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DICAS: Detection, Diagnosis and Isolation of Control Attacks in Sensor 

Networks 

 

Abstract 

Sensor networks enable a wide range of applications 

in both military and civilian domains. However, the 

deployment scenarios, the functionality requirements, 

and the limited capabilities of these networks expose 

them to a wide-range of attacks against control traffic 

(such as wormholes, Sybil attacks, rushing attacks, 

etc). In this paper we propose a lightweight protocol 

called DICAS that mitigates these attacks by detecting, 

diagnosing, and isolating the malicious nodes. DICAS 

uses as a fundamental building block the ability of a 

node to oversee its neighboring nodes� 

communication. On top of DICAS, we build a secure 

routing protocol, LSR, which also produces multiple 

node-disjoint paths. We analyze the security 

guarantees of DICAS and use ns-2 simulations to show 

its effectiveness against three representative attacks. 

Overhead analysis is conducted to prove the 

lightweight nature of DICAS. 

Keywords: sensor network security, neighbor 

monitoring, secure routing, node-disjoint paths, 

control attack. 

 

1. Introduction 

Wireless sensor networks are emerging as a promising 

platform that enable a wide range of applications in 

both military and civilian domains such as battlefield 

surveillance, medical monitoring, biological detection, 

home security, smart spaces, inventory tracking, etc. 

Such networks consist of small, low-cost, resource-

limited (battery, bandwidth, CPU, memory) nodes that 

communicate wirelessly and cooperate to forward data 

in a multi-hop fashion. Thus, they are especially 

attractive in scenarios where it is infeasible or 

expensive to deploy a significant networking 

infrastructure. However, the open nature of the 

wireless communication, the lack of infrastructure, the 

fast deployment practices, and the hostile deployment 

environments, make them vulnerable to a wide range 

of security attacks. Some of the most devastating 

attacks target the control traffic or data traffic in 

wireless networks. Typical examples of control traffic 

are routing, monitoring the liveness of nodes, 

topology discovery, and distributed location 

determination. Control traffic attacks include the (i) 

wormhole attack ([20],[21]), (ii) the rushing attack 

[22], (iii) the Sybil attack [13], (iv) the sinkhole attack 

[18], and (v) the HELLO flood attack [18]. Attacks 

against data traffic include (vi) blackhole and (vii) 

selective forwarding [18] in which a malicious node 

drops entirely or selectively data passing through it. 

Control attacks are especially dangerous because they 

can be used to subvert the functionality of the routing 

protocol and create opportunity for a malicious node 

to launch a data traffic attack such as dropping all or 

selective subset of data packets. Coping with control 

attacks in sensor networks is more challenging than in 

ad hoc wireless and wired networks due to the 

resource constrained environment. 

In this paper we present a lightweight protocol called 

DICAS, which mitigates control traffic attacks in 

sensor networks. DICAS not only detects the 

occurrence of an attack, but also diagnoses the 

malicious nodes involved in the attack and removes 

their capability of launching future attacks by isolating 

them from the network. The detection and isolation 

mechanisms are executed locally, incurring only a 

small overhead. DICAS is suited to the low cost point 

of sensor networks since it does not require any 

specialized hardware (such as directional antennas 

[21] or GPS) nor does it require time synchronization 

among the nodes [20]. The approach that DICAS uses 

to achieve its security goals exploits a well-known 

technique whereby nodes oversee part of the traffic 

going in and out of their neighbors [19], [30], [35], 

[36]). Our novelty lies in presenting the technique as a 

standalone module � local monitoring � and analyzing 

its capabilities and limitations. We systematically lay 

out the fundamental structures and the state to be 

maintained at each node for mitigating five 

representative attacks � modifying routing traffic, 

Sybil, wormhole, sinkhole, and rushing attacks. 

Independent of the detection mechanism, we propose 

a strategy to isolate the malicious nodes locally in a 

distributed manner. 

We use DICAS to build a lightweight secure 

routing protocol called LSR that withstands known 

attacks against the routing infrastructure and supports 

secure node-disjoint route discovery. We provide a 
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security analysis of LSR using DICAS for five 

representative attacks. We analyze the detection 

coverage and the probability of false detection of 

DICAS. Also, we evaluate the memory, communication, 

and computation overhead of DICAS. Finally, we 

simulate the wormhole attack in ns-2 and show its 

effect on the network performance with and without 

DICAS. The results show that DICAS can achieve 100% 

detection of the wormholes for a wide range of 

network densities. They also show that the detection 

and isolation of the nodes involved in the wormhole 

can be achieved in a negligible time after the attack 

starts. In addition, we simulate a combined Sybil and 

rushing attack to bring out the adverse impact on 

node-disjoint multipath routing and show the 

improvement using DICAS. The results show that LSR 

using DICAS is resilient to the combined attack and 

that the average number of node-disjoint routes 

discovered is not reduced. 

The rest of the paper is organized as follows. Section 

2 presents the related work in the area of security in 

wireless ad-hoc and sensor networks. Sections 3 and 4 

describe DICAS and LSR, respectively. Section 5 

presents attacks against routing and their mitigation in 

LSR using DICAS. Section 6 analyzes the coverage and 

overhead of DICAS, while Section 7 shows simulation 

results. Section 8 concludes the paper. 

2. Related Work 

In the last few years, researchers have been actively 

exploring many mechanisms for securing the control 

traffic in wireless networks. These mechanisms can be 

broadly categorized into four classes � customized 

cryptographic primitives, protocols for path diversity, 

protocols that overhear neighbor communication, and 

protocols that use specialized hardware. The 

cryptographic primitives are also used as building 

block for protocols of the other three classes. In the 

context of ad hoc networks, HMAC and digital 

signatures [38] have been used to provide end-to-end 

authentication of the routing traffic [2],[5]. 

Intermediate node authentication of the source traffic 

has been achieved via authentic broadcasting 

techniques using digital signatures [23], hash trees [3], 

or -TESLA [4]. These protocols are restrictive and 

only capable of providing the traditional cryptographic 

guarantees, namely confidentiality and authenticity of 

routing traffic. In addition, it is usually infeasible to 

apply them to sensor networks. The public key 

cryptography is far beyond the capabilities of sensor 

nodes and the symmetric key based protocols 

proposed are too expensive in terms of node state and 

communication overhead. 

The path diversity techniques increase route 

robustness by first discovering multipath routes 

([23],[30], [31],) and then using these paths  to 

provide redundancy in the data transmission between 

a source and a destination [29]. The data is encoded 

and divided into multiple shares sent to the destination 

via different routes. Many of these schemes are 

vulnerable to attacks that permit a node to assume 

multiple identities (such as the Sybil attack). 

Mechanisms to overhear neighbor communication 

in a wireless channel have been used to minimize the 

effect of misbehaving nodes [19],[31],[35]-[37]. In the 

watchdog scheme [19], the sender of a packet watches 

the behavior of the next hop node for that packet. If 

the next hop node drops or tampers with the packet, 

the sender announces it as malicious to the rest of the 

network. The scheme is vulnerable to blacklisting, 

does not work correctly when malicious nodes 

collude, and can have a high error rate due to 

collisions in the wireless channel. Neighbor watch has 

also been used to build trust relationships among 

nodes in the network [35],[36], to build cooperative 

intrusion detection systems [37], or to discover 

multiple node-disjoint routes [31]. However, all these 

protocols use the communication overhearing as an 

existing service without studying its feasibility, 

requirements, limitations, or performance in the 

resource-constrained sensor environment. Examples 

of the fourth class are [20][21], the former called 

packet leashes uses either tight time synchronization 

or location awareness through GPS hardware and the 

latter uses directional antennas. These schemes are 

used to detect one form of control attack � the 

wormhole attack.  

On the other hand, many secure sensor network 

routing protocols have also been introduced in the 

literature [6]-[11]. These protocols are less complex 

than ad hoc or wired routing protocols and are 

susceptible to a wide variety of attacks, as 

summarized by Karlof and Wagner [18]. Table 1 

enumerates the protocols and their vulnerabilities.  

 
Table 1: Attacks against secure wireless routing 

protocols (The numbers refer to the numbered list in 
the introduction) 

Routing protocol name Attacks 

Directional diffusion ([6], [9]) iii, iv, v, vii 

GPSR [8]  iii, vii 

Minimum cost forwarding [10] i, iv, v, vii 

LEACH [11], PEGASIS [24] v, vii 

Rumor routing [12] i, iii, iv, vii 

SPAN [15] iii, v 
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Few of the protocols mentioned above discuss the 

method for removing the malicious nodes from 

causing further damage in the network and even fewer 

provide a quantitative analysis of the detection 

coverage, which may be affected due to a faulty 

detector or due to environmental conditions.  

3. Description of DICAS 

 

DICAS consists of a set of two algorithms as primitives 

(Section 3.2) and two main modules - the local 

monitoring module (Section 3.3), and the local 

response module (Section 3.4). 

 

3.1. System Model and Assumptions 

 

Attack model: A malicious node can be either an 

external node that does not know the cryptographic 

keys, or an insider node, that possesses the keys. An 

insider node may be created, for example, by 

compromising a legitimate node. A malicious node 

can perform all the attacks mentioned in Section 1, by 

itself or using arbitrary collusion with other nodes. A 

malicious node can establish out-of-band fast channels 

(e.g., a wired link) or have high powered transmission 

capability. 

 

System assumptions: We assume that all the 

communication links are bi-directional. Also, we 

assume that a finite amount of time is required from a 

node�s deployment for it to be compromised. This 

time is called the compromise threshold time TCT. We 

define the maximum time required for the first and 

second hop neighbor discovery protocol (Section 3.2) 

to complete as TND. Our assumption is that for a given 

node ni, all its first and second hop neighbors are 

deployed within TCT-2TND of the deployment of ni. 

This assumption implies that for a given node, no 

malicious node exists in its one or two hop 

neighborhood till its neighbor discovery protocol 

completes. We assume that the network has sufficient 

redundancy, such that the attacker can not 

compromise all the guards with a certain transmission 

range. This means that any node in the network has 

some good guards. We assume that the network has a 

static topology. This does not rule out route changes 

due to natural and malicious node failures or route 

evictions from the routing cache. Also the functional 

rules of a node, such as cluster head and regular 

sensing node, may change. Finally, we assume a key 

management protocol, such as [26], is used to pre-

distribute pair-wise keys in the network so that any 

two nodes in the network can securely communicate 

with each other. 

3.2. Primitives: Neighbor Discovery and One 

Hop Source Authentication  

 

Neighbor discovery: This protocol is used to build a 

data structure of the first hop neighbors of each node 

and the neighbors of each neighbor. The data structure 

is used in local monitoring to detect malicious nodes 

and in local response to isolate these nodes. A 

neighbor of a node, X, is any node that lies within the 

transmission range of X. As soon as a node, say A, is 

deployed in the field, it sends a one-hop broadcast of a 

HELLO message. Any node that receives the 

message, sends an authenticated reply to A, using the 

pair-wise shared key. For each reply received within a 

pre-defined timeout (TROUT,), A verifies the 

authenticity of the reply and adds the responder to its 

neighbor list, RA. Let RA = n1, .., np and M = 

RA||Kcommit(A), where Kcommit(A) is the commitment key A 

uses to authenticate itself to its neighbors. Node A 

computes P = M||KAn
1
(M)||�|| KAn

p
(M). Then A sends 

a one-hop broadcast of packet P. A node nj that 

receives P, verifies M using KAn
j
. If the message is 

correctly verified, nj stores RA (nj�s second hop 

neighbors) and Kcommit(A). Hence, at the end of this 

neighbor discovery process, each node has a list of its 

direct neighbors and the neighbors and the 

commitment key of each one of its direct neighbors. 

This process is performed only once in the lifetime of 

a node and is secure in static wireless networks 

because of the system model assumptions on time to 

compromise a node and the deployment of a node and 

its neighbors. 

Commitment key generation and update: This 

protocol is used to generate and update the 

commitment key used by the one-hop source 

authentication protocol. The values of the 

commitment key at a node S (Kcommit(S)) are derived 

from a random seed (Kseed(S)) as Kcommit(S) = H(i) 

(Kseed(S)), where H is a one-way collision resistant hash 

function, i  takes values between 0 and l( 2), and l is 

the length of the sequence of values of Kcommit(S) that 

we call the commitment string. The first value of the 

commitment key Kcommit(S) that is exchanged with the 

neighbors during neighbor discovery is H(l)(Kseed(S)) = 

vl. The subsequent values of the commitment key (vl-

1,�, v0) are progressively disclosed to the neighbors 

during subsequent transmissions. Before the current 

commitment string {vl, vl-1,�, v0} is exhausted, a new 

one is generated at S {ul, ul-1,�,u0}. The commitment 

key ul from the new string is authenticated to the 

neighbors using the last undisclosed key from the 
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current string with the one-hop source authentication 

protocol. 

One-hop source authentication: This protocol allows 

a node to distinguish between its neighbors to prevent 

identity spoofing among them. A node S authenticates 

its transmitted packets to the neighbors by attaching 

the last undisclosed value from the commitment string 

Kcommit(S).  When a neighbor of S, say B, receives the 

packet, it verifies the validity of Kcommit(S) by 

computing a hash function over it and comparing the 

result with the stored value of Kcommit(S). If the Kcommit(S)   

is valid, B stores it as the new commitment key value 

of S. However, this protocol may fail to provide the 

required authentication if an attacker blocks the 

transmission range of a certain source from the rest of 

network except himself. Therefore, the attacker can 

impersonate that source and generate valid packets. In 

such case, we revert to the well-known TESLA 

authentication scheme [25] that countermeasure such 

attacks. 

3.3. Local monitoring: Detection & 

Diagnosis 

 

This module detects various attacks against the control 

traffic and diagnoses the malicious nodes involved in 

these attacks. Local monitoring starts immediately 

after the completion of the neighbor discovery. It uses 

a collaborative detection strategy, where a node 

monitors the traffic going in and out of its neighbors.  

S DB X

M

N

A

A
X YY

The transmission 

range of node Y

 
Figure 1: X, M, and N are guards of A over the link 

from X to A 

For a node, say M, to be able to monitor a node, say A, 

two conditions are required: (i) each packet forwarder 

must explicitly announce the immediate source of the 

packet it is forwarding, and (ii) M must be a neighbor 

of both A and the previous hop from A, say X. The 

first condition is guaranteed universally by the routing 

protocol and therefore the second condition is the 

deciding criterion. In such a case, we call M a guard 

node of A over the link from X to A. In Figure 1, nodes 

M, N, and X are the guards of A over the link from X 

to A. For a link (i, j), the sender i is a guard node for 

node j. Information for each packet sent from X to A is 

saved in a watch buffer at each guard for a time . The 

information maintained depends on the particular 

attack under consideration.  

A malicious counter (MalC(i,j)) is maintained at each 

guard node, i, for every  node, j, which i is monitoring. 

MalC(i,j) is incremented for any suspect malicious 

activity of j that is detected by i. In Figure 1, if a 

guard, say M, does not hear A forwarding a packet 

sent by X within , it accuses A of dropping or 

delaying the packet. If M hears A transmitting the 

packet within  but detects a change in the packet�s 

content or header, it accuses A of modifying the 

packet. If M hears A transmitting a packet, claiming 

that it was sent by X, but M does not have the 

corresponding incoming packet in its watch buffer, M 

accuses A of fabricating the packet. To account for 

intermittent natural failures that can occur at 

legitimate nodes, a node is determined to be 

misbehaving, only if the MalC goes above a threshold. 

 

3.4. Local Response and Isolation 

 

Detection and diagnosis is only the first step towards 

protecting the network. The local response and 

isolation module is used to propagate the detection 

knowledge to the neighbors of the malicious node and 

to take appropriate response to isolate it from the 

network. The following local response algorithm is 

triggered by a guard node, say , when a suspect 

malicious node, say A, is diagnosed.   

1. When the MalC( ,A) crosses a threshold, Ct ,  

revokes A from its neighbor list, and sends to 

each neighbor of A, say D, an authenticated alert 

message indicating A is a suspected malicious 

node. This communication is authenticated using 

the shared key between  and D to prevent false 

accusations. Alternately, if the clocks of all the 

nodes in the network are loosely synchronized,  

can do authenticated local two-hop multicast as in 

[16] to inform the neighbors of A 

2. When D receives the alert, it verifies its 

authenticity, that  is a guard to A, and that A is 

D�s neighbor. It then stores ID  in an alert buffer 

associated with A.  

3. When D receives enough alerts, , about A, it 

isolates A by marking A�s status as revoked in the 

neighbor list.  We call   the detection confidence 

index.   

4. After isolation, D does not accept any packet 

from or forward any packet to a revoked node.  

In addition to removing the malicious nodes from the 

network, this module makes the response process fast 

since the detection knowledge does not need to 

propagate to all the nodes in the network. Also this 

module is lightweight in the number of messages (one 
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to each neighbor of A only on malicious node 

detection) and the number of hops each message 

traverses (maximum two hops). 

4. LSR: Lightweight Secure Routing 

LSR is an on-demand routing protocol, sharing many 

similarities with the AODV [28] protocol. However, 

LSR has significant differences to enhance security. 

The design features of LSR described below make it 

resilient to a large class of control attacks such as 

wormhole, Sybil, and rushing attacks, as well as 

authentication and ID spoofing attacks. Combined 

with DICAS, LSR can deterministically detect and 

isolate nodes involved in launching these attacks. 

Section 6.1 provides detailed analysis of the detection 

and isolation coverage of control attacks in LSR with 

DICAS. 

4.1. Route Discovery and Maintenance 

Route Request: When a node, say S, needs to discover 

a route to a destination, say D, it generates a route 

discovery packet (REQ) that contains: a flag to 

indicate that it is a route request packet (FREQ), the 

sender identity (IDS), the destination identity (IDD), 

and a unique sequence number (SN). The SN is 

incremented with every new REQ and is used to 

prevent the replay of the REQ packet. Node S then 

calculates a message authentication code (MAC) of the 

packet using the shared key between S and D (KSD). 

Finally, S generates and attaches the next value of the 

commitment key Kcommit(S) to the REQ packet and 

broadcasts it. 

1. [At S] REQ = FREQ || IDS || IDD || SN  

2. S 
Broadcast

 REQ || MACK
SD

(REQ) || 

Kcommit(S)||IDS 

A neighbor Z of S accepts the REQ packet if the 

associated Kcommit(S) is valid. Then Z removes Kcommit(S) 

from the REQ, attaches IDZ, and forwards the REQ. 

An intermediate node B that is not a direct neighbor to 

S stores the first REQ packet it receives. Node B also 

keeps the identity of every different neighbor that 

forwards a subsequent copy of the same REQ during a 

rush time, Tr, selected randomly from [Tmin, Tmax], as in 

[22]. When Tr runs out or when a certain number of 

requests, Nr, is collected, whichever occurs first, B 

broadcasts a randomly selected copy of the REQ 

copies that it has. Assume without loss of generality 

that B selects the one forwarded by W. For each 

source-destination pair, node B keeps the identity of 

the node from which it receives the forwarded REQ 

(IDW). Node B then appends IDB and IDW to the REQ 

and broadcasts it. The process continues until the REQ 

reaches D.  

1. [At B] Save �REQ||MACK
SD

(REQ)�, and set Tr. 

2. [At B] Save the identity of every neighbor that 

sends a REQ copy within Tr. 

3. [At B] Select random copy of the REQ.  

4. [At B] Store IDS, IDD, SN, and IDW. 

5. B 
Broadcast

 REQ||MACK
SD

(REQ)||IDW|| IDB 

Route Reply: When D receives the REQ packet, it 

verifies the authenticity of the source using the shared 

key KSD. Then D generates a route reply packet REP 

that contains: a flag to indicate that it is a route reply 

packet (FREP), the sender identity (IDS), the destination 

identity (IDD), and a SN. Node D then calculates a 

MAC value over the packet using the pair-wise shared 

key (KSD). Node D generates and attaches the next 

value of the commitment key Kcommit(D) to the REP 

packet. Finally, D unicasts the REP packet back to the 

previous hop as determined by the REQ packet. Let A 

be the immediate previous hop from D and C be the 

immediate previous hop from A. 

1. [At D] REP = FREP||IDS||IDD|| SN 

2. D  A: REP || MACK
SD

(REP) || 

Kcommit(D)||IDD||IDA  

When A receives the REP packet, it verifies and 

removes Kcommit(D), updates its routing table as follows 

- <Destination, Next hop>: {D, D}, {S, C}. Node A 

then appends IDD||IDA||IDC and sends the REP packet 

to C.  

1. [At A]  Verify and remove Kcommit(D). Set 

<Destination, Next hop>: {D, D}, {S, C} 

2. A  C: REP||MACK
SD

(REP)|| IDD || IDA || IDC  

The REP continues to propagate using the reverse path 

of the corresponding REQ towards S. Node S verifies 

the authenticity of the reply using KSD and updates its 

routing table to the destination.  

The route maintenance in LSR is triggered when a 

broken link is detected and a new route is discovered 

by using the above protocol for route discovery. In 

this respect, it is similar to AODV. 

Note that in LSR, the source chooses the route 

corresponding to the fastest route reply and not the 

shortest hop route, to guard against attacks that 

modify the hop count. A longer but less congested 

route is preferred to a shorter but congested route, as 

in [23].   

4.2. Node-Disjoint Multipath Discovery  

A desirable feature of LSR is its ability to increase the 

number of node-disjoint routes between a source and a 

destination. LSR supports secure discovery of these 

routes as a by-product of the local monitoring module 



6 

 

of the underling DICAS protocol without incurring any 

additional overhead. In many on demand ad-hoc and 

sensor network routing protocols, an intermediate 

node forwards the first announcement of a request and 

suppresses any following announcements, such as in 

AODV [28]. As a result, multiple routing paths may 

have common nodes in them. In LSR, each node, say 

B, backs off for a random time (Tr) before forwarding 

the REQ. During Tr, B buffers all the announcements 

of the same request. At the same time, B listens to any 

neighbor, say E, whose rush timer, Tr times out and 

which forwards one of its REQ copies. If B has the 

same REQ copy, from the same previous hop, as that 

forwarded by E, B deletes that copy from its buffer 

and thus will not be a candidate for REQ forwarding 

by B. 

B

E
X

Y

Z

B

E
X

Y

Z

B

E
X

Y

Z

B

E
X

Y

Z

B

E
X

Y

Z

B

E
X

Y

Z

(a) (b) (c)  
Figure 2: Example of node-disjoint routes. 

An example is shown in Figure 2. Let B receive REQs 

from nodes X, Y, and Z, and let E be a neighbor of B 

which also receives from X, and let the REQ from X 

be the first to arrive at both B and E, Figure 2(a). If 

nodes B and E forward the first REQ they receive and 

drop the others as in AODV, then multiple paths will 

be formed with X in them (Figure 2(b)). However, 

using our technique, assuming that the timer of E runs 

out before that of B and that E broadcasts the message 

it received from X, then B will drop X�s packet from 

its buffer. Thus B will not forward the REQ forwarded 

by X, The resulting paths are disjoint (Figure 2(c)). 

The destination replies to every REQ copy it receives 

through a different neighbor. An intermediate node 

creates a routing table entry when it forwards the reply 

for the first time. Subsequently it does not forward any 

further replies to prevent itself from being inserted in 

multiple routes. In order to detect malicious behavior 

by its neighbors, each node monitors replies going out 

of the neighbors. If a neighbor forwards a specific 

reply more than once, it is considered malicious and 

dropped from all the routes the node has.  For 

example, let node B forward the REQ that has been 

forwarded by A. Let the two non-neighbor nodes, X 

and Y, receive and forward the REQ they get from B. 

The REP packet takes the reverse path, i.e. B gets the 

REP packets from X and Y. Without loss of generality,  

let the REP  packets come from X then from Y. A 

correct node forwards only the first REP. However, if 

B is malicious, it may send the two replies to two 

different neighbors, say A and  respectively. 

Therefore, B succeeds in including itself in two 

�different routes�. However, in LSR, this misbehavior 

can be detected by X and Y since they overhear B�s 

forwarded REPs. Then they evict all the routes 

through B.  

5. Attacks and Countermeasures 

 

In this section, we present a set of 5 attacks that can be 

launched against a routing protocol and show how 

they can be detected in LSR with DICAS. 

5.1. Route Traffic Manipulation 

An attacker may attack the routing infrastructure by 

injecting false control packets, modifying the 

forwarded control packets, or replaying old 

authenticated control packets. This may result in 

creating routing loops, attracting network traffic, 

extending or shortening routes, generating false error 

messages, partitioning the network, or increasing the 

end-to-end delay. 

Conjecture#1: DICAS detects any injection, alteration, 

or replaying of the routing traffic in LSR. 

Proof sketch:  The end-to-end authentication prevents 

a malicious node from injection or alteration of the 

REQ and the REP packets. The increasing sequence 

number associated with each REQ and REP prevents 

the replay attack. 

5.2. ID Spoofing and Sybil Attacks 

 

In this attack, an attacker presents one (ID 

spoofing) or more (Sybil attack) spoofed identities to 

the network [13]. Those identities could either be new 

fabricated identities or stolen identities from 

legitimate nodes. The Sybil attack can have many 

adverse impacts, such as on multipath routing [14] and 

collaborative protocols that use aggregation and 

voting [40]. 

Conjecture#2: In LSR with DICAS, malicious node ID 

spoofing or Sybil attack attempts can be easily 

detected. 

Proof sketch: (i) The single hop neighbor list data 

structure prevents a node from spoofing the identity of 

a non-neighbor node. A node will not accept (forward) 

traffic from (to) a non-neighbor node. (ii) The one-hop 

authenticated source broadcasting prevents a node 

from generating traffic using spoofed identity of a 

neighbor node since each node must authenticate its 

generated traffic to the neighbors. (iii) Local 

monitoring prevents a forwarding node from spoofing 

a neighbor�s identity. As shown in Figure 1, if A 

receives a packet from X, then A can not forward the 

packet claiming that it is being forwarded by one of its 
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neighbors, say M. None of the guards of M over the 

link from X to M overhear such a packet; also the 

guards of A over the link from X to A accuse A of not 

forwarding the packet.  

5.3. Wormhole Attack 

In the wormhole attack [20],[21] a malicious node 

captures packets from one location in the network, and 

�tunnels� them to another malicious node at a distant 

point, which replays them locally. The tunnel can be 

established in many different ways, such as through an 

out-of-band hidden channel (e.g., a wired link), packet 

encapsulation, or high powered transmission. The 

tunnel creates the illusion that the two end points are 

very close to each other, by making tunneled packets 

arrive either sooner or with lesser number of hops 

compared to the packets sent over normal routes. This 

allows an attacker to subvert the correct operation of 

the routing protocol, by controlling numerous routes 

in the network. Later, he can use this to perform traffic 

analysis or selectively drop data traffic. 

The wormhole attack can affect network routing, data 

aggregation and clustering protocols, and location-

based wireless security systems. Finally, it is worth 

noting that the wormhole attack can be launched even 

without having access to any cryptographic keys or 

compromising any legitimate node in the network. 

S

D
C

M1 M2

A E F

Good node Malicious node

P

Q

R

B
Z

The legitimate path without  wormhole 

An out-of-band channel between M1 and M2

A path between M1 and M2 for encapsulation

X

L

N
W

 
Figure 3: A wormhole attack scenario 

Conjecture#3: DICAS detects and isolates malicious 

nodes that are involved in a wormhole attack. 

Proof sketch: Local monitoring detects the nodes 

involved in tunneling the route control packets and 

local response disables the tunnel from being 

established in the future by isolating the malicious 

nodes. Each guard saves the SN, the type, the source, 

the destination, the immediate sender, and the 

immediate receiver of every input packet to the 

monitored node. Consider the scenario in Figure 3. 

Two colluding nodes, M1 and M2, use an out-of-band 

channel or packet encapsulation to tunnel routing 

information between them. When M1 receives the 

REQ initiated by S, it tunnels the REQ to M2. Node M2 

has two choices for the previous hop � either to 

append the identity of M1, or append the identity of 

one of M2�s neighbors, say X. In the first choice all the 

neighbors of M2 reject the REQ because they all know, 

from the stored data structure of the two-hop 

neighbors, that M1 is not a neighbor to M2. In the 

second case, all the guards of the link from X to M2 (X, 

N, and L) detect M2 as fabricating the route request 

since they do not have the information for the 

corresponding packet from X in their watch buffer. In 

both cases M2 is detected, and the guards increment 

the MalC of M2. Similarly, when M1 receives the REP 

tunneled from M2 it has the same choices as M2 and a 

similar scheme is used by the guards of the incoming 

link to M1. 

5.4. Sinkhole  

In the sinkhole attack [18], a malicious node manages 

to attract routes from many nodes to go through it thus 

acting as a �sinkhole�. This attack typically works by 

making the malicious node look especially attractive 

for the surrounding nodes, for example, by claiming a  

short or a fast route to the destination. If the attacker 

succeeds, he can launch data traffic attacks and can 

prevent the discovery of other legitimate routes.  

Conjecture#4: DICAS detects any malicious attempts 

to establish a Sinkhole in LSR. 

Proof sketch: In DICAS end-to-end authentication and 

local monitoring prevent the sinkhole attack. An 

intermediate node does not accept any routing traffic 

from a non-neighbor nor does it forward any routing 

traffic to a non-neighbor. Also a destination node does 

not accept any routing traffic from a source node 

unless that traffic is authenticated using the shared 

key.  

5.5. Rushing Attack 

In the rushing attack [22], an adversary who receives a 

REQ rushes to broadcast it in an attempt to make the 

REQ forwarded by him to be the first to reach all the 

neighbors of the destination. If the attacker succeeds, 

then any route discovered by this rushed REQ includes 

a hop through the attacker.  

Conjecture#5: LSR mitigates the rushing attack. 

Proof:  The design of the route discovery module of 

LSR implements a variant of the rushing attack 

prevention protocol (RAP) as proposed in [22]. An 

intermediate node does not forward the first route 

request it receives (may be from a rushing malicious 

node), but rather, waits and collects copies of the REQ 

from different neighbors and randomly selects one of 

them to rebroadcast. The waiting stops the rushing of 

the attacker and the random selection reduces the 

likelihood of selecting a route through the attacker 

node. Also the multiple node-disjoint route creation 
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protocol prevents a single malicious node from 

affecting multiple routes between a source-destination 

pair. 

6. DICAS analysis 

6.1. Coverage analysis 

In this section, we quantify the probability of missed 

detection and false detection of a generic control 

attack as the network density increases and the 

detection confidence index varies. The results provide 

some interesting insights. For example, we are able to 

find the required network density d to detect p% of an 

attack under consideration for a given detection 

confidence index .  Consider a homogeneous network 

where the nodes are uniformly distributed in the field. 

Consider any two randomly selected neighbor nodes, 

S and D (Figure 4(a)). Nodes S and D are separated by 

a distance x, and the communication range is r.  The 

value of x follows a random variable with probability 

density function of f(x) = 2x/r2 with range (0,r). This 

follows from the assumption of uniform distribution 

of the nodes.  

The guard nodes for the link between S and D are 

those nodes that lie within the communication range 

of S and D, the shaded area in Figure 4(a). This area is 

given by
2

2 1 2( ) 2 cos 2
2 4

x x
Area x r x r

r
. The 

minimum value of Area(x), Areamin, is when x = r. 

Therefore, the minimum number of guards is 
2

min min 0.36g Area d r d . The expected value of Area(x) 

2
2 1 2

2

0

2 2

2
( ) 2 cos 2

2 4

2 1
1.6

3 2

r
x x x

E Area x r x r dx
r r

r r

 

Therefore, the expected number of guards is 
2[ ( )] 1.6g E Area x d r d . The number of neighbors 

of a node is given by 2

BN r d . 

2 1
0.51

3 2
B Bg N N           (I).  

 

G
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S X
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Figure 4: (a) The area where a node can guard the link 
between S and D; (b) Illustration for detection accuracy 

 

Now, as in [33] where IEEE 802.11 was analyzed, we 

assume that each packet collides on the channel with a 

constant and independent probability, PC. As shown in 

Figure 4(b), a guard G will not detect a packet sent by 

D, claiming it was received from S, if G experienced a 

collision at the time that D transmits. Thus, the 

probability of missed detection is PC. Assume that  

packet attacks (fabrication, modify, drop, etc.) occur 

within a certain time window, T. Also assume that a 

guard must detect at least  attacks to cause the MalC 

for a node to cross the threshold, and thus generate an 

alert. Then, the alert probability at a guard is given 

by
| 1

i i

C C

i

P P P
i

. Thus, assuming 

independence of collision events among the different 

guards, the probability that at least  of the guards 

generate an alert is given by 

|

|

| |

1

0

( , , 1)
1

( , 1)

!
(1 )

( 1)!( )!

g
i g i

i

P

g

B P gg
p P P

i B g

g
u u du

g

 

where, ( , 1)B g  is the Beta function and 

|( ; , 1)B P g  is the incomplete Beta function. 

Figure 5 shows the probability of detecting an attack 

(e.g. the wormhole) with  = 7,  = 5,   = 3, the 

number of compromised nodes M = 2, and PC = 0.05 

at NB = 3. Thereafter, PC is assumed to increase 

linearly with the number of neighbors. The number of 

guards is determined from NB using Equation (I). 

Since the number of guards increases as the number of 

neighbors increases, the probability of detection 

increases since it becomes easier to receive the alarm 

from  guards. However, the collision probability also 

increases with increasing node density, and thus the 

probability of detection starts to fall rapidly beyond a 

point. 
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Figure 5: Probability of attack detection 

Figure 9 shows, for the same , , and PC as in Figure 

5, the probability of attack detection as a function of  

when NB = 15 and M = 2. As  increases, the 

probability decreases. As shown in Figure 4(b), a false 

alarm occurs when D receives a packet sent from S, 
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while G does not receive that packet, and later, G 

receives the corresponding packet forwarded by D. 

Thus, the probability of false alarm is 2(1 )FA C CP P P . 

Assume that S sends  packets to D for forwarding, 

within a certain time window, T. The probability that 

D is falsely accused is the probability that  or more 

packets are falsely suspected as wrong packets. This is 

given by 

( | )
1

i i

FA FA FA

i

P P P
i

, and the probability 

that at least  guards generate false alarms is given by  

( | )

( | ) ( | )

( | ) 1

0

1

( , , 1) !
(1 )

( , 1) ( 1)!( )!

FA

g
i g i

FA FA FA

i

P

FA g

g
p P P

i

P g g
u u du

g g
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Figure 6: Probability of false alarm 

 Figure 6 shows the probability of false alarm as a 

function of the number of nodes for the same 

parameters as in Figure 5. The non monotonic nature 

of the plot can be explained as follows. As the number 

of neighbors increases, so does the number of guards. 

Initially, this increases the probability that at least  

guards miss the packet from S to the guard but not 

from D to the guard, leading to false detection at these 

 guards. Beyond a point, however, the increase in the 

number of neighbors increases the collision 

probability. This increases the probability that both of 

these packets are missed at the guard and thus does 

not lead to false detection. The worst case false alarm 

probability is still negligible (less than 0.3 10-6). 

6.2. Cost Analysis 

In this section, we show the memory, the computation, 

and the bandwidth overheads of DICAS to evaluate its 

suitability to resource-constrained environments. 

 Memory overhead: Each node needs to store a 

neighbor list, a commitment key of each first hop 

neighbor, its own commitment string, a watch buffer, 

and an alert buffer. Assuming that the identity of a 

node is 2 bytes and reusing the notation from the 

previous subsection, the size of the neighbor list is 

NBL = r2d entries. Each entry in NBL uses 3 bytes; 2 

for identity of the neighbor and 1 for the MalC 

associated with that neighbor. Each first hop entry in 

NBL requires 20 more bytes (e.g. SHA-

1[38],[25],[39]) for the storage of the commitment 

key. So the total NBL storage, NBLS = 25( r2d)2. Also, 

a commitment string of length l requires 20l bytes. For 

example, NBLS and the commitment string use less 

than a kilobyte when NB = 10 and l = 20. The alert 

buffer has  number of 2 byte entries. If we monitor 

the REP packets of LSR, then the watch buffer size 

depends on the average number of hops between a 

source-destination pair (h), the frequency of route 

establishment aggregated over the network (f) and the 

node density (d). We calculate the average number of 

nodes involved in monitoring a REP, NREP = 

2r2(h+1)d, by creating a rectangular bounding box of 

dimensions ((h+1) r  2r) containing the nodes that 

may overhear the REP sent from A to B. This is an 

overestimate since we use a square that circumscribes 

the circular transmission range. Thus, given N as the 

total number of nodes in the network, each node is 

involved in monitoring at most (NREP/N)f  route replies 

per unit time. For example, if N = 100 nodes, h = 4 

hops, and f = 1 route every 4 time units, then NREP = 

17, and each node monitors 4 route replies every 100 

time units. Because the time  for which the packet is 

kept in the watch buffer is relatively small being 

determined by the MAC layer delay for acquiring the 

channel, a watch buffer size of 4 entries is sufficient 

(for 10). If we also monitor the REQ, then each 

node is involved in monitoring f+(NREP/N)f packets. 

This requires each node to monitor 4 packets every 16 

time units. Again a 4-entry watch buffer is sufficient.  

Each entry in the watch buffer is 14 bytes  2 bytes 

each for the immediate source, the immediate 

destination, and the original source, and 8 bytes for 

the sequence number of the REP (REQ).  

Computation and bandwidth overhead: Each 

monitored REP (REQ) requires one lookup for the 

current source and destination in the neighbor list, 

adding an entry to the watch buffer (incoming) or 

deleting an entry from the watch buffer (outgoing). 

Since the size of the watch buffer and the neighbor list 

structure are relatively small, the computation time 

required for these operations is negligible. For 

example, a lookup in a 100 entry buffer takes the 

MICA mote with an Atmega128 4 MHZ processor, 

about 2  seconds. The bandwidth overhead is incurred 

after deployment of a node for neighbor discovery and 

in the case of wormhole detection for informing the 

neighbors of the detected node. This is therefore a 

negligible fraction of the total bandwidth over the 

lifetime of the network.  
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7. Simulation Results 

We use the ns-2 simulator [34] to simulate a data 

exchange protocol over LSR, individually without 

DICAS (the baseline) and with DICAS. We distribute 

the nodes randomly over a square area with a fixed 

average node density. Thus, the length of the square 

varies (80m to 204 m) with the number of nodes (20-

150).  We first simulate the wormhole attack using 

out-of-band direct channels between the colluding 

nodes. After a wormhole is established, the malicious 

nodes at each end of the wormhole drop all the 

packets forwarded to them.  

Each node acts as a source and generates data using an 

exponential random distribution with inter-arrival rate 

of . The destination is chosen at random and is 

changed using an exponential random distribution 

with rate . A route is evicted if unused for TOutRoute 

time. The experiment parameters are presented in 

Table 2. The results are obtained by averaging over 30 

runs. For each run, the malicious nodes are chosen at 

random so that they are more than 2 hops away from 

each other. 
Table 2: Input parameter values  

Parameter Value Par Value 

Tx Range (r) 30 m  2-8 

NB 8  100 ms 

TOutRoute 50 sec M 0-4 

, Nr 0.05 s, 5  5  

Channel BW 40 kbps  5m s 
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Figure 7: Cumulative number of dropped packets 

Figure 7 shows the number of packets dropped as a 

function of simulation time for the 100-node setup 

with 2 and 4 colluding nodes.  The attack is started 50 

sec after the start of the simulation. Since the numbers 

are vastly different in the baseline and with Dicas, 

they are shown on separate Y-axes. In the baseline 

case, since wormholes are not detected and isolated, 

the cumulative number of packets dropped continues 

to increase steadily with time. But in Dicas, as 

wormholes are identified and isolated permanently, 

the cumulative number stabilizes. Note that the 

cumulative number of packets dropped grows for 

some time even after the wormhole is locally isolated 

at 75 sec, due to the cached routes that contain the 

wormhole and continue to be used till route timeout 

occurs. 

Figure 8 shows a snapshot, at simulation time of 2000 

sec, of the fraction of the total number of packets 

dropped to the total number of packets sent, and the 

fraction of the total number of routes that involve 

wormholes to the total number of routes established. 

This is shown for 0-4 compromised nodes for the 

baseline and with DICAS. With 0 or 1 compromised 

node, there is no adverse effect on normal traffic since 

no wormhole is created. The relationship between the 

number of dropped packets and the number of 

malicious routes is not linear. This is because the route 

established through the wormhole is more heavily 

used by data sources due to the aggressive nature of 

the malicious nodes at the ends of the wormhole. If we 

track these output parameters over time, with DICAS, 

they would tend to zero as no more malicious routes 

are established or packets dropped, while with 

baseline case they would reach a steady state as a 

fixed percentage of traffic continues to be affected by 

the undetected wormholes. 
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Figure 8: Fraction of dropped packets & malicious 

routes 

Figure 9 bears out the analytical result for the 

detection probability as  is varied with NB  = 15 and 

M = 2. As  increases, the detection probability goes 

down due to the need for alarm reporting by a larger 

number of guards, in the presence of collisions.  Also 

the isolation latency goes up, though it is very small 

(less than 30 s) even at the right side of the plot. 
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Figure 9: Detection probability and isolation latency 
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Next, we simulate the combined rushing and Sybil 

attacks over a network of 250 nodes deployed in a 300 

m  300 m field. We compare the average number of 

node-disjoint paths discovered per route request of an 

ideal search algorithm, AODVM [32], and LSR with 

DICAS. In the ideal search, the topology of the entire 

network is known to the source which uses shortest 

path first search algorithm. AODVM creates node-

disjoint routes by having every node overhear 

neighboring nodes� REP packets and deciding to 

forward its own REP such that a neighbor is not 

included in two routes for a given source-destination 

pair. However, it does not consider any control 

attacks.  

Figure 10 shows the average number of node-disjoint 

paths as a function of the number of hops in the 

shortest path between two nodes. The figure shows 

that, in a failure free environment, LSR and AODVM 

performs almost identically. In a malicious scenario, 

each of 10 malicious nodes launches rushing and Sybil 

attacks. When a malicious node receives a REQ 

packet, it rushes to broadcast Nr copies of the REQ, 

each with a different fake identity. Figure 10 shows 

that LSR with DICAS is robust to the attack (LSR and 

LSR_mal plots overlap), while the average number of 

node-disjoint paths in AODVM is reduced by 22% 

(for distant source-destination pairs) to 32% (for 

closer pairs). Note that as the length of the path 

increases, the effect of the attacks in AODVM 

decreases. This is because even though the multiple 

routes appear to be disjoint at the attacker they may 

converge at some other intermediate node. These are 

then discarded by the source thereby ultimately foiling 

the attacker�s goal.  
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Figure 10: Average number of node-disjoint paths in 

ideal case, AODVM, and LSR 

8. Conclusion 

We have presented a distributed protocol, called 

DICAS, for detection, diagnosis, and isolation of nodes 

launching control attacks, such as, wormhole, Sybil, 

rushing, sinkhole, and replay attacks. DICAS uses local 

monitoring to detect control traffic misbehavior, and 

local response to diagnose and isolate the suspect 

nodes. We analyze the security guarantees of DICAS 

and show its ability to handle control attacks through a 

representative set of these attacks. We present a 

coverage analysis and find the probability of false 

alarm and missed detection. The overhead analysis 

shows that DICAS is a good choice for securing 

resource constrained sensor networks. On top of 

DICAS, we build a secure lightweight routing protocol, 

called LSR, which also supports node-disjoint path 

discovery.  

We note that although designed for static networks, 

DICAS can potentially be extended to mobile 

networks. In mobile networks the neighborhood 

changes and therefore the neighbor discovery is 

required to be executed during the lifetime of the 

network. Therefore, the neighbor discovery protocol 

presented here cannot be secure for mobile networks. 

Note that incremental deployment of nodes is 

equivalent to a node moving to the new position and 

the situation can be handled similarly. Two existing 

protocols can be used to enable secure neighbor 

discovery in mobile wireless networks: (i) directional-

antenna-based neighbor detection [21], which uses 

the knowledge of the direction of a received packet 

and the direction of the corresponding transmission 

and  (ii) propagation delay based neighbor detection 

[22], which uses packet delay of certain control 

packets to measure the distance to a neighbor. These 

protocols, however, are not well-suited to sensor 

networks because of the non-negligible 

communication overhead and the expensive hardware. 

As future work we are investigating secure neighbor 

discovery protocols appropriate for mobile networks. 
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