
CERIAS Tech Report 2005-86

DICAS: DETECTION, DIAGNOSIS AND ISOLATION OF CONTROL ATTACKS IN SENSOR

by Bagchi, S., I. Khalil, and C. Nita-Rotaru

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

1

DICAS: Detection, Diagnosis and Isolation of Control Attacks in Sensor

Networks

Abstract

Sensor networks enable a wide range of applications

in both military and civilian domains. However, the

deployment scenarios, the functionality requirements,

and the limited capabilities of these networks expose

them to a wide-range of attacks against control traffic

(such as wormholes, Sybil attacks, rushing attacks,

etc). In this paper we propose a lightweight protocol

called DICAS that mitigates these attacks by detecting,

diagnosing, and isolating the malicious nodes. DICAS

uses as a fundamental building block the ability of a

node to oversee its neighboring nodes�

communication. On top of DICAS, we build a secure

routing protocol, LSR, which also produces multiple

node-disjoint paths. We analyze the security

guarantees of DICAS and use ns-2 simulations to show

its effectiveness against three representative attacks.

Overhead analysis is conducted to prove the

lightweight nature of DICAS.

Keywords: sensor network security, neighbor

monitoring, secure routing, node-disjoint paths,

control attack.

1. Introduction

Wireless sensor networks are emerging as a promising

platform that enable a wide range of applications in

both military and civilian domains such as battlefield

surveillance, medical monitoring, biological detection,

home security, smart spaces, inventory tracking, etc.

Such networks consist of small, low-cost, resource-

limited (battery, bandwidth, CPU, memory) nodes that

communicate wirelessly and cooperate to forward data

in a multi-hop fashion. Thus, they are especially

attractive in scenarios where it is infeasible or

expensive to deploy a significant networking

infrastructure. However, the open nature of the

wireless communication, the lack of infrastructure, the

fast deployment practices, and the hostile deployment

environments, make them vulnerable to a wide range

of security attacks. Some of the most devastating

attacks target the control traffic or data traffic in

wireless networks. Typical examples of control traffic

are routing, monitoring the liveness of nodes,

topology discovery, and distributed location

determination. Control traffic attacks include the (i)

wormhole attack ([20],[21]), (ii) the rushing attack

[22], (iii) the Sybil attack [13], (iv) the sinkhole attack

[18], and (v) the HELLO flood attack [18]. Attacks

against data traffic include (vi) blackhole and (vii)

selective forwarding [18] in which a malicious node

drops entirely or selectively data passing through it.

Control attacks are especially dangerous because they

can be used to subvert the functionality of the routing

protocol and create opportunity for a malicious node

to launch a data traffic attack such as dropping all or

selective subset of data packets. Coping with control

attacks in sensor networks is more challenging than in

ad hoc wireless and wired networks due to the

resource constrained environment.

In this paper we present a lightweight protocol called

DICAS, which mitigates control traffic attacks in

sensor networks. DICAS not only detects the

occurrence of an attack, but also diagnoses the

malicious nodes involved in the attack and removes

their capability of launching future attacks by isolating

them from the network. The detection and isolation

mechanisms are executed locally, incurring only a

small overhead. DICAS is suited to the low cost point

of sensor networks since it does not require any

specialized hardware (such as directional antennas

[21] or GPS) nor does it require time synchronization

among the nodes [20]. The approach that DICAS uses

to achieve its security goals exploits a well-known

technique whereby nodes oversee part of the traffic

going in and out of their neighbors [19], [30], [35],

[36]). Our novelty lies in presenting the technique as a

standalone module � local monitoring � and analyzing

its capabilities and limitations. We systematically lay

out the fundamental structures and the state to be

maintained at each node for mitigating five

representative attacks � modifying routing traffic,

Sybil, wormhole, sinkhole, and rushing attacks.

Independent of the detection mechanism, we propose

a strategy to isolate the malicious nodes locally in a

distributed manner.

We use DICAS to build a lightweight secure

routing protocol called LSR that withstands known

attacks against the routing infrastructure and supports

secure node-disjoint route discovery. We provide a

2

security analysis of LSR using DICAS for five

representative attacks. We analyze the detection

coverage and the probability of false detection of

DICAS. Also, we evaluate the memory, communication,

and computation overhead of DICAS. Finally, we

simulate the wormhole attack in ns-2 and show its

effect on the network performance with and without

DICAS. The results show that DICAS can achieve 100%

detection of the wormholes for a wide range of

network densities. They also show that the detection

and isolation of the nodes involved in the wormhole

can be achieved in a negligible time after the attack

starts. In addition, we simulate a combined Sybil and

rushing attack to bring out the adverse impact on

node-disjoint multipath routing and show the

improvement using DICAS. The results show that LSR

using DICAS is resilient to the combined attack and

that the average number of node-disjoint routes

discovered is not reduced.

The rest of the paper is organized as follows. Section

2 presents the related work in the area of security in

wireless ad-hoc and sensor networks. Sections 3 and 4

describe DICAS and LSR, respectively. Section 5

presents attacks against routing and their mitigation in

LSR using DICAS. Section 6 analyzes the coverage and

overhead of DICAS, while Section 7 shows simulation

results. Section 8 concludes the paper.

2. Related Work

In the last few years, researchers have been actively

exploring many mechanisms for securing the control

traffic in wireless networks. These mechanisms can be

broadly categorized into four classes � customized

cryptographic primitives, protocols for path diversity,

protocols that overhear neighbor communication, and

protocols that use specialized hardware. The

cryptographic primitives are also used as building

block for protocols of the other three classes. In the

context of ad hoc networks, HMAC and digital

signatures [38] have been used to provide end-to-end

authentication of the routing traffic [2],[5].

Intermediate node authentication of the source traffic

has been achieved via authentic broadcasting

techniques using digital signatures [23], hash trees [3],

or -TESLA [4]. These protocols are restrictive and

only capable of providing the traditional cryptographic

guarantees, namely confidentiality and authenticity of

routing traffic. In addition, it is usually infeasible to

apply them to sensor networks. The public key

cryptography is far beyond the capabilities of sensor

nodes and the symmetric key based protocols

proposed are too expensive in terms of node state and

communication overhead.

The path diversity techniques increase route

robustness by first discovering multipath routes

([23],[30], [31],) and then using these paths to

provide redundancy in the data transmission between

a source and a destination [29]. The data is encoded

and divided into multiple shares sent to the destination

via different routes. Many of these schemes are

vulnerable to attacks that permit a node to assume

multiple identities (such as the Sybil attack).

Mechanisms to overhear neighbor communication

in a wireless channel have been used to minimize the

effect of misbehaving nodes [19],[31],[35]-[37]. In the

watchdog scheme [19], the sender of a packet watches

the behavior of the next hop node for that packet. If

the next hop node drops or tampers with the packet,

the sender announces it as malicious to the rest of the

network. The scheme is vulnerable to blacklisting,

does not work correctly when malicious nodes

collude, and can have a high error rate due to

collisions in the wireless channel. Neighbor watch has

also been used to build trust relationships among

nodes in the network [35],[36], to build cooperative

intrusion detection systems [37], or to discover

multiple node-disjoint routes [31]. However, all these

protocols use the communication overhearing as an

existing service without studying its feasibility,

requirements, limitations, or performance in the

resource-constrained sensor environment. Examples

of the fourth class are [20][21], the former called

packet leashes uses either tight time synchronization

or location awareness through GPS hardware and the

latter uses directional antennas. These schemes are

used to detect one form of control attack � the

wormhole attack.

On the other hand, many secure sensor network

routing protocols have also been introduced in the

literature [6]-[11]. These protocols are less complex

than ad hoc or wired routing protocols and are

susceptible to a wide variety of attacks, as

summarized by Karlof and Wagner [18]. Table 1

enumerates the protocols and their vulnerabilities.

Table 1: Attacks against secure wireless routing

protocols (The numbers refer to the numbered list in
the introduction)

Routing protocol name Attacks

Directional diffusion ([6], [9]) iii, iv, v, vii

GPSR [8] iii, vii

Minimum cost forwarding [10] i, iv, v, vii

LEACH [11], PEGASIS [24] v, vii

Rumor routing [12] i, iii, iv, vii

SPAN [15] iii, v

3

Few of the protocols mentioned above discuss the

method for removing the malicious nodes from

causing further damage in the network and even fewer

provide a quantitative analysis of the detection

coverage, which may be affected due to a faulty

detector or due to environmental conditions.

3. Description of DICAS

DICAS consists of a set of two algorithms as primitives

(Section 3.2) and two main modules - the local

monitoring module (Section 3.3), and the local

response module (Section 3.4).

3.1. System Model and Assumptions

Attack model: A malicious node can be either an

external node that does not know the cryptographic

keys, or an insider node, that possesses the keys. An

insider node may be created, for example, by

compromising a legitimate node. A malicious node

can perform all the attacks mentioned in Section 1, by

itself or using arbitrary collusion with other nodes. A

malicious node can establish out-of-band fast channels

(e.g., a wired link) or have high powered transmission

capability.

System assumptions: We assume that all the

communication links are bi-directional. Also, we

assume that a finite amount of time is required from a

node�s deployment for it to be compromised. This

time is called the compromise threshold time TCT. We

define the maximum time required for the first and

second hop neighbor discovery protocol (Section 3.2)

to complete as TND. Our assumption is that for a given

node ni, all its first and second hop neighbors are

deployed within TCT-2TND of the deployment of ni.

This assumption implies that for a given node, no

malicious node exists in its one or two hop

neighborhood till its neighbor discovery protocol

completes. We assume that the network has sufficient

redundancy, such that the attacker can not

compromise all the guards with a certain transmission

range. This means that any node in the network has

some good guards. We assume that the network has a

static topology. This does not rule out route changes

due to natural and malicious node failures or route

evictions from the routing cache. Also the functional

rules of a node, such as cluster head and regular

sensing node, may change. Finally, we assume a key

management protocol, such as [26], is used to pre-

distribute pair-wise keys in the network so that any

two nodes in the network can securely communicate

with each other.

3.2. Primitives: Neighbor Discovery and One

Hop Source Authentication

Neighbor discovery: This protocol is used to build a

data structure of the first hop neighbors of each node

and the neighbors of each neighbor. The data structure

is used in local monitoring to detect malicious nodes

and in local response to isolate these nodes. A

neighbor of a node, X, is any node that lies within the

transmission range of X. As soon as a node, say A, is

deployed in the field, it sends a one-hop broadcast of a

HELLO message. Any node that receives the

message, sends an authenticated reply to A, using the

pair-wise shared key. For each reply received within a

pre-defined timeout (TROUT,), A verifies the

authenticity of the reply and adds the responder to its

neighbor list, RA. Let RA = n1, .., np and M =

RA||Kcommit(A), where Kcommit(A) is the commitment key A

uses to authenticate itself to its neighbors. Node A

computes P = M||KAn
1
(M)||�|| KAn

p
(M). Then A sends

a one-hop broadcast of packet P. A node nj that

receives P, verifies M using KAn
j
. If the message is

correctly verified, nj stores RA (nj�s second hop

neighbors) and Kcommit(A). Hence, at the end of this

neighbor discovery process, each node has a list of its

direct neighbors and the neighbors and the

commitment key of each one of its direct neighbors.

This process is performed only once in the lifetime of

a node and is secure in static wireless networks

because of the system model assumptions on time to

compromise a node and the deployment of a node and

its neighbors.

Commitment key generation and update: This

protocol is used to generate and update the

commitment key used by the one-hop source

authentication protocol. The values of the

commitment key at a node S (Kcommit(S)) are derived

from a random seed (Kseed(S)) as Kcommit(S) = H(i)

(Kseed(S)), where H is a one-way collision resistant hash

function, i takes values between 0 and l(2), and l is

the length of the sequence of values of Kcommit(S) that

we call the commitment string. The first value of the

commitment key Kcommit(S) that is exchanged with the

neighbors during neighbor discovery is H(l)(Kseed(S)) =

vl. The subsequent values of the commitment key (vl-

1,�, v0) are progressively disclosed to the neighbors

during subsequent transmissions. Before the current

commitment string {vl, vl-1,�, v0} is exhausted, a new

one is generated at S {ul, ul-1,�,u0}. The commitment

key ul from the new string is authenticated to the

neighbors using the last undisclosed key from the

4

current string with the one-hop source authentication

protocol.

One-hop source authentication: This protocol allows

a node to distinguish between its neighbors to prevent

identity spoofing among them. A node S authenticates

its transmitted packets to the neighbors by attaching

the last undisclosed value from the commitment string

Kcommit(S). When a neighbor of S, say B, receives the

packet, it verifies the validity of Kcommit(S) by

computing a hash function over it and comparing the

result with the stored value of Kcommit(S). If the Kcommit(S)

is valid, B stores it as the new commitment key value

of S. However, this protocol may fail to provide the

required authentication if an attacker blocks the

transmission range of a certain source from the rest of

network except himself. Therefore, the attacker can

impersonate that source and generate valid packets. In

such case, we revert to the well-known TESLA

authentication scheme [25] that countermeasure such

attacks.

3.3. Local monitoring: Detection &

Diagnosis

This module detects various attacks against the control

traffic and diagnoses the malicious nodes involved in

these attacks. Local monitoring starts immediately

after the completion of the neighbor discovery. It uses

a collaborative detection strategy, where a node

monitors the traffic going in and out of its neighbors.

S DB X

M

N

A

A
X YY

The transmission

range of node Y

Figure 1: X, M, and N are guards of A over the link

from X to A

For a node, say M, to be able to monitor a node, say A,

two conditions are required: (i) each packet forwarder

must explicitly announce the immediate source of the

packet it is forwarding, and (ii) M must be a neighbor

of both A and the previous hop from A, say X. The

first condition is guaranteed universally by the routing

protocol and therefore the second condition is the

deciding criterion. In such a case, we call M a guard

node of A over the link from X to A. In Figure 1, nodes

M, N, and X are the guards of A over the link from X

to A. For a link (i, j), the sender i is a guard node for

node j. Information for each packet sent from X to A is

saved in a watch buffer at each guard for a time . The

information maintained depends on the particular

attack under consideration.

A malicious counter (MalC(i,j)) is maintained at each

guard node, i, for every node, j, which i is monitoring.

MalC(i,j) is incremented for any suspect malicious

activity of j that is detected by i. In Figure 1, if a

guard, say M, does not hear A forwarding a packet

sent by X within , it accuses A of dropping or

delaying the packet. If M hears A transmitting the

packet within but detects a change in the packet�s

content or header, it accuses A of modifying the

packet. If M hears A transmitting a packet, claiming

that it was sent by X, but M does not have the

corresponding incoming packet in its watch buffer, M

accuses A of fabricating the packet. To account for

intermittent natural failures that can occur at

legitimate nodes, a node is determined to be

misbehaving, only if the MalC goes above a threshold.

3.4. Local Response and Isolation

Detection and diagnosis is only the first step towards

protecting the network. The local response and

isolation module is used to propagate the detection

knowledge to the neighbors of the malicious node and

to take appropriate response to isolate it from the

network. The following local response algorithm is

triggered by a guard node, say , when a suspect

malicious node, say A, is diagnosed.

1. When the MalC(,A) crosses a threshold, Ct ,

revokes A from its neighbor list, and sends to

each neighbor of A, say D, an authenticated alert

message indicating A is a suspected malicious

node. This communication is authenticated using

the shared key between and D to prevent false

accusations. Alternately, if the clocks of all the

nodes in the network are loosely synchronized,

can do authenticated local two-hop multicast as in

[16] to inform the neighbors of A

2. When D receives the alert, it verifies its

authenticity, that is a guard to A, and that A is

D�s neighbor. It then stores ID in an alert buffer

associated with A.

3. When D receives enough alerts, , about A, it

isolates A by marking A�s status as revoked in the

neighbor list. We call the detection confidence

index.

4. After isolation, D does not accept any packet

from or forward any packet to a revoked node.

In addition to removing the malicious nodes from the

network, this module makes the response process fast

since the detection knowledge does not need to

propagate to all the nodes in the network. Also this

module is lightweight in the number of messages (one

5

to each neighbor of A only on malicious node

detection) and the number of hops each message

traverses (maximum two hops).

4. LSR: Lightweight Secure Routing

LSR is an on-demand routing protocol, sharing many

similarities with the AODV [28] protocol. However,

LSR has significant differences to enhance security.

The design features of LSR described below make it

resilient to a large class of control attacks such as

wormhole, Sybil, and rushing attacks, as well as

authentication and ID spoofing attacks. Combined

with DICAS, LSR can deterministically detect and

isolate nodes involved in launching these attacks.

Section 6.1 provides detailed analysis of the detection

and isolation coverage of control attacks in LSR with

DICAS.

4.1. Route Discovery and Maintenance

Route Request: When a node, say S, needs to discover

a route to a destination, say D, it generates a route

discovery packet (REQ) that contains: a flag to

indicate that it is a route request packet (FREQ), the

sender identity (IDS), the destination identity (IDD),

and a unique sequence number (SN). The SN is

incremented with every new REQ and is used to

prevent the replay of the REQ packet. Node S then

calculates a message authentication code (MAC) of the

packet using the shared key between S and D (KSD).

Finally, S generates and attaches the next value of the

commitment key Kcommit(S) to the REQ packet and

broadcasts it.

1. [At S] REQ = FREQ || IDS || IDD || SN

2. S
Broadcast

 REQ || MACK
SD

(REQ) ||

Kcommit(S)||IDS

A neighbor Z of S accepts the REQ packet if the

associated Kcommit(S) is valid. Then Z removes Kcommit(S)

from the REQ, attaches IDZ, and forwards the REQ.

An intermediate node B that is not a direct neighbor to

S stores the first REQ packet it receives. Node B also

keeps the identity of every different neighbor that

forwards a subsequent copy of the same REQ during a

rush time, Tr, selected randomly from [Tmin, Tmax], as in

[22]. When Tr runs out or when a certain number of

requests, Nr, is collected, whichever occurs first, B

broadcasts a randomly selected copy of the REQ

copies that it has. Assume without loss of generality

that B selects the one forwarded by W. For each

source-destination pair, node B keeps the identity of

the node from which it receives the forwarded REQ

(IDW). Node B then appends IDB and IDW to the REQ

and broadcasts it. The process continues until the REQ

reaches D.

1. [At B] Save �REQ||MACK
SD

(REQ)�, and set Tr.

2. [At B] Save the identity of every neighbor that

sends a REQ copy within Tr.

3. [At B] Select random copy of the REQ.

4. [At B] Store IDS, IDD, SN, and IDW.

5. B
Broadcast

 REQ||MACK
SD

(REQ)||IDW|| IDB

Route Reply: When D receives the REQ packet, it

verifies the authenticity of the source using the shared

key KSD. Then D generates a route reply packet REP

that contains: a flag to indicate that it is a route reply

packet (FREP), the sender identity (IDS), the destination

identity (IDD), and a SN. Node D then calculates a

MAC value over the packet using the pair-wise shared

key (KSD). Node D generates and attaches the next

value of the commitment key Kcommit(D) to the REP

packet. Finally, D unicasts the REP packet back to the

previous hop as determined by the REQ packet. Let A

be the immediate previous hop from D and C be the

immediate previous hop from A.

1. [At D] REP = FREP||IDS||IDD|| SN

2. D A: REP || MACK
SD

(REP) ||

Kcommit(D)||IDD||IDA

When A receives the REP packet, it verifies and

removes Kcommit(D), updates its routing table as follows

- <Destination, Next hop>: {D, D}, {S, C}. Node A

then appends IDD||IDA||IDC and sends the REP packet

to C.

1. [At A] Verify and remove Kcommit(D). Set

<Destination, Next hop>: {D, D}, {S, C}

2. A C: REP||MACK
SD

(REP)|| IDD || IDA || IDC

The REP continues to propagate using the reverse path

of the corresponding REQ towards S. Node S verifies

the authenticity of the reply using KSD and updates its

routing table to the destination.

The route maintenance in LSR is triggered when a

broken link is detected and a new route is discovered

by using the above protocol for route discovery. In

this respect, it is similar to AODV.

Note that in LSR, the source chooses the route

corresponding to the fastest route reply and not the

shortest hop route, to guard against attacks that

modify the hop count. A longer but less congested

route is preferred to a shorter but congested route, as

in [23].

4.2. Node-Disjoint Multipath Discovery

A desirable feature of LSR is its ability to increase the

number of node-disjoint routes between a source and a

destination. LSR supports secure discovery of these

routes as a by-product of the local monitoring module

6

of the underling DICAS protocol without incurring any

additional overhead. In many on demand ad-hoc and

sensor network routing protocols, an intermediate

node forwards the first announcement of a request and

suppresses any following announcements, such as in

AODV [28]. As a result, multiple routing paths may

have common nodes in them. In LSR, each node, say

B, backs off for a random time (Tr) before forwarding

the REQ. During Tr, B buffers all the announcements

of the same request. At the same time, B listens to any

neighbor, say E, whose rush timer, Tr times out and

which forwards one of its REQ copies. If B has the

same REQ copy, from the same previous hop, as that

forwarded by E, B deletes that copy from its buffer

and thus will not be a candidate for REQ forwarding

by B.

B

E
X

Y

Z

B

E
X

Y

Z

B

E
X

Y

Z

B

E
X

Y

Z

B

E
X

Y

Z

B

E
X

Y

Z

(a) (b) (c)
Figure 2: Example of node-disjoint routes.

An example is shown in Figure 2. Let B receive REQs

from nodes X, Y, and Z, and let E be a neighbor of B

which also receives from X, and let the REQ from X

be the first to arrive at both B and E, Figure 2(a). If

nodes B and E forward the first REQ they receive and

drop the others as in AODV, then multiple paths will

be formed with X in them (Figure 2(b)). However,

using our technique, assuming that the timer of E runs

out before that of B and that E broadcasts the message

it received from X, then B will drop X�s packet from

its buffer. Thus B will not forward the REQ forwarded

by X, The resulting paths are disjoint (Figure 2(c)).

The destination replies to every REQ copy it receives

through a different neighbor. An intermediate node

creates a routing table entry when it forwards the reply

for the first time. Subsequently it does not forward any

further replies to prevent itself from being inserted in

multiple routes. In order to detect malicious behavior

by its neighbors, each node monitors replies going out

of the neighbors. If a neighbor forwards a specific

reply more than once, it is considered malicious and

dropped from all the routes the node has. For

example, let node B forward the REQ that has been

forwarded by A. Let the two non-neighbor nodes, X

and Y, receive and forward the REQ they get from B.

The REP packet takes the reverse path, i.e. B gets the

REP packets from X and Y. Without loss of generality,

let the REP packets come from X then from Y. A

correct node forwards only the first REP. However, if

B is malicious, it may send the two replies to two

different neighbors, say A and respectively.

Therefore, B succeeds in including itself in two

�different routes�. However, in LSR, this misbehavior

can be detected by X and Y since they overhear B�s

forwarded REPs. Then they evict all the routes

through B.

5. Attacks and Countermeasures

In this section, we present a set of 5 attacks that can be

launched against a routing protocol and show how

they can be detected in LSR with DICAS.

5.1. Route Traffic Manipulation

An attacker may attack the routing infrastructure by

injecting false control packets, modifying the

forwarded control packets, or replaying old

authenticated control packets. This may result in

creating routing loops, attracting network traffic,

extending or shortening routes, generating false error

messages, partitioning the network, or increasing the

end-to-end delay.

Conjecture#1: DICAS detects any injection, alteration,

or replaying of the routing traffic in LSR.

Proof sketch: The end-to-end authentication prevents

a malicious node from injection or alteration of the

REQ and the REP packets. The increasing sequence

number associated with each REQ and REP prevents

the replay attack.

5.2. ID Spoofing and Sybil Attacks

In this attack, an attacker presents one (ID

spoofing) or more (Sybil attack) spoofed identities to

the network [13]. Those identities could either be new

fabricated identities or stolen identities from

legitimate nodes. The Sybil attack can have many

adverse impacts, such as on multipath routing [14] and

collaborative protocols that use aggregation and

voting [40].

Conjecture#2: In LSR with DICAS, malicious node ID

spoofing or Sybil attack attempts can be easily

detected.

Proof sketch: (i) The single hop neighbor list data

structure prevents a node from spoofing the identity of

a non-neighbor node. A node will not accept (forward)

traffic from (to) a non-neighbor node. (ii) The one-hop

authenticated source broadcasting prevents a node

from generating traffic using spoofed identity of a

neighbor node since each node must authenticate its

generated traffic to the neighbors. (iii) Local

monitoring prevents a forwarding node from spoofing

a neighbor�s identity. As shown in Figure 1, if A

receives a packet from X, then A can not forward the

packet claiming that it is being forwarded by one of its

7

neighbors, say M. None of the guards of M over the

link from X to M overhear such a packet; also the

guards of A over the link from X to A accuse A of not

forwarding the packet.

5.3. Wormhole Attack

In the wormhole attack [20],[21] a malicious node

captures packets from one location in the network, and

�tunnels� them to another malicious node at a distant

point, which replays them locally. The tunnel can be

established in many different ways, such as through an

out-of-band hidden channel (e.g., a wired link), packet

encapsulation, or high powered transmission. The

tunnel creates the illusion that the two end points are

very close to each other, by making tunneled packets

arrive either sooner or with lesser number of hops

compared to the packets sent over normal routes. This

allows an attacker to subvert the correct operation of

the routing protocol, by controlling numerous routes

in the network. Later, he can use this to perform traffic

analysis or selectively drop data traffic.

The wormhole attack can affect network routing, data

aggregation and clustering protocols, and location-

based wireless security systems. Finally, it is worth

noting that the wormhole attack can be launched even

without having access to any cryptographic keys or

compromising any legitimate node in the network.

S

D
C

M1 M2

A E F

Good node Malicious node

P

Q

R

B
Z

The legitimate path without wormhole

An out-of-band channel between M1 and M2

A path between M1 and M2 for encapsulation

X

L

N
W

Figure 3: A wormhole attack scenario

Conjecture#3: DICAS detects and isolates malicious

nodes that are involved in a wormhole attack.

Proof sketch: Local monitoring detects the nodes

involved in tunneling the route control packets and

local response disables the tunnel from being

established in the future by isolating the malicious

nodes. Each guard saves the SN, the type, the source,

the destination, the immediate sender, and the

immediate receiver of every input packet to the

monitored node. Consider the scenario in Figure 3.

Two colluding nodes, M1 and M2, use an out-of-band

channel or packet encapsulation to tunnel routing

information between them. When M1 receives the

REQ initiated by S, it tunnels the REQ to M2. Node M2

has two choices for the previous hop � either to

append the identity of M1, or append the identity of

one of M2�s neighbors, say X. In the first choice all the

neighbors of M2 reject the REQ because they all know,

from the stored data structure of the two-hop

neighbors, that M1 is not a neighbor to M2. In the

second case, all the guards of the link from X to M2 (X,

N, and L) detect M2 as fabricating the route request

since they do not have the information for the

corresponding packet from X in their watch buffer. In

both cases M2 is detected, and the guards increment

the MalC of M2. Similarly, when M1 receives the REP

tunneled from M2 it has the same choices as M2 and a

similar scheme is used by the guards of the incoming

link to M1.

5.4. Sinkhole

In the sinkhole attack [18], a malicious node manages

to attract routes from many nodes to go through it thus

acting as a �sinkhole�. This attack typically works by

making the malicious node look especially attractive

for the surrounding nodes, for example, by claiming a

short or a fast route to the destination. If the attacker

succeeds, he can launch data traffic attacks and can

prevent the discovery of other legitimate routes.

Conjecture#4: DICAS detects any malicious attempts

to establish a Sinkhole in LSR.

Proof sketch: In DICAS end-to-end authentication and

local monitoring prevent the sinkhole attack. An

intermediate node does not accept any routing traffic

from a non-neighbor nor does it forward any routing

traffic to a non-neighbor. Also a destination node does

not accept any routing traffic from a source node

unless that traffic is authenticated using the shared

key.

5.5. Rushing Attack

In the rushing attack [22], an adversary who receives a

REQ rushes to broadcast it in an attempt to make the

REQ forwarded by him to be the first to reach all the

neighbors of the destination. If the attacker succeeds,

then any route discovered by this rushed REQ includes

a hop through the attacker.

Conjecture#5: LSR mitigates the rushing attack.

Proof: The design of the route discovery module of

LSR implements a variant of the rushing attack

prevention protocol (RAP) as proposed in [22]. An

intermediate node does not forward the first route

request it receives (may be from a rushing malicious

node), but rather, waits and collects copies of the REQ

from different neighbors and randomly selects one of

them to rebroadcast. The waiting stops the rushing of

the attacker and the random selection reduces the

likelihood of selecting a route through the attacker

node. Also the multiple node-disjoint route creation

8

protocol prevents a single malicious node from

affecting multiple routes between a source-destination

pair.

6. DICAS analysis

6.1. Coverage analysis

In this section, we quantify the probability of missed

detection and false detection of a generic control

attack as the network density increases and the

detection confidence index varies. The results provide

some interesting insights. For example, we are able to

find the required network density d to detect p% of an

attack under consideration for a given detection

confidence index . Consider a homogeneous network

where the nodes are uniformly distributed in the field.

Consider any two randomly selected neighbor nodes,

S and D (Figure 4(a)). Nodes S and D are separated by

a distance x, and the communication range is r. The

value of x follows a random variable with probability

density function of f(x) = 2x/r2 with range (0,r). This

follows from the assumption of uniform distribution

of the nodes.

The guard nodes for the link between S and D are

those nodes that lie within the communication range

of S and D, the shaded area in Figure 4(a). This area is

given by
2

2 1 2() 2 cos 2
2 4

x x
Area x r x r

r
. The

minimum value of Area(x), Areamin, is when x = r.

Therefore, the minimum number of guards is
2

min min 0.36g Area d r d . The expected value of Area(x)

2
2 1 2

2

0

2 2

2
() 2 cos 2

2 4

2 1
1.6

3 2

r
x x x

E Area x r x r dx
r r

r r

Therefore, the expected number of guards is
2[()] 1.6g E Area x d r d . The number of neighbors

of a node is given by 2

BN r d .

2 1
0.51

3 2
B Bg N N (I).

G

S D
(a) (b)

S X

r

DS X

r

DD

Figure 4: (a) The area where a node can guard the link
between S and D; (b) Illustration for detection accuracy

Now, as in [33] where IEEE 802.11 was analyzed, we

assume that each packet collides on the channel with a

constant and independent probability, PC. As shown in

Figure 4(b), a guard G will not detect a packet sent by

D, claiming it was received from S, if G experienced a

collision at the time that D transmits. Thus, the

probability of missed detection is PC. Assume that

packet attacks (fabrication, modify, drop, etc.) occur

within a certain time window, T. Also assume that a

guard must detect at least attacks to cause the MalC

for a node to cross the threshold, and thus generate an

alert. Then, the alert probability at a guard is given

by
| 1

i i

C C

i

P P P
i

. Thus, assuming

independence of collision events among the different

guards, the probability that at least of the guards

generate an alert is given by

|

|

| |

1

0

(, , 1)
1

(, 1)

!
(1)

(1)!()!

g
i g i

i

P

g

B P gg
p P P

i B g

g
u u du

g

where, (, 1)B g is the Beta function and

|(; , 1)B P g is the incomplete Beta function.

Figure 5 shows the probability of detecting an attack

(e.g. the wormhole) with = 7, = 5, = 3, the

number of compromised nodes M = 2, and PC = 0.05

at NB = 3. Thereafter, PC is assumed to increase

linearly with the number of neighbors. The number of

guards is determined from NB using Equation (I).

Since the number of guards increases as the number of

neighbors increases, the probability of detection

increases since it becomes easier to receive the alarm

from guards. However, the collision probability also

increases with increasing node density, and thus the

probability of detection starts to fall rapidly beyond a

point.

0.00

0.20

0.40

0.60

0.80

1.00

3 7 11 15 19 23 27 31 35
 Number of neighbors

P
ro

b
.

o
f

w
o

rm
h

o
le

d
e

te
c

ti
o

n

Figure 5: Probability of attack detection

Figure 9 shows, for the same , , and PC as in Figure

5, the probability of attack detection as a function of

when NB = 15 and M = 2. As increases, the

probability decreases. As shown in Figure 4(b), a false

alarm occurs when D receives a packet sent from S,

9

while G does not receive that packet, and later, G

receives the corresponding packet forwarded by D.

Thus, the probability of false alarm is 2(1)FA C CP P P .

Assume that S sends packets to D for forwarding,

within a certain time window, T. The probability that

D is falsely accused is the probability that or more

packets are falsely suspected as wrong packets. This is

given by

(|)
1

i i

FA FA FA

i

P P P
i

, and the probability

that at least guards generate false alarms is given by

(|)

(|) (|)

(|) 1

0

1

(, , 1) !
(1)

(, 1) (1)!()!

FA

g
i g i

FA FA FA

i

P

FA g

g
p P P

i

P g g
u u du

g g

0.00

0.07

0.14

0.21

0.28

3 7 11 15 19 23 27 31 35

 Number of`nodes

P
ro

b
.

o
f

fa
ls

e
 a

la
rm

X
1

0
E

-6

Figure 6: Probability of false alarm

 Figure 6 shows the probability of false alarm as a

function of the number of nodes for the same

parameters as in Figure 5. The non monotonic nature

of the plot can be explained as follows. As the number

of neighbors increases, so does the number of guards.

Initially, this increases the probability that at least

guards miss the packet from S to the guard but not

from D to the guard, leading to false detection at these

 guards. Beyond a point, however, the increase in the

number of neighbors increases the collision

probability. This increases the probability that both of

these packets are missed at the guard and thus does

not lead to false detection. The worst case false alarm

probability is still negligible (less than 0.3 10-6).

6.2. Cost Analysis

In this section, we show the memory, the computation,

and the bandwidth overheads of DICAS to evaluate its

suitability to resource-constrained environments.

 Memory overhead: Each node needs to store a

neighbor list, a commitment key of each first hop

neighbor, its own commitment string, a watch buffer,

and an alert buffer. Assuming that the identity of a

node is 2 bytes and reusing the notation from the

previous subsection, the size of the neighbor list is

NBL = r2d entries. Each entry in NBL uses 3 bytes; 2

for identity of the neighbor and 1 for the MalC

associated with that neighbor. Each first hop entry in

NBL requires 20 more bytes (e.g. SHA-

1[38],[25],[39]) for the storage of the commitment

key. So the total NBL storage, NBLS = 25(r2d)2. Also,

a commitment string of length l requires 20l bytes. For

example, NBLS and the commitment string use less

than a kilobyte when NB = 10 and l = 20. The alert

buffer has number of 2 byte entries. If we monitor

the REP packets of LSR, then the watch buffer size

depends on the average number of hops between a

source-destination pair (h), the frequency of route

establishment aggregated over the network (f) and the

node density (d). We calculate the average number of

nodes involved in monitoring a REP, NREP =

2r2(h+1)d, by creating a rectangular bounding box of

dimensions ((h+1) r 2r) containing the nodes that

may overhear the REP sent from A to B. This is an

overestimate since we use a square that circumscribes

the circular transmission range. Thus, given N as the

total number of nodes in the network, each node is

involved in monitoring at most (NREP/N)f route replies

per unit time. For example, if N = 100 nodes, h = 4

hops, and f = 1 route every 4 time units, then NREP =

17, and each node monitors 4 route replies every 100

time units. Because the time for which the packet is

kept in the watch buffer is relatively small being

determined by the MAC layer delay for acquiring the

channel, a watch buffer size of 4 entries is sufficient

(for 10). If we also monitor the REQ, then each

node is involved in monitoring f+(NREP/N)f packets.

This requires each node to monitor 4 packets every 16

time units. Again a 4-entry watch buffer is sufficient.

Each entry in the watch buffer is 14 bytes 2 bytes

each for the immediate source, the immediate

destination, and the original source, and 8 bytes for

the sequence number of the REP (REQ).

Computation and bandwidth overhead: Each

monitored REP (REQ) requires one lookup for the

current source and destination in the neighbor list,

adding an entry to the watch buffer (incoming) or

deleting an entry from the watch buffer (outgoing).

Since the size of the watch buffer and the neighbor list

structure are relatively small, the computation time

required for these operations is negligible. For

example, a lookup in a 100 entry buffer takes the

MICA mote with an Atmega128 4 MHZ processor,

about 2 seconds. The bandwidth overhead is incurred

after deployment of a node for neighbor discovery and

in the case of wormhole detection for informing the

neighbors of the detected node. This is therefore a

negligible fraction of the total bandwidth over the

lifetime of the network.

10

7. Simulation Results

We use the ns-2 simulator [34] to simulate a data

exchange protocol over LSR, individually without

DICAS (the baseline) and with DICAS. We distribute

the nodes randomly over a square area with a fixed

average node density. Thus, the length of the square

varies (80m to 204 m) with the number of nodes (20-

150). We first simulate the wormhole attack using

out-of-band direct channels between the colluding

nodes. After a wormhole is established, the malicious

nodes at each end of the wormhole drop all the

packets forwarded to them.

Each node acts as a source and generates data using an

exponential random distribution with inter-arrival rate

of . The destination is chosen at random and is

changed using an exponential random distribution

with rate . A route is evicted if unused for TOutRoute

time. The experiment parameters are presented in

Table 2. The results are obtained by averaging over 30

runs. For each run, the malicious nodes are chosen at

random so that they are more than 2 hops away from

each other.
Table 2: Input parameter values

Parameter Value Par Value

Tx Range (r) 30 m 2-8

NB 8 100 ms

TOutRoute 50 sec M 0-4

, Nr 0.05 s, 5 5

Channel BW 40 kbps 5m s

100-node scenario

0

1000

2000

3000

0 50 100 200 300 400 500 600

Simulation time

B
a
s
e
li
n

e

0

40

80

120

160

D
IC

A
S

4-Baseline
2-Baseline
4-DICAS
2-DICAS

Figure 7: Cumulative number of dropped packets

Figure 7 shows the number of packets dropped as a

function of simulation time for the 100-node setup

with 2 and 4 colluding nodes. The attack is started 50

sec after the start of the simulation. Since the numbers

are vastly different in the baseline and with Dicas,

they are shown on separate Y-axes. In the baseline

case, since wormholes are not detected and isolated,

the cumulative number of packets dropped continues

to increase steadily with time. But in Dicas, as

wormholes are identified and isolated permanently,

the cumulative number stabilizes. Note that the

cumulative number of packets dropped grows for

some time even after the wormhole is locally isolated

at 75 sec, due to the cached routes that contain the

wormhole and continue to be used till route timeout

occurs.

Figure 8 shows a snapshot, at simulation time of 2000

sec, of the fraction of the total number of packets

dropped to the total number of packets sent, and the

fraction of the total number of routes that involve

wormholes to the total number of routes established.

This is shown for 0-4 compromised nodes for the

baseline and with DICAS. With 0 or 1 compromised

node, there is no adverse effect on normal traffic since

no wormhole is created. The relationship between the

number of dropped packets and the number of

malicious routes is not linear. This is because the route

established through the wormhole is more heavily

used by data sources due to the aggressive nature of

the malicious nodes at the ends of the wormhole. If we

track these output parameters over time, with DICAS,

they would tend to zero as no more malicious routes

are established or packets dropped, while with

baseline case they would reach a steady state as a

fixed percentage of traffic continues to be affected by

the undetected wormholes.

100-node scenario

0.00

0.20

0.40

0.60

0.80

0 1 2 3 4

#of compromised nodes

b
a

s
e

li
n

e

0.0000

0.0020

0.0040

0.0060

0.0080

0.0100

0.0120

D
IC

A
S

fr. dropp-base

fr. mal routes-base

fr. dropp-DICAS

fr. mal route-DICAS

Figure 8: Fraction of dropped packets & malicious

routes

Figure 9 bears out the analytical result for the

detection probability as is varied with NB = 15 and

M = 2. As increases, the detection probability goes

down due to the need for alarm reporting by a larger

number of guards, in the presence of collisions. Also

the isolation latency goes up, though it is very small

(less than 30 s) even at the right side of the plot.

50-node scenario

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

Detection confidence index

P
(D

e
te

c
ti

o
n

)

0

6

12

18

24

30

Is
o

la
ti

o
n

 l
a

te
n

c
y

Sim P(detection)
Ana P(detection)
sim isolation latency

Figure 9: Detection probability and isolation latency

11

Next, we simulate the combined rushing and Sybil

attacks over a network of 250 nodes deployed in a 300

m 300 m field. We compare the average number of

node-disjoint paths discovered per route request of an

ideal search algorithm, AODVM [32], and LSR with

DICAS. In the ideal search, the topology of the entire

network is known to the source which uses shortest

path first search algorithm. AODVM creates node-

disjoint routes by having every node overhear

neighboring nodes� REP packets and deciding to

forward its own REP such that a neighbor is not

included in two routes for a given source-destination

pair. However, it does not consider any control

attacks.

Figure 10 shows the average number of node-disjoint

paths as a function of the number of hops in the

shortest path between two nodes. The figure shows

that, in a failure free environment, LSR and AODVM

performs almost identically. In a malicious scenario,

each of 10 malicious nodes launches rushing and Sybil

attacks. When a malicious node receives a REQ

packet, it rushes to broadcast Nr copies of the REQ,

each with a different fake identity. Figure 10 shows

that LSR with DICAS is robust to the attack (LSR and

LSR_mal plots overlap), while the average number of

node-disjoint paths in AODVM is reduced by 22%

(for distant source-destination pairs) to 32% (for

closer pairs). Note that as the length of the path

increases, the effect of the attacks in AODVM

decreases. This is because even though the multiple

routes appear to be disjoint at the attacker they may

converge at some other intermediate node. These are

then discarded by the source thereby ultimately foiling

the attacker�s goal.

1

2

3

4

5

2 3 4 5 6 7 8 9 10

hops in shortest path

A
v
g

.
#
 n

o
d

e
-d

is
jo

in

p
a
th

s

Ideal
AODVM
LSR
AODVM_mal
LSR_mal

Figure 10: Average number of node-disjoint paths in

ideal case, AODVM, and LSR

8. Conclusion

We have presented a distributed protocol, called

DICAS, for detection, diagnosis, and isolation of nodes

launching control attacks, such as, wormhole, Sybil,

rushing, sinkhole, and replay attacks. DICAS uses local

monitoring to detect control traffic misbehavior, and

local response to diagnose and isolate the suspect

nodes. We analyze the security guarantees of DICAS

and show its ability to handle control attacks through a

representative set of these attacks. We present a

coverage analysis and find the probability of false

alarm and missed detection. The overhead analysis

shows that DICAS is a good choice for securing

resource constrained sensor networks. On top of

DICAS, we build a secure lightweight routing protocol,

called LSR, which also supports node-disjoint path

discovery.

We note that although designed for static networks,

DICAS can potentially be extended to mobile

networks. In mobile networks the neighborhood

changes and therefore the neighbor discovery is

required to be executed during the lifetime of the

network. Therefore, the neighbor discovery protocol

presented here cannot be secure for mobile networks.

Note that incremental deployment of nodes is

equivalent to a node moving to the new position and

the situation can be handled similarly. Two existing

protocols can be used to enable secure neighbor

discovery in mobile wireless networks: (i) directional-

antenna-based neighbor detection [21], which uses

the knowledge of the direction of a received packet

and the direction of the corresponding transmission

and (ii) propagation delay based neighbor detection

[22], which uses packet delay of certain control

packets to measure the distance to a neighbor. These

protocols, however, are not well-suited to sensor

networks because of the non-negligible

communication overhead and the expensive hardware.

As future work we are investigating secure neighbor

discovery protocols appropriate for mobile networks.

9. References

[1] L. Zhou and Z. Haas, �Securing ad hoc networks,�

IEEE Network Magazine, vol. 13, no. 6,

November/December 1999.

[2] M. G. Zapata, �Secure ad-hoc on-demand distance

vector (SAODV) routing,� IETF MANET Mailing

List, October 8, 2001.

[3] Y.-C. Hu, D. B. Johnson, and A. Perrig, �SEAD:

Secure efficient distance vector routing for mobile

wireless ad hoc networks,� WMCSA 2002, pp. 3-13.

[4] Y.-C. Hu, A. Perrig, and D. B. Johnson, �Ariadne: A

Secure On-Demand Routing Protocol for Ad Hoc

Networks,� MobiCom 02, pp. 12-23.

[5] P. Papadimitratos and Z. Haas, �Secure routing for

mobile ad hoc networks,� SCS Communication

Networks and Distributed Systems Modeling and

Simulation Conference (CNDS 2002), January 2002.

[6] C. Intanagonwiwat, R. Govindan, and D. Estrin,

�Directed diffusion: A scalable and robust

communication paradigm for sensor networks,�

MobiCom 2000.

12

[7] Y. Xu, J. Heidemann, and D. Estrin, �Geography-

informed energy conservation for ad hoc routing,�

Mobicom, 2001.

[8] B. Karp and H. T. Kung, �GPSR: greedy perimeter

stateless routing for wireless networks,� MobiCom

2000, pp. 243-254.

[9] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin,

�Highly-resilient, energy-efficient multipath routing

in wireless sensor networks,� Mobile Computing and

Communications Review, vol. 4, no. 5, October 2001.

[10] F. Ye, A. Chen, S. Lu, and L. Zhang, �A scalable

solution to minimum cost forwarding in large sensor

networks,� ICCCN 2001, pp. 304-309.

[11] W. R. Heinzelman, A. Chandrakasan, and H.

Balakrishnan, �Energy efficient communication

protocol for wireless micro sensor networks,�

HICSS 2000, pp. 3005-3014.

[12] D. Braginsky and D. Estrin, �Rumor routing

algorithm for sensor networks,� WSNA 2002.

[13] J. Newsome, E. Shi, D. Song, and A. Perrig, �The

Sybil attack in Sensor Networks: Analysis &

Defenses,� IPSN 2004, pp. 259-268.

[14] K. Ishida, Y. Kakuda, and T. Kikuno, �A routing

protocol for finding two node-disjoint paths in

computer networks,� ICNP 1992, pp. 340 347.

[15] Y. Xu, J. Heidemann, and D. Estrin, �Geography-

informed energy conservation for ad hoc routing,�

MobiCom, 2001.

[16] A. Perrig, R. Canetti, D. Song, and J. D. Tygar,

�Efficient and secure source authentication for

multicast,� NDSS 2001.

[17] D. Johnson, D. Maltz, and J. Broch, �The Dynamic

Source Routing Protocol for Multihop Wireless Ad

Hoc Networks,� Ad Hoc Networking, C. Perkins, Ed.

Addison-Wesley, 2001.

[18] C. Karlof and D. Wagner, �Secure Routing in Sensor

Networks: Attacks and Countermeasures,� SNPA

2003.

[19] S. Marti, T. J. Giuli, K. Lai, and M. Baker,

�Mitigating routing misbehavior in mobile ad hoc

networks,� MobiCom 2000.

[20] Y. C. Hu, A. Perrig, and D.B. Johnson, �Packet

leashes: a defense against wormhole attacks in

wireless networks,� IEEE InfoCom 2003.

[21] L. Hu and D. Evans, �Using Directional Antennas to

Prevent Wormhole attacks,� NDSS 2004.

[22] Y. C. Hu, A. Perrig, and D. Johnson, �Rushing

Attacks and Defense in Wireless Ad Hoc Network

Routing Protocols,� WiSe 2003.

[23] K. Sanzgiri, B. Dahill, B. N. Levine, C. Shields, and

E. Belding-Royer, �A Secure Routing Protocol for

Ad hoc Networks,� ICNP 02.

[24] S. Lindsey and C. Raghavendra, �PEGASIS: power-

efficient gathering in sensor information systems,�

IEEE Aerospace Conference, 2002.

[25] A. Perrig, R. Szewczyk, J.D. Tygar, V. Wen, and

D.E. Culler, �SPINS: Security Protocols for Sensor

Networks,� Wireless Networks, vol. 8, pp. 521-534,

2002.

[26] D. Liu and P Ning, �Establishing Pair-wise Keys in

Distributed Sensor Networks,� CCS 2003.

[27] F. Zhao and L. Guibas (Eds.), �A Performance

Evaluation of Intrusion-Tolerant Routing in Wireless

Sensor Networks,� IPSN 2003, pp. 349-364, 2003.

[28] C. E. Perkins and E. M. Royer, �Ad-Hoc On-

Demand Distance Vector Routing,� in Proceedings

of the 2nd IEEE Workshop on Mobile Computing

Systems and Applications (WMCSA�99), pp. 90-100,

February 1990.

[29] P. Papadimitratos and Z.J. Haas, �Secure Message

Transmission in Mobile Ad Hoc Networks,� WiSe

2003.

[30] S.J. Lee and M. Gerla, �Split Multipath Routing with

Maximally Disjoint Paths in Ad Hoc Networks,�

ICC 2001, pp. 3201-3205.

[31] A. Nasipuri, R. Castaneda, and S.R. Das,

�Performance of Multipath Routing for On-demand

protocols in Mobile Ad Hoc Networks,� ACM

Mobile Networks and Applications (MONET), 2001,

6(4):339-349.

[32] Z. Ye, S. V. Krishnamurthy, S. K. Tripathi, �A

Framework for Reliable Routing in Mobile Ad Hoc

Networks,� IEEE InfoCom 2003.

[33] G. Bianchi, �Performance analysis of the IEEE

802.11 Distributed Coordination Function,� IEEE

Journal on Selected Areas in Communications,

March 2000, 18(3):535-547.

[34] �The Network Simulator ns-2,� At:

www.isi.edu/nsnam/ns/

[35] A. A. Pirzada and C. McDonald, �Establishing Trust

In Pure Ad-hoc Networks,� Proceedings of 27th

Australasian Computer Science Conference

(ACSC'04), pp. 47-54.

[36] S. Buchegger, J.-Y. Le Boudec, �Performance

Analysis of the CONFIDANT Protocol: Cooperation

Of Nodes - Fairness In Distributed Ad-hoc

NeTworks,� in MobiHoc 2002.

[37] Y. Huang and W. Lee, �A Cooperative Intrusion

Detection System for Ad Hoc Networks,� SASN

2003.

[38] B. Schneier, �Applied Cryptography,� 2nd edition,

Prentice Hall, 1996.

[39] F. Ye, H. Luo, S. Lu, and L. Zhang, �Statistical En-

route Detection and Filtering of Injected False Data

in Sensor Networks,� InfoCom 2004.

[40] M. Krasniewski, P. Varadharajan, B. Rabeler, S.

Bagchi, Y. C. Hu, �Tibfit: Trust Index Based Fault

Tolerance for Arbitrary Data Faults in Sensor

Networks,� To appear in the International

Conference on Dependable Systems and Networks

(DSN) 2005.

