
CERIAS Tech Report 2006-12

IMPROVING SOFTWARE ASSURANCE USING LIGHTWEIGHT
STATIC ANALYSIS

by Rajeev Gopalakrishna

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

IMPROVING SOFTWARE ASSURANCE USING LIGHTWEIGHT STATIC

ANALYSIS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Rajeev Gopalakrishna

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2006

Purdue University

West Lafayette, Indiana

ii

ACKNOWLEDGMENTS

To one and all

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABBREVIATIONS . x

ABSTRACT . xi

1 INTRODUCTION . 1

1.1 Misuse Detection . 2

1.2 Software Vulnerability Detection . 3

1.3 Thesis Statement . 4

1.4 Organization . 5

2 EFFICIENT INTRUSION DETECTION USING AUTOMATON INLINING . . 6

2.1 Statically-generated Model-based Automated Misuse Detection 9

2.2 The Inlined Automaton Model . 11

2.3 Monitoring Programs with IAM . 17

2.3.1 Monitored Events . 17

2.3.2 Handling Non-standard Control Flow 19

2.3.3 Recursion . 20

2.4 Implementation Details . 21

2.4.1 Model Generation . 21

2.4.2 Compiler Directives and Optimizations 21

2.4.3 Library Interposition . 22

2.4.4 Interposing Variable-argument Functions 23

2.4.5 Data Structures . 24

2.5 Evaluation . 24

2.6 Deterministic Markers . 26

iv

Page

2.6.1 Types of Markers . 28

2.6.2 Space Complexity of DFA . 32

2.6.3 Markers and Mimicry Attacks 35

2.7 Inlined Automata Compaction . 41

2.7.1 Merging Final States . 41

2.7.2 Maintaining Delta Successor States 42

2.7.3 Including ε-transitions . 45

2.7.4 Excluding Functions . 47

2.7.5 Adding Markers . 48

2.7.6 Combining Equivalent Transition Symbols 48

2.7.7 Coalescing Single-successor States 48

2.8 Monitoring Interface: Efficiency . 49

2.9 Monitoring Interface: Effectiveness . 50

2.10 Dynamically Checking Program Properties using Library Interposition . . 52

2.10.1 Format String and Buffer Overflow Vulnerabilities 52

2.10.2 Other Properties . 54

2.11 Limitations and Future Work . 56

2.12 Related Work . 58

3 FAULTMINER: DISCOVERING UNKNOWN SOFTWARE DEFECTS US-
ING STATIC ANALYSIS AND DATA MINING 60

3.1 Event Automaton Model . 63

3.2 Mining Likely Temporal Invariants . 65

3.3 FaultMining . 68

3.3.1 Security Properties . 71

3.4 Evaluation . 74

3.4.1 Practical Considerations . 74

3.4.2 Property One: Function Call Sequences 81

3.4.3 Property Two: Check-before-Use of Function Return Values . . . 84

v

Page

3.5 Obligations . 86

3.5.1 Identifying Pending Obligations 87

3.5.2 Minimizing Obligations . 87

3.6 Challenges . 89

3.7 Related Work . 90

4 CONCLUSIONS, CONTRIBUTIONS, AND FUTURE WORK 94

4.1 Conclusions . 94

4.2 Contributions . 95

4.3 Future Work . 97

LIST OF REFERENCES . 99

VITA . 106

vi

LIST OF TABLES

Table Page

2.1 Test programs. 24

2.2 Characteristics of IAM models. 25

2.3 Programs and workloads. 26

2.4 Effect of monitoring on performance. 26

2.5 Number of library calls intercepted and average dynamic branching factor
(DBF). 31

2.6 Effect of markers on performance overhead. 32

2.7 Memory usage in KB as reported by the pmap command. 40

2.8 Reduction in the number of states when multiple final states are merged
into a single final state in the automaton. 42

2.9 Effect of delta successor states on performance overhead. 43

2.10 Effect of including ε-transitions on performance overhead. 46

2.11 Model size in KB and percentage reduction on using deltaSuccs and ep-
silon transitions. 47

3.1 Characteristics of evaluated software. 74

3.2 Violations detected for Property One. 77

3.3 Violations detected for Property Two. 84

vii

LIST OF FIGURES

Figure Page

2.1 Accuracy of host-based misuse detection models. 8

2.2 An example program. 11

2.3 NFA representation of the program in Figure 2.2. 12

2.4 The ε-IAM representation of the program in Figure 2.3. 12

2.5 An ε-free IAM representation of the program in Figure 2.3. 13

2.6 A recursive program. 15

2.7 IAM representation of the recursive program in Figure 2.6. 15

2.8 An indirect-recursive program. 16

2.9 IAM representation of the program in Figure 2.8. 16

2.10 Data structures. 18

2.11 IAM monitoring algorithm. 18

2.12 A model-based MDS based on library interposition. 23

2.13 The effect of switch and function pointer markers on fan-out. 29

2.14 Example program where non-determinism cannot be resolved using li-
brary markers. 30

2.15 Distribution of DBF across library functions intercepted for a single work-
load of htzipd. 33

2.16 Distribution of DBF across library functions intercepted for a single work-
load of lhttpd. 34

2.17 Distribution of DBF across library functions intercepted for a single work-
load of wu-ftpd. 35

2.18 Distribution of DBF across library functions intercepted for gnatsd-
Workload-One. 36

2.19 Distribution of DBF across library functions intercepted for gnatsd-
Workload-Two. 37

2.20 IAM model with non-determinism. 37

viii

Figure Page

2.21 IAM model with four markers to eliminate non-determinism. 38

2.22 IAM model with two markers to eliminate non-determinism. 38

2.23 Example program that illustrates the mimicry attack possible when a model
based on IAM or a DFA derived using subset construction is used. 39

2.24 IAM model which is susceptible to a mimicry attack. 40

2.25 DFA model constructed using subset algorithm which is susceptible to a
mimicry attack. 40

2.26 DFA model constructed using a marker which is not susceptible to a mimicry
attack. 41

2.27 Percentage distribution of fan-out values among automaton states before
ε-reduction. 44

2.28 Percentage distribution of fan-out values among automaton states after ε-
reduction. 44

2.29 Percentage decrease in number of states and percentage increase in fan-out
due to ε-reduction. 45

3.1 FaultMiner framework. 61

3.2 An example program. 63

3.3 ICFG representation of the program in Figure 3.2. E, X, C, and R represent
the entry, exit, call, and return nodes respectively. 64

3.4 EAM representation of the program in Figure 3.2 for user-defined function
invocations. E, X, and C represent the entry, exit, and call nodes respectively. 64

3.5 The FaultMiner AprioriAll algorithm. Lk represents the set of of all large
k-sequences. Ck represents the set of candidate k-sequences. 67

3.6 The FaultMiner Apriori-Generate algorithm. Lk represents the set of of
all large k-sequences. Ck represents the set of candidate k-sequences. . . . 67

3.7 Maximal-Sequences algorithm. 69

3.8 FaultMiner algorithm. 69

3.9 Number of invariants generated for Property One at three levels of support
and confidence. 78

3.10 Number of violations generated for Property One at three levels of support
and confidence. 78

ix

Figure Page

3.11 Number of invariants generated for Property One without and with run-
ning the Maximal-Sequences algorithm. 79

3.12 Number of violations generated for Property One without and with run-
ning the Maximal-Sequences algorithm. 79

3.13 Percentage distribution of time among the different stages of FaultMiner
for Property One. 80

3.14 Percentage distribution of time among the different stages of FaultMiner
for Property Two. 80

x

ABBREVIATIONS

CFG Control Flow Graph

CLI Complete Likely Invariant

DBF Dynamic Branching Factor

DFA Deterministic Finite Automaton

EAM Event Automaton Model

IAM Inlined Automaton Model

LOC Lines of Code

MDS Misuse Detection System

NFA Nondeterministic Finite Automaton

NLE Non-Local Evidence

PDA Push Down Automaton

PLI Partial Likely Invariant

SBF Static Branching Factor

xi

ABSTRACT

Gopalakrishna Rajeev. Ph.D., Purdue University, May, 2006. Improving Software As-
surance Using Lightweight Static Analysis. Major Professors: Prof. Eugene H. Spafford
and Prof. Jan Vitek.

Software assurance is of paramount importance given the increasing impact of soft-

ware on our lives. This dissertation describes research that explores two techniques to

improve software assurance: a runtime approach in the context of host-based misuse de-

tection systems (MDSs) and a compile-time approach to detect unknown software defects.

Host-based MDSs attempt to identify attacks by discovering program behaviors that

deviate from expected patterns. We focus on automated and conservative misuse de-

tection techniques. We present a static analysis algorithm for constructing a flow- and

context-sensitive model of a program that allows for efficient real-time detection. Context-

sensitivity is essential to reduce the number of impossible control-flow paths accepted by

a MDS because such paths provide opportunities for attackers to evade detection. Our in-

lined automaton model presents an acceptable tradeoff between accuracy and performance

in our experiments.

Static and dynamic approaches have been proposed over the years to detect security

vulnerabilities. These approaches assume that the signature of a defect is known a pri-

ori. A greater challenge is detecting defects whose signatures are not known a priori—

unknown software defects. We propose a general approach for detection of unknown

defects. Software defects are discovered by applying data-mining techniques to pinpoint

deviations from common program behavior in the source code and using statistical tech-

niques to assign significance to each such deviation. We discuss the implementation of

our tool, FaultMiner, and illustrate the power of the approach by inferring two types of

security properties on four widely-used programs.

1

1 INTRODUCTION

A study released by the U.S Department of Commerce’s National Institute of Standards

and Technology (NIST) in 2002 estimated that software defects cost U.S economy $59.5

billion annually [1]. The study also found that over half of those defects are not found

until late in the development cycle and that more than a third of the costs could have been

eliminated if the defects had been identified and removed earlier in the cycle.

An error is a mistake made by a developer. It might be a typographical error, a mis-

reading of a specification, or a misunderstanding of what a subroutine does [2]. An error

might lead to one or more faults. Faults (also known as defects) are located in the text

of the program. More precisely, a fault is the difference between the incorrect program

and the correct version [2]. The execution of faulty code may lead to zero or more fail-

ures, where a failure is the (non-empty) difference between the results of the incorrect and

correct program [2].

While the areas of software engineering, software quality, and software reliability have

been studied extensively over the last three decades, they are mostly concerned with assur-

ing the usability of software under normal conditions. Accidental failures resulting from

accidental faults are their subject of concern and not malicious attacks resulting from vul-

nerability exploits. Software assurance has to deal with both accidental and malicious

failures resulting from faults introduced either accidentally or deliberately [3]. It is this

differentiating factor of intention that makes software assurance a challenging task.

A software vulnerability is an instance of an error in the specification, development,

or configuration of software such that its execution can violate the security policy [4].

In other words, a defect whose execution can violate the security policy is a vulnerabil-

ity. So all vulnerabilties are defects but not all defects are vulnerabilties. Triggering of

defects leading to failures is accidental in nature but triggering of vulnerabilities leading

to security violations or misuse may be deliberate and malicious. A malicious misuse

2

can, in general, do more harm than an accidental failure. Some of the losses may also be

intangible such as the reputation of both the software developer whose software had the

vulnerability and the software user who experienced the misuse.

Static analysis is the process of extracting semantic information about a program at

compile time. This research focuses on improving software assurance using lightweight

static analysis. It focusses on using static analysis to answer the following two questions:

is the software artifact exhibiting correct behavior at runtime? and will the software arti-

fact exhibit correct behavior at runtime? Answering the first question provides assurance

on a continuous basis at runtime and answering the second question gives us assurance

about the software artifact at compile time.

1.1 Misuse Detection

To Err is Human: as long as programming involves human activity, software vulnera-

bilities will exist. An attacker can subvert an executing instance of a software artifact by

exploiting vulnerabilities present in it. This necessitates runtime monitoring of a software

artifact to determine if it is exhibiting correct behavior at all times—an answer to the first

question. A real-time host-based anomaly misuse detection system (MDS) attempts to

identify in real-time if program behavior deviates from the known normal behavior. Static

analysis techniques can be used to construct conservative models of program behavior that

are guaranteed not to exhibit false positives. The challenge however is in balancing the

important concerns of accuracy, as measured by the number of false negatives; scalability,

the size of programs that can be handled by the monitoring algorithm; and efficiency, the

runtime overhead of monitoring.

Current static analysis based approaches use sequences of system calls as characteri-

zation of program behavior [5–9]. Models are constructed in a flow- and context-sensitive

manner to improve accuracy. However, this imposes an additional runtime overhead which

in some cases is more than 100% [5, 7]. This is unacceptable for real-time misuse detec-

tion. We propose a new abstraction of program behavior known as the Inlined Automaton

3

Model (IAM) that not only retains the accuracy of the other models but also imposes neg-

ligible overhead [10]. We have implemented a prototype of an IDS based on this model

and empirically evaluated its efficiency and scalability. The key idea behind this model is

that space is traded-off for time. This is usually acceptable because time is the most im-

portant concern in real-time misuse detection systems. However, we have also developed

automata compaction techniques to reduce the space-overhead of IAMs for operating in

memory-constrained contexts.

1.2 Software Vulnerability Detection

A program’s compliance with a property/policy can be checked either at run-time (dy-

namic checking and conventional testing) or at compile-time. The ability to check pro-

gram properties without having to execute the program is especially appealing for security

properties—properties that affect the security policy. A variety of static analysis checkers

for detecting software vulnerabilities have been proposed [11–14].

Considerable research has looked at using program verification techniques to improve

software assurance [11, 12, 14–21]. In this approach, given a specification of correct be-

havior in terms of program invariants, we can verify statically if there is any path in the

program where the invariants do not hold. If so, it is indicative of an error. Manually

specifying invariants is possible only when we know what the invariants are. Certain

language-specific invariants such as avoiding the dereferencing of null-pointers and avoid-

ing memory leaks, and operating-system related invariants such as sanity-checking user-

pointers before dereferencing them in the kernel are well known. There is considerable

prior research in this area of finding known defects—software defects or vulnerabilities

that result from a violation of known invariants. Examples include techniques to detect

buffer-overflow bugs, format-string bugs, and file-system race conditions.

However, a program typically has several other invariants that are not language or

operating-system specific but that are program-specific or particular to the program logic

or semantics. Such invariants are rarely documented but are nonetheless critical for the

4

program’s correct behavior. The challenge is in finding such invariants because what may

be determined as invariants might simply be coincidences. For this reason, they are re-

ferred to as likely program invariants. Once we know the likely invariants, the problem

reduces to that of program verification. Defects that result from a violation of such likely

invariants can be thought of as unknown defects because the invariants are not known a

priori. Recently, several approaches have been proposed to extract likely invariants from

a program. Broadly, they fall into two categories: dynamic approaches [22–26], which

observe a program’s runtime behavior, and static approaches [27–29], which analyze pro-

gram text to detect likely invariants. Static approaches are appealing because they have

the advantage of observing all the program paths. The current static approaches to finding

unknown defects consider simple temporal invariants, in specific contexts, and use ad-hoc

techniques. We propose a general approach to finding unknown defects by considering

temporal invariants on general events and by using techniques derived from well-known

algorithms from the data-mining literature to determine likely invariants. This research

compliments the work on finding known defects in answering the second question of

whether the analyzed software artifact will exhibit correct behavior at runtime.

1.3 Thesis Statement

This dissertation describes the work done to validate the following hypothesis:

It is possible to build models of software artifacts using lightweight static analysis that

can be used to efficiently detect and avoid misuse at runtime and detect unknown defects

at compile-time.

For the purposes of this dissertation, lightweight static analysis refers to control-flow

analysis, which is typically easier than data-flow analysis. The remaining terminology is

introduced later in appropriate sections.

5

1.4 Organization

The dissertation is organized as follows: Chapter 1 has described the broad motiva-

tion for this research in the context of related work and presented the thesis statement.

Chapter 2 describes the research performed to validate the first part of the hypothesis by

demonstrating that we can build models of software artifacts that can be used in runtime

monitoring to efficiently detect and avoid misuse. Chapter 3 describes the research done

to validate the second part of the hypothesis by building models of software artifacts that

can be used to detect unknown defects at compile-time. A detailed discussion of related

work is presented separately for the two parts in the above chapters. Finally, Chapter 4

presents the conclusion, summarizes the major contributions, and outlines directions for

future work.

6

2 EFFICIENT INTRUSION DETECTION USING AUTOMATON INLINING

The goal of a host-based misuse detection system (MDS) is to identify an attacker’s at-

tempts to subvert processes running on the system. An anomaly-based MDS achieves

this by identifying program behaviors that deviate from the known normal behavior. In-

tuitively, MDS algorithms monitor a program by observing event traces and comparing

those traces to some expected behavior. Most approaches use sequences of system calls

as a characterization of program behavior. The “normal” program traces can be modeled

by observing the program execution on known inputs (dynamic analysis) [30–36], by a

domain expert who creates a specification of the program (manual analysis) [37], or by

automatically creating a specification of the program using static program analysis [5–9].

All approaches must deal with false positives, when the MDS deems that a legal program

event is invalid, as well as false negatives, when an attack goes unnoticed. Clearly false

negatives are undesirable as they denote failures of the MDS, but false positives are often

more harmful as they hamper correct execution of the program. Dynamic analysis and

manual specifications can be accurate as they leverage both domain knowledge and the

program’s input data, but they are well known to suffer from false positives. Static pro-

gram analysis techniques can construct conservative program models that are guaranteed

not to exhibit false positives. However, this conservativeness introduces inaccuracies in

the models that can potentially lead to false negatives. The accuracy of these approaches

is illustrated in Figure 2.1.

The design space of automated techniques for program-model construction must balance

the following concerns: accuracy, as measured by the number of false negatives; scalabil-

ity, the size of programs that can be handled by the algorithm; and efficiency, the runtime

overhead of monitoring. There are two aspects of static analysis that affect accuracy in

model generation: flow-sensitivity and context-sensitivity. A flow-sensitive model con-

7

siders the order of execution of statements in the program. The basic model described

by Wagner and Dean [9] is an example of a flow-insensitive model where the normal ex-

pected behavior is the regular language S∗ over the set of program events S (e.g. system

calls issued from the program text). If the program ever issues a system call outside S, an

exception is raised. Such a flow-insensitive approach, while sound and efficient, is highly

imprecise in practice because attacks using system calls included in S cannot be detected.

In large programs, it is quite likely that the set S encompasses all ‘dangerous’ system

calls. For this reason, we considers only flow-sensitive models: models that are able to

differentiate between sequences of system calls and raise an alert if system calls are issued

out of order.

A context-sensitive model keeps track of the calling context of functions and is able to

match the return of a function with the call site that invoked it. In a context-insensitive

model, event sequences are allowed to start at a call site, go through the called procedure,

and return to a different call site. This kind of impossible trace (i.e. sequence of events

that can not possibly occur in a normal program execution) is a source of inaccuracy

for context-insensitive static models. In [9], for instance, a program is represented by a

non-deterministic finite automaton (NFA) that is flow-sensitive but does not capture the

call-return semantics of high-level programming languages. The advantage of such NFA

models is that they impose small monitoring overheads. Context-sensitive models are

more accurate at the cost of higher program running times caused by the overhead of

maintaining context information.

Context-sensitive models have been investigated by several researchers. In [9], the behav-

ior of a program was captured by a pushdown automaton (PDA), but the authors deemed

the runtime costs of the approach prohibitive and argued for simpler models. More recent

works [5, 7] have significantly decreased these overheads, yet some monitored programs

can still run more than twice as slowly as the original unmonitored code.

While there are obvious reasons why performance overheads are undesirable, there is an

additional motivation for keeping this overhead low. Flow- and context-sensitive misuse

8

Dynamic
models

Manual
models

Valid Program ExecutionsAttacks

PDA

IAM

NFA

Figure 2.1. Accuracy of host-based misuse detection models. The fig-
ure shows program traces indicating attack and valid executions. Both
dynamic and manual models flag some valid traces as erroneous (false
positives) and miss some invalid traces (false negatives). Automatically
constructed models based on static program analysis are conservative i.e.
they do not suffer from false positives, but have varying degrees of accu-
racy. Pushdown Automata (PDA) are strictly more powerful (i.e. they
catch more attacks) than both IAM and Non-deterministic Finite Au-
tomata (NFA), although in the absence of recursion, the accuracy of IAMs
is the same as that of PDAs.

detection systems can be tricked into overlooking an attack if the adversary is able to

embed the attack in a valid program trace (a so-called mimicry attack [38–40]). To make

such attacks more difficult to carry out, misuse detection systems must either decrease

the granularity of events (i.e. observe more of the application’s behavior) or be able to

perform inferences on the values of arguments to ‘dangerous’ system calls (e.g. discover

dynamically that arguments to a call are not valid). These approaches have the potential to

improve the accuracy of MDSs but also increase the amount of state needed for verification

and thus further increase runtime costs.

We present a new abstraction of program behavior referred to as an Inlined Automaton

Model (IAM) that is as accurate, in the absence of recursion, as a PDA model and at least

as efficient, in terms of runtime overhead, as a NFA. We believe that this abstraction is

well suited to be the basis for more expressive misuse detectors.

9

The remainder of the chapter is organized as follows. Section 2.1 describes existing ap-

proaches to statically-constructed model-based anomaly detection. Sections 2.2 and 2.3

describe the construction of IAM and Sections 2.4 and 2.5 describe implementation is-

sues and experimental results. Section 2.6 discusses the concept of deterministic markers.

Automata compaction techniques are described in Section 2.7. The efficiency and effec-

tiveness aspects of our MDS are discussed in Sections 2.8 and 2.9. Section 2.11 discusses

the challenges faced by existing approaches and Section 2.12 describes other related work.

2.1 Statically-generated Model-based Automated Misuse Detection

Static analysis techniques can be used to construct conservative models of program behav-

ior in an automated fashion. The seminal paper on automated program model construction

for MDS is by Wagner and Dean [9]. They consider four different models: trivial, digraph,

callgraph, and abstract stack. The trivial model represents the expected program behav-

ior using the regular language S∗ over the set of system calls S made by a program. It

completely ignores the ordering of calls. The digraph model precomputes the possible

consecutive pairs of system calls from the control flow graph (CFG) of a program and

at runtime checks if the pair (previous system call, current call) is present in the model.

The callgraph model represents all possible sequences of system calls by modeling the

expected program behavior using a NFA derived from the CFG of the program. The

context-insensitivity arises because only a single instance of a function’s CFG is repre-

sented in the NFA and this leads to impossible paths (see Figure 2.3). Finally, the abstract

stack model eliminates such impossible paths by modeling the call stack of a program

using a PDA. However, [9] demonstrates that in practice the operational costs of a PDA

model are prohibitive in both space and time because of having to maintain and search all

possible stack configurations on transitions.

Giffin et al. [6] evaluate several interesting optimizations to increase precision of NFA

models and efficiency of PDAs. The first optimization is to rename system calls (thus

extending the set of events S) and allowing the model to distinguish among different invo-

10

cations of the same function, thus increasing accuracy. The second technique, argument

recovery, helps distinguish call sites by recovering static arguments, i.e. arguments to

functions that can be determined at compile time, for example constant strings or scalar

values. Again, this has the effect of enriching the set of observable events and decreasing

the number of impossible paths. The last technique proposed in this work consists of a

simple, meaning-preserving, program transformation which inserts null calls, i.e. calls

to a dummy function, at selected points in the program. These calls provide additional

context information to disambiguate event sequences. The paper evaluates four null call

placement strategies for precision and efficiency. Inserting null calls for functions with

a fan-in of five or greater provides a good balance between precision and efficiency. Ex-

tending it to functions with fan-in two or greater results in runtime overheads of up to

729%. A PDA model with a bounded runtime stack is also investigated. However, gains

in efficiency are observed only by combining this model with null call insertion, which

has its own limitations.

The Dyck model [5, 7] improves on the above mentioned null call technique by insert-

ing code around non-recursive call sites to user functions that issue system-calls. The

approach basically increases the set of events S accepted by the automaton with unique

push/pop symbols; one such guard pair is added for every function call site of interest. This

disambiguates call sites to the same target function and thus achieves context-sensitivity.

The runtime of the program is affected by the overhead of the instrumentation. The run-

time costs can be reduced by dynamic squelching, i.e. pruning from the model symbols

guarding a function that does not exhibit interesting behavior (e.g. does not issue system

calls). Nevertheless, slowdowns of 56% and 135% are reported for cat and htzipd.

Recursive calls are not instrumented for performance reasons.

The VPStatic model [5] is a statically-constructed variant of the dynamic context-sensitive

VtPath model [30]. It captures the context of a system call by a list (called the virtual

stack list) of call site addresses for functions that have not yet returned. This information

is obtained at runtime by observing the stack of the monitored process. The virtual stack

lists of consecutive system call events are used to determine if that transition is acceptable

11

by the model. While the Dyck model incurs runtime overhead in generating new context-

determining symbols, the VPStatic model introduces overhead because of the stack walks

necessary to observe existing context-determining symbols. However, the overhead of

stack walks is incurred only at system call events unlike the overhead in the Dyck model

which might occur on execution paths without system call events. This difference results

in reduced slowdown of 32% and 97% for cat and htzipd in the case of the VPStatic

model. The stack walks make up much of the slowdown.

Lam and Chiueh [41] propose a context-sensitive system-call level MDS based on graph

inlining called Paid. They insert notify calls to convert the inlined model into a determin-

istic finite state automaton (DFA) and also to handle function pointers and non-standard

control flow caused by setjmp/longjmp. They report performance overheads between

2%-7% for network daemons such as wu-ftpd and sendmail. We came up with our

approach independently in [10] without any knowledge of this work.

2.2 The Inlined Automaton Model

Figure 2.2. An example program.

12

Figure 2.3. NFA representation of the program in Figure 2.2. E, X, C,
and R represent entry, exit, call, and return nodes respectively. The dotted
lines represent ε-transitions in the NFA.

Figure 2.4. The ε-IAM representation of the program in Figure 2.3. E,
X, C, and R represent entry, exit, call, and return nodes respectively. The
dotted lines represent ε-transitions.

The Inlined Automaton Model (IAM) is a flow- and context-sensitive statically-constructed

model of program behavior that is simple, scalable, and efficient. The model is generated

by first constructing NFAs for each user function in the program. These automata are con-

structed by a simple flow-sensitive intra-procedural analysis of the program text. Then,

in a second phase, nodes representing call sites are inlined with the models correspond-

13

Figure 2.5. An ε-free IAM representation of the program in Figure 2.3.
E, X, and C represent entry, exit, and call nodes respectively.

ing to the called functions. This process is repeated until all calls have been completely

expanded. Recursive calls are treated specially as will be discussed below.

Figure 2.3 shows an example program and its NFA representation. The NFA abstraction

is a union of statement-level CFGs for each function in the program. Each function has

unique entry and exit nodes and call sites are split into call and return nodes.

Call nodes are connected to the entry nodes of the invoked functions and the exit nodes of

the invoked functions are connected to the return nodes corresponding to these calls. The

context-insensitivity in the NFA model arises because only a single copy of a function’s

CFG is maintained in the representation. This results in impossible paths being considered

by the model. For example, in Figure 2.3, the system call sequence (start, write,

write, close, end) is an impossible path. start and end are special symbols

used to denote the start and end of program execution.

Definition 2.2.1 Formally, an ε-NFA N for a program P is represented as

N = (Q, Σ, δ, q0, F) [42] where:

Q is a finite set of states

Σ is a finite set of input symbols

q0, a member of Q, is the start state

14

F , a subset of Q, is a set of final states

δ is the transition function that takes a state Q and an input symbol in Σ∪{ε} as arguments

and returns a subset of Q.

We associate a type T with every state in the NFA representation of a program. So, for

each q ∈ Q, ∃ T such that T (q) ∈ {E, X, C, R}, which represent entry, exit, call, and

return nodes respectively. We define successor of a state q as a set of tuples (s, l), where

s ∈ Q and ∃ l ∈ Σ ∪ {ε} such that δ(q, l) = s. Fan-out of state q is defined as the

cardinality of the set successor(q). Similarly, we define the predecessor of a state q as a

set of tuples (s, l), where s ∈ Q and ∃ l ∈ Σ ∪ {ε} such that δ(s, l) = q. Fan-in of state

q is defined as the cardinality of the set predecessor(q).

The IAM representation of the program in Figure 2.4 is obtained from the NFA model

by inlining all the function calls in the program. The resulting model is context-sensitive

because the call-return semantics of function calls is modeled by including a copy of a

function’s CFG at every call to that function. This model does not have, up to recursion,

the impossible paths resulting from context-insensitivity.

Formally, an ε-NFA N for a program P given by N = (Q, Σ, δ, q0, F) is transformed into

an ε-IAM M given by M = (Q′, Σ, δ′, q0, F
′) where an additional property holds.

Definition 2.2.2 An ε-IAM M is an ε-NFA where for each q ∈ Q′, if T (q) = E then

fan-in(q) = 1 or else if T (q) = X then fan-out(q) = 1, provided E and X are entry and

exit nodes of a non-recursive and non-main function.

The final IAM representation shown in Figure 2.5 includes only system call nodes and

transitions, and discards the other nodes. This ε-free IAM is obtained by performing ε-

reduction on ε-IAM. The definitions of successor and predecessor are the same for an

ε-free IAM except that ε is not an input symbol.

A drawback of inlining is that it may result in state explosion. This indeed is the rea-

son [6] decided not to pursue this approach. The state space can be somewhat limited by

15

Figure 2.6. A recursive program.

Figure 2.7. IAM representation of the recursive program in Figure 2.6.
Dotted lines representing ε-transitions have been retained for clarity. The
node sequence 1-2-3-4-5-3-8-9-10 which translates to the system call se-
quence (start, open, write, end) is an impossible path.

restricting the model to states that characterize the observable behavior of the program,

e.g. system calls, or in our current implementation, calls to library functions. Section 2.7

discusses space compaction techniques.

16

Figure 2.8. An indirect-recursive program. The program does exactly
the same thing as the program in Figure 2.6 but using mutually recursive
functions foo1() and foo2().

Figure 2.9. IAM representation of the program in Figure 2.8. The dotted
lines representing ε-transitions have been retained for clarity.

Recursion is one obvious limitation of inlining. To ensure termination, it is necessary

to treat recursion specially. We perform inlining depth-first. On detecting recursion, we

terminate inlining. We connect the call node of the repeating function to the entry node

of its previously inlined instance and the exit node of that instance to the current return

17

node. These transitions model the winding phase of recursion. We also connect the call

and return nodes of the repeating function to model the unwinding phase of recursion. Ex-

amples of recursion bounding for both direct and indirect recursion appear in Figures 2.7

and 2.9. Recursion introduces impossible paths, for example in Figure 2.7, the sequence

(start, open, write, end) is an impossible path, as it lacks a call to close in

the unwinding phase, but the path is allowed by the model.

We can relate a system-call level IAM to the formalization of [5].

Theorem 2.2.1 Let L(IAM (P)) denote the language accepted by an inlined automaton

for some program P , and L(PDA(P)) be the language accepted by the pushdown au-

tomaton of [5], then we have L(PDA(P)) ⊆ L(IAM (P)).

In the case of recursion-free programs, the languages are equivalent.

2.3 Monitoring Programs with IAM

Our current implementation of IAM monitors library function calls. The runtime monitor

is implemented as a library interposition mechanism [43]. It intercepts calls to library

functions and checks them against the model. Figure 2.11 gives pseudo-code for the

monitoring algorithm. The algorithm maintains a vector of current states and for every

transition, computes the states reachable from that vector. If the set is ever empty, an alert

is raised.

2.3.1 Monitored Events

It should be noted that the algorithm monitors possibly more events than other approaches

because we track library functions irrespective of whether they make system calls or not.

In [10], we hypothesized that this would generally result in more states and more transi-

tions in our automaton and that this bigger size increases the runtime overhead because of

the greater search space. Therefore, modeling libraries instead of system calls would be a

18

Figure 2.10. Data structures. nodeid is the node identifier. funid is
the library function identifier. The succ bit indicates if a node is the last
node or not in the list of successor nodes. curr is a vector of current
nodes.

Figure 2.11. IAM monitoring algorithm.

worst case scenario with the possible exception of a program mostly made up of calls to

library functions that make several system calls (e.g. some of the socket library func-

tions in Solaris). In this exceptional case, a model based on system calls would be bigger

and slower than our current model. Otherwise, in most cases, the time and space measure-

19

ments presented in Section 2.5 can be considered an upper bound for an implementation

of a similar approach based on system calls. Section 2.8 has more discussion on this issue.

2.3.2 Handling Non-standard Control Flow

Function pointers, setjmp/longjmp primitives, and signals have to be handled to obtain

a sound model. Failure to do so will result in false positives.

1. Function Pointers

Function pointers in C can be used to make indirect function calls. The functions

that can be invoked from a function pointer call site are determined by an analysis

of the program that computes the possible values of the function pointer at that pro-

gram point. But the pointer analysis required to determine this itself requires inter-

procedural control-flow information. This problem can be solved by either ignoring

function pointers completely or by combining the construction of control-flow graph

with pointer analysis. Ignoring function pointers is unsound. In [10], we resolved

function pointers to all defined functions with the same number and type of argu-

ments as the function pointer invocations. Although this was sufficient to model our

benchmark suite and workloads, this is unsound in the presence of function pointer

targets with variable number of arguments and typecasts.

Wagner and Dean resolve all function pointers to every function that has its address

taken. They used manual annotation in some cases to refine the targets. Giffin et al.

generate models from weakly typed binary code. Thus they use a combination of

data flow analysis, manual annotation, and resolving to functions whose address is

taken. Lam and Chiueh use a runtime technique to resolve a function pointer call to

all the functions whose address is taken using their notify calls.

Our current implementation resolves function pointers to functions whose address is

taken and that have the same number and type of arguments as the function pointer

invocation. Future work should incorporate precise pointer analysis to accurately

20

resolve function pointers. This would significantly decrease the model size for pro-

grams with increased function pointer usage especially in the case of IAM which

uses inlining. This would also improve the precision of MDS by reducing non-

determinism at function pointer invocations and therefore reduce the likelihood of

mimicry attacks.

2. setjmp and longjmp Primitives

A call to setjmp saves the stack state in a buffer specified by the env argument. A

call to longjmp restores the environment saved by the last call of setjmp with the

corresponding env argument. They are used in error routines and interrupt handlers

to go to a safe state.

In the absence of data flow analysis to determine the pair of setjmp/longjmp calls

with the same env buffer (lexical matching would ignore effects of aliasing), we

connected a longjmp call to every setjmp call in the control flow graph in [10].

3. Signals

Signals are used extensively in privileged programs and network daemons. In [10]

we identified the signal handlers in a program and constructed separate context-

sensitive models for them. Signal handlers can be invoked asynchronously at any

program point where signals have been enabled. Including models of signal handlers

as part of the program model at every point where signals are enabled would be

unreasonable. [8,9,41] describe runtime techniques that can be used to used to infer

the start and end of a signal event that can then be used to modify the model at

runtime.

2.3.3 Recursion

There are several approaches to handling recursion. The simplest solution is of course to

allow imprecision at recursion points in the model based on the assumption that the actual

loss of accuracy is small. The implication of this to mimicry attacks has to be considered.

21

Furthermore, recursion is only a problem if there are library calls in the unwinding phase

(i.e. if a library call is reachable in the control flow graph between the recursive call

site and the function’s exit), if not the attacker would gain absolutely nothing by following

impossible paths. None of the existing approaches, ours included, demonstrate an efficient

way of handling recursion.

2.4 Implementation Details

In [10], we implemented the model generation prototype using the PROLANGS Anal-

ysis Framework (PAF) from Rutgers University [44]. The current implementation uses

CIL [45]. CIL (C Intermediate Language) is a high-level representation along with a suite

of tools that facilitates whole program analysis of C programs.

2.4.1 Model Generation

The Makefile of a software application is modified to invoke CIL instead of GCC.

CIL processes the source files of the application based on the options specified and then

invokes GCC ultimately. We use the --merge option of the CIL driver to collect all

the source files that make up the application into one single source file. We also use the

--keepmerged option to make CIL save the merged source file. The model generator

that is implemented as a CIL module is invoked as a command line argument on this

merged source file. This generates NFAs for every user-defined function in the application

along with function pointer target information. This data is then used to construct an IAM.

2.4.2 Compiler Directives and Optimizations

GCC provides several built-in functions such as builtin constant p,

builtin va start, and builtin va end [46]. Built-in functions are compiler

directives that can be used to perform a variety of tasks. builtin constant p, for

22

example, can be used to determine if a value is a compile-time constant. CIL includes such

directives in the merged file because GCC has not yet been invoked. Therefore we have

to deal with such compiler directives during model generation. We exclude such built-in

functions from the model because they are not interposable at the library interface. But

GCC has also built-in versions of several library functions. These are intended for opti-

mization and in cases where they are not or cannot be optimized, such built-in functions

invoke the library functions. We include library functions called by such built-in func-

tions in our models irrespective of whether they will be optimized or not. We have not

seen a mismatch between the generated models and the binaries for our benchmarks and

workloads because of this.

Model generation should either mimic the compiler optimizations or be invoked after op-

timizations have been performed so that the program models accurately represent runtime

behavior. For example, we excluded from the models strlen functions whose argu-

ments were string literals. Such calls are optimized (and hence not present in binaries)

because they can be computed at compile-time.

2.4.3 Library Interposition

Library interposition is “the process of placing a new or different library function between

the application and its reference to a library function” [47]. Most applications make calls

to library functions that are part of shared libraries such as LIBC. Library interpositioning

makes use of the dynamic linking feature to intercept calls to such functions. This can

be achieved using the LD PRELOAD environment variable. The intercepting function can

perform a variety of tasks before calling the actual library function. It effectively behaves

as a “wrapper” function. A detailed description of this technique can be found in [47,48].

We use the interposed functions to check against the model if the issued function call is

acceptable at the model’s current state. If so, we let the interposed function invoke the

actual library function. If not, we raise an alert and terminate the process that issued the

function call. Figure 2.12 illustrates the working of our prototype.

23

Figure 2.12. A model-based MDS based on library interposition. The li-
brary function calls issued by an application are intercepted by interposed
libraries and checked against the application’s model. If the issued calls
are considered acceptable in the model, the interposed functions call the
actual library functions. If not, an an alert is generated.

2.4.4 Interposing Variable-argument Functions

Variable-argument functions in C such as the printf and execl family of functions

present an interesting challenge while interposing them. For such functions, the callee

has to determine the number of arguments that should be read off the stack at runtime.

Interposed versions of such functions have to reconstruct the argument list before calling

the actual function.

We have achieved this in two ways. For the printf family functions, we process the

variable-arguments using the va start and va end routines to construct a va list

variable and then call the corresponding vprintf versions that use va list. For the

execl family functions that do not have va list versions, we traverse the stack, con-

struct the array of arguments, and call the corresponding execv versions that use argu-

ment arrays. Information on these functions can be obtained from their manual pages

using the man command.

24

Table 2.1
Test programs.

Program Software Version LOC Description

htzipd LiteZipper-0.1.6 6,839 A proprietary HTTP server implementation

lhttpd lhttpd-0.1 819 A fast and efficient HTTP server capable of

handling thousands of simultaneous connections

wu-ftpd wu-ftpd-2.6.2 26,317 A widely-used ftp daemon

gnatsd gnats-4.0 55,778 The server component of GNATS, which is

a set of tools for tracking bugs reported by users

2.4.5 Data Structures

The current implementation of the automaton is based on an ε-free IAM model. The

automaton is represented by a table of nodes (see Figure 2.10). Each row in the table

corresponds to a state q, and each entry, a node, in the row corresponds to an element of

successor(q). Nodes are represented by a node identifier nodeid (used as an offset in the

table), library function identifier funid, and a succ bit to indicate if this is the last node

(the majority of rows are short; so a bit per node is more efficient than a leading integer).

Thus a node represents a tuple (s, l) indicating the transition state s for the input symbol

l. The entire structure is packed into 32 bits to conserve space. The 20 bits and 11 bits

bit-fields used for the nodes are sufficient to represent our test programs.

2.5 Evaluation

Program models for on-the-fly misuse detection can be evaluated on two criteria: accuracy

and efficiency. Greater accuracy makes these models useful by reducing false negatives

and increased efficiency makes them usable by reducing time and space overheads. The

IAM model has a runtime efficiency equal to that of a NFA model. The addition of markers

further improves the efficiency by reducing non-determinism and has the potential to ex-

25

Table 2.2
Characteristics of IAM models.

ε-IAM ε-free IAM

Program states transitions states transitions

htzipd 59,454 91,384 24,273 137,159

lhttpd 715 990 401 1,008

wu-ftpd 315,950 1,210,826 169,763 3,042,261

gnatsd 1,572,319 2,577,256 221,481 19,080,312

hibit the runtime characteristics of a DFA (c.f. Section 2.6). It also improves the accuracy

of the model (c.f. Section 2.6.3).

We demonstrate the efficiency of our model by testing it with the four real-world programs

shown in Table 2.1. Table 2.2 gives the basic characteristics of the IAM models for these

programs. Tests were conducted on an isolated network with the servers and MDS running

on a 2.8 GHz Linux machine with 1 GB RAM and the clients running on a 597 MHz Linux

machine with 128 MB RAM.

Table 2.3 shows the workloads used in testing. Table 2.4 shows the runtime overhead for

our model. Runtime is measured using the UNIX time utility. Time measurements are

calculated over ten runs and the best time is considered. The delays in the other runs are

assumed to have been caused by interference from the underlying hardware and software

components. The monitored runtime does not include the setup time needed to load the

program model from the disk.

From Table 2.4, we see that monitoring using IAM does not add significant overhead

(1.5% to 2.5%) except in the case of gnatsd for Workload-Two where the overhead is

325.27%. This is reduced to 31.12% on using deterministic markers in the model as shown

in Section 2.6. Workload-Two replaced 300 help commands in Workload-One (used in

[10]) with subm commands. The subm command adds a problem report to the gnatsd

26

Table 2.3
Programs and workloads.

Program Workload

htzipd Transfer 171.28 MB of data to a client

lhttpd Transfer 171.28 MB of data to a client

wu-ftpd Transfer 171.28 MB of data to a client

gnatsd-Workload-One Service 2000 commands

gnatsd-Workload-Two Service 2000 commands (includes 300 subm commands)

Table 2.4
Effect of monitoring on performance.

Program Unmonitored Monitored Percentage

Time Time Overhead

htzipd 26.56s 26.95s 1.47%

lhttpd 16.16s 16.56s 2.48%

wu-ftpd 18.44s 18.73s 1.57%

gnatsd-Workload-One 46.91s 47.59s 1.45%

gnatsd-Workload-Two 34.58s 147.06s 325.27%

database. The code for subm command is more complex than help and other commands

used in Workload-One.

2.6 Deterministic Markers

Non-determinism can be interprocedural or intraprocedural. Interprocedural non-determinism

arises in NFA-based models when legal transitions to multiple call sites are possible at a

function’s exit node. Context-sensitive models do not have this problem. Intraprocedural

non-determinism is caused by conditionals and loop constructs in program text. This is a

27

result of path-insensitivity in the models. If at points of such non-determinism, the observ-

able events are the same among the possible branches, it leads to ambiguity. The monitor

then has a set of possible current states. This not only imposes additional performance

overhead but also introduces imprecision in the model that can be exploited in a mimicry

attack.

A high degree of intraprocedural non-determinism results in large fan-outs for the au-

tomaton states. A larger fan-out translates to greater runtime overhead for the monitoring

algorithm which has to check every successor state for matching transition symbols. Fur-

thermore, although the monitoring algorithm starts with a single current state (entry of

main), non-determinism and the existence of several successor states for the same transi-

tion symbol quickly introduce ambiguity about the current state. This causes the monitor-

ing algorithm to maintain a set of states as its current state and check successors for each

of them at runtime.

We introduce the terms static branching factor (SBF) and dynamic branching factor

(DBF) at this point. Static branching factor for a state is the number of successors of

that state in the model. Dynamic branching factor at any instance during monitoring is

the sum total of the number of successors of all the states in the model that are considered

as current state by the MDS. DBF will be the same as SBF in the absence of ambiguity

introduced by non-determinism. Note that DBF and SBF are different from the aver-

age branching factor metric that is used in [6, 7, 9] for measuring the precision of MDS

models. We consider all the library functions while measuring SBF and DBF unlike the

average branching factor metric, which considers only a subset of system calls deemed as

dangerous.

We introduce the concept of deterministic markers as a solution to intraprocedural non-

determinism. Deterministic markers are unique transition symbols introduced in the pro-

gram text to reduce intraprocedural non-determinism and thereby decrease the DBF and

the search space of the runtime monitoring algorithm. Conceptually, they are similar to

the renaming and null call insertion techniques described in [5–7]. The difference is that

28

they are not needed for determining the calling context (inlining takes care of that) but

for disambiguating the current state (program counter) in the case of intraprocedural non-

determinism.

In [10], we used markers only for gnatsd along the paths exercised by Workload-One.

Eleven sites were manually identified and null library calls were introduced. Below, we

outline algorithms and rationale for automatically identifying locations for insertion of

markers.

2.6.1 Types of Markers

We propose three types of markers based on program constructs that cause intraprocedural

non-determinism:

1. Switch Markers

Switch statements in C can be points of significant non-determinism. Programs such

as network daemons that accept user commands have lexers and parsers that have to

process several types of tokens and so use switch statements. Inserting a unique

marker at the beginning of every case statement resolves the non-determinism that

is present at such program points.

Identifying case statements in program text is a simple task. While such markers

can be conservatively inserted for all case statements, we can reduce the number

of markers added by discarding case statements that do not make function calls in

their scopes. Currently, we simply grep the program text for case statements and

add a marker if it is not obvious that function calls are not made in their scopes. A

sed script [49] can further reduce the effort in adding such markers.

2. Function Pointer Markers

Function pointers that are identified as having multiple targets also can result in

significant non-determinism depending on the number of targets. For example, in

29

gnatsd, at the point where the server determines the command it has to process,

it invokes the appropriate command handler using a function pointer. That function

pointer is determined as having 31 targets based on the number and type of argu-

ments of functions whose address is taken. We introduce a unique marker at the

beginning of every target function’s body to resolve any non-determinism that is

present at function pointer invocations.

The above two types of markers are ad-hoc in nature but work in practice. Table 2.5

shows the reduction in average DBF for wu-ftpd because of the addition of switch

markers. These markers also had an unexpected effect of decreasing the model size.

The model size for wu-ftpd decreases by 62.28% on inserting the switch markers.

The reason for this is that although adding markers increases the number of states in

the model, the number of transitions typically decreases. This is because multiple

states that had a high fan-out now have only the marker as their single successor

state and the marker is the only state that has the high fan-out. This is illustrated in

Figure 2.13.

Figure 2.13. The effect of switch and function pointer markers on fan-
out. Adding these markers increases the number of states in the model
but the number of transitions typically decreases. Multiple states that had
a high fan-out now have only the marker as their single successor state
and the marker is the only state that has the high fan-out.

3. Library Markers

Ambiguity in the ε-free IAM model arises in states that have multiple transitions

(to successors) for the same symbol. Library markers can be used to reduce or

eliminate non-determinism. The algorithm for determining the locations of such

30

library markers runs in O(n), where n is the number of states in the ε-free IAM.

For each state, we identify common transition symbols whose successors have not

yet been assigned markers. For successor states of all such transitions, except one,

we assign a unique marker. Assigning unique markers to all but one successor with

common transition symbols is sufficient to disambiguate the successors. We keep

track by maintaining a list of locations in program text corresponding to the states

that have been assigned markers. Based on the output of this algorithm, we insert

unique library markers at the determined program locations.

In the current implementation, we can only reduce the non-determinism in the IAM

but cannot convert it into a DFA using library markers. This is because we insert the

markers in the program text and not in an inlined intermediate representation as is

done in [41]. Consider the program text shown in Figure 2.14. The non-determinism

is caused by calls to printf within the function foo() along the two branches

of the conditional. This cannot be eliminated even if we insert a library marker

before the call to printf in foo(). However, if we insert markers on an inlined

intermediate representation then we can insert two unique markers at the two inlined

locations of foo to resolve the non-determinism.

Figure 2.14. Example program where non-determinism cannot be re-
solved using library markers.

31

Table 2.5
Number of library calls intercepted and average dynamic branching factor (DBF).

Program Library Calls Avg. DBF Library Calls Avg. DBF

Intercepted Intercepted with Markers with Markers

htzipd 184,828 29.32 − −
lhttpd 526,520 1.67 − −
wu-ftpd 88,863 27.09 88,882 2.99

gnatsd-Workload-One 73,975 6550.24 82,150 15.15

gnatsd-Workload-Two 196,144 11,589.96 243,531 3,077.67

We added 143 switch markers to wu-ftpd and 396, 31, and 44 of switch, function

pointer, and library markers respectively to gnatsd. We added only those library mark-

ers that were suggested for memcpy, realloc, and signal functions because only

these seemed to affect the DBF for our workloads. The process of adding markers can be

iterative at model construction time. Instead of adding all the suggested markers, one can

add only those markers that will be along frequently executed paths.

Table 2.5 shows the number of library calls intercepted and the average DBF for the dif-

ferent programs and workloads. DBF is summed up for the all states the MDS transitions

to during the execution of the workload and the sum is averaged over the number of li-

brary calls intercepted to obtain the average DBF. We observe that adding markers reduces

the average DBF for wu-ftpd and gnatsd. This helps in reducing the performance

overhead because the number of successors to be checked is fewer. Table 2.6 shows the

improvement in performance because of the addition of markers.

Another observation is that an average DBF of about 3077 for gnatsd Workload-Two

results in 31.12% overhead but an average DBF of about 6550 does not introduce much

overhead for gnatsd Workload-One. We reason that this is because of the different

commands used in the two workloads. Workload-Two replaces 300 help commands

32

Table 2.6
Effect of markers on performance overhead.

Program Unmonitored Monitored Monitored Time Percentage

Time Time with Markers Overhead

htzipd 26.56s 26.95s − −
lhttpd 16.16s 16.56s − −
wu-ftpd 18.44s 18.73s 18.28s 0%

gnatsd-Workload-One 46.91s 47.59s 47.17s 0.55%

gnatsd-Workload-Two 34.58s 147.06s 45.34s 31.12%

from the Workload-One with subm commands. The subm commands perform more

work at the server and only inform the client that the report has been added whereas

the help command prints out the help information to standard output at the client. So

the bottleneck in the case of the help command is caused by I/O at the client where

the timing is performed and this reduces the impact of the overhead caused by the high

branching factor. This illustrates that the impact of the overhead from an MDS might

differ based on the nature of application.

Figures 2.16-2.19 show the distribution of DBF across library functions intercepted for a

single workload of the benchmarks. Because the number of intercepted library functions

was significantly high to be plotted individually, we plot the average DBF over several

functions. The plots for wu-ftpd and gnatsd are for versions with markers.

2.6.2 Space Complexity of DFA

We prove that we can convert the IAM into a DFA by adding n unique markers in the

worst case, where n is the number of states in the IAM. The proof for this is given below.

In practice, we add markers only when there is non-determinism at a state in the form

of multiple transitions for the same symbol. So the size of the DFA constructed using

33

Figure 2.15. Distribution of DBF across library functions intercepted
for a single workload of htzipd. At every library function intercepted
by the MDS, DBF indicates the number of states in the model that are
checked for possible transition.

markers is less than double the size of the IAM in terms of the number of states. Also, the

number of transitions increases by at most n.

Corollary 2.6.1 If N is an ε-free IAM for a program P given by IAM = (Q, Σ, δ, q0, F)

and si ∈ Q then ∀ sj ∈ predecessor(si), ∃ a single symbol li such that δ(sj , li) = si.

The above corollary states that for each state in the ε-free IAM, all the incoming transitions

have the same symbol. This is an artifact of the construction of the IAM from a program.

Theorem 2.6.2 An ε-free IAM with n states can be converted to a DFA by adding n more

states.

Proof Let IAM be an ε-free IAM for a program P given by IAM = (Q, Σ, δ, q0, F).

Then n = |Q|. For every state si ∈Q, we add a unique marker state mi such that δ(mi, li) =

34

si, where li is the incoming transition symbol for si. Then ∀ sj ∈ predecessor(si) except

mi, we replace δ(sj, li) = si by δ(sj, lmi
) = mi, where lmi

is the incoming transition symbol

for mi.

The resulting automaton has 2n states because we have added one unique marker for each

of the n states. Every state si has outgoing transitions only to unique marker states along

their respective unique marker symbols. And every marker state mi has a single transition

to its corresponding si along li. So no state in the resulting automaton has two outgoing

transitions for the same symbol. Therefore it is a DFA with 2n states. Also, note that the

resulting DFA has n more transitions than the IAM. These are the transitions connecting

the markers to their respective states.

An example illustrating this proof is shown in Figures 2.20-2.22. Figure 2.20 shows an

IAM with non-determinism in states s0 and s1 for the transition symbol c. Figure 2.21

shows how the addition of four markers, one for each of the states, can eliminate the non-

Figure 2.16. Distribution of DBF across library functions intercepted
for a single workload of lhttpd. At every library function intercepted
by the MDS, DBF indicates the number of states in the model that are
checked for possible transition.

35

Figure 2.17. Distribution of DBF across library functions intercepted for
a single workload of wu-ftpd. At every library function intercepted
by the MDS, DBF indicates the number of states in the model that are
checked for possible transition.

determinism. Figure 2.22 shows that in practise, the number of markers required is less

than the number of states. In this case, we need only two markers and not four.

2.6.3 Markers and Mimicry Attacks

DFA construction using library markers has another benefit in that it can help prevent

certain mimicry attacks that neither the IAM nor a DFA generated using subset con-

struction [50] can. Consider the program text shown Figure 2.23. It performs access

control on some user input and based on the result, it determines if a shell should be

spawned or not. If access is denied, it performs some book keeping operations, such as

logging, and exits. The bookKeeping() function does not call any library functions

and has a buffer overflow vulnerability (caused by direct pointer manipulation for exam-

ple) that can be triggered by some user input. So the user can execute the buffer over-

36

flow (on being denied access), cause bookKeeping() to return to the location where

execv(‘‘/bin/sh’’,‘‘sh’’) is called, and thus subvert the access control mech-

anism.

Figure 2.24 shows a part of the IAM model for the program in Figure 2.23. An MDS that is

state s0 will transition to both state s1 and s2 on seeing printf. If the printf executed

was the one where access was denied, the attacker can still overflow the bookKeeping()

function and transfer control to execv(‘‘/bin/sh’’,‘‘sh’’). execv is a legal

transition from state s2, which is one of the current states of the MDS. The MDS will there-

fore allow the subversion of access control without generating an alert. This is because of

the imprecision in the model caused by non-determinism.

The DFA shown in Figure 2.25 is constructed using the subset construction algorithm

described in [50]. This removes non-determinism in the model but it does not prevent the

Figure 2.18. Distribution of DBF across library functions intercepted for
gnatsd-Workload-One. At every library function intercepted by the
MDS, DBF indicates the number of states in the model that are checked
for possible transition.

37

Figure 2.19. Distribution of DBF across library functions intercepted for
gnatsd-Workload-Two. At every library function intercepted by the
MDS, DBF indicates the number of states in the model that are checked
for possible transition.

Figure 2.20. IAM model with non-determinism.

above mimicry attack. This is because the DFA removes non-determinism by merging

states s1 and s2. The attacker can still call execv legally from this merged state.

38

Figure 2.21. IAM model with four markers to eliminate non-determinism.

Figure 2.22. IAM model with two markers to eliminate non-determinism.

If we insert a unique marker in the program text before the printf call that precedes the

execv call and then construct an IAM, we will obtain a DFA as shown in Figure 2.26.

Notice that in this model, the marker disambiguates the two printfs and execv is allowed

39

Figure 2.23. Example program that illustrates the mimicry attack possible
when a model based on IAM or a DFA derived using subset construction
is used. A model based on a DFA derived using library markers is not
vulnerable to this mimicry attack.

only if it was preceded by a marker and a printf. If access was denied, the MDS

would not see the marker and thus would allow only exit to follow the printf. So

by constructing a DFA using markers, we can not only remove non-determinism but also

prevent mimicry attacks such as the one described in the example, thus improving the

precision of the MDS.

Wagner and Dean [9] suggest the use of a DFA to improve the runtime performance of

MDSs. [41] constructs a DFA using notify calls which are similar to markers. But they

do not describe the rationale behind using this approach instead of the well-known subset

construction approach. The combination of superior time complexity and resistance to

the above described mimicry attacks is indeed the reason why a DFA constructed using

markers is better than a DFA constructed using the subset algorithm.

40

Figure 2.24. IAM model which is susceptible to a mimicry attack.

Figure 2.25. DFA model constructed using subset algorithm which is
susceptible to a mimicry attack.

Table 2.7
Memory usage in KB as reported by the pmap command.

Program Unmonitored Monitored Percentage Increase

htzipd 1,712 2,892 68.92%

lhttpd 2,168 2,580 19.00%

wu-ftpd 3,360 17,364 416.79%

gnatsd 4,772 82,116 1,620.79%

41

Figure 2.26. DFA model constructed using a marker which is not suscep-
tible to a mimicry attack.

2.7 Inlined Automata Compaction

The Inlined Model trades off space for time. This trade-off is essential given the per-

formance characteristics of existing approaches to context-sensitive real-time misuse de-

tection. While IAMs obtain run-time performance better than NFAs (which suffer from

performance degradation because of increased non-determinism as a result of context-

insensitivity), the footprint of an IAM for a typical run1 can be rather large as shown in

Table 2.7. Figure 2.10 presented a compact data layout for the model. Here we study

automata compaction techniques.

2.7.1 Merging Final States

Functions such as exit, exit, and abort terminate a process. Calls to such functions

denote final states in the automaton. We do not need to maintain multiple instances of such

final states in the inlined model and can instead have a single final state. This is useful

especially when there is extensive use of error-handling routines such as those present in

network daemons.
1The pmap output in Linux was surprisingly different for different runs of the same program. The numbers
reported are for a typical run.

42

Table 2.8 shows the reduction in the number of states when multiple final states are merged

into a single final state in the automaton. Each final state that is removed saves approx-

imately four bytes in the overall representation. Furthermore, smaller state space could

allow us to reduce the number of bits required for the nodeid field. The current imple-

mentation already takes advantage of this compaction technique.

Table 2.8
Reduction in the number of states when multiple final states are merged
into a single final state in the automaton.

Program Number of States Number of States Percentage

Before Merging After Merging Reduction

htzipd 24,305 24,273 0.13%

lhttpd 414 401 3.14%

wu-ftpd 170,237 169,763 0.28%

gnatsd 253,230 221,481 12.54%

2.7.2 Maintaining Delta Successor States

States are distinguished by identifiers that are also offsets in the table representing the

model. In our example, the default size is 20 bits. Delta successors do not use identifiers

for the successors of a state, instead they use offsets (in the model) of the successors

relative to the current state. Such successor states are delta successor states.

When delta successors are used in IAM models, the MDS monitor has to process extra

logic (implemented as a switch statement) necessary to determine the number of bits

used for the delta successors and then calculate the actual offsets of the successors. This

adds more overhead as shown in Table 2.9. This is noticeable mostly in Workload-Two for

gnatsd because the number of library calls intercepted is very high (see Table 2.5) and

so the extra logic is executed each time. This effect is not observed in lhttpd although

the number of library calls intercepted in lhttpd is greater than gnatsd because the

43

Table 2.9
Effect of delta successor states on performance overhead.

Program Unmonitored Monitored Time Monitored Time Percentage

Time with Markers with Markers Overhead

and DeltaSuccs

htzipd 26.56s 26.95s 26.71s 0.56%

lhttpd 16.16s 16.56s 16.20s 0.25%

wu-ftpd 18.44s 18.28s 18.80s 1.95%

gnatsd-Workload-One 46.91s 47.17s 48.05s 2.43%

gnatsd-Workload-Two 34.58s 45.34s 104.17s 201.24%

number of states in lhttpd is significantly lesser than gnatsd. This means that the

number of bits used in delta successors does not vary as much as it does in gnatsd and

so the extra logic is not executed to its limit.

Table 2.11 shows the reduction in model sizes that can be obtained by using delta succes-

sors. These numbers were calculated by observing the number of bytes and bits we ac-

tually need. The memory allocation routines (malloc and calloc) do not allocate the

exact number of bytes requested because they try to prevent fragmentation and maintain

word boundaries. To be able to observe these reductions, one would have to implement

a memory allocator that simply allocates (say using calloc) a block of memory of pre-

computed size equal to size of the model and then during model generation hands out the

exact number of requested bytes from the block. And to obtain the reduction observed

by allocating the exact number of bits (instead of the nearest byte), one would have to

perform more bit arithmetic and can expect more overhead.

44

Figure 2.27. Percentage distribution of fan-out values among automaton
states before ε-reduction.

Figure 2.28. Percentage distribution of fan-out values among automaton
states after ε-reduction.

45

Figure 2.29. Percentage decrease in number of states and percentage in-
crease in fan-out due to ε-reduction.

2.7.3 Including ε-transitions

Initially an IAM has entry, exit, call, and return nodes for every function instance and call

site. Calls to library functions are represented using a single call node because we do not

analyze them. Of all these nodes, only the call nodes to library functions are of interest

for misuse detection. Once the basic IAM is constructed, our implementation performs ε-

reduction. We hypothesized that this would not only yield a more compact representation

but also better runtime performance by reducing the search space to only library calls. The

final IAM thus includes a single entry node (that of main) and call nodes for each library

function. However, the compaction increases the fan-out in the model by introducing

more transitions per state. Each automaton state now has a greater fan-out than before.

Figures 2.27 and 2.28 show the distribution of fan-out values before and after ε-reduction.

Figure 2.29 shows the percentage decrease in the number of states and the percentage

increase in fan-out when ε-reduction is performed.

46

So, including ε-transitions in the model actually reduces the model size. The data structure

of the ε-IAM model is different from the ε-free IAM. The model is again represented by

a table of nodes. Each row in the table corresponds to a state q, and each entry, a node,

in the row corresponds to an element of successor(q). Nodes are represented by a node

identifier nodeid (used as an offset in the table) and a succ bit to indicate if this is

the last node. Each state now has a one bit identifier to distinguish a library state from a

non-library state. Each state also has a 11 bit library function identifier funid which is

zero if the state is a non-library state. Table 2.11 shows that including ε-transitions can

reduce the wu-ftpd model size by as much as 62.91%. But in the case of lhttpd, it

increases the model size because the additional fields needed in the ε-IAM model’s data

structures offset the decrease in the number of transitions.

However, inclusion of ε-transitions may result in additional runtime overhead caused by

traversal of the additional states because, in effect, the monitoring algorithm would have to

do an ε-reduction at runtime. We can observe from Table 2.10 that including ε-transitions

adds reasonable overhead except in the case of gnatsd. The gnatsd models with ε-

transitions were terminated after about 5 minutes of making no progress. This means that

this compaction technique has to be used on a per-application basis.

Table 2.10
Effect of including ε-transitions on performance overhead.

Program Unmonitored Monitored Monitored Time Percentage

Time Time with Epsilon Overhead

htzipd 26.56s 26.95s 31.98s 20.41%

lhttpd 16.16s 16.56s 17.06s 5.57%

wu-ftpd 18.44s 18.28s 19s 3.04%

gnatsd-Workload-One 46.91s 47.17s too slow −
gnatsd-Workload-Two 34.58s 45.34s too slow −

47

Table 2.11
Model size in KB and percentage reduction on using deltaSuccs and epsilon transitions.

Program Model Model Model with Model Model with

with DeltaSuccs DeltaSuccs (bits) with Epsilon Epsilon (bits)

htzipd 630.59 9.13% 17.70% 2.30% 13.98%

lhttpd 5.5 16.15% 23.47% -28.81% -13.69%

wu-ftpd 12,546.97 11.49% 18.04% 56.97% 62.91%

gnatsd 75,397.63 1.54% 8.67% − −

2.7.4 Excluding Functions

Excluding functions from the model can reduce the size of the model. [8, 9] found that

ignoring the brk system call from the model reduced the size of the model and also the

ambiguity in the model. This improved the performance. Others [51] have limited the

monitoring to only a small subset of all system calls which they deemed as “dangerous” to

reduce the monitoring overhead. Not intercepting certain functions will allow an attacker

to invoke those functions without being noticed by the MDS.

We excluded functions on a per-application basis as recommended by [8, 9]. We ignored

calls to getc and putc in all the models. These two functions imposed significant over-

head for wu-ftpd because they are invoked for every character that is transferred from

the server to the client.

For gnatsd, we added malloc, free, and several string functions such as strlen,

strcmp, strncmp, and strchr to the list of ignored functions. These string functions

do not invoke any system calls and are relatively harmless. While malloc and free

could potentially be misused by an attacker for launching denial of service attacks, such

attacks are beyond the scope of model-based MDSs [8,9]. Evaluating the impact of ignor-

ing particular library functions or system calls to the effectiveness of a MDS is an area of

future research.

48

2.7.5 Adding Markers

Section 2.6 described the concept of markers. Adding switch markers unexpectedly re-

duced the size of the wu-ftpd model by 62.28%. This illustrates that such markers can

be used as a compaction technique besides being a solution to reducing non-determinism.

2.7.6 Combining Equivalent Transition Symbols

This technique takes advantage of the commonality of transition symbols. We know that

non-determinism can result in a state having multiple successors. If there are multiple suc-

cessors for the same transition symbol then one can reduce the overhead by maintaining

a single instance of the transition symbol for all those successor states. Formally, the repre-

sentation for successor states of si can be transformed from {(sj1, l), (sj2, l), . . . , (sjn, l), . . .}
to {({sj1, sj2, . . . , sjn}, l), . . .}. In [10] we hypothesized that if the number of successors

is much greater than the number of unique transition symbols per state then we would

save about one byte per transition with a common function symbol. And we observed that

this was the case especially for gnatsd. However, we realized that such an opportunity

also indicates extensive non-determinism which would negatively impact the performance.

Because we resolve such non-determinism using deterministic markers, there is less op-

portunity for using this compaction technique.

2.7.7 Coalescing Single-successor States

Straight-line code leads to states with single successors (i.e. fan-out of 1). Recall that

state transitions occur on calls to library functions. This compaction technique consists of

coalescing a single-successor state with that successor; in effect, having multiple symbols

on a transition edge. Formally, For each state sj ∈ IAM , if successor(sj) = {(sk, l)},

then for each (si, l
′) ∈ predecessor(sj), transform (sj, l

′) to (sk, l
′l) in successor(si). In

terms of the transition function, replace δ(si, l
′) = sj and δ(sj , l) = sk with δ(si, l

′l) = sk.

49

The cost of this optimization is that the monitoring code must keep extra state, a pointer

in the array of symbols for the current transition. The space savings come from the fact

that a transition can be encoded as a sequence of bytes (about one per symbol) and that

the state space is reduced as the nodes for the single-successor state are not needed. We

calculated that every coalesced state would reduce the overall space requirements by ap-

proximately 52 bits by removing one row in the model and part of a node [10]. And given

the distribution of fan-out values for states in our benchmark suite, we hypothesized that

there was potential for significant reduction in the number of automaton states using this

technique.

However, while designing the data structures for such a model, we realized that this would

upset the constraint of the successors having equal sized data structures because the num-

ber of coalesced states per successor could vary. This meant that we would have to use a

linked list instead of an array of successors, which would in turn add 32 bits (pointer size)

for every successor. This would offset the benefits of the compaction. Also the benefits

of coalescing single successor states can be fully realized only when the head of the list

of single successor states has only one parent or else the coalescing would have to be du-

plicated at each of the head’s parents. For this reason, we did not construct and evaluate a

model with this compaction technique.

Our current model representation (the ε-free IAM) is highly optimized for time. We be-

lieve that in memory-constrained contexts, one can benefit from the above optimizations

but expect additional runtime overhead.

2.8 Monitoring Interface: Efficiency

We demonstrated the efficiency of the IAM model by monitoring library calls instead of

system calls as done in previous work. This choice is motivated by pragmatic consid-

erations. Analyzing the source code of C libraries is a challenging task [9, 41]. Other

approaches typically analyze statically-linked binaries [5–7]. The static analysis infras-

tructures used in our prototypes [44, 45] were simply not able to handle these libraries.

50

But, we also believe that switching to system calls will not affect our results. Library

functions give a finer grained program model as they are usually more frequent. It is thus

likely that overheads reported here are an upper bound on the costs of the approach.

Recently, [52] constructed system call level IAM models for Solaris binaries and reported

that inlined models at the system call level are significantly larger than the ones at the

library level reported in [10]. The construction of models for htzipd and gnatsd did

not even terminate because of memory overhead. They argue that Lam and Chiueh [41]

are able to build inlined models at the system call level possibly because of three reasons.

First, they build models for Linux whose library code is less complex than that of Solaris.

Second, they resolve function pointer targets at runtime using notify calls without inlining

them in the model. And third, they consider statically linked applications thus avoiding

the complexity of the runtime linker in the model.

This leads us to infer that system call level inlined models can be used for efficient MDS

on Linux systems using our approach combined with the runtime function pointer resolu-

tion of [41]. And system call level inlined models will not be feasible for Solaris binaries

if they are dynamically linked and if targets of function pointers are inlined in the model.

The second concern can be addressed as part of model construction and the runtime mon-

itor as shown in [41] but the first concern related to statically linked applications will have

to be evaluated in future work. While statically linked libraries provide a security benefit

by preventing attackers from linking to malicious libraries at runtime, they have man-

ageability implications because applications will have to be recompiled and linked when

newer versions of libraries become available.

2.9 Monitoring Interface: Effectiveness

This section compares the benefits and drawbacks of the monitoring interfaces with respect

to the effectiveness of a MDS. Ideally, an MDS should monitor every single statement

executed by the target program and validate each machine instruction. While this is not

currently feasible, existing models are approximations at different levels of granularity.

51

The coarser the approximation, the easier it is to mount a mimicry attack. For example,

restricting the observable events to system calls means that library function calls that do

not make any system calls are not captured in the model. [5, 7] dynamically prune from

the model symbols guarding a function that does not issue a system call. Yet, library

functions are common entry points for attackers because of their susceptibility to buffer

overflow and format string vulnerabilities. Some vulnerable library functions such as the

string family of functions do not make any system calls. Thus, a coarse model may

not be able to observe the deviant behavior at the library interface and would have to rely

on an out-of-sequence system call to detect misuse. Or it would have to rely on other

specialized techniques to detect such deviant behavior.

Monitoring at the library interface gives us the unique advantage of being able to integrate

into our MDS the dynamic detection and avoidance of format string and buffer overflow

vulnerabilities caused by library functions. Section 2.10 describes the approach to and

advantages of performing dynamic checking of program properties at the library interface

in the context of our MDS implementation.

Monitoring the library interface alone is not sufficient for misuse detection. Library inter-

position techniques, such as the one used here, allow us to monitor the library functions

called by a target program. However, an MDS based solely on library interposition will

not be effective against so called “code injection attacks” because if an attacker manages

to exploit a vulnerability without setting off the MDS then he can further evade the MDS

by directly issuing system calls in the “attack code.” However, such a MDS can rely on

other specialized techniques that prevent the execution of injected code. These include

non-executable stack and heap [53, 54] and randomized instruction sets [55, 56].

The attack model presented in [51] considers attacks that modify program control flow at

three levels of granularity: jumping to system call instructions within the injected code

(code-injection attacks), jumping to LIBC code (so called “return-to-libc attacks”), and

jumping to existing application code. A MDS based on library interposition such as ours

is capable of detecting the last two kinds of attacks. Because we model the application

52

behavior in terms of the library calls, jumping to a library function in the interposed LIBC

that is not expected by the model will generate an alert2. Similarly, transferring control

to a different part of the application code will generate an alert if the library calls issued

along that part deviate from the model.

Coupling library interposition with kernel-level system call interposition can leverage the

benefits of both techniques. Such a combined MDS appears feasible; it requires two super-

visors that must match up; one supervisor will monitor library calls and the other system

calls. A single program model can be used for both.

2.10 Dynamically Checking Program Properties using Library Interposition

Our MDS, like other model-based MDSs, dynamically checks if the runtime program

control flow deviates from the model generated at compile-time. The same infrastructure

can be used to dynamically detect and avoid library function related format string and

buffer overflow vulnerabilities using compile-time information to enable and optimize the

dynamic checks. We can also dynamically check dataflow intensive program properties

for which static analysis alone is either too conservative or unsound.

2.10.1 Format String and Buffer Overflow Vulnerabilities

The printf family of C functions such as printf, fprintf, sprintf, snprintf,

and syslog are susceptible to what are known as format string vulnerabilities. This type

of vulnerability is an artifact of C’s variable-argument mechanism being type unsafe. The

printf family functions, which use the variable-argument mechanism, determine the

number, order, and type of arguments based on the format string specifiers supplied to

them as part of the format string argument. Of particular interest is the %n specifier which

writes the number of bytes output so far by the printing function to the memory location

2While it may be possible to bypass the interposed LIBC and return to the original LIBC, thereby evading
the MDS altogether, we have not evaluated the feasibility of such an attack either locally or remotely.

53

supplied as an argument. While all the other format specifiers only result in memory

reads, the %n specifier causes a memory write. This results in a potential format string

vulnerability if the format string argument is not a constant but is user-supplied. This is

because the attacker has the freedom to control the number and type of format specifiers

and so can pop bytes off the stack till the desired memory location is reached and then

write to that location using the %n specifier.

There are several static and dynamic techniques to prevent, detect, and avoid format sting

vulnerabilities. Static approaches include PScan [13] and GCC’s -Wformat=2 flag that

detect non-static (not a constant) format string arguments, percentS [14], which uses static

taint analysis to determine user-modifiable format string arguments, and CCured [57] and

Cyclone [58], which are type-safe versions of C. Pure dynamic approaches include the

library-interposition based libsafe [59] that prevents %n from writing to a function’s

return address but does not work with programs compiled with GCC’s

-fomit-frame-pointer flag because it requires frame pointers.

FormatGuard [60], which is available as a modified version of glibc (the C library),

counts the number of arguments to printf family functions at compile-time using macros,

uses this count in a protected printf function, and compares this count to the

number of format specifiers in the format string argument at run-time. The number of

format specifiers is obtained using the parse printf format function in glibc.

We can implement a FormatGuard-like approach to detect and avoid format string vulner-

abilities in the context of our MDS. Using CIL, we can identify the printf family func-

tions and count the number of arguments. This count can be embedded in the program text

using markers. Every call to printf family function would be immediately preceded by

a format string marker call that has the printf argument count as its only parameter. The

interposed libraries for such printf functions would extract the count from the format

string marker using a global variable. This count can then be compared with the number of

format string specifiers obtained from a call to parse printf format. This approach

is as powerful as FormatGuard, does not require the use of a modified glibc, and works

54

in the context of our MDS using library interposition and markers. Furthermore, we can

also optimize by limiting the checking to only those printf family function calls that

use a non-static format string. This can be achieved by selectively inserting markers and

resetting the global argument-count variable to a default “dont-care” value after using it in

a check. [61], whose approach is more powerful than FormatGuard, reports that such an

optimization reduced their performance overhead from 14.1% to 0.7% on man2html, a

printf-intensive application.

C string functions such as strcpy and gets are susceptible to buffer overflow because

of the lack of automatic bounds checking in C. [62] discusses several static and dynamic

buffer overflow detection and prevention techniques that have been proposed in the liter-

ature. Libsafe [63] and LibsafePlus [62] are dynamic buffer overflow avoidance

approaches that use library interpositioning to intercept the vulnerable functions and per-

form bounds checking on them. These approaches can be incorporated in our MDS frame-

work with the additional optimization of performing checks only when the source string

that is being copied is non-static. This can be achieved by selectively inserting markers to

disable checks.

This approach of using selective insertion of markers at compile-time to control the dy-

namic checks performed in the interposed library can be generalized to a dynamic policy

enforcement framework for library functions. For example, a marker could be used to

specify the files that could (or should not) be executed by a particular call to an exec

family function. This would allow a per-callsite policy enforcement instead of a per-

application enforcement [64].

2.10.2 Other Properties

MOPS is a model checking tool that detects violations of temporal program properties [12,

19]. In this section, we describe three of the several program properties checked by MOPS.

Because MOPS is limited to checking only the control flow aspects of program properties

in a sound manner, it ignores the dataflow component of these three properties. This results

55

in 85% false positives for one of the three properties [19]. MOPS trades precision for

soundness and scalability to real-world programs. Other static approaches use dataflow

analysis techniques based on unsound heuristics to scale and limit the number of false

positives [15]. We use the three properties from MOPS as examples to illustrate that

dynamic checking of such dataflow related properties can be easily integrated with our

library interposition based approach with zero false positives and zero false negatives.

Property 1: “A process should drop privilege from all its user IDs before calling execl,

popen, system, or any of their relatives.”

This suggests that it is dangerous for a privileged process to invoke functions that can

execute untrusted programs. Statically checking this property consists of two parts: deter-

mining the location of calls to such functions and determining the privilege level at such

program points. The first part can be inferred from the control flow graph of the program

except when such calls are made using function pointers which then requires pointer anal-

ysis. The second part involves not only tracking the setuid family of uid-setting system

calls [65] but also determining the value of their arguments because the arguments specify

the new uid. This second component is dataflow related and even with dataflow analysis

it is not always possible to determine the data value from program text unless the data

values used are constants or string literals. This means that a sound static analysis tool to

be conservative will always have to assume that a setuid call elevates privileges. For this

reason, MOPS ends up with a 85% false positive rate for this property [19].

This property can be checked in the interposed versions of the dangerous functions. Before

making the call to the actual function, we can accurately (with zero false positives and

zero false negatives) determine the privilege of the process that issued this function call

using the getuid family of function calls. If the process is executing with elevated

privileges (as deemed by a policy) then we can generate an alert, prevent the execution of

that dangerous function, or even abort that process.

Property 2: “The privilege of a process when it calls longjmp must match its privilege

when it calls setjmp.”

56

Property two suggests that the privilege level of a process at the time of a longjmp call

should match the level at the time of the matching setjmp call issued earlier. Besides

the static privilege determination that was needed for the first property, this property also

requires the determination of matching setjmp and longjmp calls. This matching re-

quires dataflow analysis to establish that the env buffer used by the calls is the same.

This introduces more conservativeness and therefore the likelihood of a greater false pos-

itive rate than present in property one. Instead, we can perform dynamic checking in the

interposed version of longjmp. The interposed version of setjmp simply records the

env buffer and the current privilege level. In the longjmp call, the privilege level of the

corresponding setjmp call can be accurately retrieved by matching the env buffer and

this can be checked against the current privilege level.

Property 3: “The setuid system call should never fail.”

This is a specific case of a general property that suggests that return values of library

functions and system calls such as malloc and setuid should be checked for failure.

Not doing so might result in a vulnerability. Sound static checking of this property has to

rely on pointer analysis and dataflow analysis because the return values may flow to other

data values before being checked. Such checks can be automatically and accurately done

in the interposed versions of necessary functions at runtime and alerts can be logged.

These examples illustrate that the library interposition infrastructure can be used to per-

form pure dynamic checks for dataflow-related properties for which current static analysis

tools are either overly conservative or unsound.

2.11 Limitations and Future Work

The existing approaches to anomaly detection primarily address only a part of the MDS

problem: accurate and efficient monitoring of function call sequences. This is the sim-

plest, yet important, concern for misuse detection because an attacker has to use system

calls, or library functions that serve as system call wrappers, to interact with the under-

57

lying operating system to cause harm (with the possible exception of DoS attacks). By

accurately modeling the acceptable sequences of function calls, the models limit the at-

tacker to only those expected call sequences. However, there are several limitations that

diminish the precision of these models.

1. Path Sensitivity.

All the proposed models, ours included, treat branches in a conservative manner

without evaluating the branch predicates because it needs more sophisticated static

and dynamic program analysis. Such a path-insensitive modeling introduces impos-

sible paths that can be exploited by an attacker as illustrated in [5].

2. Data flow Analysis.

Data flow support is another requirement for more robust MDSs. It is well doc-

umented [7, 9] that even a naive approach that incorporates data flow by looking

at arguments with constant values can dramatically improve the accuracy of mod-

els. To protect against mimicry attacks, it may be necessary to have more powerful

predicates about the values of arguments. As an example, consider the case of a

call that opens a file; if the leading part of the file name can be determined stati-

cally (even though the full name is constructed dynamically) then an MDS could

prevent attempts to open files outside of the intended directory. Such predicates

can be obtained by program analysis, but are likely to increase the runtime costs of

monitoring, which is further reason to keep the costs of the basic program model

low. We focus on lightweight control-flow analysis in our research. Recent work

has considered context-sensitive dataflow [66] and dataflow anomaly detection [67].

3. Object-Oriented Languages

Our implementation has targeted C programs and extending it to object-oriented

languages with dynamic binding raises concerns for accuracy and scalability. This is

because, in C++ for example, virtual methods are invoked through function pointers

and thus we would have to inline all possible implementations of the method at

58

every call site. Static program analysis techniques can help. Experience with Java

programs suggests that upwards from 90% of call sites can be devirtualized [68], i.e.

it is possible to determine unambiguously which implementation will be invoked.

2.12 Related Work

In this section, we discuss research related to MDS but not specifically to context-sensitive

model-based MDS. We have discussed that in Section 2.1.

Giffin et al. [66] constrain the model at program load time by considering the execution

environment. This includes information from configuration files, command line, and en-

vironment variables. They show that this improves precision of models at the expense of

a one-time increased overhead at program load time.

Xu et al. [51] propose an approach based on adding “waypoints” to monitor program

control flow and restrict permissions. They add waypoints at the entry and exit of every

application function. These waypoints encode permissions in the form of system calls

that are allowed to be invoked from the function being guarded. At runtime, a stack of

waypoints determines the permission context. They optimize by adding waypoints to only

those functions that make a system call from their list of dangerous system calls after

observing that the general case incurs a significant performance overhead. They claim

that their approach can support a variety of model-based context-sensitive MDSs because

the waypoints provide contextual information [69].

Abadi et al. [70] consider the broad problem of enforcing control-flow integrity in the

context of applications such as misuse detection, inlined reference monitors (IRM) [71],

and software fault isolation [72]. The legal control flow is embedded in the code using

unique bit patterns termed as IDs and the ID checks are enforced at runtime using spe-

cialized machine instruction sequences that effectively inline the enforcement of checks.

They present a formal treatment of control-flow integrity and evaluate an implementation

for the Windows/x86 platform based on binary rewriting.

59

Injected code can also be prevented from executing using several approaches including

software solutions for making data memory non-executable [53,54], native hardware sup-

port for enforcing non-executable data [73], and randomization techniques [55, 56].

60

3 FAULTMINER: DISCOVERING UNKNOWN SOFTWARE DEFECTS USING

STATIC ANALYSIS AND DATA MINING

Program verification techniques can be used to improve the quality of software, and, as a

side effect, its resilience to security breaches. Given a specification of correct program be-

havior, it is often possible to check statically that invariants hold on all possible execution

paths. Unfortunately, manually specifying program invariants has proven to be difficult

for practitioners. In the absence of program-specific invariants, we are limited to check-

ing generic properties that pertain to known vulnerabilities of the programming language,

libraries, or operating system.

There are many security-relevant known program properties that rely on the temporal

ordering of program events. Consider, for example, the following temporal properties

(where → denotes a happens-before relationship): [isnull(ptr)→ *ptr]. The fact

that it is a responsibility of the program to check that a pointer is non-null before access is

a property of the programming language (in Java, for instance, null checks are performed

by the virtual machine and the program is only expected to catch any exceptions resulting

from the check). The synchronization primitives lock and unlock should strictly alter-

nate along all paths; thus we must ensure that [lock→ unlock]. Forgetting to unlock

after locking, double locking, and double unlocking are security violations. As a last ex-

ample, take the chroot function that changes the root directory to be its argument. This

is used to confine a process to the portion of the filesystem denoted by the new root. The

correct way to create a chroot “jail” is to call chdir("/") after the call to chroot

thus changing the current directory to the new root and preventing subsequent attempts to

follow upward references (“..”). Therefore the property to be checked is [chroot →
chdir("/")].

61

Figure 3.1. FaultMiner framework.

However, programs have many more invariants that are specific to the application logic.

These go beyond the simple language- and operating-system-specific properties illustrated

above. These invariants are just as critical for security but are unfortunately almost never

properly documented. The challenge addressed by the approach described in this research

is to find automated techniques for extracting program invariants from the source code

with limited user interaction. While we focus on security properties, the approach is

clearly applicable to any software defect. We propose a new approach, and a tool named

FaultMiner, based on a combination of static program analysis and data-mining techniques

for discovering likely invariants. These invariants are used to find software defects that are

then presented to the developer or code auditor for reviewing.

We follow the premise of previous work on inferring invariants: common behavior is

often correct behavior. This is not necessarily the case, of course, because what a tool

may infer as invariants might simply be coincidences or in the worse case, they could be

incorrect: code segments reproduced several times e.g. a cut-and-paste error. For this

reason, the inferred invariants are usually referred to as likely program invariants. We call

defects resulting from a violation of such likely invariants as unknown defects because the

invariants are not known a priori. Recently, several approaches have been proposed to infer

likely invariants from a program with the goal of finding defects resulting from a violation

of the inferred invariants. They broadly fall into two categories: dynamic approaches [22–

62

25], which observe a program’s runtime behavior, and static approaches [27–29], which

analyze program text to detect likely invariants.

As an example of such invariants, consider the openssh program. The function

packet start has to be called before packet send, because the former initializes

packet construction by appending the packet type. This invariant can be inferred by ob-

serving that the sequence [packet start → packet send] occurs 39 times in the

sshd code. Another sequence, [buffer init→ mm request send

→ mm request receive expect→ buffer free] occurs 12 times. It so happens

that forgetting any one of the calls in this sequence will be erroneous. Deriving and check-

ing invariants at the level of user-defined functions enables us to detect defects at a higher

level of abstraction.

Static approaches are appealing because they have the advantage of observing all the paths

in a program. The current static approaches to finding unknown defects consider simple

temporal invariants, in specific contexts, and use ad-hoc techniques. For example, Engler

et al. [27] and Weimer and Necula [28] consider only function pairs in their invariants. Li

and Zhou [29] ignore control flow from conditional statements and consider the function

body as a single path. FaultMiner overcomes these limitations.

In this research, we propose a general approach to finding unknown defects. An overview

of the FaultMiner framework is illustrated in Figure 3.1. We consider temporal invariants

on general events (including assertions on data values) that are abstracted using static

analysis in an Event Automaton Model (EAM). Event traces generated from the EAM are

used to infer likely invariants. The FaultMiner analyzes the event traces and the likely

invariants to generate error traces.

The technique of inferring likely invariants and finding unknown defects is derived from

well-known data-mining algorithms. We describe how two security-critical program in-

variants can be derived using this novel technique. We present experimental results for

FaultMiner on the latest versions of wu-ftpd, cups, openssl, and openssh. These

are four extensively-used security-critical real-world programs. Using FaultMiner, we

63

found two new potential vulnerabilities (one in wu-ftpd and one in cups) and four

previously known bugs (in openssh), and several other violations.

The rest of the chapter is organized as follows. Section 3.1 describes event generation,

EAM, and trace generation. Section 3.2 explains invariant generation. Section 3.3 de-

scribes the FaultMining technique and the two security properties. Extensive experimental

evaluation is presented in Section 3.4. Section 3.5 discusses the concept of obligations and

how FaultMiner can be used to identify pending obligations and also to minimize obliga-

tions. Sections 3.6 and 3.7 discuss the challenges that need to be overcome in future and

related work respectively.

3.1 Event Automaton Model

Figure 3.2. An example program.

Fault mining can be performed on any program representation. It only requires some no-

tion of interesting program events and a partial order among these events. Different static

analysis techniques can be used to generate events that can be the basis for invariant infer-

ence. In FaultMiner, we decouple the stages of event generation and invariant inference

by abstracting the program in an Event Automaton Model (EAM) and inferring invariants

on the event traces generated from the EAM.

64

Figure 3.3. ICFG representation of the program in Figure 3.2. E, X, C,
and R represent the entry, exit, call, and return nodes respectively.

Figure 3.4. EAM representation of the program in Figure 3.2 for user-
defined function invocations. E, X, and C represent the entry, exit, and
call nodes respectively.

For our purposes, an EAM is a Non-deterministic Finite Automaton (NFA) constructed out

of the program’s interprocedural control flow graph (ICFG), i.e. the union of statement-

level control flow graphs for all functions, and an event filter. The ICFG is straightforward,

each function has unique entry and exit nodes and call sites are split into call and return

nodes. Call nodes are connected to the entry nodes of the invoked functions and the exit

nodes of the invoked functions are connected to the return nodes corresponding to these

calls. The event filter is a function that maps basic blocks to set of events. An event can be

65

any predicate that holds at a given program point. A program point may generate zero or

more events. Examples of events include function calls, def/use of a variable, etc. Events

can be of arbitrary granularity. As an example, events of interest for static taint analysis

are of the form is-tainted(x).

Event traces can be generated from the EAM by considering sequences of events along

all the paths in the EAM. Each trace corresponds to events generated along one particu-

lar execution of the program. This can be done in a flow- and context-sensitive manner,

e.g. using a pushdown automaton to match the call and return of functions. Trace gen-

eration can also be path-sensitive provided we have that information from analyzing the

predicates of conditionals. If not, there will be, as usual, infeasible traces caused by path-

insensitivity.

An example program, its ICFG representation, and the corresponding EAM where the only

events of interest are calls to the two user functions are shown in Figure 3.2, Figure 3.3,

and Figure 3.4 respectively. Trace generation for this EAM produces two traces [foo] and

[bar→ foo]. Practical considerations with trace generation in FaultMiner are discussed

in Section 3.4.1.

3.2 Mining Likely Temporal Invariants

Informally, temporal invariants are discovered by identifying event patterns common to

multiple event traces. The remaining traces where the common event patterns are absent

are likely error traces. The challenge is in figuring out what patterns to consider and

then efficiently searching for these patterns in event traces. Efficiency is an important

factor because of the exponential number of event traces and the complexity of finding

all possible common patterns of all lengths across all the event traces. There has been

significant research in the area of data mining that has investigated efficient algorithms

to discover complex data-relationships in large databases. Our FaultMiner algorithm is

based on the work of Agrawal and Srikant [74]. The terminology used in the FaultMiner

algorithm is defined below.

66

Definition 3.2.1 An event sequence σ is a string 〈e1, e2, . . . , en〉 where ej occurs after ei

if j > i. The length of an event sequence is the number of events present in the sequence.

An event sequence of length k is called a k-sequence.

For a given EAM, an event trace is a string in the language represented by the EAM. The

set of all the strings in the language is represented by E. For clarity, we will speak of event

sequences only when referring to properties of interest.

Definition 3.2.2 A subsequence σ′ of a sequence σ is a new sequence derived from σ

by deleting one or more of its elements without disturbing the relative positions of the

remaining elements. We use the notation σ ′ � σ to indicate the subsequence relationship.

Definition 3.2.3 An event trace τ supports an event sequence σ if σ � τ . The support

S of an event sequence σ for a set of traces T, is the percentage of event traces in T that

support σ.

Definition 3.2.4 An event sequence with support greater than user-defined minimum sup-

port value, minsup, is called a large event sequence.

Definition 3.2.5 We define the confidence C of an event sequence σ w.r.t a subsequence

σ′ as the percentage of event traces containing σ ′ that also contain σ. This can also be

defined as Cσ
σ′ = support(σ)

support(σ′) .

We consider two user-defined confidences lowconf and highconf such that 0 <lowconf <

highconf < 1.

Algorithm. The FaultMiner AprioriAll algorithm is used to generate the set of all large

k-sequences of events. These large event sequences represent “common behaviors” or

likely invariants because, by definition, they are present in a majority of event traces,

where majority is characterized by the value of minsup. The algorithm makes multiple

67

Figure 3.5. The FaultMiner AprioriAll algorithm. Lk represents the set of
of all large k-sequences. Ck represents the set of candidate k-sequences.

Figure 3.6. The FaultMiner Apriori-Generate algorithm. Lk represents
the set of of all large k-sequences. Ck represents the set of candidate
k-sequences.

68

passes over a set of event traces. In each pass, the large sequences from the previous pass

are used to generate candidate sequences using the apriori-generate function. The support

for candidate sequences is calculated to determine the new set of large sequences. The

algorithm is seeded with the set of large 1-sequences.

The apriori-generate function yields candidate k-sequences from large k-1 sequences by

first joining the large k-1 sequences and then pruning those candidates that contain any

k-1 subsequence that is not large. The pruning phase is the key idea of the AprioriAll

algorithm. The underlying intuition is that any subsequence of a large sequence must

also be large. This drastically reduces the number of candidate sequences. Agrawal and

Srikant [75] provide a proof of correctness of this candidate generation algorithm. The

AprioriAll and apriori-generate algorithms are presented in Figure 3.5.

Mining with Constraints While considering event patterns, it is sometimes interesting

to consider patterns with certain constraints on event attributes. For example, we might

want to consider events that operate on the same memory location, occur in the same con-

text and path, and that have their etype alternating between type1 and type2 (such as calls

to lock(v) and unlock(v)). We support mining event patterns with such constraints

by extending the apriori-generate algorithm to apply the constraints in the join phase. So

the candidate sequences selected satisfy the constraints in every iteration of the algorithm.

This incremental approach to constraint satisfaction prunes the search space and improves

efficiency.

3.3 FaultMining

FaultMining is based on the two concepts of sufficient evidence of common behavior and

sufficient evidence of deviant behavior. A program path or an event trace is the unit of

evidence in FaultMiner. Sufficient evidence of common behavior is captured in the form

of likely invariants. Deviant behavior is behavior that deviates from the common behavior.

Evidence for such behavior should be enough to classify it as deviant and not great enough

69

Figure 3.7. Maximal-Sequences algorithm.

Figure 3.8. FaultMiner algorithm.

70

to classify it as another common behavior. This section explains these concepts, describes

the FaultMiner algorithm, and illustrates two security properties that can be captured using

this technique.

The AprioriAll algorithm generates the set of all large sequences. The Maximal-Sequences

algorithm shown in Figure 3.8 takes this set and removes subsequences to retain only the

longest sequences. Formally, what this means is that we are able to identify the complete

likely invariants (CLI) and discard all the partial likely invariants (PLI) (subsequences of

CLIs) from S.

Definition 3.3.1 A complete likely invariant (CLI) is a sequence χ ∈ set of large se-

quences S generated by AprioriAll, such that there does not exist any other sequence

ρ ∈ S that satisfies χ � ρ. A partial likely invariant (PLI) is a sequence φ ∈ S such that ∃
χ (χ 	= φ) that satisfies φ � χ.

This is a significant improvement over related approaches [27, 28] because PLIs might

not be meaningful when presented to a software developer or code auditor using such a

tool. Also, multiple PLIs that constitute the CLI will result in redundant checking and

redundant alerts.

Our FaultMiner algorithm is illustrated in Figure 3.8. It takes as input a set of complete

likely invariants (maximal sequences) M computed by the Maximal-Sequences algorithm

and the set of event traces E. For each sequence in M , the algorithm computes the se-

quence’s confidence relative to each of its subsequences i.e. Ccli
cli′ . We use the notation

CLI′ to denote any subsequence of CLI hereafter. If this confidence is 1 then it means that

all the event traces that satisfy CLI′ also satisfy the CLI. This is not of much interest to us

for the goal of fault finding. But if this is not the case and if the confidence is higher than

the highconf then it means that there are a few event traces that satisfy the CLI′ but not the

CLI. These are potential error traces—traces with likely omitted event(s). For example, if

a call to function a is followed by a call to function b along 99 paths and there is only

1 path where a is not followed by b, then it is likely that the call to b was omitted by

71

mistake. Note of course that this exceptional behavior might be correct, thus developer

intervention is needed to determine if it is a defect.

On the other end of the spectrum, if the confidence is lower than the lowconf then it

means that although the CLI was “common enough” to be classified as an invariant, the

events differentiating it from the CLI′ may actually be erroneous occurrences. Event traces

that satisfy such CLIs are potential error traces—traces with likely inserted event(s). For

example, if a call to function a is followed by a call to b along 1000 paths and there are

only 10 of them where there is a call to c in-between the calls to a and b, then it is possible

the calls to c are errors.

Previous static approaches [27,28] consider the simplest case of temporal ordering of two

events and use ad-hoc techniques to limit the search space. Li and Zhou [29] consider an

arbitrary number of events but ignore control flow by treating the entire function body as a

single path. Our FaultMiner algorithm is the first generalized control-flow-sensitive algo-

rithm capable of analyzing temporal ordering of an arbitrary number and type of events.

This enables us to infer complete likely invariants instead of multiple partial ones along

program execution paths.

3.3.1 Security Properties

There are many program properties that are specific to a program’s logic and that are

not explicitly documented, not well-understood, and whose violations are not caught by

most existing program analysis tools. These properties are typically part of non-functional

requirements and are expected to be implicitly satisfied by the program. Unknown defects

resulting from a violation of such implicit invariants are harder to detect because one has

to first infer the implicit invariants before checking if the inferred likely invariants hold

along all program paths. Two categories of such unknown defects are described below.

Function Call Sequence (f → g → . . .). Unlike library functions and system calls

whose semantics are documented (in the form of man pages) and relatively well-understood,

72

the semantics of user-defined functions or APIs are usually not explicitly documented. So

if such functions have to obey some temporal constraints, it is likely that these invariants

are known only to the software developer(s). For example, in openssh, the function

packet start must always be called before calling packet send. This invariant

cannot be captured at the level of library functions or system calls. Checking invariants

at the abstraction of user-defined functions enables us to detect defects beyond those that

manifest from an incorrect usage of system calls or library functions.

One might argue that such invariants are not relevant to security and that their violations

will “only” lead to incorrect but benign behavior. This is not true. Identifying incorrect

behavior of security-critical programs such as openssh and openssl is of extreme im-

portance. Often, incorrect behavior can manifest into malicious behavior with the attacker

compromising the confidentiality, integrity, and/or availability of the system.

Additionally, the higher level of abstraction of user-functions enables defect detection at

a coarser granularity. For example, in CUPS, the Common Unix Printing System, the se-

quence [cupsFileOpen → cupsFileGets → cupsFileClose] occurs 9 times.

Each of these functions encapsulates several checks and actions. The cupsFileClose

function frees the memory associated with the CUPS file besides closing the file. In this

case, instead of separately checking for memory leaks and file descriptor leaks by analyz-

ing at the level of library functions, it is more efficient to match calls to cupsFileOpen

with cupsFileClose.

Developing software in collaborative environments, with complex requirements, minimal

documentation of such implicit rules, and few tools to infer and check these rules is a

challenging task. Previous work [27, 28] has looked at techniques to infer temporal or-

dering between function pairs. While function pairs might be CLIs in a few cases, they

may be PLIs in others. Checking for PLIs will result in an exponential blow-up and will

also produce less meaningful alerts. Besides, the techniques used do not generalize to se-

quences of longer length. Recent work by Li and Zhou [29] has attempted to address this

concern by proposing a technique to infer temporal invariants among an arbitrary number

73

of function calls. While this is a definite improvement over the others, the limitation is

that it ignores control flow and considers a function body as a straight line sequence of

instructions. So if an invariant is satisfied along any one path in a function, it is assumed

to be satisfied along all paths. It is well-known that security violations usually occur along

exceptional paths or paths that rarely occur at runtime and hence are difficult to detect

using conventional testing. Ignoring control flow will therefore miss out on an important

property that contributes to security violations. FaultMiner not only generalizes to arbi-

trary number of function calls but also considers control flow because EAM is obtained

from the ICFG.

Invoke → Check-Return → Use-Return. In March 2004, a critical security vulnerabil-

ity was found in the Linux kernel memory management code inside the mremap system

call because of a failure to check the return value of a function invoked in the system

call code [76]. Checking the return values of library functions and system calls such as

malloc and setuid has long been recognized as a good programming practice. Failure

to do so may not always lead to a vulnerability. But it might, when an exceptional condi-

tion occurs (such as the function fails and returns an error code) as in the case of the Linux

vulnerability.

The return values of user-defined functions should also be checked. Functions that return

a non-void value might not always return error codes and so their return values may

be assigned to variables and used later without performing any checks. Sometimes their

return values might not be assigned to any variable and this may be fine according to the

program logic. So assuming that all non-void returning function calls should be checked

is overly conservative. But if there is any instance in the program where a function call’s

return value is checked before use then this may be evidence that the function returns a

value that needs to be checked before using it. FaultMiner identifies such functions using

any available evidence and detects violations if return values of such functions are used

without being checked.

74

Table 3.1
Characteristics of evaluated software.

Software Version #C files #Functions LOC Description

wu-ftpd 2.6.2 51 221 26,317 A widely-used ftp daemon

cups 1.2 156 308 132,002 Common UNIX Printing System

openssl 0.9.8 767 2,274 259,611 A library of cryptographic primitives

openssh 4.2p1 160 861 66,813 A free version of the ssh suite of

network connectivity tools

3.4 Evaluation

We have implemented our FaultMiner tool using CIL [45]. CIL (C Intermediate Language)

is a high-level representation along with a suite of tools that facilitates whole program

analysis of C programs. FaultMiner is implemented as a CIL module and can be invoked

with a command-line argument to CIL driver.

We evaluate the FaultMining concept for the two categories of unknown defects on four

widely-used real-world programs. The characteristics of these four programs are shown

in Table 3.1. The experiments were run on a 2.8 GHz Linux machine with 1 GB RAM.

3.4.1 Practical Considerations

Trace Generation. Generating traces along paths is an exponential task. For this reason,

all approaches, including ours, consider only local paths and ignore interprocedural paths.

Although Li and Zhou [29] analyze up to a call depth of three, they avoid the problem of

exponential paths by treating the entire function body as a single path because they ignore

control-flow. In our work, we solve the problem using several techniques.

We consider local EAMs generated from CFGs and generate event traces from them.

FaultMining is performed on local event traces. Currently, we generate a maximum

75

of 10000 traces per function or generate traces for one minute per function, whichever

threshold is reached earlier. We also consider a maximum of 10 events per trace (8 for

openssh). These values were chosen to attain reasonable memory overheads. To com-

pensate for local paths, we consider non-local evidence in two ways.

1. Non-local Evidence (NLE). First, for every local violation in function Fi of the form

[highconf < Ccli
cli′ < 1], we compute Ccli

cli′ for all the other functions Fj in which both cli

and cli′ ∈ large sequences of Fj . We refer to these confidence values as non-local-evidence

(NLE) because they present statistical evidence of the violated CLI in other functions. We

rank the local violations by their average NLE given by (
∑n

j=1 Fj(C
cli
cli′))/n. For example,

if a local violation has an average NLE of 1 over n functions, then it means that in n

other functions, every trace that contains CLI′ also contains the CLI (confidence of 1 or

100%). This makes the local violation a serious one especially if n is large. We also rank

violations based on whether trace generation for that function was completed or terminated

from exceeding the 10000 traces or one minute threshold. A violation is ranked higher if

trace generation was completed for its function.

2. Binary Violation. Second, we also detect violations where, for example, a CLI

[Fa → Fb] is present in, for example, 10 functions and there is only one function that

has only the CLI′ Fa but not the CLI. We consider it a violation if a CLI is present in more

than binary-support number of functions, say n, and if n/(n + m) > highconf where m is

the number of functions that contain only the CLI′ and is greater than zero. We call such

violations binary-violations because the violation depends on the presence or absence of

the CLI in entire functions instead of a few paths in a function. Binary violations are dif-

ferent from the other violations because the number of paths do not play any role in them.

The CLI is completely absent in the violating function.

Data-structure for Support Evaluation. The support calculation for candidate sequences

has to be performed on an exponential number of event sequences in the AprioriAll algo-

76

rithm. This is an expensive operation and needs to be performed efficiently. For this

reason, a hash-tree data-structure is used [74, 77].

Candidate sequences are stored in a hash-tree. A hash-tree is a tree whose interior nodes

are hash tables and leaf nodes are lists of items or in our case, candidate event sequences.

Each hash table bucket in the interior node points to another interior node or a leaf node.

An implementation of a hash-tree is based on two parameters: branching-factor, that spec-

ifies the number of buckets in the interior nodes, and the leaf-threshold, that specifies the

maximum number of event sequences in the leaf nodes. We use a branching-factor of 10

and a leaf-threshold of 100 in the current FaultMiner prototype. Because of space con-

straints, we refer the interested reader to [74, 77] for a description of the algorithms for

hash-tree insertion and support calculation.

77

Ta
bl

e
3.

2
V

io
la

tio
ns

de
te

ct
ed

fo
r

Pr
op

er
ty

O
ne

.

So
ft

w
ar

e
E

ve
nt

s
T

ra
ce

s
In

va
ri

an
ts

%
In

va
ri

an
ts

V
io

la
tio

ns
V

io
la

tio
ns

B
in

ar
y

T
im

e

E
va

lu
at

ed
In

fe
rr

ed
as

fu
nc

tio
n

D
et

ec
te

d
w

ith
V

io
la

tio
ns

pa
ir

s
A

vg
.

N
L

E
=

1

w
u-

ft
pd

97
1

43
3,

96
8

4,
10

4
12

2,
66

8
2

7
4m

33
s

cu
ps

88
5

36
1,

43
9

8,
47

0
8

3,
40

3
6

30
4

5m
20

s

op
en

ss
l

4,
09

8
1,

07
6,

24
8

21
,4

59
11

13
,9

30
47

92
23

m
43

s

op
en

ss
h

5,
52

1
65

7,
40

0
83

,7
65

7
33

,2
12

34
8

57
6

17
m

52
s

78

Figure 3.9. Number of invariants generated for Property One at three
levels of support and confidence.

Figure 3.10. Number of violations generated for Property One at three
levels of support and confidence.

79

Figure 3.11. Number of invariants generated for Property One without
and with running the Maximal-Sequences algorithm.

Figure 3.12. Number of violations generated for Property One without
and with running the Maximal-Sequences algorithm.

80

Figure 3.13. Percentage distribution of time among the different stages
of FaultMiner for Property One.

Figure 3.14. Percentage distribution of time among the different stages
of FaultMiner for Property Two.

81

3.4.2 Property One: Function Call Sequences

For this property, calls to user-defined functions are considered as events in the EAM.

FaultMining is performed on local event traces. We observed that by running the Maximal-

Sequences procedure, we were inferring CLIs that were present in few or no other func-

tions. This was because, one or more function calls would invariably appear on a majority

(greater than minsup) of the paths following the actual CLI and would be appended to the

actual CLI resulting in a coincidental CLI that was present in few or no other functions.

For example, if [Fa → Fb] were the actual invariant and it was followed by Fc in Ffoo

and by Fd in Fbar, along a majority of the paths, then the inferred CLIs [Fa → Fb → Fc]

and [Fa → Fb → Fd] would not serve as NLE for each other in case of a violation. So

we do not run the Maximal-Sequences procedure for this property and instead consider all

the large sequences generated by the AprioriAll algorithm in the FaultMining procedure

(i.e. M = S). Ranking based on NLE ensures that the large sequences that have a greater

likelihood of being CLIs are ranked higher than their subsequences or larger coincidental

CLIs. Also, we consider only subsequences of length k − 1 while detecting violations for

a large k-sequence and we do not currently detect likely inserted events violations.

Table 3.2† shows the number of events, traces, inferred invariants, detected violations, and

time taken when FaultMiner was run with a minsup of 0.4, a highconf of 0.6, and binary-

support of 2. These are moderate values of support and confidence. Less conservative

values will reduce the number of violations but might miss some interesting violations.

Figures 3.9 and 3.10 show the number of invariants inferred and violations detected for

this property at three different levels of support and confidence. The number of inferred

invariants that were function pairs is only about 10% of all the invariants as shown in

Table 3.2. The rest of the invariants would have been missed by related approaches that

consider only pairs of functions.

The lower number of inferred invariants and detected violations when Maximal-Sequences

is used in FaultMiner is illustrated in Figures 3.11 and 3.12 (note that the y-axis is in loga-

†Numbers reported for openssh are for the sshd component

82

rithmic scale). Figure 3.13 shows the percentage distribution of time spent by FaultMiner

in the different stages. Except for openssh, trace generation (event generation con-

tributed very little) accounts for most of the time spent by FaultMiner. The surprisingly

high number of invariants inferred in openssh (possibly because of relatively excessive

straight-line code that supports several large sequences) leads to FaultMining time (the

binary-violation part of this phase) dominating the other phases. We manually examined

all the violations that had an average NLE of 1.0 and also those that had a majority of NLE

equal to 1.0. We discuss some of the interesting violations for property one detected by

FaultMiner.

wu-ftpd. In function CheckSum, FaultMiner detected that while a call to ftpd popen

was present on 8 paths, it was followed by ftpd pclose on only 6 paths and this vi-

olation had NLE of (1.0, 1.0, 0.0) in the functions site exec, statfilecmd, and

retrieve. On examining the code, we found that the 2 paths where ftpd popen

is not followed by ftpd pclose in function CheckSum are on the error paths when

ftpd popen returns NULL. This suggests that the programmer believes that ftpd popen

may return NULL and that its return value needs to be checked. And indeed, when we ex-

amine the function ftpd popen, there are six places where it may return NULL. Five of

them are on failures of the library functions getrlimit, getdtablesize, calloc,

pipe, and fdopen. These functions could fail when the accessed resources are ex-

hausted. This means that if the return value of ftpd popen is used without checking for

NULL, then upon a resource-exhaustion attack, the server will crash instead of a graceful

failure. With this analysis, all the three NLE seem suspicious because they indicate that in

the first two functions ftpd popen is followed by ftpd pclose along all paths high-

lighting the absence of error checking for ftpd popen. And in function retrieve,

NLE of zero indicates that ftpd popen is not followed by ftpd close along any path,

which again is a violation. Upon checking, we found that the violation for site exec

function was a false-positive because trace generation had been terminated from exceeding

the 10000 trace limit. And the violation for retrieve function was also a false-positive

because ftpd-pclose was invoked through a function-pointer. But the violation in

83

function statfilecmdwas a true-positive. The return value of ftpd popen is indeed

not checked for NULL. This is a new potential vulnerability found by FaultMiner in the

latest version of wu-ftpd.

cups. In function cupsPrintFiles2, FaultMiner detected that while [cupsglobals →
ippNew] was present on 9 paths, [cupsglobals → ippNew → ippAddString] was

present only on 8 paths. Also, there were six other functions that had a NLE of 1.0 for

these sequences. On examining, we found that the six other functions were missing an

error check on the return value of ippNew (which allocates a new printer request), which

can return a NULL when calloc fails. Checking all the functions in CUPS, we found

that while two calls to ippNew had NULL checks, there were seven other calls that did not

check for NULL. These are serious violations because they can cause the program to crash

under high loads and thus result in loss of unsaved state instead of a graceful degradation

of service. This is a new potential vulnerability found by FaultMiner in the latest version

of CUPS.

openssl. FaultMiner found a binary violation that while [dtls1 buffer message →
dtls1 do write] occurred in 12 functions, only dtls1 do write was present in func-

tions dtls1 retransmit message and dtls1 send hello request. Upon in-

spection, we found that dtls1 buffer message, which buffers a message for retrans-

mission, is not necessary in the function dtls1 retransmit message that does re-

transmission itself and is also not needed in the function dtls1 send hello request

according to a comment we found in that function’s body. This is an example of a seman-

tic rule that is particular to a program’s logic. This shows that FaultMiner can detect

violations of such rules.

openssh. We did not find any interesting violations in the ones examined. But using Fault-

Miner, we were able to detect three previously known bugs in older versions of openssh.

We reintroduced the faults in the latest version by commenting appropriate lines of code.

We checked that the evidence used by FaultMiner to detect these faults were present in

the older versions that had the faults as well. The first one was a memory leak bug where

84

Table 3.3
Violations detected for Property Two.

Software Events Traces Invariants Violations Binary Time

Evaluated Inferred Detected Violations

wu-ftpd 765 375,609 171 0 3 4m57s

cups 1,696 215,804 244 0 4 7m53s

openssl 7,185 963,894 1,227 3 13 23m3s

openssh 4,956 440,923 704 12 5 7m26s

xmalloc was not followed by xfree along all the paths in the toremote function of

scp. The second fault was a memory leak bug in sshd where getrrsetbyname was

not followed by freerrset along all paths in the function verify host key dns.

The violation for this fault had a NLE of zero, which means that the function pair was used

only in verify host key dns. The third bug was a semantic bug detected by Fault-

Miner as a binary violation. A call to packet init compressionwas missing before

the call to buffer compress init send and buffer compress init recv in

function packet enable delayed compress although there was evidence of this

rule in two other functions set newkeys and packet start compression. We

had to use a minsup of 0.2 to detect this violation.

3.4.3 Property Two: Check-before-Use of Function Return Values

For this property, three types of events are considered as part of the EAM. Call events are

generated at program points where there are calls to user-defined functions with a return

value assignment. ChkRetVal events are generated at program points where return values

corresponding to Call events are checked. UseRetVal events are generated where the return

values are used. FaultMining is performed with two constraints for this property. The first

constraint is that the events must correspond to the same function. The second constraint

85

is an ordering constraint on the type of events. A Call event should be followed by a

ChkRetVal event and then by a UseRetVal event. Recall that these constraints are applied

in the join phase of the apriori-generate algorithm.

In the current prototype implementation, we use lexical matching to correlate the Call,

ChkRetVal, and UseRetVal events because we focus on lightweight analysis. ChkRetVal

events are generated when the return value is part of a predicate in a conditional statement.

UseRetVal events are generated when the return value is used in expressions or as argu-

ments to function calls. Static analysis techniques such as pointer-analysis and def-use

analysis can be used to further improve the accuracy of event information. The distinction

between the static analysis phase that enables event generation and the rest of the phases in

FaultMining is an important feature of our framework compared to related work. Stronger

static analysis techniques can be applied to improve the results without having to modify

the other phases.

Table 3.3† shows the number of events, traces, inferred invariants, detected violations, and

time taken when FaultMiner was run with a minsup of 0.0, a highconf of 0.6, and binary-

support of 2. Unlike property one for which we used a minsup of 0.4, for this property,

we consider an event occurring even on a single path as evidence. This is because, the

three types of events considered for this property generate so many different events that

on applying the two constraints at minsup of 0.4, very few invariants are generated. Fig-

ure 3.14 shows that trace generation time overwhelmingly dominates the other phases for

this property. We manually examined all the violations where the CLIs had all the three

types of events but only the ChkRetVal event was missing in their CLI′s. We also exam-

ined binary violations for such CLIs. Table 3.3 shows statistics only for such violations.

We discuss some of the interesting violations for this property detected by FaultMiner.

wu-ftpd. FaultMiner detected a missing check for the return value of ftpd popen in

statfilecmd. There was evidence for this binary violation in three other functions:

†Numbers reported for openssh are for the sshd component

86

CheckSum, site exec, and retrieve. This is the same potential vulnerability that

we found also as a violation of property one.

openssh. FaultMiner detected a previously known bug upon reintroducing it in the sshd

code. The return value of a call to session new was missing a NULL check before being

used in function do authenticated1. At the time the bug existed, there were two in-

dications of evidence for this check in functions session open and mm answer pty.

This evidence enabled FaultMiner to detect this bug as a binary violation. This bug had

existed in the code for more than four years before being corrected.

3.5 Obligations

Satisfying program invariants is an obligation on the part of a programmer to enforce

correct behavior by a program. We borrow this terminology from [78], which proposes an

analysis for identifying outstanding obligations and a language feature for automatically

discharging obligations for error-handling defects in Java.

Syntactic obligations in C such as statements should end in a semicolon and open braces

should have matching closing braces are checked automatically by the parser because

they are mandatory to the construction of a valid program. However, identifying and dis-

charging semantic obligations such as freeing used resources and performing appropriate

checks is the duty of a programmer because such obligations cannot be generalized across

all valid programs to be considered as mandatory and automatically enforced. This is es-

pecially the case when obligations are not related to known invariants for library functions

and system calls.

Because FaultMiner can infer unknown invariants, it can be used to provide feedback on

pending obligations and also to minimize obligations. This section describes these two

applications of FaultMiner.

87

3.5.1 Identifying Pending Obligations

Pending obligations are those that are yet to be discharged during software development.

FaultMiner can be used as part of the software development environment to continuously

infer unknown invariants and use them, within the framework of the code editor for exam-

ple, to suggest obligations that are to be discharged. Similar techniques exist for syntactic

obligations in the form of syntax highlighting and syntax completion. However, identify-

ing semantic obligations during the software development phase would require analyzing

incomplete programs instead of whole programs. There is research in this area of analyz-

ing incomplete programs [79, 80].

For example, lets assume that FaultMiner has determined that Fa → Fb is a likely invariant.

Now if a programmer adds a call to Fa, and if FaultMiner determines that there is no

succeeding call to Fb along a path, it adds call Fb as an obligation that has to be discharged

along that path.

3.5.2 Minimizing Obligations

A programmer who wants to create a chroot “jail” has to remember to call chdir("/")

after the call to chroot. If not, the jail is ineffective and creates a vulnerability. The pro-

grammer can be spared of this obligation if the two calls are combined into a single new

API.

FaultMiner can be used to minimize the number of obligations in the context of unknown

invariants. This can be done by analyzing the invariants inferred by FaultMiner and iden-

tifying invariants that can be coupled together. For example, if FaultMiner infers Fa → Fb

as a likely invariant, and if it is possible to refactor the code so that Fa → Fb can be encap-

sulated in a single call to Fab then it reduces the burden of obligation on the programmer

to follow every call to Fa by a call to Fb. Instead the programmer can simply make a call

to Fab.

88

We considered sequences for the first property that had a confidence of one with respect

to a subsequence in more than five functions. These represent likely invariants that had

no violations (with respect to the subsequence) in more than five functions. We analyzed

the source code of the programs that contained these invariants to determine if they could

be refactored with little effort to minimize obligations by encapsulating the events in the

invariant sequence in a meta-event i.e. a function that makes calls to the functions in

the invariant. For example, we determined that the likely invariant [cupsFileOpen→
cupsFileGets→ cupsFileClose] in cups cannot be refactored trivially because

the program logic in-between calls to these functions was different in different contexts.

This was the case with the invariants [packet start → packet put cstring →
packet send→ packet write wait] and [buffer init→ buffer append

→ buffer free] of openssh.

In openssh, we found invariants of the form [packet get string→
packet remaining → logit → packet disconnect]. Upon inspecting the

source code, we found that [packet remaining→ logit→packet disconnect]

is part of a macro named packet check eom that should be called at the end of every

message to check for remaining bytes. If there are bytes remaining after what openssh

deems as the end of the message then it is considered as an integrity error and the connec-

tion is dropped. To our understanding, this is an important check and it is an obligation on

the programmer to call this macro after reading the last string, character, or integer from

the packet. We found 77 calls to this macro in the source code. We could instead make

this check part of new APIs that are to be called by the programmer when reading the final

bytes from the packet.

For openssl, we found the invariant [dtls1 set message header→
dtls1 buffer message → dtls1 do write] which can be encapsulated into a

new API that combines the creation, buffering, and writing of the message buffer. We note

that the tradeoff between the effort to refactor the code and the benefits of minimizing the

specific obligations for future programmer effort has to be considered. There has been

extensive research in the area of software refactoring [81].

89

3.6 Challenges

FaultMiner is useful for detecting classes of defects for which the invariants are unknown.

The invariants are inferred based on the premise that common behavior is correct behavior.

Any deviation from common behavior is considered a violation. While we have shown that

this is a useful technique, there are some challenges related to accuracy and efficiency that

need to be overcome.

In static analysis based approaches to finding defects, approximations are used to make the

analysis decidable, tractable, and practical. Such approximations result in false positives.

For static approaches to finding defects related to unknown invariants, invariant genera-

tion is another source of false positives. Likely invariants might only be coincidences.

Violations generated for such coincidental invariants are actually false positives. So false

positives in our approach can be reduced by minimizing the number of coincidental in-

variants and by using more accurate static analysis techniques.

The challenge in minimizing coincidental invariants is in quantifying common and deviant

behaviors (characterized by support and confidence). For example, we were able to detect

the missing packet init compression in openssh only at a low support value

of 0.2. The thresholds selected for these two attributes determine the number of viola-

tions reported. We do not believe that there is an ideal value for these attributes that will

minimize the number of violations for any given program without missing the interesting

ones. So instead of filtering violations based on these attributes, ranking violations in the

decreasing order of support and confidence would be more useful.

A pathological case is when common behavior is incorrect behavior. This may happen

when an invariant violation is introduced at several places in the program because of ig-

norance or because of replicating a single violation at multiple places as a result of copy-

and-paste. While manual auditing can help in the first case, there are related data-mining

approaches to detect copy-and-paste bugs [82].

Accurate and efficient techniques for flow-, context-, and path-sensitive pointer-analysis

and dataflow analysis will enable more accurate event and trace generation in our ap-

90

proach. This will not only reduce the number of false positives but also enable us to check

richer properties. For example, a well-known invariant is that, given the specifications of

an untrusted source and a trusted sink, there should never be a tainting definition of a vari-

able before its use at the sink without validating [tainting-variable-definition→validate-

variable→variable-use]. Examples of this property include the dereferencing of user

pointers in the kernel and format-string bugs. User pointers should be validated before

dereferencing them in the kernel and user-supplied data should be validated before being

used as format-string arguments. Failure to do so might result in a security violation. Un-

like the dereferencing of user pointers in the kernel code or the use of user-supplied values

as format strings, sinks, where tainted values must not be used without validating, might

not always be known a priori. For example, there might be user-defined functions that per-

form sensitive operations and hence need to validate data that influence their operations.

Such sinks can be identified if there is evidence of validation. If validation is performed

on most paths except a few, then that might be evidence of deviant behavior and therefore

a likely defect.

Trace generation along interprocedural paths is another challenge. All approaches so far

consider only local paths although this may generate both false positives and false neg-

atives. We are investigating approaches to make trace generation along interprocedural

paths feasible. One solution is to collapse those path segments in the EAM that do not

have any events associated with them. State-space reduction techniques used in model-

checking may also be useful. Such optimizations however have to be reflected in the

support and confidence calculations because a path is a unit of evidence in our approach.

We are also exploring ways to reduce the memory footprint to allow us to consider more

traces and more events per trace.

3.7 Related Work

We discuss related research in the four broad areas of specification-based defect detection,

specification-annotation for defect detection, specification-inference for defect detection,

91

and the application of data mining techniques in computer security. We compare our work

mainly with the static approaches to specification-inference for defect detection.

Specification-based Defect Detection. Given a specification of an invariant or its

inverse—the defect signature, detection can be performed dynamically by observing pro-

gram behavior at runtime or statically by observing the program’s source or binary. There

is considerable research in the application of dynamic and static analysis to finding soft-

ware defects. Dynamic techniques [60, 83–85] and the static techniques of traditional

dataflow analysis [11,15–18], type systems [14], model checking [12,19,20], and abstract

interpretation [21] have been used to detect software defects such as buffer overflows,

format-string bugs, race-conditions, and memory leaks.

Specification-annotation for Defect Detection. Programmer annotations can be used

to explicitly describe certain aspects of the specification in the program using a special

annotation language. These are usually in the form of pre- and post-conditions. Although

such approaches [86–89] are beneficial as part of the software development process, they

require considerable programmer effort and cannot be automatically applied to legacy

code.

Specification-inference for Defect Detection. There is some prior research in inferring

specifications for the purpose of finding software defects. There are dynamic approaches

that propose to infer specifications (mainly for supporting program evolution) by observ-

ing the runtime behavior of a program [22–26]. These approaches can observe actual run-

time vales but have the same drawback as conventional testing in that they have to make

inferences based on only the program paths that are exercised. They also require program

instrumentation. Static approaches can observe all possible paths automatically by ana-

lyzing program text. We briefly discuss existing static approaches to defect detection by

specification-inference.

92

Engler et al. [27] were the first to propose a static approach to inferring specifications

from code and use them to find several bugs in Linux and OpenBSD. They refer to the

inferred specifications as MUST and MAY beliefs. MUST beliefs are known invariants such as

NULL pointers should not be dereferenced. MAY beliefs are likely invariants. The inferred

MAY beliefs include function call pairs that should always occur together and function calls

whose return values should be checked before use. Search space for function call pairs is

reduced by considering only those functions that are related by dataflow or that have no

arguments. In our work, we propose a general technique for inferring MAY beliefs across

an arbitrary number of events. We have also shown that this technique can be instantiated

to specific cases using constraints as in the case of the second property.

Weimer and Necula [28] infer function pairs (Fa, Fb) in Java programs where Fb occurs at

least once in the cleanup code within a catch or finally block. The goal is to detect

paths where Fa is not followed by Fb. The assumption is that specifications are most likely

to be violated along exceptional paths. The constraint that Fb should be present inside an

exception handler is used to limit the search space of function pairs.

More recently, Li and Zhou [29] proposed a general technique to infer implicit program-

ming rules using data mining. However, their approach completely ignores control flow

and considers the entire function body as a single path and so only binary-violations can be

detected using their approach. Security violations typically occur on exceptional control

flow paths. Our approach captures these more interesting violations besides the binary-

violations. The distinction between the application of static analysis for event generation

and the actual mining with support for constraints on event traces generated from EAM

provides a more flexible framework for extending our approach to other security properties

compared to their approach.

Data Mining in Security. Livshits and Zimmermann [90] recently proposed an inter-

esting approach where they applied data mining on software revision histories to identify

method calls that are frequently added to the code simultaneously. The assumption is that

such method calls represent a common usage pattern. They combine this with a dynamic

93

analysis where they analyze the frequency of occurrence of the mined patterns and use

that to classify deviations in usage as violations.

Data mining techniques have been used in the field of intrusion detection to learn “nor-

mal behavior” from training data and then flag deviations from that behavior in actual

data as intrusions [34]. Anomaly detection approaches are appealing over signature-based

approaches because they do not need an a priori characterization or specification of “bad

behavior.” But they often have a higher false positive rate because of the challenges in cap-

turing normality. These advantages and drawbacks are common to analogous approaches

in software defect detection. Identifying defects without an a priori knowledge of the

correct behavior is a challenging task. What makes it even more difficult compared to

anomaly intrusion detection is that there is no separate training data to help learn the cor-

rect behavior. The static or dynamic event traces represent both the training data and

the real data. Data mining has also been used for other security applications including

detection of malicious code [91].

Inferring likely invariants is also broadly related to the problems of inferring program

dependences [92] and causal relationships [93] that have applications in areas such as

information-flow analysis [94] and forensics [95].

94

4 CONCLUSIONS, CONTRIBUTIONS, AND FUTURE WORK

This dissertation explored two techniques to improve software assurance using lightweight

static analysis. This chapter describes the conclusions reached, summarizes the major

contributions, and outlines directions for future work.

4.1 Conclusions

In the context of host-based misuse detection systems, we proposed an efficient and scal-

able solution to the problem of constructing conservative approximations of legal program

behaviors. Our approach based on an inlined automaton model (IAM) is context-sensitive

and does not suffer from false positives. Constructing a basic IAM is simple and the re-

sulting model is easy to understand. The overhead of monitoring programs based on an

IAM is low and thus suggests that this technique could be deployed in production envi-

ronments. Deterministic markers improve runtime performance and increase resistance to

mimicry attacks. The IAM construction algorithm has been shown to scale to a 54K line

program with a substantial space overhead. We then showed how to reduce this overhead

with automaton compaction techniques.

The second technique we proposed is FaultMining, a novel technique to detect unknown

software defects. Program events are abstracted in an Event Automaton Model. Static

analysis techniques can be used to generate program events. Temporal invariants on an ar-

bitrary number of program events are inferred. The technique of inferring likely invariants

and finding unknown defects is derived from well-known data-mining algorithms. Mining

with constraints on event attributes is supported. We described how two types of security-

critical program invariants can be inferred using this technique. We evaluated FaultMiner

for these types of invariants on four widely-used security-critical real-world programs

95

namely wu-ftpd, cups, openssl, and openssh. We found two new potential vul-

nerabilities, four previously known bugs, and several other violations using FaultMiner

and thus demonstrated that FaultMining is a useful and promising approach to finding

violations of unknown invariants.

4.2 Contributions

In the context of host-based misuse detection systems, we have made the following con-

tributions:

• Inlined Automaton Model. The IAM is a flow- and context-sensitive model which

is as accurate as a PDA, up to recursion. We describe the construction of inlined

automata and relate our results to previous work on context-sensitive models.

• Implementation. We describe a prototype implementation of IAM. It is based on

library interposition. In our system, the events of interest are the invocation of

library functions. While it is clearly possible for us to track system calls, we find

that library functions give a more accurate model as they are typically more frequent.

• Empirical Evaluation. We evaluate the prototype on a benchmark suite that includes

four real-world programs. We have shown reasonable runtime performance in all

cases. We demonstrate scalability by monitoring a 54K line program.

• Deterministic Markers. We describe the concept of deterministic markers that can

be used to convert the IAM model into a DFA. Our current prototype uses markers

to reduce the non-determinism in the IAM model. This improves the runtime per-

formance and the precision of the IAM model. We describe three different types

of markers, outline their placement algorithms, evaluate the effect of markers on

performance overhead, formalize their impact on space overhead, and illustrate the

resistance to mimicry attacks imparted by them.

96

• Automata Compaction Techniques. We present and evaluate automata compaction

techniques to reduce the space-overhead of IAMs. These techniques are designed

to allow users to tune the footprint of the algorithm, with some potential loss of

performance.

• Dynamic Checking. We describe an approach to and highlight the advantages of

performing dynamic checking of program properties at the library interface in the

context of our MDS implementation.

We have made the following contributions in the context of finding unknown software

defects:

• Event Automaton Model. EAM is a program abstraction where events derived from

a program’s ICFG are modeled using a NFA. Event traces are generated using the

EAM.

• Mining Likely Invariants. The FaultMiner algorithm is the first generalized control-

flow-sensitive algorithm capable of analyzing temporal ordering of an arbitrary

number and type of events. This enables us to mine complete likely invariants in-

stead of multiple partial invariants. Algorithms for invariant inference and the sub-

sequent detection of unknown software defects are derived from well-known data

mining algorithms.

• Violations. We describe two types of invariant violations (non-binary and binary

violations) and propose a violation ranking algorithm based on non-local evidence.

• Evaluation. We empirically evaluate the FaultMining technique by inferring two

types of security-critical program invariants. We detected two new potential vulner-

abilities and four known defects on analyzing violations of these invariants for four

security-critical real-world programs.

97

• Obligations. Obligations are responsibilities of programmers to satisfy program

invariants. We describe how FaultMiner can be used to identify pending obligations

and minimize obligations on likely invariants.

4.3 Future Work

Static analysis based MDSs have the advantage of not generating false positives because

of using conservative algorithms that over-approximate normal behavior. However, this

affects the accuracy of such systems by introducing impossible paths in the models. This

allows an attacker to evade the MDS using mimicry attacks thus resulting in false neg-

atives. It will be interesting to explore the base-rate fallacy [96] in the context of static

analysis based MDSs. It will also be useful to characterize the practical difficulty of

constructing such mimicry attacks and to derive meaningful metrics for comparing the

accuracy of MDSs.

We believe that inlining-based models are sufficient to model control-flow and that path-

sensitivity and dataflow analysis are the next frontiers in this area of research. While the

state-explosive effect of inlining cannot be avoided, especially for larger software artifacts,

future work can benefit from identifying and including in models only a subset of the

system calls that are considered as “dangerous.” This categorization might have to be

policy-specific in the absence of a generalized notion of which system calls are useful to

an attacker.

Most research in this area has considered MDSs operating on uniprocessor systems. Desk-

top systems have started using dual-core processors and from Moore’s law [97], one can

expect that multi-core processors will be affordable in the next 5-10 years. It will be

worthwhile to consider what constraints change and how MDS research can leverage the

power of additional processors with associated resources and the resulting parallelism. For

example, memory overheads might not be such an important concern and state exploration

can be parallelized. Research in this direction has been initiated by [98], which proposes

and evaluates a co-processor based misuse detection technique.

98

Research in the area of detecting unknown defects has to address concerns of accuracy,

usability, and scalability. This will enable us to check for complex properties involving

both control and dataflow.

LIST OF REFERENCES

99

LIST OF REFERENCES

[1] The Economic Impacts of Inadequate Infrastructure for Software Testing, May 2002.
NIST Planning Report 02-3. Available from http://www.nist.gov/director/prog-
ofc/report02-3.pdf.

[2] IEEE.1990. ANSI/IEEE Standard Glossary of Software Engineering Terminology.
IEEE Press.

[3] Bev Littlewood, Sarah Brocklehurst, Norman Fenton, Peter Mellor, Stella Page,
David Wright, John Dobson, John McDermid, and Dieter Gollmann. Towards oper-
ational measures of computer security. Computer Security, 2:211–229, 1993.

[4] Ivan Victor Krsul. Software Vulnerability Analysis. PhD thesis, Purdue University,
May 1998.

[5] Henry H. Feng, Jonathon T. Giffin, Yong Huang, Somesh Jha, Wenke Lee, and Bar-
ton P. Miller. Formalizing sensitivity in static analysis for intrusion detection. In
Proceedings of the IEEE Symposium on Security and Privacy, May 2004.

[6] Jonathon T. Giffin, Somesh Jha, and Barton P. Miller. Detecting manipulated remote
call streams. In Proceedings of the 11th USENIX Security Symposium, August 2002.

[7] Jonathon T. Giffin, Somesh Jha, and Barton P. Miller. Efficient context-sensitive
intrusion detection. In Proceedings of the 11th Annual Network and Distributed
Systems Security Symposium, February 2004.

[8] David Wagner. Static Analysis and Computer Security: New Techniques for Software
Assurance. PhD thesis, University of California, Berkeley, 2000.

[9] David Wagner and Drew Dean. Intrusion detection via static analysis. In Proceedings
of the IEEE Symposium on Security and Privacy, 2001.

[10] Rajeev Gopalakrishna, Eugene H. Spafford, and Jan Vitek. Efficient intrusion de-
tection using automaton inlining. In Proceedings of the 2005 IEEE Symposium on
Security and Privacy, pages 18–31, 2005.

[11] Matt Bishop and Michael Dilger. Checking for race conditions in file accesses. Com-
puting Systems, 9(2):131–152, 1996.

[12] Hao Chen and David Wagner. MOPS: An infrastructure for examining security prop-
erties of software. In Proceedings of the Ninth ACM Conference on Computer and
Communications Security, 2002.

[13] Alan DeKok. PScan: A limited problem scanner for C source files. Available at
http://www.striker.ottawa.on.ca/∼aland/pscan.

100

[14] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David Wagner. Detecting for-
mat string vulnerabilities with type qualifiers. In Proceedings of the 10th USENIX
Security Symposium, 2001.

[15] Ken Ashcraft and Dawson R. Engler. Using programmer-written compiler extensions
to catch security holes. In Proceedings of the IEEE Symposium on Security and
Privacy, 2002.

[16] Dawson R. Engler and Ken Ashcraft. RacerX: Effective, static detection of race
conditions and deadlocks. In Proceedings of the Symposium on Operating Systems
Principles, 2003.

[17] Vinod Ganapathy, Somesh Jha, David Chandler, David Melski, and David Vitek.
Buffer overrun detection using linear programming and static analysis. In Proceed-
ings of the 10th ACM Conference on Computer and Communications Security, 2003.

[18] David Wagner, Jeffrey S. Foster, Eric A. Brewer, and Alexander Aiken. A first step
towards automated detection of buffer overrun vulnerabilities. In Proceedings of the
Network and Distributed System Security Symposium, 2000.

[19] Hao Chen, Drew Dean, and David Wagner. Model checking one million lines of C
code. In Proceedings of the 11th Annual Network and Distributed System Security
Symposium, 2004.

[20] Junfeng Yang, Paul Twohey, Dawson R. Engler, and Madanlal Musuvathi. Using
model checking to find serious file system errors. In Proceedings of the Sixth Sym-
posium on Operating System Design and Implementation, 2004.

[21] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne,
Antoine Miné, David Monniaux, and Xavier Rival. A static analyzer for large safety-
critical software. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2003.

[22] Glenn Ammons, Rastislav Bodik, and James R. Larus. Mining specifications. In
Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, 2002.

[23] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dynam-
ically discovering likely program invariants to support program evolution. IEEE
Transactions on Software Engineering, 27(2), 2001.

[24] Sudheendra Hangal and Monica S. Lam. Tracking down software bugs using auto-
matic anomaly detection. In Proceedings of the 24th International Conference on
Software Engineering, 2002.

[25] Jinlin Yang and David Evans. Automatically inferring temporal properties for pro-
gram evolution. In Proceedings of the 15th International Symposium on Software
Reliability Engineering, 2004.

[26] Ben Liblit, Mayur Naik, Alice X. Zheng, Alexander Aiken, and Michael I. Jordan.
Scalable statistical bug isolation. In Proceedings of the ACM SIGPLAN 2005 Con-
ference on Programming Language Design and Implementation, pages 15–26, June
2005.

101

[27] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf.
Bugs as deviant behavior: a general approach to inferring errors in systems code. In
Proceedings of the 18th ACM Symposium on Operating Systems Principles, 2001.

[28] Westley Weimer and George C. Necula. Mining temporal specifications for error
detection. In Proceedings of Tools and Algorithms for the Construction and Analysis
of Systems, 2005.

[29] Zhenmin Li and Yuanyuan Zhou. PR-Miner: Automatically extracting implicit pro-
gramming rules and detecting violations in large software code. In Proceedings of
the 13th ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering, 2005.

[30] Henry H. Feng, Oleg M. Kolesnikov, Prahlad Fogla, Wenke Lee, and Weibo Gong.
Anomaly detection using call stack information. In Proceedings of the IEEE Sympo-
sium on Security and Privacy, May 2003.

[31] Steven A. Hofmeyr, Stephanie Forrest, and Anil Somayaji. Intrusion detection using
sequences of system calls. Journal of Computer Security, 6(3):151–180, 1998.

[32] Anita K. Jones and Yu Lin. Application intrusion detection using language library
calls. In Proceedings of the 17th Annual Computer Security Applications Confer-
ence, 2001.

[33] Terran Lane and Carla E. Brodley. Temporal sequence learning and data reduc-
tion for anomaly detection. ACM Transactions on Information and System Security,
2(3):295–331, 1999.

[34] Wenke Lee, Salvatore J. Stolfo, and Kui W. Mok. A data mining framework for
building intrusion detection models. In Proceedings of the IEEE Symposium on
Security and Privacy, 1999.

[35] R. Sekar, Mugdha Bendre, Dinakar Dhurjati, and Pradeep Bollineni. A fast
automaton-based method for detecting anomalous program behaviors. In Proceed-
ings of the IEEE Symposium on Security and Privacy, 2001.

[36] Andreas Wespi, Marc Dacier, and Hervé Debar. Intrusion detection using variable-
length audit trail patterns. In Proceedings of the Third International Workshop on
Recent Advances in Intrusion Detection, 2000.

[37] Calvin Ko, George Fink, and Karl N. Levitt. Automated detection of vulnerabilities
in privileged programs by execution monitoring. In Proceedings of the 10th Annual
Computer Security Applications Conference, 1994.

[38] Kymie M.C. Tan, Kevin S. Killourhy, and Roy A. Maxion. Undermining an anomaly-
based intrusion detection system using common exploits. In Proceedings of the Re-
cent Advances in Intrusion Detection, 2002.

[39] Kymie M.C. Tan, John McHugh, and Kevin S. Killourhy. Hiding intrusions: From
the abnormal to the normal and beyond. In Proceedings of the Fifth International
Workshop on Information Hiding, 2002.

[40] David Wagner and Paolo Soto. Mimicry attacks on host based intrusion detection
systems. In Proceedings of the Ninth ACM Conference on Computer and Communi-
cations Security, 2002.

102

[41] Lap-Chung Lam and Tzi cker Chiueh. Automatic extraction of accurate application-
specific sandboxing policy. In Proceedings of the Recent Advances in Intrusion De-
tection, pages 1–20, 2004.

[42] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to automata
theory, languages, and computation, Second edition. ACM Press, 2001.

[43] Benjamin A. Kuperman and Eugene H. Spafford. Generation of application level
audit data via library interposition. CERIAS TR 99-11, COAST Laboratory, Purdue
University, October 1998.

[44] PROLANGS Analysis Framework. http://www.prolangs.rutgers.edu/public.html.

[45] George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer. CIL:
Intermediate language and tools for analysis and transformation of C programs. In
Proceedings of 11th International Conference on Compiler Construction, 2002.

[46] GCC 3.3.3 Manual. http://gcc.gnu.org/onlinedocs/gcc-3.3.3/gcc/.

[47] Timothy W. Curry. Profiling and tracing dynamic library usage via interposition. In
Proceedings of the Summer USENIX Conference, pages 267–278, 1994.

[48] Benjamin A. Kuperman. A Categorization of Computer Security Monitoring Systems
and the Impact on the Design of Audit Sources. PhD thesis, Purdue University, 2004.

[49] Dale Dougherty and Arnold Robbins. sed & awk. O’Reilly Media, Inc., second
edition, 1997.

[50] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques
and Tools. Addison Wesley, 1986.

[51] Haizhi Xu, Wenliang Du, and Steve J. Chapin. Context sensitive anomaly moni-
toring of process control flow to detect mimicry attacks and impossible paths. In
Proceedings of the Recent Advances in Intrusion Detection, pages 21–38, 2004.

[52] Jonathon T. Giffin, Somesh Jha, and Barton P. Miller. On effective model-based
intrusion detection. TR 1543, University of Wisconsin, Madison, 2005.

[53] The PaX project. pax.grsecurity.net/.

[54] Gaurav S. Kc and Angelos D. Keromytis. e-NeXSh: Achieving an effectively non-
executable stack and heap via system-call policing. In Proceedings of the 21st An-
nual Computer Security Applications Conference, pages 286–302, Washington, DC,
USA, 2005. IEEE Computer Society.

[55] Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. Countering code-
injection attacks with instruction-set randomization. In Proceedings of the ACM
Conference on Computer and Communications Security, pages 272–280, 2003.

[56] Elena Gabriela Barrantes, David H. Ackley, Stephanie Forrest, Trek S. Palmer, Darko
Stefanovic, and Dino Dai Zovi. Randomized instruction set emulation to disrupt
binary code injection attacks. In Proceedings of the ACM Conference on Computer
and Communications Security, pages 281–289, 2003.

103

[57] George C. Necula, Scott McPeak, and Westley Weimer. CCured: type-safe
retrofitting of legacy code. In Proceedings of the 29th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pages 128–139, New York, NY,
USA, 2002. ACM Press.

[58] Trevor Jim, J. Gregory Morrisett, Dan Grossman, Michael W. Hicks, James Cheney,
and Yanling Wang. Cyclone: A safe dialect of C. In Proceedings of the USENIX
Annual Technical Conference, General Track, pages 275–288, 2002.

[59] Timothy K. Tsai and Navjot Singh. Libsafe 2.0: Detection of format string vulner-
ability exploits, February 2001. White Paper Version 3-21-01, Avaya Labs, Avaya
Inc.

[60] Crispin Cowan, Matt Barringer, Steve Beattie, Greg Kroah-Hartman, Mike Frantzen,
and Jamie Lokier. FormatGuard: Automatic protection from printf format string
vulnerabilities. In Proceedings of the 10th USENIX Security Conference, 2001.

[61] Michael F. Ringenburg and Dan Grossman. Preventing format-string attacks via au-
tomatic and efficient dynamic checking. In Proceedings of the 12th ACM Conference
on Computer and Communications Security, pages 354–363, New York, NY, USA,
2005. ACM Press.

[62] Kumar Avijit, Prateek Gupta, and Deepak Gupta. TIED, LibsafePlus: Tools for run-
time buffer overflow protection. In Proceedings of the USENIX Security Symposium,
pages 45–56, 2004.

[63] Timothy K. Tsai and Navjot Singh. Libsafe: Transparent system-wide protection
against buffer overflow attacks. In Proceedings of the International Conference on
Dependable Systems and Networks, page 541, 2002.

[64] Neils Provos. Improving host security with system call policies. In Proceedings of
the 12th USENIX Security Symposium, August 2003.

[65] Hao Chen, David Wagner, and Drew Dean. Setuid demystified. In Proceedings of
the USENIX Security Symposium, pages 171–190, 2002.

[66] Jonathon T. Giffin, David Dagon, Somesh Jha, Wenke Lee, and Barton P. Miller.
Environment-sensitive intrusion detection. In Proceedings of the Recent Advances
in Intrusion Detection, pages 185–206, 2005.

[67] Sandeep Bhatkar, Abhishek Chaturvedi, and R. Sekar. Dataflow anomaly detection.
To appear in IEEE Symposium on Security and Privacy, Oakland, CA, May 2006.

[68] Frank Tip and Jens Palsberg. Scalable propagation-based call graph construction
algorithms. In Proceedings of the Conference on Object-Oriented Programming
Languages, Systems and Applications, 2000.

[69] Haizhi Xu. Surviving Malicious Code Attacks. PhD thesis, Syracuse University,
2006.

[70] Martı́n Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow integrity.
In Proceedings of the ACM Conference on Computer and Communications Security,
pages 340–353, 2005.

104

[71] Ulfar Erlingsson and Fred B. Schneider. IRM enforcement of java stack inspection.
In Proceedings of the 2000 IEEE Symposium on Security and Privacy, 2000.

[72] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Efficient
software-based fault isolation. In Proceedings of the fourteenth ACM Symposium on
Operating Systems Principles, pages 203–216, New York, NY, USA, 1993. ACM
Press.

[73] Lee Garber. New chips stop buffer overflow attacks. IEEE Computer, 37(10):28,
2004.

[74] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns. In Proceed-
ings of the 11th International Conference on Data Engineering, 1995.

[75] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns. Technical
Report RJ9910, IBM Almaden Research Center, 1994.

[76] CVE-2004-0077. http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2004-
0077.

[77] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining associa-
tion rules. In Proceedings of the 20th International Conference on Very Large Data
Bases, 1994.

[78] Westley Weimer and George C. Necula. Finding and preventing run-time error han-
dling mistakes. In Proceedings of the Conference on Object-Oriented Programming
Languages, Systems and Applications, pages 419–431, 2004.

[79] Atanas Rountev, Barbara G. Ryder, and William Landi. Data-flow analysis of pro-
gram fragments. In Proceedings of the ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering, LNCS 1687, pages 235–252, 1999.

[80] Atanas Rountev. Dataflow Analysis of Software Fragments. PhD thesis, Rutgers
University, August 2002.

[81] Tom Mens and Tom Tourwé. A survey of software refactoring. IEEE Transactions
on Software Engineering, 30(2):126–139, 2004.

[82] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. CP-Miner: A tool for
finding copy-paste and related bugs in operating system code. In Proceedings of the
Sixth Symposium on Operating System Design and Implementation, 2004.

[83] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve Beat-
tie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. StackGuard: Auto-
matic adaptive detection and prevention of buffer-overflow attacks. In Proceedings
of the Seventh USENIX Security Conference, 1998.

[84] Crispin Cowan, Steve Beattie, Chris Wright, and Greg Kroah-Hartman. RaceGuard:
Kernel protection from temporary file race vulnerabilities. In Proceedings of the 10th
USENIX Security Conference, 2001.

[85] Reed Hastings and Bob Joyce. Purify: Fast detection of memory leaks and access
error. In Proceedings of the USENIX Winter Technical Conference, 1992.

[86] Brian Chess. Improving computer security using extended static checking. In Pro-
ceedings of the IEEE Symposium on Security and Privacy, 2002.

105

[87] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe. Extended
static checking. Technical Report 159, Compaq Systems Research Center, 1998.

[88] David Evans, John Guttag, James Horning, and Yang Meng Tan. LCLint: A tool for
using specifications to check code. In Proceedings of the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, 1994.

[89] David Larochelle and David Evans. Statically detecting likely buffer overflow vul-
nerabilities. In Proceedings of the 10th USENIX Security Conference, 2001.

[90] Benjamin Livshits and Thomas Zimmermann. DynaMine: Finding common error
patterns by mining software revision histories. In Proceedings of the 13th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, 2005.

[91] Matthew G. Schultz, Eleazar Eskin, Erez Zadok, and Salvatore J. Stolfo. Data mining
methods for detection of new malicious executables. In Proceedings of the IEEE
Symposium on Security and Privacy, 2001.

[92] Mark Weiser. Program slicing. In Proceedings of the Fifth International Conference
on Software Engineering, pages 439–449, 1981.

[93] Judea Pearl. Causality: models, reasoning, and inference. Cambridge University
Press, 2000.

[94] Dorothy E. Denning and Peter J. Denning. Certification of programs for secure
information flow. Communications of the ACM, 20(7):504–513, 1977.

[95] Brian D. Carrier. A hypothesis-based approach to digital forensic investigations.
PhD thesis, Purdue University, 2006.

[96] Stefan Axelsson. The base-rate fallacy and the difficulty of intrusion detection. ACM
Transactions on Information and System Security, 3(3):186–205, 2000.

[97] Moore’s Law. http://www.intel.com/museum/archives/history docs/mooreslaw.htm.

[98] Paul D. Williams. CUPIDS: Increasing information system security through the use
of dedicated co-processing. PhD thesis, Purdue University, 2005.

VITA

106

VITA

Rajeev Gopalakrishna obtained the B.E. degree in Computer Science and Engineering

from the Regional Engineering College (now known as National Institute of Technology),

Tiruchirappalli, India in 1999. He received the M.S. degree in Computer Sciences and the

Ph.D. degree in Computer Sciences from Purdue University in 2001 and 2006 respectively.

Rajeev’s research interests are primarily in information assurance.

