CERIAS Tech Report 2005-82

RELIABLE IDENTIFICATION OF SIGNIFICANT SETS OF
EPISODES IN EVENT SEQUENCES

by Robert Gwadera
Center for Education and Research in

Information Assurance and Security,
Purdue University, West Lafayette, IN 47907-2086

RELIABLE IDENTIFICATION OF SIGNIFICANT SETS OF EPISODES IN

EVENT SEQUENCES

A Thesis
Submitted to the Faculty
of
Purdue University
by

Robert Gwadera

In Partial Fulfillment of the
Requirements for the Degree
of

Doctor of Philosophy

December 2005

TABLE OF CONTENTS

LIST OF TABLES s
LIST OF FIGURES
ABSTRACT
1 Introduction
2 Mining stream datao oo
3 Notation
4 Mining frequent episodes L
4.1 Introduction
4.2 Episodes
4.3 Algorithm for discovering frequent episodes
4.4 Episoderules
5 Finding occurrences of episodeso
5.1 Serial episode
5.2 Parallel episode
5.3 Set of serial episode
6 Mining significant episodeso
7 Identification of significant sets of episodes
7.1 Problem definition oo
7.2 Solution
7.3 Classification of episodes
7.4 Episode ranking with respect to significance
7.5 Building a model of the reference sequence

7.6 Selecting the window size to guarantee that an occurrence of an
episode is meaningful o000 Lo

11

Page

vi

Viil

8
9

10

11

11

Page

Analysis of the significance thresholds 33
Variable-length Markov model 39
9.1 Context algorithm 0. 40
9.2 Interpolated Markov model 40
9.2.1 Computing interpolation parameters 43

9.3 Change detection and a sequence of models 45
Analysis of the probability of existence of an episode 46
10.1 Single subsequence pattern 46
10.1.1 Analysis of W3 (w,e) A7
10.1.2 Algorithm for computing P (w,e) 49
10.1.3 Analysis of C2(w,m) 50
10.1.4 Analysis of P?(w,e) for 0-order Markov models 52
10.1.5 Exact solution oo 53
10.1.6 Asymptotic approximation 55
10.1.7 Fast algorithmo oo o6

10.2 Set of subsequence patterns o7
10.2.1 Set of serial episodes 59
10.2.2 Parallel episode oL 66
Experimental resultso 70
11.1 English text source 70
11.1.1 Serial episode 71
11.1.2 Upper threshold 72

11.2 Web accesses 72
11.2.1 Serial episode 73

11.3 DNA . 74

11.3.1 Full versus IMM for the same training and testing sequence . 75

11.3.2 Full versus IMM for training sequence different form testing
SEQUENICE .« . v v v e e e e e 7

11.3.3 Frequent episodes
11.4 Wal-Mart transactions
11.4.1 Parallel episode
11.4.2 Set of two serial episodes

11.4.3 Comparison of the three cases: parallel, two serial and one
serial

11.4.4 Frequency of an episode does not determine significance . . .

12 A sliding window ad hoc query answering with probabilistic guarantees . .

12.1 2D-episodes
12.1.1 Intra-stream, inter-stream constraints and an equijoin

12.2 Approximate query answering

12.3 Problem definitiono

12.4 Solutions

12.4.1 Intra-stream constraints case of Pa(w)

12.4.2 Inter-stream constraints case of Pa(w)

12.4.3 Iceberg queries Lo

12.5 Experiments

12.5.1 Intra-stream constraints

12.5.2 Intra-stream and Inter-stream constraints

12.5.3 Iceberg queries

12.5.4 Frequent parallel 2D-episodes

12.6 Stream query processing

13 Summary

LIST OF REFERENCES o ..

v

Table
10.1

10.2

11.1

LIST OF TABLES

Page
Enumeration of W3(3,2) for A = {a,b} and e = [b, a] using Theorem
10.1.1 - 0 o 49
Enumeration of W3(3,€) for A = {a,b,c,d} and € = {[a,b],[a, c|}
using G(€) from Figure 10.5 oL 64

An example of a lower-frequency episode (e3) that is more significant
than higher-frequency episodes (e; and e) 85

Figure
4.1
4.2
4.3
5.1
7.1
7.2
8.1
8.2
9.1
9.2
10.1
10.2

10.3
10.4
10.5
10.6
10.7
10.8
11.1
11.2
11.3

vi

LIST OF FIGURES

Page
A serial episode e = [a, b, ¢,d] in the graph representation 10
A parallel episode e = {a, b, c} in the graph representation 11

A set of episodes £ = {[a,b,c,d, e, f], [a,b,d,c,e, f], [a,b,d,e,c, f]} . 12

Data structure for finding occurrences of a parallel episodee 19
The upper and lower threshold 28
P3(w) and /P3(w)(1 — P?(w)) for a single subsequence pattern . . 31
Dependency due to window overlap 34
Dependency due to memory of the event sequence 34
2-order full Markov model of DNA 41
2-order variable-length Markov model of DNA 41
Graphical interpretation of the solution to W2(w,e) 49
A trie for the set of windows of length w = 4 containing e = [a, b, (|

as a subsequence 50
Inductive definition of G(E) oL 63
G(E) for & ={[a,b,[c,d]} . . .« .. 65
G(E) for & ={[a,b],[a,c]} 65
Inductive definition of Gjj(e) 67
G|(e) for e = {a,b,c} and A= {a,b,c,d} 68
G(e) for e = {a,c,c} and A= {a,b,c,d} 68
Q3(n,w) and P?(w) for a serial episode 71
Detection of injected serial episode 73

QF(n,w) and P?(w) for the web accesses 74

Figure

11.4 Prediction error d between Q3(n,w) and P3(w) for a serial episode
using a k-order full Markov models for £k = 0,1, 2,3,4,5 and 5-order
IMM .

11.5 Prediction error d between Q3(n,w) and P3(w) for a serial episode
using a k-order full Markov models for £ = 0,1,2,3,4,5 and 5-order
IMM .o

11.6 50 most frequent significant episodes and their significance rank . . .
11.7 Q3(n,w) and P?(w) for a parallel episode, using Wal-Mart data, . . .

11.8 Q3(n,w) and P3(w) for a set £ = {ey, ex} of serial episodes, using
Wal-Mart data

11.9 P3(w) for three cases: parallel, set of two serial and serial, using
Wal-Mart data

11.10 ﬁ(n, w) for three cases: parallel, set of two serial and serial, using
Wal-Mart data

vii

Page

84

12.1 A window join (a) corresponding to an occurrence of a 2D-episode (b) 90

12.2 Query corresponding to Figure 12.1

12.3 A window join (a) corresponding to an occurrence of a 2D-episode
containing only intra-stream constraints (b)

12.4 Conversion from a 2D-episode E (a) to a set of serial episodes &
represented asa trie (b)o Lo

12.5 A window join (a) corresponding to a 2D-episode containing intra-
stream and inter-stream constraints (b)

12.6 2D-episode containing intra-stream constraints

12.7 Comparison between analytic frequencies and observed frequencies
for 2D-episode from Figure 12.6

12.8 2D-episode containing intra-stream and inter-stream constraints . . .

12.9 Comparison between analytic frequencies and observed frequencies
for 2D-episode from Figure 12.8

12.10 The class of parallel 2D-episodes of length 5.

12.11 Analytic 10 most frequent parallel 2D-episodes and their actual rank

91

104

Viil

ABSTRACT

Gwadera Robert. Ph.D., Purdue University, December, 2005. Reliable Identifica-
tion of Significant Sets of Episodes in Event Sequences. Major Professors: Wojciech
Szpankowski and Mikhail Atallah.

In this thesis we present a solution to the problem of identification of significant
sets of episodes in event sequences. In order to determine the significance of an
episode in a monitored event sequence, we compare its observed frequency to its
frequency in a reference sequence. The reference sequence in our work is represented
by a variable-length Markov model of generating symbols in the reference sequence.
An episode is significant if the probability that it would have a given frequency
by chance, in the reference sequence, is very small. In order to identify significant
episodes we first show how to select the sliding window size to ensure that a discov-
ered episode is meaningful and then we show how to compute a lower threshold for
under-represented and an upper threshold for overrepresented significant episodes.
The frequency of occurrence alone is not enough to determine significance, i.e., an
infrequent episode can be more significant than a frequent one, and the significance
depends on the structure of the episode and on probabilistic characteristics of the
reference and monitored event streams. As an extension, we propose a novel method
for providing approximate answers, with probabilistic guarantees, to a class of ad
hoc sliding window queries referencing past data in data streams. The queries in
that class compute the frequency of past windows that satisfy given join conditions
among tuples in a window comprising multiple streams. To represent the join con-
ditions consisting of intra-stream and inter-stream constraints between tuples in the

window we introduce a concept of a 2D-episode.

1 INTRODUCTION

Stream data mining has been of great interest in many applications, including intru-
sion detection, alarm correlation systems in telecommunication networks, web usage
analysis and computational biology. Systems designed to mine stream data usually
involve a sliding “window of observation” within which the analysis is confined. We
are interested in patterns of activity in an event stream, which is a chronologically
ordered sequence of events (e.g., activities in a computer system, transactions in a
database, etc). The patterns of activity are specified as episodes, where an episode is
a partially ordered collection of events occurring as a subsequence within a window
of a given size. The notion of an occurrence is as a subsequence rather than as a
substring (that is, contiguity is not required), a requirement dictated by practical
considerations because (for example) an “interesting” (e.g., suspicious) sequence of
events does not have to be contiguous in the event stream. Furthermore we are in-
terested in episodes that are significant with respect to a reference sequence. There
are two special (basic) types of episodes that were defined: (1) a serial episode is
a sequence of events that occur in a specified order; (2) a parallel episode is an un-
ordered collection of events; and (3) an arbitrarily complex composite episodes can
be build from an event and/or an episode by a serial and/or a parallel composition.
Episode mining was introduced by H. Manila, H. Toivonen and I. Verkamo in their
work “Discovery of frequent episodes in event sequences” [1]. In that paper, a sliding
window was shifted a certain number of consecutive events in an event stream and
the number of windows containing at least one occurrence of an episode was counted.
Given a window size and a user defined threshold, an episode was considered to be
frequent if the fraction of windows in which it occurred, exceeded the threshold.
Then the task of mining was to discover all frequent episodes from a given class of

episodes.

This thesis solves and validates through experimental results the following fun-
damental problems: (1) selecting the sliding window size to guarantee that an oc-
currence of a set of subsequence patterns is meaningful in the sense that the set does
not occur almost surely in every window in an event sequence; and (2) identification
of significant sets of episodes with respect to a reference sequence.

The difficulty of the problem of selecting the sliding window size stems from
the fact that for an appropriately large window size any subsequence pattern will
almost surely occur in every window in an event stream because the probability of
its existence (at least one occurrence) as a subsequence in a window of a given size
will be close to one.

The difficulty of the problem of identification of significant sets of episodes stems
from the fact that the frequency of occurrence alone is not enough to determine
significance, i.e., an infrequent episode can be more significance than a frequent
one and the significance depends on the following factors: (1) the structure of the
episode; and (2) the probabilistic characteristics of the reference and the monitored
event streams. In order to decide whether a discovered episode in the monitored
event sequence is significant with respect to a reference sequence, we compare its
observed frequency to its frequency in the reference sequence. In our work the
reference sequence is represented by a a variable-length probabilistic Markov model.

There are three main challenges faced and resolved in this research. The first
is theoretical to prove that the frequency of an episode is normally distributed in
Markov sources, in order to derive a formula for significance thresholds. The second
is algorithmic to design efficient algorithms for computing the thresholds for any
combination of episode type/model of the reference sequence. Finally, the third is
experimental to find an appropriate Markov model structure and a corresponding
method of parameter estimation to ensure optimality in the sense of space/time

efficiency and prediction accuracy.

The reliability of this method for detecting significant sets of episodes stems from
the fact that it provides: (1) an analytic formula for selecting the sliding window

size; and (2) guarantees on accuracy of the threshold mechanism.

2 MINING STREAM DATA

Data mining means extracting (mining) knowledge from large amounts of data. The
term data mining is actually a misnomer since the process of gold mining from sand
is termed gold mining rater than sand mining. Therefore a more appropriate term
would be knowledge mining from data. Unfortunately this term has not been widely
accepted because of its length. Abstractly, the term mining can be associated with
a process of discovering small set of treasures (precious information) from a great
amount of raw material. In any case, the misnomer data mining become a popular
term that depending on a context, is synonymous to the more specific terms like:
knowledge mining from databases, knowledge discovery in databases, knowledge ex-
traction, data/pattern analysis. More specifically data mining is about discovering
interesting knowledge from large amount of data. Thus, the research in data mining
involves designing intelligent methods for extracting interesting data patterns given a
large amount of data from a given domain and a notion (measure) of interestingness.
There are several objective measures of interestingness that are based on the struc-
ture and statistics of discovered patterns. In general each objective interestingness
measure is associated with a threshold, which may be specified by the user. There
are also subjective measures of interestingness that are based on user beliefs and find
interesting patterns if they are unexpected or contradict user’s beliefs. Measures of
interestingness can be used in two different ways: (1) during the data mining step to
guide the discovery process improving the search efficiency by pruning away subsets
of the pattern space that do not satisfy the given interestingness constraints; or (2)
after the data mining step to rank the discovered patterns with respect to their inter-
estingness and to filter out uninteresting patterns. Thus, methods to assess pattern
interestingness, and their use to improve data mining efficiency are at the heart of

data mining research.

In this dissertation we are interested in mining patterns occurring as subsequences
in an event stream. The notion of an occurrence as a subsequence rather than as
substring (that is, contiguity is not required), is dictated by practical considerations
because (for example) an interesting (anomalous) sequence of events need not be
contiguous in the event stream. Furthermore systems designed to mine stream data
usually involve a sliding window of observation within which the analysis is confined.
This is done for two reasons: (1) the event stream is usually too long, and without
a limited window approach it would involve having to save too much state; and (2)
the event stream can be so long (e.g., in a continuously monitoring system) that
any subsequence (bad or good) would likely occur within it. As an example of the
need to confine the analysis to such a limited sliding window, note that three failed
login attempts (with failure due to wrong password) are significant if they occur
in rapid succession, but quite innocuous if they occur within a one-month interval.
In this study we do not use the notion of real calendar time such as a one month
interval, instead we use the number of events as a proxy for time. This is why our
interval length defined by the window size is not the difference between two time
stamps, but rather the size of a (contiguous) substring of the event stream. More
specifically Definition 2.0.1 summarizes the most important, considered in stream
data mining, types of occurrences of a pattern in an event sequence and Definition

2.0.2 summarizes corresponding problems in pattern matching.

Definition 2.0.1 Given a stream of symbols S = s1So ..., and a pattern
e =ees...en of length m, both over an alphabet A = {ay,as, ..., a4},
e ¢ is a substring of S if there exists an integer j such that sji; = e; for
1<i<m
e ¢ is a subsequence of S if there exist integers 1 < i1 < iy < ... < iy, Such
that s;; = e€1,S;, =€2,...,8;,, = €m

e ¢ is a w-windowed subsequence of S if e is a subsequence of S and i, —11 <

w

e ¢ is a minimal w-windowed subsequence of S if e is a w-windowed subse-

quence of S and there does not exist any sub-window of w where e occurs as a

subsequence.
Definition 2.0.2 Given a stream of symbols S = s155 ..., and a pattern
e = ejes... ey of length m, both over an alphabet A = {a1,as, ..., a4},

e the pattern matching problem is to find whether e is a substring of S

e the plain subsequence matching problem is to find whether e is a subse-

quence of S
e given moreover a window of size w

— the window-existence subsequence matching problem (WESP) is

find whether e is a w-windowed subsequence of S

— the window-accumulated subsequence matching problem (WASP)
1s to find the number of w-windows of S within which e is a w-windowed

subsequence of S.

In [2] the WESP and the WASP were defined. In [3] a probabilistic analysis of
the plain subsequence matching problem was presented. This thesis presents the

first probabilistic analysis of the WESP and the WASP.

3 NOTATION

This chapter introduces a notation that is used throughout the thesis.

We consider an infinite event sequence S = S[1]S[2]... over an alphabet A =

{a1, a9, ..., a4} and an episode o over A in one of the following forms:

1.

Single subsequence pattern (serial episode) e = [¢[1],¢[2],. .., e[m]]

Set of subsequence patterns € = {eq, e, ..., €}, where
e; = lei[1], e:]2], ..., e;lmy]] is a serial episode for 1 < i < |€] and by an occur-
rence of the set £ we mean at least one occurrence of at least one member of

£

Set of all permutations of a set of symbols e = {e[1],¢[2],...,e[m]} (parallel
episode).

We use the superscript 4 to mean “at least one occurrence as a subsequence”.

Given an event sequence S and an episode o we analyze the following quantities:

O3(n,w): the observed frequency of the episode defined as the number of
windows of size w, that contain an occurrence of the episode in the event

sequence out of n shifts of the sliding window

D(n,w) = W the observed relative frequency of the episode defined as a
fraction of windows of size w that contain an occurrence of the episode in the

event sequence out of n shifts of the sliding window

W3(w): the set of all distinct windows of size w containing an occurrence of

the episode

C3(w): the number of windows of length w containing an occurrence of the

episode (cardinality of W3 (w))

e P3(w): the probability that the episode occurs in the window of size w in
the event sequence. We call this probability the probability of existence of the
episode. Note that Q3(n,w) is an estimator of P3(w).

e 7,(w): the lower significance threshold for under-represented episodes
e 7,(w): the upper significance threshold for over-represented episodes

Whenever the episode or the event sequence are not implied we specify them explic-
itly in the formulas and use Q3(n, w, a, S), P>(w, o, S), etc.

Also we use W3 (w, my, my), P2(w, m1, msy) instead of W3 (w,) and P3(w,€) in
recursive formulas, where £ = {e1, €5} and m; = |e;|. We also occasionally use index
m; — k to mean “dropping the last k symbols of ¢;”, e.g., P3(w, m; — k, my) implies
a pattern that is the prefix of e; of length m; — k and that the second pattern is all

of es.

4 MINING FREQUENT EPISODES

4.1 Introduction

Episode mining was formally introduced by Manila, Toivonen and Verkamo as
the problem of discovering frequent episodes in event sequences [1], where an episode
was defined as a partially ordered collection of events occurring as a subsequence in
an event stream. In terms of pattern matching, in episode mining we are interested in
finding w-windowed subsequences or minimal w-windowed subsequence. The prob-
lem of episode mining was motivated by the fact that in many applications it is of
interest to discover recurrent (frequent) sets of events occurring close to each other in
an event stream. That paper considered occurrences of episodes as w-windowed sub-
sequences and minimal w-windowed subsequences in an event stream. The process
of mining episodes corresponds to the Window-Accumulated Subsequence Matching
Problem (WASP).

In frequent episode mining the interestingness of mined episodes is measured
using the frequency of an episode defined as a fraction of windows in which the
episode occurs and given a user-defined minimum frequency threshold the episode is
frequent if its frequency exceeds the threshold.

More formally, the problem of discovering frequent episodes can be expressed as

follows.

Given:
o A={ay,ay,... a4} an alphabet
e S = S[1]S[2]...: an infinite event sequence

e «: an episode

10

e w: a user defined sliding window size w

® T,n: a user defined minimum frequency threshold 7,,;,, where episode « is

frequent if @(n, w, @, S) > Tmin

e &: aclass of episodes defined as an arbitrary set of subsequence patterns (e.g.

all subsequence patterns of length m over A)

discover all frequent episodes from the given class £ of episodes.
Once the frequent episodes are discovered, they can be used to obtain rules (asso-
ciation rules) that describe relationships between events in the given event sequence.
Paper [1] defined three types of episodes: a serial episode, a parallel episode and

an arbitrarily complex composite episode.

4.2 Episodes

An episode is defined as a partially ordered collection of events occurring as a
subsequence in an event stream. Episodes can be abstractly represented as directed
acyclic graphs (DAG). Given an event stream S generating events from an alphabet

A we consider the following types of episodes:

1. Serial episode e = [e[1],e[2], ..., e[m]] is a sequence of events e[1], e[2], ..., e[m].
An occurrence of e means an occurrence of pattern e as a subsequence. In the
graph representation a serial episode corresponds to a single path from the first

event of the episode to the last one.

&—-0-60-0

Figure 4.1.: A serial episode e = [a, b, ¢, d] in the graph representation

2. Parallel episode e = {e[l],e[2],...,e[m]} is an unordered collection of events

e[l],e[2],...,e[m]. Formally, a parallel episode corresponds to the set of all

11

permutations of events of the episode. An occurrence of a parallel episode
corresponds to a logical OR of occurrences of permutations of e as a subse-
quence. Alternatively we can view an occurrence of a parallel episode e as a
logical AND of events e[l],e[2],...,e[m|. In the graph representation a par-
allel episode corresponds to a single node containing all events of the episode.
The parallel episode case captures situations where the ordering of the events
within the window of observation does not matter, e.g., the events correspond

to market basket items scanned by cashier.

(@)
&)
©

Figure 4.2.: A parallel episode e = {a, b, ¢} in the graph representation

3. Composite episode corresponds to an arbitrary DAG (AND-graph) built from
events and episodes by a serial and/or a parallel composition. A partial or-
dering implied by a composite episode corresponds to a set of serial episodes
E ={e1,ez,..., €} where e; has length m;, for 1 <4 < |£|. An occurrence of
the set £ corresponds to at least one occurrence of at least one member of the

set (a logical OR of occurrences of members of £).

4.3 Algorithm for discovering frequent episodes

Algorithm 1 from [1] computes a collection of frequent episodes F,,,(S, w, &, Tmin)
given an event sequence S, a window size w, a class of episodes £ (e.g. all parallel
episodes o length 5) and a minimum frequency threshold 7,,;,. The idea of the

algorithm is based on the idea of the Apriori algorithm [4] developed for finding

12

©
@0
@

Figure 4.3.: A set of episodes € = {la, b, c,d, e, f], [a,b,d, c,e,], [a,b,d, e, ¢, f]}

frequent itemsets in transaction databases. The name of the algorithm stems from
the fact that it uses prior knowledge of frequent itemset properties. The Apriori
algorithm employs an iterative approach called level-wise search, where it uses k-
itemsets to construct k + 1-itemsets. First it finds 1-itemsets called L; and then
it recursively uses Ly 1 to find L, requiring one full scan of the database, until no
more frequent k-itemsets can be found. The algorithm cuts the search space by using
the Apriori property (monotone property) saying that if a set is not frequent then
all its supersets cannot be frequent.

Thus, Algorithm 1 is an adaptation of the Apriori algorithm to discovering fre-
quent episodes. Similarly to frequent itemset, frequent episodes are monotone (Apri-
ori property) meaning that, if an episode is frequent in an event sequence then all its
subepisodes are frequent. Let Cj be the set of candidate episodes of length k and let
Fi. be the set of frequent episodes of length k. The two-step level-wise search that

uses the Apriori property to cut the search space is presented below.

1. Join: construct a set of candidate episodes C} by joining the set of frequent
episodes Fj_; with itself. Let Fjp_1[i] and Fr_1[j] be two members of the
set. Fi_1 such that their events are sorted lexicographically. Then we join two
elements Fj_1[i] X Fi_1[j] in order to create a valid candidate frequent episode
of length k if they share a prefix of length k — 2, i.e, if Fp_[i][l : k — 2] =
Fr—1[j][1 : k —2]. Also in order to avoid creating duplicates we require that

fkfl[i] [k — 1] < fkfl[j] [k — 1].

13

2. Prune:

(a) Apriori property check: if any k — 1-subepisode (3 of a k-episode « in Cj
is not in Lj;_; then remove « from C}.
(b) Database pass: perform a scan of the event sequence S to determine fre-

quencies of candidate episodes in C} and remove those for which the

frequency is less than the minimum threshold 7.

Algorithm 1 and its functions present a pseudocode of the algorithm for discov-

ering frequent episodes.

Algorithm 1: Discovering frequent episode
Input: S[1:n], w, &, Tmin
Output: F,,(S,w, &, Tmin)
begin

Fo=0

for k=1 tom do

Cr, = candidate EpisodeGenerate(Fy_1, Tmin)
fori=1 ton do
foreach c € C;. do
if I7(w,c) then
| Q% (w,n,c) =P (w,n,c)+1;

fk(sawagaTmin) = {C € Ck‘% > Tmin}

end

14

Function candidateEpisodeGenerate(Fi_1, Tinin)
Input: Fi_1, Thin
Output: C;
begin

for i =1 to |F;_1| do
for j =1 to |Fr_1| do
if Fral][l:k—2]=Fralj][l: k—2] and
Frali][k — 1] < Fr_a[jl[k — 1] then
¢ = Frali] X Fpa[j];
if not hasInfrequentSubset(c, Fi_1) then
| Cr=CrUc;

return Cy;

end

Function hasInfrequentSubset (¢, Fj_1)
Input: ¢, F,_1
Output: TRUFE or FALSE
begin

foreach e € (k — 1)-subset of ¢ do
if e ¢ Fj_1 then
| return TRUE;

return FALSE;

end

4.4 Episode rules

The knowledge of frequent episodes can be used to find associations between
events in an event stream called episode rules. Formally, episode rules are implica-

tions of the form

15

g = a [cs,uw]

where (3 is a subepisode of «, ¢ = confidence(f = «) and s = support(f = «)

defined as follows

support(f = «a) = P(fNa)

confidence(f = a) = P(a|f)
P(BNa)
P(B)

Depending on the type of frequent episode e the implications are of the form

1. e=el[l]e[2]...elk]...e[m] is serial

2. e ={e[l],e[2],...,e[m]} is parallel
6 = «
where o, €eand anNpg =10

As an example rule, consider a frequent serial episode rule home,people =
faculty [0.2,00.5,30] from the log file of the web server of Department of Com-
puter Science at Purdue University. The rule says that if the home page is accessed
followed by the people page then in 20% the faculty page is accessed within a win-
dow of 30 seconds and this activity establishes 5% of the windows of length 30 in
the log file.

Algorithm 2 presents a pseudocode of the algorithm for computing episode rules.

16

Algorithm 2: Computation of episode rules

Input: ¢, Fi(S, w, Tpmin), minimumCon fidence
Output: R set of episode rules
begin

foreach a € Fy (S, w, Tnin) do

foreach (3 € subepisodes of a do

if ;:ZZEZ% > minimumCon fidence then
L R=RUB= «a [ZZEZ) , frequency(a), w

end

17

5 FINDING OCCURRENCES OF EPISODES

This chapter reviews algorithms for computing Q7(n, w) given an event sequence S,

a window size w and an episode.

5.1 Serial episode

This section presents the standard dynamic programming algorithm for finding
0(n,w) for a single subsequence pattern e = [e[1],e[2],...e[m]] [2]. The idea of
the algorithm is based on the definition of an occurrence of a serial episode as a
subsequence within a w-window as presented in Definition 2.0.1. Thus, first the
algorithm recognizes an occurrence of e as a subsequence in S and then is checks
whether the occurrence falls withing the w-window. The algorithm maintains an
array Q[1 : m| such that Q[j] is the starting position of the most recent occurrence
of the substring e[l : j] in S. This means that if Q[j] = 4,7 # 0 then there is
an occurrence of e[l : j] starting at position ¢ in S. Thus, if i — Q[m] < m then
the occurrence falls within the w-window. The time complexity of this algorithm
is O(mn) since at every position 7 in S, in the worst case, it needs to update all
entries in). As an improvement of this algorithm one could use a search structure
(a tree or a hash table) for finding the proper elements of @) given an input symbol
S[i]. Also, since i is of length log(n) one could store in @[j] the distance between
the current position and the starting position of the most recent occurrence of e[l]
giving log(w) instead of log(n). Algorithm 3 presents a pseudocode of the described
algorithm.

18

Algorithm 3: Computation of Q7(n,w) for a serial episode e[l : m] in an event

sequence S|[1 : n]

Input: S[1:n], e[l :m], w
Output: Q°(n,w)
begin

for j =1 to m do
| QL] =0;
3 (n, w) = 0;
for =1 ton do
if S[i] == e[1] then
L QM =4
for j = 2 to m do
if S[i] == e[j] then
L L QU =@l —1;
if i — Q[m] < w then
| @ (n,w) = (n,w) +1;

end

5.2 Parallel episode

This section presents our algorithm for finding Q°(n,w) for a parallel episode
e = {e[l],e[2]...e[m]} [5]. The main advantage of the algorithm presented in this
section with comparison to the algorithm in [1] is that our algorithm: (1) can compute
occurrences for all window sizes in one pass; (2) computes the minimal occurrences;
(3) computes occurrences when instead of a window of size w we associate a time to
live ttl with each symbol of the pattern e; and (4) the space required by the data
structure is independent of the window length w.

Let ¢ = {€'[1],€/[2],...€[m']} be a set of cardinality m’ obtained from e by

eliminating duplicates and then sorting it. Let ¢; for i = 1,2...m’ be the number of

19

times an alphabet symbol €'[i] occurs in e. We build a binary tree over symbols in

¢’ as leaves. Figure 5.1 shows the tree. Each node in the tree contains the usual tree

1] ¢[2] im’

1] e’'[m’]
(i (i (i T
1] t2] t[ed] 1] t[2] t[e2] t1] t2] tlemr 1] 1] 2] tlem]

Figure 5.1.: Data structure for finding occurrences of a parallel episode e

pointers: parent, lchild, rchild and a search key interval [S,in, Smaz| Where Sy, is
the smallest key in the subtree and s,,,4, is the largest key in the subtree. In addition,

depending on its type a node keeps the following specific information:

e root: t an event counter, counts the number of elapsed (scanned) events, where

by “time” we mean the position in the event sequence
e internal node:
— tmin the minimum time of the arrival for the subtree rooted at this node
e leaf node:

— search key value s;

— dlist: doubly linked list containing one element for each symbol ¢'[7] in the
pattern e. The purpose of the list is to keep track of the most recent occur-
rences of the symbol €'[i] sorted by arrival times. Let t[][1], t[¢][2] . . . t[i][c;]
for i = 1,2...m' be the times of the occurrence of symbol €'[i] from
the left to the right in the list then they must satisfy the condition
tli][j] < tli]lj + 1] for j = 1,...¢; — 1. So the leftmost element of the
list contains the oldest occurrence of €'[i] and the rightmost element con-

tains the most recent occurrence of €'[q].

20

The tree supports the following operations:

e update(s): when a new symbol s arrives the time ¢ is incremented by one
and the search tree structure is used to find the proper leaf. If the search finds
leaf €'[i] then the leftmost element of the doubly linked list with time ¢[4][1] is
removed and a new element with the current time ¢ is attached to the right
end of the list. Once the new element is attached to the list the time of the
leftmost element, as the oldest one, is propagated up the tree as long as it is
smaller then t,,;, of the internal node on the path to the root. This operation

takes log(m) time (the height of the tree).

e exists: if t —t,,;, + 1 < w at the root node then at least one permutation of

e occurs as a subsequence within the window. This operation takes O(1).

Algorithm 4 presents a pseudocode for finding Q7 (n, w) using the presented tree data

structure.

Algorithm 4: Tree based algorithm for finding occurrences of a parallel episode

input : S[1:n], e[l :m], w
output: Q7(n, w)
begin

03 (n,w) = 0;

tree.build(S);

fori=1 ton do
tree.update(Ti]);
if tree.exists then

| Q¥ (n,w) = ¥ (n,w) + 1,

end

The time complexity for finding Q7 (n, w) is O(nlogm) because we perform n calls
to update(s), each requiring O(logm). The space is determined by the number of

nodes in the tree, which is O(m). The presented tree structure can also handle a

21

problem when instead of a window of size w we associate a time to live ttl with
each symbol of the pattern e. In such a case each leaf stores the expiration time
expt = t+ttl and the each internal node stores the minimum expiration time expt,,;,
in its subtree. Operation update(s) remains the same and exists returns true if
exptmin > t at the root node. The presented data structure can be extended to

handle multiple parallel episodes (details are omitted).

5.3 Set of serial episode

This section presents an algorithm for finding Q7 (n, w) for a set of serial episodes
E = {e1,es,...,¢} [6]. This algorithm is a generalization of Algorithm 3 to an
arbitrary set of serial episodes. We could use |€| instances of the Algorithm 3 inde-
pendently but it would be inefficient since some of the members of £ could potentially
share the same prefix. Therefore we build a trie T" from members of £ and combine
the computation of the nodes that depend on the common prefixes. The result is a
significant saving in computational cost if there are many common prefixes. Algo-

rithm 5 presents a pseudocode of the presented algorithm, where
e T.root is the root of the trie
e for each node € T' we have

— node.parent is the parent
— node.child is the list of children

— node.v is the starting position in S of the most recent occurrence of the

substring ending at node

node.s is the symbol associated with the node
e waits(c) is a list of nodes waiting for symbol ¢

e [eaf is the list of leaves in lexicographic order.

22

It is easy to see that Algorithm 5 reduces to Algorithm 3 if the trie T" consists of a
single path.

Algorithm 5: Computation of Q°(n,w) for a set of serial episodes represented
as a trie "= (V, F) in an event sequence S[1 : n]

Input: S[1:n], T =(V,E), w

Output: Q7 (n,w)

begin

foreach node € T do
| node.v = 0;

Q7 (n, w) = 0;
forv=1 ton do
for j =1 to |T.root.child| do
if T.root.child[j].s = S[i] then
\; | T.root.child[j].v = i;
for j =1 to |waits(S[i])| do
| waits(S[i])[j].v = waits(S[i])[j].parent.v;
for j =1 to |T.leaf]j]| do
if i — T'leaf[j]l.v < w then
DP(n,w) = P(n,w) + 1;
\; break;

end

23

6 MINING SIGNIFICANT EPISODES

Given a class of episodes, a window of size w, an event sequence S and a minimum
frequency threshold, the problem of discovering frequent episodes was defined as
finding all episodes from the class, whose frequency is above the minimum frequency
threshold [1]. A class of episodes may be specified as an arbitrary set of subsequence
patterns. In many applications it is of interest to define a class of episodes as a set
of disjoint sets of subsequence patterns, and the task is then to find all sets of sub-
sequence patterns that exceed the minimum frequency threshold. As an example of
such an application consider approximate subsequence matching where an approx-
imate occurrence of a subsequence pattern means an occurrence of a member of a
set of subsequence patterns that are similar in an approximate sense to the subse-
quence pattern. Then the problem is to find frequent subsequence patterns in terms
of approximate occurrences.

Episode mining was used in many applications including: intrusion detection
[7-10], alarm correlation systems in telecommunication networks [11], web usage
analysis and computational biology [12]. However, there were reports that episode
mining tends to produce a large number of meaningless or redundant patterns (see,
e.g., [8]).

Therefore, in this thesis we address the fundamental problem of identification
of significant sets of episodes. The solution to this problem involves a solution to
the following two problems: (1) selecting the sliding window size to guarantee that
an occurrence of a set of subsequence patterns is meaningful in the sense that the
set does not occur almost surely in every window in an event sequence; and (2)
identification of significant sets of episodes with respect to a reference sequence.
Thus, in order to identify a significant episode one has to make sure it is meaningful.

Clearly every significant episode is meaningful, but the reverse is not true. The

24

reason that episode mining may produce a large number of redundant patterns is
the fact that depending on the probabilistic characteristic of the event stream a serial
episode and many of its permutations may have the same probability of existence.

The problem of selecting the sliding window size to guarantee that an occurrence
of a set of episodes is meaningful goes beyond episode mining, and concerns all as-
pects of information extraction using the sliding window approach that is extensively
used in stream query processing and security applications. The problem stems from
the fact that for an appropriately large window size any subsequence pattern will
almost surely occur in every window in an event stream because the probability of its
existence (at least one occurrence) as a subsequence in a window of a given size will
be close to one. Consequences of too large a window size may include a needlessly
high computational cost of executing a continuous multi stream window join query
that satisfies a join condition for every shift of the window [13] and the generation
of many false alarms in a monitoring system. We solve the problem of selecting the
sliding window size by providing an analytical formula for the probability of existence
for an arbitrary set of subsequence patterns that uses a variable-length probabilistic
Markov model of the event stream.

Recall that a k-order variable-length Markov model is a Markov model where the
contexts (memory) are allowed to be of variable length. Such reduced models are also
called tree models since they can be represented by a context tree that can range from
a full tree for an ordinary k-order Markov model to an empty tree for 0O-order Markov
model (memoryless model). The attractiveness of tree models stems from the fact
that they provide a sparse representation of a sequence by reducing the number of
parameters to be estimated since for real-life data the actual memory length varies.
Furthermore they can be efficiently learned while monitoring the sequence. The
variable-length Markov models are in details discussed in Chapter 9.

The problem of identification of significant sets of episodes is motivated by appli-
cations where there is a notion of a normal (reference) event stream, in which case

it is of interest to discover significant deviations from the normal behavior. Accord-

25

ing to this notion an episode is significant if the probability that it would occur by
chance a specific number of times, in the reference event stream, is very small. Note
that the frequency of occurrence alone is not enough to determine significance, i.e.,
an infrequent episode can be more significance than a frequent one and the signif-
icance depends on the following factors: (1) the structure of the episode; and (2)
the probabilistic characteristics of the reference and the monitored event streams.
In general, while monitoring an event stream there are three phenomena that could

make an anomaly with respect to the reference sequence:

1. Foreign symbol: a symbol not found in the reference event stream

2. Under-represented episode: an episode that is too infrequent in the monitored

event stream

3. Qver-represented episode: an episode that is too frequent in the monitored

event stream

Detection of an anomaly caused by an occurrence of a foreign symbol is straight-
forward. More difficult is the problem of discovering over-represented and under-
represented episodes, which is the topic of our work. We solve the problem of
identification of significant sets of episodes by providing analytical formulas for sig-
nificance thresholds for under-represented and over-represented episodes, using a
variable-length probabilistic Markov model as a model of the reference stream. The
advantage of a probabilistic Markov model of the reference sequence, over profiles of
normal behavior in a form of frequent episodes [7], is that the Markov model allows
answering queries referring to arbitrary episodes in the reference sequence, and also
provides a sparse summarization of the reference sequence. The ability to compute
the frequency of an arbitrary episode in the reference sequence is particularly needed
in episode mining where we discover a collection of frequent episodes and can com-
pute their significance “on the fly”. Furthermore such a probabilistic model can be
conveniently built “by hand” using expert knowledge. Thus, given a collection of

discovered frequent episodes, from a given class and using a given window size, we

26

identify significant episodes in a two step process where we first filter out meaningless
episodes by computing their probability of existence, and then we identify significant
episodes using the thresholds.

This process efficiently removes all irrelevant subsequence patterns that may be
discovered in the standard frequent episode mining algorithm as reported in [§].
Applications of the significance thresholds include intrusion detection and computa-
tional biology. An over-represented episode in a particular segment of DNA with re-
spect to a model may suggest a biological function and an under-represented episode
may suggest a vulnerability to certain diseases.

The significance thresholds for episodes can be viewed as an analogy to the 2
significance test for market basket item sets [14], where given an itemset and a
confidence level «, the test computes the y? statistic to assess a deviation between
actual frequencies of subitemsets of the itemset and their expected values assuming
independence of the items. Thus, the reference model was a memoryless model, and

if x? > x2 the itemset was significant, meaning the items were dependent.

27

7 IDENTIFICATION OF SIGNIFICANT SETS OF EPISODES

This chapter presents the definitions and solutions without derivations that are given

in Chapters 8 and 10.

7.1 Problem definition

The problem of identification of significant sets of episodes in an even sequence

S can be stated as follows. Given:

e a variable-length Markov model M with parameter set ©(M) of a reference

event sequence
° ﬁ(n, w): observed frequency of a set of episodes
e 3(b): a target (user defined) significance level (e.g., 3(b) = 107°),

is the set of episodes significant with respect to the reference sequences. In other
words the question is what is the upper threshold 7,(w) and the lower threshold
7o(w) such that if Q3(n, w) ¢ [r(w), 7,(w)] then the episode is significant at the level
B(b), ie., P(QP(n,w) > 7,(w)) < B(b) and P(Q3(n,w) < m(w)) < B(b)?

7.2 Solution

In chapter 8 we prove that if an event sequence is generated by a Markov chain

X that satisfies the following conditions:
1. X has finite state space; and

2. X is irreducible and aperiodic;

28

then Q3(n,w) satisfies the central limit theorem in that sequence leading to the

following formulas for the thresholds:

ru(w) = PA(w)+by/PIw)(1 - P(w))

m(w) = P3w)—by/P3(w)(1 — P3(w)) (7.1)
Bo) = \/%fbooe%dt

The graphical representation of the thresholds is presented in Figure 7.1.

0.4

0.35F

0.3

0.25F

0.2

0.15

0.05

Figure 7.1.: The upper and lower threshold

The difficulty of efficiently computing P?(w) stems from the fact that the struc-
ture of the tree model (variable-length Markov model) of the stream can range from
a full tree, through a sparse tree, to the empty tree (see Chapter 9 for a review on

the variable-length Markov models).

29

7.3 Classification of episodes

Civen an episode with observed frequency Q2(n,w) and a significance level 3(b),
the episode can be classified using the upper threshold 7,(w) and the lower threshold

To(w) as follows:

o meaningless: if Q3(n,w) ~ 1 and P?(w) ~ 1, i.e., the window size w is too

large
e significant:

— if Q3(n,w) > 7,(w) for over-represented episodes, i.e, P(Q3(n,w) >
Tu(w)) < 5(D)
— if Q3(n,w) < 7(w) for under-represented episodes, i.e, P(Q3(n,w) <

e(w)) < B(b)

e normal: if Q3(n,w) € [m(w), Ty (w)]

7.4 Episode ranking with respect to significance

Given a collection of episodes C (e.g., frequent episodes) discovered in S, we rank
the episodes with respect to significance by finding a maximum b(e) (called b(€)maz)

for every episode e € C such that for that episode:

o Q3(n,w) > 7,(w), where B(b(€)maz) = P(QE(n, w) > 7,(w)) for over-represented

episodes

o Q3 (n,w) < 7(w), where B(b(€)maz) = P(QF(n, w) < 7,(w)) for under-represented

episodes

and then we sort the episodes according to b,qz-

30

7.5 Building a model of the reference sequence

Depending on whether a model M and parameters ©(M) are given prior to
monitoring the event sequence S, we can distinguish the following cases according

to their consequences for our method:

1. M and ©(M) are given in which case the thresholds detect a significant devi-
ation from both M and ©(M)

2. M is given but ©(M) is estimated while monitoring S in which case the thresh-

olds detect a significant deviation from M

3. M is not given and we can build M and ©(M) while monitoring S in which
case the thresholds detect outliers with respect to M and ©(M).

7.6 Selecting the window size to guarantee that an occurrence of an episode is

meaningful

Given an event sequence S that is generated by a Markov chain that has finite
state and is irreducible and aperiodic, an occurrence