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ABSTRACT
The problem of key management in an access hierarchy has
elicited much interest in the literature. The hierarchy is
modeled as a set of partially ordered classes (represented
as a directed graph), and a user who obtains access (i.e.,
a key) to a certain class can also obtain access to all de-
scendant classes of her class through key derivation. Our
solution to the above problem has the following properties:
(i) only hash functions are used for a node to derive a de-
scendant’s key from its own key; (ii) the space complexity
of the public information is the same as that of storing the
hierarchy; (iii) the private information at a class consists of
a single key associated with that class; (iv) updates (revo-
cations, additions, etc.) are handled locally in the hierarchy;
(v) the scheme is provably secure against collusion; and (vi)
key derivation by a node of its descendant’s key is bounded
by the number of bit operations linear in the length of the
path between the nodes. Whereas many previous schemes
had some of these properties, ours is the first that satis-
fies all of them. Moreover, for trees (and other “recursively
decomposable” hierarchies), we are the first to achieve a
worst- and average-case number of bit operations for key
derivation that is exponentially better than the depth of a
balanced hierarchy (double-exponentially better if the hier-
archy is unbalanced, i.e., “tall and skinny”); this is achieved
with only a constant increase in the space for the hierarchy.
We also show how with simple modifications our scheme
can handle extensions proposed by Crampton of the stan-
dard hierarchies to “limited depth” and reverse inheritance
[13]. The security of our scheme relies only on the use of
pseudo-random functions.
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1. INTRODUCTION
Background. In this work, we address the problem of

access control and, more specifically, the key management
problem in an access hierarchy. Informally, the general model
is that there is a set of access classes ordered using partial or-
der. We use a directed graph G, where nodes correspond to
classes and edges indicate their ordering, to represent such
a hierarchy. Then a user who is entitled to have access to
a certain class obtains access to that class and its descen-
dants in the hierarchy. A key management scheme assigns
keys to the access classes and distributes a subset of the
keys to a user, which permit her to obtain access to objects
at her class(es) and all of the descendant classes. Such key
management schemes are usually evaluated by the number
of total keys the system must maintain, the number of keys
each user receives, the size of public information, the time
required to derive keys for access classes, and work needed
to perform when the hierarchy or the set of users change.

Hierarchies of access classes are used in many domains,
and in many cases they are more general than trees. The
most traditional example of such hierarchies is Role-Based
Access Control (RBAC) models [16, 41] that can be used for
many different types of organizations. Other areas where hi-
erarchies are useful are content distribution (where the users
receive content of different quality or resolution), cable TV
(where certain programs are included in subscription pack-
ages), project development (different views of information
flow and components at managerial, developers, etc. posi-
tions), defense in depth (at each stage of intrusion defense
there is a specific set of resources that can be accessed),
and others. Even more broadly, hierarchical access con-
trol is used in operating systems (see, e.g., [18]), databases
(e.g., [15]), and networking (e.g., [36, 33]).

A vital aspect of access control schemes is computational



and storage space requirements for key management and
processing. It is clear that low requirements allow a scheme
to be used in a much wider spectrum of devices and applica-
tions (e.g., inexpensive smartcards, small battery-operated
sensors, embedded processors, etc.) than costly schemes.
Thus to make our scheme acceptable for use with weak
clients, we do not use powerful cryptography but instead
utilize only cryptographic hashes. Throughout this paper,
we use the word “smartcard” as a shorthand to refer to any
type of a weak client.

Security of access control models comes from their ability
to deny access to unauthorized data. Also, if a scheme is
collusion-resilient, then even if a number of users with access
to different nodes conspire trying to derive additional keys,
they cannot get access to more nodes than what they can
already legally access. Even though we intend to use the
scheme with tamper-resistant smartcards, a number of prior
publications (e.g., [2, 3]) suggest that compromising cards is
easier than is commonly believed. In addition, the collusion-
resilience allows us to use the scheme with other devices that
do not have tamper-resistance.

One of the key efficiency measures for hierarchical access
control schemes is the number of operations needed to com-
pute the key for an access class lower in the hierarchy be-
cause this operation must be performed in real-time by pos-
sibly very weak clients. The best schemes (including ours)
require the number of bit operations linear in the depth of
the graph in the worst case, which for some graphs is O(n)
where n is the number of nodes in the access graph (see
the related work section for more detail). While the num-
ber of bit operations for key derivation is going to be small
on average and an organization’s role hierarchy tends to be
shallow rather than deep, deep hierarchies do arise in many
situations such as:
• Hierarchically organized hardware, where the hierar-

chy is based on functional and control issues but also
on how trusted the hardware components are;
• Hierarchically organized distributed control structures

such as physical plants or power grids (involving thou-
sands of possibly tiny networked devices such as sen-
sors, actuators, etc.);
• Hierarchical design structures (e.g., aircraft, VLSI cir-

cuits, etc.);
• Task graphs where only an ancestor task should know

about descendant tasks.
Also, deep access hierarchies can arise even in very simple
databases where the hierarchical complexity can come from
super-imposed classifications on the database that are based
on functional, structural, etc. features of a database. See
also [35, 39] for other examples of deep hierarchies. This
is why a rather substantial part of this work is dedicated
to improving key derivation time, which, as we describe
below, can be decreased to a small number of operations
(O(log log n) or even only 3 hashes) with modest increase in
public storage space.

Our Results. Our scheme works for arbitrary access graphs,
even those that may contain cycles. In the scheme, only hash
functions are used for a node to derive a descendant’s key
from its own key. The space complexity of the public infor-
mation is the same as that of storing G and is asymptotically
optimal; the private information at a node consists of a sin-
gle key associated with that node. The derivation by a node

of a descendant node’s access key requires the number of bit
operations linear in the distance between the nodes. Up-
dates are handled locally in the hierarchy and do not “prop-
agate” to descendants or ancestors of the affected part of
the graph, while many other schemes require re-keying of
other nodes following a deletion. Our scheme is resistant
to collusion in that no subset of nodes can conspire to gain
access to any node that is not already legally accessible. We
address key management at the levels of both access classes
and individual users, while other schemes manage keys only
at one of these levels.

In the scheme, we rely on the following assumptions: there
is a trusted central authority that can generate and dis-
tribute keys (e.g., an administrator within the organiza-
tion). The security of our scheme relies on the use of pseudo-
random functions.

We also show that the scheme can be easily extended to
cover access models that go beyond the traditional inheri-
tance of privilege. More precisely, we give extensions that
enable normal as well as reverse inheritance in the graph
(i.e., access to objects down or up in the hierarchy) and also
allow for fixed-depth inheritance. Such extensions are use-
ful not only in the context of other standard models such
as Bell-LaPadula [4], but can also apply, for instance, to
RBAC (e.g., reverse limited-depth inheritance permits an
employee to have access to documents stored at the level of
the department of that employee), the model can cover a
much richer set of access control policies than that of other
schemes. These extensions are modeled after Crampton’s
work [13] and do not increase the space or computational
complexity of our scheme.

A substantial part of this work is dedicated to improving
efficiency of key derivation time for deep hierarchies. Our
technique is to insert additional (so called “shortcut”) edges
in the graph, that allow us to achieve somewhat surpris-
ing results: for n-node trees our techniques enable us to
improve efficiency of key derivation to O(log log n) bit op-
erations in the worst case with constant increase in public
information, and to only 3 hashes with public space usage
of O(n log log n). We also describe how to apply our tech-
niques to more general hierarchies. These techniques allow
us to achieve the fastest key derivation known to date.

Organization. Section 2 provides an overview of related
literature. In section 3, we give a formal description of the
problem. Section 4 presents our base model along with its
security proof; then in section 5 we give description of dy-
namic versions of the model and extensions that permit the
scheme’s usage with other access models given in [13]. Sec-
tion 6 presents our techniques to improve efficiency of key
derivation for trees and also comments on more general hi-
erarchies. Finally, section 7 concludes the paper.

2. RELATED WORK
The first work that addressed the problem of key manage-

ment in hierarchical access control was by Akl and Taylor [1]
in 1983. Since then a large number of publications ([5, 6,
7, 9, 10, 11, 12, 14, 17, 22, 23, 26, 25, 27, 29, 30, 31, 34,
37, 38, 40, 42, 43, 45, 46, 51, 52, 53, 54] and others) have
improved existing key assignment schemes, especially in the
recent years. All of these approaches assume existences of a
central authority (CA) that maintains the keys and related
information. Most of them (and our scheme as well) are also



based on the idea that a node in the hierarchy can derive
keys for its descendants. Due to the large number of pre-
vious publications, we only briefly comment on their basic
ideas and efficiency in comparison to our scheme.

A relatively large number of schemes on this topic have
been shown to be either insecure with respect to the secu-
rity statements made in these works [50, 49, 44, 47, 24] or
incorrect [8]. Therefore, we do not take these schemes into
consideration in our further discussion.

A significant number of schemes, e.g., [1, 34, 22, 6, 25,
23, 10, 37, 27, 38, 31, 43], operate large numbers computed
as a product of up to O(n) coprime numbers or, alterna-
tively, a product of up to O(n) large numbers, where n is
the number of nodes in the graph. Such numbers can grow
up to O(n log n) (respectively, O(n)) bits long and are pro-
hibitively large for most hierarchies (in case of [26] numbers
grow up to O(nd), where d is the number of immediate de-
scendants). While in many of these approaches key deriva-
tion might seem consisting of one division and one modular
exponentiation operation, in practice, division of two num-
bers even O(n) bits long involves O(n2) operations, in addi-
tion to the use of expensive public crypto operations. Our
key derivation, on the other hand, even in the base scheme
is bounded by the depth of the access hierarchy and is O(n)
hash operations in the worst case.

Work of [29, 40, 42] is limited to trees and thus is of lim-
ited use. Work of [5, 45, 51] is concerned with a slightly
different model having a hierarchy of users and a hierarchy
of resources. The scheme of [5], however, is not dynamic;
and in [45, 51] there are high rekeying overheads for ad-
ditions/deletions (particularly because of slightly different
requirements of the scheme) and the number of keys for a
class is large for large hierarchies.

The work of [17] gives an information-theoretic approach,
in which each user might have to store a large number of
keys (up to O(n)), and insertions/deletions result in many
changes. The scheme of [48] uses modular exponentiation,
and additions/deletions require rekeying of all descendants.
A number of schemes [14, 46, 7] are based on interpolating
polynomials and give reasonable performance. In [46, 14],
however, private storage at a node is up to O(n) and addi-
tions/deletions require rekeying of ancestors. As was already
mentioned above, we avoid rekeying on additions/deletions
and store only one key per node. In [7], key derivation is
less efficient than in our scheme, also public storage space is
larger. Even though the authors speculate that schemes that
perform the key derivation process iteratively are inefficient
(which is the case in our scheme), their key derivation is less
efficient due to usage of expensive modular exponentiation
operations and interpolating polynomial evaluation.

Schemes that utilize sibling intractable function families
(SIFF) [52, 53] are the only efficient approaches among early
schemes. In these schemes, there is only one secret key per
class, key derivation is a chain of SIFF function applications
which can be implemented using polynomials. However, ad-
ditions and deletions in [52] require rekeying of all descen-
dants and in [53] all descendants should be rekeyed when a
node is deleted.

A number of recent schemes [9, 11, 12, 30, 54] use overall
structure similar to ours and have performance comparable
to our base scheme. [12], however, does not address dy-
namic changes, and the scheme is less efficient than ours
because of additional usage of modular multiplication. [9]

requires larger public storage, key derivation is slower be-
cause of additional usage of encryption, and the ex-member
problem is not addressed that will require to rekey all de-
scendants on deletions. Compared to the schemes [30] and
[54], our approach is simpler than both of them. It is also
more efficient than the first scheme (by a constant factor),
and uses less space than both of them (by a constant fac-
tor). In addition, in both of these schemes, all descendants
have to be rekeyed when a class is being deleted to com-
bat the ex-member problem. [11] uses only hash functions
and achieves performance closest to our base scheme; dele-
tions, however, require rekeying of all descendants. In our
scheme, on the other hand, dynamic changes to the graph
are handled locally (i.e., private information at other nodes
is not affected and no other nodes need to be re-keyed, only
public information associated with the graph changes). In
addition, the above schemes do not provide formal proofs of
security.

Results achieved in this work can also be achieved using
broadcast encryption, since broadcast encryption schemes
are more powerful than our scheme. Such schemes, how-
ever, require significantly higher overheads than our scheme
due to their added power and are not suitable in our set-
ting (where the goal is to make the scheme work with weak
clients).

3. PROBLEM DEFINITION
There is a directed access graph G = (V, E, O) s.t. V is a

set of vertices V = {v1, . . ., vn} of cardinality |V | = n, E is
a set of edges E = {e1, . . ., em} of cardinality |E| = m, and
O is a set of objects O = {o1, . . ., ok} of cardinality |O| = k.
Each vertex vi represents a class in the access hierarchy and
has a set of objects associated with it. Function O : V → 2O

maps a node to a unique set of objects such that |O(vi)| ≥ 0
and ∀i∀j, O(vi)∩O(vj) = ∅ iff i 6= j. (For the sake of brevity
of exposition we use notation Oi to mean O(vi).) When the
set of edges E or the set of objects O is not essential to our
current discussion, we may omit it from the definition of the
graph and instead use notation G = (V, O) or G = (V, E),
respectively.

In a directed graph G = (V, E), we define an ancestry
function Anc(vi, G) which is a set such that vj ∈ Anc(vi, G)
if there is a path from vj to vi in G. We also define the
set of descendants of node vi as Desc(vi, G), where vj ∈
Desc(vi, G) if there is a path from vi to vj in G. For a
directed graph G = (V, E), we use a function Pred(vi, G)
to denote the set of immediate predecessors of vi in G, i.e.,
if vj ∈ Pred(vi, G) then there is a directed edge from vj

to vi in G. Similarly, we define Succ(vi, G) to be the set of
immediate successors of vi in G. When it is clear what graph
we are discussing, we omit G from the notation and instead
use the shorthand notation Anc(vi), Desc(vi), Succ(vi), and
Pred(vi). We consider a node to be its own ancestor and
descendant, but we do not consider it to be a predecessor or
successor of itself.

In the access hierarchy, a path from node vi to node vj

means that any subject that can assume access rights at
class vi is also permitted to access any object at class vj

such that o ∈ Oj . The function O∗ : V → 2O (we use O∗
i

as a shorthand for O∗(vi)) maps a node vi ∈ V to a set of
objects accessible to a subject at class vi; the function is
defined as O∗

i =
S

vj∈Desc(vi)
Oj .



We define a key allocation mechanism that implements
such an access graph, that is, an assignment of keys to users
and objects where a user can access an object iff he has a
key for that object. The goal is to minimize the number of
keys per access class and the number of keys with which an
object is encrypted. Formally, the key allocation policy is
defined as:

Definition 1. Suppose we are given a key-space K. A
key allocation, KA : V ∪ O → 2K, maps objects and access
classes to a subset of keys.

In our schemes, to keep an ancestor’s key space small, a
node’s key is computable from any of its ancestors keys via
a hash function.

Definition 2. Given two keys k and k′, we say k gener-

ates k′, denoted by k
G⇒ k′, iff there exists a polynomial-time

algorithm D such that D(k) = k′. When there does not ex-
ist a probabilistic polynomial time algorithm that outputs k′

when given k with more than a negligible probability, we say

k
G

6⇒k′. Sometimes we allow these algorithms to have auxil-
iary information.

Now we are ready to formally define what is meant by “im-
plementing” an access control policy.

Definition 3. We say that a key allocation KA imple-
ments an access graph G = (V, O) iff the following two con-
ditions are true:

1. Completeness: ∀(vi, oj) ∈ V ×O∗
i ,∃(k, k′) ∈ KA(vi)×

KA(oj) s.t. k
G⇒ k′. In other words, for every object

that an access class has rights to access, that access
class should be assigned a key that can generate a key
that is used to encrypt the object.

2. Soundness: ∀(vi, oj) ∈ V ×O\O∗
i ,∀(k, k′) ∈ KA(vi)×

KA(oj), k
G

6⇒ k′. In other words, for every object that
an access class does not have rights to access, there is
no key in that access class key space that can be used
to generate any of the keys used to encrypt the object.

Definition 4. A key allocation KA that implements an
access graph G = (V, O) is fully collusion-resilient (or just
collusion-resilient) iff for any set of adversaries with access
to nodes V ′ = vi1 , . . . , vir , where V ′ ⊂ V and 1 < r < n,
we have that ∀(vij

, o`) ∈ V ′ × O \ S

vij
∈V ′ O∗

ij
,∀(k, k′) ∈

KA(vij
) × KA(o`), k

G

6⇒ k′. In other words, collusion does
not allow the coalition V ′ to produce decryption keys for
objects to which they did not already have access.

4. BASE SCHEME
This section describes our scheme in which every node has

one key associated with it, the public information is linear in
the size of the access graph G, and computation by node v
of a key that is ` levels below it can be done in ` evaluations
of a hash function. Here we focus on key allocations for a
static access hierarchy; extensions of this base scheme are
given in section 5.

Assume that we are given a cryptographic hash function
H : {0, 1}? → {0, 1}ρ.

`1;k1

`2;k2 `3;k3

`4;k4

�
�

�
��+

Q
Q

Q
QQs

Q
Q

Q
QQs

�
�

�
��+

k2 −H(k1, `2) k3 −H(k1, `3)

k4 −H(k2, `4) k4 −H(k3, `4)

Figure 1: Key allocation for example access graph; all
arithmetic is modulo 2ρ.

Key generation. The private key generation process and
the nature of public information stored at each node of the
graph is as follows:

Private key Each vertex vi is assigned a random private
key ki in {0, 1}ρ. An entity that is assigned access
levels V ′ ⊆ V is given a smartcard with all keys for
their access levels vj ∈ V ′.

Public information For each vertex vi there is a unique
label `i in {0, 1}ρ that is assigned to the vertex. Also
for each edge (vi, vj), the value yi,j = kj−H(ki, `j) mod
2ρ is stored publicly for this edge1.

Key derivation. All that needs to be shown is how to
generate a child’s key from the parent’s private information
and the public information. Suppose vi is a parent of vj

with respective keys ki and kj . Now, `j and yi,j = kj −
H(ki, `j) mod 2ρ are public information. Clearly, node vi

can generate kj with this information.

Example: Figure 1 shows key allocation for a graph more
complicated than a tree, for which we give two examples.
First, it is possible for the node with k1 to generate key k2,
because that node can compute H(k1, `2) and use it, along
with the public edge information, to obtain k2. The node
with k3, on the other hand, cannot generate k2, since this
would require inversion of the H function.

Theorem 1. The above scheme is complete.

Proof. Suppose that a card has key ki corresponding to
node vi ∈ V . Also assume that access to object oj at node
vj (i.e., oj ∈ O(vj)) is requested such that oj ∈ O∗

i . This
means that access to oj can be obtained using key kj and
also there is a directed path from node vi to vj . Then in
order for vi to generate kj , vi sequentially processes every
edge (vx, vy) on the path between vi and vj .

Given an edge (vx, vy) for which both vx’s private key kx

and the stored public information `y and yx,y are known,

1Here we use subtraction to hide the value of kj with
H(ki, `j), but other ways of hiding kj using H(ki, `j) as the
key (e.g., using XOR operation) are also possible.



vi can generate vy ’s private information ky . Due to the
sequential nature of key generation on the path between vi

and vj , vi will be able to derive keys of all necessary nodes
and produce key kj that will enable access to oj . 2

Theorem 2. The above scheme is sound, even in the
presence of collusion.

To prove this, we first need to provide additional defini-
tions and formally state the adversarial model. Our proof
of security is based on the standard model assuming that
H(k, `) can be implemented as a pseudo-random function
(PRF) Fk(`). We show security of the scheme against ac-
tive adversary who is allowed to adaptively corrupt nodes
in the graph. After corrupting some nodes, the adversary
is presented with a challenge: it is asked to recover the key
of a node that is not a descendant of a corrupted node (the
adversary is allowed to corrupt additional nodes that com-
ply with this condition). We claim that if the adversary
wins this game with a non-negligible probability, then we
can construct an adversary who obtains non-negligible ad-
vantage in breaking the security of PRF, contradicting the
definition of PRF.

Before proceeding further, we give a definition of a pseudo-
random function. Let us fix a family of functions F : Keys(F )
×D → R, and let A be an algorithm that takes an oracle for
a function g : D → R and returns a bit. Function g can be ei-

ther drawn at random from RandD→R, i.e., g
R← RandD→R,

or it is drawn at random from F , i.e., g
R← F .

Definition 5. Consider two experiments:

Experiment Expprf−1
F,A Experiment Expprf−0

F,A

K
R← Keys(F ) g

R← RandD→R

d← AFK d← Ag

Return d Return d

The prf-advantage of A is then defined as

Advprf
F,A = Pr[Expprf−1

F,A = 1]− Pr[Expprf−0
F,A = 1]

For simplicity of exposition we do not take resources used
by an adversary into account, and it is assumed that, given
the same resources, we choose an adversary that gains max-
imum advantage.

Definition 6. Let F ρ denote a family of functions with
input length l(ρ), output length L(ρ), and key length k(ρ),
where ρ is a security parameter. Then F ρ is PRF if F ρ(K, x)
is polynomial-time computable (i.e., in time poly(ρ)) and

also the function Advprf
F ρ,Dρ is negligible (in ρ) for every

polynomial-time distinguisher Dρ that halts in time poly(ρ).

Now assume that adversary B is given access to the public
information associated with the key assignment of G and
is allowed to adaptively corrupt nodes from V . That is,
B obtains ki ← KA(vi), where vi ∈ V and can compute
h ← Fki

(`) for arbitrary labels ` ∈ {0, 1}ρ. At some point,
B makes a single query to a challenge oracle vc ← C(G),
where vc is a node of the graph not a descendant of any
corrupted nodes and is chosen by the oracle. After that,
B may corrupt more nodes that do not have the challenge
node vc among their descendants. At some point B outputs
a key k̂ ∈ {0, 1}ρ and wins if k̂ = kc.

Definition 7. Let KA be a key allocation that imple-
ments an access graph G = (V, O, E) and let B be an al-
gorithm that has access to oracles as above and returns a
string in {0, 1}ρ. We consider the following experiment:

Experiment Expkr
KA,B

k̂ = BKA(vi),C(G)

if after a call to vc = C(G) B makes a query KA(vi)
where vc ∈ Desc(vi), return 0

if k̂ = kc then return 1
else return 0

The kr-advantage of B is defined as

Advkr
KA,B = Pr[Expkr

KA,B = 1].

While the above definition assumes an adaptive adversary,
in our case this adversary is no more powerful than a static
adversary that is given the maximum amount of informa-
tion. That is, if an adversary B′ is given a challenge node
vc, keys for every child of vc, and keys for every sibling of
each node on the way from the root to vc (i.e., B′ obtains
keys for siblings of nodes vj s.t. vj ∈ Anc(vc)), then B′ can
(efficiently) generate keys for all nodes in the graph except
vc and its ancestors. To be more specific, adversary B′ ob-
tains access to a single oracle that returns a challenge node
vc along with all of the node keys as described above and
B′ eventually outputs its guess for kc.

Since usage of a static adversary makes our presentation
easier, in our further discussion we will assume that a static
adversary with maximal power is used.

If the adversary B′ has non-negligible advantage in the
key recovery experiment, then we can construct an adversary
AB′ that uses B′ and can distinguish between a PRF and a
random function with non-negligible probability (i.e., break
the security of PRFs) and with a very small increase in the
resource usage (namely, one application of a PRF and one
subtraction operation).

Lemma 1. Advprf
KA,AB′

≥ Advkr
KA,B′ − 1

2ρ

Proof. We construct an adversary AB′ that will distin-
guish between random and pseudo-random functions using
algorithm B′. Instead of using public information associated
with the graph G = (O, V, E) constructed according to the
above key assignment scheme, in this experiment public in-
formation is constructed in such a way that with 50% prob-
ability the key assignment is performed in the usual way,
and with 50% probability one of the functions Fkc (vc ∈ V )
is replaced with a random function g. AB′ obtains access
to the same oracle C(G) as B′ did, and when querying this
oracle obtains a challenge node vc along with the keys of
the children of vc and siblings of ancestors of vc (let this set
of keys be denoted as Kc so that {vc,Kc} = C(G)). A′

B is
then asked to decide whether Fkc or g was used in the key
assignment. It can be constructed as the following:

Adversary AB′

{vc,Kc} = C(G)
Run adversary B′ replying to its oracle query with {vc,Kc}
When B′ outputs a key k̂, compute Fk̂(lj) where vj is one
of the children nodes of vc

if yc,j = kj − Fk̂(lj) mod 2ρ, then return 1, else return 0



In the above algorithm, if B′ guesses the key correctly,
AB′ assumes that the PRF was used. If B′ doesn’t return
the correct key, AB′ bets on the random function. Now the
prf-advantage of AB′ is:

Advprf
KA,AB′

= Pr[1 = A
C(G)

B′ |Fkc was used]

− Pr[1 = A
C(G)
B′ |g was used]

≥ Advkr
KA,B′ − 1

2ρ

because if Fkc was used, AB′ will guess correctly at least
with the same probability as B′, and if g was used, the
probability that Fk̂(lj) results in the same value as g(lj) is
1
2ρ . 2

Proof of Theorem 2. Now the proof of security follows
directly from Lemma 1, which states that if an adversary
can break the scheme with non-negligible probability, it will
also be able to break the security of PRFs. 2

With only minimal changes to the scheme, security under
the key indistinguishability can be shown. We leave these
results to the full version of the paper.

5. EXTENSIONS

5.1 Dynamic Version
While section 4 described the base scheme without dy-

namic changes, in this section we show how with one simple
modification we can perform all dynamic changes locally.

Modified private key Each vertex vi is assigned a ran-
dom private key k̂i in {0, 1}ρ. As before, an entity that
is assigned access levels V ′ ⊆ V is given a smartcard
with all keys for their access levels vj ∈ V ′. The ac-

tual key used for this access level is now ki = H(k̂i, `i).
Note that by changing a vertex’s label one can change
its key.

The rest of the scheme remains unchanged. Now we describe
how to handle dynamic changes.

Insertion of an edge. Suppose the edge (vi, vj) is inserted
into G. Then we simply add yi,j = kj −H(ki, `j) mod 2ρ to
the description of G by attaching it to the edge (vi, vj).

Deletion of an edge. Deleting an edge is trivial, but the
difficulty is in preventing ex-member access. Suppose the
edge (vi, vj) is deleted from G. Then the following updates
are done: for each node vt ∈ Desc(vj , G), perform:

1. Change the label of vt, call it `′t; note that this changes
the key for vt to H(k̂t, `

′
t).

2. For each edge (vp, vt) where vp ∈ Pred(vt), update the
value of yp,t according to the new key.

Insertion of a new node. If a new node u is inserted,
together with new edges into it and new edges out of it,
then we do the following:

1. Create the node u without any edges touching it, which
is trivial to do since all it requires is generation of a
random key ku for that node.

2. Add the edges one by one, using each time the above
procedure for edge-insertions.

Deletion of a node. If a node vi is deleted, together with
all the edges that touch it, we need to perform two steps:

1. Delete the edges touching vi one by one, using the
above procedure for edge-deletions.

2. Now that vi has no edges touching it, removing it is
trivial.

Key replacement. Key replacement for a node vi is per-
formed as the following:

1. Update the node’s key k̂i with a new key k̂′
i.

2. Update the vertex’s access key to k′
i = H(k̂′

i, `i).
3. Update edges (vj , vi) where vj ∈ Pred(vi) with yj,i

computed according to the new key k̂′
i.

4. Update edges (vi, vl) where vl ∈ Succ(vi) with yi, l

computed according to the new key k̂′
i.

No other node is affected.

User revocation. To the best of our knowledge, no prior
work on hierarchical access control considered key manage-
ment at the level of access classes and at the same time
at the level of individual users. For instance, among the
schemes closest to ours, [54] considers only a hierarchy of
security classes without mentioning individual users, and
[30] considers a hierarchy of users without grouping them
into classes. However, it is important to group users with
the same privileges together and on the other hand permit
revocation of individual users. In our scheme, revoking a
single user can be done with two approaches:

1. Recard every user at that user’s access level(s) and
for all descendants of this access level(s) perform the
operation described for edge deletion (i.e., change all
keys by changing the labels and then update the public
information). Note that the descendants do not have
to rekeyed.

2. Make the graph such that each user is represented by
a single node in the graph with edges from this node
to each of that user’s access levels. By creating such
a graph, removing a user is as easy as removing this
node, and thus does not require rekeying.

5.2 Other Access Models
Traditionally, the standard notion of permission inheri-

tance in access control is that permissions are transfered
“up” the access graph G. In other words, any vertex in
Anc(vi, G) has a superset of the permissions held by vi.
Crampton [13] suggested other access models, including:

1. Permissions that are transfered down the access graph.
For these permissions, any node in Desc(vi, G) has a
superset of the permissions held by vi.

2. Permissions that are transfered either up or down the
graph but only to a limited depth.

In this section, we discuss how to extend our scheme to
allow such permissions. We can achieve upward and down-
ward inheritance with only two keys per node. Also, we
can achieve all of these permissions with four keys at each
node for a special class of access graphs that are “layered”
directed acyclic graphs (DAGs) (we define this later) when
there is no collusion.

5.2.1 Downward inheritance
To handle such queries, we construct the reverse of the

graph G = (V, E, O), which is GR = (V, E′, O) where for
each edge (vi, vj) ∈ E there is an edge (vj , vi) ∈ E′. Then
we use our base scheme for both G and GR, which results
in each node having two keys, but the scheme now supports
permissions that are inherited upwards or downwards.



5.2.2 Limited depth permission inheritance
We say that an access graph is layered if the nodes can be

partitioned into sets, denoted by S1, S2, . . . , Sr, where for
all edges (vi, vj) in the access graph it holds that if vi ∈ Sm

then vj ∈ Sm+1. We claim that many interesting access
graphs are already layered, but in general any DAG can be
made layered by adding enough virtual nodes.

Given such a layering, we can then support limited depth
permissions. This is done by creating another graph which
is a linear list that has a node for each layer, and there is
an edge from each layer to the next layer. The reverse of
this graph is also constructed, and these graphs are assigned
keys according to our scheme. A node is given the keys
corresponding to its layers. Clearly, with such a technique
we can support permission requirements that permit access
to all nodes higher than some level and to all nodes lower
than some level.

We now show how to utilize these four key assignments to
support permission sets of the form “all ancestors of some
node vi that are lower than a specific layer L” (an analogous
technique can be used for permission sets of the form “all
descendants of vi above some specific layer”). Suppose the
key for the permission requirement to access “all ancestors
of node vi” is ki and the key for permission requirement to
access “all nodes lower than layer L” is kL. Then we es-
tablish a key for both permission requirements by setting
the key to H(ki, kL). Clearly, only nodes that are an an-
cestor of vi can generate ki and only nodes lower than level
L can generate kL, so the only nodes that could generate
both keys would be an ancestor of ki AND below level L,
assuming that there is no collusion.

6. IMPROVING EFFICIENCY
As the scheme described in the previous sections supports

arbitrary graphs, it is possible to add edges to an access
structure in order to reduce the path length between two
nodes. In this section we consider how to add edges to trees
so that the distance between any two nodes is small. This is
essential for deep hierarchies since the key derivation time
in our base scheme is the depth of the access graph in the
worst case. In the remainder of this section we assume that
the access structure is a tree with n nodes. Sections 6.1–
6.3 describe our first approach that achieves O(log log n)
hash functions for key derivation with O(n) public space,
and section 6.4 describes an alternative approach that re-
quires only 3 hash function applications for key derivation
with O(n log log n) public storage space. Then section 6.5
addresses dynamic behavior and section 6.6 covers more gen-
eral hierarchies.

6.1 A Preliminary Scheme
First we review some background material that is needed

for our scheme. A centroid of an n-node tree T is a node
whose removal from T leaves no connected component of
size greater than n/2 [28]. The tree T does not need to
be binary or even have constant-degree nodes. It is easy
to prove that there are at most two centroids, and if there
are two centroids, then they must be adjacent. However,
if the tree is rooted and has two centroids, we can break
the tie by arbitrarily selecting the parent among the two
centroids. Thus we shall refer to “the” centroid of a rooted
tree. Now we are ready to describe the preliminary scheme

for computing the edges that we add to the tree and to which
we refer as shortcut edges.

Input: The tree T .

Output: A set of O(n log n) shortcut edges such that there
is a path of length less than log n between any ancestor-
descendant pair.

Algorithm Steps: For every node v of T , do the following:

1. Let Tv be the subtree of T rooted at v. Compute
the centroid of Tv (call it cv).

2. Add a shortcut edge from v to cv (unless such a
tree edge already exists or v = cv).

3. Remove from Tv its subtree rooted at cv. Note
that the new Tv is now at most half its previous
size (and could in fact be empty if v = cv).

4. Repeat the above process for the new Tv until the
final Tv is empty.

The number of shortcut edges leaving each v in the above
description is no more than log n because each addition of
a shortcut edge results in at least halving the size of Tv.
Therefore the total number of shortcut edges is no more
than n log n.

Now we show that the shortcut edges make it possible for
every ancestor v to reach any of its descendants w in a path
of no more than log n edges. When we trace the path from v
to w, we distinguish two cases, depending on whether w is in
the subtree of the centroid cv of Tv. The tracing algorithm
is as follows:

Case 1: w is in the subtree of the centroid cv of Tv. Then
if v 6= cv, we follow the edge from v to cv, and we
continue recursively down from cv. If, on the other
hand, v = cv, then we follow the tree edge from v
to that child of v whose subtree contains w and we
continue recursively down from there.

Case 2: w is not in the subtree of cv in Tv. Then we recur-
sively continue down with a Tv that is “truncated” by
the (implicit) removal of Tcv from it (so it is now half
its previous size).

The fact that the path traced by the above approach consists
of no more than log n edges follows from the observation that
every time we follow an edge (whether it is a tree edge or
a shortcut edge), we end up at a node whose subtree is at
most half the size of the subtree we were at.

6.2 Improving the Time Complexity
Before describing the improved scheme, we need to re-

view the concept of centroid decomposition of a tree: If we
compute the centroid of a tree, then remove it, and recur-
sively repeat this process with the remaining trees (of size
no more than n/2 each), we obtain a decomposition of the
tree into what is called a “centroid decomposition”. Such a
decomposition can be easily computed in linear time (see,
for example, [21]).

Our improved scheme is based on doing a pre-processing
step of T that consists of carrying out what might be called
a “prematurely terminated centroid decomposition”. This is
similar to the above-described centroid decomposition, ex-
cept that we stop the recursion not when the tree becomes



a single node, but when the tree size becomes ≤ √n. This
means that there are at most

√
n successive centroids that

are affected by the “prematurely terminated” decomposition
(as opposed to n of them for the standard decomposition).
We call these centroids, as well as the root of T , the spe-
cial nodes. Note that, by construction, removing the special
nodes from T leaves connected components of size at most√

n each; we call these connected components (which are
trees) the “residual” trees and denote them by T1, . . . , Tk.

We also use the notion of a “reduced tree” T̂ . The tree
T̂ consists of the O(

√
n) special nodes and of edges that

satisfy the following condition: There is an edge from node
x to node y in T̂ iff (i) x is an ancestor of y in T , and (ii)

there is no other node of T̂ on the x-to-y path in T .
Now we are ready to describe the overall recursive proce-

dure for adding shortcuts. In what follows, |T | denotes the
number of vertices in T .

AddShortcuts(T ):

1. If |T | ≤ 4 then return an empty set of shortcuts. Oth-
erwise continue with the next step.

2. Compute the special nodes of T in linear time. Initial-
ize the set of shortcuts S to be empty.

3. Create, from T , the reduced tree T̂ and add to S a
shortcut edge between every ancestor-descendant pair
in T̂ (unless the ancestor is a parent of the descen-
dant, in which case there is already such an edge in
T ). Because T̂ has O(

p

|T |) vertices, the size of S is
O(|T |).

4. For every residual tree Ti in turn (i = 1, . . . , k), add to
S a shortcut edge from the root of Ti to every node in
Ti that is not a child of that root. This increases the
size of S by no more than

Pk

i=1 |Ti|, which is ≤ |T |.

5. For every residual tree Ti in turn (i = 1, . . . , k), recur-
sively call AddShortcuts(Ti) and, if we let Si be the
set of shortcuts returned by that recursive call, then
we update S by doing S = S ∪ Si.

6. Return S.

The number f(|T |) of shortcut edges added by the above
recursive procedure obeys the recurrence

f(|T |) =

8

<

:

0 if |T | ≤ 4

f(|T |) ≤ c1|T |+
k

P

i=1

f(|Ti|) if |T | > 4

where every |Ti| is ≤
√

n, and c1 is a constant. A straight-
forward induction proves that this recurrence implies that
f(|T |) = O(|T | log log |T |). Therefore the space for the pub-
lic data is O(n log log n), due to the creation of the f(n)
shortcut edges.

We now turn our attention to showing that, for every
ancestor-descendant pair x and y in T , there is now, due to
the shortcuts, an x-to-y path of length O(log log |T |). The
recursive procedure for finding such a path is given next,
and mimics the recursion of AddShortcuts() (uses same

T̂ , same Ti’s, etc.). In it, we use Length(n) to denote the
worst-case length of a shortest ancestor-to-descendant path
that can avail itself of the shortcuts generated in the above
AddShortcuts().

FindPath(x, y, T ):

1. If T | ≤ 4 then trace a path from x to y along T and
return that path. If |T | > 4 continue with the next
step.

2. If x and y are both special in T (i.e., both are nodes

of T̂ ) then return the edge (x, y). (Note that such an
edge exists because of Step 3 in AddShortcuts().) If
x and/or y is not special, then proceed to the next
step.

3. Let Ti be the residual tree containing x, and let Tj

be the residual tree containing y. If i = j then we
recursively call FindPath(x, y, Ti), which returns a
path in Ti that is of length ≤ Length(|Ti|), which is

≤ Length(
p

|T |). We return that path. If i 6= j (i.e.,
x and y are in different residual trees) then we proceed
as follows:

(a) We recursively call FindPath(x, z, Ti) where z is
the node of Ti that is nearest to y in T (hence
z is a leaf of Ti, and one of its children z′ in T
is a special node that is ancestor of y in T ). The
length of this x-to-z path is≤ Length(|Ti|), which

is at most Length(
p

|T |). This path is the initial
portion of the path P that will be returned by the
recursive call (P will be further built in the steps
that follow).

(b) Follow the edge in T from z to the special node z′

that is ancestor of y in T , and append that edge
(z, z′) to P .

(c) Follow (and append to P) the edge in T̂ from
special node z′ to the special node (call it u) that
is the special ancestor of y that is nearest to y
(hence u is parent of the root of the residual tree
Tj that contains y). Note that such an edge exists
because of Step 3 in AddShortcuts(). If u = y
then return P , otherwise continue with the next
step.

(d) Follow (and append to P) the edge in T from u
to the root of Tj .

(e) Follow (and append to P) the edge from the root
of Tj to y; such an edge exists because of Step 4
in AddShortcuts().

(f) Return P .

The recurrence for Length implied by the above recursive
procedure is:

Length(|T |) =



Length(|T |) ≤ c2 if |T | ≤ 4

Length(|T |) ≤ c3 + Length(
p

|T |) if |T | > 4

where every |Ti| is ≤ √n, and the ci’s are constants. A
straightforward induction proves that this recurrence implies
that Length(|T |) = O(log log |T |). Therefore the worst-case
time for key derivation is O(log log n).

The next section deals with decreasing the space complex-
ity of the public information to O(n).

6.3 Improving the Space Complexity
We begin with a pre-processing step of T that consists of

carrying out “prematurely terminated centroid decomposi-
tion” similar to the one used in the previous section, except



that we stop the recursion not when the tree becomes of
size ≤ √n, but when the tree size becomes ≤ log log n. This
means that there are at most O(n/ log log n) successive cen-
troids that are affected by this new form of “prematurely
terminated” decomposition. We call these O(n/ log log n)
nodes, as well as the root of T , the distinguished nodes (these
will be treated differently from the “special” nodes defined
in the previous section). Note that, by construction, remov-
ing the distinguished nodes from T leaves connected compo-
nents of size at most log log n each; we call these connected
components (which are trees) the “tiny trees”.

The next thing that we use is the notion of a “reduced
tree” T ′ that is conceptually similar to the T̂ of the previous
section: The nodes of T ′ are the distinguished nodes plus the
root – hence there are O(n/ log log n) nodes in T ′ (whereas

there were O(
√

n) nodes in T̂ ). The edges of T ′ satisfy the
following condition: There is an edge from node x to node
y in T ′ if and only if (i) x is an ancestor of y in T , and (ii)
there is no other node of T ′ on the x-to-y path in T .

Now we are ready to put the pieces together:

1. Compute the distinguished nodes of T in linear time.

2. Create the tree T ′.

3. Use the method of Section 6.2 on the tree T ′. Any
edge of T ′ that was not in T must be considered a new
(i.e., a shortcut) edge. Note that the public space this
takes is O(n) because |T ′| = O(n/ log log n). It allows
computing an ancestor-to-descendant path of length
at most log log n− log log log n between any ancestor-
descendant pair of distinguished nodes in T ′.

4. To find an ancestor-to-descendant path from x to y
when x and/or y is not distinguished, do the following:

(a) First trace a path in T from x to the nearest dis-
tinguished node (call it z) that is ancestor of y.
The length of this path is at most log log n be-
cause the “prematurely terminated centroid de-
composition” that we described above stops at
tiny trees of size ≤ log log n. If there does not
exist such a distinguished node z that is both a
descendant of x and ancestor of y, then x and
y are in the same O(log log n) sized tiny tree of
nondistinguished nodes. In this case we can di-
rectly go along edges of T from x to y and stop.

(b) Next, trace a path in T ′ from z to the distin-
guished node (call it u) that is the nearest distin-
guished ancestor of y. As stated above, the length
of this path is at most log log n − log log log n. If
u = y then stop, otherwise continue with the next
step.

(c) Trace a path in T from u to y. Because that
path does not go through any distinguished node
(other than u), it stays in one of the tiny trees
and thus has length at most log log n.

The above implies that the concatenation of the paths
from x to z, z to u, u to y, has length O(log log n).
The space is clearly linear.

Although the above method uses a different partitioning
scheme from Section 6.2 (and in fact uses the scheme of
that section as a subroutine), its spirit is the same: The use

of a T ′ as a “beltway” that connects the subtrees in which
x and y reside.

6.4 A Time/Space Tradeoff
In this section we introduce schemes with constant time

complexity. Our first scheme has space complexity O(n log log n)
and requires at most 3 hops to reach any node. Like the
scheme outlined in Section 6.2, we start with prematurely
terminated centroid decomposition that stops when the tree
size is ≤ √n. We also use the reduced tree T̂ . The approach
is as follows.

AddShortcuts(T ):

1–4. The same as in the AddShortcuts() algorithm of Sec-
tion 6.2.

5. For every residual tree Ti in turn (i = 1, . . . , k), add
to S a shortcut edge from each node N in Ti (other

than the root) to all nodes in T̂ that are both: (i)
descendants of N and (ii) children of the root of Ti

in T̂ . This adds at most O(|T |) edges to the shortcut

set: For each node SN in T̂ , all of the new edges that
point to SN come from at most one tree (as SN has

at most one parent in T̂ ). Furthermore, since each

tree has at most O(
p

|T |) nodes, there are at most

O(
p

|T |) edges pointing to SN that are added during

this step. Finally, there are only O(
p

|T |) nodes in T̂ ,
and so there are at most O(|T |) edges added during
this step.

6. For every residual tree Ti in turn (i = 1, . . . , k), recur-
sively call AddShortcuts(Ti) and, if we let Si be the
set of shortcuts returned by that call, then we update
S by doing S = S ∪ Si.

7. Return S.

The number of edges added to the shortcut set in the above
scheme follows a recurrence similar to the scheme in section
6.2; thus this scheme adds only O(n log log n) edges. Fur-
thermore, the Algorithm FindPath(x, y, T ) is very similar
to the section 6.2 algorithm. To avoid unnecessarily repeat-
ing the above mentioned techniques, we describe only the
case of the FindPath() algorithm that differs from its pre-
vious version. It corresponds to the situations where x and
y are not in the same residual tree and neither of them are
“special nodes”. In this case, it takes at most one hop to get
to a “special node” (call it s1) that is an ancestor of y (by
Step 5 of AddShortcuts()). Once we are at a special node,
we can get to the special node of the residual tree containing
y in a single hop (call this node s2) by Step 3. From there
we can reach y with a single hop by Step 4. The path from
x to y is thus x, s1, s2, y which is 3 hops.

The above scheme requires only three hops to reach a spe-
cific node. It is trivial to show that a one-hop solution must
add O(n2) edges, but a two-hop solution exists with only
O(n1.5) public space, which we briefly sketch here. First,
we compute the special nodes of T as in the above scheme
and add two kinds of edges to this tree. The first kind of
edge that we add to S connects every ancestor-descendant
pair in Ti for each Ti (unless the ancestor is a parent of the
descendant, in which case there is already such an edge in
T ). Since each Ti has O(

√
n) nodes, this step adds at most

O(n) edges to each Ti. There are O(
√

n) such trees, and so



the space required by this step is O(n1.5). After this step
all nodes in the same subtree can reach each other with a
single hop. The second type of edge is from each node N in
T to all special nodes that are descendants of N . As there
are O(

√
n) special nodes and each node adds at most O(

√
n)

such edges, there are at most O(n1.5) such edges in total.
If x and y are in different trees, then x can get to the root
of y’s subtree in one hop (by the second type of edge) and
then to y with one hop (by the first type of edge), thus any
two nodes are no more than 2 hops away from each other.

6.5 Dynamic Behavior
This section examines the cost of maintaining the shortcut

edges as the tree changes dynamically as a result of edge and
node insertions and deletions. In the uniform-distribution
random model for such dynamic updates, nothing else needs
to be done: The structure retains its claimed properties (to
within a constant factor) essentially for the same reason that
an initially balanced tree data structure tends to remain bal-
anced (to within a constant factor) as random insertions and
deletions are carried out. If, on the other hand, the updates
are not uniformly distributed, then the initial set of short-
cuts may, over time, deviate from the properties we claimed.
We can, however, show that the extra cost introduced by the
need to maintain our shortcuts in the face of insertion and
deletion operations, is O(1) per operation in an amortized
sense: After a sequence of σ such operations, if tσ is the
additional time (compared to without shortcuts) taken to
maintain shortcut edges, then tσ/σ = O(1). The rest of this
section proves this.

One possible strategy is the following: When the non-
uniform updates have caused deviations from the desired
performance bounds by more than a constant multiplicative
factor d (e.g., instead of the shortcuts providing an upper
bound of b log log n, they now provide an upper bound of
worse than db log log n), we discard all the shortcuts and re-
place them with new ones that reflect the new situation.
Note that this does not affect the tree itself, only the short-
cuts, so there is no need for re-keying any node. Note also
that (i) this takes no more than linear time in the size of
the new tree (because it is a re-computation of the short-
cuts), and (ii) it suffices to know the current n and the
above-mentioned “flexibility factor” d in order to determine
when to initiate such a re-computation. The latter does not
require us to detect and report every case when the path
exceeds db log log n, but instead the shortcuts can be recom-
puted periodically every αn insertions/deletions. The cost is
small and is only O(1) per operation because the O(n) time
it takes for one shortcut recomputation is amortized over the
αn operations that occurred before the restructuring took
place.

To complete the proof of O(1) amortized shortcuts main-
tenance time, we must now show that a linear number of
operations must have taken place before we were forced into
a linear-time shortcuts-recomputation. To do this, we can
think of the effect of insertions/deletions as implicitly re-
defining the notion of centroid to be more flexible than that
of “no subtree of size more than n/2 when the centroid
is removed”. That is, hypothetically suppose that in our
construction we replaced the notion of centroid by that of
c-approximate-centroid: A node whose removal leaves sub-
trees with respective sizes of no more than cn for a con-
stant c ≥ 0.5 (e.g., c = 3/4). If we did that, our claim

of O(log log n) performance would obviously still hold (only
the constant factor hiding behind the “O” notation would
change). Now note that, before any insertions and dele-
tions, we have shortcuts that are consistent with the “rigid”
(i.e., n/2) notion of a centroid. When we initiate a re-
computation of shortcuts, the shortcut edges violate every
c-approximate-centroid notion (because otherwise, as just
stated, all ancestor-to-descendant paths would have double-
logarithmic length). In order for shortcuts in a specific sub-
tree with n nodes to go from being initially consistent with
a rigid n/2 notion of a centroid, to not being consistent
with an (e.g.) (3n/4)-approximate-centroid notion, a linear
number of insertions/deletions must have occurred in that
subtree. This completes the proof.

6.6 More general hierarchies
Although this section dealt mainly with trees, the basic

ideas can be adapted to more general hierarchies. If we
moved from a tree to a more general graph, the notion of
centroid is replaced by that of a separator — a “small” sub-
set of the vertices whose removal leaves connected compo-
nents of size no more than cn for some constant c = O(1).
Such subsets are known to exist: A separator of size O(

√
n)

exists for planar graphs [32], and the whole (recursive) sep-
arator structure for such a graph can be computed in linear
time [20]. More general classes of graphs also have small
separators, e.g., graphs of bounded genus [19]. Bounded
genus seems to capture most RBACs (in fact, even the class
of genus zero – planar graphs – seems to capture many com-
monly found “practical” RBACs).

7. CONCLUSIONS AND FUTURE WORK
In summary, we give the first solution to the problem of

access control in an arbitrary hierarchy G with the following
properties:

1. Only hash functions are used for a node to derive a
descendant’s key from its own key;

2. The space complexity of the public information is the
same as that of storing graph G;

3. The derivation by a node of a descendant’s access key
requires O(`) bit operations, where ` is the length of
the path between the nodes, for arbitrary hierarchies
and log log n or less for trees;

4. Updates are handled locally and do not “propagate”
to descendants or ancestors of the affected part of G;

5. The scheme is resistant to collusion in that no subset
of nodes can conspire to gain access to any node access
to which they cannot legally obtain;

6. The private information at a node consists of a single
key associated with that node.

We also provided simple modifications to our scheme that
allow to handle Crampton’s extensions of the standard hier-
archies to “limited depth” and reverse inheritance [13], and
gave shortcut schemes that permit to significantly reduce
key derivation time for tree hierarchies.

Future directions of this work include:
1. Extend our scheme to support temporal constraints.
2. Extend our scheme to support “limited depth” per-

mission inheritance in access graphs that are not lay-
ered without adding virtual nodes and in a collusion
resilient manner.

3. Give a more developed shortcut scheme for general hi-
erarchies.
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