≤ i ≤ n)
 CSdep
OUTPUT: {Yes, No}
Y ← Π(1)

 × Π(2)
 × …× Π(n)

1. for each y ∈ Y
2. do for each ((cq, cr

) ∈ CSdep define cross-domain dependency constraints
between cq and cr end for /*end inner for loop of line 3 */

3. if the solution space to the system of inequalities generated for y ∈ Y is
non empty then return Yes

4. end for /*end outer for loop of line 2 */
5. return No

Fig. 4.11 Algorithm for verifying distributed workflow with respect to cross-
domain dependencies among component services.

4.6. Conclusions

In this chapter, we have proposed an approach for verifying the secure

composibility of distributed workflows in a collaborative environment comprising

autonomous domains. The objective of workflow composibility verification is to ensure

that all the users or processes executing the designated workflow tasks have proper

authorization and their activities within the context of workflow specification cannot

cause security breaches in any domain. The proposed approach achieves this objective by

verifying the distributed workflow specifications against the access control policies of all

domains collaborating for workflow execution. A key challenge in this verification

process is posed by the time-dependent access control policies of collaborating domains

which are specified using GTRBAC model. The GTRBAC policy of a domain

 128

contributes to its non-reentrant behavior which is modeled as a time augmented FSM.

The proposed approach verifies workflow composibility by exploring the FSM of each

domain to find state paths that satisfy the given workflow specifications. This workflow

composibility verification is performed without creating a unified global FSM which is

required for model checking-based approaches for composibility verification. Therefore,

the proposed approach is unique and does not compromise the autonomy and privacy of

collaborating domains.

 129

5. A FRAMEWORK FOR COMPARISON OF POLICY-BASED
DISTRIBUTED SYSTEMS

This chapter provides a comparative analysis of the policy composition approach,

described in Chapter 3, and the workflow composibility verification approach described

in Chapter 4. The trade-off between these approaches is analyzed with respect to the four

metrics, including, degree of interoperation (DOI), degree of autonomy (DOA), degree of

privacy (DOP), and verification complexity. These metrics are defined in Section 5.1.1 of

this chapter. In addition, this chapter presents a comparative analysis between the policy

composition and verification approaches proposed in this dissertation and the existing

approaches for verification of distributed systems and services.

5.1. Comparative Analysis of the Proposed Approaches for Secure Composition of
Collaborative Applications

In this section, we discuss the trade-off between the global meta-policy based

approach and the distributed multi-policy based approach for composibility verification

of time-dependent collaborative applications. We refer to verification approach described

in Chapter 4 as multi-policy based approach as it performs verification of the distributed

workflow applications with respect to the policies of multiple collaborating domains and

does not require a global meta-policy that mediates cross-domain accesses. The

comparison between the two approaches is performed with respect to various aspects of

the collaborative environment and distributed applications. These include, degree of

coupling among domains, level of information and resource sharing, privacy preferences

of domains for disclosure of their policies, overhead related to policy composition, and

complexity associated with verification of distributed collaborative applications. We use

a set of metrics to formally analyze the trade-off between the two approaches based on

 130

the above-mentioned criteria. In the following, we first describe these metrics and then

discuss the trade-off between the two verification approaches.

5.1.1. Metrics

For measuring the effectiveness of policies and mechanisms employed in multi-

domain system for development of secure and consistent information sharing and

collaborative applications, we consider the following set of metrics: i) degree of

interoperation (DOI), ii) autonomy loss (AL), iii) degree of privacy (DOP), and iv)

verification complexity (VC). The first two metrics (DOI and AL) are evaluated based

on the number of cross-domain accesses and local accesses. As discussed earlier, a cross-

domain access corresponds to acquisition of privileges on the local objects of a domain

by an agent or process running on behalf of a remote user, i.e., the user is not affiliated

with the domain owning the object being accessed. A local access corresponds to the

acquisition of privileges over a domain’s local objects by a local user or process running

on behalf of local user. The objects of a domain can be characterized as data objects

(database relations, tuples, views, documents, files etc.), compute and storage resources

CPU cycles, disk space, printers), and services (credit checking service, tax filing

service). We assume that each object is a separate entity and do not consider any

hierarchical or object-oriented model for defining relationship between different objects.

For instance, a database table, say T, and a view, say V, defined on some columns of T

are considered as two separate objects, and accessing the table T is considered as a single

access even though the view V is derived from T. Similarly, we do not make a distinction

between materialized and non-materialized (e.g., views) objects.

5.1.1.1. Degree of Interoperation

The degree of interoperation (DOI) indicates the level of information sharing a

domain allows in a multi-domain environment. This information sharing can be

determined in terms of the cross-domain accesses provided by the domain to its local

objects. Let Oi
S

 denote the set of the shareable objects of domain Di that can be accessed

 131

remotely by cross-domain users, and Oi
L

 denote the set of objects that can be accessed

locally within domain Di. The DOI provided by domain Di can be quantified as:

| |()
| |

S
i

i S L
i i

ODOI D
O O

=
∪

,

Where, |O| denote the cardinality of the set O. The DOI(Di) assumes a value of

one, if all the object owned by domain Di are shareable and can be accessed remotely,

i.e., Oi
L

 ⊆ Oi
S. On the other hand, if none of the objects owned by Di can be accessed then

the DOI offered by Di is zero.

The overall DOI for the multi-domain environment comprising n domains can be

evaluated by taking the average value of DOI of individual collaborating domains.

11

1 ()
n n

i i
ii

DOI D DOI D
n ==

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∑∪

Note that the degree of interoperation is not a fixed value and may change with

time as the information sharing policies of domains may get evolved or domains may

disassociate themselves from the collaboration. Generally, the degree of interoperation

remains stable in tightly-coupled or federated systems in which collaboration among

domains is on a long term basis and the domains have a high degree of trust towards each

other.

5.1.1.2. Autonomy

Autonomy refers to the ability of a domain to carryout its local operations and

activities without any interference from cross-domain accesses or services provided to

remote users. In a multi-domain collaborative environment, autonomy of a domain is

measured in terms of its users’ authorizations over the domain’s local objects or

resources [61]. A collaborative environment is considered to be autonomy preserving if

all the local authorizations of domains remain unaffected by the cross-domain accesses.

However, there is a trade-off between seeking interoperability and preserving autonomy.

In order to provide cross-domain information accessibility, a domain may be forced to

restrict its local accesses. This is considered as autonomy loss (AL) which can be

quantified as:

 132

() ()Total number of local accesses Total number of local accesses of
of prior to interoperation after establishing interoperation

()
Total number of local accesses
of prior to interoperatio

i

i
i

i

D
D

AL D

D

−
=

()n

5.1.1.3. Degree of Privacy

The degree of privacy (DOP) specifies how much information a domain is willing

to disclose about its internal policies, local constraint, and non-shareable objects and

metadata. Generally, the access control policy of any domain is considered as a protective

object as it contains information about the domain’s organizational structure, business

strategies, security mechanisms, and other protective resources [133, 134, 128, 129, 89,

116]. Therefore, disclosing the contents of domain’s access control policy may leak

sensitive information which can be misused by adversaries.

The privacy metric has been quantitatively defined in the data-mining literature as

a measure of how closely the original value of a modified, obfuscated, or distorted

attribute can be estimated. From the policy disclosure perspective, we consider the

privacy as a measure of how much information about a domain’s non-disclosed policy

attributes, non-shareable objects or meta-data can be inferred by untrusted domains.

Since this information is inferred from the policy attributes that are voluntarily disclosed

by the domain for establishing interoperation, therefore, we measure privacy in terms of

how much information a domain provides about its policy. Let PA denote the set of all

policy attributes of domain Di and PAS (⊆ PA) denote the set of all policy attributes that

are disclosed to the collaborating domains for facilitating secure information and resource

sharing. We quantify the DOP of a domain Di as:

| |
()

| |

S
j

k

j j
pa PA

i
k k

pa PA

w pa
DOP D

w pa
∈

∈

=
∑

∑

Where, paj denote the set of related attributes in the domain’s policy, | paj | denote

the cardinality of the set paj, and wj specifies the relative importance or weight of the

 133

attributes in the set paj with respect to other attribute types. Disclosure of different policy

attributes will have a different impact on the privacy of the domain. For example

disclosing the assignment of non-shareable objects to roles may result in a lower degree

of privacy as opposed to the disclosure of assignment of shareable objects. This impact of

attribute disclosure on the degree of privacy is characterized by the weight of the

corresponding attribute. In the context of RBAC, the policy attributes may include the set

of roles, the role hierarchy relation, user-role assignment relation, role-permission

assignment relation, SoD constraints, and role cardinality constraints.

5.1.1.4. Verification Complexity

Verification complexity (VC) characterizes the overhead associated with verifying

the correctness of distributed applications. This overhead can be evaluated in terms of the

algorithmic complexity of the verification approach. In addition, we also consider the

overhead associated with structuring, organization, and management of data and policies

for computing VC. For instance, verifying the specification of a distributed application

for conformance against a single meta-policy is much easier than verifying the same

specifications against the multiple-policies. However, generation of a global meta-policy

may have a significantly high complexity. Moreover, the meta-policy may get evolved

due to changes in the policies of domains, joining of new domains, or disassociation of a

domain from the collaborative environment. Any change in the meta-policy may warrant

re-verification of distributed applications verified with respect to the previous meta-

policy. Therefore, the overhead associated with the composition and management of

meta-policy and re-verification of previously verified applications need to be

incorporated in the complexity metric.

5.1.2. Global meta-policy vs. distributed multi-policy

In this section, we compare the global meta-policy and distributed multi-policy

based approaches for secure composition of distributed workflow based collaborative

applications. Our comparison is based on the metrics described in the above section. For

 134

uniformity in comparison, we assume that the policies of all collaborating domains have

the same level of expressiveness and can support specification of temporal constraints as

discussed in Chapter 4. Moreover, we assume that the global meta-policy composed from

the local policies of collaborating domains preserve all the temporal dependencies

specified in local policies and also allows specification of temporal constraints on cross-

domain accesses. The meta-policy composition approach, described in Chapter 3, is

designed for composition of RBAC policies which do not include temporal constraints.

However, the policy composition approach can be easily extended to incorporate

temporal constraints and some preliminary work in this direction has been described in

[24]. We also assume that all the time dependent policies including the global meta-

policy and the local policies of domains can be represented using finite state models

(FSMs). In Chapter 4, we have described the procedure for transforming a GTRBAC

policy specification into an FSM-based representation.

Table 5.1 shows the comparison between the global meta-policy and distributed

multi-policy based approaches for secure composition of collaborative environments

using the aforementioned metrics. In the following, we elaborate on this comparison for

each individual metric.

Degree of coupling. As discussed in Chapter 3, a global meta-policy is composed

to support collaboration in a tightly-coupled or collaborative environment in which the

domains have a high degree of mutual trust and establish a long-term relationship.

Therefore, the meta-policy based approach is suitable for designing tightly integrated

business-to-business (B2B) processes that require close interactions among a pre-selected

set of collaborating domains on a long-term basis. The main advantage of this approach is

that it can guide the development of secure and consistent collaborative applications

based on a single policy without requiring excessive mediations among collaborating

domains. In other words, ensuring that a collaborative application satisfies all the

constraints and requirements of a global meta-policy is sufficient to verify its consistency

with respect to the local policies of all collaborating domains. A distributed meta-policy

based approach can also support collaborative applications that require long-term

interactions among domains in both federated and loosely-coupled environment. A major

 135

drawback of this approach is that whenever a new collaborative application is composed

or an existing application is modified, it needs to be verified against the policies of all

collaborating domains and may require extensive mediation among these domains.

Degree of interoperation. Generally collaborative applications in a federated

environment require a high degree of interoperation. As discussed in Chapter 3, a high

level of information and resource sharing among domains may introduce conflicts due to

the interplay of various constraints in the policies of collaborating domains. These

conflicts if remain undetected and unresolved expose the domains to numerous security

vulnerabilities and may cause serious security breaches such as unauthorized accesses,

privilege escalation, and SoD violation. Detection and resolution of these conflicts

involves extensive mediation among collaborating domains and requires a global view of

the authorizations of all local and cross-domain accesses. This global view is provided by

a global meta-policy, which can also facilitate in establishing an optimal level of

information and resource sharing without violating the security constraints of

collaborating domains. In this regard, a meta-policy based approach can be categorized as

a preventive approach that prevents security breaches due to diverse security policies of

collaborating domains. A multi-policy based approach can also detect potential accesses

that may violate the security constraints of individual domains, however, such an

approach may not resolve the policy conflicts in a consistent, deterministic, and optimal

manner.

Autonomy. In a federated environment operated under a global meta-policy, all

the cross-domain accesses in a collaborative application that conforms to the global meta-

policy must be supported by each collaborating domain even though such accesses may

affect the local operations of the domain. Therefore, a meta-policy based approach

provides little or no autonomy to collaborating domains to reject a cross-domain resource

access request whose authorization is established by the meta-policy. Generally domains

exercise their autonomy during the mediation phase for generation of the meta-policy as

discussed in Chapter 3. However, once a meta-policy is generated it guides the

development and composition of collaborative applications without considering the local

policies of domains.

 136

 As discussed in Chapter 4, a multi-policy based approach can also be used for

developing collaborative applications that require recurrent interactions among a pre-

selected set of domains on a long-term basis. This approach provides a high degree of

autonomy during the design of such collaborative applications as domains may choose

not to participate in any collaborative activity that may cause violation of their local

policy constraints or restrict the accessibility of their local users. A domain may also

specify its terms and conditions under which it can provide access to it resource/services

to support a collaborative application. However, once a domain agrees to support a

collaborative application, it cannot reject any cross-domain access that satisfies all its

terms and conditions.

Degree of privacy. The degree of privacy is the most important metric that

distinguishes the two approaches. In order to compose a secure and consistent global

meta-policy, a full disclosure of domains access control policies is needed. However in a

loosely-coupled multi-domain environment, a domain may only provide information

specific to its shareable resources and may not disclose its policy completely due to

security or privacy reasons. Therefore, a global meta-policy based approach cannot be

applied in a loosely-coupled collaborative environment.

Verification complexity. In a federated environment operating under a global

meta-policy, a model checking based approach can be used to verify the composiblity and

correctness of distributed collaborative applications. As discussed above, the meta-policy

is modeled using a time-augmented finite state machine (FSM) to capture the temporal

constraints and time-dependent authorizations.

The meta-policy is generated from the access control policies of all collaborating

domains. In Chapter 3, we have discussed how a global meta-policy can be composed

from the RBAC policies of domains. The main complexity of meta-policy composition

lies in the resolution of policy conflicts that may occur due to the interplay of various

policy constraints in the multi-domain environment. In Chapter 3, we have presented an

integer programming (IP)-based approach that resolves such conflicts and generates a

meta-policy that allows maximum interoperation. The problem of generating a secure and

 137

optimal meta-policy is proved to be NP hard [61] and the proposed IP-based technique

follows the same complexity result.

The proposed IP-based technique can be extended to compose a global meta-

policy from the time-dependent policies of all collaborating domains. These time

dependent policies are specified using the GTRBAC model (restricted version) as

discussed in Chapter 4. In order to generate a secure and optimal meta-policy from the

GTRBAC policies of collaborating domains, the IP-based conflict resolution procedure

needs to be invoked every time a periodic temporal constraint becomes active. In the

GTRBAC model discussed in Chapter 4, we assume that periodicity constraint can be

defined for role enabling events only. With this assumption, the IP-based conflict

resolution procedure needs to be called at most |R| times, where |R| denotes the total

number of roles in the multi-domain environment. Therefore the time complexity of

composing a global meta-policy from the GTRBAC policies of collaborating domains is

O(|R|2m), where m denotes the number of role mapping links. Another important

parameter which is used to compute the verification complexity is the size of the state-

space of the global meta-policy. The total number of states in the FSM of the global

meta-policy is bounded by
1

| |
n

i
i

S
=

∏ , where |Si| denote the number of states in the FSM of

the GTRBAC policy of domain i and n denotes the total number of domains in the multi-

domain environment. Similarly, the number of clocks in the FSM of the global meta-

policy is bounded by
1

| |
n

i
i

C
=
∑ , where |Ci| denote the number of clocks in the FSM of the

GTRBAC policy of domain i

For verifying the correctness of the distributed applications with respect to the

global meta-policy, we can use a scenario matching approach proposed by Braberman et.

al. in [30]. This approach uses a Time Computation Tree logic (TCTL)-based model

checking technique to verify whether a given scenario can be supported by a timed

automaton. The time complexity of TCTL-based model checking is linear in the number

of states in the timed automaton modeling the system behavior and exponential in the

number of clocks modeling the temporal constraints [4, 5]. With reference to the

 138

composibility verification of distributed applications, the application specification

corresponds to the scenario that needs to be matched with the timed automaton

corresponding to the global meta-policy. Therefore, given a global meta-policy in a

timed-automaton representation and scenario corresponding to the application

specification, the complexity of verifying whether the application can be supported by the

meta-policy is given by 1

| |

1

| | . 2

n

j
j

Cn

i A
i

O S S =

=

⎛ ⎞∑⎜ ⎟+
⎜ ⎟
⎝ ⎠
∏ , where |Si| and |Cj| are defined above and

SA denotes the number of states in the automaton generated from the scenario

corresponding to the application specifications.

For the multi-policy based approach, the problem of verifying the specifications

of a given distributed application is #P-complete as discussed in Chapter 4.

Table 5.1
Global meta-policy vs. distributed multi-policy

Metrics Global Meta-Policy Distributed Multi-policy
Degree of Coupling Tightly-coupled federated

multi-domain environment
Both federated and loosely-coupled
multi-domain systems

Degree of Interoperation High Low - medium
Autonomy Low Allow high degree of autonomy in

loosely-coupled multi-domain
environment

Degree of Privacy Low High in loosely-coupled collaborative
environment.

Verification Complexity Linear in the number of states
and exponential in the number
of temporal constraints in the
global meta-policy

#P-Complete

5.2. Policy-based Composition and Verification of Distributed Collaborative
Applications

In this section, we present a comparison between the proposed policy composition

and verification framework with the existing approaches for verification of distributed

systems and services. For comparing these approaches, we will use the term component

to refer to an individual system, domain, or a peer interacting with other components for

supporting the collaborative applications. This comparison is based on the following

 139

factors: i) model used for specifying the policy-driven behavior of component systems; ii)

model used for specifying interactions among different components; iii) behavioral

properties of components being modeled such as real-time or bounded response time

response or non-reentrant characteristics; iv) disclosure of components’ policies driving

their behavior, generation of a global meta-policy; v) verification criteria; and vi)

verification complexity. All the approaches considered for the comparative analysis use

formal models (such as state machines, timed automata, and Petri nets) to characterize the

policy driven behavior of component systems.

A key factor that distinguishes the different approaches is whether they are able to

verify the conformance of the interactions or interoperation requirements of distributed

applications with the time-dependent non-reentrant behavior of the component systems.

As discussed in Chapter 4, a component is characterized as reentrant or non-reentrant

based on the software system implementing the component’s functionality. A reentrant

component can be invoked multiple times and all the invocations of such component are

considered independent of each other. On the other hand a non-reentrant component does

not allow its multiple simultaneous, interleaved, or nested invocations. At any time a non-

reentrant component is managed by only one policy instance which determine its

response to various events based on its current state. As a result, a non-reentrant

component may interact differently with same peer components at different times.

Consequently, a distributed application requiring interaction among different time-

dependent and non-reentrant components may not be supported at any arbitrary time,

even though the interactions specified in the application design are complete, consistent,

unambiguous, and conform to the interface specifications of each individual component.

A key issue related to verification of distributed applications requiring interoperation

among component systems is to ensure that such applications can eventually be executed

despite the components’ time dependent non-reentrant behavior. This requires identifying

all possible time instants during which the components can support the required

interoperations and verifying whether such schedule satisfy the application requirements.

The verification approaches, discussed in this section, can also be differentiated

based on how much information about component local policies or behavioral

 140

specifications need to be disclosed to other components. As discussed above, disclosure

of local policies may help in generation of a global meta-policy, which may significantly

reduce the verification complexity for some collaborative applications. Some distributed

protocol verification approaches that do not rely on meta-policy generation, require that

the interacting components should be able to access or inquire about each others state

information [31]. However, disclosure of domain’s policies in distributed enterprise

environment or business-to-business based interactions may not be allowed due to

security and privacy concerns of domains.

The verification criteria and verification complexity are the two most important

metrics for comparing the different approaches. The approaches discussed in this section,

differ based on the properties of the distributed applications they verify. The selection of

these approaches based on the difference in their verification criteria is intentional to

cover a broad range of representative work in the areas of distributed systems, protocol

verification, and service composition. In Table 5.2, Table 5.3, and Table 5.4, we provide

a comparison of the different verification approaches using the features discussed above.

In the following, we briefly discuss these approaches in the context of their application

category.

5.2.1. Web-service composition and verification

Berardi et. al. in [17] have used a model checking based approach for automatic

composition of e-services. They have proposed an algorithm that takes the target service

specifications and a set of available component services as input and synthesize a

composite service that uses only the available component services and fully captures the

target service. In this approach, the behavior of a target service is specified as an

execution tree that captures all possible execution of the target service. The nodes in the

execution tree represent the service state and the edges between the nodes denote the

operations or actions. The number of states in the execution tree is assumed to be finite

and a deterministic finite sate machine (FSM) is used to model the execution tree. The

behavior of each component service is also modeled using a separate FSM. The authors

have shown that the problem of checking whether the FSMs of the component services

 141

can synthesize the execution tree of the target service is equivalent to determining the

satisfiability of a deterministic propositional dynamic logic (DPDL) formula. This

formula is generated by a central entity, called composer, from the FSM of the target

service and the FSMs of all component services. The composer is assumed to have full

knowledge about the policies and the FSM of each component service. The model of the

satisfiable DPDL formula corresponds to the execution tree of the target service. The

complexity of determining the satisfiability of the DPDL formula corresponding to the

target service and the component service specifications is exponential in the size of the

FSM of all component services and the target service. This approach provides a formal

framework for verifying the synthesis of a target service without considering any

temporal dependencies and real-time constraints. Moreover, the component services are

assumed to be reentrant and can be invoked/accessed at any time.

Betin-Can et. al. [32] have proposed a design methodology for reliable

composition of Web services. In this methodology, the reliability of a composite Web

service is verified by analyzing the interactions among the component Web-services,

called peers, for satisfaction of safety and liveness properties. Interaction among the peers

is established via asynchronous messages. Each peer is assumed to have a fist in first out

(FIFO) queue which stores all the incoming messages to the corresponding peer. The peer

processes all messages in the order they are received. Each peer advertises its interface

specifications which describe the messages the peer can receive (input messages), the

messages the peer can send (output messages), and the response of the peer with respect

to different input messages. This response is specified in terms of the output messages the

peer generates when it processes a given input message, or the messages the peer expects

after sending an output message. The interface specification of each peer is described

modeled as an FSM. The composite Web service is also modeled as a state transition

system, which specifies the desired interactions among the peers in form of message

exchanges. Each state in the state transition system corresponding to the composite Web

service, provides information about the local state of all peers and the configuration of

their message queues. Bertin-can et. al. use a modular approach for verification of

composite Web services. The verification modules include interface verification and

 142

behavior verification. Interface verification involves checking whether the internal policy

and/or the implementation of a peer conform to its interface specifications. The interface

verification is performed by analyzing all possible execution paths of the peer’s internal

policy for violation of its interface specifications. The complexity of interface verification

depends on the number of paths that can be generated from a given policy. Behavior

verification involves analyzing the safety and liveness properties of the composite Web

service. For behavior verification, the peers are assumed to conform to their interface

specifications. Based on this assumption, the safety and liveness properties of a

composite Web service can be verified by using only the peer interfaces to characterize

their behavior without considering their internal policies. The safety and liveness

properties can be represented as linear temporal logic (LTL) formulae which can be

verified against the state transition system corresponding to the composite service

specification. The complexity of verifying an LTL formula is linear in the size of the

number of the states of the corresponding state transition system and exponential in the

size of the LTL formula [32]. The verification methodology described in [32], is similar

to the composibility verification approach discussed in Chapter 4 in the following ways:

i) both approaches do not allow disclosure of the internal policies of the components, and

ii) both approaches require verification of the internal policies of the components for

conformance with their interfaces. However, [32] does not consider any real-time

constraints or non-reentrant behavior of components during interface or behavior

verification.

Chun et. al. in [36] have addressed the issue of policy based composition of web

services in an open web-based collaborative environment. They consider different

policies for service composition. These policies include service provisioning policies,

service flow policies, and user-specific policies. Service provisioning policies are defined

by the domains offering their services. These policies specify the terms and conditions

that need to be met before the corresponding component service can be accessed or

invoked. The service flow policies specify various constraints related to ordering of

component services, component service selection criteria, and the semantic description of

the desired/requested component services. The user policies specify the constraints and

 143

preferences of the end user in selecting the particular services. The service flow policy

combined with the user policy defines the overall service composition requirements. In

the service composition process, first all the component services that satisfy the semantic

properties of the composite service are discovered. In this process similar component

services from different domains may be selected. Next an instance of a composite service

is generated by selecting one component service from each pool of similar/related

services. This selection is based on the syntactic and semantic compatibility of the

component services. The composite service instance is then evaluated for conformance of

the overall service composition requirements with the service provisioning policies of the

domains providing the selected component services. If the composite service instance

satisfies all the composition requirements then it is considered as a valid service

composition and the verification process stops. Otherwise, a new composite service

instance is composed from the candidate pool of component services and is evaluated for

satisfaction of the service flow and user-specific policies. No formal model for service

specification or technique for verifying service composibility is provided in [36].

5.2.2. Distributed protocol verification

One of the earliest works on verification of communication protocols in

distributed computing environment is by Brand and Zafiropulo [31]. They consider each

protocol as a communicating process, which is modeled as a finite state machine (FSM).

Each pair of communicating processes is assumed to be connected by a full-duplex, error

free, FIFO channel via which the processes exchange messages. Brand and Zafiropulo do

not consider any specific interactions among the communicating processes against which

the function and behavior of each protocol needs to be verified. Rather, they consider

certain properties of interest to all protocols independent of their intended functions.

These properties include executable reception and stable N-tuple. Executable reception

implies that a protocol must be able to process any received message from its current

state. In other words, a protocol must never reach a state in which it is unable to send a

message to other protocol processes or retrieves a received message that lies at the head

of its FIFO channel. Stable N-tuple property implies that the communication among the

 144

protocols can lead to a global reachable state with all channels empty. A stable N-tuple

may correspond to a deadlock situation. Brand and Zafiropulo have proved that given a

set of communicating protocols, the problem of verifying executable reception and stable

N-tuple reachability is undecidable in the general case. They have also proved that the

problem is decidable if the following two conditions hold:

1. The channel size of each protocol is bounded.

2. Each communicating protocol can be transformed into a tree protocol.

With the above assumptions, they have provided an approach that verifies the

executable reception and stable N-tuples properties for a given set of protocols. The

approach verifies these properties separately for each protocol and takes exponential time

in the size of protocol specifications. However, the approach is limited to verification of

communicating processes and protocols that do not have any real-time constraints.

Fu et. al. in [51] have studied the problem of realizing a given conversation

protocol. The conversation protocol describes all possible interactions or message

exchanges that can occur among collaborating component peers. The conversation

protocol in [51] is represented using a non-deterministic Buchi automaton. Fu et. al. have

proved that given a set of peer components with their behavior specified using non-

deterministic Buchi automata, the problem of verifying whether the given component

peers conform to the conversation protocol is undecidable. Therefore, they have

considered a top-down approach for determining the realizability of conversation

protocols. They define the realizability problem as, given a Buchi conversation protocol,

is it possible to obtain a composition of components which produces exactly the same set

of conversations as specified by the global protocol. In this top-down approach, the

implementation or behavior of each component is synthesized from the given

conversation protocol via projection. For ensuring the realizability of a given

conversation protocol, they have defined three necessary and sufficient conditions which

the protocols must satisfy. These include lossless join condition, synchronous compatible

condition, and autonomous condition. Verification of given conversation protocol,

represented as a non-deterministic Buchi automaton, with respect to the three realizability

conditions can be performed in EXPTIME in the size of the automaton.

 145

5.2.3. Distributed real-time systems verification

Braberman et. al. in [29, 30] have addressed the issue of verifying the properties

of distributed real-time systems using a scenario matching approach. In this approach, the

behavior of each component system is described using a separate timed-automaton which

is similar to the automaton we have considered for modeling GTRBAC policy. The

properties that need to be verified are specified using visual timed event scenarios (VTS)

that can specify both real-time and event-based constraints. For verifying whether the

component systems satisfy a given scenario, a global automaton is composed from the

timed automata of all component systems. The number of states in the global automaton

can be of the order of
1

| |
n

i
i

S
=

∏ , where |Si| denotes the number of states in the automaton of

the ith component, and n denotes the number of the interacting components. Similarly, the

number of clocks modeling real-time constraints in the global automaton can be of the

order of
1

| |
n

i
i

C
=
∑ , where, |Ci| denote the set of clocks in the automaton of the ith

component. Generation of a global automaton from the component automata is analogous

to composition of a global meta-policy in the multi-domain environment. Verification of

the timed scenario involves finding at least one timed trace in the global automaton that

matches with the given scenario. For determining such matching, the scenario is

transformed into a timed automaton and a parallel (product) composition of the global

automaton and the automaton corresponding to the scenario is generated. The resulting

automaton, called the composite automaton, is then analyzed for satisfaction of a timed

computation tree logic TCTL formula, which states whether the accepting state of the

composite automaton can be reached from its initial state. The satisfiability of such

formula implies that the given scenario can be supported by the component systems. The

complexity of verifying scenario matching using TCTL based model checking is linear in

the number of states and exponential in the number of clocks of the composite automaton

[4, 5].

146

Table 5.2

Comparative analysis of approaches verifying service composition
Approach Model used for

specifying component
system policies/behavior

Real-time/
Non real-
time

Reentrant/
Non -
reentrant
behavior

Disclos-ure
of policies

Global Meta-policy
Generation

Interaction
Modeling

Verification Criteria Verification Complexity

Berardi et. al.
[17]

The behavior of each
component is modeled
using a separate FSM

Non real-
time

Re-entrant Yes A mealy finite state
machine MFSM is
generated from the
FSM of component
system.
Complexity:
Exponential in the
size of the FSM of all
component
systems/services

The behavior
target
service/system
is also
specified
using FSM

Checking whether the
execution tree of the
MFSM is equivalent to
the execution tree
generated by the FSM of
target system/service

Exponential in the size of the
FSM of all component
systems/services

Betin-Can et.
al. [32]

The interface of each
component
system/service is
modeled using FSM

Non real-
time

Re-entrant Internal
policy or
behavior of
a compon-
ent is not
disclosed.
The beha-
vior of a
component
is assumed
to be con-
sistent with
its interface
policy

No A composite
service is
modeled as a
state transition
system
specifying the
message
exchange
between the
component
service
interfaces.

Interface Verification:
The internal policy or
behavior of component
conforms to its interface
specifications.
Behavior Verification:
Safety and liveness
properties of the
composite
system/service
Assumption: The
behavior of a
component con-sistent
with its interface policy

Interface Verification: need
to traverse all possible
execution paths that can be
generated from the internal
policy/program of the
component.
Behavior Verification: The
safety and liveness properties
are specified using LTL
formula. The complexity of
verifying an LTL formula is
linear in the size of the
number of states of the
composite service and
exponential in the size of the
LTL formula [115].

Proposed
approach for
workflow
composibility
verification

Timed automaton Real-time Non-
reentrant

No No Distributed
workflow is
specified
using UML-
based
sequence diag.

Finding time traces in
the FSM of component
domains that can
support the distributed
workflow.

#P-Complete

147

Table 5.3
Comparative analysis of distributed protocol verification approaches

Approach Model used for specifying
component system
policies/behavior

Real-time/
Non real-
time

Reentrant/
Non -
reentrant
behavior

Disclos-ure
of policies

Global Meta-policy
Generation

Interaction
Modeling

Verification Criteria Verification Complexity

Brand et. al.
[31]

The behavior of each
component is described
using a protocol
represented as FSM. The
state transitions in the FSM
of a component protocol
occur due to reception or
transmission of messages
from or to other peer
components.

Non real-
time

Re-entrant
(multiple
instances of
a protocol
can be
created).

A receiver
upon
receiving a
message
should be
able to
identify the
current state
of the sender
peer.

No Only the
messages that
can be
exchanged
between the
peers are
described. No
global protocol
or scenario is
specified.

Executable reception: A
component peer should be
able to process any
received message from
its current state.
Stable N-tuple: Can a
global state be reached in
which the input queues of
all peers are empty. The
existence of such a state
may imply a deadlock.

Decidable provided the
following conditions hold:
1. The protocol of each
component can be transformed
into a tree protocol.
2. The queue size of each
component is bounded.
Verification complexity:
exponential in the size of the
FSM of each component.

Fu. et. al. [51] Each component is
specified in terms of the
messages it can receive or
transmit.

Non real-
time

Re-entrant
(A new
instance of a
component
service can
be created
for a new
session).

 A non
deterministic
Buchi
automaton is
used to specify
the desired set
of conversation
(conversation
protocol),
among the
components).

Given the set of input and
output alphabets of each
component service and a
conversation protocol,
verify whether the
conversation protocol can
be realized. Alternatively,
can we synthesize a set of
finite state peers such that
the synthesize
components conform to
the conversation protocol.

Fu et. al. have defined
necessary and sufficient
conditions for realizability of
conversation protocols:
lossless-join condition,
synchronous compatible
condition, and autonomous
condition.

Verification complexity is
EXPTIME in the size of the
automaton modeling the
conversation protocol.

Proposed
approach for
workflow
composibility
verification

Timed automaton Real-time Non-
reentrant

No No Distributed
workflow is
specified using
UML-based
sequence diag.

Finding time traces in the
FSM of component
domains that can support
the distributed workflow.

#P-Complete

148

Table 5.4
Approach for verification of distributed real-time system

Approach Model used for
specifying component
system policies/behavior

Real-time/
Non real-
time

Reentrant/
Non -
reentrant
behavior

Disclosure
of policies

Global Meta-policy
Generation

Interaction
Modeling

Verification Criteria Verification Complexity

Braberman et.
al. [30, 29]

The behavior of each
component is modeled
using a separate timed
automaton

Real-time Both Yes A product/
composite
automaton is
generated from the
component
automata and the
scenario to be
verified.

Uses visual
timed event
scenarios to
specify the
desirable or
undesirable
properties of the
integrated
system

Verifies whether here
exists a timed trace in
the composite
automaton that matches
with the given scenario.

Uses a TCTL based model
checking technique.

Complexity of TCTL
Model Checking: linear in
the number of states in the
composite automaton and
exponential in the number of
clocks of the composite
automaton [4, 5].

Proposed
approach for
workflow
composibility
verification

Timed automaton Real-time Non-
reentrant

No No Distributed
workflow is
specified using
UML-based
sequence diag.

Finding time traces in
the FSM of component
domains that can
support the distributed
workflow.

#P-Complete

 149

6. CONCLUSION AND FUTURE WORK

In this chapter, we summarize the contributions of this dissertation and discuss

future research directions

6.1. Research Contributions

In this dissertation, we have focused on policy-based access management and

secure interoperation in distributed collaborative systems. In particular, we have

developed a policy-based framework that allows secure information and resource sharing

in multi-domain environments with varying degree of coupling among the collaborating

domains. The framework, proposed in this dissertation, provides efficient solution and

strategies for ensuring secure interoperation in both federated and loosely-coupled multi-

domain environments based on the degree of interoperation, the level of trust among

domains, and the security, autonomy, and privacy requirements of collaborating domains.

For establishing secure interoperation in a federated multi-domain environment,

we have proposed a policy composition approach that generates a global meta-policy

from the local access control policies of collaborating domains. This approach is

designed for multi-domain systems employing RBAC policies. The global meta-policy is

generated from the RBAC policies of the collaborating domains by defining role

mappings across domains. Such mappings enable inter-domain information and resource

sharing via mapped roles. The RBAC policies of domains may have conflicting security

and access control requirements which may cause serious security implications in terms

of unauthorized accesses and erroneous system behavior. To resolve such inconsistencies

and conflicts in the meta-policy, we have proposed a systematic approach for policy

synthesis and conflict resolution with various optimality measures, including,

maximizing overall information accessibility, maximizing prioritized accesses, and

 150

minimizing constraint relaxation. Conflict resolution may require strong mediation

among domains’ policies, and may trigger policy transformations to support secure

collaboration. Such transformations in policies, although increase interoperation among

collaborating domains, may result in a loss of their autonomy. A key requirement for

developing the global meta-policy is to allow maximum autonomy. Although, violations

of domain’s security policy are generally not permissible, some domains may concede

their autonomy for allowing an increased level of interoperability. In the proposed

approach, the problem of secure interoperation is formulated as an optimization problem

with an objective of maximizing interoperability with minimum autonomy losses and

without causing any security violations of collaborating domains. This optimization

problem is solved using 0-1 integer programming based technique with the given

optimality measure.

We have also addressed the issue of developing distributed service or workflow

based applications requiring secure information and resource sharing among autonomous

domains in a loosely-coupled multi-domain environment. For verifying the correctness

and composibility of such distributed workflows/services, we have proposed a

verification approach that analyzes the workflow/service specifications for conformance

with the policies of all collaborating domains. A key challenge in this verification is

posed by the time-dependent policies of collaborating domains which are specified using

GTRBAC model. The GTRBAC policy of a domain contributes to its non-reentrant

behavior which is modeled as a time augmented FSM. The proposed approach verifies

workflow/service composibility by exploring the FSM of each domain to find state paths

that satisfy the given workflow/service specifications. This workflow composibility

verification is performed without creating a unified global FSM which is required for

model checking-based approaches for composibility verification. Therefore, the proposed

approach is unique and does not compromise the autonomy and privacy of collaborating

domains.

We believe that the verification approach presented in this dissertation is generic

and can be applied to many distributed applications involving collaborations among non-

reentrant and autonomous components. Examples of such applications include process

 151

control systems [73], mission planning and control in military systems [38], real-time

speech recognition systems [44], and workflow-based production systems [95]. The

underlying verification problem in such applications is to determine whether or not a

given configuration of non-reentrant components can support the functionality required

by distributed applications.

We have analyzed the trade-offs between the global meta-policy and distributed

multi-policy based approaches for establishing secure interoperation. The trade-off

between these two approaches is analyzed with respect to various metrics. We have also

presented a comparison between the proposed policy composition and verification

framework with the existing approaches for verification of distributed systems and

services.

6.2. Future Work

The research work reported in this dissertation provides a foundation to explore

several research avenues in the area of information and system security. Below, we

summarize several directions in which our work can be pursued.

6.2.1. Policy verification of individual domains

The underlying assumption, while designing secure collaborative applications, is

that the policy of each collaborating domain is consistent, and conflict-free. In case the

policy of any of the collaborating domain is inconsistent or has security flaws, then the

entire process of policy composition and verification of distributed information sharing

applications described in this dissertation fails. Therefore, the policies of domains need to

be verified before a global meta-policy is generated or distributed applications are

designed.

Security policy verification in general is an undecidable problem [65]. However,

much work has been done to determine reasonable models and limitations under which

safety is decidable and tractable [6, 7, 8, 122, 70 82]. Verification of a domain’s policy

entails various challenges, including: i) specifying policy using a formal model, ii)

 152

identifying the safety requirements, and iii) determining if a given policy conform to the

safety requirements. Generally the safety requirements are specified in the form of

constraints. These constraints can be part of the policy specification model or can be

expressed separately. In both cases the positive authorizations implied by the model and

the negative authorizations defined by the constraints may conflict, making the policy

inconsistent.

For verifying the correctness of policies, we plan to use the model checking and

scenario matching based techniques. Deciding the correctness or consistency of a policy

is one aspect of the verification problem. The other aspect is to guide the policy designers

or administrators to resolve conflicts from an inconsistent policy. Conflicts in a given

policy can be removed by modifying the policy specification. There may be several

policy readjustment options available to resolve a given conflict, and each option may

yield a different set of constraints and accesses. However, one would desire an option that

resolves the conflicts in an optimal manner. There can be several optimality measures

such as maximizing accessibility, minimizing new constraint additions, or minimum

deviation from original policy design etc. We believe that the Integer Programming based

approach discussed in the context of policy integration can be used to resolve the

conflicts present in a domain’s policy.

6.2.2. Policy partitioning for enterprise splitting

In an ever-changing business world, collaborations and business alliances keep

evolving, big companies get split, merge and sometimes displaced by entirely new

companies. Splitting of companies is not a new phenomenon. Giant companies

sometimes split into multiple independent units for various reasons. In the event of an

organization split-up, the information infrastructure owned by the parent organization is

also divided among the newly formed organizations. Consequently, policies governing

access to the inherited information resources need to be defined for the new setup. The

organizational hierarchy of the newly formed organizations may not differ drastically

from the organizational hierarchy of the parent organization. This implies that the access

control policy of the parent organization can be used to derive the policies of new

 153

organizations. Therefore, a policy generation framework is needed that can compose

access control policies for organizational units formed as a result of a company split-up.

Input provided to this framework may consist of the access control policy of the parent

organization, scope and business requirement, potential organizational hierarchy, and a

list of information resources and assets inherited by the new organizational unit. In an

abstract sense, this problem can be considered as a partitioning of a policy based on the

scope and business requirement of new organization.

6.2.3. Software testing of access control mechanisms

Testing of the software systems implementing the security and access control

mechanisms is indispensable even if their policy specifications are formally verified. The

formal verification techniques only ensure the correctness of the specifications or design

under certain assumptions and cannot guarantee correct implementation of such

specifications or design. A mathematical proof about the conformance of an

implementation with the policy specification is usually not feasible because it would

require complicated formal semantics of the language in which the implementation is

coded and the environment in which it runs (operating system and hardware).

We are interested in developing a toolkit for testing the implementation of the

access control systems. In this regard, we plan to investigate the efficacy of model-based

techniques from software engineering area to identify the errors and flaws in the software

components enforcing the access control policies. A significant advantage of using

model-based testing techniques is that the policy models developed in the specification

and verification phase can be directly used to generate the test cases.

6.2.4. Digital identity and privacy management

Internet-based business transactions often involve exchange of confidential and

sensitive information including personal data, financial details, and business data among

the interacting parties. Particularly interesting is the case where such transactions span

across multiple parties due to sub-contracting, outsourcing, and integration of services

 154

supplied by multiple providers. In such scenarios, disclosure of personal identity and

profile information can be used to simplify users’ experience and enable single sign-on to

reduce the overhead associated with the repeated exchange of information at different

authentication points. However, managing multiple versions of users’ identities across

several service provider domains is a key challenge for ensuring information security and

privacy in multiparty transactions. Another challenging aspect of the single sign-on

access comes from the diverse or possibly contradictory access control policies of the

domains involved in multiparty transactions. In this respect, there is a close synergy

between identity management in a multiparty transaction and policy composition and

verification problem addressed in this dissertation. We plan to expand our work on access

management in collaborative systems to address these issues. In addition, we are

interested in developing mechanisms for identity provisioning and lifecycle management,

identity interoperability and extensibility, and cross-domain communication and mobility.

LIST OF REFERENCES

 155

LIST OF REFERENCES

[1] N. R. Adam, V. Athluri, W. Huang. “Modeling and Analysis of Workflows Using
Petri Nets.” Journal of Intelligent Information Systems, Vol. 10, pp. 131-158,
1998.

[2] J. R. Agre, S. K. Tripathi, “Modeling Reentrant and Nonreentrant Software.”

Proc. ACM SIGMETRICS Conference on Measurement and modeling of
computer systems, 12(3), pp.163-178, 1982.

[3] G. Ahn, R. Sandhu, “Role-Based Authorization Constraints Specification,” ACM

Transactions on Information and System Security, Vol. 3 No. 4, November 2000.

[4] R. Alur, C. Courcoubetis, and D. Dill, “Model Checking in Dense Real-Time,”

Information and Computation, Vol. 104, No. 1, 1993, pp. 2-34.

[5] R. Alur and D. Dill, “A Theory of Timed Automata,” Theoretical Computer

Science, Vol. 126, No. 2, 1994, pp. 183-235.

[6] P. Amman and R. Sandhu, “Safety Analysis for the Extended Schematic

Protection Model,” in proc. of the IEEE Symposium on Research in Security and
Privacy, 1991

[7] P. Amman and R. Sandhu, “The Extended schematic Protection Model,” J.

Computer Security, 1992.

[8] P. Amman and R. Sandhu, “One-Representative safety Analysis in the Non-

Monotonic Transform Model,” in proc. of the 7th IEEE Computer security
Foundations Workshop, pp. 138 – 149, 1994.

[9] A. I. Antón and J. B. Earp. “Strategies for Developing Policies and Requirements

for Secure E-Commerce Systems.” Recent Advances in E-Commerce Security and
Privacy, Kluwer Academic Publishers, pp. 29-46, 2001.

[10] V. Atluri and W-K. Huang, “An Extended Petri Net Model for Supporting

Workflow in a Multilevel Secure Environment,” In Proceedings of the Tenth
Annual IFIP TC11/WG11.3 International Conference on Database pp.240-258,
January 1997, Como, Italy.

 156

[11] V. Atluri, W-K. Huang and E. Bertino, ``A Semantic Based Redesigning of

Distributed Workflows,'' in 9th International Conference on Management of
Data, December 1998.

[12] J. Barkley, A. Cincotta, D. Ferraiolo, S. Gavrila, and D.R. Kuhn, “Role Based

Access Control for the World Wide Web,” in proc. of the 20th National
Information System Security Conference, NIST/NSA, 1997.

[13] C. Batini, M. Lenzerini, and S. Navathe, “A Comparative Analysis of

Methodologies for Database Schema Integration,” ACM Computing Survey, Vol.
18, No. 4, pp. 323 – 364, December 1986.

[14] A. Belokosztolszki and K. Moody, “Meta-Policies for Distributed Role-Based

Access Control Systems,” proc. of the IEEE International Workshop on Policies
for Distributed Systems and Networks, 2002.

[15] D. Bell and L. Lapadula, “Secure Computer Systems: Mathematical

Foundations,” Technical Report MTR-2547, Vol. 1, MITRE Corporation, March
1973.

[16] D. E. Bell and L. J. LaPadula, “Secure Computer System: Unified Exposition and

Multics Interpretation,” MTR-2997, MITRE Corp., Bedford, MA, March, 1976.
Available as NTIS AD A023 588.

[17] D. Bedrardi, D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Mecella,

“Automatic Composition of E-Services that Export Their Behavior,” Proc. of
International Symposium on Service Oriented Computing, 2003, pp. 43-58.

[18] D. Bedrardi, D. Calvanese, G. D. Giacomo, R. Hull, and M. Mecella, “Automatic

Composition of Transition Based Semantic Web services with Messaging,” proc.
of the the 31st VLDB Conference, Trondheim, Norway, 2005, pp. 613-623.

[19] E. Bertino, E. Ferrari and V. Atluri. “The Specification and Enforcement of

Authorization Constraints in Workflow Management Systems.” ACM
Transactions on Information and System Security, Vol.2, No. 1, pp. 65-104. 1999.

[20] E. Bertino, C. Bettini, E. Ferrari, and P. Samarati, “An Access Control Model

Supporting Periodicity Constraints and Temporal Reasoning,” ACM Transactions
on Database Systems, Vol. 23, No. 3, pp. 231-285.

[21] E. Bertino, E. Ferrari, V. Atluri, “The Specification and Enforcement of

Authorization Constraints in Workflow Management Systems,” ACM
Transactions on Information and System Security, 2(1), February 1999, pp. 65-
104.

 157

[22] E. Bertino, F. Buccafurri, E. Ferrari, and P. Rullo, “A Logical Framework for

Reasoning on Data Access Control Policies,” in Proceedings of the 12th IEEE
Computer Security Foundations Workshop, 1999, pp. 175-189.

[23] D. F.C. Bewer, M. J. Nash, “The Chinese Wall Security Policy,” In Proceedings

of the Symposium on Security and Privacy, IEEE Computer Society, May 1989,
pp. 206-214.

[24] R. Bhatti, B. Shafiq, J. Joshi, E. Bertino, and A. Ghafoor, "XGTRBAC Admin: A

Decentralized Administration Model for Enterprise-Wide Access Control ," ACM
Transactions on Information and System Security, Vol. 8, Issue 4, Nov. 2005, pp.
388-423.

[25] K. Biba, “Integrity Considerations for Secure Computer Systems,” Technical

Report MTR-3153, Vol. 1, MITRE Corporation, April 1977.

[26] P. Bonatti, S.D.C. Vimercati, and P. Samarati, “An Algebra for Composing

Access Control Policies,” ACM Transactions on Information and System Security,
Vol. 5, No. 1, February 2002.

[27] Y. Bontemps, P. Heymans, and P-Y Schobbens, “From Live Sequence Charts to

State Machines and Back: A guided Tour,” IEEE Transactions on Software
Engineering, Vol. 31, No. 12, pp. 999-1013.

[28] P.A. Bonatti, M. L. Sapino, V.S. Subrahmanian, “Merging Heterogeneous

Security Orderings,” ESORICS 1996, pp. 183-197

[29] V. Braberman, D. Garbervetsky, A. Olivero, “Improving the Verification of

Timed Systems Using Influence Information,” Proc. of the 8th International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems, Lecture Notes In Computer Science, Vol. 2280, 2002, pp. 21 – 36.

[30] V. Braberman, N. Kicilof, and A. Olivero, “A Scenario-Matching Approach to the

Description and Model Checking of Real-Time Properties,” IEEE Transactions
on Software Engineering, Vol. 31, No. 12, pp. 1028-1041.

[31] D. Brand and P. Zafiropulo, “On Communicating Finite-State Machines,” Journal

of the ACM, Vol. 30, No. 2, April 1983, pp. 323.342.

[32] A. B-Can, T. Bultan, and X. Fu, “Design for Verification for Asynchronously

Communicating Web Services,” Proc. of the Fourteenth International World
Wide Web Conference (WWW 2005), pp. 750-759.

 158

[33] J. Cao, S.A.Jarvis, S. Saini and G. R. Nudd, “GridFlow: Workflow Management
for Grid Computing,” proc. 3rd IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGrid03), pp.198 – 205. 2003.

[34] C. Canright, “Will Real-Time Systems Spell the End for Batch Processing,” Bank

Admin., Vol. 64, No. 9, September 1988, pp. 42-46.

[36] S. A. Chun, V. Atluri, and N. R. Adam, “Using Semantics for Policy-Based Web

Service Composition,” Distributed and Parallel Databases, Vol. 18, 2005, pp. 37-
64.

[37] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic Verification of

Concurrent Systems Using Temporal Logic Specifications,” ACM Transactions
on Programming languages and Systems, Vol. 8, No. 2, pp. 244-263.

[38] E. Cohen, R. K. Thomas, W. Winsborough, and D. Shands “Models for

Coalition-based Access Control,” Seventh ACM Symposium on Access Control
Models and Technologies, pp. 97 – 106, June 2002.

[39] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, S. Weerawarana,

“Unravelling the Web Services Web: An Introduction to SOAP, WSDL, and
UDDI,” IEEE Internet Computing, Vol 6, No. 2, March 2002, pp. 86-93.

[40] S. Dawson, S. Qian, and P. Samarati, “Providing Security and Interoperation of

Heterogeneous Systems,” Distributed and Parallel Databases, Vol. 8, August
2000, pp. 119 -145.

[41] Y. Deng, J. Wang, J.J.P Tsai and K. Beznosov, “An Approach for Modeling and

Analysis of Security System Architectures,” IEEE Transactions on Knowledge
and Data Engineering, 15(5), pp.1099 - 1119, 2003.

[42] J. Eder, E. Panagos, Michael Robinovich, “Time Constraints in Workflow

Systems,” Proc. of 11th Int. Conf. on Adv. Inf. Systems Engineering (CAiSE 99),
Heidelberg, Germany, 1999.

[43] A. K. Elmagarmid and W. J. Mciver Jr., “The Ongoing March Toward Digital

Government,” IEEE Computer, Vol. 34, No. 2, pp. 32 – 38, February 2001.

[44] L. D. Erman, F. H.-Roth, V. R. Lesser, and D. R. Reddy, “The Hearsay-II Speech-

Understanding System: Integrating Knowledge to Resolve Uncertainty,” ACM
Computing Surveys, June 1980, pp. 213-252.

[45] R. Eshuis, R. Wieringa, “Tool Support for Verifying UML Activity Diagrams,”

IEEE Transactions on Software Engineering, 30(7), pp. 437 – 447, 2004.

 159

[46] E. Ferrari and B. Thuraisingham, “Secure Database System,” In Advanced
Databases: Technology and Design, O. Diaz and M. Piattini, Eds, Artech House,
London.

[47] D. Ferraiolo, R. Sandhu, S. Gavrila, R. Kuhn, R. Chandramouli, “The NIST

Model for Role-Based Access Control: Towards a Unified Standard,” ACM
Transactions on Information and System Security, Vol. 4, Issue 3, August 2001,
pp. 224-274.

[48] D. F. Ferraiolo, D. M. Gilbert, N. Lynch, “An Examination of Federal and

Commercial Access Control Policy Needs,” In Proceedings of NISTNCSC
National Computer Security Conference, Baltimore, MD, September 20-23, 1993,
pp. 107-116.

[49] H. Foster, S. Uchitel, J. Magee, and J. Kramer, “Model-based Verification of Web

Service Compositions,” proc. of the IEEE International Conference on Automated
Software Engineering, 2003.

[50] X. Fu, T. Bultan, and J. Su, “Formal Verification of e-Services and Workflows,”

proc. of Workshop on Web Services, E-Business, and the Semantic Web, May
2002, pp. 188-202.

[51] X. Fu, T. Bultan and J. Su. "Conversation Protocols: A Formalism for

Specification and Verification of Reactive Electronic Services." Theoretical
Computer Science (TCS), Vol. 328, No. 1-2, November 2004, pp. 19-37.

[52] D. Gabbay, A. Pnuelli, S. Shelah, and J. Stavi, “On the Temporal Analysis of

Fairness,” proc. of Seventh ACM Symposium on Principles of Programming
Languages, 1980, pp. 163-173.

[53] C. Gacek, “Detecting Architectural Mismatches during Systems Composition,”

PhD. Thesis, University of Southern California, 1998.

[54] S. Garfinkel, E. H. Spafford, “Practical UNIX & Internet Security,” O'Reilly &

Associates, Inc., 2nd Edition, April 1996.

[55] S. Garfinkel, E. H. Spafford, “Web Security & Commerce,” O'Reilly &

Associates, Inc., Sebastapol, CA, 1997.

[56] S. I. Gavrila , J. F. Barkley, “Formal Specification for Role Based Access Control

User/role and Role/role Relationship Management,” in Proc. of the ACM
Workshop on Role-Based Access Control, Fairfax, Virginia, United States, pp. 81-
90, October 1998.

 160

[57] S. Ghosh, “NOVADIB: a Novel Architecture for Asynchronous, Distributed,
Real-Time Banking Modeled on Loosely-coupled Parallel Processors,” IEEE
Transactions on Systems, Man, and Cybernetics, Vol. 23, No. 3, May 1993, pp.
917-927.

[58] L. Giuri, “A New Model for Role-based Access Control,” in proc. of 11th Annual

Computer Security Application Conference, New Orleans, LA, December 11-15
1995, pp. 249-255.

[59] L. Giuri. “Role-based Access Control: A Natural Approach,” in proc. of the 1st

ACM Workshop on Role-Based Access Control. ACM, 1997.

[60] J. V-Gomez, “Multidomain Security,” Computer & Security, Vol. 13, 1994, pp.

161-184.

[61] L. Gong and X. Qian, “Computational Issues in Secure Interoperation,” IEEE

Transaction on Software and Engineering, Vol. 22, No. 1, pp.43-52, 1996.

[62] G. Graham and P. Denning, “Protection -- principles and practice,” in proc.

Spring Joint Computer Conference. AFIPS Press, 1972.

[63] G. Yan, W. K. Ng, E. Lim, “Product Schema Integration for Electronic

Commerce - A Synonym Comparison Approach,” IEEE TKDE Vol. 14, No. 3 pp.
583-598, June 2002.

[64] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. The MIT Press, 2000.

[65] M. Harrisson, W. Ruzzo, and J. Ullman, “Protection in Operating Systems,”

Communications of the ACM, Vol. 19, No. 2, August 1976, pp. 461-471.

[66] Q. He and A.I. Antón, “Deriving Access Control Policies from Requirements

Specifications and Database Designs,” NCSU CSC Technical Report #TR-2004-
24, 2004.

[67] H. Hosmer, “Metapolicies I,” ACM SIGSAC Review, 1992, pp. 18-43.

[68] “Integrated Justice Information System,” The Department of Justice Initiative,

available at http://www.ojp.usdoj.gov.

[69] ITU. Message Sequence Charts. Recommendation Z.120, International

Telecomm. Union, Telecomm. Standardization Sector, 1996.

 161

[70] T. Jaegar and J. Tidswell, “Practical Safety in Flexible Access Control Models,”
ACM TISSEC, Vol. 4 No. 2, pp. 158 – 190, May 2001.

[71] T. Jaegar and X. Zhang, “Policy Management Using Access Control Spaces,”

ACM TISSEC, Vol. 6 No. 3, pp. 327 – 364, August 2003.

[72] S. Jajodia, P. Samarati, V. S. Subrahmanian, E. Bertino, “A Unified Framework

for Enforcing Multiple Access Control Policies,” Proceedings of the ACM
SIGMOD International Conference on Management of Data, May 1997, pages
474-485.

[73] M. S. Jaffe, N. G. Leveson, M. P. E. Heimdahl, and B. E. Melhart, “Software

Requirements Analysis for Real-Time Process-Control Systems,” IEEE
Transactions on Software Engineering, Vo. 17, No. 3, pp. 241-258.

[74] J. B. D. Joshi, W. G. Aref, A. Ghafoor and E. H. Spafford, “Security Models for

Web-based Applications,” Communications of the ACM, Vol. 44, No. 2, Feb.
2001, pp. 38-72.

[75] J. B. D. Joshi, A. Ghafoor, W. Aref, E. H. Spafford, “Digital Government

Security Infrastructure Design Challenges”, IEEE Computer, Vol. 34, No. 2,
February 2001, pp. 66-72.

[76] J. B. D. Joshi, E. Bertino, A. Ghafoor, “Temporal Hierarchies and Inheritance

Semantics for GTRBAC,” Seventh ACM Symposium on Access Control Models
and Technologies, pp. 74-83, June 2002.

[77] J. B. D. Joshi, “A Generalized Temporal Role Based Access Control Model for

Developing Secure Systems,” Ph.D. Thesis, School of Electrical and Computer
Engineering, Purdue University, 2003.

[78] J. Joshi, E. Bertino, U. Latif and A. Ghafoor. A Generalized Temporal Role Based

Access Control Model for Developing Secure Systems. IEEE Transactions on
Knowledge and Data Engineering, Vol. 17, No. 1, pp. 4-23, 2005.

[79] J. Joshi, E. Bertino, and A. Ghafoor, “Analysis of Expressiveness and Design

Issues for a Temporal Role Based Access Control Model,” IEEE Transactions on
Dependable and Secure Computing, Vol. 2, No. 2, pp. 157-175.

[80] J. Jung, W. Hur, S. Kang and H. Kim, “Business Process Choreography for B2B

Collaboration,” IEEE Internet Computing, 8(1), pp. 37-45, 2004.

 162

[81] A. Kern, “Advanced Features for Enterprise-Wide Role-Based Access Control,”
Annual Computer Security Applications Conference, 2002.

[82] M. Koch, L.V. Mancini and F. P. Presicce, “A Graph-Based Formalism for

RBAC,” ACM Transactions on Information and System Security, Vol. 5, No. 3,
pp. 332-365, August 2002.

[83] I. Krüger, “Service Specification with MSCs and Roles,” proc. IASTED

International Conference on Software Engineering, Innsbruck, 2004.

[84] D. R. Kuhn, “Mutual Exclusion of Roles as a Means of Implementing Separation

of Duties in a Role-based Access Control System,” ACM Transactions on
Information and System Security, 2(2), 1999, pp. 177-228.

[85] B. Lampson, “Protection,” In the Princeton Symposium on Information Sciences

and Systems, March 1971. Reprinted in ACM Operating Systems Review, 8(1)
(1974).

[86] B. Lampson, “A note on the Confinement Problem,” Communications of the

ACM, 16(10), October 1973, pages 613-615.

[87] B. W. Lampson, “Computer Security in the Real World,” Annual Computer

Security Applications Conference, December 11-15, 2000.

[88] X. E. Landwehr, “Computer Security,” International Journal of Information

Security, Vol. 1, No. 1, August 2001, pp. 3 – 13.

[89] Ninghui Li, John C. Mitchell, and William H. Winsborough, “Design of A Role-

based Trust-management Framework, “ Proc. IEEE Symposium on Security and
Privacy, May 2002, pp. 114-130.

[90] W. S. Li and C. Clifton, “Semantic Integration in Heterogeneous Databases Using

Neural Networks,” VLDB 1994.

[91] F. J. Lin, P. M. Chu, and M. T. Liu, “Protocol Verification Using Reachability

Analysis: The State Space Explosion Problem and Relief Strategies,” proc. of the
ACM SIGCOMM’87 Workshop, pp. 126-135.

[92] T. D. C. Little and A. Ghafoor, “Interval-Based Conceptual Models for Time-

Dependent Multimedia Data,” IEEE Transactions on Knowledge and Data
Engineering, Vol. 5, No. 4 , pp. 551 -563, August 1993.

[93] E. Lupu and M. Sloman, "Conflicts in Policy-based Distributed Systems

Management," IEEE Transactions on Software Engineering, Vol 25, No. 6,
November 1999, pp.. 852-869.

 163

[94] J. McLean, “Security Models and Information Flow,” In Proceedings 1990 IEEE

Symposium on Security and Privacy, Oakland, CA, 1990, pages 180—187.

[95] M. Zur Muehlen. Workflow-based Process Controlling: Foundation, Design and

Application of Workflow-Driven Process Information Systems. Logos, Berlin,
2004.

[96] T. M. Nguyen, A. M. Tjoa, G. Kickinger, and P. Brezany, “Towards Service

Collaboration Model in Grid-Based Zero Latency Data Stream Warehouse
(GZLDSWH),” proc. of the IEEE International Conference on Service
Computing, 2004.

[97] M. Niezette and J. Stevenne, “An Efficient Symbolic Representation of Periodic

Time,” Proc. of First International Conference on Information and Knowledge
Management, November 2-5, 1992.

[98] M. Nyanchama, S. L. Osborn, “Role-Based Security, Object-Oriented Databases

and Separation of Duty”, SIGMOD Rec. 22, 4, December 1993, pp. 45-51.

[99] M. Nyanchama and S. Osborn. The Role Graph Model and Conflict of Interest.

ACM Transactions on Information and System Security, 2(1), 1999, pp. 3-33.

[100] OMG. Unified Modeling Language Specification: version 2.0. Object

Management Group Inc. www.uml.org. 2003.

[101] S. L. Osborn, R. Sandhu, Q. Munawer, “Configuring Role-Based Access Control

to Enforce Mandatory and Discretionary Access Control Policies,” ACM
Transactions on Information and System Security, Vol. 3, No. 2, February 2000,
pp. 85-106.

[102] S. L. Osborn, “Integrating Role Graphs: A Tool for Security Integration,” Data

and Knowledge Engineering, Vol. 43 No. 3, pp. 317-333, 2002.

[103] D. Pilone and N. Pitman. UML 2.0 in a Nutshell. O’Reilly Press, 2005.

[104] R. Pottinger and P. A. Bernstein, “Merging Models Based on Given

Correspondences,” VLDB 2003, pp. 826-873.

[105] R. Power, “Tangled Web: Tales of Digital Crime from the Shadows of

Cyberspace,” Que/Macmillan Publishing, Aug. 31, 2000.

[106] X. Qian and T. F. Lunt, “A MAC Policy Framework for Multilevel Relational

Databases,” IEEE Transactions on Knowledge and Data Engineering, Vol. 8, No.
1, pp. 3 – 15, February 1996.

 164

[107] R. Sandhu, “Separation of Duties in Computerized Information Systems”, In

Database Security IV: Status and Prospects. Elsevier North-Holland, Inc., New
York, 1991, pp. 179-189.

[108] R. Sandhu and P. Samarati, “Access Control: Principles and Practice,” IEEE

Communications Magazine, Vol. 32, No. 9, September 1994, pp. 40-48.

[109] R. Sandhu, editor. Proc. of the First ACM Workshop on Role-Based Access

Control, Fairfax (VA), 1995.

[110] R. Sandhu, E. J. Coyne, H. L. Feinstein, C. E. Youman, “Role-Based Access

Control Models,” IEEE Computer 29(2), IEEE Press, 1996, pp. 38-47.

[111] R. Sandhu, editor. Proc. of the 2nd ACM Workshop on Role-Based Access Control,

Fairfax (VA), 1997.

[112] R. Sandhu editor. Proc. of the 3rd ACM Workshop on Role-Based Access Control,

Fairfax (VA), 1998.

[113] R. Sandhu, “Role-based Access Control,” Advances in Computers, vol. 46,

Academic Press, 1998.

[114] R. Sandhu, “Role Activation Hierarchies,” in Proc.of the third ACM workshop on

Role-based access control, pp.33-40, October 22-23, 1998.

[115] P. Schnoebelen, “The Complexity of Temporal Logic Model Checking,”

Advances in Modal Logic, Vol 4, 2002, pp. 1-44.

[116] K. E. Seamons, M. Winslett, and T. Yu, “Limiting The Disclosure of Access

Control Policies during Automated Trust Negotiation,” Proc. Workshop on
Privacy Enhancing Technologies, April 2002.

[117] B. Shafiq, J. Joshi, E. Bertino, and A. Ghafoor, “Secure Interoperation in a Multi-

Domain Environment Employing RBAC Policies,” IEEE Transactions on
Knowledge and Data Engineering, Vol. 17, No. 11, pp. 1557-1577.

[118] A. P. Sheth and J. A. Larson, “Federated Database Systems for managing

Distributed, Heterogeneous, and Autonomous Databases,” ACM Computing
Surveys, Vol. 22, No. 3, September 1990, pp. 184-236.

[119] M. Shehab, E. Bertino, and A. Ghafoor, “Secure role mApping technique for

decentralized secure interoperability,” proc. of the 10th ACM Symposium on
Access Control models and Technologies (SACMAT 05), June 2005.

 165

[120] M. Shehab, E. Bertino, and A. Ghafoor, “Secure Collaboration in Mediator-Free
Environments,” Proc. of the 12th ACM Conference on Computer and
Communications Security (CCS), November 2005.

[121] R. Simon, M.E. Zurko, “Separation of Duty in Role-based Environments,” in

proc. 10th IEEE Computer Security Foundations Workshop, June 1997.

[122] L. Snyder, “On the Synthesis and Analysis of Protection Systems,” In

Proceedings of the 6th ACM Symposium on Operating System Principles, pp. 141
– 150, 1997.

[123] A. Tripathi, T. Ahmed, and R. Kumar, “Specification of Secure Distributed

Collaboration Systems,” in proc of the IEEE International Symposium on
Autonomous Distributed Systems (ISADS), pp. 149–156, 2003.

[124] A. Tripathi, T. Ahmed, D. Kulkarni, R. Kumar and K. Kashiramka, “Context-

Based Secure Resource Access in Pervasive Computing Environments,” proc. of
the 1st IEEE International Workshop on Pervasive Computing and
Communications Security(IEEE PerSec'04), pp.159 – 163, 2004.

[125] L. G. Valiant, “The Complexity of Enumeration and Reliability Problems,” SIAM

Journal on Computing, Vo. 8, No. 3, August 1979, pp. 410-421.

[126] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J. Gawor, C.

Kesselman, S. Meder, L. Pearlman and S. Tuecke, “Security For Grid Services,”
in proc. of the 12th IEEE International Symposium on High Performance
Distributed Computing (HPDC’12), pp. 48-57, 2003.

[127] C. H. West, “Protocol Validation in Complex Systems,” in proc. Symposium on

Communications Architecture and Protocols, Austin, Texas, 1989, pp. 303-312.

[128] W. Winsborough and N. Li, “Towards Practical Automated Trust Negotiation,” in

proc. IEEE Workshop on Policies for Distributed Systems and Networks, June
2002, pp. 92-103.

[129] W. Winsborough and N. Li. “Safety in Automated Trust Negotiation,” in proc.

IEEE Symposium on Security and Privacy, May 2004, pp. 147-160.

[130] D. Wodtke, J. Weissenfels, G. Weikum, and A. K. Dittrich, “The Mentor Project:

Steps towards Enterprise-Wide Workflow Management,” in proc. of the 12th
IEEE International Conference on Data Engineering, 1996.

[131] L. A. Wolsey, Integer Programming, John Wiley, New York, 1998.

 166

[132] G. Yan, W. K. Ng, E. Lim, “Product Schema Integration for Electronic
Commerce - A Synonym Comparison Approach,” IEEE Transactions on
Knowledge and data Engineering, Vol. 14, No. 3, June 2002, pp. 583-598.

[133] T. Yu and M. Winslett, “A Unified Scheme for Resource Protection in Automated

Trust Negotiation,” Proc. IEEE Symposium on Security and Privacy, May 2003.

[134] T. Yu and M. Winslett, “Policy Migration for Sensitive Credentials in Trust

Negotiation,” Proc. ACM Workshop on Privacy in the Electronic Society, 2003,
pp. 9-20.

[135] J. Yu. Dynamic “Web Service Invocation based on UDDI,” proc of the IEEE

International Conference on E-Commerce Technology for Dynamic E-Business,
pp. 154 – 157, 2004.

APPENDICES

 167

Appendix A.

Proofs of Lemmas and Theorems of Chapter 3

Proof of Lemma 3.1: The split function, given in Fig. 3.11, first creates a new

role rj and makes it junior to rs. Note that until line number 2 of the split function, role r

before splitting and rs have same directly assigned permissions and all the roles that are

related to r are also related to rs in the same manner.

Lines 3 - 4 in the split function algorithm make sure that all the permissions that

are removed from rs are assigned to rj. Since s jI
r r≥ , therefore these permissions are still

included in the permission set of rs, i.e., pset(rs) ⊇ psetassign(rj).

Lines 6 -8 ensures that the inheritance relationship is maintained between rs and

all the roles that were junior to the unsplit role in the I-hierarchy semantics. Since

psetassign(r) = psetassign(rs) ∪ psetassign(rj) and all the roles that can be reached from the

unsplit role r through an I-path can also be reached from rs through an I-path; therefore,

pset(r) = pset(rs)

It can be noted that splitting a role does not change the activation hierarchy and

the user to role assignment. That is, all the users that were assigned to unsplit role r

remain assigned to role rs and all the roles that are related to r by an A-edge are also

related to rs by an A-edge. This implies that the uniquely activable set of role rs is same

as that of the unsplit role r.

Proof of Lemma 3.2: The algorithm remove-role ensures that the inheritance

relationship between all the roles rp such that p dI
r r≥ and all roles rc such that d cI

r r≥ is

maintained, that is, p cI
r r≥ holds after role rd is removed. Since rd is a redundant role, no

 168

user is assigned to rd nor is any permission assigned to it. Hence, the user set and the

permission set is unaffected by the removal of the redundant role rd. Since all the user-to-

role assignment relations, role-to-permission-assignment relations and hierarchy relations

among roles other than rd are preserved, properties 1, 3, and 4 hold. Moreover, the

algorithm remove-role does not remove any role other than rd from the conflicting role

set of any role, implying that 3 and 5 hold.

Proof of Lemma 3.3

PIR 1 Element preservation: RBAC-integrate does not remove any element

except the newly created redundant roles. Since these roles are not a part of any of the

input RBAC graphs, RBAC-integrate satisfies element preservation requirement.

PIR 2 Relationship preservation: In RBAC-Integrate, relationship between the

elements of input RBAC graph is altered when a newly created redundant role is removed

or when a role is split. Lemma 3.2 states that removing a newly created redundant role

does not change the relationship that exists between the elements of input RBAC graphs.

When a role is split some of the relations involving the split roles are removed and some

new relations are added. This modification may alter some of the explicit relationships

specified in the input RBAC graphs, however, the original relations are implied in the

final graph G as stated in Lemma 3.1.

PIR 3 User authorization preservation: In RBAC-integrate no user to role

assignment is removed and all the hierarchical relationship between roles is maintained

(PIR 2). Furthermore, equivalent roles have same permission assignment and inheritance.

Therefore, the permission authorization set of users is preserved by RBAC-integrate.

Proof of Theorem 3.2 (Associativity of RBAC-integrate): Let GA, GB, and GC

be the RBAC graph of domain A, B, and C respectively.

P = RBAC-integrate(GA, GB), Q = RBAC-integrate(GB, Gc), X = RBAC-

integrate(P, Gc), Y = RBAC-integrate(GA, Q)

To prove that policy integration operation is associative, we need to prove that the

graph X is isomorphic to Y. Two policy models are said to be isomorphic if there is 1:1

 169

onto correspondence between their elements and they have the same relationships [20].

To show that two final integrated policy models X and Y are isomorphic, we define a

morphism ϕ(X→Y) as follows:

• For a user ui ∈ X, ϕ(ui) = ui

• For a permission pj ∈ X, ϕ(pj) = pj

• For a role r’ ∈ X, ϕ(r’) = r such that psetassign(r’) = psetassign(r)

In order to prove that ϕ is an isomorphism we need to show the following:

(i) ϕ is 1:1 and onto

(ii) R(U) ∈ RX if and only if R(ϕ(U)) ∈ RY (U is a vector).

ϕ is onto: The elements in X and Y can be divided into two types: (i) elements which

are present in GA, GB, and GC, (ii) elements that are created in the process of integration

of local graphs. As stated in the above theorem that RBAC-integrate satisfies the element

preservation property, therefore all the elements of type (i) are present in both X and Y.

Type (ii) elements include those roles that are not present in GA, GB, and GC and are

created during the process of policy integration. These roles are created by the role split

function in the RBAC-integrate algorithm. Note that type (ii) elements do not include any

redundant role as the redundant roles that are created in the policy integration step are

eliminated from X and Y. To complete the proof that ϕ is onto, we need to show that for

all type (ii) roles r ∈ Y, there exists r’ ∈ X such that ϕ(r’) = r and for all p such that p∈

psetassign(r) ⇒ p ∈ psetassign(r’)

In the following we use the terminology r ∈ dom(X) if r ∈ GX or r is created by

splitting a role rs ∈ dom(X). Without loss of generality, assume that there exists a role rA

∈ GA such that pset(rA) ⊇ pset(r). Also r is created by splitting role rA i.e., r ∈ dom(A).

Since r is created in the process of integration, therefore one of the following three

conditions holds for r.

a. ∃ rBA ∈ dom(B): eq_role(r,rBA) ∧ ¬∃ rCA ∈ dom(C): eq_role(r,rCA)

b. ∃ rCA ∈ dom(C): eq_role(r,rCA) ∧ ¬∃ rBA ∈ dom(B): eq_role(r,rBA)

c. ∃ rBA ∈ dom(B), rCA ∈ dom(C) : eq_role(r,rBA) ∧ eq_role(r,rCA)

Case a: ∃ rBA ∈ dom(B): eq_role(r,rBA) ∧ ¬∃ rCA ∈ GC: eq_role(r,rCA)

 170

The above implies that there is no role in GC whose permission set overlaps with that of

r or rBA. Role r does not exist in Q; however, rBA may or may not exist in Q.

If rBA exists in Q then rBA ∈ GB and the following is true in Y:

(i) () () ()A A BA BA AI
r r r contains r r contains r≥ ∧ ∧ ¬

If rBA does not exists in Q, then there exists a role rB ∈ GB such that that pset(rB) ∩

pset(rA) = pset(rBA), and the following hold in Y:

(ii) () ()A A BI
r r r overlaps r≥ ∧

Since eq_role(r,rBA) holds, therefore psetassign(rBA) = psetassign(r) and pset (rBA) = pset (r)

For the case rBA ∈ GB and rA ∈ GA, since rA contains rBA, when integrating GA and GB,

a role r’ junior to rA is created and is assigned the permission in the set psetassign(rBA) ∩

psetassign(rA). This means that there exists a role r’ in P with psetassign(r’) = psetassign(rBA) ∩

psetassign(rA) = psetassign (rBA) = psetassign (r). Also, when integrating P with GC role r’ is not

split nor the permission in the set psetassign(r’) gets redistributed as there is no role in GC

whose permission set overlaps with that of r’.

For the case rBA ∉ GB, rA ∈ GA and rB ∈ GB, since rA overlaps rB, when integrating GA

and GB, role r’ junior to rA, and rBA junior to rB are created with psetassign(r’) =

psetassign(rB) = psetassign(rBA) ∩ psetassign(rA). This means that there exists a role r’ in P with

psetassign(r’) = psetassign (rBA) = psetassign (r). Also, when integrating P with GC role r’ is not

split nor the permission in the set psetassign(r’) gets redistributed as there is no role in GC

whose permission set overlaps with that of r’.

Therefore for a type (ii) role r ∈ Y, for which case a holds, there exists a role r’ ∈ X

such that psetassign(r’) = psetassign(r), i.e., ϕ(r’) = r. In a similar manner, we can prove the

above for cases b and c as well. Hence, for all type (ii) roles r ∈ Y, there exists a role r’ ∈

X such that psetassign(r’) = psetassign(r), i.e., ϕ(r’) = r.

Now, we need to show that for all roles r ∈ Y, there exists a role r’ ∈ X such that

psetassign(r’) = psetassign(r). We have proved this for type (ii) roles, now we need to prove it

for type (i) roles. Type (i) role can be further classified into two types: (a) roles which

remain unsplit during policy integration; (b) roles which split in the policy integration

step. Note that the permissions assigned to a role are removed from that role only if it

 171

gets split in the process of integration. Consider an unsplit role r in Y and with out loss of

generality assume that r ∈ GA. Since r is an unsplit role therefore, there does not exist

any role r’’ ∈ {GB, GC} such that psetassign(r) ⊂ psetassign(r’’). This and the element

preservation property implies that there exists a role r’ ∈ X, such that psetassign(r’) =

psetassign(r).

We need to prove the above for the type (i) roles that get split. Consider a role r ∈ Y

that got split in the process of policy integration to produce a junior role rj. We already

proved that there exists a role rj’ ∈ X such that psetassign(rj’) = psetassign(rj).Without loss of

generality suppose that r ∈ GA. Note that rj ∉ {GA, GB, GC}, which also implies that rj’ ∉

{GA, GB, GC}. Therefore there exists a role r’ that produce rj’ after splitting. We maintain

that psetassign(r’) = psetassign(r). Suppose this is not the case and psetassign(r’) ≠ psetassign(r) .

Both rj and rj’ ∈ dom(A), which implies that r’ ∈ dom(A). Suppose that psetassign(r’) ⊃

psetassign(r). Note that permissions are removed from a role only if the role gets split and

the removed permissions are assigned to the newly created role that is made junior to the

role being split. Before splitting, r’ and r have same permission assignment. However,

after splitting we assume that psetassign(r’) ⊃psetassign(r), implying that either psetassign(rj’)

⊂ psetassign(rj) which is not possible, or r has at least one more newly created junior role

rj2 which acquires some of the permissions that were earlier assigned to r. If this is the

case then rj2 must be equivalent to some role rj2' ∈ X with psetassign(rj2') = psetassign(rj2).

Nevertheless, rj2' resulted from the split of role r’. This implies that all the permissions in

the psetassign(r’)\ psetassign(r) are removed from r’ and are assigned to rj2'. Therefore,

psetassign(r) ⊄ psetassign(r’)

If we assume psetassign(r’) ⊂ psetassign(r) then, either psetassign(rj’) ⊃ psetassign(rj) which is

not possible; or there exists at least one more newly created child role rj2’ (rj2’ ≠ rj’) of

role r’. In this case psetassign(rj2’) = psetassign(r) \ psetassign(r’). Note that rj2’ ∈ dom(A) and

therefore there exists a role r” ∈ {GB, GC} such that either r’ contains r” or r’ overlaps

r”. The element preservation property of RBAC-integrate ensures that r” also exists in Q.

When integration between GA and Q is performed role r is compared with r” and role r is

split to produce a child role rj2 with psetassign(rj2) = psetassign(r) ∩ psetassign(r”) =

 172

psetassign(rj2’). This proves that psetassign(r’) ⊄ psetassign(r) provided r is split once or twice.

Using induction we can prove that psetassign(r’) ⊄ psetassign(r) is independent of the

number of times role r is split. The above implies that for a type (i) split role r ∈ Y, there

exists a role r’ ∈ X such that psetassign(r’) = psetassign(r), hence ϕ(r’) = r.

The final step in proving that ϕ is onto is to show that all the elements in X map to at

least one element in Y. The element preservation property of RBAC-integrate maintains

that all the user, permissions and type (i) roles that are present in X are also present in Y.

So, all the users, permissions and type (i) roles in X can be mapped to at least one

element in Y. Since we disallow non-redundant roles and addition of new permissions

and users during the process of integration therefore both X and Y have same number of

type (ii) roles. We already proved that for every type (ii) role in Y there exists a type (ii)

role in X with the same permission assignment. Since the cardinality of type (ii) roles in

both X and Y is same, therefore there exists a 1:1 correspondence between the type two

roles in X and Y.

This concludes the proof that ϕ is onto.

ϕ is 1:1 (for all e1, e2 ∈ X, ϕ(e1) = ϕ(e2) → e1 = e2)

The element preservation property of the integration algorithm implies that all the

elements in the input graphs GA, GB, GC are present in X and Y. Moreover, RBAC-

integrate does not add any new user, permission and type (i) roles, i.e., the cardinality of

user set, permission set, and type (i) role set is same in both X and Y. We already proved

that ϕ is onto. Since we disallow non-redundant roles and duplicate permission

assignment during the process of integration therefore both X and Y have same number

of type (ii) roles. This implies that there is 1:1 correspondence between the user,

permission and role elements between X and Y. Hence, ϕ is 1:1.

Relationship Preservation: To conclude the proof that ϕ is isomorphic, we need to show

that any relation R(U) ∈ RX if and only if R(ϕ(U)) ∈ RY. The relationship preservation

property of RBAC-integrate guarantees that each relation R (except the P-assign) in the

input RBAC graph has a corresponding relationship R’ in the integrated RBAC graph.

We already proved that for any role r’ in X, there exists exactly one role r in Y such that

 173

that psetassign(r) = psetassign(ϕ(r)). Moreover, ϕ is a 1:1 morphism. This implies that for

any permission p, P-assign(r,p) ∈ RX if and only P-assign(ϕ(r),p) ∈ RY.

This concludes the proof that ϕ is isomorphic, implying that the operator RBAC-

integrate is associative.

Proof of Theorem 3.3: We prove this theorem separately for role assignment, role-specific

SoD, and user-specific SoD constraints.

Sub-proof 1: Any state S reachable from multi-domain RBAC graph G is secure

with respect to the role-assignment constraint of all collaborating domains. We prove this

claim by contradiction. Suppose that the above statement is not true. This means that in

some state S reachable from G there exists a user ui ∈ Uk who accesses a role rj ∈ Rk (sij =

1, sij ∈ πur_k(S)), while aij = 0, where, aij ∈ πur(Ak
+), i.e., there is no intra-domain access

path from ui to rj. The above implies that in the multi-domain RBAC graph G, there is a

path from ui to rj that consists of at least two cross-domain edges. Without loss of

generality, assume that these cross-domain edges are (rl, rm) and (rn, rp), where, rl, rp ∈ Rk

and rm, rn ∉ Rk; and () () ()* *1
lir m n m n p j p jI I

u r r r r r r r r= ∧ ≥ ∨ = ∧ ≥ ∨ = .

Since there is no intra-domain access path from ui to rj, 0
jiru = is specified as one

of the constraint to the IP problem (constraint transformation rule 1). Therefore, in any

feasible solution 0 and 0
j pir iru u= = .There are two possibilities for the variable

niru in any

feasible (optimal feasible) solution: 1) 1
niru = . If this is an optimal feasible solution to the

IP problem, then step 7 of the algorithm ConfRes removes the edge (rn, rp). 2) 0
niru = . If

this yields an optimal solution then step 7 of the algorithm ConfRes removes the edge (rl,

rm) if 0
miru = , otherwise it removes the edge (rn, rp).

In either case, any cross-domain edge leading ui to rj through rn is dropped. If

there are multiple such paths through other cross-domain roles, then in a similar manner

those paths will be eliminated by ConfRes. Hence in the resulting graph G there is no

 174

cross-domain path from ui to rj, implying that sij = 0. This contradicts our initial

assumption.

Sub-proof 2: Any state S reachable from G is secure with respect to the role-

specific SoD constraint of all collaborating domains. We prove this statement by

considering all possible role-specific SoD violations that might occur as a result of

interoperation. The following cases capture all the role-specific SoD violations in the

multi-domain environment:

Case 1: In this case, a local user ul accesses two conflicting roles ri and rj ∈ Rk.

There are four sub-cases corresponding to case 1, These sub-cases are shown in Figs.

A.1(a-d).

Sub-case 1(a): The security policy of domain k does not allow ul to access any of

the roles ri and rj. If we assume that in some state S, ul is able to access ri and rj through

some cross-domain role (see Fig. A.1(a)), then this will be a violation of role-assignment

constraint of domain k. However, all the reachable states from the multi-domain RBAC

graph obtained after applying conflict resolution algorithm, ConfRes, are secure with

respect to the role-assignment constraints of all collaborating domains (proved above).

Hence in this sub-case, ul cannot access ri and rj simultaneously.

Sub-case 1(b): RBAC policy of domain k allows ul to access ri but not rj as

depicted in Fig. A.1(b). Since the multi-domain policy is secure with respect to the role-

assignment constraints of domain k (proved above), therefore, ul cannot access rj through

a cross-domain path, implying that SoD violation between ri and rj never occurs in this

case.

Sub-case 1(c): Suppose ul is assigned to rs and *
s iA

r r≥ , *
s jA

r r≥ . Moreover, ri and rj

are conflicting roles as shown in Fig. A.1(c). A role-specific SoD violation occurs if ul

activates one of the conflicting roles, say ri, and inherits the other one, say rj, through rt

such that ()* *
s t s t t jA I

r r r r r r≥ ∨ = ∧ ≥ . For a hierarchically consistent RBAC policy, the

conflicting role set of a junior role must be contained in the conflicting role set of the

senior role. * () ()t j t jI
r r conf rset r conf rset r≥ ⇒ − ⊇ − . This means that ri ∈ conf-rset(rt). If

 175

there is no inter-domain path from ul to rt then user ul cannot access rt and ri

simultaneously implying that ul cannot access ri and rj simultaneously. If there exists an

inter-domain path from ul to rt, then by using induction we can show that there exist a

role ru ∈ Rk such that () ()* * (,)s u s u u t u iA I
r r r r r r conf role r r≥ ∨ = ∧ ≥ ∧ − and there does not

exists a cross-domain role ro ∉ Rk such that * *
s o uI I

r r r≥ ≥ . If rs = ru then this leads to sub-

case 1(d) discussed next. If not then this means that ul cannot access ru and ri

simultaneously implying that ul cannot access rt and ri simultaneously, which in turns

imply that ul cannot access rj and ri simultaneously.

rs

ul

ri
rj

SoD

rm

rn

rl

rp
rq

K

rs

ul

ri
rj

SoD

rm

rn

rl

rp

K

rt

ul

ri
rj

SoD

rm

rn

rl

rp

K

rs

ul

ri

rm

rn

rl

rp

So
D K

rs

ul

rqrp

rnrm

rjri SoD

K

rs

ul

rqrp

rnrm

rjri SoD

K

Induced
SoD

rs

ul

rqrp

rnrm

rjri SoD

KIn
du

ce
d

So
D

(a) (b) (c) (d)

(e) (f) (g)

rs

In
du

ce
d

So
D

Fig. A.1 Cases of role-specific SoD violations involving cross-domain paths

Sub-case 1(d): Suppose ul is assigned to rs and *
s iA

r r≥ . Moreover, rs and ri are

activation time conflicting roles as shown in Fig. A.1(d). If security policy of domain k is

consistent then there is no intra-domain path from rs to ri consisting of only I-edges.

Suppose that there is a cross-domain path from rs to ri. Such a path must have at least two

cross-domain edges. Without loss of generality, assume that these cross-domain edges are

 176

(rl, rm) and (rn, rp), where, rl, rp ∈ Rk and rm, rn ∉ Rk;

and () () ()* * *
s l s l m n m n p i p iI I I

r r r r r r r r r r r r≥ ∨ = ∧ ≥ ∨ = ∧ ≥ ∨ = . This cross-domain path

enables any user to access permissions of ri by accessing role rs, which is a violation of

SoD constraint between rs and ri. At least one user activates role rs (Step 1 of the ConfRes

algorithm and transformation rules 3 and 4 ensures that each role in the multi-domain

graph is accessed by at least one user). Let the user be ul. Since rs and ri are conflicting

roles, therefore 1≤+
is lrlr uu is one of the constraint of the IP problem formulated in the

step 4 of conflict resolution algorithm Confres. Since 1=
slru , therefore in any feasible

solution 0=lriu and 0=lrpu . There are two possibilities for the variable
nlru in any

feasible (optimal feasible) solution:

1=
nlru . If this is an optimal feasible solution to the IP problem, then step 7 of the

algorithm Confres removes the edge (rn, rp).

0=
nlru . If this yields an optimal solution then step 7 of the algorithm ConfRes

removes the edge (rl, rm) if 0=
mlru , otherwise it removes the edge (rn, rp).

In either case, any cross-domain edge leading ul to rj through rn is dropped. If

there are multiple such paths through other cross-domain roles, then in a similar manner

those paths will be eliminated by ConfRes. Hence in the resulting graph G there is no

cross-domain path from rs to ri, implying that ul cannot access role rs and ri

simultaneously.

Case 2: In this case, a foreign user ul ∉ Uk accesses two conflicting roles ri and rj

∈ Rk. There are three sub-cases corresponding to case 2. Figures A.1(e), A.1(f) and

A.1(g) depicts these sub-cases.

Sub-case 2(a): Suppose ul is assigned to rs and there is a cross-domain path from

rs to ri and from rs to rj as shown in Fig. A.1(e). For the cross-domain path from rs to ri

the following hold:

() () ()* * *
s p p s p m m i m iI I I

r r r r r r r r r r≥ ∨ = ∧ ≥ ∧ ≥ ∨ =

 177

Similarly, for the cross-domain path from rs to rj the following hold:

() () ()* * *
s q s q q n n j n jI I I

r r r r r r r r r r≥ ∨ = ∧ ≥ ∧ ≥ ∨ =

Since ri and rj are conflicting roles and a user ul assigned to rs have an access path

to both ri and rj, therefore 1≤+
ji lrlr uu is one of the constraint of the IP problem

formulated in the step 4 of conflict resolution algorithm Confres. At least one user

activates role rs (Step 1 of the ConfRes algorithm and transformation rules 3 and 4

ensures that each role in the multi-domain graph is accessed by at least one user). Let the

user be ul, i.e., 1=
slru , which also implies that 1=

plru and 1=
qlru . There are three

possibilities for the variables
ji lrlr uu and in any feasible solution.

0=
ilru and 0=

jlru , implying that 0=
mlru and 0=

nlru . If this is an optimal

solution then step 7 of ConfRes removes the edges (rp, rm) and (rq, rn).

0=
ilru and 1=

jlru , implying that 0=
mlru . If this is an optimal solution then step

7 of ConfRes removes the edge (rp, rm).

1=
ilru and 0=

jlru , implying that 0=
nlru . If this is an optimal solution then step 7

of ConfRes removes the edge (rq, rn).

In any of the above cases, at least one of the cross-domain paths from rs to ri or rj

is removed in the process of conflict resolution. Hence, ul cannot access both ri and rj

simultaneously in the resulting RBAC graph G.

Sub-case 2(b): Suppose ul is assigned to rs and * *
s p s qA A

r r r r≥ ∧ ≥ . Let there be a

cross-domain path from rp to ri and a cross-domain path from rq to rj. This is depicted

Fig. A.1(f). These cross-domain relationship *
p iI

r r≥ and *
q jI

r r≥ induces an SoD constraint

between rp and rq as shown in Fig. A.1(e). This implies that user ul cannot activate rp and

rq concurrently, and therefore cannot access the cross-domain roles ri and rj

simultaneously.

 178

Sub-case 2(c): Suppose ul is assigned to rs and ()* *
s p s q s qA I

r r r r r r≥ ∧ ≥ ∨ = . Let there

be a cross-domain path from rp to ri and a cross-domain path from rq to rj. The

relation *
q jI

r r≥ implies *
s jI

r r≥ . This is depicted Fig. A.1(g). These cross-domain

relationship *
p iI

r r≥ and *
s jI

r r≥ induces an SoD constraint between rp and rs as shown in

Fig. A.1(e). This implies that user ul cannot activate rs and rp concurrently, and therefore

cannot access the cross-domain roles ri and rj simultaneously.

Any of the role-specific SoD constraint can be reduced to one of the above cases.

In all of the above cases, we have proved that SoD violation between conflicting roles

can never happen. Hence, any state S reachable from the multi-domain RBAC graph G

obtained after applying conflict resolution algorithm, ConfRes, is secure with respect to

the role-specific SoD constraints of all collaborating domains.

Sub-proof 3: Any state S reachable from G is secure with respect to the user-

specific SoD constraint of all collaborating domains. A user-specific SoD violation of

role rt occurs when a user ui belonging to the conflicting user set(s) of rt accesses rt

through multiple paths and at least one of such path includes cross-domain edges. This is

shown in Fig. A.2, in which users u1, u2,.., um conflict with user udt for role rt. The

following relationship exists among the roles depicted in Fig. A.2.

() ()
() () () ()

* * *

* * * *
s t s t s l s l s lA I A

l m m n n p p t p tI I I I

r r r r r r r r r r
r r r r r r r r r r

≥ ∨ = ∧ ≥ ∨ ≥ ∨ =
∧ ≥ ∧ ≥ ∧ ≥ ∧ ≥ ∨ =

Where, rs, rl, rp, and rt ∈ Rk and rm, rn ∉ Rk, otherwise, domain k’s RBAC policy

becomes inconsistent. The case when rs and rt are not distinct is trivial and does not

involve any cross-domain path for SoD violation. The following discussion considers the

case when rs and rt are distinct roles.

In Fig. A.2, a user specific SoD is violated when udt activates role rt and any of

the users conflicting with udt for role rt accesses role rl. By accessing role rl, a user, say

u1, accesses the permissions of rt through the cross-domain path.

 179

After step 3 of the conflict resolution algorithm, ConfRes, all the user specific

SoD constraints in the multi-domain RBAC graph G can be reduced to the case shown in

Fig. A.2. Since users u1, u2,.., um conflict with user udt for role rt, therefore the following

is included as one of the constraints to the IP problem formulated in step 4 of ConfRes.

1
1

≤+∑
=

m

i
dtrir tt

uu , Also
tdtru is set to one in step 3 of the algorithm Confres. This

implies that in any feasible solution the the IP problem, 0=
tiru for all i ∈ {1,2,..,m}.

There are two possibilities for the variable
niru in any feasible (optimal feasible)

solution:

1. 1
niru = . If this is an optimal feasible solution to the IP problem, then step 7 of the

algorithm ConfRes removes the edge (rn, rp).

2. 0
niru = . If this yields an optimal solution then step 7 of the algorithm ConfRes

removes the edge (rl, rm) if 0
miru = , otherwise it removes the edge (rn, rp).

rs

u1

u2

un

rt
un

rt

rt

rt rl

rp

rm

rn

K

Fig. A.2 User-specific SoD violation through a cross-domain path

In either case, any cross-domain edge leading ui to rt through rn, is dropped. If

there are multiple such paths through other cross-domain roles, then in a similar manner

 180

those paths will be eliminated by ConfRes. This implies that no user ui belonging to the

conflicting user set(s) of rt can access rt through a cross-domain path.

Hence, any state S reachable from the multi-domain RBAC graph G obtained

after applying conflict resolution algorithm, ConfRes, is secure with respect to the user-

specific SoD constraints of all collaborating domains provided their access control

policies are consistent.

This concludes the proof of Theorem 3.3.

 181

Appendix B.

Proofs of Theorems of Chapter 4.

Proof of Lemma 4.1: The workflow composibility conditions WC2 and WC3

establish a partial ordering among all tasks of the PW. For any task pairs τi and τj ∈ PW

such that τi precedes τj in task execution order ' ' D
j i
π πφ φ≥ + , where 0 < D < ∞.

Moreover, if the delay between completion of τi and τj is bounded by the interval [Tmin,

Tmax] then
' ' '

1 2D + D +
i j i

π π πφ φ φ≤ ≤ Where, D1 = Tmin + D, D2 = Tmin + D, and D2 > D1 > 0.

Note that the system of linear inequalities generated in step 1 of the task initiation

time procedure does not have any constraint that bounds the sum of the initiation times of

two or more tasks to a constant value. That is the system of linear inequalities generated

in step 1 of the task initiation time procedure does not have any constraint of the form
'

1 2M M
i

i

πφ≤ ≤∑ .

 Therefore, minimizing the sum '
i

i

πφ∑ subject to the state residence time

constraints and intra-domain workflow composibility constraints (WC1, WC2, and WC3)

is equivalent to minimizing each individual '
i
πφ . In other words, min(φi

π’) is the earliest

time for initiation of task τi in state path π’ such that the intra-domain workflow

composibility conditions (WC1, WC2, and WC3) are satisfied. By the same argument,

max(φi
π’) is the latest time for initiation of task τi. �

 182

Proof of Theorem 4.1: We will first prove this theorem for the case when τj has

only one parent node and then we will prove the multi-parent case. In both cases we will

use inductive reasoning.

Single Parent case (τj has only one parent task node in GX):

Base Case: The task τ1 (first task of the PW) is the parent of τj. The edge mapping

function ensures that all the state transition paths in the path set ∏1j satisfies intra-domain

workflow composibility condition WC1, WC2, and WC3 for task pair τ1 andτj.

Induction Step: Suppose τi (τi ≠ τ1) is the parent task node of τj i.e., (τi, τj) ∈

E[GX]. Let ∏1i denotes the set of all valid state paths from τ1 to τi that satisfy the intra-

domain workflow composibility conditions WC1, WC2, and WC3 for task τi and all tasks

that precede τi in the execution order of the PW. Let ∏1j be the set of all state paths from

τ1 toτj. The for loop in lines 2 -7 of the procedure path-extend called by WPS procedure

ensures that for each π1j ∈ ∏1j, there exists a path π1i ∈ ∏1i such that π1i is a prefix sub-

path of π1j, i.e., the path relation start(π1i, π1j) holds.

The path set ∏ij returned by the edge-mapping procedure (in line 11 of WPS

procedure), contains all paths that satisfy workflow composibility conditions WC1,

WC2, and WC3 for the task pair τi and τj. Consider a path πij ∈ ∏ij. Suppose πi is a prefix

path of πij such that the path relations finish(πi, π1i) and start(πi, πij) hold, where π1i ∈

∏1i. The path πij can be written as a concatenation of paths πi and π’ i.e, πij = πi.π’. In

lines 5 and 6 of the path-extend procedure the state path π1j from τ1 toτj is computed by

concatenating π’ to the end of π1i. π1j = π1i.π’.

Since π1j include π1i ∈ ∏1i as a sub-path, therefore all the intra-domain workflow

composibility conditions that are true in π1i are also true in π1j for task τi and all tasks that

precedeτi in the execution order of the PW. π1j also includes πij ∈ ∏ij and therefore, π1j

satisfies workflow composibility conditions WC1, WC2, and WC3 for the task pair τi and

τj. Moreover, in line 7 of the path-extend procedure, π1j is analyzed for satisfaction of

workflow composibility WC1, WC2, and WC3 for all task pairs (τp, τq) such that (τp, τq)

∈ E[GX] and τq = τj or τq precedes τj in the task execution order. This proves that path π1j

satisfies the two properties listed in the theorem statement.

 183

Multiple parent case: We will prove the multi-parent case when τj is the first

task node in GX that has k parents with k > 0, as shown in Fig. B.1. The remaining multi-

parent cases can be proved by similar reasoning.

Base case: k =1, the proof is similar to the single parent case.

Induction Step: Let ∏1j
(k-1) be the set of all state paths that satisfy: (i) workflow

composibility condition WC1 for task τj and all predecessor tasks of τj that can reach τj

via the task nodes τi
(1),…, τi

(k-1). (ii) workflow composibility conditions WC2 and WC3

between task pairs (τi
(1)

, τj), ….(τi
(k-1)

, τj) and all other tasks pairs (τp, τq) such that (τp, τq)

∈ E[GX] and τq precedes τi
(1),…, τi

(k-1)
 in the task execution order.

Let ∏1j
(k) be the set of all state paths that satisfy: (iii) workflow composibility

condition WC1 for task τj and all predecessor tasks of τj that can reach τj via the task

nodes τi
(k). (iv) workflow composibility conditions WC2 and WC3 between task pairs

(τi
(k)

, τj) and all other tasks pairs (τp’, τq’) such that (τp’, τq’) ∈ E[GX] and τq’ precedes τi
(k)

in the task execution order.

τ1

τi
(1) τi

(2) τi
(k-1) τi

(k)

τj

Fig. B.1

In the WPS procedure, the path set ∏1j is composed by taking an intersection of

the path sets ∏1j
(k-1) and ∏1j

(k) (line 14). ∏1j = ∏1j
(k-1)

 ∩ ∏1j
(k). Therefore, each path in the

path set ∏1j satisfies (i), (ii), (iii), and (iv). Alternatively, each path π1j ∈ ∏1j satisfies the

following:

 184

• Workflow composibility condition WC1 for task τj and all predecessor tasks of τj

that can reach τj via its parent tasks.

• Workflow composibility conditions WC2 and WC3 between any task pair (τi, τj)

such that (τi, τj) ∈ E[GX].

• Workflow composibility conditions WC2 and WC3 between any task pair (τp, τq)

such that (τp, τq) ∈ E[GX] and τq precedes τj in the task execution order.

Proof of Theorem 4.2: The cross domain dependency verification procedure

returns No, if there does not exist any path combination (π1, π2,…., πn) (such that πk ∈

Π(k) and 1 ≤ k ≤ n), that satisfies the cross domain dependencies of the set CSdep. Suppose

on the contrary, that there exists a path combination (l1π , m2π ,….,mπn) that satisfies all the

cross domain dependencies specified in the set CSdep and each mπk satisfies the

composibility conditions WC1, WC2, and WC3 for the projected workflow PWk assigned

to IDk. Since the verification procedure could not find the path combination

(l1π , m2π ,….,mπn), the following two possibilities may occur:

1. At least one of themπk is not included in the path set Π(k), i.e, mπk ∉ Π(k). As discussed

in Section 4.5.1 of Chapter 4, the path set Π(k) returned by the procedure WPS is

exhaustive and includes all the paths of IDk that satisfy the composibility conditions

WC1, WC2, and WC3 for PWk. Therefore, mπk ∉ Π(k) implies that mπk cannot support

PWk. Hence, the path combination (l1π , m2π ,….,mπn) cannot support the distributed

workflow.

2. ∀ k, mπk ∈ Π(k). However, there exists at least one task τi ∈ PWj such that

[min(), max()]j j j
i i i
π π πφ φ φ∉� � � or [min(), max()]j j j

i i i
π π πθ θ θ∉� � � , where j

i
πφ � and j

i
πθ � denote the

initiation and completion times of τi in mπ j ∈ Π(j). By Lemma 4.1, for any task τi ∈

PWj, min()i
πφ , computed using the task initiation time procedure of Fig. 4.7, is the

earliest time instant at which τi can be initiated in a state path π that satisfy

 185

composibility conditions WC1, WC2, and WC3 for PWj. Similarly,

max()i
πφ corresponds to the latest initiation time of task τi. Since, mπ j ∈ Π(j) and all

paths in Π(j) satisfy WC1, WC2, and WC3 for PWj, therefore,

[min(), max()]j j j
i i i
π π πφ φ φ∈� � � . Similarly, we can prove that [min(), max()]j j j

i i i
π π πθ θ θ∈� � � .

With reference to the system of constraints (II) – (VIII) for cross-domain

dependency verification, the above implies that all state paths in the combination

(l1π , m2π ,….,mπn) satisfy constraints (II) – (VII). Since the verification procedure

returned No, therefore, constraint (I) is not satisfied for at least one pair of cross-

domain paths, say lπi and mπ j . This implies that lπi and mπ j do not satisfy the cross-

domain dependencies among the component services of PWi and PWj. Therefore, the

path combination (l1π , m2π ,….,mπn) cannot support the distributed workflow. �

VITA

 186

VITA

Basit Shafiq was born in Pakistan in 1975. He completed his Bachelors of Science in

Electronics Engineering from Ghulam Ishaq Khan Institute of Engineering Sciences and

Technology, Topi, Pakistan, in 1999. He joined Purdue University in the fall of 1999 and

obtained an M. S. in Electrical and Computer Engineering in December 2001. His

research interests include information system security, distributed database systems,

multimedia systems, and networking.

	thesis-title-toc.pdf
	form-e9.pdf
	thesis-title-toc.pdf

	thesis-shafiq.pdf
	form-e9.pdf
	thesis-shafiq.pdf
	thesis-initial-pages-3.pdf
	thesis-p1-73.pdf
	thesis-p74-end.pdf
	thesis-initial-pages-3.pdf
	thesis-p1-73.pdf
	p74.pdf
	thesis-p75-145.pdf
	pg146-added.pdf
	pg147-added.pdf
	pg148-added.pdf
	thesis-p149-154.pdf
	separator-ref.pdf
	thesis-references.pdf
	separator-appendices.pdf
	thesis-appendix.pdf
	separator-vita.pdf
	thesis-vita.pdf

