
CERIAS Tech Report 2006-03

A POLICY-BASED AUTHORIZATION SYSTEM FOR WEB SERVICES: INTEGRATING
X-GTRBAC AND WS-POLICY

by Rafae Bhatti, Daniel Sanz, Elisa Bertino, Arif Ghafoor

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

1/11

Authorization and access control in Web services is complicated by the unique requirements of the
dynamic Web services paradigm. Amongst them is the requirement for a context-aware access control
specification and a processing model to apply fine-grained access control on various components of a Web
service. In this paper, we address these two requirements and present a policy-based authorization system that
leverages an emerging Web service policy processing model, WS-Policy, and integrates it with X-GTRBAC, an
XML-based access control model to allow specification and processing of fine-grained, context-aware
authorization policies in dynamic Web services environments. The architecture is designed to support the WS-
Policy Attachment specification, which allows attaching, retrieving and combining policies associated with
various components of a Web service in the WSDL document. Consequently, we present an algorithm to
compute the effective access control policy of a Web service based on its description. The effective policy,
represented as a normalized WS-Policy document, is then used by the X-GTRBAC system to evaluate an
incoming access request. We have prototyped our architecture, and implemented it as a loosely coupled Web
service, with logically distinct, heterogeneous modules acting as Policy Enforcement Point (PEP) and Policy
Decision Point (PDP). Our prototype demonstrates the true promise of the decentralized Web services
architecture, and incorporates SAML-based single sign-on communication between multiple system modules.

Patient Track
Service

Patient Record
Service (Spain)

Patient Record
Service (USA)

Health Information System

WSDL
Service: PTService
Port: portURI
PortType: portType
Binding: binding

WSDL
Service: PRServiceUS
Port: portURI
PortType: portType
Binding: binding

WSDL
Service: PRServiceSP
Port: portURI
PortType: portType
Binding: binding

Figure 1: A Web-service based application: services are described
using WSDL documents.

A Policy-Based Authorization System for Web Services:
Integrating X-GTRBAC and WS-Policy

Rafae Bhatti, Daniel Sanz, Elisa Bertino, Arif Ghafoor

1. Introduction
Access control in Web services is a neglected frontier that has not seen the development and adoption of

many standards, as opposed to the number of current and emerging specifications for authentication aspects of Web
services security [13, 14, 16]. These specifications allow one to express preferences for use of security attributes to
establish trusted and authenticated connections between multiple service providers or end users. While authentication
and privacy can ensure the security of connections and privacy of user information, respectively, the security of the
information content provided by the service is controlled by the authorization policies. However, not many
specifications exist that are primarily designed to provide support for authorization policies for Web services.
Additionally, no truly Web-service oriented architectures and implementations have been reported that identify and
address important issues related to processing of authorization policies in Web services. In this paper, we attempt to
close the gap between authentication and authorization support in Web services by presenting an authorization system
that is designed specifically to work in a Web services environment.

At the very onset, we would like to motivate the problem addressed in this paper with a typical Web services
scenario. A Web application usually requires the invocation of one or more Web services in order to provide its
functionality. An individual Web service in turn provides several operations to carry out a specific function that it
offers. The primary functional specification of a Web service is described by the Web Service Description Language
(WSDL) [10]. A WSDL document includes the definitions of port types, bindings, and ports used to make up a Web
service. Operations and interfaces grouping
those operations provided by the service are
also defined using the WSDL. A service
instance typically comprises of a unique
port of a given type with an associated
binding, and a set of operations included
with that port type. In this way, multiple
service instances can be exposed using the
same WSDL file by associating the service
instances with different types of ports, each
exposing a different set of operations.

One such scenario is depicted in
Figure 1. It illustrates a Health Information
System Web application that uses multiple
Web services to offer a variety of services
to its clients. It offers a top level service
called Patient Track Service (PTService)
which allows physicians to track all patients
in the system based on the authorization of
the physician. This service returns a list of
patients and the location of their records.
Subsequently, the physician can choose to
view a specific patient record from a given
location (USA and Spain in this example),

2/11

for which the system will invoke the appropriate Patient Record Service (PRService). The authorization credentials of
the requesting physician will again be required to obtain this new service. The level of access that the physician is
allowed will depend on his/her authorization credentials, and several service instances with a different set of operations
corresponding to various levels of authorization may be defined to accommodate this requirement. The specific service
instance to invoke can be predefined or dynamically discovered (using for instance UDDI), but in both cases WSDL is
required to initiate the interaction. Clearly then, the task of interaction between Web services requires a fine grain of
control on what components of a service may be allowed to be invoked and under what circumstances.
 This example serves to illustrate the following two requirements for Web service access control: (i) the
granularity of service access must be based on the level of user authorization, and (ii) the expressiveness of the service
access policy must support context-aware access control. The first requirement is a service design issue, which can be
addressed by creating differentiated service instances (with different set of operations) at distinct ports and associating
an access control policy with those instances, and with the components that make up those instances (ports, port types
and bindings). The second requirement is a policy design issue, and can be addressed by a using a policy specification
language that can adequately capture the context-aware access control requirements in a dynamic Web service
environment. Both these aspects need to be tied together in a seamless manner and included with the service definition
so that the WSDL file can be a self-contained description of the service and its applicable access control policies. The
focus of our current work is to present an authorization architecture that specifically achieves this objective.
1.1. Contributions and Organization

In this paper, we propose a policy-based authorization system that leverages an existing Web service policy
processing model, WS-Policy, [11] and integrates it with X-GTRBAC, an XML-based access control model [3] to
allow specification and processing of fine-grained context-aware authorization policies in dynamic Web services
environments. The architecture is designed to support the WS-Policy Attachment model [12], which allows attaching,
retrieving and combining policies associated with various components of a Web service description. Consequently, we
present an algorithm to compute the effective access control policy of a Web service based on its description document.
The effective policy, represented as a normalized WS-Policy document, is then used by the X-GTRBAC system to
evaluate an incoming access request. We have prototyped our architecture, and implemented it in a Web services
environment. In fact, the authorization system itself is also implemented as a loosely coupled Web service, with
logically distinct, heterogeneous modules acting as Policy Enforcement Point (PEP) and Policy Decision Point (PDP).
The system has been tested with a PHP-based PEP deployed at Carlos III University of Madrid in Spain and a Java-
based PDP at Purdue University in USA. Our prototype demonstrates the true promise of the decentralized Web
services architecture, and incorporates SAML-based single sign-on communication between multiple system modules.

The remainder of this paper is organized as follows. The next section discuses related work in Web services
access control, and identifies the shortcomings of the existing approaches with respect to the challenges outlined above.
Section 3 presents the details of the policy specification in our authorization system. It first provides an overview of X-
GTRBAC and WS-Policy specification languages, and then presents a WS-Policy profile of X-GTRBAC that is used in
our system to express Web service authorization policies. Section 4 discusses the mechanisms needed for policy
processing in a Web services environment. It provides an overview of the WS-Policy Attachment specification, and
discusses in detail the mechanism of attaching, retrieving, and combining policies associated with multiple components
of a Web service description, and computing the effective service access policy. Section 5 presents the proposed
architecture and implementation of our authorization system. Section 6 concludes the paper.
2. Related Work

There has been an effort in the research community to highlight the challenges associated with Web-based
access control. Many of these mechanisms provide specification of context-aware access control languages [1, 2, 5, 6,
9]. They, however, do not provide a mechanism for policy processing in a Web services environment to allow fine-
grained access control on individual Web service components defined in WSDL.

A fair amount of related research in the area of Web services security is due to the industry, with standards
such as Security Assertion Markup Language (SAML) [16] and eXtensible Access Control Markup Language
(XACML) [17] having been recently adopted. SAML defines an XML framework for exchanging authentication and
authorization information for securing Web services, and relies on third-party authorities for provision of “assertions”
containing such information. However, SAML itself is not designed to provide support for specifying authorization
policies; it is in fact a complementary specification, and we use it in our work. XACML is an XML framework for
specifying context-aware access control policies for Web-based resources. The Web Service Policy Language (WSPL)
[18] is an XACML profile for Web services that can be used to publish the access control requirements of a Web
service using XACML. Being derived from XACML, WSPL can be used for policy specification to satisfy one of the
requirements for Web service access control identified above. It, however, does not support a generalized policy
processing mechanism and must be bound to an XACML target to be used in a Web service. Unlike WS-Policy,
XACML does not provide a formal mechanism to associate policies with components of a Web service definition.

The most notable set of emerging specifications are the ones outlined in WS security roadmap [15]. The
roadmap consists of a number of component specifications, the core amongst them are WS-Security [13], WS-Policy
[11], and WS-Trust [14]. WS-Security is a specification for securing whole or parts of an XML message using XML
encryption and digital signature technology, and attaching security credentials thereto. WS-Policy is used to describe
the security policies in terms of their characteristics and supported features (such as required “security tokens”,
encryption algorithms, privacy rules, etc.). In fact, WS-Policy is a meta-language which can be used to create various
policy languages for different purposes, and can indeed be used to define an access control policy. WS-Trust defines a

3/11

trust model that allows for exchange of such security tokens (using mechanisms provided by WS-Security, and
according to the requirements supplied by WS-Policy) in order to enable the issuance and dissemination of credentials
within different trust domains, and establish online trust relationships.

The models proposed in the roadmap have been directed primarily at the authentication aspect of Web
services security, with an emphasis on designing secure messaging protocols to communicate the security-relevant
information, such as security tokens and characteristics of security policy. The specification leaves room for custom
authorization models to be tied into the architecture at the appropriate (i.e. WS-Policy) level. This is exactly where our
current work fits in; we use X-GTRBAC to provide support for expressing authorization policies within the WS-Policy
model. The choice for the use of X-GTRBAC as the authorization model in our system is motivated by prior work [1]
that highlights the various advantages of X-GTRBAC specification language, such as simplified role-based
administration and expressive yet flexible constraint specification, which make it suitable for context-aware access
control in dynamic Web services. That work does not address the issues specific to policy processing identified in the
paper. To provide this support, we integrate X-GTRBAC with a Web service specific policy processing model
comprising of the WS-Policy and WS-Policy Attachment specifications. To the best of our knowledge, addressing this
aspect of Web service access control remains a novel contribution.
3. Policy Specification

This section presents the details of policy specification in our system.
3.1 X-GTRBAC

Our authorization system is based on X-GTRBAC model [3]. X-GTRBAC is an XML-based extension of the
role-based access control (RBAC) model [8]. RBAC uses the notion of roles to embody a collection of permissions;
permissions are associated with roles through a permission-to-role assignment, and users are granted access to
resources through a user-to-role assignment. X-GTRBAC extends RBAC to provide a generalized mechanism to
express a diverse set of constraints on user-to-role and permission-to-role assignments. It is this constraint specification
mechanism which is of specific relevance to us for this paper, and we shall discuss that below.
3.1.1. Constraint Specification

X-GTRBAC allows an expressive and flexible constraint specification mechanism to define temporal and
non-temporal contextual constraints. An (user-to-role or permission-to-role) assignment constraint in X-GTRBAC
comprises of a set of assignment conditions, where each condition has associated with it an optional temporal constraint
expression and an optional set of non-temporal logical expressions. The syntax of an assignment constraint is described
in Table 1.

Table 1: X-GTRBAC assignment constraint expression

An assignment constraint is satisfied if all included assignment conditions are satisfied (according to the

supplied operator, which defaults to AND if none is supplied). An assignment condition is satisfied if (i) the associated
temporal constraint expression, if any, is satisfied; a temporal constraint expression checks for time-based conditions,
such as periodicity, interval or duration, and (ii) the associated set of logical expressions, if any, is satisfied; a logical
expression is satisfied if all included predicates are satisfied (according to the supplied operator). A logical expression
defines rules on the credential attribute of the constraint subject (user or role). As an example, an assignment constraint
can state that “role r can access resource o if (a) the access occurs between 9AM and 5PM during the month of

<AssignConstraint op=”AND|OR”>
 [<AssignCondition [cred_type=””]
 [pt_expr_id=””]>
 [<!--<Logical Expression>-->]*
 </AssignCondition>]+
</AssignConstraint>

<!--<Logical Expression>-->::=
 <LogicalExpression op=” AND|OR”>
 [<!--<Predicate Block>-->]+
 <LogicalExpression>

<!--<Predicate Block>--> ::=
 <!--<Logical Expression>--> |
 <!--<Predicate>-->

<!--<Predicate>--> ::=
 <Predicate>
 <Operator/>
 <FuncName/>
 <ParamName/>
 <RetValue/>
 </Predicate>

AssignConstraint: represents a set of constraints to apply to the assignment.
The attribute op defines the evaluation mode of the included conditions.

AssignConstraint/AssignCondition: represents a contextual condition. It may
specify a credential type and a periodic time expression. The former
indicates that the subject of the constraint (user or role) must present a
credential, the attributes of which must satisfy the rules defined in this
condition. The latter represents a temporal constraint expression (See [3]).

AssignConstraint/AssignCondition/LogicalExpression: represents a logical
expression. It contains one or more predicates. The attribute op defines the
evaluation mode of the predicates.

AssignConstraint/AssignCondition/LogicalExpression/{PredicateBlock}:
represents either another logical expression or a simple predicate.

AssignConstraint/AssignCondition/LogicalExpression/Predicate: A simple
predicate defines rules on credential attributes of the constraint subject (user
or role). It includes a comparison using an (Operator) between the value of
the credential attribute computed using a function (FuncName) having one
or more arguments (ParamName) and the expected (RetValue).

4/11

January in year 2006, and (b) the location is “London” and the system load is “low”. Here, (a) is an example of
a temporal constraint, represented as a temporal constraint expression in X-GTRBAC, and (b) is an example of a non-
temporal constraint represented as a set of logical expressions. To evaluate this logical expression, the role r must
supply a credential having the attributes location and system load.

For our current work, we are particularly interested in expressing contextual constraints on service usage,
which can be modeled in X-GTRBAC as a permission-to-role assignment policy. The only assumption we need to
make is that the service access policy is designed based on the RBAC model. Therefore, user authorization levels are
modeled as roles, and services are modeled as permissions associated with roles. Note that a permission in this model
then refers to the service instance represented by the “service” element in the WSDL. Therefore, fine-grained service
access control policies can be composed by associating multiple roles with multiple differentiated instances of a Web
service defined by the same WSDL (To recall, this will be done by associating multiple service instances with different
types of ports, each exposing a different set of operations). Each such service instance will be a permission which is
assigned to a given role subject to the permission-to-role assignment policy in X-GTRBAC1. To keep our exposition
clear, the assignment policies we use shall only include the non-temporal constraints modeled by logical expressions,
since the treatment of temporal constraint expressions requires more detail than can be provided in this paper.
3.2. WS-Policy

WS-Policy defines an abstract model for expressing the capabilities, requirements, and general characteristics
of entities in XML Web service-based systems. These properties are expressed as policies. WS-Policy does not specify
how policies are discovered or attached to a Web service, only focuses on defining them. A policy is a collection of
policy alternatives, where each policy alternative is a collection of policy assertions. An assertion can express
requirements or capabilities that will manifest in the wire, some others will refer to service usage or selection. For the
purposes of this work, we will use the term assertion to indicate assertions used in the authorization policies. A set of
constructs is provided by the specification to indicate how choices and/or combination of policy assertions apply in a
Web services environment.

A policy is represented by its corresponding policy expression. While many policy expressions are possible
according to the model, the normal form policy expression is the canonical form, and is described in Table 2.

Table 2: WS-Policy normal form policy expression

<wsp:Policy>
 <wsp:ExactlyOne>
 [<wsp:All>
 [<assertion …> … </assertion>]*
 </wsp:All>]*
 </wsp:ExactlyOne>
</wsp:Policy>

wsp:Policy: represents a policy
wsp:Policy/wsp:ExactlyOne: represents a collection of policy
alternatives
wsp:Policy/wsp:ExactlyOne/wsp:All: represents a policy alternative
wsp:Policy/wsp:ExactlyOne/wsp:All/*: XML expressions for
assertions, all of which must be satisfied

For the purposes of this work, we will use normal form policy expression to interface with the X-GTRBAC

system. The specification does not impose any restriction on the kind of XML policy expressions that may be used for
assertions. Therefore, the normalized policy expression can be used to convey assertions related to any domain specific
policy. It is this flexibility of the specification that will allow us to integrate WS-Policy with X-GTRBAC.
3.3. WS-Policy Profile of X-GTRBAC

To allow the expression of X-GTRBAC permission-to-role assignment policies in WS-Policy, we have
developed a WS-Policy profile for X-GTRBAC. The profile has been designed to be used in a scenario as depicted in
Figure 1, where Web applications need to invoke (potentially unknown) Web services. Each service publishes its usage
policy, in the form of WS-Policy, attached to its component definitions in its WSDL2. These policies include contextual
constraints that must be satisfied to invoke the service, such as user location or system load.

The profile defines the nature and semantics of permission, the representation of WS-Policy Assertions as X-
GTRBAC constraints, and proposes a loosely coupled architecture comprising of a Policy Decision Point (PDP) and a
Policy Enforcement Point (PEP), such that Web applications acting as PEP can obtain an access control decision from a
logically (and even geographically) distinct PDP using standard Web-based protocols, such as SAML [16].
3.3.1. Representing a Service as a Permission

A permission in the WS-Policy profile of X-GTRBAC represents access to a service instance. It is identified by
the “name” attribute of the <service> element in the WSDL. Since a conventional permission in RBAC (and X-
GTRBAC) is a combination of an object and an associated operation, we now need a special interpretation for the
purposes of the profile. We interpret the object and operation of a permission defined in the profile as follows:

• An object: Since a given service instance is identified in a WSDL by a unique port, the object the permission
refers to is the value of “portURI” attribute of the <service> element in the WSDL. Each service instance
implements an interface via this unique port, and access to the service at this portURI implies access to all the
operations provided by that interface.

1 Note that a user-to-role assignment policy will also be used to assign authenticated users into roles, but that is orthogonal to our current discussion. It
will be discussed in Section 5.1.
2 Attachment mechanisms will be discussed in Section 4.

5/11

• An operation: It is currently fixed to be HTTP:GET; it indicates that the access to the service (via its defined
operations) will be through an HTTP binding and will use the GET verb3.

3.3.2. Representing WS-Policy Assertions as X-GTRBAC Constraints
We now define a mechanism to represent WS-Policy assertions as X-GTRBAC constraints. As already

indicated, we will only consider normal form WS-Policy expressions, and non-temporal X-GTRBAC constraints
modeled by logical expressions. Our analysis proceeds as follows.

Normal Form
Expression

Element
Contextual Constraint

Element Analysis

<wsp:ExactlyOne> AssignConstraint/
AssignCondition cred_type=””
/LogicalExpression op=”OR”

<wsp:ExactlyOne> indicates a collection of alternatives for a policy specific
to a particular service component; this implies that the corresponding
constraint in X-GTRBAC will comprise of one condition having a top-level
logical expression with opcode =”OR”; logical expressions with opcode
=”AND” will be nested inside this top level expression, and each of them
will represent an alternative; all logical expressions included in this
condition contain a set of predicates defining rules on the attributes of a
credential provided by the role requesting access to the service.

<wsp:All> LogicalExpression op=”AND” <wsp:All> indicates a collection of assertions for a policy alternative; this
will be represented in X-GTRBAC as a collection of predicates in a logical
expression with opcode =”AND”; each predicate included in this logical
expression represents an assertion which must be satisfied.

<assertion …> Predicate <assertion> represents a system-specific assertion; this will be represented
in both policies using the Predicate element of X-GTRBAC.

The table on the right

is an example of the mapping
between a normal form WS-
Policy and X-GTRBAC
constraint. It may be observed
that the credential type
associated with an assignment
condition is predefined based on
the role that is accessing the
service. This credential type
must be registered with the PDP
in order to evaluate the
condition. In practice, this can be
done by either a prior
arrangement between the PDP
and the Web application
invoking the PDP, or a dynamic
registration using a SAML-based protocol.
4. Policy Processing
 We now discuss the mechanisms needed for policy processing in a Web services environment using the WS-
Policy profile for X-GTRBAC. We begin by providing an overview of the WS-Policy Attachment specification, and
discuss in detail the mechanism of attaching, retrieving, and combining policies associated with multiple components
of a Web service description.
 4.1 WS-Policy Attachment

WS-Policy Attachment [12] defines a general purpose mechanism for associating policies with the subjects to
which they apply, as well as the mechanism to attach policies to WSDL 1.1 descriptions. A policy subject is an entity
with which the policy is associated, which in our case is a Web service component defined in the WSDL document. A
given service may have associated policies by means of multiple attachments associated with the various components
defined in the WSDL file. The WS-Policy Attachment specification states that these multiple policy attachments must
be combined to obtain the effective policy for the service. We will focus our analysis on WSDL 1.1 metamodel [10],
because this is the target of current WS-Policy Attachment specification.

An important notion in computing the effective policy is that of policy scope. A policy scope is a collection
of policy subjects to which a policy may apply, and a policy attachment is the mechanism to associate a policy with a
policy scope. WS-Policy Attachment defines four types of policy subjects in WSDL 1.1: Service Policy Subject,
Endpoint Policy Subject, Operation Policy Subject and Message Policy Subject. The effective policy for a given subject
is defined to be the combination of all policies attached to policy scopes that contain that subject. The subject types
must be considered nested, due to the hierarchical nature of WSDL. Table 3 relates policy scopes with their
corresponding subject types in WSDL 1.1.

3 For the sake of simplicity, this paper does not address the SOAP binding.

WS-Policy X-GTRBAC Constraint
<wsp:ExactlyOne>
 <wsp:all>
 <Predicate>predicate 1</Predicate>
 <Predicate>predicate 2</Predicate>
 </wsp:All>
 </wsp:All>
 <Predicate>predicate 3</Predicate>
 <Predicate>predicate 4</Predicate>
 </wsp:All>
</wsp:ExactlyOne>

<AssignConstraint>
 <AssignCondition cred_type=”role_cred_type”>
 <LogicalExpression op=”OR”>
 <LogicalExpression op=”AND”>
 <Predicate>predicate 1</Predicate>
 <Predicate>predicate 2</Predicate>
 </LogicalExpression>
 <LogicalExpression op=”AND”>
 <Predicate>predicate 3</Predicate>
 <Predicate>predicate 4</Predicate>
 </LogicalExpression>
 </LogicalExpression>
 </AssignCondition>
</AssignConstraint>

6/11

This information has an important
consequence in our framework; it tells us which
policies need to be merged to compute the
effective policy of a service, for which there are
multiple policies attached to its various
components. The merge operation takes all
relevant policy expressions, replaces their
<wsp:Policy> with a <wsp:All> element, and places
them as children of a wrapper <wsp:Policy>. The
resulting policy expression is the combined policy
of all attachments of the subject. The result is
equivalent to normalize all policies and do the
cross product among all alternatives of each
policy, yielding alternatives that consider all possibilities. Using the policy specification from Section 3, we discuss the
computation of effective policy for a Web service in the next sub-section.
4.2 Computing Effective Service Access Policies

The computation of effective policy in our system uses the merge operation defined in WS-Policy since our
policies are expressed in WS-Policy. Since access to a service is equivalent to the existence of a permission for that
service, we define the effective permission policy as the policy that must be enforced in order to invoke a given service
provided at a given port. The WS-Policy Attachment specification defines several ways of attaching policies to WSDL
elements, as well as the policy semantics regarding the hierarchical nature of WSDL definitions. These semantics
define which policies need to be merged to compute the effective policy of a service. Currently, we allow policy
specification at the level of service, port, port type and binding elements of a service definition, and support the XML
attachment mechanism. As a consequence, our architecture supports processing of policy attachments for the Service
and Endpoint policy subjects of a WSDL (See Table 3). We define and illustrate in Table 4 the three different levels
where merging occurs in our system.

Table 4: Merging process at different levels in WSDL
Type of Merge Example Explanation
XML Element

Merges
individual
policies

 WS-Policy Attachment allows a policy to be
attached either by using a URI or including it
inline. Merge is needed to compute the XML
element policy from different fragments attached
to it, when more than one attachment mechanism
is used.
This applies to XML elements representing
different WSDL components such as services or
port types.

Policy Subject

Merges
XML

Element
Subject
policies

 WS-Policy Attachment defines an Endpoint
Subject as combination of port, port type and
binding elements, each of which may have an
attached policy.
In turn, the Service Subject is defined by the
WSDL service element.
Merge is needed to compute the effective policy
for an Endpoint Subject and for a Service
Subject.

Permission
(Service
usage)

Merges
WSDL
Subject
policies

 WS-Policy Attachment specifies that Service
Subject includes the Endpoint subject (due to
hierarchical nature of WSDL). Merge is needed
to compute the effective permission policy from
effective policies of Endpoint and Service
subjects.
This effective permission policy represents the
overall policy for the Web service.

Note that the + symbol denotes the use of merge as described in the WS-Policy specifications [7, 11], which

allows us to compute the composed access policy of the service. The processing is independent of the semantics of the
assertions and alternatives, and results in a normal form expression, where different assertions (<Predicate> tags) will
appear grouped within in <All> tags as alternatives. In turn, all alternatives are enclosed within one top-level
<ExactlyOne> tag. The normalized policy expression covers all alternatives of each individual policy, and yields

<wsdl:portType/>

<wsdl:port/>

<wsdl:binding/>

XMLPTPol

XMLPPol

XMLBPol

endpSubjectPol
=

+

+

Endpoint Subject

Service Subject

endpSubjectPol

serviceSubjectPol

PermissionPol
=

+

<wsdl:service PolicyURI= >
 <wsp:Policy>

 </wsp:Policy>
</wsdl:service>

inlinePol

XMLPol uriPol inlinePol

uriPol

= +

Table 3: WSDL 1.1 policy scopes and subject types
Policy scope Policy Subject Type

wsdl:service Service policy subject
wsdl:port
wsdl:binding
wsdl:portType

Endpoint policy subject

wsdl:binding/wsdl:operation
wsdl:portType/wsdl:operation

Operation policy
subject

wsdl:message
wsdl:binding/wsdl:operation/wsdl:input
wsdl:portType/wsdl:operation/wsdl:input

Message policy subject

7/11

Algorithm (ComputeEffectivePermissionPolicy):
1. Let perm be a permission in the WSPolicy profile of XGTRBAC. perm is related to a service s provided

by a WSDL port, whose effective policy should be calculated from the two types of policy subjects
involved, namely endpoint subject and service subject. “

2. Let PSperm = {e, s} be the set of policy subjects involved in the invocation of any operation in s, as
defined in the WS Policy Attachment specification (where elements e, s represent the endpoint and
service respectively). For every possible PSperm in a WSDL file, we have that e ⊂ s (here ⊂ can be seen
as "defined in", as follows from the WSDL 1.1 schema). Note that all PSperm sets must have these two
elements, because every WSDL service is implemented at a given port, from which the rest of WSDL
elements in the hierrachy are accesible. Therefore, from <wsdl:service name=“s” > tag in the WSDL file
one can construct PSperm.

3. Let EPperm = {pe, ps} be the set of normalized effective policies associated with PSperm, whose elements
represent the endpoint and service effective policy respectively, computed as stated in WS Policy
Attachment. Note that any element of EPperm can be undefined (eg. you can have policies attached only
at the service level), but we assume that there are no empty or null policies. Computing EPperm and
PSperm involves miminal XML processing: fetching and merging the corresponding policy fragments
(see Table 4) and transforming the resulting policy to the normal form expression.

4. Let EPPperm be the effective permission policy for a permission perm. We define EPPperm as the merging
of all policies in EPperm:

EPP perm = merge (pi) | pi ∈ EPperm

alternatives that consider all possibilities. The normalized policy produced this way therefore has a large number of
alternatives (since it is equivalent to a cross product of alternatives). Note that a normalized policy may contain
conflicting alternatives that cannot be simultaneously satisfied. This requires the notion of conflict resolution. We do
not consider this issue in this paper, i.e. we assume non-conflicting policy alternatives which yield a conflict-free
normalized policy.

Based on the preceding discussion, we now provide a formal algorithm for computing the effective
permission policy.

5. Architecture and Implementation

This section presents the architecture and implementation of our authorization system.
5.1 System Architecture
 Figure 2 shows the system architecture. We use the well-known UML notation to show the various
components of the architecture and their interactions. The UML-based architecture has three main actors:
• Web Services (right side): These are the PatientTrack, PatientRecordUS and PatientRecordSP services

depicted and explained in Figure 1. All three of them publish their usage policies using WS-Policy, which are
processed using WS-Policy Attachment model. According to our requirement for context-aware and fine-grained
access control policies for individual service components, the access policy for port, port type, binding and/or
service component is individually specified for each service. The latter two services are semantically equivalent,
and share the same port type policy (the policy applicable to the abstract service interface).

• Web application (PEP) (bottom left): This is the Web application hosted at a Web server, and is the policy
enforcement point (PEP) in the architecture. It provides secure access to healthcare services to its clients and
issues Web service invocations to determine their authorizations to access the services. The Web application can
either dynamically discover service providers, or have a prior agreement with them. In this architecture we assume
the service agreement has been defined, and the PEP has the service descriptions in the form of WSDL documents.
The Web application also has its own access control policy for user authentication and role assignment. The role
and credential definitions used by the Web application and the service provider must match, and this is ensured by
the existence of a prior service agreement.

• X-GTRBAC PDP (top left): This is the X-GTRBAC system which acts as the Policy Decision Point (PDP).
It implements the WS-Policy profile for X-GTRBAC, accepting access control requests from the Web application
and returning authorization decisions. It provides a SAML-based Web service interface for message exchange.

We now describe how the architecture allows communication between service providers, Web applications (PEP) and
X-GTRBAC system (PDP). The communication uses the SAML profile for X-GTRBAC described in an earlier work
[4]. The sequence of steps is as follows:
1. The Web application needs to register a service, so it accesses the WSDL URI (see UML <<use>> stereotype).

Then, using the Permission Manager, it creates a permission corresponding to the service based on the WSDL
description (Recall that a service corresponds to a permission in the WS-Policy profile of X-GTRBAC).

2. From the permission, the Policy Processor retrieves the service usage policies via attachments (see the UML
“attachment” association), merges them and computes EPPperm.

8/11

Figure 2: Architecture for the authorization system

3. When a user issues a request to access a service, the PDP proxy within the Web application prepares an access
request to be sent to the actual PDP, encoding it as a SAML Authorization Decision Query (see UML <<call>>
stereotype). The request asks for access to a service defined at a given port. It includes the port URI as the value of
the <resource> attribute, HTTP “get” as the <Action> element, the user id as the <Subject> element, and a set of
assertions including the user credential. The user credential includes the attributes that the user must possess in
order to access the service. These assertions are included within the <Evidence> element of the SAML query.
Along with the SAML query, the PDP proxy also sends a URI pointing to the location of the effective normalized
WS-Policy file (i.e. EPPperm).

4. Upon receiving the access request as a SAML query, the X-GTRBAC system consults a policy base to make the
authorization decision (see UML <<creates>> stereotype). The policy base comprises of a set of XML files
representing the RBAC policy. This set includes the permission definition as an XML Permission Sheet (XPS), a
role definition as an XML Role Sheet (XRS), a credential definition as an XML Credential Definition Sheet
(XCredTypeDef), a user-to-role assignment policy as an XML User-to-Role Assignment Sheet (XURAS), and a
permission-to-role assignment policy as an XML Permission-to-Role Assignment Sheet (XPRAS). The syntax of
the policy base is best visible by looking at the policy files for our example supplied in Appendix A4. We briefly
describe below how the policy files are used in relation to the WS-Policy profile for X-GTRBAC:
• A permission P is created in the XPS corresponding to the requested service. P represents access to the

service at the defined port using a given HTTP verb, as defined in Section 3.3.1, and is built from the port
URI and the <Action> element indicated in the SAML query.

4 A detailed description of these policy files appears in [3].

9/11

• A credential type CTu is added to the XCredTypeDef. CTu is a user credential, and includes a set of
attributes used by the X-GTRBAC system for a user-to-role assignment.

• A credential type CTr is added to XCredTypeDef. CTr is a role credential, and includes a set of
attributes belonging to the role R which are used to define rules on permission-to-role assignment, as
discussed in Section 3.3.2.

• A role R is created in the XRS. R is an internal role created specifically to access a specific service, and
has an associated credential type CTr with a set of attributes.

• A user-to-role assignment policy is added to the XURAS. To assign a user to a role R, a credential of
type CTu must be presented and evaluated against the set of rules included in the user assignment policy. In
our system, this occurs at two stages: (i) the user is initially authenticated into a role by the Web application
to access PatientTrack service, and (ii) the user is subsequently assigned another role by the PatientTrack
service to access either of PatientRecordUS or PatientRecordSP service. This is actually a single sign-on
scenario, where the authorization by the secondary service depends on the authorization provided by the first
service. In case (i), the user provides the credentials at the time of login to the Web application, and in case
(ii), the credentials are forwarded by the PatientTrack service, and includes an attribute that specifies the role
currently assigned to the user. The information from primary user-to-role assignment then becomes the
criterion of secondary user-to-role assignment. Overall, the assignment of a user to a role R (whether primary
or secondary) is done based on the credentials of a user supplied as an assertion in the SAML query. The
PDP is aware of the role and credential definitions, and uses them to automate the user-to-role assignment.

• A permission-to-role assignment policy is added to the XPRAS. To assign P to the role R, a credential of
type CTr must be presented and evaluated against the set of rules included in the EPPperm. Thus, P is
automatically assigned to R if the evaluation of EPPperm succeeds. Generating the service-to-role assignment
policy using the constraints imposed on the service usage requires an XML transformation from the WS-
Policy syntax to the assignment constraint syntax of X-GTRBAC according to the WS-Policy profile for X-
GTRBAC, and we accomplish this using an XSL transformation.

5. The GTRBAC Processor evaluates the XPRAS (generated from the attribute assertions included in the EPPperm),
and, subject to a successful evaluation, assigns the permission P to R.

6. A response in the form of a SAML Authorization Decision Statement is prepared, including either the “permit” or
the “deny” value, and sent to the Web application.

7. The PDP proxy inside the Web application reads the authorization decision. If it is “permit”, returns true,
otherwise returns false.

8. The Web application enforces the policy: if the PDP returned true, the service invocation is performed and the
requested resource is accessed using an HTTP:GET operation.

5.2. Implementation
 In this section, we demonstrate the use of our authorization system in a real Web service environment. We have
prototyped our system architecture using Web services model. The WS-Policy profile for X-GTRBAC has been
implemented as a Java-based Web service, whereas the policy processing model of WS-Policy supported by WS-Policy
Attachment has been implemented as a PHP-based class library. The most important classes of the WS-Policy package
are depicted in Figure 3, and described below.
• WSDL: This class encapsulates access to Web service descriptions. Given the URI of the WSDL file, it provides

methods to retrieve XML nodes representing services, ports, port types and bindings. All these elements are Policy
Scopes that contain Policy Subjects (Service, Endpoint, Operation and Message).

• WSPolicy: This class represents policies. It is able to load a policy from a URI or from an XML document
containing it, perform merge between two WSPolicy objects, and return the resulting normalized policy
expression.

• WSAttachment: This class works with all attachments specified in a service description. It can extract policies by
using attachment mechanisms (currently it supports the XML attachment). From the URI of a WSDL description,
it is able to compute the Effective Policy for a given Policy Subject, returning a WSPolicy object. Policy Subjects
are identified by name, and the corresponding XML elements are retrieved from the service description using a
WSDL object.

• XGTRBACPermission: This class represents permissions. A permission provides access to the operations
defined on a given port. This class stores all information required to actually invoke the service, and computes its
own effective permission policy (EPPperm) from the policies attached to the different service components
according to the algorithm given in Section 4.2.

• PermissionPool: This class manages all permissions used by an application. It serves as front end to Web
applications that use the pool as a factory to create new permissions (corresponding to services) by specifying the
service invocation data, and ask the pool for permission usage.

• PDPManager: This class is responsible to instantiate the PDP that will take a decision about the usage of a given
permission (i.e. a service). All PDPs implementations (whether local or remote) have to implement the IPDPProxy
interface, thus providing code for the checkAccess method.

• SAMLPDP: This class acts as PDP proxy with a remote X-GTRBAC system. The checkAccess method generates
a SAML Authorization Decision Query as discussed in Section 5.1, sends it to the real PDP, and parses the
received SAML Authorization Decision Statement containing the access control decision.

10/11

Figure 3: Class diagram for the WS-Policy package.

Our prototype implements the example scenario depicted in Figure 1. The Web application described in the
example has been developed in PHP. In the current prototype, a basic underlying Web system interface is assumed, and
is used as a mechanism to glue together contents provided by different services, perform some application-dependent
computations, and present the information to the user. Our current implementation employs a PHP-based PEP
(implementing the WS-Policy package) deployed at Carlos III University of Madrid in Spain and a Java-based PDP
(implementing the WS-Policy profile for X-GTRBAC) at Purdue University in USA.

As already described in Section 1, the Web application allows physicians to track and view records for patients in
the system based on the authorization of the physician using the PatientTrack service, and the two PatientRecord
services, respectively. We now provide a discussion on their implementation.
• PatientTrack: This service provides a patient list to the authorized physician. For each entry in the list, it includes

a patient id, together with the name of institution that has created a medical record for the patient. For each
institution, the service also maintains a port URI for the PatientRecord service from where the medical record may
be obtained (see Figure 4). This service defines a parameter-less operation, and the authorization is based on the
requesting physician’s credentials encoded in the SAML query itself.

Figure 4: View of the patient list as result of Patient Track service invocation.

• PatientRecord: This set of services (PatientRecordUS and PatientRecordSP) provides medical records for a
patient given the patient id. The records have a very simple structure. We assume that both services in this set
share the same PatientRecord interface, though each one will provide at least one concrete implementation at a
given port for that interface using an HTTP binding. The records are accessed through an HTTP:GET operation
and displayed in the client browser (See Figure 5).

Figure 5: View of the patient record as result of Patient Record service invocation.

11/11

In the prototype, the tasks of the Web system interface are the following:
• Service discovery: The Web system discovers the WSDL URI of all services required to provide the functionality

of the Web application. (In our current prototype, we do not address service discovery.)
• Authentication: The Web system provides a simple login page to access the top-level PatientTrack service. Users

are authenticated by providing their authenticating credentials in the form of a set of (attribute, value) pairs.
• Role assignment: Each user is assigned a role within the system based on the supplied attributes. (As pointed out

earlier, the credential and role definitions are shared between Web application and PDP.) The assigned role will be
used to determine the authorization of the user to access the service.

• Policy preparation: With the help of WSPolicy package, the Web system gathers all policies from the
corresponding attachments and prepares a SAML query including the user credentials. It then submits the query
and the link to the merged policy URI to the X-GTRBAC PDP.

• Policy enforcement: The Web system enforces the policy according to the decision returned by the X-GTRBAC
PDP. Thus, the Web service invocation only occurs if the access control decision so allows.

• Content presentation: The role of the Web system is limited to glue together all information pieces provided by
different service invocations. This involves some basic mechanisms to create the policy base, compose the
effective service policy, maintain the information state across service accesses and display the requested content
using HTTP: GET, as has been discussed in the preceding sections.
Appendix A shows the policy files and the XML policy based created by the Web system on behalf of the Web

application to provide access to the PatientTrack service (PatientRecordUS and PatientRecordSP are similar). It
includes the service WSDL files (Figure A.1), the policies attached to the service components (Figure A.2), and the
corresponding XML files that comprise the policy base for the X-GTRBAC system (Figure A.3). The overall Web
application and the associated application and Web service files can be accessed at
http://sevilla.dei.inf.uc3m.es/src/websystem/index.php. The X-GTRBAC PDP and associated policy files used by the
system can be accessed at http://mmpc3.ecn.purdue.edu:8090/index-wspolicy.html.
6. Conclusions and Future Work

In this paper, we have proposed a policy-based authorization system that leverages an existing Web service
policy processing model, WS-Policy, and integrates it with X-GTRBAC, an XML-based access control model to allow
specification and processing of fine-grained context-aware authorization policies in dynamic Web services
environment. The architecture is designed to support the WS-Policy Attachment specification, which allows attaching,
retrieving and combining policies associated with various components of a Web service description. We presented an
algorithm to compute the effective access control policy of a Web service based on its description document. The
effective policy, represented as a normalized WS-Policy document, is then used by the X-GTRBAC system to evaluate
an incoming access request. We presented an architecture of the authorization system, and also discussed our
implementation prototype. Our authorization system has been implemented as a loosely coupled Web service, with
logically distinct, heterogeneous PEP and PDP modules. The system incorporates SAML-based single-sign-on
communication between multiple system modules, and thereby demonstrates the true promise of decentralized Web
services architecture.

Our work can be extended in several directions. We indicated that our architecture supports policy processing
for dynamically discovered services, but our current prototype assumes the existence of a prior agreement between the
service provider and the PEP, and the PEP and the PDP. We would in our next prototype like to remove this
assumption and implemented the suggested approach of using a SAML-based protocol to exchange policy definitions
before the transaction. There are a few limitation of our authorization system that can be overcome in future work. Our
policy processing algorithm does not currently consider the case of having conflicting policy alternatives in the
normalized policy. As we indicated in the paper, this requires the notion of conflict resolution, which we would like to
incorporate in our model in future. Finally, our existing Web system interface maps a single result page with a single
Web service invocation, but certain situations may require complex pages where several invocations take place to
provide more advanced computations and navigational structures. This has important applications in dynamic service
composition. We would like to extend our basic Web system interface into a full-fledge hypermedia model to provide
authorization support in such advanced Web service invocation scenarios. Such an extenson would allow us to adopt a
similar approach to the one suggested in [19], thus facilitating the authorization policy design and integration with the
rest of the Web system components.

References

[1] R. Bhatti, E. Bertino, A. Ghafoor, “A Trust-based Context-Aware Access Control Model for Web Services”,

Distributed and Parallel Databases, Special Issue on Web Services, Vol. 18, No. 1, July 2005

[2] R. Bhatti, J. B. D. Joshi, E. Bertino, A. Ghafoor, “XML-Based Specification for Web Services”, IEEE

Computer, Vol. 37, No. 4, April 2004

[3] R Bhatti, J. B. D. Joshi, E. Bertino, A. Ghafoor, "X-GTRBAC: An XML-based Policy Specification

Framework and Architecture for Enterprise-Wide Access Control”, ACM Transactions on Information and
System Security (TISSEC), Vol. 8, No. 2.

[4] R Bhatti, E. Bertino, A. Ghafoor, “An Integrated Approach to Federated Identity and Privilege Management

in Open Systems”, Accepted for publication in Communications of the ACM. An earlier version is available
online as CERIAS tech. report 2004-32.

[5] J. Hu, A. C. Weaver, “Dynamic, Context-aware Security Infrastructure for Distributed Healthcare

Applications”, Proceedings of First Workshop on Pervasive Security, Privacy and Trust (PSPT), August 26,
2004.

[6] D. Kaminsky, “An Introduction to Policy for Autonomic Computing”, March 2005. http://www-

128.ibm.com/developerworks/autonomic/library/ac-policy.html (Accessed: November 11, 2005)

[7] P. Nolan, “Understand WS-Policy Processing”, December, 2004. http://www-

128.ibm.com/developerworks/webservices/library/ws-policy.html (Accessed: November 11, 2005)

[8] R. Sandhu, E. J. Coyne, H. L. Feinstein, C. E. Youman, “Role Based Access Control Models”, IEEE

Computer Vol. 29, No 2, February 1996

[9] E. Sirer, K. Wang, “An access control language for web services”, Proceedings of the seventh ACM

symposium on Access control models and technologies, June 03 - 04, 2002, Monterey, CA.

[10] Web Services Description Language (WSDL 1.1), March 2001. http://www.w3.org/TR/2001/NOTE-wsdl-

20010315 (Accessed: November 11, 2005)

[11] Web Services Policy Framework (WS-Policy), September, 2004. http://www-
 128.ibm.com/developerworks/webservices/library/specification/ws-polfram/ (Accessed: November 11, 2005)

[12] Web Services Policy Attachment (WS-PolicyAttachment), September, 2004. http://www-

128.ibm.com/developerworks/webservices/library/specification/ws-polatt/ (Accessed: November 11, 2005)

[13] Web Services Security (WS Security), April 2002. http://www-

128.ibm.com/developerworks/webservices/library/specification/ws-secure/ (Accessed: November 11, 2005)

[14] Web Services Trust Language (WS Trust), May, 2004. http://www-

128.ibm.com/developerworks/library/specification/ws-trust/ (Accessed: November 11, 2005)

[15] Security in a Web Services World: A Proposed Architecture and Roadmap, April 2002. http://www-

128.ibm.com/developerworks/webservices/library/specification/ws-secmap/ (Accessed: November 11, 2005)

[16] Security Assertions Markup Language (SAML), August, 2004. http://xml.coverpages.org/saml.html

(Accessed: November 11, 2005)

[17] Extensible Access Control Markup Language (XACML), February, 2005. http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=xacml (Accessed: November 11, 2005)

[18] XACML Profile for Web Services (WSPL), September 2003. http://www.oasis-

open.org/committees/download.php/3661/draft-xacml-wspl-04.pdf (Accessed: November 11, 2005)

[19] I. Aedo, P. Díaz, S. Montero, “A methodological approach for hypermedia security modelling”, Information

and Software Technology, 2003, 45(5). 229–239.

Appendix A

<?xml version="1.0"?>
<definitions
 name="PatientTrack"
 targetNamespace="http://sevilla.dei.inf.uc3m.es/src/services/PTService/PTService.wsdl.xml"
 xmlns:tns="http://sevilla.dei.inf.uc3m.es/src/services/PTService/PTService.wsdl.xml"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
 >
 <wsp:UsingPolicy Required="true"/>
 <types>
 <schema targetNamespace="http://sevilla.dei.inf.uc3m.es/src/services/PTService/PTService.wsdl.xml"
xmlns="http://www.w3.org/2000/10/XMLSchema">
 <element name="patients">
 <complexType>
 <element name="patient" minOccurs="1" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="name" type="string"/>
 <element name="recordSet" minOccurs="1" maxOccurs="unbounded">
 <complexType>
 <element name="clinic" type="string"/>
 <element name="provider">
 <complexType>
 <sequence>
 <element name="wsdlUri" type="anyURI"/>
 <element name="service" type="string"/>
 <element name="portUri" type="anyURI"/>
 </sequence>
 </complexType>
 </element> <!-- end provider -->
 </complexType>
 </element> <!-- end recordSet -->
 </sequence>
 </complexType>
 </element> <!-- end patient -->
 </complexType>
 </element> <!-- end patients -->
 </schema>
 </types>
 <message name="GetPatientListResponse">
 <part name="body" element="patients"/>
 </message>
 <portType name="PTPortType"
wsp:PolicyURIs="http://sevilla.dei.inf.uc3m.es/src/services/PTService/PTPortTypePolicy.xml">
 <operation name="GetPatientList">
 <output message="GetPatientListResponse"/>
 </operation>
 </portType>
 <binding name="PTHttpBinding" type="PTPortType">
 <http:binding verb="GET"/>
 <operation name="GetPatientList">
 <!-- location is the operation relative URI, which base uri is port uri -->
 <http:operation location="PTService.php"/>
 <output>
 <!-- this should be a MIME type representing XML documents -->
 <mime:content type="text/xml"/>
 </output>
 </operation>
 </binding>
 <service name="PTService"
wsp:PolicyURIs="http://sevilla.dei.inf.uc3m.es/src/services/PTService/PTServicePolicy.xml">
 <port name="PTPort" binding="PTHttpBinding"
wsp:PolicyURIs="http://sevilla.dei.inf.uc3m.es/src/services/PTService/PTPortPolicy.xml">
 <!-- port base addres, all operations are provided from this URI -->
 <http:address location="http://sevilla.dei.inf.uc3m.es/src/services/PTService/"/>
 </port>
 </service>
</definitions>

Figure A.1: WSDL for the PatientTrack service

Po
lic

y a
tta

ch
ed

 to
 th

e <
po

rt>
 <wsp:Policy>

 <wsp:ExactlyOne>
 <wsp:All>
 <Predicate>
 <Operator>eq</Operator>
 <ParamName>system_load</ParamName>
 <FuncName>hasCredAttributeValue</FuncName>
 <RetValue>low</RetValue>
 </Predicate>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

Po
lic

y a
tta

ch
ed

 to
 th

e <
po

rtT
yp

e>
 <wsp:Policy>

 <wsp:ExactlyOne>
 <wsp:All>
 <Predicate>
 <Operator>eq</Operator>
 <ParamName>location</ParamName>
 <FuncName>hasCredAttributeValue</FuncName>
 <RetValue>NewYork</RetValue>
 </Predicate>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

Po
lic

y a
tta

ch
ed

 to
 th

e <
se

rvi
ce

>
tag

 <wsp:Policy>
 <wsp:ExactlyOne>
 <wsp:All>
 <Predicate>
 <Operator>eq</Operator>
 <ParamName>priority</ParamName>
 <FuncName>hasCredAttributeValue</FuncName>
 <RetValue>high</RetValue>
 </Predicate>
 </wsp:All>
 <wsp:All/>
 </wsp:ExactlyOne>
</wsp:Policy>

Me
rg

ed
 po

lic
y:

EP
P p

er
m

<wsp:Policy>
 <wsp:ExactlyOne>
 <wsp:All>
 <Predicate>
 <Operator>eq</Operator>
 <ParamName>system_load</ParamName>
 <FuncName>hasCredAttributeValue</FuncName>
 <RetValue>low</RetValue>
 </Predicate>
 <Predicate>
 <Operator>eq</Operator>
 <ParamName>location</ParamName>
 <FuncName>hasCredAttributeValue</FuncName>
 <RetValue>NewYork</RetValue>
 </Predicate>
 <Predicate>
 <Operator>eq</Operator>
 <ParamName>priority</ParamName>
 <FuncName>hasCredAttributeValue</FuncName>
 <RetValue>high</RetValue>
 </Predicate>
 </wsp:All>
 <wsp:All>
 <Predicate>
 <Operator>eq</Operator>
 <ParamName>system_load</ParamName>
 <FuncName>hasCredAttributeValue</FuncName>
 <RetValue>low</RetValue>
 </Predicate>
 <Predicate>
 <Operator>eq</Operator>
 <ParamName>location</ParamName>
 <FuncName>hasCredAttributeValue</FuncName>
 <RetValue>NewYork</RetValue>
 </Predicate>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

Figure A.2: Individual policies attached to PatientTrack service definition (left) are merged to produce the normalized

WS-Policy (EPPperm) for the service (right)

<?xml version="1.0" encoding="UTF-8" ?>
<XCredTypeDef xctd_id="LibElseXCTD">
 <CredentialType cred_type_id="LEResPT" type_name="LibElseResPT">
 <AttributeList>
 <Attribute name="role" type="string" usage="mand" />
 </AttributeList>
 </CredentialType>
 <CredentialType cred_type_id="LERolePTP" type_name="LibElseRolePTP">
 <AttributeList>
 <Attribute name="system_load" type="string" usage="mand" />
 <Attribute name="location" type="string" usage="mand" />
 <Attribute name="priority" type="string" usage="opt" />
 </AttributeList>
 </CredentialType>
</XCredTypeDef>

<?xml version="1.0" encoding="UTF-8" ?>
<XRS xrs_id="LibElseXRS">
 <Role role_id="rPTP" role_name="PTPhysician">
 <CredType cred_type_id="LERolePTP"
 type_name="LibElseRolePTP">
 <CredExpr>
 <Attribute
 name="location">NewYork</Attribute>
 <Attribute
 name="system_load">low</Attribute>
 <Attribute name="priority">low</Attribute>
 </CredExpr>
 </CredType>
 </Role>
</XRS>

 <?xml version="1.0" encoding="UTF-8" ?>
 <XPS xps_id="LibElseXPS">
 <Permission perm_id="LEPTService">
 <Object object_type="port"
object_id="http://sevilla.dei.inf.uc3m.es/src/service
s/PTService/" />
 <Operation context="saml:ghpp">GET</Operation>
 </Permission>
 </XPS>

 <?xml version="1.0" encoding="UTF-8" ?>
 <XURAS xuras_id="LibElseXURAS">
 <URA ura_id="uraPTP" role_name="PTPhysician">
 <AssignUsers>
 <AssignUser user_id="any">
 <AssignConstraint>
 <AssignCondition cred_type="LibElseResPT">
 <LogicalExpr>
 <Predicate>
 <Operator>eq</Operator>
 <FuncName>
 hasCredAttributeValue</FuncName>
 <ParamName order="1">degree</ParamName>
 <RetValue>MD</RetValue>
 </Predicate>
 <Predicate>
 <Operator>eq</Operator>
 <FuncName>
 hasCredAttributeValue</FuncName>
 <ParamName
 order="1">affiliation</ParamName>
 <RetValue>USAMed</RetValue>
 </Predicate>
 </LogicalExpr>
 </AssignCondition>
 </AssignConstraint>
 </AssignUser>
 </AssignUsers>
 </URA>
</XURAS>

<?xml version="1.0" encoding="UTF-8"?>
<XPRAS xpras_id="LibElseXPRAS">
<PRA role_name="PTServiceCustomer"
pra_id="praPTServiceCustomer">
 <AssignPermissions>
 <AssignPermission perm_id="LEPTService">
 <AssignConstraint>
 <AssignCondition cred_type="LibElseRolePT">
 <LogicalExpr op="OR">
 <Predicate>
 <LogicalExpr op="AND">
 <Predicate>
 <Operator>eq</Operator>
 <FuncName>hasCredAttributeValue</FuncName>
 <ParamName order="1">priority</ParamName>
 <RetValue>high</RetValue>
 </Predicate>
 <Predicate>
 <Operator>eq</Operator>
 <FuncName>hasCredAttributeValue</FuncName>
 <ParamName order="1">system_load</ParamName>
 <RetValue>low</RetValue>
 </Predicate>
 <Predicate>
 <Operator>eq</Operator>
 <FuncName>hasCredAttributeValue</FuncName>
 <ParamName order="1">location</ParamName>
 <RetValue>NewYork</RetValue>
 </Predicate>
 </LogicalExpr>
 </Predicate>
 <Predicate>
 <LogicalExpr op="AND">
 <Predicate>
 <Operator>eq</Operator>
 <FuncName>hasCredAttributeValue</FuncName>
 <ParamName order="1">system_load</ParamName>
 <RetValue>low</RetValue>
 </Predicate>
 <Predicate>
 <Operator>eq</Operator>
 <FuncName>hasCredAttributeValue</FuncName>
 <ParamName order="1">location</ParamName>
 <RetValue>NewYork</RetValue>
 </Predicate>
 </LogicalExpr>
 </Predicate>
 </LogicalExpr>
 </AssignCondition>
 </AssignConstraint>
 </AssignPermission>
 </AssignPermissions>
</PRA>
</XPRAS>

Figure A.3: X-GTRBAC policies for the Patient Track service
(Note that XPRAS is a result of XSL transformation on EPPperm in Figure A.2)

