
CERIAS Tech Report 2006-11

PRIVACY ENHANCED AUTOMATED TRUST NEGOTIATION

by Jiangtao Li

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

PRIVACY ENHANCED AUTOMATED TRUST NEGOTIATION

A Thesis

Submitted to the Faculty

of

Purdue University

by

Jiangtao Li

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2006

Purdue University

West Lafayette, Indiana

ii

To my father, my mother, and my wife Jie.

iii

ACKNOWLEDGMENTS

Throughout my graduate study at Purdue University, I have been very fortunate to

meet with great people, who have had a dramatic impact on my research and my accom-

plishments.

I am very grateful to my advisor Professor Mikhail Atallah, who always advised me,

supported me, and helped me during my six year graduate research. He has provided me a

lot of support and freedom that I needed to be successful in myresearch. His insights and

suggestions have been invaluable to my work. I am also very grateful to my other advisor

Profoessor Ninghui Li. It has been a pleasure to work with him, to talk with him, and

to learn from him. His willingness to discuss with me at anytime has been very helpful.

Without my advisors’ help and support, this thesis report would never have been realized.

My graduate studies were conducted in the Center for Education and Research in In-

formation Assurance and Security (CERIAS). I benefited a lot from the research and edu-

cation environment that CERIAS provided. I thank all the faculties, staffs, and colleagues

in CERIAS for their support.

Most of all, I would like to thank my beloved wife, my parents,and my brother for

their unconditional love, encouragement, and support.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABBREVIATIONS . ix

ABSTRACT . x

1 Introduction . 1

2 Cryptographic Tools. 6

2.1 Cryptographic Commitment Scheme. 7

2.2 Homomorphic Encryption. 8

2.3 Identity-Based Encryption. 9

2.4 Hidden Credentials. 10

2.5 Scrambled Circuit Evaluation. 11

3 OACerts: Oblivious Attribute Certificates. 15

3.1 Architecture of OACerts. 18

3.2 Applications of OACerts. 22

3.3 Definition of OCBE . 23

3.4 OCBE Protocols. 28

3.4.1 EQ-OCBE: An OCBE Protocol For= Predicates. 28

3.4.2 GE-OCBE: An OCBE Protocol For≥ Predicates. 31

3.4.3 OCBE Protocols for Other Predicates. 35

3.4.4 MOCBE: Multi-attribute OCBE. 36

3.5 Implementation and Performance. 38

4 Policy-Hiding Access Control Using OACerts. 40

4.1 Using OACerts and CIPPE for Policy-Hiding Access Control. 42

4.2 Definition of Certified Input Private Policy Evaluation. 44

v

Page

4.3 Building Circuits That Have Uniform Topological Structure 48

4.4 A Committed-Integer Based Oblivious Transfer Protocol. 52

4.5 The CIPPE Protocol. 56

5 A Privacy-Preserving Trust Negotiation Protocol. 60

5.1 Our Contributions . 60

5.2 Trust Negotiation: Review and Discussion. 61

5.3 Our Approach . 66

5.3.1 Notation and Definitions. 67

5.3.2 Problem Definition . 67

5.3.3 Overview of Our Approach. 69

5.3.4 Proof of RE Strategy. 70

5.4 Protocol for Privacy-Preserving Trust Negotiation. 73

5.4.1 Building Blocks . 73

5.4.2 Secure RE Strategy Protocol. 74

5.4.3 Privacy-Preserving Trust Negotiation Protocol. 77

5.5 Efficiency Improvements. 78

5.5.1 A More Efficient Equality Test for Array Elements. 78

5.5.2 Reducing the Number of Rounds. 80

5.6 Security Proofs. 80

5.6.1 Definition of Security . 80

5.6.2 Sketch of the Security Proof. 81

6 A Trust Negotiation Framework for Cryptographic Credentials 84

6.1 Overview of Cryptographic Credentials and Tools for ATN. 85

6.2 The Language of Credentials and Policies. 88

6.3 The Extended Trust Target Graph Protocol. 99

6.3.1 Nodes in a Trust-Target Graph. 100

6.3.2 Edges in a Trust-Target Graph. 101

6.3.3 State Propagation in TTG. 103

vi

Page

6.3.4 Messages in the Protocol. 106

6.3.5 Node Processing. 107

6.3.6 Example of The ETTG Protocol. 112

7 Related Work. 115

7.1 Automated Trust Negotiation. 115

7.2 Cryptographic Approaches to Automated Trust Negotiation 116

7.3 Anonymous Credential Systems. 116

7.4 Secure Function Evaluation. 117

8 Summary. 118

LIST OF REFERENCES . 119

VITA . 126

vii

LIST OF TABLES

Table Page

3.1 Running time and size of communication for OACerts. 39

viii

LIST OF FIGURES

Figure Page

3.1 The attacker game for OCBE’s oblivious property. 25

3.2 The attacker game for OCBE’s security property against thereceiver . . . 26

4.1 An example of policy-hiding access control. 43

4.2 Ideal model for the CIPPE protocol. 47

4.3 Basic circuit components for the CIPPE protocol. 50

4.4 An example circuit structure. 53

5.1 Pseudocode for the eager strategy. 63

5.2 Pseudocode for the RE strategy. 69

5.3 High-level description of privacy-preserving trust negotiation 70

5.4 Input and output of blinded policy evaluation. 73

5.5 Input and output of equality test for array elements. 74

6.1 The credentials and policies of BookSt. 88

6.2 The credentials and policies of Alice. 90

6.3 Syntax of ATNL in BNF . 92

6.4 Final TTG for the bookstore example. 113

ix

ABBREVIATIONS

ABAC Attribute-Based Access Control

ATN Automated Trust Negotiation

CA Certificate Authority

CIPPE Certified Input Private Policy Evaluation

CIOT Committed-Integer based Oblivious Transfer

CDH Computational Diffie-Hellman

DDH Decision Diffie-Hellman

DL Discrete Logarithm

OACerts Oblivious Attribute Certificate

OCBE Oblivious Commitment-Based Envelope

OSBE Oblivious Signature-Based Envelope

PKG Private Key Generator

PKI Public Key Infrastructure

PPT Probabilistic Polynomial Time

RE Reverse Eager

SCE Scrambled Circuit Evaluation

x

ABSTRACT

Li, Jiangtao. Ph.D., Purdue University, May, 2006. PrivacyEnhanced Automated Trust
Negotiation. Major Professors: Mikhail J. Atallah and Ninghui Li.

In automated trust negotiation, two parties exchange digitally signed credentials that

contain attribute information to establish trust and make access control decisions. Be-

cause the information in question is often sensitive, credentials are protected according to

access control policies. In traditional trust negotiation, credentials are transmitted either

in their entirety or not at all. This approach can at times fail unnecessarily, either because

a cyclic dependency makes neither negotiator willing to reveal her credential before her

opponent, because the opponent must be authorized for all attributes packaged together in

a credential to receive any of them, or because it is necessary to disclose the precise at-

tribute values, rather than merely proving they satisfy some predicate (such as being over

21 years of age).

In this thesis, we introduce a number of techniques that address the previous problems.

In particular,

• We propose Oblivious Attribute Certificates (OACerts), an attribute certificate

scheme in which a certificate holder can select which attributes to use and how

to use them. In particular, a user can use attribute values stored in an OACert to

obtain a resource from a service provider without revealingany information about

these values. Using OACerts, we develop a policy-hiding access control scheme

that protects both sensitive attribute values and sensitive policies.

• We present a privacy-preserving trust negotiation protocol that enforces each cre-

dential’s policy (thereby protecting sensitive credentials). Our result is not achieved

through the routine use of standard techniques to implement, in this framework,

one of the known strategies for trust negotiations (such as the “eager strategy”).

xi

Rather, we use novel techniques to implement a non-standard trust negotiation strat-

egy specifically suited to this framework.

• We introduce a framework for automated trust negotiation inwhich diverse cre-

dential schemes and protocols can be combined, integrated,and used as needed.

A policy language is introduced that enables negotiators tospecify authorization

requirements that must be met by an opponent to receive various amounts of infor-

mation about certified attributes and the credentials that contain it.

1

1 INTRODUCTION

Computer systems traditionally are closed, centrally managed systems in which each sub-

ject has one or more identities. The system grants or denies asubject’s requests to access

certain resources based on its access control policies and the authenticated identities of the

requester. It is assumed that subjects in the system alreadyknow each other. Thus, trust

can be easily established based on each other’s identity. Furthermore, without obtaining

a local identity, a subject is not able to interact with the system and gain access to the

resources of the system.

The move towards a globally interconnected infrastructureand open environment, such

as the Internet, provides opportunities for two or more parties who are strangers to each

other to share resources or conduct business transactions.Such interactions often involve

release of sensitive information and remote access to a party’s local resources. Mutual

trust between two parties is crucial in such environments. As parties belong to different

security domains controlled by different authorities, establishing trust based on identity is

not a feasible solution. Therefore, identity information such as username and password is

usually inadequate for establishing trust between strangers.

Blaze, Feigenbaum, and Lacy [1] introduced the termtrust managementto group to-

gether some principles dealing with decentralized authorization. In trust management [1–

6], access control decisions are based on authenticated attributes of the subjects, which are

established by digitally signed credentials. Each credential associates a public key with

the key holder’s identity and/or attributes such as employer, group membership, credit

card information, birth-date, citizenship, and so on. Because these credentials are digi-

tally signed, they can serve to introduce strangers to one another without online contact

with the attribute authorities.

Winsborough, Seamons, and Jones [7] introduced the notion of automated trust ne-

gotiation (ATN). The goal of ATN [7–12] is to enable resource requesters and access

2

mediators to establish trust in one another through cautious, iterative, bilateral disclosure

of credentials. In the existing ATN literature, access control policies are established to

regulate the disclosure of credentials, in addition to the granting of system resources. The

negotiation consists of a sequence of exchanges that begin with disclosing credentials that

are not sensitive. As credentials flow, higher levels of mutual trust are established, and ac-

cess control policies for more sensitive credentials are satisfied, enabling these credentials

also to flow. In successful negotiations, credentials eventually flow that satisfy the policy

of the desired resource. Trust negotiation differs from trust management in that:

1. In trust negotiation, credentials are modeled as sensitive information, and protected

by access control policies just same as other resources in the system.

2. Trust negotiation is performed in a peer-to-peer architecture, where a client and a

server are treated equally. Instead of a one-shot authorization, trust is established

incrementally through a sequence of credential disclosure.

In traditional ATN approaches the only way to use a credential is to send it as a whole,

thus disclosing all the information in the credential. In other words, a digital credential is

viewed as a black-box, and the information in a credential isdisclosed in an all-or-nothing

fashion. In these approaches sensitive attribute values stored in a credential are protected

using access control techniques. There is an access controlpolicy associated with each

credential and a credential can be disclosed if its access control policy has been satisfied.

Viewing a credential as a black-box severely limits the power of ATN. The following are

some of the limitations.

1. Because attribute information is disclosed in an all-or-nothing fashion, each attribute

can be disclosed only when the policy governing the credential and its entire con-

tents is satisfied, leading to unnecessary failure. For example, suppose Bob would

allow Alice to access a resource provided Alice is over21, and Alice has a digital

driver license that includes Alice’s birth-date and address. If Alice does not want to

reveal her address (or her exact birth-date) to Bob, the negotiation would fail, even

if Alice were willing to prove she is over21.

3

2. When one negotiator does not want to disclose detailed information about his policy

and the other negotiator does not want to disclose too much information about her

attributes, a negotiation can fail even though the amount ofinformation that needs

to be disclosed by each party is acceptable to both. For example, suppose Bob is

a bank that offers a special-rate loan and Alice would like toknow whether she is

eligible for such a loan before she applies. Bob is willing to reveal that his loan-

approval policy uses one’s birth-date, current salary, andthe length of the current

employment; however, Bob considers further details of this policy to be a trade

secret that he is unwilling to reveal. Alice would like to know whether she is eligible

for the loan while disclosing as little information about her attributes as possible. In

particular, Alice does not want to disclose the exact valuesof her birth-date or salary

level. Using traditional ATN techniques, this negotiationwould fail.

3. If there is a cyclic dependency among credentials and their policies, negotiations can

fail unnecessarily. For example, in a negotiation between Alice and Bob, suppose

Alice has a credentialc1 that can be disclosed only if Bob hasc2, and Bob has

c2, but can disclose it only if Alice hasc1. Using traditional ATN techniques, the

negotiation would fail because neitherc1 nor c2 can be disclosed before the other,

even though allowing Alice and Bob to exchangebothc1 andc2 would not violate

either negotiator’s policy.

Thesis Statement

The goal of my thesis is to design an ATN scheme that has betterprivacy protection

and is able to avoid the above mentioned limitations. More specifically, our goal is to

develop cryptographic credentials and protocols for Aliceand Bob to negotiate trust while

minimizing the disclosure of each party’s sensitive credentials and policies. Furthermore,

we want to develop a new ATN framework that supports these cryptographic credentials

and protocols.

4

Our Contribution

To address the previously mentioned limitations of ATN, we propose Oblivious At-

tribute Certificates (OACerts), an attribute certificate scheme in which a certificate holder

can select which attributes to use and how to use them. Using OACerts, a certificate

holder is no longer limited to the all-or-nothing property of traditional trust negotiation.

For example, suppose Alice’s digital driver license is documented using OACerts. Al-

ice can prove that she is older than21 without revealing her exact birth-date. Thus, the

first above-mentioned limitation is naturally solved. Furthermore, a user can use attribute

values stored in an OACert obliviously, i.e., the user obtains a service if and only if the

attribute values satisfy the policy of the service provider, yet the service provider learns

nothing about these attribute values. This way, the serviceprovider’s access control policy

is enforced in an oblivious fashion.

Based on the OACerts scheme, we further develop a policy-hiding access control

scheme that protects both sensitive attributes and sensitive policies. That is, Bob can

decide whether Alice’s certified attribute values satisfy Bob’s policy, without Bob learn-

ing any other information about Alice’s attribute values orAlice learning Bob’s policy.

Using this policy-hiding access control, we can address thesecond limitation.

We develop a privacy-preserving trust negotiation protocol and several novel crypto-

graphic protocols for carrying it out. We propose a reverse eager trust negotiation strat-

egy that handles arbitrary policy cycles, whereas the existing traditional trust negotiation

strategies are inherently unable to handle such cycles. Using our protocol, Alice and Bob

can determine whether the trust can be established without disclosing any of their private

credentials and policies.

Finally, we introduce a framework for trust negotiation that supports the combined use

of several cryptographic credential schemes and protocolsthat have been previously in-

troduced piecemeal to provide capabilities that are usefulin various negotiation scenarios.

Our framework enables these various schemes to be combined flexibly and synergistically,

on the fly as the need arises.

5

Organization of the Thesis

This thesis is organized as follows. We first review several cryptographic tools that

will be used in our thesis in Chapter 2. We then present our construction of OACerts

in Chapter 3. In Chapter 4, we present a policy-hiding access control scheme based on

OACerts. In Chapter 5, we describe a privacy-preserving trustnegotiation protocol that

can seamlessly handle policy cycles. In Chapter 6, we presenta trust negotiation frame-

work that supports diverse cryptographic credentials and protocols. Finally, we discuss

the related work in Chapter 7 and summarize this thesis in Chapter 8.

6

2 CRYPTOGRAPHIC TOOLS

In this chapter we review some cryptographic tools and building blocks that will be used in

this thesis, right after a brief description of several standard assumptions in cryptography.

We say that a functionf is negligiblein the security parametert if, for every polynomial

p, f(t) is smaller than1/|p(t)| for large enought; otherwise, it isnon-negligible.

• Discrete Logarithm (DL) Assumption. The DL problem is the following: Given a

finite cyclic groupG, a generatorg ∈ G, and a group elementy, computelogg y.

The DL assumption is that there exists no polynomial-time algorithm that can solve

the DL problem with non-negligible probability.

• Computational Diffie-Hellman (CDH) Assumption. The CDH problem is the fol-

lowing: Given a finite cyclic groupG, a generatorg ∈ G, and group elements

ga, gb, computegab. The CDH assumption is that there exists no polynomial-time

algorithm that can solve the CDH problem with non-negligibleprobability.

• Decisional Diffie-Hellman (DDH) Assumption. The DDH problem is the following:

Given a finite cyclic groupG, a generatorg ∈ G, and group elementsga, gb, and

gc, output 0 ifgc = gab and 1 otherwise. The DDH assumption is that there exists

no polynomial-time algorithm that can solve the DDH problemwith non-negligible

advantage. The advantage of an algorithm is its success probability minus1/2, as

one can always randomly guess with a1/2 success probability.

• Random Oracle Model. The random oracle model is an idealized security model

introduced by Bellare and Rogaway [13] to analyze the securityof certain nat-

ural cryptographic constructions. Roughly speaking, a random oracle is a function

H: X → Y chosen uniformly at random from the set of all functions{h : X → Y }

(we assumeY is a finite set). An algorithm can query the random oracle at any point

7

x ∈ X and receive the valueH(x) in response. Random oracles are used to model

cryptographic hash functions such as SHA-1. Note that security in the random ora-

cle model does not imply security in the real world. Nevertheless, the random oracle

model is a useful tool for validating natural cryptographicconstructions.

2.1 Cryptographic Commitment Scheme

Informally speaking, a commitment scheme enables a prover to commit a value to a

verifier such that the verifier does not know which value has been committed, and the

prover cannot change its mind after having committed. In this section, we briefly describe

the Pedersen commitment scheme [14] that we use throughout this thesis.

Definition 2.1.1 (The Pedersen Commitment Scheme)

Setup A trusted third partyT chooses two large prime numbersp andq such thatq divides

p− 1. It is typical to havep be 1024 bits andq be 160 bits. Letg be a generator of

Gq, the unique order-q subgroup ofZ∗
p. We usex← Zq to denote thatx is uniformly

randomly chosen fromZq. T picksx ← Zq and computesh = gx mod p. T keeps

the valuex secret and makes the values〈p, q, g, h〉 public.

Commit The domain of the committed values isZq. For the prover to commit an value

a ∈ Zq, the prover choosesr ← Zq and computes the commitmentc = gahr mod p.

Open To open a commitmentc, the prover revealsa and r, and the verifier verifies

whetherc = gahr mod p.

The above setting is slightly different from the standard setting of commitment schemes,

in which the verifier runs the setup program and does a zero-knowledge proof to convince

the prover that the parameters are constructed properly.

The Pedersen commitment scheme isunconditionally hiding: Even with unlimited

computational power it is impossible for an adversary to learn any information about the

valuea from c, because the commitments of any two numbers inZq have exactly the

8

same distribution. This commitment scheme iscomputationally binding: Under the DL

assumption, it is computationally infeasible for an adversarial prover to open a valuea′

other thana in the open phase of the commitment scheme. Suppose an adversary findsa′

(other thana) andr′ such thatga′

hr′ ≡ gahr(mod p), then she can computea
′−a

r−r′
mod q,

which is logg(h), the discrete logarithm ofh with respect to the baseg.

2.2 Homomorphic Encryption

A homomorphic encryption scheme [15–18] is an encryption scheme in which the

plaintexts are taken from a groupG, and given the encryptions of two group elements one

can efficiently compute a encryption of their sum. Usually this computation involves a

modular multiplication of the encryptions, we writeE(a) · E(b) = E(a+ b). It is easy to

see thatE(a)c = E(c · a). Damg̊ard and Jurik [18] proposed a homomorphic encryption

scheme in which all users can use the same modulus when generating key pairs.

Definition 2.2.1 (Damg̊ard-Jurik Cryptosystem) Let n = pq be an RSA modulus, with

p = 2p′ + 1 andq = 2q′ + 1 wherep, q, p′, q′ are primes. Letg be a generator ofQn, the

group of all squares ofZ∗
n.

Key Generation Chooseα ∈ Zτ whereτ = p′q′ = |Qn|. The public key is then(n, q, h)

with h = gα mod n and the private key isα.

Encryption Given a plaintextm ∈ Zn, choose a randomr ∈ Zn, and the ciphertext is

E(m, r) = (gr mod n, (hr mod n)n(n+ 1)m mod n2).

Decryption Given a ciphertextc = (G,H) = E(m, r),m can be found as

m = L(H(Gα mod n)−n)

= L((gαr mod n)n(n+ 1)m(grα mod n)−n)

= L((n+ 1)m mod n2) = m mod n.

Damg̊ard-Jurik cryptosystem is a homomorphic encryption scheme. To see why, let

m,m′ ∈ Zn andr, r′ ∈R Zn, letE(m, r) = (G,H) andE(m′, r′) = (G′, H ′). We define

9

E(m, r) · E(m′, r′) to be(G · G′, H · H ′), it is easy to verify thatE(m, r) · E(m′, r) =

E(m +m′ mod n, r + r′). In the rest of this thesis, we will useE(m) as a shorthand for

E(m, r).

Damg̊ard-Jurik cryptosystem issemantically secure[18] under the Decisional Com-

posite Residuosity Assumption and DDH assumption. The semantic security property

guarantee that an eavesdropper cannot learn any information about the plaintext from the

ciphertext. More precisely, given two arbitrary messagem0 andm1, the random variables

representing the two homomorphic encryptionsE(m0) andE(m1) are computationally

indistinguishable.

2.3 Identity-Based Encryption

The concept of Identity-Base Encryption (IBE) was first proposed by Shamir [19] in

1984, however the first usable IBE systems were discovered only recently [20, 21]. An

IBE scheme is specified by following four algorithms:

Setup A Private Key Generator (PKG) takes a security parameterk and generates system

parametersparams and a master secrets. params is public, whereass is private to

PKG.

Extract Given any arbitrary stringid ∈ {0, 1}∗, PKG usesparams, s, andid to compute

the corresponding private keysk.

Encrypt It takesparams, id and plaintextM as input and returns ciphertextC. We use

I(M, id) to denote the encryption algorithm using the identityid.

Decrypt It takesparams, sk and ciphertextC as input and returns the corresponding

plaintextM . We useI−1(C, sk) to denote the decryption algorithm using the private

key sk. Of course, the decryption algorithm must satisfy the standard consistency

constraint, namely for any identityid, the corresponding private keysk, and any

messageM , the equationI−1(I(M, id), sk) = M is always true.

10

An IBE scheme enables a sender to encrypt a message using a receiver’s identity as the

public key, thus avoids obtaining the public key from the receiver or a directory. Boneh

and Franklin proposed an IBE scheme from weil pairing [20]. Their scheme is secure

against adaptive chosen ciphertext attacks (IND-ID-CCA).

2.4 Hidden Credentials

The hidden credentials system was proposed by Holtet al. [22]. In the hidden creden-

tials system, there is a trusted CA who issues credentials forusers in the system. Each

user in the system is assigned with a uniquenym, wherenym could be either a real name

or a pseudonym. A hidden credential is a digital signed assertion about an attribute of a

credential holder by the CA. Roughly speaking, given an IBE scheme as described in the

previous section, a hidden credentialcred for usernamenym and attributeattr is the pri-

vate key corresponding to the identitynym||attr. More specifically, the hidden credentials

system has following four programs:

1. CA Create(): The CA runs the setup program of the IBE system and generates

system parametersparams and a master secrets, and publishesparams. The CA

also publishes a list of possible attribute names.

2. CA Issue(nym, attr): The CA issues a credential for user with usernamenym

and an attributeattr by running the extract program of the IBE system withid =

nym||attr, and outputs the private keysk as the credential. Given a hidden creden-

tial cred, we usecred.nym to denote the corresponding username, andcred.attr to

denote the corresponding attribute in the credential.

3. I(M,nym||attr): This program corresponds to the encrypt algorithm of the IBE

system with system parametersparams, id = nym||attr, and plaintextM . The

output of this program isC.

11

4. I−1(C, cred): This function corresponds to the decrypt program of the IBE system

with system parametersparams, cred, and ciphertextC. The output of this function

isM .

The hidden credentials system is secure against an adaptivechosen ciphertext attack

where an attacker can obtain unlimited number of other arbitrary credentials [22]. The

hidden credentials are also unforgeable. We here give a simple example of how Alice

accesses Bob’s resource using the hidden credentials. Suppose Bob’s resourceM can

only be accessed by a student. Alice has a student credentialcred, i.e., cred.nym = Alice

andcred.attr = stu. To accessM , Alice sends her usernameAlice to Bob who responds

with I(M,Alice||stu). Alice uses her credentialcred to decryptI(M,Alice||stu) and

obtainsM . Bob does not learn whether Alice possesses a student credential or not from

the interaction.

2.5 Scrambled Circuit Evaluation

The Scrambled Circuit Evaluation (SCE) protocol was developed by Yao [23]. This

protocol runs between two players: ageneratorand anevaluator. In the SCE protocol,

the generator “scrambles” the circuit in some manner, then two players interact, the eval-

uator “evaluates” the scrambled circuit, and finally the evaluator sends the result of the

evaluation to the generator who recovers the final result.

Let x be the evaluator’s input, andy be the generator’s input. Letf : {0, 1}∗ ×

{0, 1}∗ → {0, 1}∗ be a function known to both parties. In the end, both parties learn

f(x, y). The SCE protocol takes the following steps:

Encrypting the circuit Assume thatEk [M] is a semantically secure encryption function

for the messageM using the keyk. Suppose the circuit for the functionf(x, y)

consists ofs gatesg1, . . . , gs and t wiresw1, . . . , wt, where each gategi has two

input wires and one output wire; we usegi to also denote the function{0, 1}2 →

{0, 1} computed by the gate. The generator scrambles the circuit asfollows.

12

1. The generator chooses2t random keysk0
1, k

1
1, . . . , k

0
t , k

1
t and assigns a pair of

random keys{k0
i , k

1
i } to each wirewi for 1 ≤ i ≤ t.

2. For each gategi in the circuit, the generator constructs a tableTi as follows:

(a) Letwa andwb be the input wires of gategi, andwc be the corresponding

output wire, where1 ≤ a, b, c ≤ t.

(b) The generator computes the following four values:

m0,0 = Ek0

b

[

Ek0
a

[

k
gi(0,0)
c || 0σ

]]

m0,1 = Ek1

b

[

Ek0
a

[

k
gi(0,1)
c || 0σ

]]

m1,0 = Ek0

b

[

Ek1
a

[

k
gi(1,0)
c || 0σ

]]

m1,1 = Ek1

b

[

Ek1
a

[

k
gi(1,1)
c || 0σ

]]

wheremx,y (for x ∈ {0, 1} andy ∈ {0, 1}) corresponds to the case that

the input wirewa has valuex and the input wirewb has valuey, and

k
gi(x,y)
c ||0σ means concatenating the random value corresponds to the wire

wc having valuegi(x, y) ∈ {0, 1} with a binary string ofσ 0’s.

(c) The generator randomly permutes the set{m0,0,m0,1,m1,0,m1,1} and stores

it in the tableTi.

For example, the table for the gategi when it is an AND gate would contain

the following four entries in some random order:

m0,0 = Ek0

b

[

Ek0
a
[k0

c || 0
σ]

]

m0,1 = Ek1

b

[

Ek0
a
[k0

c || 0
σ]

]

m1,0 = Ek0

b

[

Ek1
a
[k0

c || 0
σ]

]

m1,1 = Ek1

b

[

Ek1
a
[k1

c || 0
σ]

]

If the evaluator knows (k1
a,k1

b), the two keys corresponding to the1 value in

wireswa andwb, and tries to decrypt the four entries, the evaluator will find

garbage when trying to decryptm0,0,m0,1,m1,0 and successfully decryptm1,1.

The evaluator can tell that the decryption ofm1,1 is successful by finding the

binary string0σ in the decrypted message. This enables the evaluator to learn

k1
c , the value corresponds to the wirewc being1. Of course,wc should be

1 when bothwa andwb are 1. If the evaluator knows (k1
a,k0

b), then it can

successfully decryptm1,0 and recoverk0
c . In the other two cases, the evaluator

recoversk0
c as well.

13

3. The generator sendsT1, . . . , Ts to the evaluator. The generator sends also the

topology of the circuit, so that the evaluator knows which gate connects to

which.

Coding the input The evaluator learns a random key for each input wire as follows.

1. For each wirewi that corresponds to the generator’s input, the generator sends

k0
i to the evaluator if his input is 0, he sendsk1

i if his input is 1.

2. For each wirewj that corresponds to the evaluator’s input, the generator and

the evaluator engage in a 1-out-of-2 oblivious transfer protocol [24–26] in

which the generator providesk0
j andk1

j , and the evaluator choosesk0
j if her

input is 0, and choosesk1
j otherwise.

Evaluating the circuit The evaluator evaluates the scrambled circuit gate-by-gate, start-

ing from the circuit-input gates and ending at the circuit-output gates. Each gatesgi

is evaluated as follows:

1. The evaluator can evaluate gategi only if she has learned one key for each of

the input wires.

2. Let wa, wb, wc be the corresponding input wires and output wire of gategi.

Assumekx
a andky

b are the keys the evaluator learned that correspond to wires

wa andwb, respectively.

3. LetTi be the table corresponding to gategi. The evaluator useskx
a andky

b to de-

crypt each entry inTi and succeeds in the entrymx,y = Ek
y
b

[

Ekx
a

[

k
gi(x,y)
c

]]

.

Thus she learnskgi(x,y)
c , one of the two keys corresponding to the output wire

wc.

Finally, the evaluator obtains the output of the scrambled circuit, and sends it back

to the generator. The generator learnsf(x, y) and reveals the result to the evaluator.

The SCE protocol is secure in honest-but-curious model [23, 26]. As for the secu-

rity of each gate, it is necessary to construct the table using a non-malleableencryption

14

scheme [27] (such as AES), to prevent the evaluator from making meaningful changes

in the plaintext by changing the ciphertext. Provided that the encryption scheme is non-

malleable, knowledge of one key for each of the input wires discloses only one key of the

output wire. The other key is unknown to the evaluator. As forthe security of the entire

circuit, the oblivious transfer protocol ensures that the evaluator learns just one key per in-

put wire, and the generator does not learn which value the evaluator chose. Therefore, the

evaluator can obtain one and only one key per wire in the circuit. As the mapping between

the (two) random keys of each wire and the Boolean values is unknown to the evaluator,

she learn neither the type of each gate, nor any intermediateresults of the original circuit.

15

3 OACERTS: OBLIVIOUS ATTRIBUTE CERTIFICATES

Privacy is an important concern in the use of Internet and webservices. When the attribute

information in a certificate is sensitive, the certificate holder may want to disclose only

the information that is absolutely necessary to obtain services. Consider the following

example.

Example 1 A senior citizen Alice requests from a service provider Bob a document that

can be accessed freely by senior citizens. Alice wants to useher digital driver license to

prove that she is entitled to free access. Alice’s digital driver license certificate has fields

for an identification number, expiration date, name, address, birth-date, and so on; and

Alice would like to reveal as little information as possible.

In the above example, suppose Alice’s digital driver license is an X.509 certificates [28],

Alice first sends her request to Bob who responds with the policy that governs access to

that document. Alice then sends her driver license certificate to Bob. After Bob receives

the certificate from Alice and verifies it, he grants Alice access to the document. Ob-

serve that, in this scenario, Bob learns all the attribute information (i.e., name, address,

birth-date,etc.) in Alice’s driver license.

Suppose Alice’s digital driver license is an anonymous credential [29–33], after Bob

reveals his access control policy, Alice can prove to Bob thatshe is a senior citizen without

leaking any additional information. Now it might seem that Alice needs to reveal at least

the fact that she is a senior citizen, i.e., her birth-date isbefore a certain date. However,

even this seemingly minimal amount of information disclosure can be avoided. Suppose

that the document is encrypted under a key and the encrypted document is freely available

to everyone. Further suppose a protocol exists such that after the protocol is executed

between Alice and Bob, Alice obtains the key if and only if the birth-date in her driver

license is before a certain date and Bob learns nothing about Alice’s birth-date. Under

16

these conditions, Bob can perform access control based on Alice’s attribute values while

being oblivious about Alice’s attribute information.

We call thisoblivious access control, because Bob’s access control policies for his

resources are enforced without Bob learning any informationabout Alice’s certified at-

tribute values, not even whether Alice satisfies his policy or not. It is important to point

out that a process that protects Alice’s attributes from Bob is not only to Alice’s advantage

but also to Bob’s: Bob no longer needs to worry about rogue insiders in his organization

illicitly leaking (or selling) Alice’s private information, and may even lower his liability

insurance rates as a result of this. Privacy-preservation is a win-win proposition, one that

is appealing even if Alice and Bob are honest and trustworthy entities.

To enable such oblivious access control, we propose Oblivious Attribute Certificates

(OACerts), a scheme for using certificates to document sensitive attributes. The basic idea

of OACerts is quite simple. Instead of storing attribute values directly in the certificates,

a certificate authority (CA) stores the cryptographic commitments [14, 34–36] of these

values in the certificates. Using OACerts, a user can selectwhichattributes to use as well

ashow to use them. An attribute value in an OACert can be used in several ways: (1)

by opening a commitment and revealing the attribute value, (2) by using zero-knowledge

proof protocols [37–40] to prove that the attribute value satisfies a condition without re-

vealing other information, and (3) by running a protocol so that the user obtains a message

only when the attribute value satisfies a condition, withoutrevealing any information about

the attribute value. The idea of storing cryptographic commitments of attribute values in

certificates was used in anonymous credentials [29–33]; however, we are not aware of

prior work on the oblivious usage of such attribute values.

In Example 1, suppose that the driver-license certificate that Alice has is an OACert.

With attribute values committed rather than stored in the clear in her certificates, Alice

can send her certificate to Bob without revealing her birth-date or any other attribute in-

formation. Using zero-knowledge proof protocols [37–40],Alice can prove to Bob that

her committed birth-date is before a certain date without revealing any other information.

However, our goal is that Bob should learn nothing about Alice’s birth-date, not even

17

whether Alice is a senior citizen or not. To enable obliviousaccess control, we need to

solve the following two-party Secure Function Evaluation (SFE) problem:

Problem 1 Let commit be a commitment algorithm, letParams be public parameters for

commit, andPred be a public predicate. Leta be a private number (Alice’s attribute value),

c = commitParams(a, r) be a commitment ofa under the parametersParams with a random

numberr, andM be a private message (Bob wants Alice to seeM if and only if a satisfies

Pred). Alice and Bob jointly compute a familyF of functions, parameterized bycommit

andPred. Both parties havecommit, Pred, Params, andc. Bob has private inputM . Alice

has private inputa andr. The functionF is defined as follows.

F [commit,Pred]Bob(Params, c,M, a, r) = ∅

F [commit,Pred]Alice(Params, c,M, a, r)

= {
M if c = commitParams(a, r) ∧ Pred(a) = true;

∅ otherwise.

whereF [commit,Pred]Alice represents Alice’s output,F [commit,Pred]Bob represents Bob’s

output. In other words, our goal is that Bob learns nothing andAlice learnsM only when

her committed attribute value satisfies the predicatePred.

The preceding problem can be solved using general solutionsto two-party SFE [23,

26,41]; however, the general solutions are inefficient, as commitment verification is done

within the SFE. We propose an Oblivious Commitment Based Envelope (OCBE) scheme

that solves the above two-party SFE problem efficiently. Formal definition of OCBE will

be given in Section 3.3. Informally, an OCBE scheme enables a sender Bob to send an

envelope (encrypted message) to a receiver Alice, such thatAlice can open the envelope

if and only if her committed value satisfies the predicate. AnOCBE scheme isoblivious

if at the end of the protocol the sender cannot learn any information about the receiver’s

committed value. An OCBE scheme issecure against the receiverif a receiver whose

committed value does not satisfy the predicate cannot open the envelope.

18

We develop efficient OCBE protocols for the Pedersen commitment scheme 2.1 and

six kinds of comparison predicates:=, 6=, <,>,≤,≥, as well as conjunctions and disjunc-

tions of multiple predicates. These predicates seem to be the most useful ones for testing

attribute values in access control policies. We present a protocol (called EQ-OCBE) for

equality predicates and a protocol (called GE-OCBE) for greater-than-or-equal-to predi-

cates and prove that these protocols are provably secure in the Random Oracle Model [13].

These protocols use cryptographic hash functions to efficiently derive symmetric encryp-

tion keys from a shared secret, and random oracles are used tomodel such usage of hash

functions. We also show that it is easy to construct OCBE protocols for other comparison

predicates using variants of EQ-OCBE and GE-OCBE.

3.1 Architecture of OACerts

In this section, we present the architecture of the OACerts scheme. There are three

kinds of parties in the OACerts scheme: certificate authorities (CA’s), certificate holders,

and service providers. A CA issues OACerts for certificate holders. Each CA and each

certificate holder has a unique public-private key pair. A service provider, when provid-

ing services to a certificate holder, performs access control based on the attributes of the

certificate holder, as certified in OACerts.

An OACert is a digitally signed assertion about the certificate holder by a CA. Each

OACert contains one or more attributes. We useattr1, . . . , attrm to denote them attribute

names in an OACert, andv1, . . . , vm to denote the correspondingm attribute values. Let

ci = commitParams(vi, ri) be the commitment of attribute valuevi for 1 ≤ i ≤ m with ri

being the secret random number. The attribute part of the certificate consists of a list of

m entries, each entry is a tuple〈attri, ci〉. When the commitment scheme used is secure,

the certificate itself does not leak any information about the sensitive attributes. Thus, an

OACert’s content can be made public. A certificate holder can show his OACerts to others

without worrying about the secrecy of his attributes.

19

In many commitment schemes [14, 34, 35], the input domain is the set of integers;

hence it is necessary to map an arbitrary attribute value to an integer in OACerts. For

example in a digital driver license, gender can be expressedby a single bit, state can

be expressed by a number from[1, 50], birth-date can be expressed by the number of

days between January 1st of 1900 and the date of birth. In an another example, suppose

a digital student certificate contains an attribute for major. As the number of different

majors is finite (and quite small in practice), we can easily encode each major with a

number. There are certain attributes of which the values could be arbitrary, such as name

or home address. We cannot represent those attribute valuesdirectly with integers, in this

case, the CA hashes the attribute values using a collision-free hash function and commits

the hash values in OACerts.

OACerts can be implemented on existing public-key infrastructure standards, such as

X.509 Public Key Infrastructure Certificate [28, 42] and X.509 Attribute Certificate [43].

The commitments can be stored in X.509v3 extension fields, inwhich case a certificate

includes also the following fields: serial number, validityperiod, issuer name, user name,

certificate holder’s public key, and so on. The distributionand revocation of OACerts can

be handled using existing infrastructure and techniques. See Section 3.5 for our imple-

mentation and performance measurements of OACerts.

There are four basic protocols in the OACerts scheme:

• CA-Setup: A CA picks a signature schemeSig with a public-private key pair

(KCA, K
−1
CA), and a commitment schemecommit with public parametersParams.

The public parameters of the CA are{Sig, KCA, commit,Params}.

• Issue Certificate: A CA uses this protocol to issue an OACert to a user. A user

Alice generates a public-private key pair(KA, K
−1
A) and sends to the CA a certificate

request that includes her public keyKA and attributes information(attr1, v1), . . .,

(attrm, vm), signed byK−1
A . After the CA verifies the correctness ofv1, . . . , vm

(most likely using off-line methods), it issues an OACert forAlice. In this process,

the CA computesci = commitParams(vi, ri) and sends the certificate along with

20

the secretsr1, . . . , rm to Alice. Alice stores the certificate and stores the values

(v1, r1), . . . , (vm, rm) together with her private keyK−1
A . The role of the CA here is

similar to the role of a CA in the traditional Public Key Infrastructure.

• Alice-Bob initialization: Alice, a certificate holder, establishes a secure commu-

nication channel with Bob, a service provider, and at the sametime proves to Bob

the ownership of an OACert. In this protocol, Bob checks the signature and the va-

lidity period of the certificate, then verifies that the certificate has not been revoked

(using, e.g., standard techniques in [28]). Bob also verifiesthat Alice possesses

the private key corresponding toKA in the OACert. All these can be done using

standard protocols such as TLS/SSL [44].

Alice then requests the decryption key for an encrypted document, and Bob sends

Alice his policy.

• Alice-Bob Interaction: Alice can show any subset of her attributes using the show

attribute protocols. These protocols are executed after the show certificate proto-

col, through a secure communication channel between Alice and Bob. To show

t attributes, Alice runs show attribute protocolst times. There are three kinds of

show attribute protocols; each gives different computational and communication

complexity and privacy level.

1. direct show: Alice gives vi and ri directly to Bob, and Bob verifiesci =

commit(vi, ri). This protocol is used when Alice trusts Bob with the attribute

values, or when Alice is very weak in computational power. This protocol is

the most efficient one but offers the least privacy protection. Bob not only

knowsvi but also can convince others that Alice has attributevi.

2. zero-knowledge show:Alice uses zero-knowledge proofs to provevi satisfies

some properties Bob requires, e.g., is equal to some value or belongs to some

range. This kind of protocols is more expensive than the direct show, but offers

better privacy protection. Bob learns whethervi satisfies his policies, but he

21

cannot convince others about this. Bob also doesn’t learn theexact value ofvi

provided that multiple values satisfy his policies.

3. oblivious show:Alice interacts with Bob using OCBE protocols. Bob learns

nothing aboutvi. This kind of oblivious show protocols offers the best privacy

protection among the three types of show protocols. Often times, it has similar

or less computation than the zero-knowledge show protocols.

In practice, Alice and Bob may not share the same CA. That is, Bob may not know

the CA that issues the OACerts to Alice and Bob may not trust that CA. We can handle

this problem using a hierarchy of CAs with only the root of the hierarchy being trusted

by Bob. For example, Alice is a student at StateU, and has a student certificate issued by

College of Science (CoS) of StateU using the OACerts scheme. CoS has a valid certificate

issued by StateU; and StateU is certified by Accreditation Board for Engineering and

Technology (ABET). The certificate chain to prove that Alice is a valid student takes

the formABET → StateU → CoS → Alice. There are three certificates associated

with this chain, where the first two certificates are regular certificates (as there are no

sensitive information in these certificates) and the last one is an OACert. Suppose Bob’s

policy is that only students in computer science can access the resource, and suppose Bob

trusts ABET. Alice can first show the certificate chain to Bob without leaking any attribute

information in her student certificate, and then run a zero-knowledge proof protocol to

prove that her major is computer science.

Another practical consideration is that different CAs may use different attribute names

for the same attribute. For example, Bureau of Motor Vehicles(BMV) may useDoB as

the attribute name for birth-date in the driver license, whereas a Bureau of Consular Af-

fairs may usedate of birth as the attribute name for birth-date in the passport. Alice and

Bob can use application domain specification documents [5,6]to achieve name agreement

between different attribute names. It is also possible thatdifferent CAs use different en-

coding methods to convert an attribute value to an integer. To address this problem, each

CA publishes its encoding methods online and signs them usingits private key. When

22

Alice shows her OACert to Bob, she also sends to Bob the encoding methods for her at-

tributes signed by her CA. Bob can then adjust his policy based on the encoding methods.

For example, in the digital driver license issued by BMV, birth-date field is encoded using

the number of days between January 1st of 1900 and the actual date of birth. Suppose

Bob’s policy is that Alice’s age must be between 30 and 40, Bob can convert his policy

to be that the value of birth-date in Alice’s OACert is betweena andb, wherea andb are

birth-date values corresponding to age 30 and age 40, respectively.

3.2 Applications of OACerts

In additional to enabling oblivious access control, OACertsand OCBE are useful in

the following settings.

Break policy cycles OACerts and OCBE can be used to break policy cycles (see [45]

for definition) in automated trust negotiation [7,9,10,46]. Consider the following scenario

where Alice and Bob want to exchange their salary certificates. Alice’s policy says that

she can show her salary certificate only to those whose salaryis great than $100k. Simi-

larly, Bob will reveal his certificate only to those who earn more than $80k a year. Using

current trust negotiation techniques, neither Alice nor Bobis willing to present her/his

certificate first. The technique developed in [45] does not work well here neither, because

the salary requirement in the policies is a range, not a specific value. Such problem can

be solved using OACerts and OCBE. Suppose both Alice and Bob use OACerts as their

salary certificates, Alice and Bob can first exchange their OACerts without revealing their

salary values, then Bob uses an OCBE scheme to send Alice his salary value together with

a non-interactive proof that the value sent is indeed the value committed in the OACerts,

on the condition that Alice can open them (i.e., the value and the proof) only if her salary

is more than $80k. Bob is certain that his salary figure is revealed to Alice only if Alice’s

income is more than $80k, thus Bob’s policy is enforced without him knowing Alice’s

salary value.

23

Improve the efficiency of trust negotiation The goal of automated trust negotiation [7,

9, 10, 46] is to establish trust between strangers through interactive disclosure of certifi-

cates. OACerts and OCBE can simplify the trust negotiation process by reducing the

rounds of interactions and the number of certificates exchanged. Consider the following

scenario where Bob is a web publisher and Alice is a senior citizen who wants to get ac-

cess to Bob’s resource. Bob’s policy requires Alice to be olderthan 60. On the other hand,

Alice only shows her birth-date to those who are a member of Better Business Bureau

(BBB). Using traditional trust negotiation techniques, Bob first shows his BBB certificate,

then Alice reveals her driver license, finally Bob sends Alicehis resource. The negotiation

could be more complicated (and take more rounds) if there is an access control policy for

Bob’s BBB certificate. Using OACerts, the trust between Alice andBob can be estab-

lished in one round – Bob sends his resource using an OCBE protocol such that Alice can

receive the resource if and only if she is a senior citizen.

3.3 Definition of OCBE

We now give a formal definition of OCBE. While the definition follows the usage

scenario described in Section 3.1 in general, it abstracts away some of the details in the

scenario that have been solved using OACerts and focuses on the parts that still need to

solved by the OCBE protocol.

Definition 3.3.1 (OCBE) An Oblivious Commitment-Based Envelope (OCBE) scheme

is parameterized by a commitment schemecommit. It involves a senderS, a receiverR,

and a trustedCA, and has the following phases:

CA-Setup CA takes a security parametert and outputs the following: the public para-

metersParams for commit, a setV of possible values, and a setP of predicates.

Each predicate inP maps an element inV to eithertrue or false. The domain of

commit[Params] containsV as a subset.

24

CA-Commit R chooses a valuea ∈ V (R’s attribute value) and sends toCA. CA picks a

random numberr and computes the commitmentc = commitParams(a, r). CA gives

c andr toR, andc to S.

Recall that in the actual usage scenario,CA does not directly communicate withR.

Instead,CA stores the commitmentc in R’s OACert certificate. The certificate is

then sent byR to S, enablingS to havec as if it is sent fromCA. Here we abstract

these steps away to haveCA sendingc to S. We stress thatCA doesnot participate

in the interactions betweenS andR.

Initialization S chooses a messageM ∈ {0, 1}∗. S andR agree1 on a predicatePred ∈

P.

Now S hasPred, c, andM . R hasPred, c, a, andr.

Interaction S andR run an interactive protocol, during which an envelope containing an

encryption ofM is delivered fromS toR.

Open After the interaction phase, ifPred(a) is true,R outputs the messageM ; otherwise,

R does nothing.

Let anadversarybe a probabilistic interactive Turing Machine [47]. An OCBE scheme

must satisfy the following three properties. It must be sound, oblivious, and semantically

secure against the receiver.

Sound An OCBE scheme issoundif in the case thatPred(a) is true, the receiver can

output the messageM with overwhelming probability,i.e., the probability that the receiver

cannot outputM is negligible.

Oblivious An OCBE scheme isoblivious if the sender learns nothing abouta, i.e., no

adversaryA has a non-negligible advantage against the challenger in the game described

1The main effect of having both the sender and the receiver to affect the predicate is that in the security
definitions both an adversarial sender and an adversarial receiver can choose the predicate they want to
attack on.

25

Challenger Adversary (sender)

1. runs CA-setup phase.
2. Params,V ,P

-

3. picksa1, a2 ∈ V.
4. a1, a2

�

5. choosesb ∈ {1, 2},
setsa = ab,
c = commitParams(a, r). 6. c

-

7. choosesPred ∈ P,
andM ∈ {0, 1}∗.

8. Pred
�

emulate the receiver emulate the sender
10. interaction

-�

11. b′
�

Adversary wins the game ifb = b′.

Figure 3.1. The attacker game for OCBE’s oblivious property. We al-
low the adversary to pick a predicatePred and two attribute valuesa1, a2

of her choice; yet the adversary still should not be able to distinguish a
receiver with attributea1 from one with attributea2.

in Figure 3.1 where the challenger emulatesCA and the receiver, and the adversary emu-

lates the sender. In other words, an OCBE scheme isoblivious if for every probabilistic

interactive Turing MachineA, | Pr [A wins the game in Figure 3.1]− 1
2
| ≤ f(t), wheref

is a negligible function int.

Secure against the receiver An OCBE scheme issecure against the receiverif the

receiver learns nothing aboutM whenPred(a) is false, i.e., no adversaryA has a non-

negligible advantage against the challenger in the game described in Figure 3.2 where the

challenger emulatesCA and the sender, and the adversary emulates the receiver.

We now argue that OCBE is an adequate solution to the two-party SFE problem in

Problem 1, by showing intuitively that the security properties defined for OCBE suffice to

prove that the scheme protects the privacy of the participants in the malicious model [26].

Observe that our definitions allow arbitrary adversaries, rather than just those following

26

Challenger Adversary (receiver)

1. runs CA-setup phase.
2. Params,V ,P

-

3. picksa ∈ V.
4. a

�

5. c = commitParams(a, r). 6. c, r
-

7. choosesPred ∈ P,
s.t.,Pred(a) = false, and
M1,M2 ∈ {0, 1}

∗.
8. Pred,M1,M2

�

9. choosesb ∈ {1, 2},
setsM = Mb.

emulate the sender emulate the receiver
10. interaction

-�

11. b′
�

Adversary wins the game ifb = b′.

Figure 3.2. The attacker game for OCBE’s security property against the
receiver. Even if we give the adversary the power to pick two equal-
length messagesM1 andM2 of her choice, she still cannot distinguish
an envelope containingM1 from one containingM2. This formalizes the
intuitive notion that the envelope leaks no information about its content.

27

the protocol (semi-honest adversaries). The oblivious property guarantees that the sender’s

view of any protocol run can be simulated using just the sender’s input, because one can

simulate a protocol run between the sender and receiver, andno polynomially bounded

sender can figure out the receiver’s input. Soundness and security against the receiver

guarantee that the receiver’s view can be simulated using just the receiver’s input and

output. If the receiver’s committed valuea satisfiesPred, then the messageM is in the

output, one can therefore simulates the senderS. If the receiver’s committed valuea

does not satisfyPred, one can simulate the sender with a arbitrary messageM ′ and no

polynomially bounded receiver can tell the difference.

The security properties defined for OCBE guarantee also the correctness [26] of the

OCBE protocol against malicious receivers. Our security definitions do not cover the

correctness of the protocol against malicious senders,i.e., if the receiver’s value does not

satisfy the predicate, a malicious sender may trick the receiver to output the messageM

which violates the correctness of the protocol2. However, this malicious behavior does not

make sense in the applications. If a malicious sender does not want to send the message

M , she can choose not to participate in the protocol; on the other hand, if a malicious

sender wants the receiver to seeM without satisfying her policy; she can choose to send

M directly rather than participating in the protocol.

We assume that the interaction phase of the OCBE scheme is executed on top of a pre-

viously established private communication channel between the sender and the receiver.

Recall that the certificate holder establishes an SSL channelwith the service provider us-

ing OACerts described in Section 3.1.

Note that the OCBE scheme itself does not have the non-transferability property. That

is, a legitimate receiver, whose attribute value satisfies asender’s predicate, can share the

valuesa, r, andc to others so that a non-legitimate receiver who knowsa, r, andc can

successfully obtain the sender’s message. However, we stress that the OCBE protocol

should always be used together with the disclosure of OACerts(see Section 3.1 for the

usage of OACerts). In other words, the receiver has to show that c is certified in his

2In such case, the views of the sender and receiver cannot be simulated in the ideal model.

28

OACerts and that he owns the OACerts. In order for a non-legitimate receiver to access the

sender’s message, the non-legitimate receiver has to know not onlya, r, c from a legitimate

receiver but also the private key to the legitimate receiver’s OACert. Therefore, non-

transferability is guaranteed in our scheme.

3.4 OCBE Protocols

In this section, we present two OCBE protocols using the Pedersen commitment scheme,

one for equality predicates, the other for greater-than-or-equal-to predicates. We then

sketch how to construct OCBE protocols for other comparison predicates. All arithmetic

in this section is assumed to bemod p unless otherwise specified.

3.4.1 EQ-OCBE: An OCBE Protocol For= Predicates

Our EQ-OCBE protocol runs a Diffie-Hellman style key-agreement protocol [48] with

the twist that the receiver can compute the shared secret if and only if the receiver’s com-

mitted valuea is equal toa0.

Protocol 1 (EQ-OCBE) Let E be a semantically secure symmetric encryption scheme

with keyspace{0, 1}s. Let H : Gq → {0, 1}s be a cryptographic hash function that

extracts a key forE from an element in the groupGq, the order-q subgroup ofZ∗
p. EQ-

OCBE involves a senderS, a receiverR, and a trustCA.

CA-Setup CA takes a security parametert and runs the setup algorithm of the Pedersen

commitment scheme to createParams = 〈p, q, g, h〉. CA also outputsV = Zq and

P = {EQa0
| a0 ∈ V}, whereEQa0

: V → {true, false} is a predicate such that

EQa0
(a) is true if a = a0 andfalse if a 6= a0.

CA-Commit R chooses an integera ∈ V and sends toCA. CA picks r ← Zq and

computes the commitmentc = gahr. CA givesc andr toR, andc to S.

Initialization S chooses a messageM ∈ {0, 1}∗. S andR agree on a predicateEQa0
∈

P.

29

Now S hasEQa0
, c, andM . R hasEQa0

, c, a, andr.

Interaction S picks y ← Z
∗
q, computesσ = (cg−a0)y, and then sends toR the pair

〈η = hy, C = EH(σ)[M]〉.

Open R receives〈η, C〉 from the interaction phase. IfEQa0
(a) is true, R computesσ′ =

ηr, and decryptsC usingH(σ′).

To see that EQ-OCBE is sound, observe that whenEQa0
(a) is true,

σ = (cg−a0)y = (gahrg−a0)y = (ga−a0hr)y = (hr)y = (hy)r = ηr = σ′.

Therefore the sender and receiver share the same symmetric key.

Also observe that the interaction phase of the EQ-OCBE protocol is one-round; it

involves only one message from the sender to the receiver. Inthe interaction and open

phases, the sender does two exponentiations and the receiver does one exponentiation.

The key idea of EQ-OCBE is that if the receiver’s committed valuea is equal toa0, the

sender can computecg−a0 = ga−a0hr = hr. The sender now holdshr such that the receiver

knows the valuer. This achieves half of the Diffie-Hellman key-agreement protocol [48],

with h as the base. The sender then does the other half by sendinghy to the receiver. Thus

both the sender and receiver can computeσ = (cg−a0)y = hry. If the receiver’s committed

valuea is not equal toa0, then it is presumably hard for him to computeσ = (cg−a0)y

from hy andcg−a0. The receiver cannot effectively computelogh(cg
−a0), because if the

receiver is able to find a numberr′ = logh(cg
−a0), he can break the binding property of

the commitment scheme,i.e., he finds a(a0, r
′) pair such thatga0hr′ = gahr.

Theorem 3.4.1 EQ-OCBE is oblivious.

Proof The interaction phase involves only one message from the sender to the receiver.

Among what the sender sees, the only piece of information that is related to the receiver’s

attribute valuea is the commitmentc. As the Pedersen commitment scheme is uncon-

ditionally hiding; c does not leakany information abouta. Thus EQ-OCBE is oblivious

even against an infinitely powerful adversary.

30

Theorem 3.4.2 Under the CDH assumption onGq, the order-q subgroup ofZ∗
p, and when

H is modeled as a random oracle, EQ-OCBE is secure against the receiver.

Proof EQ-OCBE uses a semantically secure symmetric encryption algorithm. WhenH

is modeled as a random oracle, EQ-OCBE is secure against the receiver when no receiver

whose committed value is not equal toa0 can compute with non-negligible probabilityσ =

(cg−a0)y, the secret that the sender uses to derive the encryption key. More precisely, EQ-

OCBE is secure against the receiver if no polynomial-time adversary wins the following

game against the challenger with non-negligible probability (this game is instantiated from

the game in Figure 3.2 with details from the EQ-OCBE protocol):The challenger runs

the setup phase and sendsParams = 〈p, q, g, h〉 and the descriptions ofV andP to the

adversary. The adversary picks an integera ∈ V. The challenger choosesr ← Zq

and computes the commitment ofa as c = gahr, and givesr and c to the adversary.

The adversary responds with an equality predicateEQa0
such thatEQa0

(a) is false. The

challenger then picksy ← Z
∗
q and sends to the adversaryhy. The adversary then outputs

σ, and the adversary wins the game ifσ = (cg−a0)y.

Given an attackerA that wins the above game with probabilityǫ, we construct another

attackerB that solves the CDH problem inGq with the same probability.B does the

following:

1. B, when givenp, q, h ∈ Gq, h
x, hy, givesParams = 〈p, q, hx, h〉 and the descriptions

of V = Zq andP = {EQa0
| a0 ∈ V} toA. Let g denotehx.

2. B receives an integera ∈ Zq from A, picksr ← Zq, computesc = (hx)ahr, and

sendsr andc toA.

3. B receives an equality predicateEQa0
fromA wherea 6= a0, and sendshy toA.

4. B receivesσ fromA, computesδ = σh−ry, and outputsδ(a−a0)−1 mod q.

WhenA wins the game,σ = (cg−a0)y = (ga−a0hr)y = (gy)a−a0hry, thenδ =

σh−ry = (gy)a−a0 = (hxy)a−a0. B outputsδ(a−a0)−1 mod q = hxy.

31

B succeeds in solving the CDH problem ifA wins the above game,i.e., successfully

computes(cg−a0)y.

3.4.2 GE-OCBE: An OCBE Protocol For≥ Predicates

In this section, we present an OCBE protocol (GE-OCBE) for the Pedersen commit-

ment scheme with greater-than-or-equal-to predicates. The basic idea of the GE-OCBE

protocol is as follows. Letℓ be an integer such that2ℓ < q/2. Let a anda0 be two num-

bers in[0..2ℓ − 1], and letd = ((a − a0) mod q). Let c = gahr be a commitment ofa

wherer is known to the receiver, thencg−a0 = ga−a0hr = gdhr is a commitment ofd that

the receiver knows how to open. Notice that ifa ≥ a0 thend ∈ [0..2ℓ − 1], otherwise

d 6∈ [0..2ℓ − 1].

If a ≥ a0, the receiver generatesℓ new commitmentsc0, . . . , cℓ−1, one for each of

the ℓ bits of d. The sender picks a random encryption keyk and split it intoℓ secrets

k0, . . . , kℓ−1. Then the sender and receiver run a “bit-OCBE” protocol for each commit-

ment, i.e., if ci is a bit-commitment, the receiver obtainski, otherwise he gets nothing,

while the sender learns nothing about the value committed underci.

Protocol 2 (GE-OCBE) Let E be a semantically secure symmetric encryption scheme

with keyspace{0, 1}s. Let H : Gq → {0, 1}s andH ′ : {0, 1}sℓ → {0, 1}s be two

cryptographic hash functions. Our GE-OCBE protocol involvesa senderS, a receiverR,

and a trustCA.

CA-Setup CA takes two parameters, a security parametert and a parameterℓ (which

specifies the desired range of the attribute values).CA runs the setup algorithm of the

Pedersen commitment scheme to createParams = 〈p, q, g, h〉 such that2ℓ < q/2.

CA also outputsV = [0..2ℓ − 1] andP = {GEa0
| a0 ∈ V}, whereGEa0

: V →

{true, false} is a predicate such thatGEa0
(a) is true if a ≥ a0 andfalse otherwise.

CA-Commit R chooses an integera ∈ V and sends toCA. CA picks r ← Zq and

computes the commitmentc = gahr. CA givesc andr toR, andc to S.

32

Initialization S chooses a messageM ∈ {0, 1}∗. S andR agree on a predicateGEa0
∈ P.

Now S hasGEa0
, c, andM . R hasGEa0

, c, a, andr.

Interaction Let d = ((a − a0) mod q), GEa0
(a) = true if and only if d ∈ [0..2ℓ − 1].

Note thatcg−a0 = gdhr is a commitment ofd thatR can open.

1. R picks r1, . . . , rℓ−1 ← Zq and setsr0 = r −
∑ℓ−1

i=1 2iri mod q. When

GEa0
(a) = true, let dℓ−1 . . . d1d0 be the binary representation ofd, i.e., d =

d02
0 + d12

1 + · · · + dℓ−12
ℓ−1. WhenGEa0

(a) = false, R randomly picks

d1, d2, . . . , dℓ−1 ← {0, 1}, and setsd0 = d −
∑ℓ−1

i=1 2idi mod q. R computes,

for 0 ≤ i ≤ ℓ − 1, the commitmentci = commit(di, ri) = gdihri. R sends

c0, . . . , cℓ−1 to S.

2. S verifies thatcg−a0 =
∏ℓ−1

i=0(ci)
2i

. S randomly choosesℓ symmetric keys

k0, . . . , kℓ−1 ∈ {0, 1}
t and setsk = H ′(k0|| · · · ||kℓ−1). S picks y ← Z

∗
q,

computesη = hy andC = Ek[M]. For each0 ≤ i ≤ ℓ − 1, S computes

σ0
i = (ci)

y, σ1
i = (cig

−1)y, C0
i = H(σ0

i)⊕ ki, andC1
i = H(σ0

i)⊕ ki. S sends

toR the tuple〈η, C0
0 , C

1
0 , . . . , C

0
ℓ−1, C

1
ℓ−1, C〉.

Open R receives〈η, C0
0 , C

1
0 , . . . , C

0
ℓ−1, C

1
ℓ−1, C〉 from the interaction phase. IfGEa0

(a)

is true, d =
∑ℓ−1

i=0 2idi wheredi ∈ {0, 1}. For each0 ≤ i ≤ ℓ − 1, R computes

σ′
i = ηri, and obtainsk′i = H(σ′

i)⊕ C
di

i . R then computesk′ = H ′(k′0|| · · · ||k
′

ℓ−1),

and decryptsC usingk′.

To see that the GE-OCBE protocol is sound, observe that whenGEa0
(a) is true,

d0, . . . , dℓ−1 are either 0 or 1. If the receiver follows the protocol, the sender will suc-

ceed in verifying
∏ℓ−1

i=0(ci)
2i

=
∏ℓ−1

i=0(g
dihri)2i

= gdhr = cg−a0. For each0 ≤ i ≤ ℓ− 1,

if di = 0, σ0
i = (ci)

y = (gdihri)y = (hy)ri = ηri = σ′
i, the receiver can compute

ki = C0
i ⊕ H(σ′

i); if di = 1, σ1
i = (cig

−1)y = (gdi−1hri)y = (hy)ri = ηri = σ′
i, the

receiver can computeki = C1
i ⊕ H(σ′

i). As k = H ′(k0|| · · · ||kℓ−1), the receiver can

successfully obtaink. Thus the sender and receiver share the same symmetric keyk if

GEa0
(a) is true.

33

The interaction phase of the GE-OCBE protocol is two rounds. The receiver does

about2ℓ exponentiations. The sender does aboutℓ exponentiations (observe thatσ1
i can

be computed asσ0
i g

−y, whereg−y needs to be computed only once).

We briefly sketch the idea why the receiver cannot obtainM if GEa0
(a) is false. If the

receiver follows the protocol, thend1, . . . , dℓ−1 ∈ {0, 1} andd0 6∈ {0, 1}. The receiver

can successfully computek1, . . . , kℓ−1, but fails to computek0 because he can compute

neitherσ0
0 = (c0)

y = (gd0hr)y nor σ1
0 = (c0g

−1)y = (gd0−1hr)y. Even if the receiver

does not follow the protocol, it is impossible for him to findd0, . . . , dℓ−1 ∈ {0, 1} and

r0, . . . , rℓ−1 such thatcg−a0 =
∏ℓ−1

i=0(ci)
2i

andci = gdihri. Suppose the receiver finds

suchd0, . . . , dℓ−1 ∈ {0, 1} andr0, . . . , rℓ−1; let d′ =
∑ℓ−1

i=0 di2
i ∈ [0..2ℓ − 1] andr′ =

∑ℓ−1
i=0 ri2

i (mod q), then

ga−a0hr = cg−a0 =
∏ℓ−1

i=0(ci)
2i

=
∏ℓ−1

i=0(g
dihri)2i

= g
Pℓ−1

i=0
di2

i

h
Pℓ−1

i=0
ri2

i

= gd′hr′ .

As a− a0 6∈ [0..2ℓ− 1] andd′ ∈ [0..2ℓ− 1], d′ 6= a− a0, the receiver is able to finda− a0,

r, d′, andr′ such thatga−a0hr = gd′hr′, which breaks the binding property of the Pedersen

commitment scheme.

Theorem 3.4.3 GE-OCBE is oblivious.

Proof Consider the game for the oblivious property of OCBE (in Figure 3.1), let us

examine what an adversary would see in the case of GE-OCBE. The adversary sees a

commitmentc andℓ commitmentsc0, . . . , cℓ−1 such thatcg−a0 =
∏ℓ−1

i=0(ci)
2i

. The joint

distribution ofc, c0, . . . , cℓ−1 is independent of whether the challenger pickeda0 or a1, as

c, c1, . . . , cℓ−1 are totally random (because of the random choices ofr, r1, . . . , rℓ−1), and

c0 is always equal tocg−a0

∏ℓ−1
i=1(ci)

−2i

. GE-OCBE is oblivious even against an infinitely

powerful adversary.

Theorem 3.4.4 Under the CDH assumption onGq, the order-q subgroup ofZ∗
p, and when

H andH ′ are modeled as random oracles, GE-OCBE is secure against the receiver.

Proof GE-OCBE uses a semantically secure symmetric encryption algorithm. When

H ′ is modeled as a random oracle, EQ-OCBE is secure against the receiver when no

34

receiver whose committed valuea does not satisfyGEa0
can compute with non-negligible

probabilityk0|| . . . ||kℓ−1, the secret that the sender uses to derive the encryption keyk. In

other words, ifGEa0
(a) is false, we need to show that no receiver can computek0, . . . , kℓ−1

with non-negligible probability. Recall that the receiver is givenC0
i = H(σ0

i) ⊕ ki and

C1
i = H(σ1

i) ⊕ ki, whenH is also modeled as a random oracle, the receiver has to know

eitherσ0
i or σ1

i to recoverki.

GE-OCBE is secure against the receiver if no polynomial-time adversary wins the

following game against the challenger with non-negligibleprobability (this game is in-

stantiated from the game in Figure 3.2 with details from the GE-OCBE protocol): The

challenger runs the setup phase and sendsParams = 〈p, q, g, h〉 and the descriptions ofV

andP to the adversary. The adversary picks an integera ∈ V. The challenger chooses

r ← Zq and computes the commitment ofa asc = gahr, and givesr andc to the adversary.

The adversary responds with a greater-than-or-equal-to predicateGEa0
such thatGEa0

(a)

is false. The adversary outputsℓ commitmentsc0, . . . , cℓ−1 such thatcg−a0 =
∏ℓ−1

i=0(ci)
2i

.

The challenger then picksy ← Z
∗
q and sends to the adversaryhy. The adversary then

outputsσ0, . . . , σℓ−1 andd0, . . . , dℓ−1 ∈ {0, 1}, and the adversary wins the game if each

0 ≤ i ≤ ℓ− 1, σi = (cig
−di)y holds.

Given an attackerA that wins the above game with probabilityǫ, we construct another

attackerB that solves the CDH problem inGq with the same probability.B does the

following:

1. B, when givenp, q, h ∈ Gq, h
x, hy, givesParams = 〈p, q, hx, h〉 and the descriptions

of V = Zq andP = {GEa0
| a0 ∈ V} toA. Let g denotehx.

2. B receives an integera ∈ Zq from A, picksr ← Zq, computesc = (hx)ahr, and

sendsr andc toA.

3. B receives a great-than-or-equal-to predicateGEa0
fromA wherea < a0. B com-

putesd = ((a− a0) mod q).

4. B receivesℓ commitmentsc0, . . . , cℓ−1 wherecg−a0 =
∏ℓ−1

i=0(ci)
2i

, and sendshy to

A.

35

5. B receivesσ0, . . . , σℓ−1, andd0, . . . , dℓ−1 fromA. B computesδ =
∏ℓ−1

i=0(σi)
2i

and

d′ =
∑ℓ−1

i=0 di2
i, and outputs(δh−ry)(d−d′)−1 mod q.

WhenA wins the game,σi = (cig
−di)y, then

δ =
∏ℓ−1

i=0(σi)
2i

=
∏ℓ−1

i=0((cig
−di)y)2i

= (g−d′
∏ℓ−1

i=0(ci)
2i

)y = (g−d′cg−a0)y = (gd−d′hr)y = g(d−d′)yhry.

B outputs(δh−ry)(d−d′)−1 mod q = (g(d−d′)y)(d−d′)−1 mod q = gy = hxy.

B succeeds in solving the CDH problem ifA wins the above game,i.e., successfully

computes(c0g−d0)y, . . . , (cℓ−1g
−dℓ−1)y, wherecg−a0 =

∏ℓ−1
i=0(ci)

2i

, andd0, . . . , dℓ−1 ∈

{0, 1}.

3.4.3 OCBE Protocols for Other Predicates

In this section, we first present two logical combination OCBE protocols, one for∧

(AND-OCBE), the other for∨ (OR-OCBE). Then we describe OCBE protocols for com-

parison predicates:> (GT-OCBE),≤ (LE-OCBE),< (LT-OCBE), 6= (NE-OCBE). Fi-

nally, we present an OCBE protocol for range predicates (RANGE-OCBE). Instead of for-

mally presenting these protocols, we briefly sketch the ideas. We useOCBE(Pred, a,M)

to denote an OCBE protocol with predicatePred and committed valuea, the receiver

outputsM if Pred(a) is true. Similar techniques have been used before in [30,49].

1. AND-OCBE: Suppose there exists OCBE protocols forPred1 andPred2, the goal

is to build an OCBE protocol for the new predicatePred = Pred1 ∧ Pred2. An

OCBE(Pred1∧Pred2, a,M) can be constructed as follows: In the interaction phase,

the sender picks two random keysk1 andk2 and setsk = H(k1||k2), whereH

is a cryptographic hash function. The sender then runs the interaction phases of

OCBE(Pred1, a, k1) andOCBE(Pred2, a, k2) with the receiver. Finally, the sender

sendsEk[M] to the receiver. The receiver can recoverM in the open phase only if

bothPred1(a) andPred2(a) are true.

36

2. OR-OCBE: An OCBE(Pred1 ∨ Pred2,M) can be constructed as follows: In the

interaction phase, the sender picks a random keyk. The sender then runs the in-

teraction phases ofOCBE(Pred1, a, k) andOCBE(Pred2, a, k) with the receiver.

Finally, the sender sendsEk[M] to the receiver. The receiver can recoverM in the

open phase if eitherPred1(a) or Pred2(a) is true.

3. GT-OCBE: For integer space,a > a0 is equivalent toa ≥ a0 + 1. An OCBE(>a0

, a,M) protocol is equivalent to anOCBE(≥a0+1, a,M) protocol.

4. LE-OCBE : The idea of LE-OCBE protocol is similar to the GE-OCBE protocol.

Observe thata ≤ a0 if and only if d = ((a0−a) mod q) ∈ [0..2ℓ− 1]. Let c = gahr

be a commitment ofa, thenga0c−1 = g(a0−a) mod qh−r mod q is a commitment ofd

such that the receiver knows how to open. The LE-OCBE protocol uses the same

method as in GE-OCBE.

5. LT-OCBE : For integer space,a < a0 is equivalent toa ≤ a0 − 1. An OCBE(<a0

, a,M) protocol is equivalent to anOCBE(≤a0−1, a,M) protocol.

6. NE-OCBE: a 6= a0 is equivalent to(a > a0)∨ (a < a0). Therefore, anOCBE(6=a0

, a,M) can be built asOCBE(>a0
∨ <a0

, a,M).

7. RANGE-OCBE: a0 ≤ a ≤ a1 is equivalent to(a ≥ a0) ∧ (a ≤ a1). Therefore, a

RANGE-OCBE can be built asOCBE(≥a0
∧ ≤a1

, a,M).

3.4.4 MOCBE: Multi-attribute OCBE

OCBE guarantees that, for the receiver to receive a message, her attribute committed

in her OACert must satisfy the sender’s policy. In many scenarios, access control policies

are based on multiple attributes rather than one. For example, a policy may require that

the receiver either has GPA more than 3.0 or is older than 21. This requirement involves

two attributea1 (GPA) anda2 (age), and the predicate for the sender is(a1 > 3.0) ∨

(a2 > 21). It is natural to extend OCBE to support multiple attributes, called MOCBE.

37

In this subsection, we present constructions of MOCBE for two types of multi-attribute

comparison predicates which we believe are useful in practice. Let⋄ denote a comparison

operation where⋄ ∈ {=, 6=, <,>,≤,≥}. Our constructions use the Pedersen commitment

scheme and use the OCBE protocols as sub-protocols.

Linear Relation Predicates The linear relation predicatesPred(a1, . . . , an) take the

form of a1b1 + · · · + anbn ⋄ e, whereb1, . . . , bn, ande are public integers fromV.

In other words,Pred(a1, . . . , an) is true if a1b1 + · · · + anbn ⋄ e is true, and isfalse

otherwise. The MOCBE protocol of this type of predicates can bebuilt as follows: Since

the Pedersen commitment scheme is a homomorphic commitmentscheme, the sender and

receiver each can compute the commitment ofa1b1+ · · ·+anbn (denoted asx) by comput-

ing cb11 c
b2
2 · · · c

bn
n (denote asc). Now both the sender and the receiver havec, the receiver

knows how to open the commitmentc, and we want the receiver to obtain the sender’s

message if and only ifx (the value committed inc) satisfiesx ⋄ e. We reduce the MOCBE

protocol to the OCBE protocols for comparison predicates.

General Comparison Predicates The idea of this construction comes from [49]. The

predicatePred(a1, . . . , an) is specified as a boolean circuit withn input and one output,

each inputi is associate with a predicateai ⋄ ei whereei is an integer inV. The circuit

consists of AND gates and OR gates; each gate has two or more inputs and one output.

Intuitively, a receiver makes an inputtrue if ai⋄ei is true. A receiver satisfies the predicate

if it makes the output of the circuittrue. The MOCBE protocol is as follows:

1. For eachi = 1..n, the sender chooses a random keyki and runs an OCBE protocol

with the receiver, sendingki in an envelope that can be opened only whenai ⋄ ei is

true.

2. The sender computes the keys associated with (the output of) each gate as follows,

starting from the input of the circuit. For an AND gate, letk(1), k(2), . . . , k(m) be

the keys associated with them inputs, then the key corresponding to the output is

k = k(1)⊕ . . .⊕ k(m). For an OR gate, letk(1), k(2), . . . , k(m) be the keys associated

38

with them inputs. The sender chooses a random keyk as the output key. The sender

then encryptsk under each ofk(1), k(2), . . . , k(m), and sends them ciphertexts to the

receiver.

3. The sender encrypts the messageM using the key associated with the circuit output

and sends the ciphertextC to the receiver.

It is not hard to see that if the receiver’s attributesa1, . . . , an satisfy the predicate

Pred(a1, . . . , an), then the receiver can obtain the key associated with the circuit output.

Thus the receiver is able to decryptC and obtainM .

3.5 Implementation and Performance

We have implemented a toolkit that generates X.509 certificates [28] that are also

OACerts using Java v1.4.2 SDK and JCSI PKI Server Library [50].In our implementation,

both the parameters of the Pedersen commitment scheme and commitments of certificate

holder’s attributes are encoded in the X.509v3 extension fields. Recall that the parameters

of the Pedersen commitment scheme are〈p, q, g, h〉; they are large integer numbers. The

commitments can also be viewed as large integers. We converteach of these integers

into an octet string and bind it with an unique object identifier (OID) [28], and place them

(octet string and OID) in the extension fields as a non-critical extension. Note that attribute

name is not encoded in the certificate. The CA can publish a listof attribute names and

their corresponding OID, so that service providers know which commitment corresponds

to which attribute. Our OACerts can be recognized by OpenSSL.

We implemented also the OCBE protocols and zero-knowledge proof protocols [35–

38] in Java with Java 2 Platform v1.4.2 SDK. We use the Pedersen commitment scheme

with security parametersp = 1024 bits andq = 160 bits. Thus the size of a commitment

is 1024 bits, or 128 bytes. We set the attribute values in OACerts to be unsigned long,i.e.,

ℓ = 32. In the implementation of the OCBE protocols, we use MD5 as the cryptographic

hash function, AES as the symmetric key encryption scheme. Given an arbitrary size

message, MD5 outputs a 128-bit message digest. In our setting,M is typically a 16-byte

39

symmetric key, the size ofE [M] is also 16 bytes using AES in ECB mode. In EQ-OCBE,

η is 128 bytes (1024 bits) andC is 16 bytes, the total size of communication is 144 bytes.

We ran our implementation on a 2.53GHz Intel Pentium 4 machine with 384MB RAM

running RedHat Linux 9.0. We simulate the certificate holder and service provider on the

same machine. Withp of size 1024 bits andq of size 160 bits in the Pedersen commitment

scheme, andℓ = 32, the performance of two zero-knowledge proof protocols andtwo

OCBE protocols is summarized in Table 3.1.

Table 3.1
Running time and size of communication on a 2.53GHz Intel Pentium 4
running RedHat Linux. Security parameters areℓ = 32, p = 1024 bits,
andq = 160 bits.

execution time communication size

Zero-knowledge proof thata = a0 28 ms 168 bytes

Zero-knowledge proof thata ≥ a0 2.2 s 15 KB

EQ-OCBE 75 ms 144 bytes

GE-OCBE 0.9 s 5.1 KB

40

4 POLICY-HIDING ACCESS CONTROL USING OACERTS

In attribute-based access control, as attribute information may be sensitive, the certificates

that contain attribute data need protection just as other resources do. Often times, the poli-

cies for determining who can access the resources are sensitive also and need protection

as well. Consider the following example.

Example 2 Bob is a bank offering certain special-rate loans and Alice would like to know

whether she is eligible for such a loan before she applies. Alice has a digital driver license

certificate issued by the state authority; the certificate contains her birth-date, address,

and other attribute data. Alice has also an income certificate issued by her employer

documenting her salary and the starting date of her employment. Bob determines whether

Alice is eligible for a special-rate loan based on Alice’s attribute information. For example,

Bob may require that one of the following two conditions holds: (1) Alice is over 30 years

old, has an income of no less than $43K, and has been in the current job for over six

months; (2) Alice is over 25 years old, has an income of no lessthan $45K, and has been

in the current job for at least one year.

Bob is willing to reveal that his loan-approval policy uses the applicant’s birth-date,

current salary, and the length of the current employment; however, Bob considers the

detail of his policy to be a trade secret and does not want to reveal it to others. Alice is

interested in this loan and would like to go forward; however, she wants to reveal as little

information about her attributes as possible. In particular, Bob shouldn’t learn anything

about her address (which is also in her driver license) or learn her actual birth-date. Ideally,

Alice wants Bob to know whether she is eligible for the loan, but nothing else.

In the above example, the policy is a commercial secret, and knowledge of Bob’s pol-

icy would compromise Bob’s strategy and invite unwelcome imitators. In other examples,

the motivation for hiding the policy is not necessarily protection from an evil adversary,

41

but simply the desire to prevent legitimate users from gaming the system;e.g., changing

their behavior based on their knowledge of the policy. This is particularly important for

policies that are not incentive-compatible in economic terms.

Motivated by the preceding applications, we introduce and study the problem ofpolicy-

hiding access control. In this framework, Bob has a private policy and Alice has several

sensitive certificates. In the end, Bob learns whether Alice’s attributes in her certificates

satisfy his policy but nothing else about her attribute values; at the same time, Alice does

not learn Bob’s policy except for what attributes are required for his policy.

One may tempt to use existing general solutions to the two-party Secure Function

Evaluation (2-SFE) [23, 26, 41] (e.g., Yao’s scramble circuit protocol [23]) for policy-

hiding access control. That is, Alice inputs her certificates and Bob inputs his policy; and

they run a 2-SFE protocol to evaluate Bob’s policy on Alice’s attributes in her certificates.

Such approach does not work well because (1) the function to compute in 2-SFE is public,

whereas the function (Bob’s policy) in policy-hiding accesscontrol is private; (2) as Alice

needs to input her certificates into 2-SFE, certificate verification, which involves verifying

digital signatures, needs to be done as a part of 2-SFE circuit evaluation. This is extremely

inefficient. Observe that Alice is not allowed to input her attribute values directly (instead

of her certificates), because, Alice otherwise can input arbitrary faked attribute values at

her will1.

To avoid verifying certificates within circuit evaluation,we use OACerts described in

Chapter 3. We introduce the notion ofCertified Input Private Policy Evaluation (CIPPE),

which enables policy-hiding access control using OACerts. Formal definition of CIPPE

will be given in Section 4.2. In CIPPE, Alice has private inputs x1, x2, · · · , xn, Bob has

a private functionf drawn from a familyF of functions (usuallyf outputs ‘yes’ or ‘no’;

however, we allow functions that output more than one bit of information), and Alice and

Bob sharec1, c2, · · · , cn, whereci is a cryptographic commitments ofxi, for 1 ≤ i ≤ n.

The objective of CIPPE is for both Alice and Bob to learn the result of f(x1, · · · , xn).

1In SFE, there is no way to prevent a dishonest party from changing its local input before the protocol
execution.

42

Bob should not learn anything aboutx1, . . . , xn; and Alice should not learn more than the

fact thatf ∈ F .

We develop a CIPPE protocol for certain families of functionsthat we believe are

useful for expressing policies. Our solution uses Yao’s scrambled circuit protocol [23,

51]. When a circuit is scrambled, the operation in each gate ishidden; however, the

topological structure of the circuit is not. Therefore, Alice could infer some information

about Bob’s policy by looking at the scrambled circuit if Bob constructs the circuit in the

naive way. To protect Bob’s private function, we develop an efficient approach to construct

circuits with uniform topology that can compute certain functions families. To ensure that

Alice can evaluate the scrambled circuit only with her attribute values as committed in

her certificates, we develop an efficient and provably secureCommitted-Integer based

Oblivious Transfer (CIOT) protocol. The computation and communication complexity of

the proposed CIPPE protocol is close to the complexity of the scramble circuit protocol

that computesf(x1, . . . xn) wheref is public, andx1, . . . , xn are not committed. The

CIPPE protocol is efficient; and we believe it can be deployed in practice (see [51] for an

implement of the scramble circuit protocol by Malkhiet al.).

The rest of this chapter is organized as follows. We first describe how CIPPE can be

used to enable policy-hiding access control in Section 4.1.Then we give a formal defini-

tion of CIPPE in Section 4.2. In the next two sections, we present two building blocks that

we build for CIPPE, one is circuit construction of policy functions with uniform topology,

the other is the CIOT protocol. In Section 4.5 we give an efficient construction for CIPPE.

4.1 Using OACerts and CIPPE for Policy-Hiding Access Control

In this section, we present a high-level framework for policy-hiding access control

using CIPPE. We describe how the policy-hiding access control in Example 2 can be

enabled. In what follows, we usecommit to denote the commitment algorithm of a com-

mitment scheme. LetParams denote the public parameters forcommit. To be secure, a

commitment scheme cannot be deterministic; thus a commitment of a valuea also depends

43

on an auxiliary input, a secret random valuer. We usec = commitParams(a, r) to denote a

commitment ofa. Figure 4.1 depicts how CIPPE can be used in the policy-hidingaccess

control. We observe that the two CA’s are involved only in issuing certificates to Alice.

When Alice is interacting with various servers such as Bob, theCA’s are not involved

and can be off-line. Note that Kantarcioglu and Clifton have proposed a similar privacy

protection model in [52].

Alice
Bob

BMV

4. Interaction

3.

1.

2. 2.

1.

Company C

����
����
����
����
����
����

����
����
����
����
����
����

Figure 4.1. An example of policy-hiding access control procedures be-
tween Alice and Bob.

1. CA Setup. Let Bureau of Motor Vehicles (BMV) be the CA who issues digital

driver licenses. BMV runs the CA setup program,i.e., BMV picks a signature

scheme, a commitment scheme denoted bycommit, a pair of public/private keys,

and the public parameters for the commitment scheme,Params. Let Company C be

Alice’s employer, the CA that issues an income certificate forAlice. Company C

runs the CA setup program analogously.

44

2. Alice-CA Interaction. In this phase, Alice obtains two OACerts, one from BMV

and the other from Company C. Alice applies for a digital driverlicense certificate

from BMV as follows. BMV first verifies the correctness of her attribute values

through some (possibly off-line) channels, then issues an OACert for Alice. The

OACert is signed using the BMV’s key and contains Alice’s public key, BMV’s

public key, and a commitment for each attribute value that isto be included in the

certificate. For example, letx be Alice’s birth-date (encoded as an integer), BMV

generates a random numberr, computesc = commitParams(x, r), and storesc in the

OACert. The BMV sends the signed OACert to Alice, together with all the secret

random values that have been used. Similarly Alice obtains an income certificate

from her employer Company C.

3. Alice-Bob Setup. Alice applies for a special-rate loan from Bob. Bob reveals that

the loan policy takes at most three attributes: birth-date,current salary, and the

length of current employment. Alice shows her driver license OACert and income

OACert to Bob. Alice then proves the ownership of her OACerts using the usual

techniques [28]. Recall that OACerts can be used as regular digital certificates (e.g.,

X.509 certificates) except the attribute values are stored in the committed form.

4. Alice-Bob Interaction. Alice and Bob run an interaction protocol, where Alice

inputs her attribute values and secret random values she hasstored from Phase 2

(Alice-CA Interaction) and Bob inputs his private policy function. In the end, both

Alice and Bob learn whether Alice satisfies Bob’s policy without getting other in-

formation about Alice’s attributes or Bob’s policy.

4.2 Definition of Certified Input Private Policy Evaluation

We now give a formal definition of CIPPE, which allows us to prove our protocol for

CIPPE is secure.

45

Definition 4.2.1 (CIPPE) A CIPPE scheme is parameterized by a commitment scheme

commit. A CIPPE scheme involves a clientC, a serverS, and a trustedCA, and has the

following four phases:

CA Setup CA takes a security parameterσ and another parameterℓ (which specifies the

desired range of the attribute values), and outputs public parametersParams for

commit. The domain ofcommit contains[0..2ℓ − 1] as a subset.CA sendsParams

toC andS.

Client-CA Interaction C choosesn valuesx1, . . . , xn ∈ [0..2ℓ − 1] (these areC ’s at-

tribute values) and sends them toCA. For eachi, 1 ≤ i ≤ n, CA generates a new

random numberri and computes the commitmentci = commitParams(xi, ri). CA

givesci andri toC, andci to S.

Recall that in the actual usage scenario in Section 4.1,CA does not directly com-

municate withS. Instead,CA verifiesC ’s attribute values before computing the

commitments and storingc1, . . . , cn into C ’s OACerts. The OACerts are then sent

byC to S, enablingS to have the commitment values as if they were sent fromCA.

Here we abstract these steps away to haveCA sendingci to S. We stress thatCA

doesnot directly participate in the policy-hiding access control process betweenC

andS.

Client-Server Setup S chooses a familyF of functions and sends the description ofF

to C (this models the fact thatF is public knowledge). Eachf in F mapsn ℓ-bit

integers to a bit,i.e., f : ([0..2ℓ − 1])n → {0, 1}. S chooses a functionf ∈ F

privately.

Now S hasc1, . . . , cn, andf . C hasc1, . . . , cn, x1, . . . , xn, andr1, . . . , rn.

46

Client-Server Interaction C andS run an interactive protocol. In the end, bothC andS

outputF (x1, r1, . . . , xn, rn, f), whereF takesc1, . . . , cn, andF as parameters, and

is defined as

F (x1, r1, . . . , xn, rn, f)

=







f(x1, . . . , xn) if f ∈ F ∧ ci = commit(ai, ri) for eachi

∅ otherwise.

When bothC andS are honest,C andS will output f(x1, . . . , xn) in this phase.

To avoid unnecessarily cluttering the exposition, in Definition 4.2.1 we assume that

there is only oneCA in a CIPPE scheme, and thatx1, . . . , xn are equal-length and are com-

mitted under the same commitment parameters. The definitionof CIPPE can be modified

to support multiple CA’s, different input lengths, and different commitment parameters.

As a matter of fact, we can easily adjust our CIPPE protocol to support the situation in

which eachxi is committed under a different set of commitment parameters.

Notion of Security

The security definitions we use follow [26,53,54]. We consider security against three

kinds of adversaries. Anadversaryis a probabilistic interactive Turing Machine [47]. A

honest-but-curiousadversary is an adversary who follows the prescribed protocol, and

attempts to learn more information than allowed from the execution. A weak-honestad-

versary [54] is an adversary who may deviate arbitrarily from the protocol, as long as her

behavior appears honest to parties executing the protocol.A maliciousadversary is an

adversary who may behave arbitrarily. When we consider malicious adversaries, there

are certain things we cannot prevent: an adversary (1) may refuse to participate in the

protocol, (2) may substitute its local input with somethingelse, and (3) may abort the pro-

tocol prematurely. When we consider weak-honest, we cannot prevent an adversary from

substituting her local input.

The security of a CIPPE protocol is analyzed by comparing whatan adversary can do

in the protocol to what she can do in the ideal model with a Trusted Third Party (TTP).

47

� � �� � � � � �� � �
	 �
 � � � �	
 � �� � � � � �

�� � � � � �� �� � � � � � �� � � � � � � �� � �
� � � � � ! " # $ % � & ' ' () * � $� � $+, & - . / 0 / 12 � � � � ! " � 3 45 � � & ' 6 7) " � � � � � � � � � �# � � � � # � 8 9 : 48 - 6 7 ; < (�

Figure 4.2. Ideal model for the CIPPE protocol

In the ideal model, as depicted in Figure 4.2, the client sends her private inputxi andri,

for 1 ≤ i ≤ n, to the TTP, and the server sends his private inputf to the TTP. The TTP

verifies thatci = commit(xi, ri) for eachi andf ∈ F , computesf(x1, . . . , xn), sends the

result back to the client and the server. If the verification fails, the TTP simply outputs a

special symbol∅.

The ideal model differs for honest-but-curious adversaries, weak-honest adversaries,

and malicious adversaries. In the ideal model for honest-but-curious adversaries, an hon-

est party outputs her output from the TTP, whereas an honest-but-curious party outputs

an arbitrary function from her initial input and the output she obtained from the TTP.

The ideal model for weak-honest adversaries is similar to the ideal model for honest-but-

curious adversaries, but differs in that a weak-honest adversary can substitute her input

before sending to the TTP. In the ideal model for malicious adversaries, a malicious ad-

versary can terminate the protocol prematurely, even at a stage when she has received her

output and the other party has not.

Definition 4.2.2 (Security) Let F be the function the client and server compute in the

interaction phase of a CIPPE scheme. LetΠ be the CIPPE protocol for computingF . We

model the client and server as a pair of admissible probabilistic polynomial-time machines,

48

where at least one of them is honest. ProtocolΠ securely computesF if for every pair of

admissible probabilistic polynomial-time machines(C∗, S∗) in real model, there exists

a pair of admissible probabilistic polynomial-time machines (C, S) in the ideal model,

such that the joint execution ofF under(C∗, S∗) in the real model is computationally

indistinguishable from the joint execution ofF under(C, S) in the ideal model.

Our construction for CIPPE is provably secure in the honest-but-curious model and

the weak-honest model. The server’s privacy is guaranteed against any malicious client.

A malicious server may learn additional information about aclient’s attributes; however,

this additional information is limited to at most one bit andsuch malicious behavior will

be detected by the client (see Section 4.5 for the detailed construction).

4.3 Building Circuits That Have Uniform Topological Structure

When a circuit is scrambled (refer to Chapter 2.5), the operation in each gate is hidden;

however, the topological structure of the circuit is not. Therefore, the client could infer

some information about the server’s function by looking at the scrambled circuit if the

server constructs the circuit in a naive way. To protect the server’s private function, we

present an approach to construct circuits that can compute afamily of functions and have

the same topological structure.

Function definition

We propose a familyF of functions that can express many policy functions in real

applications. We defineF as follows.F has four parametersℓ, n,m, andλ. Each function

f in F(ℓ, n,m, λ) takesm parametersy1, . . . , ym ∈ [0..2ℓ − 1] andn inputsx1, . . . , xn ∈

[0..2ℓ − 1], and maps them to{0, 1}. Let f(x1, . . . , xn) = p(xi1 op1 y1, xi2 op2 y2, · · · ,

xim opm ym), where1 ≤ i1, i2, . . . , im ≤ n, eachopi is one of the following predicates{=

, 6=, >,<,≥,≤}, andp is a disjunctive (or conjunctive) normal form in which the number

of disjuncts (or conjuncts) is no more thanλ.

49

If the server chooses a functionf from the familyF(ℓ, n,m, λ) of functions, the client

should not be able to distinguishf from any other functions in the family. For instance,

consider Example 2, Bob (the bank) can setn = 3,m = 8, λ = 4, and the policy function

is of the form:

f(x1, x2, x3) = (x1 ≥ 30 ∧ x2 ≥ 43000 ∧ x3 > 6) ∨

(x1 ≥ 25 ∧ x2 ≥ 45000 ∧ x3 > 12),

wherex1 denotes age,x2 denotes annual income in dollars, andx3 denotes length of

current employment in months. Alice learns thatx1, x2, andx3 are used for comparison

at most8 times, she would not learn information such as which values they are compared

with, and how many times each attribute is compared.

If Bob builds a circuit forf(x1, x2, x3) in a naive fashion, Alice can learn from the

topology of the circuit how many times eachxi is compared, what these comparison oper-

ators are, and some information about the structure of the policy function. One technical

difficulty in hiding such information is that each attributemay be used in multiple com-

parisons, and we want to hide the number of times it is used. A straightforward way to

do this is to usem circuits, each of which select one input from then inputs. This is

not efficient as it needsO(nm) gates. Our construction uses results from the literature on

permutation and multicast switching networks (see, for example [55–59]). Some of these

networks may be useful for constructing circuits for families of functions beyond the ones

considered in this chapter.

Basic circuit components

We introduce three basic circuit components that will be used in our construction. We

depict them in Figure 4.3.

1. Comparison circuit.Given twoℓ-bit integersx andy, the comparison circuit com-

putesx = y, x 6= y, x > y, or x < y. Observe thatx ≥ y andx ≤ y can be

represented asx > y − 1 andx < y + 1, respectively. Letxℓ−1 . . . x1x0 be the

binary representation ofx andyℓ−1 . . . y1y0 be the binary representation ofy.

50

k

nj

2j
1j

i

1

n

Pack Copy

k

2k

n

2i
1i

Input Output

x 3x2x1x0

(c)

(d)(b)

(a)
3y2y1y0y

Figure 4.3. Basic circuit components: (a) the structure of 4-bit compari-
son circuits, (b) the structure of 8-input logical operation circuits, (c) the
high-level schema for a generalizer circuit, (d) an (8,8)-generalizer,

• Circuit for x > y is
∨ℓ−1

i=0

(

xi ∧ ¬yi ∧
∧ℓ−1

j=i+1(xj = yj)
)

• Circuit for x < y is
∨ℓ−1

i=0

(

¬xi ∧ yi ∧
∧ℓ−1

j=i+1(xj = yj)
)

• Circuit for x = y is
∧ℓ−1

i=0(xi = yi)

• Circuit for x 6= y is
∨ℓ−1

i=0(xi 6= yi)

Note that the circuits forx > y andx < y have the same topology. To make the

structure of all comparison circuits uniform, we modify thecircuits forx = y and

x 6= y by adding some “dummy” gates. For example, the comparison circuit for

x = y could be
∧ℓ−1

i=0

(

(xi = yi) ∧
∧ℓ−1

j=i+1 g(xi, yi)
)

whereg(xi, yi) always outputs

51

1. Figure 4.3(a) shows the structure of 4-bit comparison circuits. Note that each

ℓ-bit comparison circuit requiresO(ℓ) gates (5ℓ− 4 gates).

2. Logical operation circuit.Givenm Boolean inputsa1, . . . , am, the logical circuit

computes
∨

i∈S ai or
∧

i∈S ai whereS ⊆ {1, 2, . . . ,m}. We can use a binary tree

structure to implement them-input logical circuit. For example, to compute the

logical formula
∨

i∈S bi, every gate in the binary tree computes∨; if i ∈ S we give

the corresponding wire valueai, otherwise, set value 0. Figure 4.3(b) shows a 8-bit

logical operation circuit. Note that them-input logical circuits requireO(m) gates

(m− 1 gates).

3. Generalizer circuit. An (n, n)-generalizer is ann-input andn-output switching

network, it passes each inputi to zero or more outputs. The existence of(n, n)-

generalizer withO(n) gates is demonstrated nonconstructively by Pipenger [55].

Ofman [60] gives a construction of a generalizer using the schema shown in Fig-

ure 4.3(c). In his construction, the network consists of twoparts: a pack network

and a copy network. The pack network packs those inputs having requests to con-

secutive positions. The copy network copies inputs to multiple outputs. The net-

work proposed by Ofman [60] requires3n log n gates. Thompson [56] improved

Ofman’s work and gives a construction using2n log n gates. The Thompson’s con-

struction uses a reversed butterfly network concatenated with a butterfly network.

Figure 4.3(d) is the Thompson’s construction of a(8, 8)-generalizer.

Our construction

Our construction takes the following three stages.

1. Copy Stage.The copy stage takesn ℓ-bit integersx1, . . . , xn and outputsm ℓ-bit

integers in which eachxi is copied to outputvi times wherevi ≥ 0 and
∑

vi = m.

To build the copy stage in circuit, we constructℓ identical(n,m)-generalizers, one

52

for each bit. A(n,m)-generalizer can be implemented by⌈m
n
⌉ numbers of(n, n)-

generalizer. This stage needsO(ℓm log n) gates (about2ℓm log n gates).

2. Comparison Stage.The comparison stage takesm ℓ-bit integers and makesm com-

parisons. This stage consists ofm comparison circuits, one for each(x, y) pair. This

stage needsO(ℓm) gates (about5ℓm gates).

3. Logical Computation Stage.Observe that all the disjunctive normal forms where

the number of conjunctions is no more thanλ can be expressed as
∨λ

j=1(
∧

i∈Sj
ai),

whereS1, S2, . . . , Sm ⊆ {1, 2, . . . ,m}. Such disjunctive normal forms can be im-

plemented usingλ m-input logical operation circuits and oneλ-input logical oper-

ation circuits. For eachm-input logical operation circuit, the input consists of the

m output bits from the comparison stage, the output is connected to the input wire

of the lastλ-input logical operation circuit. The conjunctive normal forms can be

implemented analogously. This stage needsO(λm) gates (aboutλm gates).

Figure 4.4 shows the structure of circuits that can compute the familyF(3, 3, 4, 4)

of functions. For the familyF(ℓ, n,m, λ) of functions, our circuit construction needs

O(ℓm log n+ λm) gates (around(2 log n+ 5)ℓm+ λm gates).

4.4 A Committed-Integer Based Oblivious Transfer Protocol

To build a CIPPE protocol using the scrambled circuit protocol, we have to ensure

that the client gets the keys of the input wires corresponding to her committed input. We

present a Committed-Integer based Oblivious Transfer (CIOT)protocol to achieve this.

A CIOT protocol involves a sender and a receiver. The receiverhas a committedℓ-bit

integerx, the sender hasℓ pairs of values(k0
1, k

1
1), · · · , (k

0
ℓ , k

1
ℓ), and both the sender and

receiver share the commitment ofx. In the end of the protocol, the receiver learns exactly

one key in each pair; furthermore, the keys she learns correspond to the bits inx. The

main idea of CIOT is as follows. Using the commitment ofx, the receiver generatesℓ new

commitments, one for each bit ofx. Then the sender and receiver run a modified version

of non-interactive oblivious transfer protocol [61,62] for each commitment.

53

Generalization Network

2x

4y3y2y1y

3x1x

L

C

LLLL

C CC

Stage
Computation
Logical

Copy
Stage

Stage
Comparison

Figure 4.4. An example circuit structure for the familyF of functions
with parametersℓ = 3, n = 3,m = 4, andλ = 4. There are 4 comparison
circuits in the comparison stage, and 5 logical operation circuits in the
logical computation stage.

Protocol 3 (CIOT Protocol) Let 〈p, q, g, h〉 be the public parameters of the Pedersen

commitment scheme. All arithmetic in this section ismod p unless specified otherwise.

Let x be an integer in[0..2ℓ − 1], andxℓ−1 . . . x1x0 be the binary representation ofx, i.e.,

x = x02
0 + x12

1 + · · · + xℓ−12
ℓ−1. Let c = commit(x, r) = gxhr be the commitment of

x with a randomr ∈ Zq.

Input The receiver hasx and r, and the sender hasℓ pairs of integers(k0
0, k

1
0), . . . ,

(k0
ℓ−1, k

1
ℓ−1). Both the sender and receiver havec.

Output The receiver learnskx0

0 , . . . , k
xℓ−1

ℓ−1 . The sender learns nothing.

54

1. The receiver decomposesc into ℓ commitments, one for each bit ofx. More specif-

ically, the receiver randomly picksr1, . . . , rℓ−1 ∈ Zq and setsr0 = r −
∑ℓ−1

i=1 2iri

mod q. The receiver computesci = commit(xi, ri) = gxihri for i = 0, 1, . . . , ℓ− 1,

and gives them to the sender. The sender checks that
∏ℓ−1

i=0(ci)
2i

= c. Observe that
∏ℓ−1

i=0(ci)
2i

=
∏ℓ−1

i=0(g
xihri)2i

= g
Pℓ−1

i=0
xi2

i

h
Pℓ−1

i=0
ri2

i

= gxhr = c.

2. Fori = 0, 1, . . . , ℓ − 1, the sender calculatesK0
i = 〈p, q, h, ci〉 andK1

i = 〈p, q, h,

cig
−1〉. Using the ElGamal encryption scheme [63] (modified to have messages

from a subgroup [64]), the sender sends to the receiver two ciphertextsEK0
i
(k0

i) =

(hyi , k0
i c

yi

i) andEK1
i
(k1

i) = (hzi , k1
i (cig

−1)zi), whereyi andzi are chosen at uni-

form random fromZq by the sender. The receiver can obtainkxi

i as follow: If xi

equals 0, thenci = hri, the receiver knows the private key corresponding toK0
i (the

private key isri), therefore she can decryptEK0
i
(k0

i) to recoverk0
i . If xi equals 1,

thencig−1 = hri, the receiver knows the private key corresponding toK1
i , she can

decryptEK1
i
(k1

i) to recoverk1
i .

Both the sender and receiver needO(ℓ) modular exponentiation,i.e., the sender needs

2ℓ modular exponentiation, and receiver needs4ℓ modular exponentiation. The security

properties of the CIOT protocol are given by the following theorems.

Theorem 4.4.1 The sender does not learn anything from the CIOT protocol.

Proof The CIOT protocol consists of two phases: a bit-commitment phase and an obliv-

ious transfer phase. The sender learns nothing aboutx from the oblivious transfer phase,

as the receiver does not send any information to the sender during that phase. Thus,

all the information the sender learns aboutx is from the bit-commitment phase. In the

bit-commitment phase, the sender learns the commitmentsc0, . . . , cℓ−1. Observe that

c0 = c
∏ℓ−1

i=1(ci)
−2i

; therefore,c0 can be computed fromc, c1, . . . , cℓ−1 and does not leak

any additional information. Recall thatr, r1, . . . , rℓ−1 are chosen uniformly randomly

from Zq; the distributions ofc, c1, . . . , cℓ−1 are exactly the same as the distribution of any

commitment under the Pedersen commitment scheme. Thusc, c1, . . . , cℓ−1 leak nothing

55

about their corresponding committed valuesx, x1, . . . , xℓ−1. Therefore, the sender does

not learn anything aboutx. In other words, for anyx, y ∈ [0..2ℓ−1] (let cx, cy be the corre-

sponding commitments), and for any adversary executing thesender’s part, the views that

the adversary sees when the receiver inputs(x, cx) and when the receiver inputs(y, cy) are

perfectly indistinguishable.

Theorem 4.4.2 Under the DDH assumption and the DL assumption onGq, the order-q

subgroup ofZ∗
p, the receiver learns at most one value per(k0

i , k
1
i) pair.

Proof Suppose an adversarial receiver learns bothk0
i andk1

i for some giveni, where

0 ≤ i ≤ ℓ − 1. Under the DDH assumption, the ElGamal encryption scheme isseman-

tically secure [64]. Therefore, the adversary knows the private keys corresponding to the

ElGamal public keysK0
i = 〈p, q, h, ci〉 andK1

i = 〈p, q, h, cig
−1〉. In other words, the

adversary knowsr wherehr = ci, andr′ wherehr′ = cig
−1. Thus, the adversary knowsr

andr′ wherehr = ghr′; she can effectively computelogg(h) = (r − r′)−1 mod q, which

contradicts the DL assumption.

Theorem 4.4.3 Under the DDH assumption and the DL assumption onGq, the order-q

subgroup ofZ∗
p, if the receiver learnsℓ keys, these values must bekx0

0 , . . . , k
xℓ−1

ℓ−1 .

Proof By Theorem 4.4.2, if an adversarial receiver learnsℓ keys, she learns exactly one

key per(k0
i , k

1
i) pair. Suppose she learnsky0

0 , . . . , k
yℓ−1

ℓ−1 , whereyi ∈ {0, 1} for i ∈ [0..ℓ−1]

and there exist at least onej such thatxj 6= yj. Therefore,
∑ℓ−1

i=0 yi2
i 6=

∑ℓ−1
i=0 xi2

i = x.

Under the DDH assumption, the adversary knows the private keys corresponding to the

ElGamal public keysKy0

i , . . . , K
yℓ−1

i ; thus she knowsti for eachi ∈ [0..ℓ − 1] such that

gyihti = ci. As

gxhr = c =
∏ℓ−1

i=0(ci)
2i

=
∏ℓ−1

i=0(g
yihti)2i

= g
Pℓ−1

i=0
yi2

i

h
Pℓ−1

i=0
ti2

i

= gyht,

wherey denotes
∑ℓ−1

i=0 yi2
i and t denotes

∑ℓ−1
i=0 ti2

i (mod q), the receiver knowsx, r,

y, and t such thatgxhr = gyht. The receiver can efficiently computelogg(h), which

contradicts the DL assumption.

56

In the CIOT protocol, a malicious receiver may learn the inputs that do not correspond

to bits of her committedx. However, in this case, she cannot learn a key for every input

wire of the circuit. Therefore in this case she cannot compute the output of the scrambled

circuit.

4.5 The CIPPE Protocol

We now give the CIPPE protocol which follows Definition 4.2.1,and specify what

each participant does in each step.

Protocol 4 (CIPPE Protocol) The CIPPE protocol involves a clientC, a serverS, and a

trustedCA, and has the following four phases:

CA Setup CA takes a security parameterσ and a setup parametersℓ as input. CA runs

the Pedersen commitment setup algorithm to createParams = 〈p, q, g, h〉 such that

2ℓ < q, and sends it toC andS.

Client-CA Interaction C choosesn integersx1, . . . , xn ∈ [0..2ℓ − 1] and sends them to

CA. For eachxi, 1 ≤ i ≤ n, CA picks ri ∈R Zq and computes the commitment

ci = (gxihri mod p). CA givesci andri toC, andci to S.

Client-Server Setup S takes three parametersℓ, n, m, andλ as input, and outputs the

family F of functions as defined in Section 4.3.S sends the description ofF toC,

then chooses a private functionf ∈ F .

Now S hasc1, . . . , cn, andf . C hasc1, . . . , cn, x1, . . . , xn, andr1, . . . , rn.

Client-Server Interaction The steps are as follows.

1. Scrambling the circuit:S constructs a circuit that computes the functionf using the

technique described in Section 4.3, then scrambles the circuit. S gives the scrambled

circuit toC.

57

2. Committing the output:Let wire wt denote the unique output wire of the scram-

bled circuit, and(k0
t , k

1
t) denote the corresponding keys ofwt. S sends〈η0 =

Ek0
t
[0σ] , η1 = Ek1

t
[1σ]〉 toC.

3. Coding the input:For eachxi where1 ≤ i ≤ n, there areℓ corresponding input

wires in the scrambled circuit.C andS run the CIOT protocol in whichC inputs

xi, ri, andci; andS inputs ci and ℓ pairs of keys that correspond to theℓ input

wires. In the end of this step,C learns one key per input wire; furthermore, each

key corresponds to a bit inC ’s committed input.

4. Evaluating the circuit:After Step 3,C possesses enough information to evaluate the

scrambled circuit independently.C evaluates the circuit and obtainsk, the key of

the output wire. Recall thatC receives〈η0, η1〉 fromS in step 2,C tries to decryptη0

andη1 using keyk. If C fails in decrypting both of them, she outputs∅ and aborts;

this happens only whenS intentionally misbehaves. IfC succeeds in decryptingη0

and gets0σ, she outputs 0. Otherwise, ifC succeeds in decryptingη1 and gets1σ,

she outputs 1.

5. Notifying the result:C sendsk to S, enablingS to output0 if k = k0
t and output1

if k = k1
t .

The purpose of committing the output in step 2 is to achieve the fairness of the compu-

tation. The client and server needO(ℓn) modular exponentiation andO(ℓm log n + λm)

symmetric key encryptions. More precisely, the server needs around2ℓn modular expo-

nentiation and the client needs around4ℓn modular exponentiation, both the client and

server need(16 log n+ 40)ℓm+ 8λm symmetric key encryptions.

The CIPPE protocol is complete in the sense that if bothC andS follow the protocol,

C will get proper keys of the input wires, and will be able to evaluate the scrambled circuit

correctly. We now briefly discuss the security properties ofour CIPPE protocol and the

intuitions underlying these properties.

58

• The CIPPE protocol is secure against honest-but-curious adversaries. This property

follows from the fact that the scrambled circuit protocol issecure in the honest-but-

curious model [23].

An honest-but-curious server cannot learn any informationabout a client’s private

input, as the server is not able to obtain any information about the client’s commit-

ted values from the CIOT protocol. An honest-but-curious client cannot learn any

information about the a server’s private functionf , because the client learns only

the topology of the circuit which is public information.

• The CIPPE protocol is secure against weak-honest adversaries. As we described in

Chapter 4.4, for the client to evaluate the scrambled circuit, the client has to get one

input value for each of her input wires to the circuit. Furthermore, if the client gets

an input value for each of the input wires, these input valuesmust correspond to

her committed attribute values. Therefore, the client can neither learn the server’s

private functionf nor change the result of the computation, as long as the server

follows the protocol.

A weak-honest server cannot build a circuit that has different topology than ex-

pected, because the client can detect such deviant behaviorimmediately. The server

can build a circuit that computes a function other thanf , we denote the function

computed by the circuit asf ′. Becausef is the server’s private input, it is essen-

tially same as if the server inputsf ′ instead off . In other words, such adversarial

behavior in the real model can be simulated by the execution of computingf ′ in the

ideal model.

• The CIPPE protocol is secure against a malicious client. However, a malicious

server may learn (at most) one extra bit of information. The server can do this by

constructing a scrambled circuit that would fail for some ofthe client’s input. While

executing step 4 of Protocol 2, the client may fail during theevaluation of the circuit

or fail to decryptη0 andη1. At the end of the protocol, the client may send (k0
t , k1

t),

or nothing to the server. Thus the server can classify the client’s input into one of

59

three subsets determined by the circuit. When the server is honest, the server can

classify the client’s input into only two subsets. In other words, a malicious server

may learn at most one bit of extra information. However, the client would know that

the server has cheated when the circuit evaluation fails.

In the example scenario we consider, if the bank is detected to be dishonest by

Alice, the bank’s reputation may suffer. This small extra gain does not seem to

warrant such malicious behavior in the kind of electronic commerce scenarios we

consider.

60

5 A PRIVACY-PRESERVING TRUST NEGOTIATION PROTOCOL

In traditional trust negotiation [7, 8, 11, 12, 65, 66] the notion of sensitive credential pro-

tection has been well studied. In these schemes, each sensitive credential has an access

control policy – a credential is used (or revealed) only whenthe other party satisfies the

policy for that credential. This does not prevent sensitivecredential leakage, but it does

allow the user to control the potential leakage of her credentials. The privacy-preserving

attribute-based access control schemes in [22, 67, 68] and in Chapter 4 did not reveal cre-

dentials but could not handle policies for credentials (i.e., they dealt with the easier special

case where each credential’s access control policy was unconditionally “true”). This work

is the first to combine the techniques for privacy-preserving access control with the notion

of policies for sensitive credentials. These credential policies have to be considered sensi-

tive as well, because otherwise the server (or client) can game the system in many ways.

For example, if the client knows the access control policiesfor the server’s credentials

then she will know the path of least resistance to unlock certain credentials and thus she

will be able to probe more easily.

We organize this chapter as follows. We begin with a detaileddescription of our con-

tributions in Section 5.1. We review trust negotiation and propose a new definition of trust

negotiation that supports policy cycles in Section 5.2. Next, we formally introduce our ap-

proach to trust negotiation in Section 5.3. We present our protocol for privacy-preserving

trust negotiation in Section 5.4. We give efficiency improvements for our base scheme in

section 5.5. Finally, we give a sketch of the proof of security in Section 5.6.

5.1 Our Contributions

We introduce a protocol for privacy-preserving trust negotiation, where the client and

server each input a set of credentials along with an access control policy for each of their

61

credentials. The protocol determines the set of usable credentials between the client and

the server, and then will process the resource or service request based on the client’s

usable credentials. A credential isusableif its access control policy has been satisfied by

the other party. Our protocol is complicated by the fact that: (1) the policies for sensitive

credentials may themselves be sensitive and therefore cannot be revealed, (2) the client

should not learn information about which of her credentialsor the server’s credentials

are usable, and (3) the server should not learn information about which of his credentials

or the client’s credentials are usable. The rationale for requirement (1) was given in the

previous section. Requirements (2) and (3) are because, if the client or server were to learn

which of its credentials are usable, then this would reveal more information about the other

party’s credential set and thus facilitate probing attacks. The technical contributions of this

chapter include:

1. We develop a new privacy-preserving trust negotiation protocol and several novel

cryptographic protocols for carrying it out. One of the challenges is the distinction

between having a credential and being able to use that credential (when its access

control policy has been satisfied), while requiring that “not having” a credential be

indistinguishable from “having but being unable to use” a credential.

2. We propose areverse eager trust negotiation strategy(denoted as RE strategy) that

handles arbitrary policy cycles, whereas the existing traditional trust-negotiation

strategies (such as the eager strategy [7]) are inherently unable to handle such cycles

(even if these strategies were properly implemented in thisframework).

5.2 Trust Negotiation: Review and Discussion

In trust negotiation [7–9,11,12,65,66], the disclosure ofa credentials is controlled by

an access control policyps that specifies the prerequisite conditions that must be satisfied

in order for credentials to be disclosed. Typically, the prerequisite conditions are a set of

credentialsC ⊆ C, whereC is the set of all credentials. As in [7,8,11,65,66], the policies

in this chapter are modeled using propositional formulas. Each policyps takes the form

62

s← φs(c1, . . . , ck) wherec1, . . . , ck ∈ C andφs(c1, . . . , ck) is a normal formula consisting

of literalsci, the Boolean operators∨ and∧, and parentheses (if needed). In this chapter,

s is referred to as the target ofps, andφs(c1, . . . , ck) is referred to as the policy function

of ps.

Given a set of credentialsC′ ⊆ C and a policy functionφs(c1, . . . , ck), we denote

φs(C
′) as the value of the normal formulaφs(x1, . . . , xk) wherexi = 1 if and only if

ci ∈ C
′ (otherwisexi = 0). For example, ifφs = (c1 ∧ c2) ∨ c3, thenφs({c1, c2, c4}) = 1

andφs({c1, c4}) = 0. Policy ps is satisfiedby a set of credentialsC′ ⊆ C if and only if

φs(C
′) = 1. During trust negotiation, one can disclose credentials if φs(C

′) = 1 whereC′

is the set of credentials that she has received from the otherparty.

A trust negotiation protocol is normally initiated by a client requesting a resource

from a server. The negotiation consists of a sequence of credential exchanges. Trust

is established if the initially requested resource is granted and all policies for disclosed

credentials are satisfied [7, 65]. In this case, the negotiation between the client and server

is a successfulnegotiation, and otherwise, it is afailed negotiation. We give the formal

definition for traditional trust negotiation as follows:

Definition 5.2.1 (Traditional Trust Negotiation) LetCS andPS (CC andPC) be the sets

of credentials and policies possessed by a negotiating server (client). The negotiation is

initiated by a request fors ∈ CS 1 from the client. The goal of trust negotiation is to find

a credential disclosure sequence(c1, . . . , cn = s), whereci ∈ CS ∪ CC , and such that

for eachci, 1 ≤ i ≤ n, the policy forci is satisfied by the credentials already disclosed,

i.e., φci
(
⋃

j<i cj) = 1. If the client and server find a credential disclosure sequence, the

negotiation succeeds, otherwise, it fails.

The sequence of disclosed credentials depends on the decisions of each party; these

decisions are referred to as a strategy. A strategy controlswhich credentials are disclosed,

when to disclose them, and when to terminate a negotiation [66]. Several negotiation

strategies are proposed in [7, 65, 66]. For example, in the eager strategy [7], two parties

1For simplicity, we model services as a credential. In order to obtains, the client has to have credentials
that satisfyφs.

63

take turns disclosing a credential to the other side as soon as the access control policy

for that credential is satisfied. Each negotiator iteratively executes the pseudo-code in

Figure 5.1. The negotiation succeeds ifs appears in the output (i.e., s ∈ M), and it

fails if the size of the credential disclosure sequence doesnot increment after one round

of execution (i.e., M = ∅). Note that any negotiation using the eager strategy takes at

mostmin(nS, nC) rounds, wherenS andnC are the sizes ofCS andCC , respectively. The

following is an example of trust negotiation using the eagerstrategy.

eager-strategy(D, C,P , s)

D = {c1, . . . , ck}: the credential disclosure sequence.

C: the local credentials of this party.

P: the local policies of this party.

s: the service to which access was originally requested.

Output:

M: the set of new released credentials.

Pre-condition:

s has not been disclosed.

Procedure:

M = ∅;

For each credentialc ∈ C

let c’s policy bepc : c← φc;

if φc(D) = 1, thenM =M∪ {c};

M =M−D;

returnM.

Figure 5.1. Pseudocode for the eager strategy

64

Example 3 Suppose the client and server have the following policies:

Client Server

pc1 : c1 ← s1 ps : s← c5 ∨ (c2 ∧ c4)

pc2 : c2 ← s2 ∧ s3 ps1
: s1 ← c4

pc3 : c3 ← s1 ∨ s2 ps2
: s2 ← c1

pc4 : c4 ← true ps3
: s3 ← true

wheres denotes the server’s service,{s, s1, s2, s3} denote the set of server’s credentials,

{c1, c2, c3, c4} denotes the set of the client’s credentials. Using the eagerstrategy, the

client begins by revealing credentialc4, as the policy function forc4 is true (thus it is

trivially satisfied). The server then disclosess3 (which can be revealed freely) ands1

(which requires the earlier receipt ofc4). The exchange of credentials continues as the

final disclosure sequence is{c4, s1, s3, c1, c3, s2, c2, s}. Note that all policies for disclosed

credentials have been satisfied.

Although the cryptographic contributions of this chapter will make it possible to im-

plement the eager strategy in the framework considered, we do not pursue this approach

because it fails to handle policy cycles. In fact, if there isa policy cycle, the trust negotia-

tion will fail under Definition 1. We now propose a new definition of trust negotiation that

supports policy cycles.

Definition 5.2.2 (Cycle-Tolerant Trust Negotiation) LetCS andPS (CC andPC) be the

sets of credentials and policies possessed by a negotiatingserver (client). The negotiation

is initiated by a request fors ∈ CS from the client. The negotiation between the client and

server succeeds if there exists usable credential setsUS ⊆ CS andUC ⊆ CC for the server

and client respectively, such that (1)s ∈ US, (2) ∀c ∈ US, φc(UC) = 1, and (3)∀c ∈ UC ,

φc(US) = 1. Otherwise, the negotiation fails.

Note that the above definition allows for many possibleUC ,US solution pairs, and does

not capture any notion of minimality for such pairs: Some solution pair may be a proper

subset of some other pair, and either of them is considered acceptable. This is fine in the

65

framework of this chapter, because at the end of the negotiation nothing is revealed about

the specificUC ,US pair, i.e., neither party can distinguish which pair was responsible for

access or whether that pair was minimal or not.It also implies that the trust negotiation

strategy we design need not make any particular effort at zeroing in on a particular pair

(e.g., a minimal one).

Example 4 Suppose the client and server have the following policies:

Client Server

pc1 : c1 ← s2 ps : s← c5 ∨ (c2 ∧ c4)

pc2 : c2 ← s2 ∧ s3 ps1
: s1 ← c6

pc3 : c3 ← s6 ps2
: s2 ← c1

pc4 : c4 ← true ps3
: s3 ← c4

wheres denotes the server’s service,{s, s1, s2, s3} denote the set of server’s credentials,

{c1, c2, c3, c4} denotes the set of the client’s credentials. Under Definition 1, the negotia-

tion between the client and server would fail as there is a policy cycle betweenc1 ands2,

and there exists no credential disclosure sequence ending with s. However, under Defin-

ition 2, the negotiation succeeds, asUC = {c1, c2, c4} andUS = {s, s2, s3} is a solution

pair.

If the trust negotiation between the client and server can succeed in Definition 1, it

will also succeed in Definition 2. LetU be the set of credentials in the final credential

disclosure sequence in Definition 1, thenU ∩ CC is a usable credential set for the client

andU∩CS is a usable credential set for the server such that these two credential sets satisfy

the definition in Definition 2. However, it is not vice-versa,that is, success of negotiation

in Definition 2 does not imply negotiation success in Definition 1 (e.g., see Example 4).

In the next section, we describe a reverse eager (RE) strategythat efficiently determines

whether the negotiation can succeed (under Definition 2) givenCS,PS, CC , andPC . Then,

we will give a privacy-preserving trust negotiation protocol that securely implements the

RE strategywithoutrevealingCS andPS to the client andwithoutrevealingCC andPC to

the server.

66

5.3 Our Approach

We begin this section with an intuitive, informal presentation of our approach. The ea-

ger strategy for trust negotiations can be thought of as one of “progressively incrementing

the usable set”: The set of usable credentials is initially set to the unconditionally usable

credentials, and each iteration adds to it credentials thathave just (in that iteration) be-

come known to be usable. It is, in other words, a conservativeapproach, whose motto is

thata credential is not usable unless proved otherwise: The iterative process stops when

no more credentials are added to the usable set. This conservatism of the eager approach

is also why using that strategy would lead us to deadlock on cycles. Our overall strategy

is the opposite, and can be viewed as a “reverse eager” strategy: Initially all credentials

are temporarily considered to be usable, and each iterationdecreasesthe set of usable cre-

dentials (of course the decrease is achieved implicitly, soas not to violate privacy – more

on these implementation details is given in the next section). Note that, because of the

“optimism” of the RE strategy (in that a credential is tentatively usable, until proven oth-

erwise), cycles no longer cause a problem, because a “self-reinforcing” cycle’s credentials

will remain usable (whereas it deadlocked in the eager strategy). This RE strategy (the

details of which are given later) is made possible by the factthat we carry out the iterative

process in a doubly blinded form, so thatneither party learns anything(not only about

the other party’s credentials, but also about their use policies for these credentials). The

RE strategy and blinded evaluations work hand in hand: The former is useless without the

latter, and it should not be used outside of this particular framework. Note that because the

credentials and policies are blinded, it is acceptable for the RE strategy to find maximal

usable credential sets rather than minimum ones.

The rest of this section gives a more precise presentation byfirst introducing the no-

tation that will be used throughout the rest of the chapter, then defining our problem and

giving a more detailed overview of our approach.

67

5.3.1 Notation and Definitions

Before describing the details of our approach, it is necessary to give a more formal

notation than the intuitive terminology of the previous section.

• We uses to denote the server’s service or resource that the client requests. Without

loss of generality, we models as a credential.

• We useCC (resp.,CS) to denote the set of the client’s (resp., the server’s) hidden cre-

dentials. We usenC andnS to denote the size ofCC andCS, respectively. Referring

to Example 4,CC = {c1, c2, c3, c4} andnC = 4.

• We usePC (resp.,PS) to denote the set of the client’s (resp., server’s) policies.

• We useR(pi) to denote the set of credentials relevant to (i.e., that appear in) the

policy function of the policypi. For example, if the policy function forpi takes the

form of φi(c1, . . . , ck), thenR(pi) = {c1, . . . , ck}.

• We useR(PC) (resp. R(PS)) to denote the union of all theR(pi)’s over all pi

in PC (resp. PS), i.e., R(PC) =
⋃

pi∈PC
R(pi). We usemC andmS to denote

the size ofR(PC) andR(PS), respectively. Referring to Example 4,R(PS) =

{c1, c2, c4, c5, c6} andmS = 5.

• We useUC (resp.,US) to denote the set of the client’s (resp., the server’s) credentials

whose policiesare presumed to have been satisfied(i.e., these are the currently-

believed usable credentials); as stated earlier, these sets will decrease from one it-

eration to another. Initially,UC = CC andUS = CS, and throughout the iterative

process we haveUC ⊆ CC andUS ⊆ CS.

5.3.2 Problem Definition

The goal of this chapter is to develop a solution such that theclient and server are able

to learn whether trust can be established without either party revealing to the other party

68

anything about their own private credentials and policies (other than, unavoidably, what

can be deduced from the computed answer). We formalize theprivacy-preserving trust

negotiationproblem as follows.

Problem 2 The server inputsCS andPS and the client inputsCC , PC , and a request for

the server’s services. In the end, both the client and server learn whether the client’s

access tos can be granted based on their credentials and policies, without revealing their

sensitive credentials and policies to the other party. In other words, they want to know

whether the trust negotiation between the client and serversucceeds under Definition 2

without leaking other information, except fornC , nS,mC , andmS.

Having stated the problem, we will now discuss the information revealed by the pro-

tocol. The valuesnC andnS reveal the number of credentials that the client and server

respectively have and the valuesmC andmS reveal the size of all policies for all creden-

tials for the client and the server. We do not view this as a problem because the parties can

pad their list or their policies with dummy credentials. We now list the security properties

required of a solution (a more detailed version is given in Section 5.6).

1. Correctness: If trust can be successfully negotiated, then both the client and server

should outputtrue with overwhelming probability if they follow the protocol.

2. Robustness against malicious adversaries: If the trust negotiation fails, then both

the client and server should outputfalse even if one of the participants is malicious

(i.e., behaves arbitrarily) with overwhelming probability.

3. Privacy-preservation: The client and server should not learn anything about the

other party’s private input (credentials and policies) or intermediate results (usable

credential sets), other than what can be deduced from the yes/no outcome of the

negotiation.

69

5.3.3 Overview of Our Approach

As described earlier, our overall strategy for privacy-preserving trust negotiation is

the RE strategy. During each round of the RE strategy, a negotiator blindly (i.e., without

actually learning the outcome) checks which of their presumed-usable local credentials

are in fact not usable (according to whether the policy for ithas ceased to be satisfied

based on the the new presumed-usable credential set of the other party). After this, the

negotiator blindly decreases their own local presumed-usable credential set accordingly.

Recall that we useUC (US) to denote the set of the client’s (server’s) credentials that are

presumed usable,i.e., at a particular stage of the iterative process, for each credential in

UC (US), the corresponding usability policy is currently satisfied (although it may cease to

be so in a future iteration). We present the RE strategy in Figure 5.2.

reverse-eager-strategy(C,P ,UO)

C: the local credentials of this party.

P: the local policies of this party.

UO: the credentials used by the other party.

Output:

U : the local credentials that can be used.

Procedure:

U = C;

For each credentialc ∈ C

let c’s policy bepc : c← φc;

if φc(UO) = 0, thenU = U − {c};

returnU .

Figure 5.2. Pseudocode for the RE strategy

Our approach to privacy-preserving trust negotiation is toimplement the RE strategy

in a secure way. We give the high-level description of our protocol in Figure 5.3. In it,

the server first initializesUS. Then the client and server run a secure version of the RE

strategy protocol to updateUC andUS iteratively forn rounds, wheren = min(nC , nS)

70

(recall that the trust negotiation using the eager strategytakes at mostn rounds). In the

end, ifs ∈ US (i.e.,s can be used), the negotiation succeeds, otherwise, it fails.

privacy-preserving-trust-negotiation(s, CC ,PC , CS,PS)

Output:

true or false

Procedure:

Initialize US;

For i = 1, . . . ,min(nC , nS)

UC = reverse-eager-strategy(CC ,PC ,US);

US = reverse-eager-strategy(CS,PS,UC);

If s ∈ US, outputtrue, otherwise, outputfalse.

Figure 5.3. High-level description of privacy-preservingtrust negotiation

Clearly,UC andUS should not be known to either the client or the server. ThusUC and

US need to be maintained in such a way that the values ofUC andUS: (1) are unknown

to the client and server and (2) cannot be modified by a malicious client or server. We

maintainUC in the following split way: For eachc ∈ CC , the client generates two random

numbersrc[0] and rc[1], and the server learns one of them, denoted asrc. If c ∈ UC ,

thenrc = rc[1], otherwiserc = rc[0]. The client does not learn which value the server

obtains, and so by splittingUC in this way, the client does not learnUC . Furthermore,

the server does not learn anything aboutUC , as the values he obtains from the client look

random to him. We maintainUS in an analogous way. Our protocol will keep this form of

splitting as an invariant through all its steps. This does not solve all privacy problems of

the negotiation, but it will be one of the guiding principlesof our protocol.

5.3.4 Proof of RE Strategy

We now provide a proof of the correctness of the RE strategy fortrust negotiations.

That is, we prove that at the end of the RE negotiation every unusable credential has

been marked as such (the other credentials correctly retaintheir initial label of “usable”).

71

So not only does RE not produce a minimal usable credential setpair CC , CS, in fact

it will produce a maximal pair in the sense that every credential (whether essential or

not) is kept usable unless marked otherwise. As stated earlier, this is justified by the

indistinguishability to either party of any two solution pairs.

Throughout this section, we useCX,i, X ∈ {C, S}, to denote the usable credential set

of the client (ifX = C) or of the server (ifX = S) after iterationi of the RE negotiation

has completed. We useCX,0 to denote the initial (prior to iteration 1) usable credential set

(which equalsCX). We useX̄ to denote{C, S} −X.

LettingC(X) denote the correct usable credentials forX, our goal is therefore to prove

that, after the last iterationi of the RE negotiation, we haveCX,i = C(X) andCX̄,i = C(X̄).

Note thatCX,i = fX(CX,i−1, CX̄,i−1) for some monotonic functionfX . (Although in fact

CXi
depends only onCX̄,i−1 and not onCX,i−1, it does no harm to give a more general

proof, as we do below, for the case when it can depend on both.)

The next lemma proves the intuitive fact that an iterationi cannot cause an unusable

credential to become usable.

Lemma 1 CX,i ⊆ CX,i−1, for i = 1, 2,

Proof By induction oni. For the basis of the induction,i = 1, the claim trivially holds

because, prior to iteration 1, all the credentials of each party are in their initial usable

setCX,0. For i = 2, the claim also holds becauseCX̄,1 ⊆ CX̄,0, CX,2 = fX(CX,1, CX̄,1),

andCX,1 = fX(CX,0, CX̄,0), thus we haveCX,2 ⊆ CX,1. We now turn our attention to the

inductive step,i > 1. Observe that

1. during iterationi, CX,i is computed based onCX,i−1 andCX̄,i−1, i.e.,CX,i = fX(CX,i−1,

CX̄,i−1);

2. during iterationi− 1, CX,i−1 is computed based onCX,i−2 andCX̄,i−2, i.e.,CX,i−1 =

fX(CX,i−2, CX̄,i−2);

3. by the induction hypothesis we haveCX,i−1 ⊆ CX,i−2, andCX̄,i−1 ⊆ CX̄,i−2

72

The above facts (1), (2), and (3), together with the monotonicity of the functionfX ,

imply thatCX,i ⊆ CX,i−1.

A corollary of the above lemma is that, to prove the correctness of RE, it suffices to

show that for every credentialc of partyX, c is unusable if and only if there is some

iterationi after whichc /∈ CX,i. The next lemma proves the “if” part. Recall thatC(X)

denote the correct usable credentials forX.

Lemma 2 For everyi, we haveC(X) ⊆ CX,i.

Proof By induction oni. The basis,i = 0, is trivial becauseCX,0 = CX . For the inductive

step,i > 0, we assume that credentialc was removed by iterationi (i.e., thatc ∈ CX,i−1

andc /∈ CX,i), and we show that it must then be the case thatc /∈ C(X). Observe that

1. c /∈ fX(CX,i−1, CX̄,i−1);

2. by the induction hypothesis, we haveC(X) ⊆ CX,i−1 andC(X̄) ⊆ CX̄,i−1.

The above (1) and (2), together with the monotonicity offX , imply thatc /∈ fX(C(X),

C(X̄)), i.e., thatc /∈ C(X).

The above lemma proved that everyc removed by the RE negotiation deserves to be

removed (the “if” part). To complete the proof, we need to prove the “only if” part: That

every unusable credential will eventually be marked as suchby the RE negotiation. That

is, we need to prove that everyc /∈ C(X) will, for somei, be removed by iterationi. This

is proved in the next lemma.

Lemma 3 For everyc /∈ C(X), there is an iterationi for whichc ∈ CX,i−1 andc /∈ CX,i.

Proof For every credentialc, let thelevelof c be defined as follows:

• If c is unconditionally usable thenlevel(c) = 1.

• If the usability policy forc is pc thenlevel(c) = 1 + max{level(v) : v ∈ R(pc)}.

(Recall thatR(pc) is the set of credentials relevant to policypc.)

73

We claim that a credentialc /∈ C(X) is removed after at mostlevel(c) iterations, i.e.,

that for somei ≤ level(c) we havec ∈ CX,i−1 andc /∈ CX,i. This is established by a

straightforward induction onlevel(c), whose details we omit.

5.4 Protocol for Privacy-Preserving Trust Negotiation

5.4.1 Building Blocks

We now describe two building blocks, one for blinded policy evaluation, the other for

equality test for array elements. These building blocks will later be used in the secure RE

strategy protocol.

Blinded policy evaluation

The goal of the blinded policy evaluation is for Bob to evaluate Alice’s policy without

learning her policy. Alice should learn nothing about Bob’s input nor the output of the

evaluation. We define the input and output for this blinded policy evaluation in Figure 5.4.

Input: Alice has a private policy functionφ : {0, 1}k → {0, 1}, two random

numberst0 and t1, andk pairs of values{r1[0], r1[1]}, . . . , {rk[0], rk[1]}.

Bob hask valuesr1, . . . , rk whereri ∈ {ri[0], ri[1]}.

Output: Bob learnst
φ(r1

?
=r1[1],...,rk

?
=rk[1])

. Alice learns nothing.

Figure 5.4. Input and output of blinded policy evaluation

The protocol for blinded policy evaluation was given in [67,69]. In most cases, it

requires a polynomial amount of communication, and works for a family of policy func-

tions.

74

Equality test for array elements

In an equality test for array elements, Alice has a private array 〈x1, . . . , xn〉 and Bob

has a private array〈y1, . . . , yn〉. They want to learn whether there exists an indexi such

thatxi = yi. The result of the equality test is known to neither Alice norBob. We define

the input and output for this protocol in Figure 5.5.

Input: Bob has n values 〈y1, y2, . . . , yn〉. Alice has n values

〈x1, x2, . . . , xn〉 and has two random numberst0 andt1.

Output: Bob learnst1 if and only if there∃ i ∈ [1..n] such thatxi = yi,

and learnst0 otherwise. Alice learns nothing.

Figure 5.5. Input and output of equality test for array elements

This equality test can be implemented by a scrambled circuitevaluation protocol [23,

51]. The protocol requiresO(ρ2n) communication and computation, whereρ is the maxi-

mum bit-length of eachxi andyi or the security parameter (whichever is larger). We give

an efficiency improvement that reduces that communication and computation requirement

toO(ρn) (that is of independent interest) in Section 5.5.

5.4.2 Secure RE Strategy Protocol

The goal of the secure RE strategy protocol is to securely implement the RE strat-

egy in Figure 5.2. We denote the participants of this protocol by Alice and Bob, where

Alice is either the client or the server and Bob is the oppositerole. In this section, we in-

troduce a protocol to computesecure-reverse-eager-strategy(CA,PA, CB,UB) (the items

subscripted byA are Alice’s values and those subscripted byB are Bob’s values), where

the output isUA in the split-form described earlier. The careful reader maynotice a dis-

crepancy between this and the RE strategy defined earlier. Note that in this caseUB rep-

resents an array of Boolean values marking which credentialsare usable, whereas in the

75

previous case it represented the actual credentials. A credentialc of Alice’s is not usable

if Bob’s usable credentials do not satisfy Alice’s usabilitypolicy for c.

Protocol 5 (Secure RE Strategy Protocol)The protocol details are given as follows.

Input Bob inputs: (1) a set of credentials,CB, which we denote byb1, . . . , bn and (2) his

share ofUB, which we denote by ordered pairs(rB
1 [0], rB

1 [1]), . . . , (rB
n [0], rB

n [1]).

Alice inputs: (1) a set of credentials,CA, which we denote bya1, . . . , am, (2) a set

of policies for these credentials,PA, which we denote byp1, . . . , pm, and (3) her

share ofUB, which we denote byrB
1 [dB

1], . . . , rB
n [dB

n] (notedB
i is 1 if Bob can usebi

and is 0 otherwise).

Output Alice learns her share of the updatedUA which is denoted by ordered pairs

(rA
1 [0], rA

1 [1]), . . . , (rA
m[0], rA

m[1]). Bob learns his share of the updatedUA which

is denoted byrA
1 [dA

1], . . . , rA
m[dA

m], wheredA
i = pi(UB).

Protocol Steps The steps are as follows.

1. Determine which credentials in Alice’s policies Bob has and can use: Suppose

that the credentials inR(PA) arec1, . . . , ck. Alice randomly generatesk or-

dered pairs:(t1[0], t1[1]), . . . , (tk[0], tk[1]). For each credentialci, Alice and

Bob engage in the following steps:

(a) Alice picks a random numberx, and sendsm = I(x, ci), the Identity-

Based Encryption (IBE) ofx based on the hidden credentialci, to Bob.

(b) Bob decryptsm using each of his hidden credentials, and obtainsd1, . . .,

dn, wheredi = I−1(m, bi).

(c) Alice creates a vector~a1 = 〈x+ rB
1 [dB

1], . . . , x+ rB
n [dB

n]〉 and Bob creates

a vector~a2 = 〈d1 + rB
1 [1], . . . , dn + rB

n [1]〉. Alice and Bob engage in

an equality test protocol for array elements where they eachinput their

own array and Alice inputsti[0] andti[1]. At the end of the protocol, Bob

obtainsti[xi]. Note thatxi is 1 if and only ifci ∈ UB and Bob hasci (that

is Bob can use the credential and he actually has it) and is 0 otherwise.

76

2. ComputeUA: For each credentialai, Alice and Bob engage in the following

steps:

(a) Alice randomly generates an ordered pair(rA
i [0], rA

i [1]).

(b) Alice and Bob securely evaluatepi using blinded policy evaluation. Alice

inputs pi, (r
A
i [0], rA

i [1]), {(t1[0], t1[1]), . . . , (tk[0], tk[1])} and Bob inputs

{t1[x1], . . . , tk[xk]}. At the end of the protocol Bob obtainsrA
1 [dA

1].

3. Alice and Bob produceUA: Alice learns(rA
1 [0], rA

1 [1]), . . . , (rA
m[0], rA

m[1]) and

Bob learnsrA
1 [dA

1], . . . , rA
m[dA

m]

Intuition of Correctness/Security: In Step 1 of the protocol, Bob will learnti[1] if he has

credentialci and he can use it, and otherwise he learnsti[0]. Note that these values were

generated by Alice. The first part of this (i.e., Bob hasci) is captured by the valuex; that

is, Bob is able to obtainx if and only if he hasci. Furthermore, if Bob’s credentialbj is

ci, thendj = x in Step 1b. The second part of this (i.e., Bob can useci) is captured by the

setUB; that is, Alice will haverB
i [1] if Bob can useci can she will haverB

i [0] otherwise.

Putting these pieces together implies that “bj equalsci and Bob can usebj” if and only if

x+ rB
j [dB

j] = dj + rB
j [1]. Thus the equality test for array elements protocol computes the

desired value.

In Step 2 of the protocol Alice and Bob learn their shares ofUA, that is Alice will learn

a pair(rA
i [0], rA

i [1]) and Bob will learnrA
i [1] if and only if Alice can use credentialai and

he will learnrA
i [0] otherwise. Note that Alice can use credentialai only if Bob’s usable

credential (computed in Step 1) satisfies Alice’s policy forai. However, this is exactly

what the blinded policy evaluation in Step 2 does.

Proof of Correctness/Security:A more detailed proof sketch is given in Section 5.6.

Cost analysisSteps 1(a)-1(c) are performedk times. Step 1(c) requiresO(nρ2) (whereρ

is a security parameter) communication. Thus Step 1 requiresO(knρ2) communication,

but this can be reduced toO(knρ) if the protocol in Section 5.5.1 is used for Step 1(c).

Assuming that the policies can be computed with circuits that are linear in the number of

77

credentials, Step 2 requiresO(mkρ) communication. Nowk ismA, n is nB, andm is nA,

and so this protocol requiresO(mAρ(nA + nB)) communication (assuming policies can

be computed by a circuit of size linear in the number of bits oftheir inputs).

5.4.3 Privacy-Preserving Trust Negotiation Protocol

We now “put the pieces together” and give the overall protocol for privacy-preserving

trust negotiation.

Protocol 6 (Privacy-Preserving Trust Negotiation Protocol) We now describe the pro-

tocol as follows.

Input The client hasCC andPC . The server hasCS (call these credentialss1, . . . , snS
)

andPS. Furthermore,s1 is the service that the client requested.

Output If the trust negotiation between the client and server can succeed, then both the

client and server outputtrue, otherwise, they outputfalse.

Protocol Steps The steps are as follows.

1. Initialize US. For each credentialsi ∈ CS, the server picks two random num-

bers{rS
i [0], rS

i [1]}. The server sendsrS
i [1] to the client. The client calls this

valuerS
i [xi]

2. Fori = 1, . . . ,min(nC , nS):

(a) The client and server run the secure RE strategy protocol to obtainUC =

secure-reverse-eager-strategy(CC ,PC , CS,US) in split form.

(b) The server and client run the secure RE protocol to obtainUS = secure-

reverse-eager-strategy(CS,PS, CC ,UC) in split form.

3. Output result.To determine whethers1 ∈ US, the server sends a hash ofrS
1 [1]

to the client. The client checks if the hash ofrS
1 [x1] matches this value; if it is

a match then the client proves this to the server by sendingrS
1 [x1] to the server

78

(and both parties outputtrue), and if it is not a match the client terminates the

protocol (and both parties outputfalse).

Intuition of Correctness/Security: In Step 1 of the protocol, the server sets its set of

usable credentials to all of its credentials (recall that the RE strategy protocol assumes

everything is usable initially and that things are removed from this set).

In Step 2 of the protocol, the client and the server take turnsupdating their usable

credential sets based on the other party’s usable set. Once aset ceases to change then

the usable sets will cease changing and we will have computedthe maximal usable cre-

dential set. Note that since we are assuming monotonic policies this will take at most

min{nC , nS} rounds to compute this set.

Finally, as we model the service as a credentials1, the client will haverS
1 [1] after Step

3 if and only ifs1 is in theUS.

Proof of Correctness/Security:A more detailed proof sketch is given in Section 5.6.

Cost analysisStep 2 of the protocol is executedmin{nC , nS} (call this valuen) times.

An individual execution requiresO(ρ(mC +mS)(nC + nS)) communication and thus the

protocol requiresO(nρ(mC +mS)(nC + nS)) communication.

5.5 Efficiency Improvements

5.5.1 A More Efficient Equality Test for Array Elements

In this section, we introduce a more efficient protocol for the equality test for array

elements. This protocol is related to the protocol proposedby [70] for secure set intersec-

tion. Note that this protocol requires onlyO(nρ+ ρ2) communication (instead ofO(nρ2)

communication). We give the proof sketch of correctness andsecurity in Section 5.6.

Protocol 7 (Secure Equality Test Protocol for Array Elements) The input and output

of this protocol can be found in Figure 5.5. The protocol steps are as follows.

79

1. Alice and Bob both choose semantically secure homomorphicencryption schemes

EA andEB that share a modulusM and exchange public parameters.

2. Alice creates a polynomialP that encodes thex values where the constant coeffi-

cient is1 (which can be done since this arithmetic is modular). In other words she

finds a polynomialP (x) = ηnx
n + ηn−1x

n−1 + · · ·+ η1x+ 1 whereP (xi) = 0 for

all xi. She sends to BobEA(ηn), . . . , EA(η1).

3. Bob chooses a valuekB uniformly fromZ⋆
M . For eachyi, Bob chooses a valueqB,i

uniformly fromZ⋆
M and he computes(EA(P (yi)))

qB,iEA(kB+yi) = EA(qB,iP (yi)+

kB +yi) (call this valueEA(αi)). Bob sends to AliceEA(α1), . . . , EA(αn), EB(kB).

4. Alice decrypts the values to obtainα1, . . . , αn. She then computesx1−αi, . . . , xn−

αn She checks for duplicate values, and if there are duplicatesshe replaces all extra

occurrences of a value by a random value. Alice chooses a valuekA uniformly from

Z⋆
M . For each of the valuesxi − αi she choosesqA,i uniformly fromZ⋆

M and then

she computes(EB(kB)EB(xi − αi))
qAiEB(kA)= EB((xi + kB − αi)qA,i + kA) (we

will call this valueEB(βi)). Alice sends to BobEB(β1), . . . , EB(βn).

5. Bob decrypts the values to obtainβ1, . . . , βn. Bob then creates a polynomialQ that

encodes these values where the constant coefficient is1. In other words Bob finds a

polynomialQ(x) = γnx
n + γn−1x

n−1 + · · · + γ1x + 1 whereQ(βi) = 0 for all βi.

Bob sends to AliceEB(γn), . . . , EB(γ1).

6. Alice chooses two valuesk andqA uniformly fromZ⋆
M and computesEB(Q(kA)qA+

k) and sends this value to Bob.

7. Bob decrypts this value to obtaink′. Alice and Bob engage in a scrambled circuit

evaluation of an equality circuit where Alice is the generator with inputk and she

sets the encodings for the output wire tot0 for the negative encoding and tot1 for

the positive encoding and Bob is the evaluator with inputk′.

80

5.5.2 Reducing the Number of Rounds

A possible criticism of our protocol for trust negotiation is that it requiresO(min{nC ,

nS}) rounds. The RE strategy requires this many rounds in the worstcase, but in practice

it requires much less (it requires rounds proportional to the length of the longest policy

chain). Our protocol can be modified to stop as soon as the usable credential sets cease

changing. However, this is not recommended as it would leak additional information, and

this information allows for additional probing. For example, if the negotiation requires

5 rounds then both parties can deduce that the other party does not satisfy at least 4 of

their credentials. Thus, from a privacy standpoint terminating after the usable credential

sets cease changing is not a good idea. Another option is to limit the number of rounds

to some reasonable constant. This does not have privacy problems, but it could cause

the negotiation to succeed when credentials do not satisfy policies. However, if there is

domain-specific knowledge that bounds the longest credential chain, then this is a viable

option.

5.6 Security Proofs

We now discuss the security of our protocols. We first define what is meant by security.

We then briefly sketch components of the proof of security.

5.6.1 Definition of Security

The security definition we use is similar to the standard model from the secure multi-

party computation literature [26,53]. The security of our protocol is analyzed by compar-

ing what an adversary can do in our protocol against what an adversary can do in an ideal

implementation with a trusted oracle. Specifically, we willshow our protocol is no worse

than this ideal model by showing that for any adversary in ourmodel there is an adversary

in the ideal model that is essentially equivalent. Thus if the ideal model is acceptable (in

terms of security), then our protocols must also be acceptable.

81

Defining the ideal model for private trust negotiation is tricky. First, the ideal model

has to be defined such that there are no “violations of security” that are achievable in this

ideal model; otherwise, there could be “violations of security” in our protocols. Further-

more, the ideal model must be defined in such a way as to allow useful trust negotiation to

take place; otherwise it and our protocols will not be useful. This is further complicated

by the fact that the RE strategy does not make sense in a non-private setting (as one cannot

revoke knowledge from another party). Thus we define a fictitious environment where the

parties have ”chronic amensia” about the other party’s credentials. In such an environment

the RE strategy is plausible, and so our ideal model simulatesthis environment.

We now informally define an ideal model implementation of ourscheme. In the ideal

model the client sendsCC andPC to the trusted oracle, and the server sendsCS, PS, and

s to the oracle. We modelPC andPS as arbitrary PPT algorithms. These algorithms

will simulate the parties’ behavior during the RE strategy. Thus these algorithms should

be viewed as control algorithms that: (1) define which credentials to use during each

round, (2) define the access control policies (which we modelas PPT algorithms over the

other party’s currently usable credentials) for its credentials during each round, and (3)

can force the oracle to terminate. We stress that these algorithms cannot do the above

operations based upon the state of the negotiation. For example, they cannot force the

oracle to terminate when a specific credential becomes unusable. The oracle will simulate

the RE strategy using the access control policies defined by each party’s control algorithm.

At the end of the negotiation the oracle will inform the client and the server whether access

is granted.

5.6.2 Sketch of the Security Proof

We will now sketch part of the proof and we focus only on one specific aspect of

the system. We focus on the secure reverse eager strategy protocol (which is the key

component of our system). We first show that if Alice is honest, then Bob cannot influence

the outcome of the protocols so that he unrightfully keeps one of Alice’s credentials usable.

82

Lemma 4 In the secure RE strategy protocol: If Alice is honest and after the protocol a

specific credentialai (with policypi) is in UA, then Bob has a credential setCB such that

pi(CB) is true.

Proof (sketch) Because step 2 is done by SCE and Alice is an honest generator, by

Lemma 5 all that we must show is that after step 1, Bob learnsti[1] only when he has

credentialai. By way of contradiction, suppose Bob does not have credentialai, and that

he learnsti[1] in Step 1c. By Lemmas 6 and 7, Bob only learnsti[1] when there is a match

in the arrays created by Alice and Bob in Step 1c. If there is a match, then Bob must be

able to learnx with a non-negligible probability. In other words, Bob can learnx from

I(x, ci) whereci is a credential Bob does not have. This implies that he can invert the IBE

encryption with non-negligible probability, but this contradicts that the IBE encryption

scheme is secure.

Lemma 5 In scrambled circuit evaluation: If the generator is honestand the evaluator

learns at most one encoding for each input wire, then the evaluator learns at most one

encoding for the output wire; furthermore this encoding is the correct value.

Proof We omit the details of this lemma, but similar lemmas are assumed in the literature.

Lemma 6 In the circuit-version of the equality test for array elements: If Alice is honest,

Bob learnst1 only when there is an indexi such thatxi = yi.

Proof Since Alice is the generator of the circuit and is honest, Bob will input a set ofy

values and will learnt1 only when one of hisy values matches one of Alice’sx values (by

Lemma 5).

Lemma 7 In the new version of the equality test for array elements (Section 5.5.1): If

Alice is honest, Bob learnst1 only when there is an indexi such thatxi = yi.

Proof By way of contradiction, suppose Bob learnst1 and there is no match in their

arrays. In Step 7 of the protocol Bob must know the valuek (by Lemma 5). Thus in Step

83

5 of the protocol, Bob must be able to generate a non-zero polynomial of degreen that has

kA as a root, but this implies he knowskA with non-negligible probability. This implies

that in Step 3, Bob can generate valuesα1, . . . , αn such that there is anα value that is

xi + kB. This implies Bob knowsxi with non-negligible probability, and this implies that

there is a match in the arrays.

The above only shows one part of the proof. We must also show that if Alice is honest,

Bob cannot learn whether he made a specific credential usable (he can force a credential

to be unusable, but this has limited impact). Furthermore, we must show that if Bob is

honest that Alice does not learn which of her credentials areusable (other than what can

be deduced from her policies; i.e., a globally usable credential will definitely be usable).

We now show that the protocol is correct, that is if the parties are honest, then the correct

usable set is computed.

Proof In step 1 of the protocol, Bob learns a valueti[xi] wherexi is 1 if Bob has creden-

tial ci and can use it. There are 3 cases to consider:

1. Bob does not haveci: In Step 1b of the protocol, Bob will not learn the valuex, and

thus there will not be a match in Step 1c (with very high probability). Since there is

no match in the array, Bob will learnti[0], which is correct.

2. Bob hasci but cannot use it. Supposebj = ci and Alice hasrB
j [0]. In this case,

dj = x, but Bob’s vector entry will bex+ rB
j [1] and Alice’s will bex+ rB

j [0]. Since

there is no match in the array, Bob will learnti[0], which is correct.

3. Bob hasci and can use it. Supposebj = ci and Alice hasrB
j [1]. In this case,dj = x,

but Bob’s vector entry will bex + rB
j [1] and Alice’s will bex + rB

j [1]. Since there

is a match in the array, Bob will learnti[1], which is correct.

In step 2 of the protocol, Alice and Bob securely evaluatepi based upon which cre-

dentials are inUB. If pi(UB) is true, then Bob will learnrA
i [1] (signifying that Alice can

useai) and otherwise he will learnrA
i [0] (signifying that Alice cannot useai).

84

6 A TRUST NEGOTIATION FRAMEWORK FOR CRYPTOGRAPHIC

CREDENTIALS

A number of cryptographic credential schemes and associated protocols have been devel-

oped to address the privacy problems in ATN. Oblivious signature based envelope [45],

hidden credentials [22, 68], and secret handshakes [71] canbe used to address the policy

cycle problem. OACerts (see Chapter 3), private credentials [30], and anonymous creden-

tials [29, 31–33] together with zero-knowledge proof protocols can be used to prove that

an attribute satisfies a policy without disclosing any otherinformation about the attribute.

CIPPE (see Chapter 4) enablesA andB to determine whetherA’s attribute values satisfy

B’s policies without revealing additional information about A’s attributes orB’s policies.

While these credential schemes and associated protocols alladdress some limitations

in ATN, they can be used only as fragments of an ATN process. For example, a protocol

that can be used to handle cyclic policy dependencies shouldbe invoked only when such

a cycle occurs during the negotiation process. A zero-knowledge proof protocol can be

used only when one knows the policy that needs to be satisfied and is willing to disclose

the necessary information to satisfy the policy. An ATN framework that harness these

powerful cryptographic credentials and protocols has yet to be developed. In this chapter,

we develop an ATN framework that does exactly that. Our framework has the following

salient features.

• The ATN framework supports diverse credentials, includingstandard digital creden-

tials (such as X.509 certificates [28,42]) as well as OACerts,hidden credentials, and

anonymous credentials.

• In addition to attribute information stored in credentials, the ATN framework also

supports attribute information that is not certified. For example, oftentimes one is

asked to provide a phone number in an online transaction, though the phone num-

85

ber need not be certified in any certificate. In our framework,uncertified attribute

information and certified attribute information are protected in a uniform fashion.

• The ATN framework has a logic-based policy langauge that we call Attribute-based

Trust Negotiation Language (ATNL), which allows one to specify policies that gov-

ern the disclosure of partial information about a sensitiveattribute. ATNL is based

on the RT family of Role-based Trust-management languages [5,6,72].

• The ATN framework has a negotiation protocol that enables the various crypto-

graphic protocols to be used to improve the effectiveness ofATN. This protocol is

an extension of the Trust-Target Graph (TTG) ATN protocol [9,12].

The rest of this chapter is organized as follows. We first review several credential

schemes and associated protocols that can be used in ATN in Section 6.1. In Section 6.2,

we present the language ATNL. In Section 6.3 we present our negotiation protocol.

6.1 Overview of Cryptographic Credentials and Tools for ATN

We now give an overview of six properties that are provided bycryptographic creden-

tial schemes and their associated cryptographic tools. These properties can improve the

privacy protection and effectiveness of ATN.

1. Separation of credential disclosure from attribute disclosure: In several creden-

tial systems, including private credentials [30], anonymous credentials [29, 31–33]

and OACerts in Chapter 3, a credential holder can disclose her credentials without

revealing the attribute values in them. In the OACerts scheme, a user’s attribute

values are not stored in the clear; instead, they are stored in a committed form in

her credentials. When the commitment of an attribute value isstored in a credential,

looking at the commitment does not enable one to learn anything about the attribute

value. Private credentials and anonymous credentials share somewhat similar ideas:

a credential holder can prove in zero-knowledge that she hasa credential without re-

vealing it; thus, the attribute values in the credential arenot disclosed. For example,

86

consider a digital driver license certificate from Bureau of Motor Vehicles (BMV)

consisting of name, gender, DoB, and address. In trust negotiation, a user can show

that her digital driver license is valid,i.e., that she is currently a valid driver, without

disclosing any of her name, gender, DoB, and address.

2. Selective show of attributes:A credential holder can select which attributes she

wants to disclose (and which attribute she does not want to disclose) to the verifier.

As each attribute in a credential is in committed form, the credential holder can

simply open the commitments of the attributes she wants to reveal. For instance,

using the digital driver license, the credential holder canshow her name and address

to a verifier without disclosing her gender and DoB. Cryptographic properties of the

commitment schemes ensure that the credential holder cannot open a commitment

with a value other than the one that has been committed.

3. Zero-knowledge proof that attributes satisfy a policy:A credential holder can use

zero-knowledge proof protocols [35, 37, 39, 40] to prove that her attributes satisfy

some property without revealing the actual attribute values. For example, a creden-

tial holder can prove that she is older than 21 by using her digital driver license

without revealing any other information about her actual DoB.

4. Oblivious usage of a credential:A credential holder can use her credentials in

an oblivious way to access resources using Oblivious Signature Based Envelope

(OSBE) [45], hidden credentials [22], or secret handshakes [71,73]. In OSBE, a user

sends the contents of her credential (without the signature) to a server. The server

verifies that the contents satisfy his requirement, then conducts a joint computation

with the user such that in the end the user sees the server’s resource if and only if

she has the signature on the contents she sent earlier. Hidden credentials and secret

handshakes share a similar concept; however, they assume that the server can guess

the contents of the user’s credentials; thus the user does not need to send the contents

to the server. The oblivious usage of a credential enables a user to obtain a resource

from a server without revealing the fact that she has the credential.

87

5. Oblivious usage of an attribute:A credential holder can use her attributes in an

oblivious way to access resources using OCBE in Chapter 3. In OCBE,a credential

holder and a server run a protocol such that in the end the credential holder receives

the server’s resource if and only if the attributes in her credential satisfy the server’s

policy. The server does not learn anything about the credential holder’s attribute

values, not even whether the values satisfy the policy or not.

6. Certified input private policy evaluation:In CIPPE in Chapter 4, a credential holder

and a server run a protocol in which the credential holder inputs the commitments

of her attribute values from her credentials, and the serverinputs his private policy

function. In the end, both parties learn whether the credential holder satisfies the

server’s policy, without the attribute values being revealed to the server, or the pri-

vate function, to the credential holder. For example, suppose that the server’s policy

is that age must be greater than 25 and the credential holder’s age is 30. The creden-

tial holder can learn that she satisfies the server’s policy without revealing her exact

DoB or knowing the threshold in the server’s policy.

There are other useful properties achieved in private credentials [30] and anonymous

credentials [29,31–33], such as the multi-show unlinkableproperty, anonymous property,

etc. Some of these properties require anonymous communication channels [74, 75] to be

useful. In this chapter, we focus on the six properties described above, because we believe

they are most related to trust negotiation. Our goal is to integrate them into a coherent

trust negotiation framework.

Note that we do not assume each negotiating participant supports all six properties. For

instance, if one participant uses an anonymous credential system and supports properties

1–3, and the other participant supports properties 1–6, then they can use properties 1–3

when they negotiate trust. We present an ATN framework that can take advantage of these

properties when they are available, but that does not require them.

88

6.2 The Language of Credentials and Policies

In this section, we present the Attribute-based Trust Negotiation Language (ATNL), a

formal language for specifying credentials and policies. ATNL is based onRT , a family of

Role-base Trust-management languages introduced in [5,6,72]. We first give an example

trust negotiation scenario in ATNL, then describe the syntax of ATNL in detail.

An Example

In this example, the two negotiators are BookSt (a bookstore)and Alice. We give

the credentials and policies belonging to BookSt first, then give those for Alice, and then

describe a negotiation process between BookSt and Alice.

BookSt ’s credentials:

ℓ1 : SBA.businessLicense ←− BookSt

ℓ2 : BBB.goodSecProcess ←− BookSt

BookSt ’s policies:

m1 : BookSt.discount(phoneNum = x3) ←− StateU.student(program = x1)

∩ BookSt.DoB(val = x2)

∩ Any.phoneNum(val⇒ x3) ;

((x1 = ‘cs’) ∧ (x2 > ‘01/01/1984’))

m2 : BookSt.DoB(val = x) ←− BMV.driverLicense(DoB = x)

m3 : BookSt.DoB(val = x) ←− Gov.passport(DoB = x)

m4 : disclose(ac, SBA.businessLicense) ←− true

m5 : disclose(ac, BBB.goodSecProcess) ←− true

Figure 6.1. The credentials and policies of BookSt

BookSt’s credentials and policies are given in Figure 6.1. BookSt has a credential

(ℓ1) issued by the Small Business Administration (SBA) asserting that BookSt has a valid

business license. BookSt is certified in (ℓ2) by the Better Business Bureau (BBB) to have

a good security process.

89

BookSt offers a special discount to anyone who satisfies the policy (m1), which means

that the requester should be certified by StateU to be a student majoring in computer sci-

ence, under 21 (as of January 1, 2005), and willing to providea phone number. Since

the discount is a resource, the head of this policy,BookSt.discount(phoneNum = x3),

defines a part of the application interface provided by the ATN system using this pol-

icy; the parameterphoneNum is made available to the application through this interface.

That is, the application will issue a query to determine whether the requester satisfies

BookSt.discount(phoneNum = x3), and if it succeeds, the variablex3 will be instanti-

ated to the phone number of the requester. The body of policy (m1) (i.e., the part to the

right of←−) consists of the following two parts.

Part 1: StateU.student(program = x1) ∩ BookSt.DoB(val = x2)

∩ Any.phoneNum(val⇒ x3)

Part 2: ((x1 = ‘cs’) ∧ (x2 > ’01/01/1984’))

Part 1 describes the role requirement of the policy and consists of the intersection of

3 roles. To satisfy the roleStateU.student(program = x1), one must provide a cre-

dential (or a credential chain) showing that one is certifiedby StateU to be a student;

program = x1 means that the value of theprogram field is required to satisfy additional

constraints. InAny.phoneNum(val⇒ x3), the keywordAny means that the phone num-

ber does not need to be certified by any party and the symbol⇒ means that the phone

number must be provided (enabling it to be returned to the application). Part 2 describes

the constraints on specific field values.

BookSt’s policies(m2) and(m3) mean that BookSt considers both a driver license

from BMV and a passport issued by the government (Gov) to be valid documents for

DoB. BookSt’s policies(m4) and(m5) mean that BookSt treats his SBA certificate and

BBB certificate as non-sensitive resources and can reveal these certificates to anyone.

Alice’s credentials and policies are given in Figure 6.2. Alice holds three credentials.

Credential (n1) is issued by StateU and delegates to College of Science (CoS) the au-

thority to certify students. Credential (n2) is Alice’s student certificate issued by CoS.

Credentials (n1, n2) prove that Alice is a valid student from StateU. Credential (n3) is

90

Alice ’s credentials:

n1 : StateU.student ←− CoS.student

n2 : CoS.student(program = ‘cs’, level = ‘sophomore’) ←− Alice

n3 : BMV.driverLicense(name = commit(‘Alice’),

DoB = commit(‘03/07/1986’)) ←− Alice

Alice ’s attribute declarations:

o1 : phoneNum = ‘(123)456-7890’ :: :: sensitive

o2 : DoB = ‘03/07/1986’ :: BMV.License(DoB) :: sensitive

o3 : program = ‘cs’ :: CoS.student(program) :: non-sensitive

o4 : level = ‘sophomore’ :: CoS.student(level) :: non-sensitive

Alice ’s policies:

p1 : disclose(ac, CoS.student) ←− SBA.businessLicense

p2 : disclose(full, DoB) ←− BBB.goodSecProcess

p3 : disclose(full, phoneNum) ←− BBB.goodSecProcess

p4 : disclose(range, DoB, year) ←− true

p5 : disclose(ac, BMV.driverLicense) ←− true

Figure 6.2. The credentials and policies of Alice

her digital driver license issued by BMV. For simplicity, we assume that the digital driver

license contains only name and DoB. Among her credentials, Alice considers her student

certificate to be sensitive, and provides it only to those whohave a valid business license

from SBA (p1). Alice does not protect the content of her driver license, except for its DoB

field. She considers her birth-date and phone number to be sensitive information, thus

she reveals them only to organizations whose security practices are adequate to provide

reasonable privacy (p2, p3). For this, we assume that BBB provides a security process

auditing service. Further, Alice is willing to reveal to everyone her year of birth (p4) and

her digital driver license (p5).

A negotiation between BookSt and AliceWhen Alice requests a discount sale from

BookSt, BookSt responds with his discount policy (m1). Alice first discloses her driver

license (n3), which is assumed to be an OACert, to BookSt without revealingher DoB. To

91

protect her phone number and her student certificate, Alice wants BookSt to show a busi-

ness license issued by SBA and a good security process certificate issued by BBB. After

BookSt shows the corresponding certificates (ℓ1, ℓ2), Alice reveals her student certificate

chain (n1, n2) and phone number (o1). As Alice is allowed by her policyp4 to reveal her

year of birth to everyone, she uses a zero-knowledge proof protocol to prove to BookSt

that her DoB in her driver license is between‘1/1/1986’ and‘12/31/1986’. BookSt now

knows that Alice is younger than 21, thus satisfies his discount policy. During the above

interactions, Alice proves that she is entitled to obtain the discount.

The above negotiation process uses the first three properties described in Section 6.1.

The Syntax

Figure 6.3 gives the syntax of ATNL in Backus Naur Form (BNF). Inthe following, we

explain the syntax. The numbers in the text below correspondto the numbers of definitions

in Figure 6.3.

Each negotiation party has apolicy base(3) that contains all information that may

be used in trust negotiation. A party’s policy base consistsof three parts:credentials,

attribute declarations, andpolicy statements. In the following, we discuss each of the

three parts in detail.

Credentials and Roles

Two central concepts that ATNL takes fromRT [5, 6] are principals and roles. A

principal is identified with an individual or agent, and may be represented by a public

key. In this sense, principals can issue credentials and make requests. Arole designates

a set of principals who are members of this role. Each principal has its own localized

name space for roles in which it has sole authority to define roles. A role (7) takes the

form of a principal followed by a role term, separated by a dot. The simplest kind of a

role term consists of just a role name. As roles are parameterized, a role term may also

contain fields, which will be explained later. We useA, B, D, S, andV , sometimes with

92

〈list of X〉 ::= 〈X〉 | 〈X〉 “ ,” 〈list of X〉 (1)
〈set of X〉 ::= ǫ | 〈X〉 〈set of X〉 (2)

〈policy-base〉 ::= 〈set of credential〉 〈set of attr-decl〉 〈set of policy-stmt〉 (3)

〈credential〉 ::= 〈member-cred〉 | 〈delegation-cred〉 (4)
〈member-cred〉 ::= 〈role〉 “←−” 〈prin〉 (5)
〈delegation-cred〉 ::= 〈role〉 “←−” 〈role〉 (6)

〈role〉 ::= 〈prin〉 “ .” 〈role-term〉 (7)
〈role-term〉 ::= 〈role-name〉 | 〈role-name〉 “ (” 〈list of field〉 “)” (8)
〈field〉 ::= 〈field-name〉 “=” (〈var〉 | 〈constant〉 | 〈commitment〉) (9)

〈attr-decl〉 ::= 〈attr-name〉 “=” 〈constant〉 “ ::” [〈list of attr-ref〉]
“ ::” (“ sensitive” | “non-sensitive”) (10)

〈attr-ref〉 ::= 〈prin〉 “ .” 〈role-name〉 “ (” 〈field-name〉 “)” (11)

〈policy-stmt〉 ::= 〈policy-head〉 “←−” 〈policy-body〉 (12)
〈policy-body〉 ::= 〈p-role-req〉 [“ ;” 〈p-constraint〉] | true (13)
〈p-role-req〉 ::= [〈role〉 “ !”] 〈conj-of-p-roles〉 (14)
〈p-constraint〉 ::= [〈pre-cond〉 “ !”] 〈constraint〉 (15)
〈pre-cond〉 ::= 〈role〉 | “ false” (16)

〈conj-of-p-roles〉 ::= 〈p-role〉 | 〈p-role〉 “∩” 〈conj-of-p-roles〉 (17)
〈p-role〉 ::= 〈prin〉 “ .” 〈p-role-term〉 | Any.〈p-role-term〉 (18)

〈p-role-term〉 ::= 〈role-name〉 | 〈role-name〉 “ (” 〈list of p-field〉 “)” (19)
〈p-field〉 ::= 〈field-name〉 (“=” | “⇒”) (〈var〉 | 〈constant〉) (20)

〈policy-head〉 ::= 〈role〉 | 〈dis-ack〉 | 〈dis-ac〉 | 〈dis-full〉 | 〈dis-bit〉 | 〈dis-range〉 (21)
〈dis-ack〉 ::= “disclose” “ (” “ ack” “ ,” 〈role〉 “)” (22)
〈dis-ac〉 ::= “disclose” “ (” “ ac” “ ,” 〈role〉 “)” (23)
〈dis-full〉 ::= “disclose” “ (” “ full” “ ,” 〈attr-name〉 “)” (24)
〈dis-bit〉 ::= “disclose” “ (” “ bit” “ ,” 〈attr-name〉 “)” (25)

〈dis-range〉 ::= “disclose” “ (” “ range” “ ,” 〈attr-name〉, 〈precision〉 “)” (26)

Figure 6.3. Syntax of ATNL in BNF. The first two definitions〈list of X〉
and 〈set of X〉 are macros parameterized by X. The symbolǫ in (2)
denotes the empty string. The symbols〈var〉, 〈constant〉, and 〈prin〉
each represents a variable, a constant, and a principal respectively. The
symbols〈role-name〉, 〈field-name〉, and〈attr-name〉 represent identifiers
drawn from disjoint sets. The syntax for non-terminals〈commitment〉,
〈precision〉, 〈constraint〉 are not defined here; they are explained in the
text.

93

subscripts, to denote principals. We useR, often with subscripts, to denote role terms. A

roleA.R can be read asA’s R role. OnlyA has the authority to define the members of the

roleA.R, andA does so by issuing role-definition statements.

In ATNL, a credential can be either a membership credential or a delegation credential.

A membership credential(5) takes the formA.R←− D, whereA andD are (possibly

the same) principals. This means thatA definesD to be a member ofA’s role R. A

delegation credential(6) takes the formA.R←−B.R1, whereA andB are (possibly the

same) principals, andR andR1 are role terms. In this statement,A defines itsR role to

include all members ofB’s R1 role.

For example, BookSt’s credential (ℓ1) in Figure 6.1 is a membership credential. It

means SBA issued a business license certificate for BookSt. Alice’s credential (n1) in

Figure 6.2 is a delegation credential. It says that StateU delegates its authority over iden-

tifying students to CoS. Alice’s membership credential (n2) in Figure 6.2 means that CoS

asserts that Alice is a sophomore student in StateU majoringin computer science.

A role term(8) is a role name possibly followed by a list of fields. Eachfield (9) has a

field name and a field value. A field value can be a variable, a constant, or a commitment.

For example,SBA.businessLicense is a role without any fields,CoS.student(program =

‘cs’, level = ‘sophomore’) andBMV.driverLicense(name = commit(‘Alice’),DoB =

commit(‘03/07/1986’)) are roles with fields. In the preceding roles,CoS is a principal

name,student is a role name,program is a field name,‘cs’ is a constant of string type, and

commit(‘Alice’) is a commitment. In ATNL, acommitmenttakes of the formcommit(c),

wherec is a constant, andcommit denotes the output of a commitment algorithm of a

commitment scheme [14,36]1.

If a credential is a regular certificate, such as an X.509 certificate [28], then each field

in the credential takes the formx = c, wherex is the field name andc is a constant. For

example, Alice’s student certificate (n2) may be an X.509 certificate. When a credential is

implemented as a cryptographic certificate, such as an OACertor an anonymous creden-

1In order to have the hiding property, a commitment scheme usually cannot be deterministic, thus the com-
mitment of a value also depends on a secret random value. For simplicity of presentation, we do not explic-
itly model the random secret in the representation of a commitment.

94

tial, the attribute values are committed in the credential.Therefore, each field takes the

form x = commit(c), wherecommit(c) is the commitment of a constantc. For example,

Alice’s digital driver license (n3) is modeled as a cryptographic certificate.

Attribute declarations

Eachattribute declaration(10) gives the name of the attribute, the value of the at-

tribute, a list of attribute references that correspond to this attribute, and whether this

attribute is considered sensitive or not. For example, Alice’s attribute declaration (o1) in

Figure 6.2 means that Alice has a phone number (123)456-7890and she considers her

phone number to be sensitive information. Alice’s attribute declaration (o3) indicates that

Alice’s major is ‘cs’ and that her program appears in her student certificate, issued by CoS.

We useattr to denote attribute names.

Eachattribute reference(11) corresponds to a field name in a role. The attribute ref-

erence is used to link the declared attribute to a specific role field. For example, Alice’s

DoB attribute declaration has an attribute referenceBMV.driverLicense(DoB), it means

that Alice’s DoB is documented in theDoB field of the roleBMV.driverLicense. It is

possible to have several attribute references for an attribute. This means that the attribute

is documented by several roles2. For example, suppose Alice also has a passport, and her

DoB is certified in her passport. Then the attribute declaration for herDoB looks like

DoB = ‘03/07/1986’ :: BMV.driverLicense(DoB),

Gov.passport(BirthDate) :: sensitive

Because the disclosure of attribute values in a credential can be separated from the dis-

closure of the credential, one purpose of the attribute declarations is to uniformly manage

the disclosure of an attribute value that appears in different credentials. That is, the policy

author gives disclosure policies for attributeDoB, instead of assigning separate disclosure

policies forBMV.driverLicense(DoB) andGov.passport(BirthDate).

2We assume that the attribute values from different roles arethe same, however we do not require each
principal to use the same field name. For example,BMV may useDoB as the field name for birth-date,
whereasGov usesBirthDate as the field name. Name agreement for different field names canbe achieved
using application domain specification documents [5,6].

95

When the list of the attribute references is empty, the corresponding attribute does not

appear in any role that is certified by a credential. In other words, the attribute isuncertified

by any authorities. Unlike most prior trust negotiation systems, our framework supports

uncertified attributes. In many online e-business scenarios, like the example in Section 6.2,

the access control policies require some personal information about the requester, such as

phone number and email address, which may not be documented by any digitally signed

credentials. Like certified attributes, uncertified attributes may be sensitive, and should be

protected in the same way. We treat all attributes uniformly, whether certified or not, by

protecting them with disclosure policies.

If an attribute is not sensitive, then the keywordnon-sensitive appears at the end of its

corresponding attribute declaration. This means that the attribute can be revealed to any-

one. There is no access control policy for this attribute. Onthe other hand, if an attribute

is treated as a sensitive resource, the attribute owner willmark its attribute declaration

with the keywordsensitive. In this case, if there are disclosure policy statements forthis

attribute, one has to satisfy the body of one of these statements to learn information about

the attribute. If there is no disclosure policy statement for a sensitive attribute, it means

the attribute must never be disclosed.

Policy statements

In ATNL, a policy statement(12) takes the form〈policy-head〉 ←− 〈policy-body〉 in

which 〈policy-body〉 either istrue or takes the form:

pre-cond-1 ! B1.R1 ∩ · · · ∩Bk.Rk ;

pre-cond-2 ! ψ(x1, . . . , xn)

whereB1, . . . , Bk are principals,R1, . . . , Rk are role terms,k is an integer greater than or

equal to 1,pre-cond-1 andpre-cond-2 are two pre-conditions (which we discuss shortly),

ψ is a constraint from a constraint domainΦ, andx1, x2, . . . , xn are the variables appearing

in the fields ofR1, . . . , Rk. The constraintψ(x1, . . . , xn) is optional. We callB1.R1∩· · ·∩

Bk.Rk in the policy statement anintersection.

96

A pre-conditionis defined to be a role or the keywordfalse. Pre-cond-2 (16) can be

either of these; when it exists,pre-cond-1 is a role (14). The motivation for pre-conditions

is that, oftentimes, policies may contain sensitive information. The policy enforcer does

not want to reveal the policy statement to everyone. If a pre-condition isfalse, the pre-

condition is never satisfied. If the pre-condition is a role,sayB.R, then the negotiation

opponent has to be a member ofB.R for the pre-condition to be satisfied. Returning to the

policy body, if pre-cond-1 is satisfied (or ifpre-cond-1 is omitted), then the negotiation

opponent is allowed to seeB1.R1∩· · ·∩Bk.Rk, otherwise, she is not permitted to know the

content of this policy body. Oncepre-cond-1 is satisfied, ifpre-cond-2 is also satisfied,

then the negotiation opponent is allowed to see the constraint ψ(x1, . . . , xn).

Verifying that a principal satisfies a policy body takes two steps. In the first step, the

policy enforcer verifies that the principal has all roles andhas provided all uncertified at-

tributes given byB1.R1, . . . , Bk.Rk. In the second step, the policy enforcer verifies that the

variables in the parameters ofR1, . . . , Rk satisfy the constraintψ(x1, . . . , xn). Such two-

step policy verification process is made feasible by using cryptographic credentials and

the associated cryptographic tools (see Section 6.1). The first step corresponds to verify-

ing that the principal has the desired credentials. The second step corresponds to verifying

that the principal’s attribute values in the credentials satisfy the constraintψ(x1, . . . , xn).

If ψ(x1, . . . , xn) is disclosed, which happens only when the second pre-condition has been

satisfied, then the principal can use zero-knowledge proof protocols to prove that her at-

tribute values satisfy the constraint; otherwise, the principal can elect to run a private

policy evaluation protocol with the policy enforcer, enabling each to determine whether

she satisfies the constraint.

Using the example in Section 6.2, BookSt’s policy (m2) in Figure 6.1 is a policy

statement with no constraint. It states thatBookSt considers a driver license from BMV

to provide adequate documentation of birth-date. The variable x is used in the statement

to indicate that the field value ofBookSt.DoB is the same as theDoB field value in

BMV.driverLicense.

97

The BookSt policy statement (m1) means that, in order to be a member of the role

BookSt.discount, a principal has to have the rolesBookSt.student(program = x1),

BookSt.DoB(val = x2), andAny.phoneNum(val ⇒ x3). It further requires that the

program field valuex1 in BookSt.student and the DoB field valuex2 in BookSt.DoB

satisfy the constraint(x1 = ‘cs’) ∧ (x2 > ’01/01/1984’). The symbol⇒ in the role

Any.phoneNum(val ⇒ x3) indicates that BookSt must receive a phone number from the

negotiation opponent. Where the equality symbol= is used, the policy requires only proof

that the associated field value satisfies any constraints given in the policy statement.

Policy heads

The policy head in a policy statement determines which resource is to be disclosed

and how it is to be disclosed. Apolicy head(21) can be a role or a disclosure. When

the policy head is a role, the statement means that if the negotiation opponent satisfies

the policy body, then she is a member of the role. Roles defined in policy statements

are controlled by the policy owner and are calleddummy rolesbecause they serve only

to define local policies. If the policy head is a disclosure, then the opponent is granted

a permission specified in the disclosure, once the policy body is satisfied. This section

explains each type of disclosure and its associated permission.

We call (the body of) a policy statement with headdisclose(ack, A.R) (22) anAck

policy for the roleA.R. The opponent has to satisfy one ofA.R’s Ack policies to gain

permission to learn whether the policy enforcer is a member of A.R. Until such satisfac-

tion is shown, the policy enforcer’s behavior should not depend in any way on whether

she belongs toA.R.

We call a policy statement with headdisclose(ac, A.R) (23) anAC policy for the

credentialA.R←−D. We assume, in this case, that the policy enforcer isD and thatD

has the membership credentialA.R←−D. When the negotiation opponent has satisfied

an AC policy for the credentialA.R ←− D, he is authorized to receive a copy of the

credential.

98

We call a policy statement with headdisclose(full, attr) (24) a full policy for the

attributeattr. If a full policy for attr is satisfied, the negotiation opponent is allowed to see

the full value ofattr. Whenattr is an uncertified attribute, this means the policy enforcer

can simply disclose its value. When the field value linked to the attribute reference ofattr

is a commitment, it means the policy enforcer can open the commitment to the opponent.

We call a policy statement with headdisclose(bit, attr) (25) abit policy for the at-

tribute attr. Bit policies are defined only for certified attributes. If a bit policy for attr

is satisfied, the negotiation opponent has the permission toreceive one bit of information

about the value ofattr, in the sense of receiving the answer to the question whetherthe

value satisfies some predicate. We stress that the one bit information ofattr in our context

is not necessarily the value of a certain bit in the binary representation ofattr, but can be

the output of any predicate onattr. More specifically, the policy enforcer can run a private

policy evaluation with the opponent in which the opponent learns whetherattr, together

with other attributes of the enforcer, satisfies the opponent’s private policy. Alternatively,

the policy enforcer can prove thatattr satisfies (or does not satisfy) the opponent’s public

policy using zero-knowledge proof techniques. While specifying the bit disclosure policy,

one should be aware that the bit disclosure ofattr is vulnerable to a probing attack. If

an adversarial opponent runs the private policy evaluationmultiple times using different

policies that constrainattr, she may learn more information about the value ofattr. In

practice, a negotiator may limit the number of times that theprivate policy evaluation is

computed on a particularattr to prevent such attack.

We call a policy statement with headdisclose(range, attr, precision) (26) a range

policy for the attributeattr. Range policies are defined only for certified attributes of

certain data types, such as finite integer type, finite float type, and ordered enumeration

type. If the range policy forattr is satisfied, then the negotiation opponent has permis-

sion to learn thatattr belongs to a range with the given precision. For example, if the

negotiation opponent has satisfied the policy fordisclose(range,DoB, year), then she is

allowed to know the year ofDoB, but not the exact date. How to specify precision de-

pends on the data type of the attribute. For example, assume credit score takes integer

99

values from 1 to 1000, and Alice has a credit score of 722 documented in her credit report

certificate using cryptographic credential schemes. IfBookSt satisfies Alice’s policy of

disclose(range, score, 50), then Alice can prove toBookSt that her credit score is be-

tween 701 and 750 using zero-knowledge proof protocols. Similarly, the policy with head

disclose(range, score, 10) means that if the policy is satisfied, the opponent can learn

that Alice’s credit score is between 721 to 730.

When no Ack policy is specified for an attribute, this indicates that the Ack policy is

trivially satisfied. Although a more natural logical interpretation would be that in this case

it is trivially unsatisfiable, such an Ack policy would render its attribute unusable, which

is not useful. The other types of policies (i.e., AC policy, full policy, bit policy, and range

policy) are taken to be unsatisfiable if they are not defined.

So if there is no Ack policy associated with a roleA.R in the policy base, then the

policy enforcer can reveal to everyone that she is (or is not)a member ofA.R. On the

other hand, if there is no AC policy associated with a roleA.R in the policy base, then

the policy enforcer should never reveal her credentialA.R←−D to anyone. If there are

both an Ack policy and an AC policy with a roleA.R, the access control policy is actually

the intersection of these two policies,i.e., only if the negotiation opponent satisfies both

policies can she see the credential corresponding toA.R. That is enforced implicitly

through our trust negotiation protocol.

6.3 The Extended Trust Target Graph Protocol

In this section, we introduce a trust negotiation protocol that can take advantage of

ATNL and the cryptographic protocols. This protocol extends the trust-target graph pro-

tocol introduced in [9,12], to deal with the additional features of ATNL and cryptographic

certificates.

In this protocol, a trust negotiation process involves the two negotiators working to-

gether to construct atrust-target graph(TTG). A TTG is a directed graph, each node of

which is a trust target. Introduced below, trust targets represent questions that negotiators

have about each other. When a requester requests access to a resource, the access media-

100

tor and the requester enter into a negotiation process. The access mediator creates a TTG

containing one target, which we call theprimary target. The access mediator then tries

to process the primary target by decomposing the question that it asks and expanding the

TTG accordingly in a manner described below. It then sends the partially processed TTG

to the requester. In each following round, one negotiator receives new information about

changes to the TTG, verifies that the changes are legal and justified, and updates its local

copy of the TTG accordingly. The negotiator then tries to process some nodes, making its

own changes to the graph, which it then sends to the other party, completing the round.

The negotiation succeeds when the primary target is satisfied; it fails when the primary

target is failed, or when a round occurs in which neither negotiator changes the graph.

6.3.1 Nodes in a Trust-Target Graph

A node in a TTG is one of the five kinds of targets, defined as follows. We use the

notatione և S for several different categories ofe, meaning thatS belongs to, satisfies,

or has the propertye. We introduce the various usages of the notation informallyas they

are used in the following list.

• A role target takes the form〈V :A.R
?

և S〉, in whichV is one of the negotiators,

A.R is a role3, andS is a principal. S is oftenopp(V), the negotiator opposing

V , but it can be any principal. This target means thatV wants to see the proof of

A.R և S.

• A policy targettakes the form〈V : policy-id
?

և S〉, in which V is one of the ne-

gotiators,S is a principal, andpolicy-id uniquely identifies a policy statement in

V ’s policy base. We assume each negotiator assigns each of herpolicy statements a

unique identifier for this purpose. This target means thatV wants to see the proof

thatS satisfies the body of the statement corresponding topolicy-id.

3Technically, the roles in the TTG correspond syntacticallyto the non-terminal〈p-role〉, rather than to〈role〉.
This is because they are derived from policies, and so can contain symbols such asAny and⇒.

101

• An intersection targettakes the form〈V :B1.R1 ∩ · · · ∩ Bk.Rk

?
և S〉, in whichV

is one of the negotiators,S is a principal,B1.R1, . . . , Bk.Rk are roles, andk is an

integer greater than 1. This means thatV wants to see the proof ofB1.R1 ∩ · · · ∩

Bk.Rk և S.

• A trivial target takes the form〈V : S
?

և S〉, in which V is one of the negotiators,

andS is a principal. Representing questions whose answers are always affirmative,

trivial targets provide placeholders for edges that represent credentials in the TTG.

• An attribute goaltakes the form〈V : attr
?

և S〉, in which attr is the name of an

attribute inS’s attribute declaration. This goal means thatV wants to learn some

information about the value ofattr, e.g., V may want to learn the full value of the

attribute, or to learn partial information about the attribute, e.g., whether it satisfies

a policy.

In each of the above forms of targets, we callV theverifier, andS thesubjectof this node.

6.3.2 Edges in a Trust-Target Graph

Seven kinds of edges are allowed in a trust-target graph, listed below. We use֋ to

represent edges in TTG’s.

• A credential edgetakes the form〈V :A.R
?

ևS〉֋ 〈V : e
?

ևS〉, in whichA.R is a

role, ande is either a principle or a role. We call〈V : e
?

և S〉 a credential child of

〈V :A.R
?

ևS〉. (We use similar “child” terminology for other kinds of edges.) An

edge always points from the child to the parent. Unlike the other kinds of edges, a

credential edge needs to bejustified to be added into the TTG; a credential edge is

justified if the edge is accompanied by a credential that provesA.R և e.

• A policy edgetakes the form〈V : A.R
?

և S〉֋ 〈V : policy-id
?

և S〉, in which

policy-id is a policy identifier andA.R is the role in the head of the policy statement

(that corresponds topolicy-id).

102

• A policy control edgetakes the form〈V :policy-id
?

ևS〉֋〈V :A.R
?

ևS〉, in which

policy-id is a policy identifier andA.R is one of the pre-conditions in the policy

statement.

• A policy expansion edgetakes the form〈V : policy-id
?

և S〉֋ 〈V :B1.R1 ∩ · · · ∩

Bk.Rk

?
և S〉, in which policy-id is a policy identifier andB1.R1 ∩ · · · ∩ Bk.Rk is

the intersection in the policy statement. Ifk > 1, the policy expansion child is an

intersection target; otherwise, it is a role target. Each policy expansion edge has

associated with it up to one tag consisting of a constraint.

• An intersection edgetakes the form〈V :B1.R1 ∩ · · · ∩Bk.Rk

?
ևS〉֋〈V :Bi.Ri

?
և

S〉, wherei is in 1..k, andk is greater than 1.

• An attribute edgetakes the form〈V :A.R
?

և S〉֋ 〈V : attr
?

և S〉, in whichS is

the negotiation opponent ofV , attr is an attribute name, andA.R is a role. This

is used when the attributeattr is linked to a specific field inA.R in S’s attribute

declarations.

• An attribute control edgetakes the form〈V : e
?

և S〉֋ 〈opp(V) : policy-id
?

և V 〉,

in which opp(V) denotes the opponent ofV , policy-id is a policy identifier, ande

is the role or attribute name in the head of the policy statement. Attribute control

edges are used for handling disclosure policies. Each attribute control edge has a

tag consisting of one of ac, ack, full, bit, or range; in the range case, it also includes

a precision parameter.

The optional tag on a policy expansion edge is used to expressthe constraint portion

of the policy statement identified bypolicy-id. The tag on an attribute control edge char-

acterizes the information thatV can gain permission to learn by satisfying the body of the

statement identified bypolicy-id.

103

6.3.3 State Propagation in TTG

Each node has aprocessing state, which is a pair of boolean states: verifier-processed

and opponent-processed. A node isverifier-processedwhen the verifier cannot process

the node any further,i.e., the verifier cannot add any new child to the node. A node

is opponent-processedwhen the opponent cannot process the node any further. When a

node is both verifier-processed and opponent-processed, wesay that it isfully processed.

Each target has asatisfaction state, which has one of three values: satisfied, failed, and

unknown. For each field in a role node or an intersection node,there is afield state. Each

field state has three entries, one for full disclosure, one for bit disclosure, and one for range

disclosure4. Each entry can have valuefalse, indicating that the corresponding disclosure

policy has been found to be unsatisfiable by the negotiator desiring to know the field value.

Entry values can also be of several other types, as will be discussed shortly. Each attribute

has anattribute state. An attribute state has three entries, one for full disclosure, one for

bit disclosure, and one for range disclosure. Each entry canbe one of the three values:

true, false, or unknown. A true value means the corresponding policy in that entry has

been satisfied. Aunknown value means the corresponding policy has not been satisfied

yet. A false value means the corresponding policy is failed by the opponent.

We now describe how to determine the satisfaction state of targets, the field state of

fields, the attribute state of attribute goals, and corresponding local states.

Satisfaction state

The trust target satisfaction state is determined as follows:

1. Role target. The initial satisfaction state of a role target is unknown. It becomes

satisfied when one of its credential children or one of its policy children is satisfied,

and for each field in its role with the⇒ symbol (the verifier wants to see the full

value of this field), the full policy entry in its field state table is not unknown (the full

4In this specification, we only support single range policy, though it can be easily extended to allow multiple
range policies.

104

value of the field has been disclosed). It becomes failed whenit is fully processed

and it has no child, or all of its children are failed, or thereexists some field in the

role with the⇒ symbol whose full entry value in the field state isfalse. It becomes

satisfied when one of its children is satisfied and each field inthe role with the⇒

symbol has a non-false value in the full entry.

2. Policy target.Let policy-id be the policy identifier in this policy target. If the policy

body corresponding topolicy-id is the constanttrue, then the inital satisfaction state

of this target is satisfied. Otherwise, the initial satisfaction state of a policy target is

unknown.

(a) If there is no constraint in the policy corresponding topolicy-id, the satis-

faction state of the policy target becomes satisfied when it is fully processed

and its policy expansion child is satisfied. It becomes failed when it is fully

processed and either it has no policy expansion child (the pre-condition for the

policy has not been satisfied) or its policy expansion child is failed.

(b) If there is a constraint in the policy corresponding topolicy-id, the satisfaction

state of the policy target becomes satisfied when it is fully processed, its policy

expansion child is satisfied, and the constraint is evaluated and also satisfied. If

the constraint has been revealed (i.e., any policy control child for the constraint

has been satisfied), it can be evaluated when the value or the range of each

variable in the constraint has been disclosed. If the constraint is private, it

can be evaluated by using the private policy evaluation, or by conventional

means once the full value of each variable in the policy has been disclosed. It

becomes failed when it is fully processed and it has no policyexpansion child,

or its policy expansion child is failed, or the constraint uses a variable whose

corresponding field-policy entries are allfalse, or the constraint is not satisfied.

3. Intersection target.The initial satisfaction state of an intersection target isunknown.

It becomes satisfied when it is fully processed and all of its children are satisfied. It

becomes failed when one of its children is failed.

105

4. Trivial target. A trivial target is always satisfied.

Attribute state

There are three entries in the attribute state of an attribute goal, one for full policy, one

for bit policy, and one for range policy. The initial value ofeach entry isunknown. If the

satisfaction state of the attribute control child of the attribute goal becomes satisfied, we

mark the value of the corresponding entry in the attribute state to betrue. On the other

hand, if the satisfaction state of the attribute control child becomes failed, we mark the

value of the corresponding entry in the attribute state to befalse.

Field state

The field state for each field in a (role or intersection) node has each entry initially

unknown. The values of a given node’s field states are copied from its children or its

grandchildren, as they become available. Field-state entry values are copied from the

corresponding field states in delegation-credential children or intersection children. If the

given node has a non-delegation credential child and the corresponding credential is a

standard credential (i.e., one not containing commitments, such as X.509 certificate), then

the precise value of the field is copied to the full entry. Otherwise, if the current node

has an attribute child, depending on the attribute state of the attribute goal, the opponent

reveals the attribute value accordingly. For example, if the full entry in the attribute child

is true, then the opponent reveals the full value of the field and the value is added to a

set of values in the full entry of the field state. If the bit entry in the attribute state of the

attribute child istrue, the bit entry in the field state is set to contain a reference to the

current role target, as well as a reference to the corresponding attribute in that role target.

This aids in associating constraints and the sources of the values of variables contained

therein. If a range disclosure entry in the attribute state of the attribute child istrue,

the opponent proves that the field value belongs to some rangeaccording the precision

parameter. The disclosed range is then written into the range entry of the field state. If an

106

entry in the attribute state of the attribute child isfalse, then we write thefalse value into

the corresponding entry in the field state.

The legal update operations do not remove nodes or edges oncethey have been added,

and once a node is fully processed, it remains so thereafter.Consequently, once a target

becomes satisfied or failed, it retains that state for the duration of the negotiation.

6.3.4 Messages in the Protocol

As described before, negotiators cooperate by using the protocol to construct a shared

TTG, a copy of which is maintained by each negotiator. Negotiators take turns transmit-

ting messages each of which contains a sequence of TTG updateoperations and a set of

credentials to be used in justifying credential edges. Negotiators may also run a set of

cryptographic protocols, described in Section 6.1, duringthe ETTG protocol. On receiv-

ing an update operation, a negotiator verifies it is legal before updating its local copy of

the shared TTG. The following arelegalTTG update operations:

• Initialize the TTG to contain a given primary trust target (TT), specifying a legal

initial processing state for this node. (See below.)

• Add a justified edge (not already in the graph) from a TT that isnot yet in the graph

to one that is, specifying a legal initial processing state for the new node. The new

TT is added to the graph as well as the edge.

• Add a justified edge (not already in the graph) from an old nodeto an old node.

• Mark a node processed. If the sender is the verifier, this marks the node verifier-

processed; otherwise, it marks it opponent-processed.

The legal initial processing state of a trivial target is fully-processed. Both a pol-

icy target and an intersection target are initially opponent-processed. An attribute goal

is initially verifier-processed. A role target is initiallyeither opponent-processed or veri-

fier processed. These operations construct a connected graph. Satisfaction states of trust

107

targets, field state of fields in trust targets, and attributestates of attribute goals are not

transmitted in messages; instead, each negotiation party infers them independently.

6.3.5 Node Processing

Previously we described the ETTG negotiation protocol, in which two negotiators ex-

change update messages. The protocol defines what updates are legal, and the receiver

of a message can verify that the updates in the message is legal. We now describe proce-

dures forcorrect processing, which update the TTG in a manner designed to satisfy the

primary target whenever this is possible, while enforcing each negotiator’s policies. Cor-

rect processing continues until either the primary target is satisfied (negotiation success),

it is failed (negotiation failure), or neither negotiator can perform a correct update (also

negotiation failure).

Note that a negotiator cannot be forced to follow the correctprocedures, and when

it does not, the other negotiator may not be able to tell. The protocol and the correct

processing procedures are intended to guarantee that a misbehaving negotiator can never

gain advantage (either learn information or gain access without satisfying relevant poli-

cies first) over a faithful negotiator who follows the protocol and the correct procedures.

Therefore, a normal negotiator has no incentive to misbehave. Still, it is always within the

power of either negotiator to behave incorrectly, and doingso may prevent the negotiation

from succeeding. For instance, either negotiator can simply abort the negotiation at any

time.

Node Processing State Initialization

When a new node is added to a TTG, its processing state should beinitialized as

follows:

• A trivial target is fully processed, its satisfaction stateis satisfied, and it has no field

state.

108

• For a role target,〈KV : K.r
?

և KS〉, if K.r is a dummy role (defined in a policy

statement), the target is opponent-processed, which meansthat the opponent cannot

further process it; otherwise, it is verifier-processed. The initial satisfaction state for

this target is unknown. If there are fields in the roleK.r, we add a field state for

each field. Initially, each field state has three entries, onefor the full entry, one for

the bit entry, and one for the range entry. The values of theseentries are set to be

empty.

• A policy target is initially opponent-processed. If the policy body corresponding to

the policy identifier in this target istrue, then the initial satisfaction state is satisfied,

otherwise, the satisfaction state is unknown. There is no field state for this target.

• An intersection target is initially opponent-processed. The initial satisfaction state

for this target is unknown. If there exist fields in any roles in the intersection target,

we add a field state for each field. Initially, each field state has a full entry, a bit

entry, and a range entry. The values of these entries are set to be empty.

• An attribute goal is initially verifier-processed. The attribute state for the attribute

goal is set to be empty. That is, there is no entry in the attribute state corresponding

to this attribute goal.

Verifier-Side Processing

We now describe how a negotiatorV processes a node when it is the verifier of the

node. These rules apply to nodes that are not yet marked verifier-processed.

1. ProcessingT = 〈V :A.R
?

ևS〉

(a) For each ofV ’s local policy statements in whichA.R is a dummy role in the policy

head andpolicy-id is the corresponding policy identifier,V can add a policy edgeT ֋

〈V :policy-id
?

ևS〉.

(b) V can markT as verifier-processed only after (a) isdone, meaning that all edges that

can be added according to (a) have been added.

109

(c) If one of the policy children has been satisfied,V copies the values in the field state

of each field from its grandchild, the policy expansion childof the newly satisfied policy

child, to the field states in its current target.

2. ProcessingT = 〈V :policy-id
?

ևS〉

(a) Let[pre-cond-1 !] B1.R1 ∩ · · · ∩Bk.Rk ; [[pre-cond-2 !] ψ(x1, . . . , xn)] be the policy

body corresponding topolicy-id. If pre-cond-1 is a role, sayA1.R1, V can add a policy

control edgeT ֋〈V :A1.R1
?

ևS〉.

(b) After (a) is done and〈V :A1.R1
?

ևS〉 is satisfied,V can add a policy expansion edge

T ֋ 〈V :B1.R1 ∩ · · · ∩ Bk.Rk

?
և S〉. V can also do so in the case that there is no pre-

condition for the intersection.

(c) Suppose there is a constraint for this policy. Ifpre-cond-2 is a role, sayA2.R2, V can

add a policy control edgeT ֋〈V :A2.R2
?

ևS〉.

(d) After (c) is done and〈V :A2.R2
?

ևS〉 is satisfied, or there is no pre-condition for the

constraint,V can add a tag to the policy expansion edge with the constraintin it.

(e) V can markT as verifier-processed only after (d) isdone, or if there is no constraint

for the policy after (b) isdone, or if (a) is doneand the policy control child added in (a)

has been marked fail.

(f) T is satisfied only if its policy expansion child has been satisfied and the constraint (if

exists) in the tag has been satisfied. The constraint can be evaluated only if there is enough

information in the field states corresponding to the required fields. There are the following

three cases.

• When each of the variables in the constraint has in its full entry in the field state a

non-empty value that is not equal tofalse (i.e., all the required attribute values have

been fully disclosed),V determines whether those values satisfy the constraints in

the policy statement identified by policy-id. If the constraint is satisfied,V marksT

to be fully-satisfied; otherwise,V marksT to be failed. If the constraint is public,

then bothV andS can verify the constraint; otherwise, onlyV verifies the con-

straint.

110

• When each of the variables in the constraint has in its full andbit entries in the

field states non-empty values not equal tofalse (i.e., V is allowed to see either one

bit or full information for each of the required attributes in the constraint), if the

constraint is private,V runs a private policy evaluation protocol withS to evaluate

the constraint using the location information stored in thebit entries of the field

states. If the constraint is public,S can prove toV using zero-knowledge proof

techniques that her attributes satisfy (or do not satisfy) the constraint by using the

information stored in the bit entries of the field states to identify the credentials and

fields within them from which each variable in the constraintobtains its value.

• When some variables in the constraint have in their range entries in the field states a

non-empty value that is not equal tofalse (i.e., all the required attribute values have

been disclosed with certain precisions),V checks whether the range information

in these range entries of the field states, when added to the available information

about the other variable values, is enough to determine whether the constraint can

be satisfied. If the range information is enough to evaluate the constraint,V verifies

the constraint accordingly. If the constraint is satisfied,V marksT to be fully-

satisfied, otherwise,V marksT to be failed. If the constraint cannot be evaluated,

the satisfaction state ofT remains unknown. If the constraint is public, then bothV

andS can verify the constraint, otherwise, onlyV verifies the constraint.

3. ProcessingT = 〈V :B1.R1 ∩ · · · ∩Bk.Rk

?
ևS〉

(a)V can add thek intersection edges,T ֋〈V :Bi.Ri

?
ևKS〉, 1 ≤ i ≤ k

(b) V can markT verifier-processed only after (a) is done.

(c) For each of its intersection children, if it has been satisfied,V copies the values in the

field state of each field from the child target to the field states of its current target. The

intersection target is satisfied if all of its intersection children are satisfied.

111

Opponent-Side Processing

We now describe how a negotiatorS process a node when it is the opponent of the ver-

ifier of the node. These rules apply to nodes that are not yet marked opponent-processed.

1. ProcessingT = 〈V :A.R
?

ևS〉

(a) If there exists a policy statement with headdisclose(ack, A.R), S can add an attribute

control edgeT ֋〈S :ack-id
?

ևV 〉, whereack-id is the policy identifier for the ack policy.

(b) After (a) is done and〈S : ack-id
?

ևV 〉 is satisfied (if it exists), ifS has the credential

A.R←−S, and if there exist a policy statementac-id with headdisclose(ac, A.R), S can

add an attribute control edgeT ֋〈S :ac-id
?

ևV 〉.

(c) After (b) is done and〈S : ac-id
?

ևV 〉 (if it exists) is satisfied,S can add the credential

edgeT ֋ 〈V :S
?

ևS〉. OnceS reveals her credentialA.R←−S, S markT to be fully-

satisfied. If the credential disclosed is a traditional certificate (and all the attributes in the

credential has been disclosed as well),S copies the attribute values to the full entries of

the field states in nodeT .

(d) After (a) is done and〈S : ack-id
?

և V 〉 is satisfied, ifS has a delegation credential

A.R←−A1.R1, S can add the credential edgeT ֋〈V :A1.R1
?

ևS〉.

(e)S can markT as opponent-processed ifT is satisfied, or all of the above steps are done.

2. ProcessingT = 〈V :attr
?

ևS〉

(a) If there exists a policy statementfull-id with headdisclose(full, attr), S can add an

attribute control edgeT ֋ 〈S : full-id
?

ևV 〉. S adds a full entry to the attribute state and

sets its value to beunknown. If the attribute control child has been satisfied,S sets the

full entry of the attribute state to betrue. Once the full entry of the attribute state becomes

true, S reveals the attribute value corresponding toattr, and copies the value to the full

entry of the field state in the parent node ofT .

(b) If there exists a policy statementbit-id with headdisclose(bit, attr), S can add an

attribute control edgeT ֋ 〈S : bit-id
?

և V 〉. S adds a bit entry to the attribute state and

sets its value to beunknown. If the attribute control child has been satisfied,S sets the bit

entry of the attribute state to betrue. Let us denoteP to be the parent node ofT . Once

112

the bit entry of the attribute state becomestrue, S writes the identity ofP to the bit entry

of the field state inP .

(c) If there exists a policy statementrange-id with headdisclose(range, attr, precision),

S can add an attribute control edgeT ֋〈S : range-id
?

ևV 〉. S adds a range entry with the

precision parameter to the attribute state and sets its value to beunknown. If the attribute

control child has been satisfied,S sets the range entry of the attribute state to betrue. Then

S runs a zero-knowledge proof protocol withV to prove thatattr belongs to a range with

certain precision, and writes the range value into the rangeentry of the field state in the

parent node ofT .

(d) S can markT as opponent-processed ifT is satisfied, or all of the above steps are

done.

6.3.6 Example of The ETTG Protocol

We now give an example that illustrates the ATNL language andthe ETTG protocol.

This is a simple instance of the ETTG protocol and illustrates the usage of the first three

properties described in Section 6.1. Referring to the bookstore example in Section 6.2, we

depict the final TTG in Figure 6.4. Alice and BookSt run the ETTGprotocol as follows: As

BookSt wants to see the proof ofBookSt.discount և Alice in order to grant Alice access,

BookSt creates the primary target (node 1) for the negotiation and sets its satisfaction state

to be unknown. If node 1 becomes satisfied, then the negotiation succeeds. In BookSt’s

policy base, there is a policy statement (m1) for BookSt.discount, hence BookSt creates

a policy target (node 2) and adds a policy edge between node 1 and node 2. As the

policy statement (m1) has no pre-conditions, BookSt reveals the policy by adding apolicy

expansion child (node 3) and a constraint tag between the parent (node 2) and the child

(node 3). Based on the policy (m1), BookSt wants to see Alice’s phone number and wants

to know whether Alice’s program and DoB satisfy his constraint. BookSt then creates

node 4, 5, 6 and adds them as intersection children to node 3. Since the roleBookSt.DoB

is a dummy role and there are policies (m2,m3) associated with it, BookSt adds a policy

target (node 7) as the policy child to node 6. BookSt then adds apolicy expansion child

113=> ? @ ? >ABCDEFGH I JK > ? @ L = I JM> ? @ NHOHPQ >CHFRSTEU V W =X Y ? >ZE?R[O\ V WKXY]G^>S_EGPR[O\ ` WMX I Ja> ? @ ? >ZE?R[O\ V WKX I J b> ? @]G^>S_EGPR[O\ ` WMX I Jc > ? @ NHOHPQ >CHFRSTEU V W =X I J

=M>] @ NHOHPQ >dFCBGPCC I e K =>] @ ? I e

f> ? @ LK I J g > ? @ LM I J =g> ? @ S_EGPhFL I Ji> ? @ ?jk>ATB[PTRZE?V WKX I J =l> ? @ mE[>SOCCRZE?V WKX I J==> ? @ nEN>CHFRSTEU V W =X I J
=c> ? @] I J =a> ? @ ZE? I J

=i>] @ ??? >STEDPCC I e=b>] @ Sc I e =f>] @ SK I e Kl>] @ SM I e

opqrqstuvw qrxqyozstpzw qrxqy{t|qp qrxqy
}~ ���������� ���� ����
RW = V �DC�X � RWK � �=� =� =gic �X

=K >] @ S = I e
Figure 6.4. Final TTG for the bookstore example. In this figure,← de-
notes the symbolև,A denotesAlice, andB denotesBookSt. The white
nodes are created byBookSt and the grey nodes are created byAlice.

(node 8) to node 7. Similarly, BookSt adds node 9 and 10. Essentially, BookSt wants to

see Alice’s DoB from either a driver license or a passport. Now BookSt cannot process

the TTG any more.

After receiving the TTG from BookSt, Alice begins to process the graph. Alice first

discloses her credentialn1 (as it is not sensitive) and adds a credential child (node 11). She

cannot disclosure her student credential (n2) immediately, as there exists an AC policy

(p1) for n2. Therefore Alice adds a policy target (node 12) and expands it with a role

target (node 13). Note that the edge between node 11 and 12 is an attribute control edge,

which means that if node 12 is satisfied, then Alice can disclose her student credential

114

(n2). Alice also reveals her digital driver license (without revealing her DoB) to BookSt,

creates a trivial target (node 14), and adds a credential edge between node 8 and node 14.

At this point, Alice notices that she needs to prove she is younger than ‘1/1/1984’ and to

reveal her phone number, she adds an attribute goal (node 15)for herDoB attribute and

another attribute goal (node 19) for herphoneNum, she also expands the TTG by adding

nodes 16, 17, 18, 20. As the node 16 is trivially satisfied (because the policy forp4 is

true), Alice proves to BookSt that she is born in 1986. Alice’s yearof birth flows up from

node 8 to node 3.

BookSt adds a trivial target (node 21) and shows to Alice hisStateU.businessLicense

certificate andBBB.goodSecProcess certificate, which triggers the satisfaction of the

nodes 12 and 20. Alice then reveals her student credential (n2) and her uncertifiedphoneNum.

The values of Alice’s attributeprogram andphoneNum flow up to node 3, where BookSt

verifies that Alice’s attributes satisfy the constraint. Finally, the primary target is satisfied

and the negotiation succeeds.

115

7 RELATED WORK

7.1 Automated Trust Negotiation

Automated trust negotiation was introduced by Winsboroughet al. [7], who presented

two negotiation strategies: an eager strategy in which negotiators disclose each credential

as soon as its access control policy is satisfied, and a “parsimonious” strategy in which

negotiators disclose credentials only after exchanging sufficient policy content to ensure

that a successful outcome is ensured. Yu et al. [10] developed a family of strategies called

the disclosure tree family such that strategies within the family can interoperate with each

other in the sense that negotiators can use different strategies within the same family.

Seamons et al. [8] and Yu and Winslett [11] studied the problem of protecting contents of

policies as well as credentials.

On the aspect of system architecture for trust negotiation,Hess et al. [76] proposed the

Trust Negotiation in TLS (TNT) protocol, which is an extension to the SSL/TLS hand-

shake protocol by adding trust negotiation features. Winslett et al. [46] introduced the

TrustBuilder architecture for trust negotiation systems.

The problem of leaking attribute information was recognized by Winsborough and

Li [9], Seamons et al. [77], and Yu and Winslett [78]. Winsborough and Li [9, 12, 79] in-

troduced the notion of acknowledgement policies to protectthis information and provided

a formal notion of safety against illegal attribute information leakage. Further, Irwin and

Yu [80] proposed a general framework for the safety of trust negotiation systems, in which

they developed policy databases as a mechanism to help prevent unauthorized information

inferences during trust negotiation.

Bonatti and Samarati [81] proposed a framework for regulating service access and

information release on the web. Their framework supports both certified attributes and

uncertified attributes. Bertino, Ferrari, and Squicciariniproposed Trust-χ [82–85], a com-

116

prehensive XML-based framework for trust negotiations, specifically conceived for a peer-

to-peer environment. Trust-χ presents a number of innovative features, such as the support

for protection of sensitive policies, the use of trust tickets to speed up the negotiation, and

the support of different strategies to carry on a negotiation.

7.2 Cryptographic Approaches to Automated Trust Negotiation

Recently, several cryptographic protocols have been proposed to address the limi-

tations in ATN. For example, oblivious signature based envelopes [45], hidden creden-

tials [22,68], oblivious commitment based envelopes in Chapter 3, and secret handshakes

[71, 73] can be used to handle policy cycle problems. Access control using pairing-based

cryptography [86], anonymous identification [87], certified input private policy evalua-

tion [88], hidden policies with hidden credentials in Chapter 5 (and also in [67, 89]), and

policy-based cryptography [90] are proposed to address theprivacy issues in access con-

trol, in particular, these protocols can be used to protect the server’s policy and the client’s

identities or attributes. While all the above protocols are useful tools and building blocks

for ATN, they are not general enough to solve arbitrary trustnegotiation problems in a

systematic way.

7.3 Anonymous Credential Systems

Anonymous credential systems (also called pseudonym systems) [29–33] enable busi-

ness transactions to be conducted in an anonymous yet authenticated manner. Similarly

to OACerts, in anonymous credential systems, a user can choose which information in a

credential, and which aspects of that information, to disclose or prove to another party.

For example, suppose a credential asserts that Alice’s age is 24. Then Alice can prove to

Bob that her age is over 18 without revealing the exact value ofher age. This property

is desirable in trust negotiation because it minimizes the information revealed during an

interaction and enhances privacy protection.

117

7.4 Secure Function Evaluation

Secure Function Evaluation (SFE) [23,26,41] is a powerful and general cryptographic

primitive. In SFE, Alice and Bob each have private data (say,xA for Alice andxB for Bob),

and they want to computef(xA, xB) where the functionf is known to both Alice and Bob,

andf(xA, xB) is efficiently computable by someone who had bothxA andxB. However,

neither Alice nor Bob is willing to disclose his/her private data to the other or to a third

party. Informally speaking, a protocol that involves only Alice and Bob, is said to be secure

if, at its end, Alice and Bob have learned onlyf(xA, xB). The history of the multi-party

computation problem is extensive since it was introduced by[91] and extended by [41]

and others. Broadly speaking, it has been established that there exists a secure protocol

to evaluate any well-defined function, no matter how complex. However, [92] states that

although the general secure multi-party computation problem is solvable in theory, using

the solutions derived by these general results can be impractical. In other words, efficiency

dictates the development of special solutions for special cases. Therefore, for efficiency

reasons we might need to either transform the computation into a different form or provide

a customized solution.

Selective Private Function Evaluation was introduced by Canetti et al.[93] whose goal

is for Bob to compute a private functionf(xi1 , . . . , xim) over a subset of Alice’s database

x = x1, . . . , xn without revealing Bob’s function. In their, the authors focused on the case

wheref andm are public but them locations in the database are private to Bob.

Abadi and Feigenbaum [94] introduced the notion of Secure Circuit Evaluation. In Se-

cure Circuit Evaluation, Alice has a private inputx and Bob has a private circuitC. In the

end Alice learns the valueC(x) but nothing else aboutC. Sander et al. [95] improved the

previous results and gave an efficient one-round protocol for secure evaluation of circuits

that have polynomial size and depthO(log n).

118

8 SUMMARY

In ATN, two parties exchange digitally signed credentials that contain attribute informa-

tion to establish trust and make access control decisions. However, in existing approaches

to ATN, there are several limitations due to the privacy constraints. In this thesis, we

introduced a number of techniques that address these limitations. In particular,

• We proposed OACerts, an attribute certificate scheme especially designed for ATN.

We presented an efficient and provably secure solution to policy-hiding access con-

trol using OACerts, which enables Bob to decide whether Alice’s certified attribute

values satisfy Bob’s policy, without Bob learning any other information about Al-

ice’s attribute values or Alice learning Bob’s policy.

• We gave an efficient protocol for Alice and Bob to negotiate trust, such that Alice

does not learn Bob’s credentials and policies, and Bob does notlearn Alice’s creden-

tials and policies. The only information they learn is whether the trust between them

can be established, or in other words, whether Alice is eligible for Bob’s service

or resource. Our work is a substantial extension of the state-of-the-art in privacy-

preserving trust negotiations.

• We have introduced a framework for ATN that supports the combined use of sev-

eral cryptographic credential schemes and protocols that have been previously in-

troduced piecemeal to provide capabilities that are usefulin various negotiation sce-

narios. Our framework enables these various schemes to be combined flexibly and

synergistically, on the fly as the need arises.

LIST OF REFERENCES

119

LIST OF REFERENCES

[1] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust management. In
Proceedings of the 1996 IEEE Symposium on Security and Privacy, pages 164–173.
IEEE Computer Society Press, May 1996.

[2] Ronald L. Rivest and Bulter Lampson. SDSI — A simple distributed security in-
frastructure, October 1996.http://theory.lcs.mit.edu/∼rivest/sdsi11.html.

[3] Carl Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian Thomas, and Tatu Ylo-
nen. SPKI certificate theory. IETF RFC 2693, September 1999.

[4] Dwaine Clarke, Jean-Emile Elien, Carl Ellison, Matt Fredette, Alexander Morcos,
and Ronald L. Rivest. Certificate chain discovery in SPKI/SDSI.Journal of Com-
puter Security, 9(4):285–322, 2001.

[5] Ninghui Li, William H. Winsborough, and John C. Mitchell.Distributed credential
chain discovery in trust management.Journal of Computer Security, 11(1):35–86,
February 2003.

[6] Ninghui Li, John C. Mitchell, and William H. Winsborough.Design of a role-based
trust management framework. InProceedings of the 2002 IEEE Symposium on Se-
curity and Privacy, pages 114–130. IEEE Computer Society Press, May 2002.

[7] William H. Winsborough, Kent E. Seamons, and Vicki E. Jones. Automated trust ne-
gotiation. InDARPA Information Survivability Conference and Exposition, volume I,
pages 88–102. IEEE Press, January 2000.

[8] Kent E. Seamons, Marianne Winslett, and Ting Yu. Limiting the disclosure of access
control policies during automated trust negotiation. InProceedings of the Symposium
on Network and Distributed System Security, February 2001.

[9] William H. Winsborough and Ninghui Li. Towards practical automated trust negoti-
ation. InProceedings of the 3rd International Workshop on Policies for Distributed
Systems and Networks, pages 92–103. IEEE Computer Society Press, June 2002.

[10] Ting Yu, Marianne Winslett, and Kent E. Seamons. Supporting structured creden-
tials and sensitive policies through interoperable strategies for automated trust nego-
tiation. ACM Transactions on Information and System Security, 6(1):1–42, February
2003.

[11] Ting Yu and Marianne Winslett. Unified scheme for resource protection in automated
trust negotiation. InProceedings of IEEE Symposium on Security and Privacy, pages
110–122. IEEE Computer Society Press, May 2003.

[12] William H. Winsborough and Ninghui Li. Safety in automated trust negotiation. In
Proceedings of the IEEE Symposium on Security and Privacy, pages 147–160, May
2004.

120

[13] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. InProceedings of the 1st ACM Conference on Com-
puter and Communications Security, pages 62–73. ACM Press, 1993.

[14] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable se-
cret sharing. InAdvances in Cryptology: CRYPTO ’91, volume 576 ofLNCS, pages
129–140. Springer, 1991.

[15] Tatsuaki Okamoto, Shigenori Uchiyama, and Eiichiro Fujisaki. Epoc: Efficient prob-
abilistic public-key encryption. InIEEE P1363: Protocols from other families of
public-key algorithms, November 1998.

[16] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. InAdvances in Cryptology: EUROCRYPT ’99, volume 1592 ofLNCS,
pages 223–238. Springer, 1999.

[17] Ivan Damg̊ard and Mads Jurik. A generalisation, a simplification and some ap-
plications of paillier’s probabilistic public-key system. In Proceedings of the 4th
International Workshop on Practice and Theory in Public KeyCryptography, pages
119–136. Springer, 2001.

[18] Ivan Damg̊ard and Mads Jurik. A length-flexible threshold cryptosystem with appli-
cations. InProceedings of the 8th Australasian Conference on Information Security
and Privacy, volume 2727 ofLNCS, pages 350–364. Springer, 2003.

[19] Adi Shamir. Identity-based cryptosystems and signature schemes. InAdvances in
Cryptology: CRYPTO ’84, volume 196 ofLNCS, pages 47–53. Springer, 1984.

[20] Dan Boneh and Matt Franklin. Identity-based encryptionfrom the weil pairing.
In Advances in Cryptology: CRYPTO ’01, volume 2139 ofLNCS, pages 213–229.
Springer, 2001.

[21] Clifford Cocks. An identity based encryption scheme based on quadratic residues.
In 8th IMA International Conference on Cryptography and Coding, volume 2260,
pages 360–363. Springer, December 2001.

[22] Jason E. Holt, Robert W. Bradshaw, Kent E. Seamons, and Hilarie Orman. Hidden
credentials. InProceedings of the 2nd ACM Workshop on Privacy in the Electronic
Society, pages 1–8, October 2003.

[23] Andrew C. Yao. How to generate and exchange secrets. InProceedings of the
27th IEEE Symposium on Foundations of Computer Science, pages 162–167. IEEE
Computer Society Press, 1986.

[24] Michael O. Rabin. How to exchange secrets by oblivious transfer. Technical Report
Memo TR-81, Aiken Computation Laboratory, Harvard University, 1981.

[25] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for
signing contracts.Communications of the ACM, 28(6):637–647, 1985.

[26] Oded Goldreich.The Foundations of Cryptography — Volume 2. Cambridge Uni-
versity Press, May 2004.

[27] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleablecryptography.SIAM
Journal on Computing, 30(2):391–437, 2000.

121

[28] Russell Housley, Warwick Ford, Tim Polk, and David Solo.Internet X.509 public
key infrastructure certificate and CRL profile. IETF RFC 2459, January 1999.

[29] David Chaum. Security without identification: Transaction systems to make big
brother obsolete.Communications of the ACM, 28(10):1030–1044, 1985.

[30] Stefan A. Brands.Rethinking Public Key Infrastructures and Digital Certificates:
Building in Privacy. MIT Press, August 2000.

[31] Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf. Pseudonym
systems. InProceedings of the 6th Workshop on Selected Areas in Cryptography,
volume 1758 ofLNCS, pages 184–199. Springer, 1999.

[32] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. In Advances in Cryptol-
ogy: EUROCRYPT ’01, volume 2045 ofLNCS, pages 93–118. Springer, 2001.

[33] Jan Camenisch and Els Van Herreweghen. Design and implementation of the idemix
anonymous credential system. InProceedings of the 9th ACM Conference on Com-
puter and Communications Security, pages 21–30. ACM, nov 2002.

[34] Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge protocols to
prove modular polynomial relations. InAdvances in Cryptology: CRYPTO ’97,
volume 1294 ofLNCS, pages 16–30. Springer, 1997.

[35] Ronald Cramer and Ivan Damgård. Zero-knowledge proof for finite field arithmetic,
or: Can zero-knowledge be for free? InAdvances in Cryptology: CRYPTO ’98,
volume 1462 ofLNCS, pages 424–441. Springer, 1998.

[36] Ivan Damg̊ard and Eiichiro Fujisaki. An integer commitment scheme based on
groups with hidden order. InAdvances in Cryptology: ASIACRYPT ’02, volume
2501 ofLNCS, pages 125–142. Springer, December 2002.

[37] Ronald Cramer, Matthew K. Franklin, Berry Schoenmakers, and Moti Yung. Multi-
authority secret-ballot elections with linear work. InAdvances in Cryptology: EU-
ROCRYPT ’96, volume 1070 ofLNCS, pages 72–83. Springer, 1996.

[38] Wenbo Mao. Guaranteed correct sharing of integer factorization with off-line share-
holders. InPublic Key Cryptography: PKC’98, volume 1431 ofLNCS, pages 60–71.
Springer, February 1998.

[39] Glenn Durfee and Matt Franklin. Distribution chain security. In Proceedings of
the 7th ACM Conference on Computer and Communications Security, pages 63–70.
ACM Press, 2000.

[40] Fabrice Boudot. Efficient proofs that a committed numberlies in an interval. In
Advances in Cryptology: EUROCRYPT ’00, volume 1807 ofLNCS, pages 431–444,
May 2000.

[41] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game. In
Proceedings of the 19th ACM Conference on Theory of Computing, pages 218–229,
May 1987.

[42] Sharon Boeyen, Tim Howes, and Patrick Richard. Internet X.509 public key in-
frastructure LDAPc2 schema. IETF RFC 2587, June 1999.

122

[43] Stephen Farrell and Russell Housley. An internet attribute certificate profile for au-
thorization. IETF RFC 3281, April 2002.

[44] Eric Rescorla.SSL, TLS: Designing, and Building Secure Systems. Addison-Wesley,
2001.

[45] Ninghui Li, Wenliang Du, and Dan Boneh. Oblivious signature-based envelope. In
Proceedings of the 22nd ACM Symposium on Principles of Distributed Computing,
pages 182–189. ACM Press, July 2003.

[46] Marianne Winslett, Ting Yu, Kent E. Seamons, Adam Hess,Jared Jacobson, Ryan
Jarvis, Bryan Smith, and Lina Yu. Negotiating trust on the web. IEEE Internet
Computing, 6(6):30–37, November/December 2002.

[47] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. Theknowledge complexity
of interactive proof systems.SIAM Journal on Computing, 18:186–208, feb 1989.

[48] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22:644–654, 1976.

[49] Ninghui Li, Wenliang Du, and Dan Boneh. Oblivious signature-based envelope.
Distributed Computing, 17(4):293–302, 2005.

[50] JCSI. Java cryptographic secure implementation. Wedgetail Communications, 2004.

[51] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay – Secure two-
party computation system. InProceedings of the 13th USENIX Security Symposium,
pages 287–302. USENIX, 2004.

[52] Murat Kantarcioglu and Chris Clifton. Assuring privacy when big brother is watch-
ing. In Proceedings of the 8th ACM SIGMOD Workshop on Research Issuesin Data
Mining and Knowledge Discovery, pages 88–93. ACM Press, 2003.

[53] Ran Canetti. Security and composition of multiparty cryptographic protocols.Jour-
nal of Cryptology, 13(1):143–202, 2000.

[54] Ran Canetti, Uri Feige, Oded Goldreich, and Moni Naor. Adaptively secure multi-
party computation. InProceedings of the 28th ACM Symposium on Theory of Com-
puting, pages 639–648. ACM Press, 1996.

[55] Nicholas J. Pippenger. Generalized connectors. Technical Report RC-6532, IBM
Res. Rep., 1977.

[56] Clark D. Thompson. Generalized connection networks forparallel processor inter-
communication. IEEE Transactions on Computers, 27(12):1119–1125, December
1978.

[57] S. Arora, T. Leighton, and B. Maggs. On-line algorithms for path selection in a
nonblocking network. InProceedings of the 22nd ACM Symposium on Theory of
Computing, pages 149–158. ACM Press, 1990.

[58] Ellen Witte Zegura. Evaluating blocking probability in generalized connectors.
IEEE/ACM Transactions on Networking, 3(4):387–398, 1995.

123

[59] Yuanyuan Yang and Gerald M. Masson. The necessary conditions for clos-type non-
blocking multicast networks.IEEE Transactions on Computers, 48(11):1214–1227,
1999.

[60] Ju P. Ofman. A universal automaton.Transactions of the Moscow Math Society,
14:200–215, 1965.

[61] Mihir Bellare and Silvio Micali. Non-interactive oblivious transfer and applications.
In Advances in Cryptology: CRYPTO ’89, volume 435 ofLNCS, pages 547–557.
Springer, 1989.

[62] Moni Naor and Benny Pinkas. Efficient oblivious transferprotocols. InProceedings
of SIAM Symposium on Discrete Algorithms, pages 448–457, January 2001.

[63] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. InAdvances in Cryptology: CRYPTO ’84, volume 196 ofLNCS, pages
10–18. Springer, 1985.

[64] Yiannis Tsiounis and Moti Yung. On the security of elgamal based encryption. In
Proceedings of the 1st International Workshop on Practice and Theory in Public Key
Cryptography, pages 117–134. Springer, 1998.

[65] Ting Yu, Xiaosong Ma, and Marianne Winslett. Prunes: Anefficient and complete
strategy for trust negotiation over the internet. InProceedings of the 7th ACM Con-
ference on Computer and Communications Security, pages 210–219. ACM Press,
November 2000.

[66] Ting Yu, Marianne Winslett, and Kent E. Seamons. Interoperable strategies in auto-
mated trust negotiation. InProceedings of the Eighth ACM Conference on Computer
and Communications Security, pages 146–155. ACM Press, November 2001.

[67] Keith B. Frikken, Mikhail J. Atallah, and Jiangtao Li. Hidden access control policies
with hidden credentials. InProceedings of the 3rd ACM Workshop on Privacy in the
Electronic Society, October 2004.

[68] Robert Bradshaw, Jason Holt, and Kent Seamons. Concealingcomplex policies with
hidden credentials. InProceedings of 11th ACM Conference on Computer and Com-
munications Security, pages 146–157, October 2004.

[69] Keith B. Frikken. Secure and Private Online Collaboration. PhD thesis, Purdue
University, West Lafayette, Indiana, 2005.

[70] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching
and set intersection. InAdvances in Cryptology: EUROCRYPT ’04, volume 3027 of
LNCS, pages 1–19. Springer, 2004.

[71] Dirk Balfanz, Glenn Durfee, Narendar Shankar, Diana Smetters, Jessica Staddon,
and Hao-Chi Wong. Secret handshakes from pairing-based key agreements. InPro-
ceedings of the IEEE Symposium and Security and Privacy, pages 180–196, May
2003.

[72] Ninghui Li and John C. Mitchell. Datalog with constraints: A foundation for trust
management languages. InProceedings of the 5th International Symposium on
Practical Aspects of Declarative Languages, number 2562 in LNCS, pages 58–73.
Springer, January 2003.

124

[73] Claude Castelluccia, Stanislaw Jarecki, and Gene Tsudik. Secret handshakes from
CA-oblivious encryption. InAdvances in Cryptology: ASIACRYPT ’04, pages 293–
307, December 2004.

[74] Paul F. Syverson, David M. Goldschlag, and Michael G. Reed. Anonymous con-
nections and onion routing. InProceedings of the IEEE Symposium on Security and
Privacy, pages 44–54, May 1997.

[75] Michael K. Reiter and Aviel D. Rubin. Crowds: Anonymity forweb transac-
tions. ACM Transactions on Information and System Security, 1(1):66–92, Novem-
ber 1998.

[76] Adam Hess, Jared Jacobson, Hyrum Mills, Ryan Wamsley, Kent E. Seamons, and
Bryan Smith. Advanced client/server authentication in TLS.In Network and Dis-
tributed System Security Symposium, pages 203–214, February 2002.

[77] Kent E. Seamons, Marianne Winslett, Ting Yu, Lina Yu, and Ryan Jarvis. Protecting
privacy during on-line trust negotiation. In2nd Workshop on Privacy Enhancing
Technologies. Springer-Verlag, April 2002.

[78] Ting Yu and Marianne Winslett. Policy migration for sensitive credentials in trust
negotiation. InProceedings of the ACM Workshop on Privacy in the Electronic
Society, pages 9–20. ACM Press, October 2003.

[79] William H. Winsborough and Ninghui Li. Protecting sensitive attributes in auto-
mated trust negotiation. InProceedings of the ACM Workshop on Privacy in the
Electronic Society, pages 41–51. ACM Press, November 2002.

[80] Keith Irwin and Ting Yu. Preventing attribute information leakage in automated
trust negotiation. InProceedings of the 12th ACM conference on Computer and
Communications Security, pages 36–45, 2005.

[81] Piero Bonatti and Pierangela Samarati. Regulating service access and information
release on the web. InProceedings of the 7th ACM Conference on Computer and
Communications Security, pages 134–143. ACM Press, November 2000.

[82] Elisa Bertino, Elena Ferrari, and Anna Cinzia Squicciarini. Trust-χ: An XML frame-
work for trust negotiations. In11 International Conference on Communications and
Multimedia Security, pages 146–157, October 2003.

[83] Elisa Bertino, Elena Ferrari, and Anna Cinzia Squicciarini. X-TNL: An XML-based
language for trust negotiations. In4th IEEE International Workshop on Policies for
Distributed Systems and Networks, pages 81–84, June 2003.

[84] Elisa Bertino, Elena Ferrari, and Anna Cinzia Squicciarini. Privacy-preserving trust
negotiations. In4th International Workshop on Privacy Enhancing Technologies,
pages 283–301, May 2004.

[85] Elisa Bertino, Elena Ferrari, and Anna Cinzia Squicciarini. Trust-χ: A peer-to-
peer framework for trust establishment.IEEE Transactions on Knowledge and Data
Engineering, 16(7):827–842, 2004.

[86] Nigel Smart. Access control using pairing based cryptography. InProceedings of
the Cryptographers’ Track at the RSA Conference 2003, pages 111–121. Springer-
Verlag LNCS 2612, April 2003.

125

[87] Yevgeniy Dodis, Aggelos Kiayias, Antonio Nicolosi, and Victor Shoup. Anonymous
identification in ad hoc groups. InAdvances in Cryptology: EUROCRYPT 2004,
pages 609–626, May 2004.

[88] Jiangtao Li and Ninghui Li. Policy-hiding access control in open environment. In
Proceedings of the 24nd ACM Symposium on Principles of Distributed Computing,
pages 29–38. ACM Press, July 2005.

[89] Keith B. Frikken, Jiangtao Li, and Mikhail J. Atallah. Trust negotiation with hidden
credentials, hidden policies, and policy cycles. InProceedings of 13th Network and
Distributed System Security Symposium, pages 157–172, February 2006.

[90] Walid Bagga and Refik Molva. Policy-based cryptography and applications. In
Proceedings of the 9th International Conference on Financial Cryptography and
Data Security, February 2005.

[91] Andrew C. Yao. Protocols for secure computations. InProceedings of the 23th IEEE
Symposium on Foundations of Computer Science, pages 160–164. IEEE Computer
Society Press, 1982.

[92] Shafi Goldwasser. Multi-party computations: Past and present. InProceedings of
the 16th ACM Symposium on Principles of Distributed Computing, pages 1–6, 1997.

[93] Ran Canetti, Yuval Ishai, Ravi Kumar, Michael K. Reiter, Ronitt Rubinfeld, and
Rebecca N. Wright. Selective private function evaluation with applications to private
statistics. InProceedings of the 20th ACM symposium on Principles of Distributed
Computing, pages 293–304. ACM Press, 2001.

[94] Mart́ın Abadi and Joan Feigenbaum. Secure circuit evaluation: A protocol based on
hiding information from an oracle.Journal of Cryptology, 2(1):1–12, 1990.

[95] Tomas Sander, Adam Young, and Moti Yung. Non-interactive cryptocomputing for
NC1. In Proceedings of the 40th Symposium on Foundations of ComputerScience,
page 554. IEEE Computer Society, 1999.

VITA

126

VITA

Jiangtao Li was born in Huaian, China. At the age of fifteen, he entered the Special

Class for the Gifted Young at the University of Science and Technology of China (USTC),

where he obtained his bachelor’s degree in computer sciencein July 1999. After he grad-

uated from USTC, he spent one year at the Department of Statistics of Purdue University

as a Ph.D. student.

In May 2000, he enrolled in the Department of Computer Scienceof Purdue University

where he obtain his master’s degree in May 2002. In the summerof 2003, he performed

three months of his Ph.D. research at Microsoft Corporation.He received the degree of

Doctor of Philosophy in May 2006 under the direction of Professor Mikhail Atallah and

Professor Ninghui Li. His research interests are in computer security, applied cryptogra-

phy, electronic commerce, bioinformatics, with a focus on privacy and data protection.

