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Abstract 
 
There is a growing need to support secure interaction among autonomous domains/systems for developing 

distributed applications. As domains operate according to their individual security and access control 

policies, supporting secure interactions among domains for distributed workflows is a complex task prone to 

subtle errors that can have serious security implications. In this paper we propose a framework for verifying 

secure composibility of distributed workflows in an autonomous multi-domain environment. The objective 

of workflow composibility verification is to ensure that all the users or processes executing the designated 

workflow tasks conform to the security policy specifications of all collaborating domains. A key aspect of 

such verification is to determine the time-dependent schedulability of distributed workflows, assumed to be 

invoked on a recurrent basis. We use a two-step approach for verifying secure workflow composibility. In 

the first step, a distributed workflow is decomposed into domain-specific projected workflows and is verified 

for conformance with the respective domain�s security and access control policy. In the second step, the 

cross-domain dependencies amongst the workflow tasks performed by different collaborating domains are 

verified.  
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1 Introduction 

 The rapid proliferation of the Internet and cost-effective growth of its key enabling technologies have 

created unprecedented opportunities for developing large-scale collaborative workflow-based applications. 

These applications require access to information and computational resources owned by autonomous and 

heterogeneous domains and service providers. Supporting distributed workflows in such environments is a 

challenging task. The individual domains are autonomous in the sense that they operate according to their 

own security and access control policies which may be context driven [Tri04, Jos05a]. Depending upon the 

type of workflow applications, several contextual parameters such as time, location, environment, agenda 

etc., may be considered and can pose substantial challenges in information security [Ant01, Ber99a, Wel03]. 

In particular, the resource access requirements of distributed workflows may conflict with the access control 

policies of service providers/domains [Sha05].  

 In order to develop secure distributed workflow applications, security assurance must be incorporated in 

the application design from the onset and such design must conform to the security requirements of all 

stakeholders. A key security requirement of any security critical system is accountability which entails that 

only authorized users or processes running on behalf of authorized users should be able to use the system�s 

resources or functionalities [Lan01, Lam00, San94]. Therefore, access control that determines authorization 

of users, plays a critical role in establishing accountability for any system. In this paper, we focus on the 

authorization aspect of accountability in an autonomous multi-domain environment supporting distributed 

workflows, which need to be executed on a recurrent basis and require long term collaboration among 

domains. For verifying composibility of such workflows, their specifications need to be tested for 

conformance with the access control policies of all collaborating domains. 

 Examples of recurrent distributed workflow applications include: check clearance processing among 

banks, insurance claim processing, health-care administration, real-time process control systems, and 

distributed data processing for stream data warehouses [Gho93, Wod96, Ngu04, Jun04, Yu04, Tri03]. In all 

these applications, a predefined workflow specifies a logical sequence of activities or tasks that needs to be 

performed by collaborating and possibly autonomous domains. Some of these applications have strict 

deadlines for workflow completion which may not always be satisfied because of the time dependent access 

control policies of domains. These workflow applications are recurrent in a sense that they need to be 

invoked repeatedly after a fixed or variable time interval. For instance, the check clearance workflow among 

banks is invoked regularly to process a batch of check clearance requests [Gho93, Car88]. Similarly, the 

distributed data processing workflow for zero latency data stream warehouse is periodically invoked for 

mining the continuous data streams in near real-time [Ngu04]. For verifying secure composibility of such 

workflows, the following two questions need to be answered: 
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 Does the security and authorization policies of collaborating domains, support execution of the 

distributed workflow under the given timing constraints? 

 What are the possible time instants at which the distributed workflow can be invoked recurrently? 

 The proposed composibility verification approach is designed to answer the above questions for a given 

distributed workflow specification. The domains to which the workflow tasks are assigned are considered to 

be autonomous with time dependent non-reentrant behavior [Agr82, Gac98]. The behavior of a domain is 

characterized as reentrant or non-reentrant based on the underlying software system enforcing a time-

dependent access control policy. We use Generalized Temporal Role Based Access Control (GTRBAC) 

[Jos05a] model to specify the time dependent access control policy of a domain. In the software engineering 

terminology, a non-reentrant system does not allow its multiple simultaneous, interleaved, or nested 

invocations and only one instance of such system exists at any time [Gac98]. The non-reentrant behavior of 

a system is governed by its finite state model (FSM) and any interaction with such system has to be 

compatible with its current state [Gac98]. At any time, a domain can have only one instance of its GTRBAC 

policy against which all access requests are evaluated. In addition, the GTRBAC policy instance has a finite 

number of authorization states. Therefore, according to the above criterion a domain is a non-reentrant 

system.  

 For verifying workflow composibility, the distributed workflow specifications need to be analyzed for 

being consistent with the individual as well as with the collective behavior of collaborating domains. 

Accordingly workflow composibility verification entails two steps: i) verification of workflow specifications 

with respect to the FSM of individual domains, and ii) verification of dependencies among domains for 

execution of workflow tasks. These two steps can either be carried out separately in the above order, or can 

be performed simultaneously by using a unified global meta-policy that captures all intra-domain and inter-

domain authorizations [Bel02, Sha05, She90]. The methodology proposed in this paper uses the two step 

verification approach and does not consider the meta-policy based approach for the following reasons: 

 The unified global meta-policy is composed by integrating the access control policies of all 

collaborating domains; however, domains may not disclose their policies due to privacy concerns. 

 More importantly, domains are autonomous in deciding when to join or leave the collaborative 

environment. Whenever a new domain joins the collaboration, the meta-policy needs to be 

reconfigured. Consequently, all the workflows verified with respect to the previous meta-policy need 

to be verified again. Such re-verification of existing workflows due to joining of new domains is not 

needed in the proposed methodology. The meta-policy is also reconfigured when any domain leaves 

the collaboration or changes/updates its access control policy. Again such reconfiguration of meta-

policy triggers re-verification of all previously verified workflows including the ones that do not have 

any task assigned to the departing domains or domains that have changed/updated their policies. In 



 4

the proposed approach, a workflow is re-verified only if a domain participating in workflow execution 

updates its policy or leaves the collaboration. 

 Figure 1 depicts the proposed two step approach for verification of secure workflow composition. The 

approach relies on decomposition of a distributed workflow into domain-specific workflows called projected 

workflows. These projected workflows are verified by the respective domains in terms of the authorization 

and execution time requirements. After verification of projected workflows, the cross-domain dependencies 

amongst the workflow tasks performed by different collaborating domains are verified. The timing 

information computed in the projected workflow verification phase is used to determine an interleaving of 

projected workflow tasks that satisfies the cross-domain dependencies of the distributed workflow. This 

timing information is also used to determine a feasible schedule for the overall verified distributed workflow.  

For workflow composibility verification, we assume that the FSM of each domain�s GTRBAC policy is 

given and the distributed workflow is specified using interaction model (IM). 

 Although the proposed verification approach is for secure workflow composibility, the approach is 

generic and can be applied to many distributed applications involving collaborations among non-reentrant 

and autonomous components. Examples of such applications include process control systems [Jaf91], 

mission planning and control in military systems [Coh02], real-time speech recognition systems [Erm80], 

and workflow-based production systems [Mue04]. The underlying verification problem in such applications 

is to determine whether or not a given configuration of non-reentrant components can support the 

functionality required by distributed applications. 
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 The paper is organized in the following manner. Section 2 introduces the interaction model (IM) for 

distributed workflow specification and discusses how domain-specific projected workflows are created. 

Section 3 provides a brief overview of GTRBAC model and describes the state-based representation on 

GTRBAC policy. Section 4 presents a formal definition of secure workflow composibility and describes the 

proposed approach for verification of distributed workflows. Section 5 presents related work and Section 6 

provides concluding remarks. 

Figure 1. Overall process for workflow composibility. 
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2 Interaction Model for Workflow Specification 

 

 For verifying workflow composibility, a formal and precise specification of the distributed workflow is 

needed. In particular, the specification should be able to capture the collaboration requirements among the 

domains performing the tasks of the distributed workflow. We use the term component service to refer to a 

task or set of tasks in a distributed workflow that can be executed by a domain independently. More 

precisely, a component service encapsulates a set of domain-specific tasks that are advertised to other 

interacting domains as a single capability/functionality of the domain.  

Interaction models, such as Unified Modeling Language (UML) sequence diagrams [OMG03] and 

International Telecommunication Union (ITU) message sequence charts (MSC) [ITU96], have been widely 

used to model specifications of distributed workflows requiring communication among collaborating 

domains for service provisioning [Fos03, Kru04]. In this paper, we use UML 2.0 sequence diagrams to 

model the distributed workflow specification. A sequence diagram, shown in Figure 2, specifies the 

communication among the interacting entities as message exchanges. The vertical line in a sequence diagram 

represents time and is called the lifeline of the corresponding interacting entity. Message exchange between 

two entities is shown by an arrow from the sender to the receiver. The communication between the 

interacting entities can be either synchronous or asynchronous. In synchronous communication the sender 

blocks for the subsequent action to complete, whereas, there is no nesting of control in asynchronous 

communication. In this paper we consider all the message exchanges to be synchronous for the sake of 

simplicity. 

In the following, we provide a formal definition of workflow sequence diagrams considered in this paper. 

2.1 Workflow Sequence Diagram (WSD) 

In WSD, we consider the interacting entities of a sequence diagram as interacting domains (IDs) defined 

in the following definition. In this definition, the incoming and outgoing messages at an ID corresponds to 

input and output events respectively.  

 Definition 1 (ID). An Interacting Domain (ID) is a tuple {EV, , CS, T } where, 

(a) EV= In  Out is a set of events which are partitioned into input and output events.  

(b)  EV  EV is a partial ordering of events such that i j i jev ev ev occurs beforeev  

(c) CS: {c1,c2, �cr}  is a set of component services offered by the ID 

(d) T: In  (CS  2Out) maps the input event to the corresponding CS and set of output events. 

Definition 2 (WSD). A Workflow Sequence Diagram (WSD) is a tuple WSD= {ID, TR} such that:  
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(a) ID= {ID1, ID2, ID3 ,���.IDr } is a finite set of interacting domains IDi={EVi , i,, CSi, Ti} 

1 ,i r r d  where d is the total number of domains and EVi are disjoint sets of events. Without loss of 

generality that ID1 always initiates the interaction.  

(b) For a given IDj, TR maps a pair of events to the minimum and maximum duration allowed between 

them.  TR(evi, evj)= [dl,du] where dl, du  Z+ ,  evi < evi and i  j . 

The set ID in a WSD contains all the interacting domains that provide the required component services 

for workflow composition. The set of component services offered by an ID is specified in its definition. A 

component service is associated with one or more input events. An input event occurs with the arrival of an 

incoming message. The mapping function T in the ID definition maps the input event to a component service 

and a set of output events (output messages). The second element in the WSD tuple TR is a function that 

maps any pair of events (evi, evj) to a finite time interval. This interval specifies the minimum and maximum 

duration allowed between evi and evj provided that evi occurs before evj. The WSD considered in this paper 

supports the notion of parallel interactions through concurrent message transmission as specified in UML 2.0 

sequence diagrams [Pil05]. Such parallel interactions are needed to model the parallel invocation of 

component services in different IDs. For instance, the concurrent messages �Tax Exemption Query� and 

�Tax Sale Charge Query� corresponds to parallel invocation of the tax exemption processing service in 

County Treasurer Office (CTO) and tax sale charges processing service in District Clerk Office (DCO).  

Example 1: Figure 2(a) shows the WSD of a distributed workflow involving urgent processing of tax 

redemption request for delinquent real-estate property. The urgent processing entails that the entire business 

process of tax redemption be completed in one business day. The domains involved in provisioning of this 

distributed workflow include: property owner, County Clerk Office (IDCCO), County Treasurer Office 

(IDCTO), and District Clerk Office (IDDCO) as shown in Figure 2(a). The distributed workflow of Figure 2(a) 

is initiated by the property owner by filing a tax estimate request for the delinquent property with IDCCO. This 

request invokes the initial assessment service in IDCCO. After completion of the initial assessment, the IDCTO 

and IDDCO are queried for exemption processing and tax sale charges for the given delinquent property 

index. Based on the exemption amount and tax sale charges returned by IDCTO and IDDCO respectively, the 

final estimate for the tax redemption amount is calculated and is submitted to the property owner. Upon 

receiving the redemption cost estimate, the property owner initiates the payment processing service for tax 

redemption with IDCTO. After the payment processing is completed, the property owner requests for issuance 

of delinquent tax clearance certificate which launches the clearance processing service in IDCCO.  

The component services associated with the events of the WSD of Figure 2(a) are shown in Figure 2(b).  

The time interval between events in the WSD of Figure 2(a) corresponds to the interval returned by the TR 

function for the corresponding events pair as specified in the WSD definition. For instance, the time interval 

[85min, 480min] between the tax exemption request, initiating the tax redemption processing workflow, and 
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the clearance certificate issued event implies that the distributed workflow must complete within 480 minutes 

(8 hours) relative to the initiation time of the workflow. The lower bound of 85 minutes implies that 

processing of this distributed workflow takes at least 85 minutes.  
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                                      (a)                                           (b)                                          (c) 

Figure 2. (a) WSD of a distributed workflow involving urgent processing of tax redemption request for delinquent real-estate 

property. (b) component services required for performing tax redemption processing. (c) PW specification for each domain. 

 
2.2 Domain-specific Projected Workflow Specification 

The WSD specifies a high level description of the distributed workflow and considers the component 

services as atomic operations provided by domains. However, a component service may encapsulate a 

workflow process comprising multiple tasks. For example the redemption payment service, shown in Figure 

2(c) comprises two tasks, namely, refund adjustment and payment processing. The refund adjustment task 

precedes the payment processing task in the workflow associated with the redemption payment service. This 

low level description of the component service is specific to a domain and is not required for distributed 

workflow specification. However, as discussed later, such description is needed for composibility 

verification, which is performed for each domain separately. In the following we formally define a 

component service of an ID. 

Definition 4 (CS). For an ID, a component service  (c  CS) is a tuple c= {Tc, , , } where Tc is a set of 

tasks included in the workflow of c, and   Tc x Tc specifies partial ordering between the tasks such that 

1 2 ( 1, 2  Tc)  implies that 1 precedes 2 in the execution order. : Tc  + is a function that maps a task 

to the time duration required for its completion. : Tc x Tc  +  x + [dl, du] maps a task pair ( 1, 2) to an 

interval[dl, du] (dl, du  +) that specify the minimum and maximum duration between the completion and 

initiation of 1 and 2 respectively.   

 Each task of the component service has certain authorization constraints specified in the corresponding 

domain�s access control policy. In order to verify workflow composibility, we need to ensure that all the 

authorization constraints associated with each task of the component service are satisfied. As discussed in the 
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Introduction, each domain is autonomous and may not reveal its access control policy to other domains for 

security and privacy concerns. To facilitate workflow composibility verification with respect to the access 

control policy of each domain, a domain-specific projected workflow (PW) specification is generated from 

the WSD of the distributed workflow. The PW specification provides the following information related to the 

corresponding domain�s involvement in the distributed workflow: i) component services provided by the 

domain in the WSD, ii) temporal constraints between the component services, and iii) the task workflow 

associated with each component service as defined above.  We model the PW of a domain as a directed 

acyclic graph, which is constructed from the WSD and the component service specification. Each node of 

PW graph represents a task and an edge ( 1, 2) represents the precedence relationship between the tasks 1 

and 2. The node of a PW graph is annotated with a non-negative integer specifying the time duration for 

completion of the corresponding task. This information is obtained from the task duration mapping function 

 given in the respective CS specification. Each edge in a PW graph is annotated with an interval that 

specifies the minimum and maximum duration between the completion and initiation of successive tasks 

connected by the edge.  In case the successive tasks belong to the same CS the interval mapping function  

provides this information; otherwise, the interval is computed from the WSD specification.   

Figure 2(c) shows the PW graph of IDCTO, IDCCO and IDDCO for the tax redemption workflow described 

in Example 1. The dashed arrows in Figure 2(c) are not a part of any PW graph and are used to illustrate the 

temporal ordering of cross-domain component services in the distributed workflow specification. 

3 FSM of a domain’s Access Control Policy  

To analyze the consistency of the workflow specification against a domain�s dynamic and non-reentrant 

behavior, a state based representation of the domain�s access control policy is needed. In the following, we 

first provide an overview of the GTRBAC model for specification of time-dependent access control policies 

and then describe a finite state model (FSM) for state based representation of GTRBAC policies. 

 

3.1 GTRBAC Model 

GTRBAC is a temporal extension of the role-based access control (RBAC) model proposed by Sandhu 

et. al. in [San96]. RBAC consists of following four basic components: a set of user U, a set of roles R, a set 

of permissions P, and a set of sessions SE. A user is a human being or a process within a system. A role is a 

collection of permissions needed to perform a certain function or task. A permission is an access mode that 

can be exercised on a particular object or resource in the system. A session relates a user to possibly many 

roles and allows the user to access all permissions associated with such roles. A key aspect of the GTRBAC 

model is the notion of states of a role. In GTRBAC, a role can be in one of the three states: disabled, 

enabled, and active. A role is enabled if a user can access the permissions assigned to the role. An enabled 

role becomes active when a user accesses the permissions assigned to the role. By contrast, a disabled role 

cannot be activated by any user.  
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3.1.1 Preliminaries and Assumptions 

A domain�s GTRBAC policy specifies the authorizations for its component services. As mentioned in 

Section 2, a component service is essentially an encapsulation of one or more tasks with certain temporal and 

ordering constraints. At the interaction modeling level, a task is viewed as an operation on a resource by an 

authorized subject without considering who is authorized for the resource access and how such operation can 

be executed. In the GTRBAC model, a task can be represented as an activation of a particular role by an 

authorized user, where the role is a collection of permissions required to perform the requested operation on 

the underlying resource object(s) and the user corresponds to the subject executing the task. For establishing 

the semantics relationship between a component service and the underlying user-role activation in the 

GTRBAC policy, we define a function called domain role mapper (DRM) that maps each task of the 

component service to a set of user role activation pairs (u, r) such that each role r in the pair (u, r) has all the 

relevant permissions required for processing of the task and the user u is authorized for role r. Formally: 

DRM( ) = {(u, r) | u, is authorized for r and  r contains all permission required for processing  }. 

As discussed in the Introduction, we are interested in verification of distributed workflows that are 

executed recurrently. For supporting such workflows a domain�s GTRBAC policy must allow access to its 

roles on a recurrent basis. Therefore, we consider only those roles that can be accessed infinitely often and 

have a periodic enabling time. For instance, a tax filing role in the tax payment workflow is enabled daily 

from 9:00 am to 5:00pm and can be accessed any time within its enabling interval. GTRBAC allows 

specification of periodic time intervals for various role-related events including role enabling. These periodic 

intervals are specified using periodic expressions [Ber99b, Nie92]. A periodic expression is used to define an 

infinite set of periodic intervals. The periodic time uses the notion of calendar defined as a countable set of 

contiguous intervals [Ber99b]. We consider a set of calendars with granularities in minutes, hours, days, 

weeks, and months. A subcalendar relation can be established among these calendars. Given two calendars 

Cal1 and Cal2, Cal1 is said to be a subcalendar of Cal2, written as Cal1 Cal2, if each interval of Cal2 is 

covered by a finite number of intervals of Cal1.  

A periodic expression is defined as: 
1

.
n

i i d

i

PE O Cal x Cal , where Cald, Cal1, Cal2,�,Caln are 

calendars and On = all, Oi  2   {all}, Cali-1 Cali, and x  . The symbol separates the first part of the 

periodic expression that distinguishes the set of starting points of the intervals, from the specification of the 

duration of each interval in terms of the calendar Cald. For example, {all.days, {9, 15, 23}.Hours, {20, 

50}.Minutes 15.Minutes} represent the set of intervals {[09:20, 09:35], [09:50, 10:05], [15:20, 15:35], 

[15:50, 16:05], [23:20, 23:35], [23:50, 23:59], [00:00, 00:05], [09:20, 09:35], [09:50, 10:05]�..}.   
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We assume that the periodic expressions corresponding to enabling of each role are specified using the 

same number of calendars. For instance, if 1

1

.
n

i i d

i

PE O Cal x Cal and 2

1

.
m

j j d

j

PE O Cal y Cal denote 

the periodic expressions for enabling of any two roles then Caln = Calm. If Calm < Caln, the left slicing 

operation defined in [Nie92] can be used to expand PE2  to Caln or vice versa. The duration of the calendar 

Caln in terms of the basic calendar Cal1 is given by duration(Caln/Cal1). Let In = [0, duration(Caln/Cal1)] 

denote the interval associated with a period of calendar Caln. We assume that the calendar Caln is the 

smallest calendar that contains the enabling intervals of all roles of the given GTRBAC policy. Therefore, In 

corresponds to the smallest interval that covers the enabling interval of all roles in one calendar period. We 

denote the set of all intervals of a periodic expression PE that are contained in In by (In, PE).  For example, 

for In = [0, 1440 minutes (1 day)] and PE =  {all.days, {9, 15, 23}.Hours, {20, 50}.Minutes 15.Minutes}, 

(In, PE) = {[09:20, 09:35], [09:50, 10:05], [15:20, 15:35], [15:50, 16:05], [23:20, 23:35], [23:50, 23:59], 

[00:00, 00:05]}. For computing (In, PE), we divide any interval I = [a , b] of a PE that overlaps with In but 

is not fully contained in In, into two intervals I1 =  [a, duration(Caln/Cal1)] and I2 =  [0, b - 

duration(Caln/Cal1)].  

Periodic intervals can be specified for various constraints such as, role enabling, role assignment, and 

role activation. However, for simplicity we consider periodic intervals for role enabling events only. Given a 

role set R and an interval In, the enabling intervals of all roles in R that are contained in In is denoted by the 

set EIR. 

R

R R

( , ) {[ , ]}n r r r

r r

EI I PE a b ,  

where, PEr is the periodic expression for enabling of role r. We assume that each role has only one enabling 

interval in EIR. If a role r has multiple enabling intervals, say m, then we create roles r1, r2,�, rm, one for 

each of the m intervals. Each role rj is similar to r in user-role assignment, role permission assignment, SoD, 

and trigger constraints.  

3.1.2 GTRBAC Policy Specification  

In this section, we discuss the syntax and semantics of various GTRBAC constraints used to specify the 

time dependent access control policies of domains. The GTRBAC constraints considered in this paper can be 

divided in to six types: i) user-role assignments and role-permission assignments, ii) periodicity constraints 

on role enabling, iii) role activation constraints, iv) run-time events, v) triggers, and vi) separation of duty 

(SoD) constraints.  These constraints are summarized in Table 1.    
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Table 1. GTRBAC Constraints 
r  R, u  U,  p  P, tg   TRG 

R is a set of roles, U is a set of users, P is a set of permissions, and TRG is a set of Triggers 
Constraints Expression Semantics 

User-role assignment (assignU  r to u ) Role r is assigned to user u 

Role-Permission 

assignment 
(assignU  p to r ) Permission p is assigned to role r 

Periodicity constraint 

on role enabling 
(PEr enable r ) Role r is periodically enabled during the intervals 

contained in the periodic expression PEr 

Duration constraint on 

role activation 

([dr
min, dr

max] active r) The activation duration of role r in any session must be 

greater than or equal to dr
min, and less than or equal to 

dr
max.  

Run-time request (activate/deactivate r  for 

u) 

User�s/administrator�s request for role activation or 

deactivation. 

Trigger ev, sp1,�spk  ev�  An event ev must be immediately followed by ev� 

provided that all status predicates sp1,�spk hold at the 

time of the occurrence of ev.  

Role-specific  r, r�  R-SoD(u), u-active(u, r) 

 u-active(u, r�)   

R-SoD(u) is a set of conflicting roles for user u, i.e., u 

can activate at most one role in R-SoD(u) at any given 

time.  

SoD 

User-Specific  u, u�  U-SoD(r), u-active(u, r) 

 u-active(u�, r)   

U-SoD(r) is a set of conflicting users for role r, i.e., r 

can be activated by at most one user in U-SoD(r) at any 

given time. 

The user-role and role-permission assignment expressions, listed in Table 1, specify the authorizations of 

users over the GTRBAC roles and the underlying resources. For simplicity, we do not consider any temporal 

and periodicity constraints on user-role and role permission assignments. Omission of these constraints does 

not restrict the expressiveness of the GTRBAC model considered in this paper, as the temporal constraints on 

user-role and role permission assignments can be specified using role enabling constraints [Jos05b]. The 

periodicity constraints on role enabling/disabling are specified using periodic expressions as discussed 

earlier.  The role activation constraint, listed in row 3 of Table 1, specifies a lower and upper bound on the 

activation duration of a given role by any user. Accordingly, the activation duration of a role in any session  

must be greater than or equal to dr
min and less than or equal to dr

max, where dr
max  dr

min > 0. The original 

GTRBAC model does not constrain the activation of a role to a minimum duration. However for state-based 

analysis of a GTRBAC policy, we require that a role be activated for a finite number of times in any finite 

time interval. To satisfy this requirement, we have introduced the minimum activation duration constraint for 

each role.  

The run-time events allow an administrator or a user to request the activation or deactivation of a role.  

GTRBAC triggers are used to specify the dependence relationship among events. The expression for a 

trigger considered in this paper has the following form: ev, sp1,�spk  ev�, where ev is a simple event 

expression and spis are GTRBAC status predicates listed in Table 2. The event ev in the body of the trigger is 

called the triggering event and ev� is called the triggered event. We consider the triggered event ev� to be a 

role deactivation event. Note that the original GTRBAC model allows ev� to be role enabling or disabling 

event [Jos05a]. However, in this paper we have assumed that roles are automatically enabled during the 
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specified time intervals. Therefore, defining triggers for role enabling or disabling event will violate this 

assumption.  

Separation of duty (SoD) constraints, listed in Table 1, are used to prevent conflicting users from 

accessing same role concurrently or to prohibit conflicting roles from being accessed by same user at the 

same time. Although SoD constraints can be specified for user-role assignment, role enabling, and role 

activation, we consider SoDs that are specific to role activations only. We assume that the user-role 

assignment remains fixed throughout the policy life time and no periodic or temporal constraint is defined on 

such assignments, therefore, assignment-specific SoDs are not considered in this paper.  

Table2.  Event and status predicates 

r  R, u  U,  p  P, tg   TRG 

 R is a set of roles, U is a set of users, P is a set of permissions, and TRG is a set of Triggers 

Simple Event  Status Predicate Semantics 

enable r  Ur-assigned(u, r) u is assigned to r 

disable r Pr-assigned(p, r) p is assigned to r 

activate r for u r-enabled(r) r is enabled 

r-active(r) r is active in at least one user�s session 

u-active(u, r) r is active in u�s session 

de-activate r for u 

 

 
 
 

trg-enabled(tg) Trigger tg is enabled, i.e., the event ev defined in the body of the 

trigger tg has occurred and the status predicates hold. 

 
Example 2: Table 3 shows the GTRBAC policies of domains IDCTO and IDCCO collaborating for tax 

collection and payment processing. The roles of the IDCTO include Tax Exemption Processor (TEP), Tax 

Refund Processor (TRP), and Tax Payment Processor (TPP). The user role assignments of the GTRBAC 

policy of IDCTO are as follows: u1 is assigned all three roles, u2 is assigned the TPP role, and u3 is assigned 

the TRP role. TEP is authorized for accessing the tax exemption records for verification and approval of 

exemptions claimed by property owners. TRP performs tax refund adjustment in the tax bills due for 

payment. For this purpose, TEP has appropriate authorization for accessing tax billing and refund records.  

TPP processes payments of adjusted tax bills by property owners.  For processing such payments, TPP is 

assigned a read permission on tax billing records and read/write permission on tax payment records as shown 

in Table 3.  TEP is enabled daily from 9:00am to 4:00 pm, while TRP and TPP are enabled from 10:00am to 

2:00pm every day. For security reasons, IDCTO does not allow a single user to perform both exemption 

processing and payment processing for the same property index. This constraint is defined as a role-specific 

separation of duty (SoD) constraint between TEP and TRP roles, prohibiting any user (in this case u1) to 

activate both roles TEP and TRP simultaneously.  

The GTRBAC policy of the domain IDCCO includes four roles, namely: Tax Assessment Processor (TAP) 

and Delinquent Tax Processor (DTP). TAP is authorized to access tax delinquency and property ownership 

records for performing an initial assessment of tax redemption cost. DTP is responsible for preparing the 

final estimate for tax redemption. In addition, DTP also performs clearance processing. Both TAP and DTP 

can be enabled from 8:00am to 12:00pm and from 2:00pm to 5:00pm. Since we have assumed that a role can 
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have only one enabling interval in a single calendar period, therefore both TAP and DTP are split into two 

roles, namely: TAP1, TAP2, DTP1, and DTP2.  TAP1 and DTP1 are assigned the enabling interval of [8:00am, 

12:00pm], whereas, TAP2 and DTP2 are assigned the enabling interval [2:00pm, 5:00pm].   

Table 3. GTRBAC Policies of CTO and CCO domains 

County Treasurer Office (IDCTO) 
User-role 

assignment 

1 assignU  u1 to {TEP, TPP};  assignU   u2 to TPP;  assignU   u3 to TRP 

 

Role-permission 

assignment 

2 assignp p1(Tax Exemption Records, {read,write,approve}) to TEP; 
assignp p2(Tax Refund Records, {read,write,approve}) to TRP; 
assignp p3(Tax Payment Records, {read,write,approve}) to TPP; 
assignp p4(Tax Billing Records, {read,write,approve}) to TRP and TEP; 
assignp p5(Tax Billing Records, {read) to TPP and TRP 

Periodicity 

constraints on 

role enabling 

3 PETEP: all.Days+ 10.Hours+1.Minutes  420.Minutes;   (In, PETEP) = [09:00, 16:00] 

PETPP: all.Days+ 11.Hours+1.Minutes  240.Minutes;   (In, PETEP) = [10:00, 14:00] 

PETRP: all.Days+ 11.Hours+1.Minutes  240.Minutes;   (In, PETEP) = [10:00, 14:00] 

(PETEP, enable TEP) 

(PETPP, enable TEP) 

(PETRP, enable TEP) 

Role-activation 

constraint 

4 ([120min, 420min] active TEP); ([240min, 240min] active TPP); ([240min, 240min] active TRP) 

Separation of 

Duty 

5 U-SoD(TPP) = {u1, u2} 

County Clerk Office (IDCCO) 
User-role 

assignment 

6 assignU  u4 to {TAP1, TAP2}; assignU   u5 to {DTP1, DTP2} 

 

Role-permission 

assignment 

7 assignp p6(Tax Delinquency Records, {read}) to {TAP1, TAP2}; 
assignp p7(Property ownership Records, {read}) to {TAP1, TAP2}; 
assignp p8(Tax Exemption Records, {read}) to {DTP1, DTP2}; 
assignp p9(Tax Sale Records, {read}) to {DTP1, DTP2}; 
assignp p10(Redemption Invoice, {read,write,approve}) to {DTP1, DTP2} 

Periodicity 

constraints on 

role enabling 

8 PETAP1: all.Days+ 9.Hours+1.Minutes  240.Minutes;   (In, PETAP1) = [08:00, 12:00] 

PETAP2: all.Days+ 15.Hours+1.Minutes  180.Minutes;  (In, PETAP2) = [14:00, 17:00] 

PEDTP1: all.Days+ 9.Hours+1.Minutes  240.Minutes;   (In, PEDTP1) = [08:00, 12:00] 

PEDTP2: all.Days+ 15.Hours+1.Minutes  180.Minutes;  (In, PEDTP2) = [14:00, 17:00] 

(PETAP1, enable TAP1) 

(PETAP2, enable TAP2) 

(PEDTP1, enable DTP1) 

(PEDTP2, enable DTP2) 

Role-activation 

constraint 

9 ([240min, 240min] active TAP1); ([240min, 240min] active DTP1); ([180min, 180min] active TAP2); 

([180min, 180min] active DTP2) 

 

3.2 State-Based Representation of GTRBAC Policy 

We model the GTRBAC policy of a domain as a timed graph introduced by Alur et. al.[Alu93, Alu94]. 

Timed graphs have been widely used to characterize behavior of real-time systems having finite number of 

states. A timed graph is a directed graph consisting of a finite set of nodes, a finite set of edges, and a finite 

set of real-valued clocks. The following definition characterizes the state space of the FSM of GTRBAC 

policy. 

Definition 5 [GTRBAC Timed graph]: A GTRBAC timed graph is represented by a tuple TG = <S, SP, 

, s0, E, C, c0, bmax, ,  >, where 

 S is a finite set of nodes representing GTRBAC states. 

 SP denote the set of GTRBAC status predicates. SP={r-enabled(r)| r  R} {u-active(u, r)| u U, 

r R, and u-assigned(u, r)} {trg-enabled(tg)| tg is a trigger in GTRBAC policy}.  

 : S  A  2SP is a labeling function assigning to each state the set of status predicates that are true in 

that state. Where, A is the maximal subset of 2SP such that  predicate assignment a  A satisfies all the 

GTRBAC constraints listed in Table 4.  
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 E  S x S is a set of edges. The edges represent the events causing the domain to move from one 

GTRBAC state to another. 

 s0  S is the initial state and sreset  S is the calendar clock reset state. In state s0 and sreset all roles are 

disabled. For all state s  S � {s0, sreset}, (s, sreset)  E. 

 C is a finite set of clocks. 

 c0 is a calender clock which is reset with the occurrence of clock reset event represented by the edge 

from s0 to sreset. 

 bmax = 
R

max
r

{br}, where br is the end point of the interval during which role r is enabled. 

  is a function labeling each edge with an enabling condition of the form 

1 0 2 1 2
'

( c ) ( )x x
x C

d d d x d , where C   C and d1, d2, d1x, d2x  Z+ with d1  d2  bmax and d1x  d2x 

< bmax. For the edge ereset from s0 to sreset, (ereset) = bmax  c0  bmax, and for the edge e0 from sreset to s0, 

(e0) = 0  c0  0. 

   : E  2C is a function mapping an edge to a set (possibly an empty set) of clocks that are reset with the 

edge. The function  maps the edge ereset from s0 to sreset to c0, i.e., (ereset) = c0. 

A node in a GTRBAC timed graph models the access control state of a domain characterized by the 

status predicates true in that state. All states in S satisfy the GTRBAC policy constraints including separation 

of duty constraints, dependence constraint between role enabling and role activation, dependence constraint 

between role assignment and activation, and trigger enabling constraint. These constraints are listed Table 4.  

Edges in the GTRBAC timed graph represent the state transition events, which are listed in Table 3. Each 

edge is labeled with an enabling condition defined using clock values. At any point in time, the domain can 

make a transition from its current state si to a next state sj, if the enabling condition associated with the edge 

(si, sj) is satisfied by the current values of clock. A clock can be reset with any state transition. At any instant, 

the value of a clock is equal to the time elapsed since the last time the clock was reset. Each edge in the 

GTRBAC timed graph is mapped to a set (possibly an empty set) of clocks that are reset when the 

corresponding state transition event occurs. In states s0 and sreset all roles are disabled. The state sreset is visited 

when no role can be enabled during the current calendar period. By visiting state sreset, the calendar clock c0  

of a domain is reset/initialized to the starting point of next calendar period in which the enabling and 

activation of roles follow the pattern of previous calendar periods.  

The procedure for generating the FSM of a GTRBAC policy in a timed graph representation is depicted 

in Figure 3. This procedure first generates the state space of the given GTRBAC policy by considering all 

valid status predicate assignments that satisfy the GTRBAC constraints listed in Table 4. After generating the 

state space, the state transitions in the GTRBAC timed graph are defined by creating the edge set E. For all 

pairs of GTRBAC states si and sj, an edge is created from si to sj only if there exists a GTRBAC event evij 
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such that si satisfies all the precondition of evij and sj satisfies the post conditions of evij. Next the edges in the 

set E are labeled with appropriate enabling conditions and clock reset function.  

 

Figure 3. Procedure for generating the timed graph of a GTRBAC policy 

 

GTRBAC-FSM 
INPUT: GTRBAC Policy Instance 

OUTPUT: Timed graph  

1. Let SP={r-enabled(r)| r  R} {u-active(u, r)| u U, r R, and u-assigned(u, 

r)} {trg-enabled(tg)| tg is a trigger in GTRBAC policy} 

2. Let A be a maximal subset of 2SP such that each a  A satisfies all the GTRBAC constraints listed 

in Table 4.  

3. Generate a set of states S such that |S| = |A| + 1. 

4. Create a one-to-one mapping  from states in the set S-{sreset} to predicate assignments in the set A. 

Name the state that is mapped to an assignment in which all roles are disabled as s0. Let (sreset) = 

(s0). 

5. For each pair of states si and sj, if there is a GTRBAC event ev that can cause state transition from 

si and sj, then create an edge eij from si and sj.  

a. If ev is an enabling event of a role r then define the following mapping: 

 (eij) = ar  c0  ar 

b. If ev is a disabling event of role r then define the following mapping: 

 (eij) = (br  c0  br)  

c. If ev an activation event of  role r by user u then define the following mappings: 

 (eij) = ar  c0  (br � dr
min) 

 (eij) = cur
act, where, cur

act
  C is a clock that measure the time elapsed since activation of 

role r by u. 

d. If ev is a deactivation event of role r by user u then define the following mapping: 

 (eij) = (ar + dr
min  c0  br )  (dr

min
  cur

act
  dr

max) 

e. For each GTRBAC trigger tg: ev1, sp1,�spk  deactivate r for u, such that t-

enabled(tg)  (si), t-enabled(tg)  (sj), and (ev == deactivate r for u),                      

then (eij) = et(si). 

6. Delete all edges eij corresponding to some event ev, if there exists a GTRBAC trigger tg: ev1, 

sp1,�spk  deactivate r for u, such that one of the following holds: 

a. t-enabled(tg)  (si) and t-enabled(tg)  (sj).  

b. t-enabled(tg)  (si) and (ev  deactivate r for u). 

c. (ev  ev1) and t-enabled(tg)  (sj). 

7. Create an edge e0 from sreset to s0 and define the following mapping:  

(e0) = 0  c0  0 

8. Create an edge ereset from s0 and sreset and define the following mapping:  

(ereset) = bmax  c0  bmax 

(ereset) = c0 
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The timed graph of the GTRBAC policy of the IDCTO generated by this procedure is shown in Figure 

4(a). The initial state of this timed graph is s0
CTO and the calendar clock reset state is sreset

CTO. The status 

predicates that are true in the GTRBAC states of Figure 4(a) are tabulated in Figure 4(c). The events 

corresponding to the edges of Figures 4(a) and 4(b) are listed in Figure 4(e). Each edge is labeled with an 

enabling condition defining the timing constraints for the corresponding GTRBAC event. For instance, the 

edge e2, representing the event activate TEP for u1, is labeled with the enabling condition �540  c0  840�. 

This enabling condition implies that the TEP role can be activated by u1 from the state s2 within an interval 

of [540, 840] minutes. This interval is defined with respect to the calendar clock c0 which is initialized (reset) 

in state sreset
CTO. 

Figure 4. (a) Timed graph of the GTRBAC policy of IDCTO. (b) 

Timed graph of the GTRBAC policy of IDCCO. (c) GTRBAC status 

predicate assignment to the states of Figure 4(a). (d)  GTRBAC 

status predicate assignment to the states of Figure 4(b). (e) Events 

associated with the edges of Figures 4(a) and 4(b). 

(a) (b) (c) 

(d) 

(e) 
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Table 4.  Constraints on all valid status predicate assignment to GTRBAC states 

SP={r-enabled(r)| r  R} {u-active(u, r)| u U, r R, and u-assigned(u, r)} {trg-enabled(tg)| tg is a trigger in GTRBAC policy} 

a  A such that A is a maximal subset of 2SP, the following constraints must be satisfied: 

 Constraints Meaning 

1 u-active(u, r)  a  r-enabled(r)  a 
A disabled role cannot be activated by any user in any 

GTRBAC state. 

2 

 

r,  r�  R such that (In, PEr)  (In, PEr�) = ,  

r-enabled(r)  a  r-enabled(r�)  a 
Two roles with disjoint enabling intervals cannot be 

enabled simultaneously in any GTRBAC state. 

3 

r,  r�  R such that (In, PEr)=[ar, br], (In, PEr�) = [ar�, br�], 

and ar�  ar br  br�, 

r-enabled(r)  a  r-enabled(r�)  a 

If the enabling interval of r is contained in the enabling 

interval of r�, then in any GTRBAC state in which r is 

enabled, r� is also enabled. 

4 
 r, r�  R-SoD(u),  

u_active(u, r)  a   u_active(u, r�)   a 

In any GTRBAC state, a user u can activate at most one 

role in R-SoD(u). 

5 
 u, u�  U-SoD(r),  

u_active(u, r)  a   u_active(u�, r)   a 

In any GTRBAC state, at most one user in the set U-

SoD(r) can activate r. 

For any trigger tg: ev1, sp1,�spk  deactivate r for u  

6 

trg-enabled(tg)  a  
1

k

i
spi  a   

u-active(u, r)  a [ (u-active(u�, r�)  a if 

ev1==activate r� for u�)  (u-active(u�, r�)  a if 

ev1==deactivate r� for u�)  (r-enable(r�)  a if 

ev1==enable r�)  (r-enable(r�)  a if ev1==disable r�)] 

Trigger tg is enabled only if the event ev1 occurs and at 

the time of occurrence of ev1, all status predicates 

defined in the triggers body hold. 

 

After enabling of trigger tg, the only event that can 

occur is deactivate r for u.  

 

3.3 Definition of State Path and Timing Constraints 

In this section, we define state path and the state timing constraints. These timing constraints are used to 

determine the composibility of a given distributed workflow with respect to the FSM of domains as 

discussed in Section 4. 

Definition 6 (State Path): A state path  is a sequence s1.e1.s2.e2��,en-1.sn, n > 0, such that the symbol si 

(1  i  n)  in path  denotes a GTRBAC state, and the symbol ej (1  j  n-1) denotes an edge in the timed 

graph of GTRBAC policy. The edge ej represents the event that causes a transition in the GTRBAC system 

from state sj to sj+1.  

Definition 7 (State Entry Time): The time instant at which a GTRBAC state, say sj, can be visited is called 

the entry time of state sj and is denoted by et(sj). The entry time of a state is measured relative to the 

domain�s calendar clock c0, which is initialized and reset in state sreset only.  

For computing et(sj), we need to determine the enabling and activation times of all roles that are enabled 

and active in state sj. Let Rj
en and Rj

act, respectively, denote the set of roles that are enabled and active in state 

sj. The following constraint defines an upper and lower bound on value of et(sj). 

min

" "
R " R

max{ } ( ) max{ }
en act
i i

r j r r
r r

a et s b d , 

where, [ar, br] is the enabling interval of role r, and dr
min is the minimum duration for which r can be 

activated by any user. 
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Definition 8 (State Residence Time): The time a domain stays in a particular GTRBAC state, say sj, in a 

state path, say , is called the residence time of state sj in . 

Let t sj denote the residence time of state sj in path : s1.e1��ej-1sj.ejsj+1.�,en-1.sn. Suppose (ej) = 

'x C
d1x  x  d2x is the enabling condition for the event represented by edge ej, where C�  C and c0  C�. For 

a clock x  C�, let ej-kx be an edge in  such that x  (ej-kx), (i.e., clock x is reset at the edge ej-kx) and there is 

no other edge ep between ej-kx and ej in  for which x  (ep). The following inequalities provides a bound on 

the residence time t sj with respect to the residence time of the predecessor states of sj in path . 

x  C�, d1x 
0

kx

p

 t sj-p  d2x  

We refer to the above inequality as residence time constraint. Note that in the GTRBAC timed graph 

definition, the enabling condition for each event is defined with respect to the calendar clock c0 of the 

domain, which is reset when the domain make a transition from state s0 to sreset by traversing the edge ereset. 

However, the edge ereset may not be included in the state path . To ensure that a valid residence time 

constraint can be defined for each state in , we concatenate a dummy path d: sd1.ed1.sd2.ed2 to the beginning 

of , where (ed1) = c0 and (ed2) = et(s1). It can be easily proved that the entry time of all states in  remains 

unchanged with the concatenation of path d. The main reason for this concatenation is that the calendar 

clock c0 is initialized just before the first state of  is visited, therefore, the residence time constraint can be 

defined for all states in .  

Definition 9 (Traversal time of a state path): The traversal time of a state path  is defined as the sum of 

the residence times of all states included in .   

Given a state path : s1.e1��ej-1sj.ejsj+1.�,en-1.sn, we can compute its minimal or maximal traversal time 

using the procedure given in Figure 5. This minimal and maximal value for state path traversal is used to 

determine if the given state path  satisfies the duration and temporal constraints associated with the 

component services as discussed in Section 4. 

Figure 5.  Procedure for computing the minimum or maximal residence time of states in a state path. 

 

In Section 4.2.1, we present an algorithm for verifying the correctness of a PW with respect to the 

GTRBAC policy of a domain. This algorithm iteratively discovers all state paths with traversal time less than 

path-traversal-time( ) 
1. �   d. , where d  is a dummy path sd1.ed1.sd2.ed2 with (ed1) = c0 and (ed2) = et(s1). 
2. p  index(first-state( �)) and q  index(last-state( �)) 

3. for i  p to q  

4.      do define the residence time constraints for state si and add it to the set of equations/inequalities for path �. 

5.  Solve the system of residence time constraint generated in steps 2 and 3 for minimal or maximal value of 

q

i p

 t �
si  
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a given threshold value between a given pair of sates. To discover such paths, we need to have a priori 

information about the residence time of all the states in the corresponding domain�s FSM. For this purpose, 

we define a minimum residence time graph (MRTG) which is generated from the GTRBAC timed graph. 

Definition 10 (Minimum Residence Time Graph): A minimum residence time graph (MRTG) of a domain 

is a tuple MRTG = <S, E, w>, where, S and E respectively denote the sets of states and edges defined in the 

GTRBAC timed graph, and w is a weight function that maps each edge in the set E to a non-negative real 

number. For an edge ej from state sj to sj+1, w(ej) denotes the minimum time the domain stays in GTRBAC 

state sj before moving to the next state sj+1.  

For computing w(ej), we evaluate the minimum residence time of state sj over all over all possible state 

paths passing through edge ej. Figure 6 shows a procedure for determining the weight w for each edge in 

MRTG.  

 
Figure 6.  Procedure for determining the edge weights in a MRTG 

Note that the length of any path in the minimum residence time graph defines a lower bound on the 

traversal time of the corresponding path in the GTRBAC timed graph. Therefore, the set all MRTG paths 

between state nodes si and sj that are shorter than a given threshold value T includes all state path from si to sj 

with traversal time less than T. 

 

4 Composibility Verification 
 

In this section, we describe the proposed approach for verification of workflow composibility. For 

verifying secure composibility of a distributed workflow, the correctness of the workflow specification needs 

to be evaluated against the individual as well as the collective behavior of all collaborating domains. This 

requirement provides a general guideline for analyzing the composibility of a given distributed workflow. In 

Section 4.1, we translate this requirement into a set of workflow composibility conditions against which the 

correctness of the distributed workflow is evaluated.  

We use a two-step approach for verifying secure workflow composibility. In the first step, the distributed 

workflow specifications are analyzed for conformance with the security and access control policy of each 

collaborating domain. In the next step, the cross-domain dependencies amongst the component services of 

the workflow are verified. We use the term cross-domain dependency to refer to the precedence relationship 

between component services of the workflow that are provided by different domains. For instance in Figure 

MRTG-Edge-Weights 
1. Set w(ej)   for all ej  E. 

2. For each pair of states sp, sq  S (p  q), find a set of all simple paths pq from sp to sq. 

3. For each  in pq compute the minimum traversal time of . Let t ej denote the residence time of state sj 

such that sj is connected to its successor state sj+1 in  by the edge ej.  

   if t ej < w(ej), then  w(ej)  t ej 

4. Repeat step 3 for all state pairs sp, sq  S 
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2, there is a cross-domain dependency between the final estimate preparation service provided by IDCCO and 

the redemption payment processing service provided by IDCTO. For a given distributed workflow, the set 

CSdep defined in Table 5 captures all the cross-domain dependencies of the workflow.     

The overall process of workflow composibility verification is depicted in Figure 1. In this process, first a 

projected workflow (PW) specification is generated from the distributed workflow specification for all 

domains. The PW specification of a domain is represented in form of a task graph as discussed in Section 2. 

Next a mapping is established between each task of the PW and the user-role activation required for 

execution of the corresponding task. After establishing the semantic mapping, a state-based representation of 

a PW is generated by mapping the GTRBAC based specification of the PW to all valid state paths that satisfy 

all the constraints included in the PW specification. The procedure for state mapping is given in Section 

4.2.1. Mapping of a PW to valid state paths verifies the consistency of the distributed workflow with respect 

to the access control policy of the corresponding domain. However, this PW to state path mapping does not 

imply that the domain can satisfy the cross-domain dependency constraints amongst the component services 

of the distributed workflow.  For this purpose, all combinations of valid state paths from all domains are 

analyzed for satisfaction of cross-domain dependencies. In Sections 4.1.2 and 4.2.2, we discuss how the state 

paths from different domains are verified for preservation of cross-domain dependencies among the 

component services.   

Table 5. Symbols and notations used in defining workflow composibility conditions 

Symbol/Notation Description 
PWi Projected workflow assigned to domain IDi  

CSi  Set of component services provided by domain IDi 

CSdep Set of all cross-domain component services that have a precedence relationship. 

CSdep = {(cq , cr) | cq  CSi, cq  CSj  (i  j), and cq precedes cr in the execution 

order of the distributed workflow} 

i State path of domain IDi that satisfies WC1, WC2, and WC3 for PWi 
(i) Set of all paths that satisfies conditions WC1, WC2, and WC3 for the projected 

workflow PWi 
, 1

min

q qT (
, 1

max

q qT )  Minimum (maximum) time between completion of intra domain component 

services cq  and cq +1 

q
i ( q

i) Initiation (completion) time of component services cq in path i 

[min( q
i), max( q

i)] Time interval during which component services cq  can be initiated in path i  

[min( q
i), max( q

i)] Time interval during which component services cq  can be completed in path i  

i Duration of the smallest calendar period that contains the enabling intervals of all 

role of IDi 

CS(i)
init Time interval during which each component service of domain IDi can be 

initiated. CS(i)
init={[min( q ), max( q )] | cq  CSj  and   (i)} 

CS(i)
end Time interval during which each component service of domain IDi can be 

completed. CS(i)
end={[min( q ), max( q )] | cq  CSj  and   (i)} 

 

4.1 Workflow Composibility Conditions 

In this section, we specify the criteria for workflow composibility verification in a formal manner. In 

particular, we define a set of conditions against which a distributed workflow specification is evaluated. We 

classify these conditions as intra-domain and inter-domain workflow composibility conditions.  
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4.1.1 Intra-Domain Workflow Composibility Conditions 

The intra-domain workflow composibility conditions are used to verify domain-specific projected 

workflow for conformance with the local GTRBAC policy of the domain. Let TGA denote the timed graph of 

the GTRBAC policy of domain IDA, and PWA be the task graph corresponding to the projected workflow of 

IDA. For a task i  PWA, let i
� denotes the time instant at which the processing of i is initiated. We say 

PWA is consistent with respect to TGA if there exist a state path � = ( d).( ) = (sd1ed1sd2ed2).(s1e1s2�.en-1sn), 

such that (ed1) = c0, (ed2) = et(s1), for all k < n, (sk, sk+1)  E and the following conditions hold:    

WC1. For each task i  PWA, there exists a sub-path, i = si
1e

i
1s

i
2�. ei

m-1s
i
m, of  that satisfies the following 

properties 

a. index(si
k+1) = index(si

k) + 1 for 0 < k < m, where the function index(s) returns the index of state s 

in the sequence . 

b. There exists (u, r)  DRM( i) such that role r is active for user u in all the states of the sub-

sequence i. As discussed in Section 3.1.1, the function DRM( i) maps i to a set of user role 

activation pair (u�, r�) such that each r� has the required permissions for processing task i and u� 

is authorized for r�. 

c. 
1

'

d2
1 1

( )
i

p q

s sk sk i
k k

t t t duration  

Where p = index(si
1), q = index(si

m), and tsk is the residence time of state sk in path  and tsd2 is the 

residence time of state sd2 in  �  (see Section 3.2). 

WC2. For any pair of tasks i and j of  PWA such that i precedes j in the task execution order, the time 

associated with the completion of task i is less than or equal to the time associated with the initiation of 

task j. Formally: 

' '( )
i jiduration ,  

WC3. For any pair of tasks i and j of PWA such that i precedes j in the task execution order with the 

temporal constraint requiring the delay between the completion of i and initiation of j to be bounded by 

the interval [Tmin, Tmax], the following inequalities must hold:  

' '( )
i jiduration  

' '

min maxT ( ( )) T
j i iduration . 

Intuitively, the first condition (WC1) implies that for a PW to be consistent with the corresponding 

domain�s policy, at least one state path must exist that satisfies duration constraints of each task of the PW. 

The workflow composibility conditions WC2 and WC3 imply that such state path must also satisfy the 

temporal constraints between all task pairs of the PW. These constraints include the precedence relationship 

and the timing constraints between task pairs of a PW as discussed in Section 2.2.  
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4.1.2 Inter-Domain Workflow Composibility Condition 

The inter-domain workflow composibility condition defines the criterion for evaluating the correctness of 

workflow specification with respect to the collective behavior of all collaborating domains. In particular, this 

condition stipulates that the cross-domain dependencies among the component services in a distributed 

workflow specification needs to be satisfied. For this purpose, the state paths of all collaborating domains 

that satisfy the intra-domain workflow composibility conditions (WC1, WC2, and WC3) need to be analyzed 

for satisfaction of cross-domain dependencies. This analysis requires comparing the earliest and latest 

initiation/completion time of inter-domain component services or tasks that are involved in cross-domain 

dependencies. As mentioned in Section 2, a component service may itself be a workflow process comprising 

multiple tasks. The initiation time of a component service corresponds to the initiation time of the first task 

of the workflow associated with the component service. Similarly, the completion time of a component 

service is the completion time of the last/final task of the component service workflow. 

With reference to the state path � = ( d).( ) = (sd1ed1sd2ed2).(s1e1s2�.en-1sn) considered in Section 4.1.1, 

The expression 
1

'

d2
1 1

( )
i

p q

s sk sk i
k k

t t t duration defines a range of values for the initiation time of 

each task i in � with respect to the calendar clock of the domain performing this task. We assume that the 

calendar clocks of all collaborating domains are synchronized at the time their policy instances are created. 

Note that this assumption does not restrict domains to have different periods for resetting of their calendar 

clocks. For instance the calendar clock of one domain may reset on a daily basis, whereas the calendar clock 

of another may reset on a weekly basis. With this assumption, the calendar clock values of all domains can 

be compared and so the cross-domain dependencies amongst the component services can be verified based 

on the timing information provided by the domains. This timing information includes the earliest and latest 

time for initiation/completion of tasks that are involved in cross-domain dependencies. Figure 7 depicts the 

procedure for computing earliest and latest initiation times for each task of the PW. The earliest and latest 

completion time of any task  can be easily computed by adding duration( ) to the task initiation time values 

returned by the procedure. 
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task-initiation-time 
INPUT: � = ( d).( ) = (sd1ed1sd2ed2).(s1e1s2�.en-1sn), such that (ed1) = c0, (ed2) = et(s1) 

              PW 

OUTPUT: min( i
�) for each i  PW 

                  max( i
�) for each i  PW 

1. Generate a system of linear inequalities by adding: 

a. residence time constraints for each state included in �. 

b. task initiation time constraint (composibility condition WC1) for each i  PW 

c. precedence constraint between all pairs of tasks i, j  PW such that i precedes j in the task 

execution order with the temporal constraint requiring the delay between the completion of i and 

initiation of j to be bounded by the interval [Tmin, Tmax] (composibility conditions WC2 and 

WC3). 

2. Solve the system of constraints generated in step 1 with the objective of minimizing i i. The value 

assigned to each i equals min( i
�). 

3. Solve the system of constraints generated in step 1 with the objective of maximizing i i. The value 

assigned to each i equals max( i
�).  

 

Figure 7.  Procedure for computing the earliest and latest initiation time of each task in a projected workflow 

 

Proposition 1: Given a task i  PW, the time min( i
�) (max( i

�)) computed using the task initiation time 

procedure is the earliest (latest) time at which the task i can be initiated in state path � that satisfies intra-

domain workflow composibility conditions WC1, WC2, and WC3 for PW.  

Proof of this proposition is provided in the Appendix. 

The cross-domain dependencies amongst the component services can be represented in an algebraic form 

based on the task initiation and completion information provided by collaborating domains. The notations 

and symbols used in this representation of cross-domain dependencies are listed in Table 5. 

For any pair of cross-domain component services cq and cr such that (cq, cr)  CSdep, the following set of 

algebraic constraints captures both the intra-domain and cross-domain dependency constraints between cq 

and cr.    

i j

i q j yv w       (v, w  Z+)   (I) 

min( ) max( )i i i

q q q       (II) 

min( ) max( )i i i

q q q       (III)                            

min( ) max( )j j j

r r r
      (IV) 

min( ) max( )j j j

r r r
       (V) 

, 1 , 1

min max

q q i q q

q qT i T        (VI) 

1, 1,

min max

r r j j r r

r rT T       (VIII) 

Constraint (I) implies that the component service cq must be completed before cr is initiated in any 

calendar period. The variables q
iand r

j denote the completion and initiation times of component services 

cq
 and cr in state paths i and j respectively. The bounds on these two variables are specified in constraints 

(II) - (V) given above. Constraints (VI) and (VII) specify timing constraints between the intra-domain 
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component services. These timing constraints are computed while generating PW specification as discussed 

in Section 2.  

If the solution set of the above system of inequalities generated for all (cq , cr)  CSdep is non-empty then 

the state paths i and j jointly satisfy all the cross-domain dependencies between PWi and PWj. Based on 

this implication, the following condition for verifying the workflow composibility with respect to temporal 

dependencies among the component services can be defined. 

 

WC4.  Two state paths i and j, respectively satisfying conditions WC1, WC2, and WC3 for the projected 

workflows assigned to IDi and IDj, are consistent if they satisfy all the cross-domain dependencies 

included in the set CSdep.  

 

4.1.3 Overall Criteria for Workflow Composibility 

Based on the intra-domain and inter-domain workflow composibility conditions, we provide the following 

overall criteria for workflow composibility. 

Given a distributed workflow S, a set of S�s projected workflows PW = {PW1,�,PWn}, a set of cross-

domain dependencies among component services CSdep = {(ci
q
 , cj

r)| ci
q

 precedes cj
r and 1  i,j  n and i j}, 

and a set F of FSMs, modeling domains� GTRBAC policies. Let (i) denote the set of state paths of IDi such 

that each path in (i) satisfies workflow composibility conditions WC1, WC2, and WC3 for PWi. We say 

that S is composable with respect to F if the following hold: 

1. For any IDi, the set of paths (i) is non-empty. 

2. There exists a tuple ( 1, 2, �, n)  (1)
  (2)

  �  (n)
 such that ( 1, 2, �, n) satisfy all cross-

domain dependencies (ci
q

 , cj
r)  CSdep, where 1  i,j  n. 

 

Example 3: Consider the projected workflows PWCTO and PWCCO assigned to IDCTO and IDCCO as shown 

in Figure 2. The GTRBAC policies of these domains are listed in Table 3 and the corresponding FSMs (FCTO 

and FCCO) are shown in Figure 4. For IDCTO, we consider the state transition path 1 = 

s3.e3.s4.e4.s5.e5.s6.e6.s7.e7.s6 of FCTO that satisfies the composibility conditions WC1, WC2, and WC3 for 

PWCTO. In the path 1, all the states s3, s4, s5, s6, and s7 support execution of exemption processing (EP) task 

that requires activation of the role TEP by an authorized user (in this case u1). The task of payment 

processing (PP) can be performed in states s6 or s7 in which the role TPP is active for user u2. Finally, in state 

s7 the refund adjustment (RA) task can be processed by u3 assuming the role TRP. For the projected 

workflow PWCCO, the state path 2 = s21.e26.s22.e27.s23.e28.s21 of FCCO satisfies the composibility conditions 

WC1, WC2, and WC3. In the path 2, the initial assessment (IA) task can be processed in all states included 

in 2. The tasks of preparing final estimate (FE) and clearance processing (CP) can only be performed in 
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state s23. The constraints on the initiation and completion times of the component services imposed by state 

paths 1 and 2 are listed in Table 6(a) and Table 6(b). 

 

CTO 1440 CCO 1440 

[min( EP
1), min( EP

1)] [540, 740] [min( IA
2), min( IA

2)] [480, 585] 

[min( RA
1), min( RA

1)] [620, 800] [min( FE
2), min( FE

2)] [505, 610] 

[min( EP
1), min( EP

1)] [560, 760] [min( CP
2), min( CP

2)] [605, 710] 

[min( PP
1), min( PP

1)] [680, 840] [min( IA
2), min( IA

2)] [485, 590] 

[min( FE
2), min( FE

2)] [565, 670] 

[min( CP
2), min( CP

2)] [615, 720] 

FE
2
- IA

2
  20 and 

55 

RA
1
- EP

1
  60 and 

235  

 

CP
2
- FE

2
  40 and 

170 

To verify whether the state paths 1 and 2 satisfy all the cross-domain dependencies between IDCTO and 

IDCCO, the following system of constraints is generated and solved for a feasible solution. 

2 1 1 2

2 1 1 2

2 2 2

(a1)  ;   (a2) ;

(a3)  ;  (a4)  ;

(a5)  480 585;   (a6) 505 610;   (a7) 605 710;  

(a8)   485

CCO IA CTO EP CTO EP CCO FE

CCO FE CTO RA CCO PP CCO CP

IA FE CP

IA

v w w v

v w v w

2 2 2

1 1 1 1

2 2 2 2

590;  (a9) 565 670;   (a10) 615 720;

(a11)  540 740;   (a12) 620 800;  (a13)  560 760;   (a14) 680 840;

(a15)  20 55;  (a16)  40 170;  (a17)  60

FE CP

EP RA EP PP

FE IA CP FE R

1 1 235;

(a18)     0 and integer;   0 and integer 

A EP

v v

  

One of the feasible solutions to the above system of inequalities have the following assignment: v = w = 

1, IA
2 =580, IA

2 = 590, EP
1=590, EP

1 = 610, FE
2 =610, FE

2  =670, RA
1=670, PP

1 = 710,  CP
2 = 

710, CP
2 = 720. With this assignment the initiation time of the tax redemption workflow of Figure 2 is 580 

minutes with respect to the calendar clock of IDCCO, i.e., the tax redemption workflow can be initiated at 9:40 

am. Note that the above system of inequalities is satisfied if we add the term km� to both sides of constraints 

a1 - a4, listed above. Where m  is the lowest common multiple of v CTO and w CCO, and k is any non-negative 

integer. For the above assignment, m  equals 1440. With reference to the FSM of Figure 4, m  corresponds to 

a periodic time instant at which IDCTO returns to state s3 (first state of 1) and IDCCO returns to state s21 (first 

state of 2). This means that the tax redemption workflow can be repeatedly initiated after every 1440 

minutes (24 hours) since its previous initiation. In other words, the workflow can be initiated every day at 

9:40 am.        

4.2 Composibility Verification Algorithm 

In this section, we present two algorithms for verifying the composibility of a given distributed 

workflow. The first algorithm, presented in Section 4.2.1, verifies the correctness of a domain specific 

Table 6(a). Constraints imposed by 1 on the 

initiation and completion times of component 

services of IDCTO  

Table 6(b). Constraints imposed by 2 on the 

initiation and completion times of component 

services of IDCCO  
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WPS 
INPUT: PW (project workflow graph of a domain) 

  TG (GTRBAC timed graph of domain)  

             MRTG (Minimum residence time graph of a domain) 

OUTPUT: 1n (set of all state paths that satisfy all the intra-

domain composibility conditions for PW) 

1. for i  PW 

2.   do color[ i]  white 

3.     for each j  PW          

4.       do ij   

5. color[ 1]  dark gray  

6. Q  1 

7. while Q   

8.   do i  dequeue(Q) 

9.      for each j such that ( i, j)  E[PW] 

10.    do if color[ j] = white  or color[ j] = light gray 

11.           then ij   edge-mapping(TG, MRTG, i, j) 

12.                 if i  1  

13.                     then if color[ j] = light gray   

14.                             then 1j path-extend( 1i, ij)  1j 

15.                             else   1j path-extend( 1i, ij)            

16.                  if there exists k such that ( k, j)  E[PW]  

17.                      and k i and color[ k]  black 

18.                      then color[ j]  light gray 

19.                      else color[ j]  gray 

20.                              Q  Q  j 

21.        color[ i]  black 

 

edge-mapping(TG, MRTG, i, j) 
1. for each p  smap( i) and q  smap( j) 

2.   do   find-all-paths(p, q, MRTG) 

3.      for each �   

4.       do if � does not satisfy any of the 

composibility conditions WC1, WC2, and 

WC3 for i and j                              

5.          then   - � 

6. return  

path-extend(PW, 1i, ij) 
1. �1j   

2. for each �,  such that �  1i and  ij 

3.    do i  maximal sub-path of  both � and   
4.         such that finish( i, �) and start( i, )  
5.         if i =  then 1j  � 
6.                        else 1j   concat( �/ i, ) 

7.         if 1j satisfies the conditions WC1, WC2, 

and WC3 for all task pairs p, q such that ( p, 

q)  E[PW] and color[ p]  white and ( q = j 

or color[ q]  white) 

8. then � 1j � 1j  1j 

9. return 1j 

projected workflow by finding all valid state paths that satisfy the intra-domain workflow composibility 

conditions. We use the term valid state path to refer to a path that satisfies composibility conditions WC1, 

WC2, and WC3 for the given projected workflow. The second algorithm, presented in Section 4.2.2, 

analyzes all inter-domain path combinations for satisfaction of the inter-domain workflow composibility 

condition.  

4.2.1 PW Consistency Verification  

For discovering all valid state paths for a given PW, we use functions smap and emap iteratively. The 

function smap maps a given task of a PW to a set of GTRBAC states that have the appropriate user-role 

activation required for task execution. We refer to such states as the entry states of the task. Formally:  

smap( ) = {s | s  S and  (u, r)  DRM( ) such that role r is active for u in state s}. The function emap 

maps an edge ( i , j), representing successive tasks in a PW graph, to a set of state paths ij that satisfy the 

composibility conditions WC1, WC2, and WC3 for tasks i and j.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Algorithm for discovering the valid state paths of a given PW. 

Figure 8 shows the pseudo-code for the edge-mapping procedure. This procedure first discovers all state 

paths with traversal time less than a threshold value between all entry states of tasks i and j. The threshold 

value corresponds to the maximum time allowed for completion of tasks i and j. The discovered paths are 
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then analyzed for satisfaction of composibility conditions WC1, WC2, and WC3 for tasks pair ( i , j ). We 

use the minimum residence time graph (MRTG) defined in Section 3.4 to discover these state paths. As 

mentioned in Section 3.4, the set all MRTG paths between state nodes s1 and s2 that are shorter than a given 

threshold value T includes all state paths from s1 to s2 with traversal time less than T.  

 

1

3 2

4

5

24

12

14
Temporal gap between completion 

of 2 and initiation of 4 should lie 

within the interval ( 2, 4)

Entry states for 

task 2

Entry states for 

task 4

Entry states for 

task 1

States completing 

tasks 4

States completing 

tasks 2

1 2 3 4

8 5 6 7

12= { 1, 2, 3, 4}, 24= { 5, 6, 7, 8}

14= Path-compose( 12, 24)

= {concat( 2\ 25, 5), concat( 3\ 36, 6)}

25

36

6

 

Figure 9. Mapping between PW graph and state paths of a domain�s FSM 

 

Table 6. Path relations 

Let X = <x0=(s0,e0), �.. xm-1=(sm-1,em-1)>, Y = <y0=(s0�,e0�),� .. yn-1=(sn-1�,en-1�) >, and   

Z = <z0=(s0�,e0�),�., zk-11=(sk-1�,ek-1�) > be state  paths.  

Relation 
Predicate 

Definition Illustration 

during(Z, Y) There exists an index i of Y, such that for all j = 0, 1, ..., 

k-1,  zj = yi+j.  

 

Start(Z, Y) For all j = 0, 1, ..., k-1,  zj = yj   

 

                                     

finish(Z, Y) For all j = 0, 1, ..., k-1,  zj = y(n-1)-(k-1)+j , where y(n-1) is the 

last element of the state transition path Y.  

 

 

 

Meet(Z, Y, X) There exists an index  p of path X, such that for all i = 0, 

1, ..., n-1, and for all j = 0, 1, ..., k-1, yi = xp+i, zj = xp+n+j. 

 

 

The complete state path of a PW can be composed by incrementally extending the state paths 

corresponding to successive edge mappings as shown in Figure 9. In this figure, 2  12 represents a state 

path from the initiation of task 1 to the completion of task 2, and 5  24 is a state path from the initiation 

Y Z 

Y Z 

Y Z 

Y Z X 
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of task 2 to the completion of task 4. These two state paths overlap for the execution duration of task 2 and 

therefore can be combined to compose a state path from 1 to 4. Let 25 be the overlapping sub-path of 2 

and 5 such that the following path relations, defined in Table 6, hold: finish( 25, 2) and start( 25, 5). 

Moreover, for all states s in 25, s  smap( 2). The state path 2 can be written in a concatenated form as 2 = 

�. 25, where � is a sub-path of 2 such that meet( �, 25, 2 ) is true. A state path 14 can be composed by 

concatenating 5 to the end of �. The path 14 need to be checked for satisfaction of composibility conditions 

WC1, WC2, and WC3 for both task pairs ( 1 , 2) and ( 2 , 4). 

Figure 8 shows an algorithm workflow path search (WPS) for discovering all valid state paths for a given 

PW. The algorithm takes input the task graph of a PW, the FSM of a domain�s GTRBAC policy represented 

as timed graph TG, and the minimum residence time graph of TG. During the path search, the PW graph is 

traversed in a breadth first manner to explore all the state paths from the source node 1 to all other nodes of 

the PW that satisfy the composibility conditions WC1, WC2, and WC3 for all successive pairs of tasks in the 

PW. The path set  is indexed by the indices of source and destination nodes of the PW graph. For a given 

source 1  PW and destination i  PW, 1i denotes the set of all valid state paths that satisfy all the 

temporal ordering and duration constraints for successful completion of a PW with 1 as a source node and i 

as a terminal node in the PW graph.  

To keep track of the tasks whose state paths from the source node have been discovered, the algorithm 

WPS colors each vertex in the PW graph as white, dark gray, light gray, or black. All task vertices in the PW 

graph start out as white. A task vertex i becomes dark gray after the discovery of all the valid state paths 

from the source vertex 1 to i. Incase a task has multiple adjacent vertices that precede i in the execution 

order, i becomes light gray after its first discovery and remains light gray until the consistency of the path set 

1i has been verified for all the adjacent vertices preceding i in the workflow execution order. After this 

consistency verification, vertex i is colored from light gray to dark gray. A dark gray vertex i becomes 

black after all the valid state paths from 1 to all the adjacent vertices of i have been discovered. The 

algorithm terminates when all the vertices of the PW have been colored black. At this point all the valid state 

paths from 1 to the final task have been discovered. 

Correctness of the algorithm: To verify that a PW conforms to the GTRBAC policy of the designated 

domain, we need to find at least one state path that satisfies all the intra-domain workflow composibility 

conditions WC1, WC2, and WC3 described in Section 4.1. The set of all state paths returned by the WPS 

procedure meet this requirement for PW verification. It can also be noted that the set of state paths returned 

by WPS are exhaustive, i.e., if any path satisfies the intra-domain composibility conditions for a given PW, 

then it is included in the set of paths discovered by WPS. 
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Theorem 1: Let GX be a graph representing the specification of a PW assigned to domain IDX. Suppose 

1 is a distinguished source vertex of GX that initiates the PW. Let j ( 1) be any task vertex in GX. In the 

WPS procedure, after the task vertex j is colored dark gray, following properties hold for each state 

transition path  in the path set 1j. 

1. Composibility condition WC1 is satisfied for task j and all tasks i preceding j in task execution order. 

2. Composibility conditions WC2 and WC3 are satisfied for all task pairs ( i, j) such that ( i, j)  E[GX]. 

In addition, WC2 and WC3 are also satisfied for all task pairs ( p, q) such that ( p, q)  E[GX] and p, q 

precedes j in the task execution order. 

Proof given in Appendix. 

 

4.2.2 Cross-Domain Dependency Verification Algorithm 

In this section, we present a simple algorithm, shown in Figure10, for verification of distributed 

workflow with respect to cross-domain dependencies. The symbols and notations used in this procedure are 

described in Table 5. The cross-domain dependency verification is performed by a central site. Given (i), 

CS(i)
init, and CS(i)

end (1  i  n) for all collaborating domains, and the set CSdep, the algorithm analyzes all 

cross-domain path combinations for satisfaction of the precedence relationship between component services 

specified in CSdep. In this analysis, a system of inequalities defining precedence relationship among the 

component services is generated and solved for each n-ary tuple y = ( 1, 2, �, n). A feasible solution to this 

system of inequalities implies the following: 

 The state path combination ( 1, 2, �, n) corresponding to the tuple y, satisfies all the cross-domain 

dependency relationships specified in the distributed workflow specification. 

 For the above path combination, the projected workflow in IDi can be supported at any time included in 

the solution space of the system of inequalities generated for y. 

If no feasible solution exists for any tuple y  ( (1)
  (2)

  �  (n)), then the verification procedure 

returns No. In this case, the given distributed workflow cannot be supported. This is stated in the following 

theorem. 

Theorem 2: Given (i), CS(i)
init, and CS(i)

end for each domain IDi (1  i  n) and the set CSdep, if the cross 

domain verification procedure fails, then the cross domain dependencies in the given set CSdep cannot be 

satisfied, Accordingly, the corresponding distributed workflow cannot be supported. 

Proof of this theorem is given in Appendix. 

Comment on Complexity: The proposed workflow composibility verification approach has a high 

computational complexity as observed in many other similar problems [Lin88, Wes89]. This high 

complexity is mainly due to the exhaustive state path searches performed in the projected workflow 

verification step. In this step, all state paths of length less than a given threshold value are discovered 
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between the entry states of successive tasks of the projected workflow. The problem of finding all length 

limited paths between any two nodes in a graph is at least as difficult as solving the S-T PATH problem, 

which is defined as finding all simple paths from a node s to another node t in a graph. The S-T PATH 

problem is proved to be #P-Complete [Val79].  

The complexity of the composibility verification problem discussed in this paper can be significantly 

reduced, if instead of discovering all valid state paths, only m-shortest paths are discovered, where m > 1. 

However, this heuristic will consider a sub-set of all valid state paths for workflow verification and in the 

worst case may declare a correct workflow specification as incomposable. 

 

 

 

 

 

 

 

 

 

 

Figure 10. Algorithm for verifying distributed workflow with respect to cross-domain dependencies among component 

services. 

5 Related Work 

Both workflow composibility and scheduling verification of distributed workflows are daunting issues 

in their own respect and have been addressed in the literature as independent topics [Den03, Ber99a, Ada98, 

Cao04, Esh04, Gon96, He05]. For example, Deng et. al. [Den03] have proposed an architectural approach 

for secure composition of software components that ensures satisfaction of system-wide security constraints. 

In this approach, security analysis of the composed system is driven by incremental propagation of global 

security constraints onto individual software components. This approach is particularly useful in federated 

systems in which system wide security constraints can be enforced by configuring individual components 

according to the global security policies. However, the approach is limited to non-autonomous and reentrant 

system behavior.  

One of the most effective and widely-used approach for automatic verification of component-based 

systems is model checking. In model checking, the overall system behavior is represented in form of a state-

transition graph model and is compared with temporal logic formulae modeling the intended or undesired 

properties of the component-based system, services, or workflows. Various temporal logics have been 

proposed for model checking. These include linear time logic (LTL), proposition dynamic logic (PDL), and 

cross-domain-dependency-verification 
INPUT: (i) for all IDs (1  i  n) 

             CS(i)
init for all IDs (1  i  n) 

       CS(i)
end for all IDs (1  i  n) 

       CSdep 

OUTPUT: {Yes, No}  

1. Y  (1)
  (2)

  �  (n) 

2. for each y   Y  

3.      do for each ((cq, cr
 )  CSdep define cross-domain dependency constraints between cq  

4.                  and cr end for /*end inner for loop of line 3 */ 

5.      if the solution space to the system of inequalities generated for y  Y is non empty  

6.           then return Yes 

7.     end for /*end outer for loop of line 2 */ 

8.  return No 
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computation time logic (CTL) [Cla86, Har00, Gab70]. Based on these temporal logics, many model checking 

based approaches have been proposed in literature for verification of e-services [Ber03, Ber05, Bon05, Fu02, 

Fos03]. However, the temporal logics CTL, LTL, and PDL do not support specification of quantitative 

temporal constraints and cannot be used for verification of systems or workflows with real-time constraints. 

Braberman et. al. [Bra05] have proposed an automata theoretic approach to check if a given scenario 

with quantitative temporal constraints can be supported by a system. They use an existential semantics to 

find a system trace that satisfies the scenario.  To use this approach for workflow composibility verification, 

a global meta-policy that captures the collective behavior of all domains is needed. However, as discussed in 

the Introduction, such meta-policy cannot be created for an environment comprising autonomous and non-

reentrant domains. 

6 Conclusion 

In this paper, we have proposed an approach for verifying the secure composibility of distributed 

workflows in a collaborative environment comprising autonomous domains. The objective of workflow 

composibility verification is to ensure that all the users or processes executing the designated workflow tasks 

have proper authorization and their activities within the context of workflow specification cannot cause 

security breach in any domain. The proposed approach achieves this objective by verifying the distributed 

workflow specifications against the access control policies of all domains collaborating for workflow 

execution.  A key challenge in this verification process is posed by the time-dependent access control 

policies of collaborating domains which are specified using GTRBAC model. The GTRBAC policy of a 

domain contributes to its non-reentrant behavior which is modeled as a time augmented FSM. The proposed 

approach verifies workflow composibility by exploring the FSM of each domain to find state paths that 

satisfy the given workflow specifications. This workflow composibility verification is performed without 

creating a unified global FSM which is required for model checking-based approaches for composibility 

verification. Therefore, the proposed approach is unique and does not compromise the autonomy and privacy 

of collaborating domains.   

We have discussed the proposed approach in the context of verifying workflow specifications for 

conformance with the security and access control policies of domains. However, the proposed approach is 

generic and can be broadly applied to many distributed applications requiring interactions among non-

reentrant and autonomous systems. 
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Appendix 
 
Proof of Proposition 1: The workflow composibility conditions WC2 and WC3 establish a partial ordering 

among all tasks of the PW. For any task pairs i and j  PW such that i precedes j in task execution order    
' '  D

j i , where 0 < D < . Moreover, if the delay between completion of i and j is bounded by the 

interval [Tmin, Tmax] then 
' ' '

1 2D + D +
i j i

  Where, D1 = Tmin + D, D2 = Tmin + D, and D2 > D1 > 0.   

 

Note that the system of linear inequalities generated in step 1 of the task initiation time procedure does 

not have any constraint that bounds the sum of the initiation times of two or more tasks to a constant value. 

That is the system of linear inequalities generated in step 1 of the task initiation time procedure does not have 

any constraint of the form 
'

1 2M M
i

i

. 

 Therefore, minimizing the sum 
'

i

i

subject to the state residence time constraints and intra-domain 

workflow composibility constraints (WC1, WC2, and WC3) is equivalent to minimizing each individual
'

i . 

In other words, min( i
�) is the earliest time for initiation of task i in state path � such that the intra-domain 

workflow composibility conditions (WC1, WC2, and WC3) are satisfied. By the same argument, max( i
�) is 

the latest time for initiation of task i.     

 
Proof of Theorem 1: We will first prove this theorem for the case when j has only one parent node and then 

we will prove the multi-parent case. In both cases we will use inductive reasoning. 

 

Single Parent case ( j has only one parent task node in GX): 
 

Base Case: The task 1 (first task of the PW) is the parent of j. The edge mapping function ensures that all 

the state transition paths in the path set 1j satisfies intra-domain workflow composibility condition WC1, 

WC2, and WC3 for task pair 1 and j.  

 

Induction Step: Suppose i ( i  1) is the parent task node of j i.e., ( i, j)  E[GX]. Let 1i denotes the set of 

all valid state paths from 1 to i that satisfy the intra-domain workflow composibility conditions WC1, WC2, 

and WC3 for task i and all tasks that precede i in the execution order of the PW. Let 1j be the set of all 

state paths from 1 to j. The for loop in lines 2 -7 of the procedure path-extend called by WPS procedure 

ensures that for each 1j  1j, there exists a path 1i  1i such that 1i is a prefix sub-path of 1j, i.e., the 

path relation start( 1i, 1j) holds.  

 

The path set ij returned by the edge-mapping procedure (in line 11 of WPS procedure), contains all paths 

that satisfy  workflow composibility conditions WC1, WC2, and WC3 for the task pair i and j. Consider a 

path ij  ij. Suppose i is a prefix path of ij such that the path relations finish( i, 1i) and start( i, ij) 

hold, where 1i  1i. The path ij can be written as a concatenation of paths i and � i.e, ij =  i. �. In lines 

5 and 6 of the path-extend procedure the state path 1j from 1 to j is computed by concatenating � to the end 

of 1i.  1j =  1i. ’. 
 

Since 1j include 1i  1i as a sub-path, therefore all the intra-domain  workflow composibility conditions 

that are true in 1i are also true in 1j for task i and all tasks that precede i in the execution order of the PW. 

1j also includes ij  ij and therefore, 1j satisfies workflow composibility conditions WC1, WC2, and 

WC3 for the task pair i and j. Moreover, in line 7 of the path-extend procedure, 1j is analyzed for 

satisfaction of workflow composibility WC1, WC2, and WC3 for all task pairs ( p, q) such that ( p, q)  
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E[GX] and q = j or q precedes j in the task execution order. This proves that path 1j satisfies the two 

properties listed in the theorem statement. 

 

Multiple parent case: We will prove the multi-parent case when j is the first task node in GX that has k 

parents with k > 0, as shown in Figure 11. The remaining multi-parent cases can be proved by similar 

reasoning.  

 

Base case: k =1, the proof is similar to the single parent case. 

 

Induction Step: Let 1j
(k-1) be the set of all state paths that satisfy: (i) workflow composibility condition WC1 

for task j and all predecessor tasks of j that can reach j via the task nodes i
(1),�, i

(k-1). (ii) workflow 

composibility conditions WC2 and WC3 between task pairs ( i
(1)

, j), �.( i
(k-1)

, j) and all other tasks pairs ( p, 

q) such that ( p, q)  E[GX] and q precedes i
(1),�, i

(k-1)
 in the task execution order. 

 

Let 1j
(k) be the set of all state paths that satisfy: (iii) workflow composibility condition WC1 for task j and 

all predecessor tasks of j that can reach j via the task nodes i
(k). (iv) workflow composibility conditions 

WC2 and WC3 between task pairs ( i
(k)

, j) and all other tasks pairs ( p�, q�) such that ( p�, q�)  E[GX] and 

q� precedes i
(k)

 in the task execution order. 

 

In the WPS procedure, the path set 1j is composed by taking an 

intersection of the path sets 1j
(k-1) and 1j

(k) (line 14). 1j = 1j
(k-1)

  

1j
(k). Therefore, each path in the path set 1j satisfies (i), (ii), (iii), and 

(iv). Alternatively, each path 1j  1j satisfies the following: 

 

 Workflow composibility condition WC1 for task j and all 

predecessor tasks of j that can reach j via its parent tasks. 

 Workflow composibility conditions WC2 and WC3 between 

any task pair ( i, j) such that ( i, j)  E[GX]. 

 Workflow composibility conditions WC2 and WC3 between 

any task pair ( p, q) such that ( p, q)  E[GX] and q precedes j 

in the task execution order. 

 

 

 

Proof of Theorem 2: The cross domain dependency verification procedure returns No, if there does not 

exist any path combination ( 1, 2,�., n) (such that k  (k) and 1  k  n), that satisfies the cross domain 

dependencies of the set CSdep. Suppose on the contrary, that there exists a path combination ( 1 , 2 ,�., n ) 

that satisfies all the cross domain dependencies specified in the set CSdep and each k satisfies the 

composibility conditions WC1, WC2, and WC3 for the projected workflow PWk assigned to IDk. Since the 

verification procedure could not find the path combination ( 1 , 2 ,�., n ), the following two possibilities 

may occur: 

1. At least one of the k is not included in the path set (k), i.e, k  (k). As discussed in Section 4.2.1, the 

path set (k)  returned by the procedure WPS is exhaustive and includes all the paths of IDk that satisfy 

the composibility conditions WC1, WC2, and WC3 for PWk. Therefore, k  (k) implies that k cannot 

support PWk. Hence, the path combination ( 1 , 2 ,�., n ) cannot support the distributed workflow. 

1

i
(1)

i
(2)

i
(k-1)

i
(k)

j
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2.  k, k  (k). However, there exists at least one task i  PWj such that 

[min( ), max( )]j j j

i i i or [min( ), max( )]j j j

i i i , where j

i and j

i denote the initiation and 

completion times of i in j  (j). By Proposition 1, for any task i  PWj, min( )i , computed using 

the task initiation time procedure of Figure 5, is the earliest time instant at which i can be initiated in a 

state path  that satisfy composibility conditions WC1, WC2, and WC3 for PWj. Similarly,  

max( )i corresponds to the latest initiation time of task i. Since, j  (j) and all paths in (j) satisfy 

WC1, WC2, and WC3 for PWj, therefore, [min( ), max( )]j j j

i i i . Similarly, we can prove 

that [min( ), max( )]j j j

i i i .  

With reference to the system of constraints (II) � (VIII) for cross-domain dependency verification, 

the above implies that all state paths in the combination ( 1 , 2 ,�., n ) satisfy constraints (II) � (VII). 

Since the verification procedure returned No, therefore, constraint (I) is not satisfied for at least one pair 

of cross-domain paths, say i and j . This implies that i and j do not satisfy the cross-domain 

dependencies among the component services of PWi and PWj. Therefore, the path combination 

( 1 , 2 ,�., n ) cannot support the distributed workflow.    

 

 

 

 

 

 

 


