

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 119 – 134, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Object-Relational Approach to the Representation
of Multi-granular Spatio-Temporal Data

Elisa Bertino1, Dolores Cuadra2, and Paloma Martínez2

1 ERIAS and CS Department, Purdue University, Recitation Building,
656 Oval Drive, West Lafayette, IN 47907-2086, USA.

bertino@cerias.purdue.edu
2 CS Department, Carlos III University, Avd. Universidad 30, 28911 Leganés, Spain

Fax: 34-91-6249430
dcuadra@inf.uc3m.es, pmf@inf.uc3m.es

Abstract. The notion of spatio-temporal multi-granularity is fundamental when
modeling objects in GIS applications in that it supports the representation of the
temporal evolutions of these objects. Concepts and issues in multi-granular
spatio-temporal representations have been widely investigated by the research
community. However, despite the large number of theoretical investigations, no
comprehensive approaches, have been proposed dealing with the representation
of multi-granular spatio-temporal objects in commercially available DBMSs.
The goal of the work that we report in this paper is to address this gap. To
achieve it, the paper first introduces an object-relational model based on
OpenGis specifications described in SQL3. Several extensions are developed in
order to improve the semantics and behavior for spatio-temporal data types
introducing an approach to represent the temporal dimension in this model and
the multi-representation of spatio-temporal granularities.

1 Introduction

Since 1970 when Codd [5] proposed the relational model, database system technology
has introduced several important changes in the way data are stored and managed. The
relational data model has had a great impact on commercial products, mainly because of
the development of the SQL language, which included several additional features with
respect to those specified by the theoretical definition of the relational model. Since its
initial definition, SQL has been widely extended [9]. A relevant set of extensions has
dealt with the introduction of object modeling capabilities [21], resulting in the notion of
object-relational data model. Such a model combines the simplicity and the power of
SQL the ability of describing new data types with their associated operations, typical of
the object-oriented approach. The object-relational data model is thus a powerful model
combining the best aspects of two different approaches.

The SQL3 standard [10] is the reference language for the object-relational model.
It has been defined by extending the previous SQL92 standard with the ability to
modify, retrieve and define the data types needed to represent a large variety of
application domains. Examples of those extensions include: XML, MULTISET (like
the ARRAY data type, without implicit order), BIGINT and others.

C

120 E. Bertino, D. Cuadra, and P. Martínez

An important class of applications is represented by spatial and GIS applications.
These applications are relevant in a number of different domains, such as
transportation, urban planning, homeland security, and environmental protection.
Spatial data management is often combined with temporal data management, because
in many cases one needs to record the temporal evolution of spatially-related entities.
The resulting data models are thus termed spatio-temporal data models. One of the
most crucial issues when dealing with spatio-temporal databases is the management
of the information concerning moving objects in a spatial context. Such an issue
represents an important requirement in several application domains, like air traffic
control and habitat control of endangered species and so on. So far, the GIS systems
have handled the spatial and the non-spatial data separately, which increases the
complexity of maintaining data integrity. The use of an object-relational database
system to manage this kind of data represents a good alternative, in particular because
such a system is able to homogeneously and efficiently manage user-defined
information, and to improve integrity for data of different nature.

Most of the spatial-temporal data approaches proposed so far do not exploit the
powerful modeling and management features that are provided by recent versions of
commercially available DBMSs. Another main limitation of current approaches is that
they do not support multiple granularities in the representation of spatio-temporal
data. Multiple granularities, defined as a set of measure units for space and time, are
crucial in facilitating the management of information for applications such as air
traffic control, meteorological forecast and so forth [3], [17]. The goal of the work
reported in this paper is to address such limitations by developing an object-relational
approach to the management of spatio-temporal data supporting multiple granularities
for both space and time.

In particular, in the paper we propose a temporal extension expressed in the SQL3
standard, specifically tailored to the OpenGis specifications [29]. Our start point is the
object-relational model and meta-model that verifies the OpenGis specifications from
which we develop an extension of the spatial and non-spatial data types defining a
new data type composed the two parts; the first part is the object value and the second
the valid time for this value. This extension provides the support required to model
multiple spatio-temporal granularities and tools to operate on objects with different
granularities in order to address their integration and inter-operability.

The remainder of this paper is organized as follows. Next section gives an
overview of related work dealing with the spatial and temporal representation in the
object-relational model. Section 3 introduces the notions of spatial and temporal
granularity and their basic properties. Section 4 describes the OpenGis specifications
in SQL3 [29] and presents our extension to supporting multiple spatial granularities.
Section 5 then extends the model and meta-model developed in Section 4 by
introducing time as an extension of the SQL3 data types. The last section concludes
the paper and outlines future work.

2 Related Works

Initial approaches, aimed at supporting advanced data management applications, have
recognized that spatial information [15], [24] and temporal information [25], [22],

An Object-Relational Approach to the Representation 121

[23], [19] are both crucial. However, those early approaches have dealt with space
and time representations separately. Most recent proposals have proposed integrated
approaches able to model both spatial and temporal aspects of data objects.

A first relevant approach has been developed by Guting et al. [16]. The approach
supports the change of the position or extension for geometry through the use of
abstract data type definition capabilities. It develops a set of constructors and query
operators in an abstract model thus giving a compact and uniform vision for every
data type. In the proposed approach [16], some data types, namely Integer, Boolean,
Spatial, can be transformed in a temporal data type. Such an abstract model has been
then transformed in a discrete model [14], closer to the implementation but more
restricted with respect to the abstract model. The discrete model represents the object
values that have a temporal dimension through the use of snapshots. This method is
thus referred to as sliced representation. As part of their work, Guting et al. [14] have
shown how the sliced representation can be mapped onto relational data structures
such as records and arrays. However, they do not have specifically addressed how to
map their abstract model onto the SQL3 standard.

Chen and Zaniolo [6], based on the spatial-temporal representation model proposed
by Worboys [26], propose a number of SQL3 extensions aiming at supporting
advanced queries. Unlike the previous proposals, they adopt a point-based approach
to model the time dimension and queries are expressed through user-defined
aggregate functions. Such an approach to handle time for spatio-temporal databases
represented in a relational framework, it is very simple and minimizes SQL3
extensions in comparison with the complex functions one has to apply when using
based-intervals approaches [13], [19]. Such an approach has then been architected by
solutions supporting efficient storage [7]. Finally, a more recent paper [8] by the same
authors describes how to implement these functions in ATLAS [28] in order to model
specific application domains. This approach keeps the SQL philosophy; therefore it is
easy to use for developers and users. A major drawback of this approach is that it is
not able to support multiple temporal attributes with different granularities in the
same relation.

Another approach very close to implementation has been proposed by Lee [18].
The spatial object history is modeled through the creation of relations. The developed
framework is based on the creation of some special purpose relations, called
dimensions, storing the current values of the object geometry. Besides those
dimension relations, the approach requires the introduction of two additional relations
keeping historical information. The approach by Lee also includes a set of macro
operators that are used to execute queries. The macro operators are applied to spatial
data, temporal data, and spatio-temporal data. Also, an aggregate operator is defined
to manage the history of a spatio-temporal data. The main drawback of this approach
is that it requires executing join operations among the dimension tables in order to
produce complete spatial information. The use and maintenance of data under such an
approach is thus quite complicated.

An extensive analysis of the most important approaches to represent spatio-
temporal in the object-relational model has been carried out by Erwig et al. [12]. This
paper presents an extensive comparison between two approaches to represent the
temporal dimension in a spatio-object-relational model. The first approach is based on
extending each relation storing spatial data objects, with an additional column

122 E. Bertino, D. Cuadra, and P. Martínez

representing temporal information. The column essentially records the temporal
validity of row values. The second approach exploits the expressive power of the
object-relational model. It is based on the definition of an abstract data type (ADT)
joining space and time on the same column. The second approach better represents
the semantics of the original data and allows one to create relations containing time
information at column level.

Compared to previous work, the main contributions of our work are summarized as
follows. First, the spatial representation we adopt is based in the proposal of OpenGis
specifications described through SQL3 [29]. The above approaches, by contrast,
adopt much simpler spatial data models not supporting OpenGis. Second, we provide
support for multiple spatial granularities. Third, we use an abstract data type approach
to represent and manage the temporal dimension; thus our approach is more flexible
than other approaches and supports a finer degree of control over temporal behavior.
Our approach facilitates the formulation of queries in SQL and provides a
representation which is more intuitive and easy to use. Finally, we propose solutions
to maintain multiple granularities, in both space and time, and provide conversion
functions to map data representations among different granularities. None of the
above described approaches provides such functions.

3 Preliminaries: Multi-granular Spatio-Temporal Representation

In this section, we introduce the relevant notions underlying our approach to multiple
granularities in both time and space aspects. From an informal view point, we can
think of a temporal or spatial granularity as a discrete partition of time or space.
Different partitions may be defined, thus resulting in multiple granularities.

The temporal granularity has been defined as the partitioning of a temporal domain
in groups of elements ordered through an index set, where each group is perceived as
an indivisible unit (a granule) [2]. The granularities set is denoted by GT and its
elements are related by the relationship finer_than. A granularity S is finer_than R if
for each index i a index j∈R exists such that S(i) ⊆ R(j), where S(i) denotes the granule
belonging to the i index position. This relation is denoted by S ≤T R. Semantically, when
we define a granularity for an object we specify the time instants at which the object’s
values are relevant to the specific application domain. Days, months and years are
several kinds of temporal granularity; days are finer than months and months are finer
than years. Operations and comparisons between objects at different temporal
granularity require the use of conversion functions. These functions change the temporal
properties of an object from a finer granularity to a coarser granularity and we can
compose a macro function with the function composition. Conversion functions can be
like the ones shown in the Table 1, or aggregation functions available in SQL [4] or
created according to the application’s semantics.

The spatial granularity is defined as the unit of measure in a spatial reference
system. It thus represents the unit according to which spatial properties, like the area,
are measured. The set of the spatial granularity is denoted by GS. The elements of GS
would be meters, kilometers, grades and others. Each one of those elements must be
defined with respect to a spatial reference system. In GS, the relation finer_than is
similar to the temporal granularity given before and it is denoted by M ≤S N.

An Object-Relational Approach to the Representation 123

Table 1. Temporal and spatial conversion functions

Proj
(index)

It returns, for each granule
in the coarser granularity,
the value corresponding to
the granule of position index
at the finer granularity

First,
Last

First and last index in the
Proj (index) function

Main It returns, for each granule in
the coarser granularity, the
value which appears most
frequently in the included
granules at the finer
granularity

All It returns, for each granule in
the coarser granularity, the
value which always appears
in the included granules at
the finer granularity if this
value exists, the null value
otherwise

Contract functions

l_contr It contracts an open line, endpoints
included, to a point

r_contr It contracts a simple connect region
and its bounding to a point

r_thinning It reduces a region and its bounding
lines to a line

Merge functions

l_merge It merges two lines sharing an endpoint
into to single line

r_merge It merges two regions sharing a
boundary line into a single region

Absorption operations

P_abs It eliminates (abstracts) an isolated
point inside a region

l_abs It eliminates a line inside a region

Possible conversion functions are shown in Table 1; we refer the reader to [1] for
additional details. The application of these conversion functions guarantees the
topology consistency.

Suppose we were interested in studying the evolution of a river’s course.
According to this specification, we can define a time unit as century thus obtaining
the representation shown in the Fig. 1. Semantically speaking, the temporal and
spatial granularity integration provides, on the one hand, the timestamp at which a
spatial object is observed and, on the other hand, establishes the spatial measure
within a reference system.

Our approach represents spatial-temporal multiple granularities considering the
spatial representation of an object with respect to one temporal granule. Therefore, we
must specify the observation unit for both space and time. These objects are called
moving objects [16]. The Fig. 1 shows the time variation in the river course with
centuries as temporal granularity.

The temporal and spatial multi-representation is built when executing user queries
by using the conversion functions defined for each application depending on the
domain. In the next section, we show how to specify the conversion functions

(a) River course in 1800. (b) River course in 1900 (c) River course in 2000

Fig. 1. River course evolution

124 E. Bertino, D. Cuadra, and P. Martínez

composition and their composition order what we denote as composition sequence.
The composition of functions is strongly domain-dependent and it is very important to
store it with the scheme definition to provide more semantics.

4 Spatial Framework: Modeling OpenGis Specifications with
SQL3

In this section, we describe the OpenGis specifications in SQL3 considering the
abstract data types to define the Geometry type besides the meta-scheme definition
necessary to manage the spatial data in an object-relational database.

Our approach begins with the framework developed in [29] and provides an
extension through the new meta-information and SQL3 functions to support the
spatial granularity. The proposal is focused on this spatial framework for two reasons;
first, the representation agrees with the OpenGis standard and, second, it is specified
by another standard, the SQL3 language, which provides an easy implementation in
any object-relational DBMS.

4.1 Spatial Data Description

We describe OpenGis from two different viewpoints. The first describes the geometry
data types, their properties and functions related to the spatial relationships among
geometric objects. The second describes the meta-scheme which gives support to the
geometry data type. The meta-scheme is similar to a data dictionary. It is composed of
relations describing the spatial domain. The meta-schema in [29] describes the spatial
domain as geometric objects in ℜ2 space.

The relations belonging to the meta-schema cannot be modified by the user. The
relation definition is fixed in the meta-schema and modifications to it are achieved
through the use of views. We consider a view as a subset of meta-information that can
be modified by the user.

In the spatial meta-scheme presented in [29], framework of our proposal, when we
define a geometric object in an object-relational scheme, the meta-scheme stores the
information concerning its dimension, its geometry type (if it is a point, a line, a
polygon and so on) and the spatial reference system over it is defined. This
information allows, for example, one to check whether the relationships among
geometric objects can be determined. The spatial relationship functions can just apply
to objects with the same granularity and spatial reference.

We introduce a notation to reference this meta-information. We denote by SOR the
spatio-object-relational model and by SOR-M the meta-scheme over SOR defined in [29].

Definition 1: The SOR-M = {RM1,…, RMn} is a set of relations that describe the
spatial domain. We define Vs as a set of views, Vs = {Vs1, …,Vsi} such that Vsj = Ops
(RMk,..,RMj) where Ops is a macro-operator composed of relational algebra
operators.

The meta-information held in Vs can be modified by user. We reference to SOR-M
as the set of views (Vs).

An Object-Relational Approach to the Representation 125

Definition 2: The Geometry data type (G) is defined as an abstract data type whose
features1 are described in two important views, Geometry_Columns and
Spatial_Ref_Sys, such that Geometry_Columns, Spatial_Ref_Sys ∈ Vs.

The geometry type in SOR model is represented using a discrete model because
SOR is a model close to the implementation. The spatial representation is stored as a
set of vertexes that are interpreted through the linear interpolation between them.

According to Fig. 2, the Geometry type has a hierarchical structure that is
specialized into Point, Curve, Surface and Geometry Collection subtypes. Fig. 2 is
based on Geometry Model specified in the OpenGis Abstract Specification restricted
to 0, 1, and 2 dimensions for the collection types named Multipoint, MultiLineString
and MultiPolygon. Therefore, Geometry, Curve, Surface, Multicurve and
Multisurface are introduced as abstract data types. The subtypes of Geometry are
restricted to 0, 1, and 2 dimensions in a coordinate space (ℜ2).

The geometry type includes basic functions that retrieve information about spatial
properties and methods for testing the spatial relationships and analyzing geometric
objects; besides for each type specific functions are defined. In this paper, we do not
show these functions and methods because they are specified in [29]. We focus our
paper on how we can define a geometry object in a relation and how to represent its
spatial properties in SOR-M.

Definition 3: Let R (A1:D1,…,An:Dn) be a relation where Ai is a column defined over
a domain Di. R is a feature relation if ∃ Ai (i ∈ {1,..,n}) such that Ai ∈ G. Ai is called
geometry or spatial column.

When we define a feature relation, the spatial attribute definition shows just the
geometry type. In the SOR model, every geometry column stores its features in the
Geometry_Columns and it is referred to Spatial Reference System (SRS). A Spatial
Reference System (also called Coordinate System) is a way to assign coordinates to a
location and to establish relationships between sets of such coordinates. It enables the
interpretation of a set of coordinates as a representation of a position in a real world
space. Any spatial data in SOR has a coordinate system associated with it through the
Spatial_Ref_Sys view.

To define the geometry column features we introduce procedures to insert these
features in SOR-M in order to make the update operations easy for the users. The
Spatial_Ref_Sys view has defined SRS by default but the user can define other SRSs.
For this reason, we create two SQL 3 procedures.

Definition 4: Let R (A1:D1,…,An:Dn) be a feature relation. We define geometry
features ∀ Ai ∈ G through the following procedures:

• SP (R, Ai, Dimension_Number, DRS_ID) is a SQL3 procedure which inserts the
dimension number and the identifier DRS (DRS_ID) in the Geometry_Columns
view when Ai is defined in a SRS by default (DRS)

• SR (SRID, SRText) is a SQL3 procedure to create a new spatial reference
system. It inserts the identifier reference system and the specification textual in
Spatial_Ref_Sys. The SRText column describes a standard specification defined
in [29].

1 We use the term feature to indicate an attribute of an abstract data type.

126 E. Bertino, D. Cuadra, and P. Martínez

•

Fig. 2. Geometry description in ODMG [21]

Example 1: Let City be a relation defined with two attributes, Name of Varchar type
and Extension of Polygon type. We define the City feature relation as:

City(Name:varchar(60),Extension:Polygon);

The Extension column is defined as a Polygon subtype. If we want to define the
Extension column in City as a polygon with two dimensions at meters in a spatial
reference system by default (DRS_ID = 14), we must specify them with the SP
procedure to insert these features in the Geometry_Columns view:

SP(‘City’, ‘Extension’, 2, 14);

The SP signature indicates with the number 2 that Extension is a two-dimensional
geometry object having 14 as identifier for the spatial reference system (DRS_ID).
This identifier references a row of Spatial_Ref_Sys view.

4.2 Spatial Granularity Description and Proposed Extensions by SOR Model

The spatial granularity is a measure unit in relation to a Spatial Reference System
(SRS). In the previous spatial framework, the spatial granularity is referred to the SRS
chose. We can distinguish between a spatial granularity referred to a default reference
system (DRS) and a new spatial reference. The DRS supported in the OpenGis
specifications appears in [29] and the granularity is always defined according to the
default unit. The definition of a new reference system involves the insertion of a new
row in Spatial_Ref_Sys view. In order to provide an easy interaction with the SOR-M
to define a spatial granularity different with respect to the Unit parameter defined over
DRS we create a new granularity procedure.

Definition 5: Let SOR be a model, we define SG procedure such that
SG(Table_Name, Geometry_Name, DRS_ID, Granularity, Factor) inserts the spatial
granularity of the Geometry_Name column in Table_Name relation concerning a DRS

An Object-Relational Approach to the Representation 127

which is identified by DRS_ID. The Factor parameter indicates the conversion rate
relative to the unit by default supported by DRS.

This procedure defines the spatial granularity in a geometry column when the DRS
has a unit different from the default one. The SG inserts a new row in the
Spatial_Ref_Sys view.

Example 2: Consider example 1. Suppose that the system, defined as DRS_ID = 14
with ‘Meters’ as default unit, is a DRS. To define the Extension granularity in
hectometers, we should use the SG() procedure with the following parameters.

SG (‘City’, ‘Extension’, 14, ‘Hms’, 100.0)

The last parameter indicates the mapping between meters and hectometers.

Another important aspect is to provide functions to compare geometries with
different spatial granularities. Two geometries with different spatial granularities can
be compared if they have associated conversion functions that modify their
granularity while maintaining their topological properties. Thus, we must extend the
set of functions defined in [29] to support the conversion functions and to create a
view in the SOR-M recording how to apply them.

We extend the SOR model by adding the conversion functions shown in Table 1 as
SQL3 functions (Table 3). SOR-M is extended to also include a view called
S_Coarser that specifies what conversion functions can be applied to a geometry
column.

Definition 6: Let R(A1:D1, .., An:Dn) be a feature relation, ∀ Ai (i ∈ {1,..,n}) Ai∈G,
we can define the conversion functions for Ai by modifying S_Coarser view with the
SC procedure, defined as follows:

SC (Table_Name, Geometry_Column, Order, Sg, Eg, Operator_Name, Condition)
The Order attribute indicates the application sequence of the operator the name of

which is stored in Name_Operator. This attribute is needed when a spatial data has
conversion functions concatenation to specify the change to several coarser
granularities. The Sg and Eg record the initial and final granularities necessary to
apply the conversion function and Condition is an expression that indicates what
objects are affected for this operator.

Definition 7: Let R(A1:D1, .., An:Dn) be a feature relation in the SOR model. We
define SGranularity (Name_Attribute, Spatial_Ganularity): Geometry such that
SGranularity() is a SQL3 function transforming the Name_Attribute spatial column
values to values in the indicated granularity by Spatial_Ganularity according to the
specification in S_Coarser view.

Example 3: Following with the example 2, we can specify that the Extension attribute
can change to a coarser granularity through application of the r_thinning operator.
The conversion function for this attribute is specified in the meta-scheme through the
SC procedure the signature of which is the following:

SC (’City’,’Extension’,1,’Hms’,‘Kms’,’r_thinning’,ALL);

As such signature specification shows, the Extension column can change the
hectometers to kilometers granularity by applying the r_thinning function over all

128 E. Bertino, D. Cuadra, and P. Martínez

Extension geometry. In this case, we are indicating that Extension values can be
represented at kilometers as well. The Order attribute records the 1 value although in
this case is not significant because we just apply one conversion operator.

The city names and theirs extensions in kilometers can be queried as:

Select SGranularity (Extension, Kms)

From City; �

Table 2. Functions of spatial conversions

The extended SOR model provides two important semantics restrictions. First, the
spatial granularity definition through the SR procedure defines a new spatial reference
system, and the SG procedure changes the granularity in a default spatial reference
system. The second is the facility supporting the representation of a geometry type in
several spatial granularities using the conversion functions.

5 Temporal Representation in the SOR Model

In the object relational model, the temporal representation can use a point-based
approach or an interval-point approach and it could affect the relation’s tuples, called
tuple level [6], [22], [23], [8] or to the relation attribute, attribute level [13], [14]. As
we discussed in the Section 2, the point-based approach avoids the coalescing
problems and provides a simpler vision of spatial-temporal systems. For this reason,
our proposal represents the time with a point-based approach. Furthermore, it focuses
on attribute level because we believe that is closer to the real world and supports the
definition of several temporal attributes in the same relation.

We consider a temporal granularity as foreseeable or unforeseeable. A foreseeable
granularity describes periodical phenomena. Granules are calculated through a time
function and a temporal seed. The foreseeable temporal granularity can be calculated
by applying the time function to the seed, e.g. if the seed is ’12-1-2003’, and the time
function is to add one day, the ‘13-2-2003’ records the next timestamp. The temporal
seed can be the first value observed or a value chosen by the user. The unforeseeable
granularity is described by random phenomena. For example, if we want to represent
the price changes of shares, we could define the unforeseeable granularity in that we
do not know the time units when the share could change. This temporal granularity
classification allows us to differentiate among several application domains and will be

Contract functions l_contr (G:Line): Point

 r_contr (G: Polygon): Point

 r_thinning (G: Polygon): Line

Merge functions l_merge (L1: Line, L2: Line): Line

 r_merge (G1:Polygon, G2:Polygon):Polygon

Absorption operations p_abs (G:Polygon, P:Point):Polygon

 l_abs (G:Polygon, L:Line):Polygon

An Object-Relational Approach to the Representation 129

represented in our approach by the definition of a temporal reference system within
the Gregorian calendar.

The proposal will carry out a temporal representation with the definition of
abstract data types provided by the standard SQL3 inside the spatial framework
explained before. The new data types will take into account that the temporal
dimension can be expressed as a function over time for a spatial or non-spatial
attribute. This function will be provided by the DBMS or/and customized by the user
to collect the information for a certain domain.

In the next section, we explain the approach we adopt to represent temporal
attributes in the SOR model; specifically; we focus on the presentation of the
foreseeable object moving representation.

5.1 Temporal Attributes

Until now, we can classify the relation columns as atomic or spatial depending on the
data type over which they are defined. The atomic columns are defined over a
predefined SQL3 data type and the spatial columns over Geometry type. Both types
could be grouped and denoted as non-temporal columns (NTD). The temporal column
will be considered as an extension of the atomic and spatial column where the
changes produced along the time in those columns will be reflected. At present, the
spatial o non-spatial representation shows the current values of the application
domain. In this section, we describe how the time evolution is presented.

Let SOR be the spatial relational model. The spatio-temporal object relational
model (TSOR) is defined as an extension of SOR where the data types are specialized
by adding a time attribute. This model is supported by the meta-scheme TSOR-M.

Definition 8: The TSOR-M = {TM1,…, TMn} is a set of relations that describe the
temporal domain. We define VT as a set of views, VT = {VT1, …,VTi} such that VTj =
Opt = (TMk,..,TMj) where Opt is a macro-operator composed of relational algebra
operators.

By using such model extension, we can define the temporal data type as follows.

Definition 9: Let α be a data type belonging to NTD, the temporal data type based on
α is denoted by Tα and it is defined as a pair (Tvalue, Tgranule) where the Tvalue is a
valid value over α data type in the Tgranule time instant, such that Tgranule ∈ S
where S ∈ GT and S is the temporal granularity for Tα.

In order to support attribute evolution we use the collection type defined in SQL 3.

Definition 10: Let R(A1:D1, .., An:Dn) be a relation R. R is a temporal relation if ∃ Ai

(i ∈ {1,..,n}) such that Ai∈Collection_Tα and Collection_Tα records a collection of
ordered pairs of Tα type. Each Ai ∈ Collection_Tα is denoted as temporal column.

A particular case is when α is the G spatial data type. R is a temporal -feature and
∀ Ai (i ∈ {1,..,n}) Ai∈Collection_TG, Ai is denoted as moving column.

The temporal column definition in a relation requires that the meta-scheme, the
Temporal_Columns view to be exact, be updated in order to maintain the data
consistent.

130 E. Bertino, D. Cuadra, and P. Martínez

Therefore, a temporal granularity is defined for each temporal column. The
granularity is defined by using a SQL3 procedure, like the spatial granularity
procedure.

Definition 11: Let TSOR model and R(A1:D1, .., An:Dn) a temporal relation. The
temporal granularity ∀ Ai (i ∈ {1,..,n}) such that Ai∈Collection_Tα is defined by TG.
TG is a SQL3 procedure which modifies the Temporal_Columns view in TSOR_M
inserting a new row with the following specifications:

TG (Table_Name, Temporal_Column, Unit, Granularity, Seed, Rate, Function)
The TG signature specifies various information. Unit is the temporal domain that

can get the values Y (year), M (month), D (day), H (hour), Mi (minutes) and S
(second), all of them belonging to SQL3 DATETIME. Granularity describes the
chosen temporal unit and Rate denotes the conversion factor to obtain the next
granule from Seed. When the time function is different from an arithmetic succession
of the time, the Function attribute stores the user-defined function name.

According to this definition, we have covered the foreseeable temporal granularities
to represent applications where certain phenomenon is observed at periodic
timestamp.

Moreover, we create the conversion functions described in Table 1 as SQL3
functions to facilitate the integration and comparison among attributes with different
temporal granularities. The SOR-M is extended by including a view denoting
T_Coarser that specify what conversion functions are applied to each temporal
column.

Definition 12: Let R(A1:D1, .., An:Dn) be a temporal relation, ∀Ai (i ∈ {1,..,n}) such
what Ai∈ Collection_Tα, we can define the conversion specification for Ai modifying
T_Coarser view with the TG procedure. The TG signature is:

TG (Table_Name, Temporal_Column, Order, St, Et, Operator_Name, Condition)
where, the Order attribute indicates the application sequence of the operator whose
name is stored in Name_Operator. The St and Et record the initial and final
granularity parameters necessary to apply the conversion function and Condition is an
expression that indicates which objects are affected by this operator.

Definition 13: Let R (A1:D1, .., An:Dn) be a temporal relation in the TSOR model. We
define TGranularity (Name_Attribute, Temporal_Ganularity):Collection_ Tα as a
SQL3 functions that transform the temporal column values, Name_Attribute ∈ Tα , to
values in the indicated temporal granularity, Temporal_Ganularity, according to
T_Coarser view.

Therefore, the TG() procedure and TGranularity() contribute to extend the TSOR
model.

Example 4: In this example, City is a temporal feature relation (see Fig. 3) because the
Extension is defined as a moving column.

City(Name:varchar(60),Extension:Collection_Tpolygon)

TG(‘City’, ‘Extension’, ‘Y’, ’Century’, 100);

SG(‘City’, ‘Extension’, 14, ’Hms’, 100.0);

An Object-Relational Approach to the Representation 131

We use the SG and TG procedures to define the spatio-temporal granularity in
Extension and the SC operator to specify the spatial conversion function that can be
applied.

SC (’City’,’Extension’,1,’Hms’, ‘Kms’, ’r_thinning’,
ALL);

To determine the New York boundary at year 1900, we specify the following query
using SGranularity() operator.

Select SGranularity (c.Extension[].Tvalues, ‘Kms’)From
City c Where c.Name=’New York’ and
c.Extension[].Tgranule = ‘1900’;

Fig. 3. Example to illustrate the City temporal feature relation

The SGranularity() realizes a query to S_Coarser view description to calculate the
correct topology by the geometry. The Extension column changes from hectometers
to kilometers granularity applying r_thinning function.

Each temporal attribute has defined a temporal granularity and the relation is the
context that joins them. For this reason, the database design aspects are more
significant; we must choose the temporal attributes, in a relation, with granularities
that define the domain semantics. With insertion, delete or update operations we must
check the temporal validity according to the definition in the TSOR-M. Therefore, the
temporal validity maintenance could be achieved through the temporal information
that is included in the meta-scheme. The implementation of active mechanisms will
allow to validate the time for each operation in the database. These mechanisms are
strongly domain-dependent because describe the time relationships among the
attributes of a relation.

The temporal granularity for a temporal column is an inherent restriction of the
TSOR model. That is, for each temporal attribute, the model forces one to define a
temporal granularity. A semantic restriction is defined in the TSOR model giving the
possibility to describe the conversion functions. Therefore, this model is semantically
richer and allows one to support a larger variety of application domains.

7 Conclusion and on Going Research

The proposed framework is based on [29] with the definition of the Geometry data
type. We have discussed how the spatial granularity is implicitly defined in the spatial
reference system described in [29]. At the spatial level, our approach proposed the

Temporal granularity

New York

Name

 2000

Extension

 1800

 1900

132 E. Bertino, D. Cuadra, and P. Martínez

following improvements with respect to a SOR model: an extension of the meta-
schema described in [29], referred to as SOR-M, that includes new views, functions and
operators. Among the new views, the S_Coarser view specifies the conversion
functions required to change the spatial granularity preserving the consistency of the
spatial attribute. The conversion operators are added to the functions presented in [29].

With respect to the temporal level, our approach is the first proposal to represent
temporal attributes in the framework described before. We explain and define how the
SQL3 data types can be converted into SQL3 temporal data types. This proposal is
based on [13] but our temporal treatment is addressed to point-based approach. The
temporal representation based on points makes it easy the use of aggregate functions
as proposed in [28]. We define, as well, new views, functions and procedures
extending the SQL3 functionalities. These functionalities are necessary to keep the
consistency between temporal attributes in a relation and to deal with different
granularities.

The main problem when we apply the relational model is the bi-dimensional
structure of the relations. This problem reverts in our approximation and generates
some difficulties that we are currently investigating. In a relation with several
temporal attributes, the attribute with the finest granularity will be the marker of the
variability in the relation. To improve the storage problems we are investigating the
use of other SQL3 structures, as the REF type in order to avoid redundant information
and the use of point-based view at the query level and the interval-based view at the
storage level following the approach reported in [25]. The consistency of the temporal
attributes within the same relation is another problem that in this approach has been
commented. As future work, we plan to develop a set of triggers to check the time
validity between attributes of the same relation as well as the execution model and its
implications on the inheritance relationships among object types. Finally, other future
work will dealing with supporting granularities per value instead of per column like
the TOOBIS project approach [31] and the development of an effective and efficient
query processing technique. This is an important issue to improve the retrieval of data
from temporal attributes using new indexing techniques.

References

1. Bertolotto, M. Geometric Modeling of Spatial Entities at Multiple Levels of Resolution.
PhD Thesis, Università degli Studi di Genova (1998).

2. Bettini, C., Jajodia, S. & Wang, X.Time Granularities in Databases, Data Mining and
Temporal Reasoning. Springer-Verlag (2000).

3. T. Bittner and B. Smith. A Unified Theory of Granularity, Vagueness and Approximation.
In Proc. of COSIT Workshop on Spatial Vagueness, Uncertain and Granularity (2001).

4. Camossi, E., Bertolotto, M., Bertino, E., Guerrini, G. A multigranular Spatio-temporal
Data Model. Proc. 11th ACM International Symposium on Advances in Geographic
Information Systems, New Orleans, Louisiana, USA (1998) 94 – 101.

5. Codd, E. F. A Relational Model of Data for Large Shared Data Banks. CACM 13 (6),
June (1970).

6. Chen, C.X. & Zaniolo, C. SQLst: A Spatio-Temporal Data Model and Query Language. In
Proc. of Int. Conference on Conceptual Modeling/ The Entity Relational Approach (2000).

An Object-Relational Approach to the Representation 133

7. Cindy X. Chen, Jiejun Kong and Carlo Zaniolo. Design and Implementation of a
Temporal Extension of SQL. In Proceedings of the 19th International Conference on Data
Engineering (ICDE'03), pages 689-691, Bangalore, India, March (2003).

8. Cindy Chen, Haixun Wang, and Carlo Zaniolo. Toward Extensible Spatio-Temporal
Databases: an approach based on User-Defined Aggregates. In Flexible querying and
reasoning in spatio-temporal databases: theory and applications, Springer
Geosciences/Geoinformation series (2004).

9. Date, C. J. An Introduction to Database Systems. 8th Edition. Addison-Wesley, Reading,
Mass (2003).

10. Eisenberg, A., Melton, J., Kulkarni, K., Michels, J.E., Zemke, F. SQL: 2003 Has Been
Published. SIGMOD Record, vol. 33, no. 1, March (2004).

11. Elmasri, R. and Navathe, S: Fundamentals of Database Systems. Addison-Wesley, (2004).
12. Erwig, M., Schneider, M. & Güting R. H. Temporal Objects for Spatio-Temporal Data

Models and a Comparison of Their Representations. ER Workshop (1998).
13. Erwig, M., Güting R. H., Schneider, M. & Vazirgiannis, M. Abstract and Discrete

Modeling of Spatio-Temporal Data Types. In Proceedings of the 6th ACM Symposium on
Geographic Information Systems, pg. 131-136, Washington, D.C., Novembre (1998).

14. Forlizzi, L., Güting, R.H., Nardelli, E., Schneider, M. A data model and data structures for
moving objects database. Proceedings of the 2000 ACM SIGMOD international
conference on Management of data (2000) 319-330.

15. Güting, R.H. An Introduction to Spatial Database Systems. VLDB Journal, vol. 3, (1994)
357-399.

16. R.H. Gütting, M.H. Böhlen, M. Erwig, C.S. Jensen, N.A. Lorentzos, M. Schneider and M.
Vazirgiannis. A Foundation for Representing and Querying Moving Objects. ACM
Ttransactions on Database Systems, Vol.25, No.1 (2000).

17. V. Katri, S. Ram, R.T. Snodgrass and G. O’Brien. Supporting User Defined Granularities
and Indeterminacy in a Spatiotemporal Conceptual Model. Special Issues of Annals of
Mathematics and Artificial Intelligence on Spatial and Temporal Granularity, 36(1-2)
(2002) 195-232.

18. Lee, Y.L. Integrating Spatial and Temporal Relationship Operators into SQL 3 for
Historical Data Management. ETRI Journal, vol. 24, n. 3, June (2002).

19. Lorentzos N.A. and Mitsopoulos Y.G. SQL Extension for Interval Data. IEEE Trans. on
Knowledge and Data Engineering, vol. 9, no. 3, May/June (1997) 480-499.

20. Muller, J.C, Lagrange, J.P. & Weidel, R. (eds). GIS and Generalization: methodology and
practice. Taylor and Francis (1991).

21. OMG (2000). Unified Modelling Language Specification, Version 1-3. Object
Management Group.

22. Snodgrass, R.T. The TSQL2 Temporal Query Language. The TSQL2 Language Design
Committee, Kluwer Academic Publishers (1995).

23. Snodgrass, R. T. Developing Time-Oriented Database Applications in SQL, Morgan
Kaufmann Publishers, Inc., San Francisco, July (1999).

24. Schneider, M. Spatial Data Types for Database Systems-Finite Resolution Geometry for
Geographic Information Systems. LNCS 1288, Springer-Verlag (1997).

25. Toman, D. A Point-Based Temporal Extension of SQL. In Proceedings of the 6th
International Conference on Deductive and Object-Oriented Databases (1997)103-121.

26. Worboys, M. A Unified Model for Spacial and Temporal Information. The Computer
Journal, 37(1) (1994) 26-34.

27. Wang, H. & Zaniolo, C. User Defined Aggregates in Object-Relational Systems. In 16th
International Conference on Data Engineering, Feb (2000).

134 E. Bertino, D. Cuadra, and P. Martínez

28. Wang, H. & Zaniolo, C. Using SQL to Build New Aggregates and Extenders for Object
Relational Model. Proc. of the 26th International Conference a Very Large Databases
(2000) 166-175.

29. www.opengis.org
30. www.oracle.com
31. www.mm.di.uoa.gr/~toobis/

	Introduction
	Related Works
	Preliminaries: Multi-granular Spatio-Temporal Representation
	Spatial Framework: Modeling OpenGis Specifications with SQL3
	Spatial Data Description
	Spatial Granularity Description and Proposed Extensions by SOR Model

	Temporal Representation in the SOR Model
	Temporal Attributes

	Conclusion and on Going Research
	References

