
CERIAS Tech Report 2005-82

RELIABLE IDENTIFICATION OF SIGNIFICANT SETS OF
EPISODES IN EVENT SEQUENCES

by Robert Gwadera

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

RELIABLE IDENTIFICATION OF SIGNIFICANT SETS OF EPISODES IN

EVENT SEQUENCES

A Thesis

Submitted to the Faculty

of

Purdue University

by

Robert Gwadera

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2005

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . v

LIST OF FIGURES . vi

ABSTRACT . viii

1 Introduction . 1

2 Mining stream data . 4

3 Notation . 7

4 Mining frequent episodes . 9

4.1 Introduction . 9

4.2 Episodes . 10

4.3 Algorithm for discovering frequent episodes 11

4.4 Episode rules . 14

5 Finding occurrences of episodes . 17

5.1 Serial episode . 17

5.2 Parallel episode . 18

5.3 Set of serial episode . 21

6 Mining significant episodes . 23

7 Identification of significant sets of episodes 27

7.1 Problem definition . 27

7.2 Solution . 27

7.3 Classification of episodes . 29

7.4 Episode ranking with respect to significance 29

7.5 Building a model of the reference sequence 30

7.6 Selecting the window size to guarantee that an occurrence of an
episode is meaningful . 30

iii

Page

8 Analysis of the significance thresholds . 33

9 Variable-length Markov model . 39

9.1 Context algorithm . 40

9.2 Interpolated Markov model . 40

9.2.1 Computing interpolation parameters 43

9.3 Change detection and a sequence of models 45

10 Analysis of the probability of existence of an episode 46

10.1 Single subsequence pattern . 46

10.1.1 Analysis of W∃(w, e) . 47

10.1.2 Algorithm for computing P ∃(w, e) 49

10.1.3 Analysis of C∃(w, m) . 50

10.1.4 Analysis of P ∃(w, e) for 0-order Markov models 52

10.1.5 Exact solution . 53

10.1.6 Asymptotic approximation 55

10.1.7 Fast algorithm . 56

10.2 Set of subsequence patterns . 57

10.2.1 Set of serial episodes . 59

10.2.2 Parallel episode . 66

11 Experimental results . 70

11.1 English text source . 70

11.1.1 Serial episode . 71

11.1.2 Upper threshold . 72

11.2 Web accesses . 72

11.2.1 Serial episode . 73

11.3 DNA . 74

11.3.1 Full versus IMM for the same training and testing sequence . 75

11.3.2 Full versus IMM for training sequence different form testing
sequence . 77

iv

Page

11.3.3 Frequent episodes . 77

11.4 Wal-Mart transactions . 80

11.4.1 Parallel episode . 80

11.4.2 Set of two serial episodes . 80

11.4.3 Comparison of the three cases: parallel, two serial and one
serial . 82

11.4.4 Frequency of an episode does not determine significance . . . 84

12 A sliding window ad hoc query answering with probabilistic guarantees . . 86

12.1 2D-episodes . 88

12.1.1 Intra-stream, inter-stream constraints and an equijoin 89

12.2 Approximate query answering . 90

12.3 Problem definition . 93

12.4 Solutions . 93

12.4.1 Intra-stream constraints case of P ∃
�
(w) 94

12.4.2 Inter-stream constraints case of P ∃
�
(w) 95

12.4.3 Iceberg queries . 97

12.5 Experiments . 99

12.5.1 Intra-stream constraints . 100

12.5.2 Intra-stream and Inter-stream constraints 100

12.5.3 Iceberg queries . 102

12.5.4 Frequent parallel 2D-episodes 103

12.6 Stream query processing . 103

13 Summary . 107

LIST OF REFERENCES . 109

VITA . 112

v

LIST OF TABLES

Table Page

10.1 Enumeration of W∃(3, 2) for A = {a, b} and e = [b, a] using Theorem
10.1.1 . 49

10.2 Enumeration of W∃(3, E) for A = {a, b, c, d} and E = {[a, b], [a, c]}
using G(E) from Figure 10.5 . 64

11.1 An example of a lower-frequency episode (e3) that is more significant
than higher-frequency episodes (e2 and e1) 85

vi

LIST OF FIGURES

Figure Page

4.1 A serial episode e = [a, b, c, d] in the graph representation 10

4.2 A parallel episode e = {a, b, c} in the graph representation 11

4.3 A set of episodes E = {[a, b, c, d, e, f], [a, b, d, c, e, f], [a, b, d, e, c, f]} . 12

5.1 Data structure for finding occurrences of a parallel episode e 19

7.1 The upper and lower threshold . 28

7.2 P ∃(w) and
√

P ∃(w)(1 − P ∃(w)) for a single subsequence pattern . . 31

8.1 Dependency due to window overlap 34

8.2 Dependency due to memory of the event sequence 34

9.1 2-order full Markov model of DNA 41

9.2 2-order variable-length Markov model of DNA 41

10.1 Graphical interpretation of the solution to W∃(w, e) 49

10.2 A trie for the set of windows of length w = 4 containing e = [a, b, c]
as a subsequence . 50

10.3 Inductive definition of G(E) . 63

10.4 G(E) for E = {[a, b], [c, d]} . 65

10.5 G(E) for E = {[a, b], [a, c]} . 65

10.6 Inductive definition of G‖(e) . 67

10.7 G‖(e) for e = {a, b, c} and A = {a, b, c, d} 68

10.8 G‖(e) for e = {a, c, c} and A = {a, b, c, d} 68

11.1 Ω∃(n, w) and P ∃(w) for a serial episode 71

11.2 Detection of injected serial episode 73

11.3 Ω∃(n, w) and P ∃(w) for the web accesses 74

vii

Figure Page

11.4 Prediction error d between Ω∃(n, w) and P ∃(w) for a serial episode
using a k-order full Markov models for k = 0, 1, 2, 3, 4, 5 and 5-order
IMM . 76

11.5 Prediction error d between Ω∃(n, w) and P ∃(w) for a serial episode
using a k-order full Markov models for k = 0, 1, 2, 3, 4, 5 and 5-order
IMM . 78

11.6 50 most frequent significant episodes and their significance rank . . . 79

11.7 Ω∃(n, w) and P ∃(w) for a parallel episode, using Wal-Mart data . . . 81

11.8 Ω∃(n, w) and P ∃(w) for a set E = {e1, e2} of serial episodes, using
Wal-Mart data . 82

11.9 P ∃(w) for three cases: parallel, set of two serial and serial, using
Wal-Mart data . 83

11.10 Ω∃(n, w) for three cases: parallel, set of two serial and serial, using
Wal-Mart data . 84

12.1 A window join (a) corresponding to an occurrence of a 2D-episode (b) 90

12.2 Query corresponding to Figure 12.1 91

12.3 A window join (a) corresponding to an occurrence of a 2D-episode
containing only intra-stream constraints (b) 95

12.4 Conversion from a 2D-episode E (a) to a set of serial episodes E
represented as a trie (b) . 97

12.5 A window join (a) corresponding to a 2D-episode containing intra-
stream and inter-stream constraints (b) 98

12.6 2D-episode containing intra-stream constraints 100

12.7 Comparison between analytic frequencies and observed frequencies
for 2D-episode from Figure 12.6 . 101

12.8 2D-episode containing intra-stream and inter-stream constraints . . . 101

12.9 Comparison between analytic frequencies and observed frequencies
for 2D-episode from Figure 12.8 . 102

12.10 The class of parallel 2D-episodes of length 5 103

12.11 Analytic 10 most frequent parallel 2D-episodes and their actual rank 104

viii

ABSTRACT

Gwadera Robert. Ph.D., Purdue University, December, 2005. Reliable Identifica-
tion of Significant Sets of Episodes in Event Sequences. Major Professors: Wojciech
Szpankowski and Mikhail Atallah.

In this thesis we present a solution to the problem of identification of significant

sets of episodes in event sequences. In order to determine the significance of an

episode in a monitored event sequence, we compare its observed frequency to its

frequency in a reference sequence. The reference sequence in our work is represented

by a variable-length Markov model of generating symbols in the reference sequence.

An episode is significant if the probability that it would have a given frequency

by chance, in the reference sequence, is very small. In order to identify significant

episodes we first show how to select the sliding window size to ensure that a discov-

ered episode is meaningful and then we show how to compute a lower threshold for

under-represented and an upper threshold for overrepresented significant episodes.

The frequency of occurrence alone is not enough to determine significance, i.e., an

infrequent episode can be more significant than a frequent one, and the significance

depends on the structure of the episode and on probabilistic characteristics of the

reference and monitored event streams. As an extension, we propose a novel method

for providing approximate answers, with probabilistic guarantees, to a class of ad

hoc sliding window queries referencing past data in data streams. The queries in

that class compute the frequency of past windows that satisfy given join conditions

among tuples in a window comprising multiple streams. To represent the join con-

ditions consisting of intra-stream and inter-stream constraints between tuples in the

window we introduce a concept of a 2D-episode.

1

1 INTRODUCTION

Stream data mining has been of great interest in many applications, including intru-

sion detection, alarm correlation systems in telecommunication networks, web usage

analysis and computational biology. Systems designed to mine stream data usually

involve a sliding “window of observation” within which the analysis is confined. We

are interested in patterns of activity in an event stream, which is a chronologically

ordered sequence of events (e.g., activities in a computer system, transactions in a

database, etc). The patterns of activity are specified as episodes, where an episode is

a partially ordered collection of events occurring as a subsequence within a window

of a given size. The notion of an occurrence is as a subsequence rather than as a

substring (that is, contiguity is not required), a requirement dictated by practical

considerations because (for example) an “interesting” (e.g., suspicious) sequence of

events does not have to be contiguous in the event stream. Furthermore we are in-

terested in episodes that are significant with respect to a reference sequence. There

are two special (basic) types of episodes that were defined: (1) a serial episode is

a sequence of events that occur in a specified order; (2) a parallel episode is an un-

ordered collection of events; and (3) an arbitrarily complex composite episodes can

be build from an event and/or an episode by a serial and/or a parallel composition.

Episode mining was introduced by H. Manila, H. Toivonen and I. Verkamo in their

work “Discovery of frequent episodes in event sequences” [1]. In that paper, a sliding

window was shifted a certain number of consecutive events in an event stream and

the number of windows containing at least one occurrence of an episode was counted.

Given a window size and a user defined threshold, an episode was considered to be

frequent if the fraction of windows in which it occurred, exceeded the threshold.

Then the task of mining was to discover all frequent episodes from a given class of

episodes.

2

This thesis solves and validates through experimental results the following fun-

damental problems: (1) selecting the sliding window size to guarantee that an oc-

currence of a set of subsequence patterns is meaningful in the sense that the set does

not occur almost surely in every window in an event sequence; and (2) identification

of significant sets of episodes with respect to a reference sequence.

The difficulty of the problem of selecting the sliding window size stems from

the fact that for an appropriately large window size any subsequence pattern will

almost surely occur in every window in an event stream because the probability of

its existence (at least one occurrence) as a subsequence in a window of a given size

will be close to one.

The difficulty of the problem of identification of significant sets of episodes stems

from the fact that the frequency of occurrence alone is not enough to determine

significance, i.e., an infrequent episode can be more significance than a frequent

one and the significance depends on the following factors: (1) the structure of the

episode; and (2) the probabilistic characteristics of the reference and the monitored

event streams. In order to decide whether a discovered episode in the monitored

event sequence is significant with respect to a reference sequence, we compare its

observed frequency to its frequency in the reference sequence. In our work the

reference sequence is represented by a a variable-length probabilistic Markov model.

There are three main challenges faced and resolved in this research. The first

is theoretical to prove that the frequency of an episode is normally distributed in

Markov sources, in order to derive a formula for significance thresholds. The second

is algorithmic to design efficient algorithms for computing the thresholds for any

combination of episode type/model of the reference sequence. Finally, the third is

experimental to find an appropriate Markov model structure and a corresponding

method of parameter estimation to ensure optimality in the sense of space/time

efficiency and prediction accuracy.

3

The reliability of this method for detecting significant sets of episodes stems from

the fact that it provides: (1) an analytic formula for selecting the sliding window

size; and (2) guarantees on accuracy of the threshold mechanism.

4

2 MINING STREAM DATA

Data mining means extracting (mining) knowledge from large amounts of data. The

term data mining is actually a misnomer since the process of gold mining from sand

is termed gold mining rater than sand mining. Therefore a more appropriate term

would be knowledge mining from data. Unfortunately this term has not been widely

accepted because of its length. Abstractly, the term mining can be associated with

a process of discovering small set of treasures (precious information) from a great

amount of raw material. In any case, the misnomer data mining become a popular

term that depending on a context, is synonymous to the more specific terms like:

knowledge mining from databases, knowledge discovery in databases, knowledge ex-

traction, data/pattern analysis. More specifically data mining is about discovering

interesting knowledge from large amount of data. Thus, the research in data mining

involves designing intelligent methods for extracting interesting data patterns given a

large amount of data from a given domain and a notion (measure) of interestingness.

There are several objective measures of interestingness that are based on the struc-

ture and statistics of discovered patterns. In general each objective interestingness

measure is associated with a threshold, which may be specified by the user. There

are also subjective measures of interestingness that are based on user beliefs and find

interesting patterns if they are unexpected or contradict user’s beliefs. Measures of

interestingness can be used in two different ways: (1) during the data mining step to

guide the discovery process improving the search efficiency by pruning away subsets

of the pattern space that do not satisfy the given interestingness constraints; or (2)

after the data mining step to rank the discovered patterns with respect to their inter-

estingness and to filter out uninteresting patterns. Thus, methods to assess pattern

interestingness, and their use to improve data mining efficiency are at the heart of

data mining research.

5

In this dissertation we are interested in mining patterns occurring as subsequences

in an event stream. The notion of an occurrence as a subsequence rather than as

substring (that is, contiguity is not required), is dictated by practical considerations

because (for example) an interesting (anomalous) sequence of events need not be

contiguous in the event stream. Furthermore systems designed to mine stream data

usually involve a sliding window of observation within which the analysis is confined.

This is done for two reasons: (1) the event stream is usually too long, and without

a limited window approach it would involve having to save too much state; and (2)

the event stream can be so long (e.g., in a continuously monitoring system) that

any subsequence (bad or good) would likely occur within it. As an example of the

need to confine the analysis to such a limited sliding window, note that three failed

login attempts (with failure due to wrong password) are significant if they occur

in rapid succession, but quite innocuous if they occur within a one-month interval.

In this study we do not use the notion of real calendar time such as a one month

interval, instead we use the number of events as a proxy for time. This is why our

interval length defined by the window size is not the difference between two time

stamps, but rather the size of a (contiguous) substring of the event stream. More

specifically Definition 2.0.1 summarizes the most important, considered in stream

data mining, types of occurrences of a pattern in an event sequence and Definition

2.0.2 summarizes corresponding problems in pattern matching.

Definition 2.0.1 Given a stream of symbols S = s1s2 . . ., and a pattern

e = e1e2 . . . em of length m, both over an alphabet A = {a1, a2, . . . , a|A|},

• e is a substring of S if there exists an integer j such that sj+i = ei for

1 ≤ i ≤ m

• e is a subsequence of S if there exist integers 1 ≤ i1 < i2 < . . . < im such

that si1 = e1, si2 = e2, . . . , sim = em

• e is a w-windowed subsequence of S if e is a subsequence of S and im−i1 <

w

6

• e is a minimal w-windowed subsequence of S if e is a w-windowed subse-

quence of S and there does not exist any sub-window of w where e occurs as a

subsequence.

Definition 2.0.2 Given a stream of symbols S = s1s2 . . ., and a pattern

e = e1e2. . . em of length m, both over an alphabet A = {a1, a2, . . . , a|A|},

• the pattern matching problem is to find whether e is a substring of S

• the plain subsequence matching problem is to find whether e is a subse-

quence of S

• given moreover a window of size w

– the window-existence subsequence matching problem (WESP) is

find whether e is a w-windowed subsequence of S

– the window-accumulated subsequence matching problem (WASP)

is to find the number of w-windows of S within which e is a w-windowed

subsequence of S.

In [2] the WESP and the WASP were defined. In [3] a probabilistic analysis of

the plain subsequence matching problem was presented. This thesis presents the

first probabilistic analysis of the WESP and the WASP.

7

3 NOTATION

This chapter introduces a notation that is used throughout the thesis.

We consider an infinite event sequence S = S[1]S[2] . . . over an alphabet A =

{a1, a2, . . . , a|A|} and an episode α over A in one of the following forms:

1. Single subsequence pattern (serial episode) e = [e[1], e[2], . . . , e[m]]

2. Set of subsequence patterns E = {e1, e2, . . . , e|E|}, where

ei = [ei[1], ei[2], . . . , ei[mi]] is a serial episode for 1 ≤ i ≤ |E| and by an occur-

rence of the set E we mean at least one occurrence of at least one member of

E

3. Set of all permutations of a set of symbols e = {e[1], e[2], . . . , e[m]} (parallel

episode).

We use the superscript ∃ to mean “at least one occurrence as a subsequence”.

Given an event sequence S and an episode α we analyze the following quantities:

• Ω∃(n, w): the observed frequency of the episode defined as the number of

windows of size w, that contain an occurrence of the episode in the event

sequence out of n shifts of the sliding window

• Ω∃(n, w) = Ω∃(n,w)
n

: the observed relative frequency of the episode defined as a

fraction of windows of size w that contain an occurrence of the episode in the

event sequence out of n shifts of the sliding window

• W∃(w): the set of all distinct windows of size w containing an occurrence of

the episode

• C∃(w): the number of windows of length w containing an occurrence of the

episode (cardinality of W∃(w))

8

• P ∃(w): the probability that the episode occurs in the window of size w in

the event sequence. We call this probability the probability of existence of the

episode. Note that Ω∃(n, w) is an estimator of P ∃(w).

• τ�(w): the lower significance threshold for under-represented episodes

• τu(w): the upper significance threshold for over-represented episodes

Whenever the episode or the event sequence are not implied we specify them explic-

itly in the formulas and use Ω∃(n, w, α, S), P ∃(w, α, S), etc.

Also we use W∃(w, m1, m2), P ∃(w, m1, m2) instead of W∃(w, E) and P ∃(w, E) in

recursive formulas, where E = {e1, e2} and mi = |ei|. We also occasionally use index

mi − k to mean “dropping the last k symbols of ei”, e.g., P ∃(w, m1 − k, m2) implies

a pattern that is the prefix of e1 of length m1 − k and that the second pattern is all

of e2.

9

4 MINING FREQUENT EPISODES

4.1 Introduction

Episode mining was formally introduced by Manila, Toivonen and Verkamo as

the problem of discovering frequent episodes in event sequences [1], where an episode

was defined as a partially ordered collection of events occurring as a subsequence in

an event stream. In terms of pattern matching, in episode mining we are interested in

finding w-windowed subsequences or minimal w-windowed subsequence. The prob-

lem of episode mining was motivated by the fact that in many applications it is of

interest to discover recurrent (frequent) sets of events occurring close to each other in

an event stream. That paper considered occurrences of episodes as w-windowed sub-

sequences and minimal w-windowed subsequences in an event stream. The process

of mining episodes corresponds to the Window-Accumulated Subsequence Matching

Problem (WASP).

In frequent episode mining the interestingness of mined episodes is measured

using the frequency of an episode defined as a fraction of windows in which the

episode occurs and given a user-defined minimum frequency threshold the episode is

frequent if its frequency exceeds the threshold.

More formally, the problem of discovering frequent episodes can be expressed as

follows.

Given:

• A = {a1, a2, . . . , a|A|}: an alphabet

• S = S[1]S[2] . . .: an infinite event sequence

• α: an episode

10

• w: a user defined sliding window size w

• τmin: a user defined minimum frequency threshold τmin, where episode α is

frequent if Ω∃(n, w, α, S) > τmin

• E : a class of episodes defined as an arbitrary set of subsequence patterns (e.g.

all subsequence patterns of length m over A)

discover all frequent episodes from the given class E of episodes.

Once the frequent episodes are discovered, they can be used to obtain rules (asso-

ciation rules) that describe relationships between events in the given event sequence.

Paper [1] defined three types of episodes: a serial episode, a parallel episode and

an arbitrarily complex composite episode.

4.2 Episodes

An episode is defined as a partially ordered collection of events occurring as a

subsequence in an event stream. Episodes can be abstractly represented as directed

acyclic graphs (DAG). Given an event stream S generating events from an alphabet

A we consider the following types of episodes:

1. Serial episode e = [e[1], e[2], . . . , e[m]] is a sequence of events e[1], e[2], . . . , e[m].

An occurrence of e means an occurrence of pattern e as a subsequence. In the

graph representation a serial episode corresponds to a single path from the first

event of the episode to the last one.

a dcb

Figure 4.1.: A serial episode e = [a, b, c, d] in the graph representation

2. Parallel episode e = {e[1], e[2], . . . , e[m]} is an unordered collection of events

e[1], e[2], . . . , e[m]. Formally, a parallel episode corresponds to the set of all

11

permutations of events of the episode. An occurrence of a parallel episode

corresponds to a logical OR of occurrences of permutations of e as a subse-

quence. Alternatively we can view an occurrence of a parallel episode e as a

logical AND of events e[1], e[2], . . . , e[m]. In the graph representation a par-

allel episode corresponds to a single node containing all events of the episode.

The parallel episode case captures situations where the ordering of the events

within the window of observation does not matter, e.g., the events correspond

to market basket items scanned by cashier.

a

b

c

Figure 4.2.: A parallel episode e = {a, b, c} in the graph representation

3. Composite episode corresponds to an arbitrary DAG (AND-graph) built from

events and episodes by a serial and/or a parallel composition. A partial or-

dering implied by a composite episode corresponds to a set of serial episodes

E = {e1, e2, . . . , e|E|} where ei has length mi, for 1 ≤ i ≤ |E|. An occurrence of

the set E corresponds to at least one occurrence of at least one member of the

set (a logical OR of occurrences of members of E).

4.3 Algorithm for discovering frequent episodes

Algorithm 1 from [1] computes a collection of frequent episodes Fm(S, w, E , τmin)

given an event sequence S, a window size w, a class of episodes E (e.g. all parallel

episodes o length 5) and a minimum frequency threshold τmin. The idea of the

algorithm is based on the idea of the Apriori algorithm [4] developed for finding

12

ba f

c

ed

Figure 4.3.: A set of episodes E = {[a, b, c, d, e, f], [a, b, d, c, e, f], [a, b, d, e, c, f]}

frequent itemsets in transaction databases. The name of the algorithm stems from

the fact that it uses prior knowledge of frequent itemset properties. The Apriori

algorithm employs an iterative approach called level-wise search, where it uses k-

itemsets to construct k + 1-itemsets. First it finds 1-itemsets called L1 and then

it recursively uses Lk−1 to find Lk, requiring one full scan of the database, until no

more frequent k-itemsets can be found. The algorithm cuts the search space by using

the Apriori property (monotone property) saying that if a set is not frequent then

all its supersets cannot be frequent.

Thus, Algorithm 1 is an adaptation of the Apriori algorithm to discovering fre-

quent episodes. Similarly to frequent itemset, frequent episodes are monotone (Apri-

ori property) meaning that, if an episode is frequent in an event sequence then all its

subepisodes are frequent. Let Ck be the set of candidate episodes of length k and let

Fk be the set of frequent episodes of length k. The two-step level-wise search that

uses the Apriori property to cut the search space is presented below.

1. Join: construct a set of candidate episodes Ck by joining the set of frequent

episodes Fk−1 with itself. Let Fk−1[i] and Fk−1[j] be two members of the

set Fk−1 such that their events are sorted lexicographically. Then we join two

elements Fk−1[i] � Fk−1[j] in order to create a valid candidate frequent episode

of length k if they share a prefix of length k − 2, i.e, if Fk−1[i][1 : k − 2] =

Fk−1[j][1 : k − 2]. Also in order to avoid creating duplicates we require that

Fk−1[i][k − 1] < Fk−1[j][k − 1].

13

2. Prune:

(a) Apriori property check: if any k − 1-subepisode β of a k-episode α in Ck

is not in Lk−1 then remove α from Ck.

(b) Database pass: perform a scan of the event sequence S to determine fre-

quencies of candidate episodes in Ck and remove those for which the

frequency is less than the minimum threshold τmin.

Algorithm 1 and its functions present a pseudocode of the algorithm for discov-

ering frequent episodes.

Algorithm 1: Discovering frequent episode

Input: S[1 : n], w, E , τmin

Output: Fm(S, w, E , τmin)

begin

F0 = ∅
for k = 1 to m do

Ck = candidateEpisodeGenerate(Fk−1, τmin)

for i = 1 to n do

foreach c ∈ Ck do

if I∃
i (w, c) then

Ω∃(w, n, c) = Ω∃(w, n, c) + 1;

Fk(S, w, E , τmin) = {c ∈ Ck|Ω
∃(w,n,c)

n
> τmin}

end

14

Function candidateEpisodeGenerate(Fk−1, τmin)

Input: Fk−1, τmin

Output: Ck

begin

for i = 1 to |Fk−1| do

for j = 1 to |Fk−1| do

if Fk−1[i][1 : k − 2] = Fk−1[j][1 : k − 2] and

Fk−1[i][k − 1] < Fk−1[j][k − 1] then

c = Fk−1[i] � Fk−1[j];

if not hasInfrequentSubset(c, Fk−1) then

Ck = Ck ∪ c;

return Ck;

end

Function hasInfrequentSubset(c, Fk−1)

Input: c, Fk−1

Output: TRUE or FALSE

begin

foreach e ∈ (k − 1)-subset of c do

if e /∈ Fk−1 then

return TRUE;

return FALSE;

end

4.4 Episode rules

The knowledge of frequent episodes can be used to find associations between

events in an event stream called episode rules. Formally, episode rules are implica-

tions of the form

15

β ⇒ α [c, s, w]

where β is a subepisode of α, c = confidence(β ⇒ α) and s = support(β ⇒ α)

defined as follows

support(β ⇒ α) = P (β ∩ α)

confidence(β ⇒ α) = P (α|β)

=
P (β ∩ α)

P (β)

Depending on the type of frequent episode e the implications are of the form

1. e = e[1]e[2] . . . e[k] . . . e[m] is serial

e[1]e[2] . . . e[k] ⇒ e[1]e[2] . . . e[k] . . . e[m]

2. e = {e[1], e[2], . . . , e[m]} is parallel

β ⇒ α

where α, β ∈ e and α ∩ β = ∅

As an example rule, consider a frequent serial episode rule home, people ⇒
faculty [0.2, 00.5, 30] from the log file of the web server of Department of Com-

puter Science at Purdue University. The rule says that if the home page is accessed

followed by the people page then in 20% the faculty page is accessed within a win-

dow of 30 seconds and this activity establishes 5% of the windows of length 30 in

the log file.

Algorithm 2 presents a pseudocode of the algorithm for computing episode rules.

16

Algorithm 2: Computation of episode rules

Input: c, Fk(S, w, τmin), minimumConfidence

Output: R set of episode rules

begin

foreach α ∈ Fk(S, w, τmin) do

foreach β ∈ subepisodes of α do

if freq(α)
freq(β)

> minimumConfidence then

R = R∪ β ⇒ α
[

freq(α)
freq(β)

, frequency(α), w
]

end

17

5 FINDING OCCURRENCES OF EPISODES

This chapter reviews algorithms for computing Ω∃(n, w) given an event sequence S,

a window size w and an episode.

5.1 Serial episode

This section presents the standard dynamic programming algorithm for finding

Ω∃(n, w) for a single subsequence pattern e = [e[1], e[2], . . . e[m]] [2]. The idea of

the algorithm is based on the definition of an occurrence of a serial episode as a

subsequence within a w-window as presented in Definition 2.0.1. Thus, first the

algorithm recognizes an occurrence of e as a subsequence in S and then is checks

whether the occurrence falls withing the w-window. The algorithm maintains an

array Q[1 : m] such that Q[j] is the starting position of the most recent occurrence

of the substring e[1 : j] in S. This means that if Q[j] = i, i �= 0 then there is

an occurrence of e[1 : j] starting at position i in S. Thus, if i − Q[m] < m then

the occurrence falls within the w-window. The time complexity of this algorithm

is O(mn) since at every position i in S, in the worst case, it needs to update all

entries in Q. As an improvement of this algorithm one could use a search structure

(a tree or a hash table) for finding the proper elements of Q given an input symbol

S[i]. Also, since i is of length log(n) one could store in Q[j] the distance between

the current position and the starting position of the most recent occurrence of e[1]

giving log(w) instead of log(n). Algorithm 3 presents a pseudocode of the described

algorithm.

18

Algorithm 3: Computation of Ω∃(n, w) for a serial episode e[1 : m] in an event

sequence S[1 : n]

Input: S[1 : n], e[1 : m], w

Output: Ω∃(n, w)

begin

for j = 1 to m do

Q[j] = 0;

Ω∃(n, w) = 0;

for i = 1 to n do

if S[i] == e[1] then

Q[1] = i;

for j = 2 to m do

if S[i] == e[j] then

Q[j] = Q[j − 1];

if i − Q[m] < w then

Ω∃(n, w) = Ω∃(n, w) + 1;

end

5.2 Parallel episode

This section presents our algorithm for finding Ω∃(n, w) for a parallel episode

e = {e[1], e[2] . . . e[m]} [5]. The main advantage of the algorithm presented in this

section with comparison to the algorithm in [1] is that our algorithm: (1) can compute

occurrences for all window sizes in one pass; (2) computes the minimal occurrences;

(3) computes occurrences when instead of a window of size w we associate a time to

live ttl with each symbol of the pattern e; and (4) the space required by the data

structure is independent of the window length w.

Let e′ = {e′[1], e′[2], . . . e′[m′]} be a set of cardinality m′ obtained from e by

eliminating duplicates and then sorting it. Let ci for i = 1, 2 . . .m′ be the number of

19

times an alphabet symbol e′[i] occurs in e. We build a binary tree over symbols in

e′ as leaves. Figure 5.1 shows the tree. Each node in the tree contains the usual tree

e′[1] e′[2] e′[m′ − 1] e′[m′]

tmin

tmin

tmin

t[1] t[2] t[c1] t[1] t[2] t[c2] t[1] t[2] t[cm′−1] t[1] t[2] t[cm′]

Figure 5.1.: Data structure for finding occurrences of a parallel episode e

pointers: parent, lchild, rchild and a search key interval [smin, smax] where smin is

the smallest key in the subtree and smax is the largest key in the subtree. In addition,

depending on its type a node keeps the following specific information:

• root: t an event counter, counts the number of elapsed (scanned) events, where

by “time” we mean the position in the event sequence

• internal node:

– tmin the minimum time of the arrival for the subtree rooted at this node

• leaf node:

– search key value si

– dlist: doubly linked list containing one element for each symbol e′[i] in the

pattern e. The purpose of the list is to keep track of the most recent occur-

rences of the symbol e′[i] sorted by arrival times. Let t[i][1], t[i][2] . . . t[i][ci]

for i = 1, 2 . . .m′ be the times of the occurrence of symbol e′[i] from

the left to the right in the list then they must satisfy the condition

t[i][j] < t[i][j + 1] for j = 1, . . . ci − 1. So the leftmost element of the

list contains the oldest occurrence of e′[i] and the rightmost element con-

tains the most recent occurrence of e′[i].

20

The tree supports the following operations:

• update(s): when a new symbol s arrives the time t is incremented by one

and the search tree structure is used to find the proper leaf. If the search finds

leaf e′[i] then the leftmost element of the doubly linked list with time t[i][1] is

removed and a new element with the current time t is attached to the right

end of the list. Once the new element is attached to the list the time of the

leftmost element, as the oldest one, is propagated up the tree as long as it is

smaller then tmin of the internal node on the path to the root. This operation

takes log(m) time (the height of the tree).

• exists: if t − tmin + 1 ≤ w at the root node then at least one permutation of

e occurs as a subsequence within the window. This operation takes O(1).

Algorithm 4 presents a pseudocode for finding Ω∃(n, w) using the presented tree data

structure.

Algorithm 4: Tree based algorithm for finding occurrences of a parallel episode

input : S[1 : n], e[1 : m], w

output: Ω∃(n, w)

begin

Ω∃(n, w) = 0;

tree.build(S);

for i = 1 to n do

tree.update(T [i]);

if tree.exists then

Ω∃(n, w) = Ω∃(n, w) + 1;

end

The time complexity for finding Ω∃(n, w) is O(n logm) because we perform n calls

to update(s), each requiring O(log m). The space is determined by the number of

nodes in the tree, which is O(m). The presented tree structure can also handle a

21

problem when instead of a window of size w we associate a time to live ttl with

each symbol of the pattern e. In such a case each leaf stores the expiration time

expt = t+ttl and the each internal node stores the minimum expiration time exptmin

in its subtree. Operation update(s) remains the same and exists returns true if

exptmin > t at the root node. The presented data structure can be extended to

handle multiple parallel episodes (details are omitted).

5.3 Set of serial episode

This section presents an algorithm for finding Ω∃(n, w) for a set of serial episodes

E = {e1, e2, . . . , e|E|} [6]. This algorithm is a generalization of Algorithm 3 to an

arbitrary set of serial episodes. We could use |E| instances of the Algorithm 3 inde-

pendently but it would be inefficient since some of the members of E could potentially

share the same prefix. Therefore we build a trie T from members of E and combine

the computation of the nodes that depend on the common prefixes. The result is a

significant saving in computational cost if there are many common prefixes. Algo-

rithm 5 presents a pseudocode of the presented algorithm, where

• T.root is the root of the trie

• for each node ∈ T we have

– node.parent is the parent

– node.child is the list of children

– node.v is the starting position in S of the most recent occurrence of the

substring ending at node

– node.s is the symbol associated with the node

• waits(c) is a list of nodes waiting for symbol c

• leaf is the list of leaves in lexicographic order.

22

It is easy to see that Algorithm 5 reduces to Algorithm 3 if the trie T consists of a

single path.

Algorithm 5: Computation of Ω∃(n, w) for a set of serial episodes represented

as a trie T = (V, E) in an event sequence S[1 : n]

Input: S[1 : n], T = (V, E), w

Output: Ω∃(n, w)

begin

foreach node ∈ T do

node.v = 0;

Ω∃(n, w) = 0;

for i = 1 to n do

for j = 1 to |T.root.child| do

if T.root.child[j].s = S[i] then

T.root.child[j].v = i;

for j = 1 to |waits(S[i])| do

waits(S[i])[j].v = waits(S[i])[j].parent.v;

for j = 1 to |T.leaf [j]| do

if i − T.leaf [j].v < w then

Ω∃(n, w) = Ω∃(n, w) + 1;

break;

end

23

6 MINING SIGNIFICANT EPISODES

Given a class of episodes, a window of size w, an event sequence S and a minimum

frequency threshold, the problem of discovering frequent episodes was defined as

finding all episodes from the class, whose frequency is above the minimum frequency

threshold [1]. A class of episodes may be specified as an arbitrary set of subsequence

patterns. In many applications it is of interest to define a class of episodes as a set

of disjoint sets of subsequence patterns, and the task is then to find all sets of sub-

sequence patterns that exceed the minimum frequency threshold. As an example of

such an application consider approximate subsequence matching where an approx-

imate occurrence of a subsequence pattern means an occurrence of a member of a

set of subsequence patterns that are similar in an approximate sense to the subse-

quence pattern. Then the problem is to find frequent subsequence patterns in terms

of approximate occurrences.

Episode mining was used in many applications including: intrusion detection

[7–10], alarm correlation systems in telecommunication networks [11], web usage

analysis and computational biology [12]. However, there were reports that episode

mining tends to produce a large number of meaningless or redundant patterns (see,

e.g., [8]).

Therefore, in this thesis we address the fundamental problem of identification

of significant sets of episodes. The solution to this problem involves a solution to

the following two problems: (1) selecting the sliding window size to guarantee that

an occurrence of a set of subsequence patterns is meaningful in the sense that the

set does not occur almost surely in every window in an event sequence; and (2)

identification of significant sets of episodes with respect to a reference sequence.

Thus, in order to identify a significant episode one has to make sure it is meaningful.

Clearly every significant episode is meaningful, but the reverse is not true. The

24

reason that episode mining may produce a large number of redundant patterns is

the fact that depending on the probabilistic characteristic of the event stream a serial

episode and many of its permutations may have the same probability of existence.

The problem of selecting the sliding window size to guarantee that an occurrence

of a set of episodes is meaningful goes beyond episode mining, and concerns all as-

pects of information extraction using the sliding window approach that is extensively

used in stream query processing and security applications. The problem stems from

the fact that for an appropriately large window size any subsequence pattern will

almost surely occur in every window in an event stream because the probability of its

existence (at least one occurrence) as a subsequence in a window of a given size will

be close to one. Consequences of too large a window size may include a needlessly

high computational cost of executing a continuous multi stream window join query

that satisfies a join condition for every shift of the window [13] and the generation

of many false alarms in a monitoring system. We solve the problem of selecting the

sliding window size by providing an analytical formula for the probability of existence

for an arbitrary set of subsequence patterns that uses a variable-length probabilistic

Markov model of the event stream.

Recall that a k-order variable-length Markov model is a Markov model where the

contexts (memory) are allowed to be of variable length. Such reduced models are also

called tree models since they can be represented by a context tree that can range from

a full tree for an ordinary k-order Markov model to an empty tree for 0-order Markov

model (memoryless model). The attractiveness of tree models stems from the fact

that they provide a sparse representation of a sequence by reducing the number of

parameters to be estimated since for real-life data the actual memory length varies.

Furthermore they can be efficiently learned while monitoring the sequence. The

variable-length Markov models are in details discussed in Chapter 9.

The problem of identification of significant sets of episodes is motivated by appli-

cations where there is a notion of a normal (reference) event stream, in which case

it is of interest to discover significant deviations from the normal behavior. Accord-

25

ing to this notion an episode is significant if the probability that it would occur by

chance a specific number of times, in the reference event stream, is very small. Note

that the frequency of occurrence alone is not enough to determine significance, i.e.,

an infrequent episode can be more significance than a frequent one and the signif-

icance depends on the following factors: (1) the structure of the episode; and (2)

the probabilistic characteristics of the reference and the monitored event streams.

In general, while monitoring an event stream there are three phenomena that could

make an anomaly with respect to the reference sequence:

1. Foreign symbol: a symbol not found in the reference event stream

2. Under-represented episode: an episode that is too infrequent in the monitored

event stream

3. Over-represented episode: an episode that is too frequent in the monitored

event stream

Detection of an anomaly caused by an occurrence of a foreign symbol is straight-

forward. More difficult is the problem of discovering over-represented and under-

represented episodes, which is the topic of our work. We solve the problem of

identification of significant sets of episodes by providing analytical formulas for sig-

nificance thresholds for under-represented and over-represented episodes, using a

variable-length probabilistic Markov model as a model of the reference stream. The

advantage of a probabilistic Markov model of the reference sequence, over profiles of

normal behavior in a form of frequent episodes [7], is that the Markov model allows

answering queries referring to arbitrary episodes in the reference sequence, and also

provides a sparse summarization of the reference sequence. The ability to compute

the frequency of an arbitrary episode in the reference sequence is particularly needed

in episode mining where we discover a collection of frequent episodes and can com-

pute their significance “on the fly”. Furthermore such a probabilistic model can be

conveniently built “by hand” using expert knowledge. Thus, given a collection of

discovered frequent episodes, from a given class and using a given window size, we

26

identify significant episodes in a two step process where we first filter out meaningless

episodes by computing their probability of existence, and then we identify significant

episodes using the thresholds.

This process efficiently removes all irrelevant subsequence patterns that may be

discovered in the standard frequent episode mining algorithm as reported in [8].

Applications of the significance thresholds include intrusion detection and computa-

tional biology. An over-represented episode in a particular segment of DNA with re-

spect to a model may suggest a biological function and an under-represented episode

may suggest a vulnerability to certain diseases.

The significance thresholds for episodes can be viewed as an analogy to the χ2

significance test for market basket item sets [14], where given an itemset and a

confidence level α, the test computes the χ2 statistic to assess a deviation between

actual frequencies of subitemsets of the itemset and their expected values assuming

independence of the items. Thus, the reference model was a memoryless model, and

if χ2 ≥ χ2
α the itemset was significant, meaning the items were dependent.

27

7 IDENTIFICATION OF SIGNIFICANT SETS OF EPISODES

This chapter presents the definitions and solutions without derivations that are given

in Chapters 8 and 10.

7.1 Problem definition

The problem of identification of significant sets of episodes in an even sequence

S can be stated as follows. Given:

• a variable-length Markov model M with parameter set Θ(M) of a reference

event sequence

• Ω∃(n, w): observed frequency of a set of episodes

• β(b): a target (user defined) significance level (e.g., β(b) = 10−5),

is the set of episodes significant with respect to the reference sequences. In other

words the question is what is the upper threshold τu(w) and the lower threshold

τ�(w) such that if Ω∃(n, w) /∈ [τ�(w), τu(w)] then the episode is significant at the level

β(b), i.e., P (Ω∃(n, w) > τu(w)) ≤ β(b) and P (Ω∃(n, w) < τ�(w)) ≤ β(b)?

7.2 Solution

In chapter 8 we prove that if an event sequence is generated by a Markov chain

X that satisfies the following conditions:

1. X has finite state space; and

2. X is irreducible and aperiodic;

28

then Ω∃(n, w) satisfies the central limit theorem in that sequence leading to the

following formulas for the thresholds:


















τu(w) = P ∃(w) + b
√

P ∃(w)(1 − P ∃(w))

τ�(w) = P ∃(w) − b
√

P ∃(w)(1 − P ∃(w))

β(b) = 1√
2π

∫∞
b

e
−t2

2 dt

(7.1)

The graphical representation of the thresholds is presented in Figure 7.1.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P∃(w)τ
l
(w) τ

u
(w)

N(0, 1)

β(b)

β(b)

Figure 7.1.: The upper and lower threshold

The difficulty of efficiently computing P ∃(w) stems from the fact that the struc-

ture of the tree model (variable-length Markov model) of the stream can range from

a full tree, through a sparse tree, to the empty tree (see Chapter 9 for a review on

the variable-length Markov models).

29

7.3 Classification of episodes

Given an episode with observed frequency Ω∃(n, w) and a significance level β(b),

the episode can be classified using the upper threshold τu(w) and the lower threshold

τ�(w) as follows:

• meaningless: if Ω∃(n, w) ≈ 1 and P ∃(w) ≈ 1, i.e., the window size w is too

large

• significant:

– if Ω∃(n, w) > τu(w) for over-represented episodes, i.e, P (Ω∃(n, w) >

τu(w)) ≤ β(b)

– if Ω∃(n, w) < τ�(w) for under-represented episodes, i.e, P (Ω∃(n, w) <

τ�(w)) ≤ β(b)

• normal: if Ω∃(n, w) ∈ [τ�(w), τu(w)]

7.4 Episode ranking with respect to significance

Given a collection of episodes C (e.g., frequent episodes) discovered in S, we rank

the episodes with respect to significance by finding a maximum b(e) (called b(e)max)

for every episode e ∈ C such that for that episode:

• Ω∃(n, w) ≥ τu(w), where β(b(e)max) = P (Ω∃(n, w) ≥ τu(w)) for over-represented

episodes

• Ω∃(n, w) ≤ τ�(w), where β(b(e)max) = P (Ω∃(n, w) ≤ τu(w)) for under-represented

episodes

and then we sort the episodes according to bmax.

30

7.5 Building a model of the reference sequence

Depending on whether a model M and parameters Θ(M) are given prior to

monitoring the event sequence S, we can distinguish the following cases according

to their consequences for our method:

1. M and Θ(M) are given in which case the thresholds detect a significant devi-

ation from both M and Θ(M)

2. M is given but Θ(M) is estimated while monitoring S in which case the thresh-

olds detect a significant deviation from M

3. M is not given and we can build M and Θ(M) while monitoring S in which

case the thresholds detect outliers with respect to M and Θ(M).

7.6 Selecting the window size to guarantee that an occurrence of an episode is

meaningful

Given an event sequence S that is generated by a Markov chain that has finite

state and is irreducible and aperiodic, an occurrence of an episode in a window of size

w in that sequence is meaningful if P ∃(w) < 1. Furthermore for every episode in that

sequence there exists such a window size wsat for which P ∃(wsat) ≈ 1 and P ∃(wsat) ≈
1 for every w > wsat, where wsat depends on the probabilistic characteristic of S

and on the structure of the episode. Figure 7.2 shows the shape of a graph of

P ∃(w) for a single subsequence pattern, and the corresponding standard deviation
√

P ∃(w)(1 − P ∃(w)). The shape of the graphs for P ∃(w) and
√

P ∃(w)(1 − P ∃(w))

for an arbitrary episode is similar because, in general, P ∃(w) ≈ 1 − Θ(ρw) for 0 <

ρ < 1 [15] and the difference is only in the slope of P ∃(w).

Thus, given a variable-length Markov model M with parameters Θ(M) of an event

sequence S, we can find an appropriate w using a formula for P ∃(w). Depending on

whether the model and an episode are given prior to monitoring S we can distinguish

the following cases

31

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

Figure 7.2.: P ∃(w) and
√

P ∃(w)(1 − P ∃(w)) for a single subsequence pattern

• Designing the sliding window size: given a priori knowledge of episodes of inter-

est and a model M with parameters Θ(M) of S, we can select an appropriate

w prior to monitoring S

• Validation of the sliding window size: given a proposed w, an episode (e.g.,

a frequent episode) discovered in S and a model M with parameters Θ(M)

learned while monitoring S, we can validate w for the discovered episode

A proper approach to designing the sliding window size that is dedicated for the

upper or the lower threshold, depends on the type of threshold. Given a significance

32

level β(b), the window size w should be such that τu(w) < 1 for over-represented

episodes and τ�(w) > 0 for under-represented episodes.

33

8 ANALYSIS OF THE SIGNIFICANCE THRESHOLDS

In this chapter we show that Ω∃(n, w) satisfies the central limit theorem (CLT) under

certain conditions in Markov sources.

We consider an event sequence S = S[1], S[2] . . ., that is generated by a k-order

Markov source over an alphabet A.

Definition 8.0.1 A k-order Markov source is a sequence of random variables Z1, Z2, . . .

over a finite alphabet A of cardinality |A| if there exists a minimum integer k such

that

P (Z1 = z1, . . . Zn = zn) =

P (Z1 = z1, . . . Zk = zk)
∏n

i=k+1 P (Zi = zi|Zi−1 = zi−1, . . . , Zi−k = zi−k)

for all n ≥ k and every sequence z1, . . . , zn ∈ A.

A k-order Markov source can be equivalently represented by a k-order finite state

Markov chain.

Definition 8.0.2 A finite state k-order stationary Markov chain is a sequence of

random variables X1, X2, . . ., over a state alphabet Q of cardinality Ak, where

P (Xn+1 = j|X1 = i1, . . . , Xn = in) = P (Xn+1 = j|Xn = in) = pin,j

for every n and every sequence i1, . . . in ∈ Q. The pin,j is a transition probability

from state in to state j, where in, j ∈ Q.

Note, that the definition states that: (1) the probability of a state depends on only

the previous state; (2) the transition probabilities do not vary with n.

Now we review some fundamental properties of Markov chains that are essential

in the analysis of Ω∃(n, w). Let

pn
i,j = P (Xm+n = j|Xm = i) =

∑

k1...kn−1

pik1
pk1k2

, . . . , pkn−1j

34

be the n-the order transition probability. A Markov chain is irreducible if for all i, j

pn
i,j > 0 for some n [16]. The period of a state i is the greatest common divisor of

the set of natural numbers n for which pn
i,i > 0. A Markov chain is aperiodic if the

period is equal to 1 for all states [16].

Throughout the rest of this chapter we assume that the event sequence S is

represented with a k-order Markov chain.

Observe that Ω∃(n, w) =
∑n

i=1 I∃
i (w) where

I∃
i (w) =







1 the episode occurs in the i-th window

0 otherwise

The independence of the elements of the sequence of I∃
1 (w), I∃

2 (w), . . . is violated

in two different ways:

1. observation windows overlap within w − 1 events meaning

|P (I∃
i+k(w) = 1|I∃

i (w) = 1) − P (I∃
i+k(w) = 1)| �= 0 for 1 ≤ k ≤ w − 1 (see

Figure 8.1)

a b c

I∃i (w)

I∃
i+k

(w)

S

Figure 8.1.: Dependency due to window overlap

2. the event sequence S is not memoryless meaning

|P (I∃
i+k(w) = 1|I∃

i (w) = 1) − P (I∃
i+k(w) = 1)| �= 0 for k > w − 1 (see Figure

8.2).

a b c b ca

I∃i (w)

S

I∃
i+k

(w)

Figure 8.2.: Dependency due to memory of the event sequence

35

Because of the dependence of the elements of the sequence I∃
1 (w), I∃

2 (w), . . ., the

standard version of the CLT theorem does not apply to Ω∃(n, w). However, the

CLT also holds for certain weakly dependent sequences (mixing sequences), where a

dependence between the current event and a future event in the sequence decreases

monotonically and at a certain rate with the distance between the events. One of the

examples of such a sequence is a φ(n)-mixing sequence of random variables, where

the dependence between two random variables A and B in the sequence is measured

in terms of |P (B|A) − P (B)|. Other measures of dependence are discussed in [17].

Definition 8.0.3 Let φ(1), φ(2), . . . be a sequence of numbers such that as n →
∞, φ(n) → 0. A stationary sequence of random variables Y1, Y2, . . . is φ-mixing

if |P (E2|E1) − P (E2)| ≤ φ(n) for every j, k such that E1 = f(Y1, . . . , Yj) and

E2 = f(Yj+n, . . . , Yj+n+k).

In this definition, E1 is an event that depends only on Y1, . . . , Yj, and E2 is an

event that depends only on Yj+n, . . . , Yj+n+k. The condition requires that E1 and E2

are almost independent in the sense that |P (E2|E1) − P (E2)| is small for large n.

Thus, the φ-mixing sequence captures the dependence in Figure 8.1 and Figure 8.2.

Notice that, according to the definition of a φ-mixing sequence, the w−1-dependent

sequence I∃
1 (w), I∃

2 (w), I∃
3 (w), . . . is φ-mixing with φn = 0 for |i − j| > w − 1.

The CLT for a φ-mixing sequence is as follows.

Theorem 8.0.1 (Ibragimov and Linnik, 1971) [18] Let Y1, Y2, . . . be a strictly sta-

tionary φ-mixing sequence with E[Y 2
i] < ∞ and let Y (n) = 1

n

∑n

i=1 Yi. If

∑

n

√

φ(n) < ∞ (8.1)

then

Var[Yi] = E[Y 2
1] − E[Y1]

2 + 2

∞
∑

k=1

E[Y1Y1+k] (8.2)

converges absolutely and if Var[Yi] > 0 then as n → ∞
√

n(Y (n) − E[Yi])
√

Var[Yi]

d→N(0, 1) (8.3)

36

Now we will prove that I∃
1 (w), I∃

2 (w), . . . satisfies the conditions of Theorem 8.0.1.

To accomplish it we will show the following: (1) the necessary condition for a Markov

chain to be φ-mixing; and (2) that I∃
1 (w), I∃

2 (w), . . ., as a function of a φ-mixing

Markov chain, is φ-mixing and also satisfies Theorem 8.0.1.

The following theorem quantifies the dependence of elements in a k-order Markov

chain and presents conditions under which the chain is φ-mixing.

Theorem 8.0.2 [16] Let X1, X2, . . . be a Markov chain and let pn
ij = P (Xm+n =

j|Xm = i) be the n-th order transition probability. If the state space is finite and the

chain is irreducible and aperiodic then there is a stationary distribution π, and

|pn
ij − πj | ≤ Aρn, (8.4)

where A ≥ 0 and 0 ≤ ρ < 1.

Thus, theorem 8.0.2 implies that an irreducible, aperiodic and finite Markov

chain is φ-mixing with the exponential rate of convergence (φ(n) = Aρn) that is

even stronger than necessary for Theorem 8.0.1 to hold. Markov chains satisfying

Theorem 8.0.2 are called uniformly ergodic.

Clearly, the sequence I∃
1 (w), I∃

2 (w), . . . is a function of the underlying k -order

Markov chain X1, X2, . . . representing the stream S, where I∃
i (w) = f(Xi). Note

however that a function of a Markov chain is not necessarily Markovian.

The following corollary follows form Theorems 8.0.1 and 8.0.2 since for stationary,

irreducible, aperiodic and finite state Markov chains X1, X2, . . . the φ(n) goes to zero

at an exponential rate. Also the corollary describes necessary condition on a function

of a Markov chain Yi = f(Xi) under which the CLT holds for Y (n).

Corrolary 1 (Ibragimov and Linnik, 1971) Let X1, X2, . . . be an irreducible, aperi-

odic and finite Markov chain with stationary distribution π and let Yi = f(Xi) and

let Y (n) = 1
n

∑n

i=1 f(Xi) where f : X → R is a real-valued function. If E[Y 2
i] < ∞

then for any initial distribution, as n → ∞
√

n(Y (n) − E[Yi])
√

Var[Yi]

d→N(0, 1) (8.5)

37

From the above we obtain the following theorem.

Theorem 8.0.3 Let S be an event sequence that is generated by a Markov chain

that has a finite state space and is irreducible and aperiodic then

lim
n→∞

P



a ≤
√

n
(

Ω∃(n, w) − E
[

I∃
i (w)

]

)

√

Var[I∃
i (w)]

≤ b



 =
1√
2π

∫ b

a

e
−t2

2 dt

where E[I∃
i (w)] = P ∃(w) and Var[I∃

i (w)] = Var[I∃
1 (w)]+2

∑∞
k=1 Cov[I∃

1 (w), I∃
1+k(w)].

Proof. Easily follows from Corollary 1.

Theorem 8.0.3 leads to (7.1) for the thresholds.

Now we will derive a computational formula for Var[I∃
i (w)]. Let P (I∃

1 (w) ∩
I∃
1+k(w)) be the probability that I∃

1 (w) = 1 and I∃
1+k(w) = 1 and let P (I∃

1 (w)) be

the probability that I∃
1 (w) = 1, where clearly P (I∃

1 (w)) = P ∃(w) because of the

stationarity of the chain. Then Var[I∃
i (w)] can be expressed as follows

Var[I∃
i (w)] = Var[I∃

1 (w)] + 2
∞
∑

k=1

Cov[I∃
1 (w), I∃

1+k(w)]

= E[I∃
1 (w)2] − (E[I∃

1 (w)])2 + 2
∞
∑

k=1

(E[I∃
1 (w)I∃

1+k(w)] − (E[I∃
1 (w)])2)

= P ∃(w) − (P ∃(w))2 + 2

∞
∑

k=1

(

P (I∃
1 (w) ∩ I∃

1+k(w)) − (P ∃(w))2
)

= P ∃(w)(1 − P ∃(w)) + 2

∞
∑

k=1

(

P (I∃
1 (w))P (I∃

1+k(w)|I∃
1 (w)) − (P ∃(w))2

)

= P ∃(w)(1 − P ∃(w)) + 2P ∃(w)
∞
∑

k=1

(

P (I∃
1+k(w)|I∃

1 (w)) − P ∃(w)
)

From Theorem 8.0.2 it follows that limk→∞
(

P (I∃
1+k(w)|I∃

1 (w)) − P ∃(w)
)

= 0 leading

to the following approximation of Var[I∃
i (w)]

Var[I∃
i (w)] ≈ P ∃(w)(1 − P ∃(w)). (8.6)

The following example illustrates an application of the concepts presented in this

section.

38

Example. Consider an event sequence S over an alphabet A = {0, 1}. As-

sume that S is represented with an irreducible and aperiodic 2-order Markov chain

X1, X2, X3, . . . having a state space Q = {00, 01, 10, 11} and a stationary distribu-

tion vector π = [π1, π2, π3, π4]. Also consider an episode e = [0, 1]. Then clearly

I∃
i (w) = f(Xi), where I∃

i (w) = 1 if Xi = 01 and I∃
i (w) = 0 otherwise. Therefore,

Ω∃(n, w) satisfies Theorem 8.0.3 with E[I∃
i (w)] = π2 and Var[I∃

i (w)] = π2(1− π2) +

2π2

∑∞
k=1(p

(k)
2,2 −π2). Since from Theorem 8.0.2 we know that (p

(k)
2,2 −π2) goes to zero

exponentially fast we obtain Var[I∃
i (w)] ≈ π2(1 − π2).

39

9 VARIABLE-LENGTH MARKOV MODEL

In this chapter we review variable-length Markov models.

Given an alphabet A = {a1, a2, . . . , a|A|} a k-order variable-length Markov model

is characterized by a set of conditional probabilities of generating a symbol x ∈ A for

every context c ∈ C, where C ⊂ ⋃

k=1 Ak is a set of variable-length contexts. The set

of contexts C is called the model and the corresponding set of conditional probabili-

ties Θ(C) = {θ1,1, θ1,2, . . . θ|A|,|C|} is called the set of parameters, where θi,j = P (ai|cj).

A conditional probability P (ai|c) can be easily estimated using the maximum like-

lihood (ML) estimate P̂ (ai|c) = N(cai)
P|A|

i=1
N(cai)

, where N(s) is the observed number of

occurrences of a string s in the stream of length n. An unconditional probability

distribution in a memoryless model is estimated using P̂ (ai) = N(ai)
n

.

In an ordinary k-order full Markov model the there are |C| = |A|k contexts

and |Θ(C)| = |A|k+1 parameters to be estimated. However, such a full Markov

model can be inefficient since for real-life data the actual memory length varies.

Thus, the number of parameters can be significantly reduced by allowing contexts

(memory) to be of variable length. Such reduced models, first considered in [19] were

termed the variable-length Markov chains/models or tree models [20] since they can

be conveniently represented with a context tree structure. Clearly, a memoryless

model corresponds to the empty tree and a full model to a full tree. Thus, the

advantage of variable-length Markov models over full models is that they efficiently

capture the redundancies that are typical for real-life data.. In terms of Markov

chains, C is the set of states and Θ(C) is the set of transition probabilities in a

variable-length Markov chain.

40

9.1 Context algorithm

In [19] an algorithm context was presented for estimating a minimal context tree

of a variable-length Markov model in time O(n log(k)), where k is a given depth of

the tree. Given a sequence of length n the algorithm builds an optimal context tree

in two stages. In the first stage the algorithm grows a large context tree based on

observed contexts and recorded occurrences of each symbol in every context. In the

second stage the algorithm prunes the tree, by examining every terminal node and

pruning it to its parent node if the probability distribution for the two nodes does not

differ significantly according to a pruning criterion. As a pruning criterion, in [19,21]

the minimization of the stochastic complexity and in [22–24] the Kullback-Leibler

distance was proposed respectively. Let wu be a, time reversed, terminal node in a

context tree, where u is the oldest symbol of the context. Then the Kullback-Leibler

distance can be expressed as follows ∆wu =
∑

a∈A P̂ (a|wu) log
(

P̂ (a|wu)

P̂ (a|w)

)

N(wu) and

if ∆ < K(n), then we prune wu to w, where K(n) ∼ C log(n) and C > 2|A| + 3.

In [25] the context tree weighting algorithm was proposed for computing probability

P (S) of a Markov source S using an average over all possible models having orders

less than a given order k.

Figures 9.1 and 9.2 show examples of a 2-order full Markov model and a 2-order

variable-length Markov model of DNA respectively, where a filled (black) node means

that the node is an internal node as well as a leaf node reflecting a variable-length

context. Thus, variable-length Markov models efficiently capture redundancies that

are typical for real-life data and therefore they are particularly well suited for our

method for summarizing event sequences where space efficiency is the key issue.

9.2 Interpolated Markov model

In this section we turn our attention to a class of variable-length Markov models

called interpolated Markov model (IMM) that does not optimize the state space but

builds a variable-length Markov model implicitly as a result of parameter estimation

41

A C G T A C G T A C G T A C G T

A C G T

Figure 9.1.: 2-order full Markov model of DNA

C A C G T

A G T

Figure 9.2.: 2-order variable-length Markov model of DNA

from sparse data. Consider a k-order full Markov model. Then a higher-order model

should always do at least as well as, and frequently better than a lower-order model.

However, in practice, when using a k-order model, if the training sequence is of

length N then there are only N − k strings of size k + 1 available to estimate |A|k+1

conditional probabilities and frequencies of some of the |A|k contexts become too

small or even zero. Deriving a model of too high order form such sparse data will

lead to over-fitting.

The problem of parameter estimation of Markov models from sparse data is

known as smoothing and has been widely discussed in the literature on language

modeling [26]. The smoothing is a technique for adjusting the maximum likeli-

hood estimates of probabilities to produce more accurate probabilities. The name

smoothing comes from the fact that these methods tend to make the probabilities

more uniform, by adjusting low probabilities upward and higher probabilities down-

ward. Not only do smoothing methods generally prevent zero probabilities, but they

42

also improve the accuracy of the model as the whole. Whenever a probability is

estimated from a fewer counts, smoothing has the potential to significantly improve

estimation.

Techniques as back-off [27] and interpolation [28] have been implemented to deal

with sparse data. The back-off model backs off to lower order models depending on

counts of respective contexts. The interpolated model is a Markov chain with a new

structure, where a conditional probability of order k is a combination of equal and

lower order probabilities weighted by interpolation parameters, giving hight weight to

probability estimates corresponding to high frequency contexts and lower weight to

estimates corresponding to low frequency contexts. We use the notation cj [1 : n] for

n = k, k−1, . . . 1 to denote a suffix of length n of context cj of length k and we omit

the notation for n = k, i.e., we write cj instead of cj [1 : k] in cases where k is implied.

We are interested in Markov models that define conditional probabilities P (ai|cj) as

a linear combination of conditional probabilities corresponding to suffixes of cj. The

following recursion defines a value of the interpolated conditional probability in IMM:

PIMM(ai|cj) = λ(cj) · P (ai|cj) + (1 − λ(cj)) · PIMM(ai|cj[1 : k − 1]), (9.1)

where 0 ≤ λ(cj) ≤ 1 and P (ai|cj) is the probability estimate using the maximum

likelihood (ML) estimate from the training data. For contexts cj not observed in

the training data, i.e., if n(cjai) = 0 then we set P (ai|cj) = P (ai|cj[1 : n]) for

n = max1≤n≤k{n|n(cj[1 : n], ai) > 0} and this is exactly the place in the computation

of parameters of an IMM where a variable-length Model is being implicitly built.

The value of the parameter λ(cj) can be interpreted in many ways depending on the

following interpretations of the IMM [29]:

• Context model interpretation: the parameters combine the predictions from

contexts of varying length. Since longer contexts support stronger predictions

and shorter contexts have more accurate statistics the interpolation of the

predictions of different context lengths results in more accurate prediction than

from a fixed context.

43

• State model interpretation: the parameters are hidden transitions from a higher

order Markov model to a lower Markov model where the interpolation param-

eters model our beliefs about how much of the past is necessary to predict a

state transition in an underlying Markov source of unknown order.

• Nonuniform model interpretation: the parameters are beliefs about conditional

independence with probability (1 − λ(cj)) that the future symbol does not

depend on cj .

In general if the frequency of context cj is sufficiently high, the value of λ(cj) is close

to 1. In the opposite case λ(cj) is close to zero and the interpolation probability

PIMM(ai|cj) gains more from PIMM(ai|cj [1 : k−1]). However the problem of finding

interpolation parameters is still more of an art than an exact science. In our experi-

ments we assume a given order of IMM and use a modification of the method based

on χ2-test introduced in [30].

9.2.1 Computing interpolation parameters

In this section we present the χ2-confidence based interpolation method intro-

duced in the GLIMMER gene finding algorithm [30] for computing the λ(ci) in (9.1).

Algorithm 6 presents a pseudocode of the algorithm.

44

Algorithm 6: k-order IMM parameter estimation

input : n(cj), n(cj, ai), N, k

output: k-order PIMM(ai|cj)

begin

for j = 1 to |A|k do

th = (N − k + 1)P (cj) ;

if n(cj) ≥ th then

λ(cj) = 1

else

χ2 = 0 ;

for i = 1 to |A| do

χ2+ =
(n(cj ,ai)−n(cj)∗PIMM (ai|cj [1:k−1]))2

n(cj)∗PIMM (ai|cj[1:k−1])
;

q = qchisquare(χ2,A− 1) ;

if q ≥ 0.5 then

λ(cj) =
q∗n(cj)

th
;

for i = 1 to |A| do

PIMM(ai|cj) = λ(cj)
n(cj ,ai)

n(cj)
+ (1 − λ(cj)) · PIMM(ai|cj[1 :

k − 1]);

else

λ(cj) = 0;

end

The algorithm takes as its input the following parameters: n(cj) the frequency

of context cj, n(cj , ai) the frequency of string cjai, k the order of the IMM and

N the length of the training set. The algorithm computes the goodness-of-fit test

to asses the discrepancy between n(cj, ai) and n(cj) · PIMM(ai|cj[1 : k − 1]) with

H0 being the hypothesis that PIMM(ai|cj[1 : k]) fits PIMM(ai|cj[1 : k − 1]) for i =

1, 2, . . . |A|, where q = 1 − pvalue for χ2
A−1. Thus, if q ≥ 0.5 then the algorithm

rejects hypothesis H0 and sets λ(cj) =
q∗n(cj)

th
. Otherwise the algorithm backs up

45

to PIMM(ai|cj[1 : k − 1]) by setting λ(cj) = 0. The GLIMMER system used a

fixed value for th = 400. We interpreted the threshold as the expected number of

occurrences of a context ci of length i as a string in the training set for 0-order

Markov source. Thus, we set th = E[n(cj)] = (N − k + 1)P (cj), where P (cj) is the

probability of the context in the 0-order Markov model. Alternatively we could use

th = (N − k + 1)P (cj) −
√

Var[n(cj)].

9.3 Change detection and a sequence of models

While representing the entire history of a stream with one model with param-

eters the prediction accuracy of the model may deteriorate if there were changes

of the underlying (true) model along the history of the stream. Therefore, if such

changes happen one should detect them and represent each homogeneous interval in

the history with a different model. As a method for detecting changes in model we

propose the Jensen-Shanon distance [31]. The method detects a change by consid-

ering consecutive blocks of the same size in the sequence. Given three consecutive

blocks bi−1, bi, bi+1 each of size n the method computes the distance as M(bi) =

H(bi−1, bi+1) − 0.5(H(bi−1) + H(bi+1)), where H(x) = −∑

a∈A
Nx(a)

n
log

(

Nx(a)
n

)

,

H(x, y) = −∑

a∈A
Nx(a)+Ny(a)

2n
log

(

Nx(a)+Ny(a)
2n

)

and Nx(a) is the number of occur-

rences of symbol a in block x. If M(bi) > Mth then with high probability there is a

change in block bi, where Mth = − log(α)
2n

and α (e.g. α = 104) is the probability of

false detection [32]. The algorithm may be applied recursively top-down if an exact

point of change is needed.

Since we have a limited amount of main memory resources we can only store a

limited (fixed) number of models for a given stream. This implies that we have a

sliding window of models, where the leftmost (oldest) model is removed from consid-

eration when it is appropriately old and a newly learned model takes the rightmost

position. Thus, besides the models themselves our method must maintain the points

in time where each model started.

46

10 ANALYSIS OF THE PROBABILITY OF EXISTENCE OF AN EPISODE

In this chapter we analyze P ∃(w) for the following types of episodes: (1) a single

subsequence pattern (a serial episodes); and (2) a set of subsequence patterns (a set

of serial episodes) including the parallel episode case. The reason that we consider

those two cases of P ∃(w) separately is that P ∃(w) for an arbitrary set of subsequence

patterns is not a superposition of the results for a serial episode and poses different

challenges.

Thus, given:

• a variable-length Markov model M with parameter set Θ(M) of an event se-

quence S

• a set of episodes E

the goal is to find a formula for P ∃(w) for an arbitrary set of serial episodes E .

In general P ∃(w) can be expressed as follows

P ∃(w) =
∑

x∈W∃(w)

P (x),

where W∃(w) is the set of all distinct windows of length w that contain the set of

episodes as a subsequence and P (x) is the probability of x as a string in a given

model.

10.1 Single subsequence pattern

In this section we derive a computational formula for P (w) for a single subse-

quence pattern e = [e[1], e[2], . . . e[m]]. While deriving the formula we derived the

following: (1) an expression for W∃(w, e); (2) a general algorithm for computing

P (w, e); and (3) a formula for C∃(w, e).

47

Assuming a 0-order Markov model of S we derived the following: (1) an exact

formula for P (w, e); (2) an asymptotic approximation of P (w, e), which is of the form

P ∃(w) = 1−Θ(ρw) for large w and 0 < ρ < 1; and (3) a fast dynamic programming

algorithm for computing P (w, e).

10.1.1 Analysis of W∃(w, e)

Let W∃(w, e) be the set of all distinct windows of length w containing e as a

subsequence. Then the probability of existence of e can be expressed as follows

P ∃(w, e) =
∑

x∈W∃(w,e)

P (x), (10.1)

where P (x) is the probability of string x in a given Markov model.

We will now show that a recursive formula for enumerating the elements of

W∃(w, m) has the form below. Recall that the notation W∃(a, b) when b < m,

means the set of windows of size a that contain the b-prefix of e (= the string con-

sisting of the first b symbols of e).






























W∃(w,m) = (A− {e[m]}) ×W∃(w − 1,m) ∪ {e[m]} ×W∃(w − 1,m − 1) w,m > 0,

W∃(w, 0) = Aw w > 0,

W∃(0,m) = 0 m > 0,

W∃(0, 0) = 1.

That the elements generated at each level of the recursion are distinct can be seen

by observing that we divide W∃(w, m) into two subsets: strings that have e[m] as

their last symbol, and strings that have other symbols than e[m] as their last symbol.

We now turn our attention to showing that we do generate all strings of W∃(w, m).

Consider all
(

w

m

)

positions of a window where e may occur as a subsequence. We claim

that the recursion considers all positions where the m respective symbols of e can

occur, and that it considers these m-tuples of positions in a decreasing lexicographic

order, that is, tuple (i1, i2, . . . , im) is considered before tuple (i
′

1, i
′

2, . . . , i
′

m) if the

former is lexicographically larger than the latter.

Simply observe that W∃(w, m) can be split into two disjoint subsets:

48

• Windows having e[m] at their last position. Because the last window symbol

is fixed as e[m] for all of them, their enumeration effectively becomes that of

the windows o size w − 1 that contain the (m − 1)-prefix of e (= the string

consisting the the first m − 1 symbols of e). This latter enumeration is what

we mean by the notation W∃(w − 1, m − 1).

• Windows not having e[m] at their last position. Because the last symbol cannot

be considered part of an occurrence of e, their enumeration effectively becomes

that of the windows of size w − 1 that contain e. This latter enumeration is

what we mean by the notation W∃(w − 1, m).

From the above, it is straightforward to obtain the following theorem.

Theorem 10.1.1 The set of all distinct windows of length w, that contain a string

e of length m as a subsequence, can be enumerated as follows.

W∃(w,m) =
⋃

Pm+1

k=1
nk=w−m

(A− e[1])n1 × {e[1]} × . . . × (A− e[m])nm × {e[m]} × Anm+1

The expression for W∃(w, m) can be represented as a recursion graph given in

Figure 10.1. The graph has one start vertex (0) and one end vertex (m). The vertex

set V of the graph, excluding vertex (0), consists of numbers 1, 2 . . .m corresponding

to indexes of symbols in e. The edge set E consists of edges from vertex (i) to (i+1)

and self-loops from vertex (i) to itself for 0 ≤ i ≤ m. The label for vertex from (i) to

(i+1) is equal to e[i + 1]. The label for self-loops of vertex (i) is equal to A− e[i + 1]

if 0 ≤ i < m and A if i = m. The powers ni for i = 1, 2, . . .m + 1 symbolize the

number of times the i-th self-loop is used on the path from vertex (0) to (m). Thus,

W∃(w, m) is equal to all paths from (0) to (m) of length w

Based on Theorem 10.1.1 we can divide the elements of W∃(w, m) into equiva-

lence classes V∃ with respect to the ordered sequences of (n1, n2, . . . , nm+1) for which
∑m+1

i=1 ni = w−m. Clearly, the number of such ordered partitions is
(

w−m+m+1−1
w−m

)

=
(

w

m

)

.

49

e[1] e[2] e[m]
0 1 2 m

(A − e[2])n2 (A − e[m])nm A
nm+1(A − e[1])n1

Figure 10.1.: Graphical interpretation of the solution to W∃(w, e)

Table 10.1: Enumeration of W∃(3, 2) for A = {a, b} and e = [b, a] using Theorem

10.1.1

i W (3, 2)[i] n1 n2 n3

2 baa 0 0 1

3 bab 0 0 1

4 bba 0 1 0

1 aba 1 0 0

Example. Let A = {a, b} e = [b, a] and w = 3. We generate W∃(3, 2) in Table 10.1

and compute P ∃(w, e). From (10.1) we obtain P ∃(3, 2) = P (e)(P (a)+P (b)+P (b)+

P (a)) = 2P (e).

10.1.2 Algorithm for computing P ∃(w, e)

This section presents a general algorithm for computing P ∃(w) for Markov sources

[33].

Let xi be the i-th symbol of a window x ∈ W∃(w, e) then the probability of the

window in a k-order Markov source can be computed as follows

P (x) = P (x0)P (x1|x0) . . . P (xk−1|xk−2 . . . x0) ·
w−1
∏

i=k

P (xi|xi−1 . . . xi−k)

where k is the order of the model of the source. However, using (10.1) directly is

computationally very expensive. Furthermore computing P (x) for every window x

independently would be inefficient because many windows share the same prefix.

50

Therefore we propose a computational method where we enumerate the windows

according to the depth-first traversal of a trie build from the members of W∃(w)

without the trailing Anm+1 that contributes a factor of 1 to the computation of the

probability. The idea of this method is that the probability of each distinct prefix of

W∃(w, e) is computed once. An example of such a trie for e = [a, b, c] and w = 4 is

shown in Figure 10.2.

a

b

c c

c

b

b

c

a

a

b

c

Figure 10.2.: A trie for the set of windows of length w = 4 containing e = [a, b, c] as

a subsequence

10.1.3 Analysis of C∃(w, m)

Recall that C∃(w, m) denotes the cardinality of W∃(w, m).

The recurrence for C∃(w, m) follows directly form the one for W∃(w, m). Namely,































C∃(w,m) = (|A| − 1)C∃(w − 1,m) + C∃(w − 1,m − 1) w,m > 0,

C∃(w, 0) = |A|w w > 0,

C∃(0,m) = 0 m > 0,

C∃(0, 0) = 1.

We use the method of generating functions to find the solution for C∃(w, m). For

an in-depth discussion of generating functions see, for example, [34]. We obtain the

following theorem.

51

Theorem 10.1.2 The number of all windows of length w over an alphabet A which

contains at least one occurrence of a pattern of length m is equal to:

C∃(w, m) =

w−m
∑

k=0

(

k + m − 1

k

)

(|A| − 1)k|A|w−m−k.

Proof. We leave m as a free variable and define the following family of generating

functions

Wm(x) =
∑

w=0

C∃(w, m)xw

where x is a complex number. From the above recurrence we obtain







Wm(x) = (|A| − 1)
∑

w=1 C∃(w − 1, m)xw +
∑

w=1 C∃(w − 1, m − 1)xw m > 0,

W0(x) =
∑

w=0 C∃(w, 0)xw m = 0.

We now work with Wm(x) for m > 0.

Wm(x) = (|A| − 1)
∑

w=1

C∃(w − 1, m)xw +
∑

w=1

C∃(w − 1, m − 1)xw

= (|A| − 1)x
∑

w=1

C∃(w − 1, m)xw−1 + x
∑

w=1

C∃(w − 1, m − 1)xw−1

= (|A| − 1)x
∑

w=0

C∃(w, m)xw + x
∑

w=0

C∃(w, m− 1)xw

= (|A| − 1)xWm(x) + xWm−1(x).

We represent Wm(x) in the form of a first order recurrence with respect to m.

Wm(x)(1 − (|A| − 1)x) = xWm−1(x)

Wm(x) =
x

(1 − (|A| − 1)x)
Wm−1(x)

= xm 1

(1 − (|A| − 1)x)m W0(x).

Using the fact that

W0(x) =
∑

w=0

|A|wxw =
1

(1 − |A|x)

52

we obtain

Wm(x) = xm 1

(1 − (|A| − 1)x)m

1

(1 − |A|x)
.

Denoting by [xw]f(x) the coefficient at xw of f(x), we find

C∃(w, m) = [xw]Wm(x).

Since

[xw]
1

(1 − (|A| − 1)x)m =

(

w + m − 1

w

)

(|A| − 1)w,

and

[xw]
1

(1 − (|A| − 1)x)m

1

(1 − |A|x)
=

w
∑

k=0

(

k + m − 1

k

)

(|A| − 1)k|A|w−k

we finally obtain

[xw]Wm(x) =

w−m
∑

k=0

(

k + m − 1

k

)

(|A| − 1)k|A|w−m−k.

10.1.4 Analysis of P ∃(w, e) for 0-order Markov models

The probability of existence P ∃(w, e) for a serial episode e = [e[1], e[2], . . . e[m]]

in a 0-order Markov source satisfies the following recurrence






























P ∃(w,m) = (1 − P (e[m]))P ∃(w − 1,m) + P (e[m])P ∃(w − 1,m − 1) w,m > 0,

P ∃(w, 0) = 1 w > 0,

P ∃(0,m) = 0 m > 0,

P ∃(0, 0) = 1 .

The recurrence for P ∃(w, m) follows directly from the one for W∃(w, m). Indeed,

consider a window of size w. Observe that either the last symbol of the pattern,

e[m], does not occur at the w-th position of the window or it does occur. In the

former situation e must occur within the window of size w − 1 leading to the term

(1 − P (e[m]))P ∃(w − 1, m) of the above recurrence. The latter situation provides

the second term of the recurrence.

53

In Section 10.1.5 we solve the above recurrence using generating functions. In

Section 10.1.6 we apply Cauchy’s residue theorem to obtain an asymptotic expansion

of P ∃(w, m) for fixed m and large w. In Section 10.1.7 we present a fast dynamic

programing algorithm for P ∃(w, m). We summarize our results in the next theorem.

Theorem 10.1.3 Consider a 0-order Markov source with pi being the probability of

generating the i-th symbol of e and qi = 1 − pi. Let also

P (e) =

m
∏

i=1

pi

• Then for all m and w ≥ m we have

P ∃(w, m) = P (e)
w−m
∑

i=0

∑

Pm
k=1 nk=i

m
∏

k=1

qnk

k . (10.2)

• Let now m be fixed and assume i �= j implies pi �= pj. Then as w → ∞

P ∃(w, m) ≈ 1 − P (e)

m
∑

i=1

(1 − pi)
w

pi

m
∏

j
=i

1

pj − pi

(10.3)

Proof. We prove (10.2) in Section 10.1.5 and (10.3) in Section 10.1.6.

Notice that the asymptotic approximation reveals the anticipated fact about the

behavior of P ∃(w, m), i.e., that P ∃(w, m) = 1 as w → ∞, and the rate of convergence

is exponential.

10.1.5 Exact solution

As before we use the method of generating functions to find the solution to

P ∃(w, m). Let

Wm(x) =
∑

w=0

P ∃(w, m)xw.

From the above recurrence we find






Wm(x) = qm

∑

w=1 P ∃(w − 1, m)xw + pm

∑

w=1 P ∃(w − 1, m − 1)xw m > 0,

W0(x) =
∑

w=0 P ∃(w, 0)xw m = 0.

54

where qm = 1 − pm. We now work with Wm(x) for m > 0

Wm(x) = qm

∑

w=1

P ∃(w − 1, m)xw + pm

∑

w=1

P ∃(w − 1, m − 1)xw

= qmx
∑

w=1

P ∃(w − 1, m)xw−1 + pmx
∑

w=1

P ∃(w − 1, m − 1)xw−1

= qmx
∑

w=0

P ∃(w, m)xw + pmx
∑

w=0

P ∃(w, m − 1)xw

= qmxWm(x) + pmxWm−1(x).

We represent Wm(x) in the form of the first order recurrence with respect to m

Wm(x)(1 − qmx) = pmxWm−1(x)

Wm(x) =
pmx

(1 − qmx)
Wm−1(x)

=

m
∏

i=1

pix
m

m
∏

i=1

1

(1 − qix)
W0(x)

Using the fact that

∑

w=0

xw =
1

(1 − x)
,

we obtain

Wm(x) =
m
∏

i=1

pix
m

m
∏

i=1

1

(1 − qix)

1

(1 − x)

= P (e)xm

m
∏

i=1

1

(1 − qix)

1

(1 − x)
.

But P ∃(w, m) = [xw]Wm(x), and since

m
∏

i=1

1

(1 − qix)
=

m
∏

i=1

∑

w=0

qw
i xw,

and

[xw]

m
∏

i=1

∑

w=0

qw
i xw =

∑

Pm
k=1 nk=w

qn1

1 qn2

2 . . . qnm

m

=
∑

Pm
k=1

nk=w

m
∏

k=1

qnk

k

55

we use the partial sum property to derive the following

[xw]

m
∏

i=1

∑

w=0

qw
i xw 1

(1 − x)
=

w
∑

i=0

∑

Pm
k=1

nk=i

m
∏

k=1

qnk

k ,

we finally obtain

[xw]Wm(x) = P (e)[xw−m]
m
∏

i=1

∑

w=0

qw
i xw 1

(1 − x)

= P (e)
w−m
∑

i=0

∑

Pm
k=1

nk=i

m
∏

k=1

qnk

k .

This proves (10.2) of Theorem 10.1.3.

10.1.6 Asymptotic approximation

Now we estimate P ∃(w, m) asymptotically as w → ∞ and m fixed, that is, we

prove (10.3) of Theorem 10.1.3. In our previous derivations we obtained

Wm(z) = P (e)zm

m
∏

i=1

1

(1 − qiz)

1

(1 − z)
.

Observe that the exact value of P ∃(w, m) is equal to the coefficient of Wm(x) at xw

which – we recall – we denote as [xw]Wm(x). By the Cauchy coefficient theorem

(cf. [34]) we know that

P ∃(w, m) = [zw]Wm(z) =
1

2πi

∮

Wm(z)z−w−1dz

where z is a complex variable and the integration is over a small circle around z = 0.

To evaluate this integral we use another Cauchy result known as the Cauchy residue

theorem [34]. For this we enlarge the circle around z = 0 so that it contains all

singularities Wm(z). In our case, the radius r of such a circle must satisfy r >

(1 − pmax)
−1. Then

P ∃(w, m) = −
∑

p

Res[Wm(z)z−w−1, z = p] + O(r−w)

56

where Res[f(z), z = a] is the residue of f(z) at z = a. We recall that if f(z) = φ(z)
ϕ(z)

,

where φ(z) and ϕ(z) are analytic functions in z = a subject to ϕ(z) = 0, ϕ
′
(z) �= 0

and φ(z) �= 0, then a is a pole of f(z) and

Res

[

φ(z)

ϕ(z)
, z = a

]

=
φ(a)

ϕ′(a)
.

Therefore,

Res[Wm(z)z−w−1, z = 1] = −P (e)1m−w−1

m
∏

i=1

1

(1 − qi)
= −1.

Similarly for z = 1
qi

we have

Res

[

Wm(z)z−w−1, z =
1

qi

]

= (−1)
1

qi

P (e)

(

1

qi

)m−w−1 m
∏

j
=i

1
(

1 − qj

qi

)

1

1 − 1
qi

= P (e)
(1 − pi)

w

pi

m
∏

j
=i

1

pj − pi

.

Putting everything together we obtain

P ∃(w, m) = −Res[Wm(z)z−w−1, z = 1] −
m
∑

i=0

Res

[

Wm(z)z−w−1, z =
1

qi

]

= 1 − P (e)

m
∑

i=1

(1 − pi)
w

pi

m
∏

j
=i

1

pj − pi

+ O(r−w).

10.1.7 Fast algorithm

Finally, we propose a dynamic programming algorithm for computing P ∃(w, m).

Let Q[i, j] denote the product
∏j

k=1 qnk

k such that
∑j

k=1 nk = i then































Q[i, j] =
∑i

k=0 Q[i − k, j − 1] · qk
j 1 < j ≤ m, 1 < i ≤ w − m

Q[i, 1] = qi
1

Q[0, j] = 1 1 ≤ j ≤ m

P ∃(w, m) = P (e)
∑w−m

i=0 Q[i, m]

The time complexity of the algorithm is O((w − m)2 · m) and is equal to the space

required to build the table Q[w−m, m]. Let v[a : b] denote the substring of a string

57

v between indexes a and b such that a < b and 1 ≤ a, b ≤ w. Let p[1 : m] be an

array with probabilities p1, p2, . . . , pm of the symbols in e.

Algorithm 7: Computation of P ∃(w, m)

input : w, m, p[1 : m]

output: P ∃(w, m)

begin

for j = 1 to m do

Q[0, j] = 1;

P ∃(w, m) = 1;

for i = 1 to w − m do

Q[i, 1] = (1 − p[1])i;

for j = 2 to m do

Q[i, j] = 0;

for k = 0 to i do

Q[i, j] = Q[i, j] + Q[i − k, j − 1] ∗ (1 − p[j])k;

P ∃(w, m) = P ∃(w, m) + Q[i, m];

P ∃(w, m) = P (e) · P ∃(w, m);

end

10.2 Set of subsequence patterns

This section extends the results presented in Section 10.1 to the case of a set

of subsequence patterns, monitored simultaneously for an occurrence, including the

important special case of the set of all permutations of a set of symbols (parallel

episode). The parallel episode case captures situations where the ordering of the

events within the window of observation does not matter, e.g., market basket items

scanned by a cashier. The reason we distinguish the parallel episode case is because

we will take advantage of the structure of permutations of a single pattern to design

58

an efficient algorithm instead of representing the parallel episode as a set of serial

episodes.

Thus, the goal of the current section is to quantify P ∃(w, E) for a set E =

{e1, e2, . . . , e|E|}. In order to compute P ∃(w, E), we need a formula for W∃(w, E).

However, a considerable source of difficulty is the fact that W∃(w, E) for |E| > 1

is not equal to the enumeration of sets W∃(w, ei) because in general W∃(w, ei) ∩
W∃(w, ej) �= ∅ for i �= j where i, j ≤ |E| and therefore considering W∃(w, ei)

and W∃(w, ej) independently would lead to a failure of the probabilistic analysis of

P ∃(w, E) due to double-counting of respective probabilistic events. Thus, we would

need to apply an inclusion-exclusion principle. To appreciate the difficulty of this

extension, consider the much-simplified case when there are only two subsequence

patterns (E = {e1, e2}) and no symbol is common to e1 and e2. Even in this case

W∃(w, e1) ∩W∃(w, e2) �= ∅ for appropriately large w. Add to this the fact that the

different patterns typically do have common symbols or common subsequences or

possibly common prefixes, that they may have different lengths, and the problem

becomes nontrivial with a solution that strongly depends on the structure of the

patterns in the set. This fact excludes any analytical solution to the case |E| > 1.

The goal of the current section is a computational formula for P ∃(w, E). We

provide a recurrence system for constructing W∃(w, E). Because the recurrence

contains conditional statements, representing interactions of symbols of members of

E , we cannot find an analytical solution to the recurrence. Therefore we propose

an efficient algorithmic method for enumerating W∃(w, E) using recursion graphs,

which leads to a formula for P ∃(w, E). We applied our theoretical results by running

an extensive series of experiments on real data. We used a part of Wal-Mart sales

data.

59

10.2.1 Set of serial episodes

For the sake of the presentation we focus throughout this section on the case

where either E = {e1, e2}, or E is the set corresponding to a parallel episode but our

derivations will easily be seen to generalize to an arbitrary set of episodes E .

Let W∃(w, E) be the set of all distinct windows of length w containing at least

one occurrence of at least one member of E = {e1, e2} as a subsequence. Then the

probability of existence of E can be expressed as follows

P ∃(w, E) =
∑

x∈W∃(w,E)

P (x), (10.4)

where P (x) is the probability of string x in a given Markov model.

We could use Theorem 10.1.1 and express W∃(w, E) in terms of W∃(w, e1) and

W∃(w, e2) using the inclusion-exclusion principle as W∃(w, e1, e2) = W∃(w, e1) ∪
W∃(w, e2) − W∃(w, e1) ∩ W∃(w, e2). However, it would be inefficient for the fol-

lowing reasons: (1) W∃(w, e1) ∩ W∃(w, e2) �= ∅ for appropriate large w and then

the cardinality |W∃(w, e1) ∩ W∃(w, e2)| is exponential in w; and (2) the inclusion-

exclusion “blows up” for |E| > 2.

Below we present some examples of two sets W∃(w, e1), W∃(w, e2) and their

intersections.

Example: Consider A = {a, b, c, d} and the following cases:

• E = {[a, b], [c, d]} and w = 3. Then W∃(w, e1) ∩W∃(w, e2) = ∅

• E = {[a, b], [a, c]} and w = 3. Then W∃(w, e1) ∩W∃(w, e2) = {[a, b, c], [a, c, b]}

• E = {[a, b], [a]} and w = 3. Then W∃(w, e1)∩W∃(w, e2) = W∃(w, e1), i.e. this

case is equivalent to E = {a} because an occurrence of ab implies an occurrence

of a in the window

Clearly, the example shows that the cardinality of W∃(w, E) depends on symbols in

corresponding positions in e1 and e2 that determine the size of the intersection. This

60

implies that, unlike the solution to P ∃(w, e), we cannot find an analytical solution

to P ∃(w, E). Therefore, we adopt a computational approach to finding P ∃(w, E)

with the goal of providing an efficient algorithm that uses a graph to represent

the dependences (interactions) of symbols in e1 and e2. We start by presenting a

recurrence defining W∃(w, E).

In the 0-order Markov model the probability of a pattern is equal to a product of in-

dividual probabilities of symbols. Thus, to any recursive formula for W∃(w, m1, m2)

corresponds a similar formula for P ∃(w, m1, m2) (and vice-versa). We now show that

P ∃(w, m1, m2) satisfies the following recurrence, where for the purpose of readabil-

61

ity of the formula we assume that e1 and e2 are reversed, i.e., e1 = [e1[m], e1[m −
1], . . . e1[1]] and e2 = [e2[m], e2[m − 1], . . . e2[1]].



















































































































































































































































if e1[M1] �= e2[M2] then

P ∃(W,M1,M2) = P (e1[M1])P
∃(W − 1,M1 − 1,M2)+

P (e2[M2])P
∃(W − 1,M1,M2 − 1)+

(1 − P (e1[M1]) − P (e2[M2]))P
∃(W − 1,M1,M2)

for w > 0,M1,M2 > 0

if e1[M1] = e2[M2] then

P ∃(W,M1,M2) = P (e1[M1])P
∃(W − 1,M1 − 1,M2 − 1)+

(1 − P (e1[M1]))P
∃(W − 1,M1,M2)

for W > 0,M1,M2 > 0

P ∃(W, 0, 0) = 1 for W ≥ 0

P ∃(0,M1,M2) = 0 for M1,M2 > 0

P ∃(1,M1,M2) = 1 for min{M1,M2} = 0

Indeed, consider all
(

w

m1

)

and
(

w

m2

)

positions in a window in W∃(w, m1, m2) where

e1 or e2 can occur as a subsequence. We can think of those positions as m1-tuples

and m2-tuples respectively. Now let consider all windows in W∃(w, m1, m2) sorted

according to increasing lexicographic order of those tuples. Then depending on

whether the first symbols of e1 and e2 are equal or not there are two cases. If

e1[m1] �= e2[m1] then there are three cases: either e1[m1] is the first symbol in

the window giving the term P (e1[m1])P
∃(w − 1, m1 − 1, m2), or e2[m2] is the first

62

symbol in the window giving the term P (e2[m2])P
∃(w − 1, m1, m2 − 1), or none of

the above which leads to the term (1−P (e1[m1])−P (e2[m2]))P
∃(w− 1, m1, m2). If

e1[m1] = e2[m2] then there are two cases depending on whether the first symbol of

the window is equal to e1[m1] or not. From the above discussion it is clear that the

shape of the recursion tree is determined by interactions between symbols in e1 and

e2, i.e., whether their symbols at pairs of positions are equal or not. Therefore, in

order to find a solution to P ∃(w, m1, m2) we have to enumerate all pairs of indices

(M1, M2) such that P ∃(W, M1, M2) appears in the recursion tree (not all such pairs

of indices qualify). This recursion tree in a form of a graph is now described more

formally (as stated earlier, in addition to depicting the recurrence, the graph also

describes all elements of W∃(w, m1, m2). Below we show a recursive description of

the graph.

Let G(E) = (V, E) be an edge-labeled directed graph defined as follows. The

vertex set V is a subset of all the pairs (i, j), 0 ≤ i ≤ m1, 0 ≤ j ≤ m2. Figure 10.3

contains an inductive definition of G(E) = (V, E).

Let Edges(path) and V ertices(path) denote the sequence of consecutive edges

and (respectively) vertices in any path, except that V ertices(path) does not include

the last vertex on path (why this is so will become apparent below). Let R be the

set of all distinct simple paths (i.e., without self-loops) from the start-vertex to any

end-vertex. Let Lw be the set of all distinct paths of length w, including self-loops,

from the start-vertex to all end-vertices (that is, self-loops do count towards path

length). Then the set of all windows containing E = {e1, e2} as a subsequence can

be enumerated as follows

W∃(w, E) = {Edges(path) : path ∈ Lw}. (10.5)

Examples of G(E) are shown in Figure 10.4 and in Figure 10.5. For every vertex

(i, j) we annotated its self-loop with ni,j denoting the number of times a path from

the start-vertex to the end-vertex uses the loop.

63

• (0, 0) is in V .

• If (i, j) is in V , i < m1, and e1[i + 1] �= e2[j + 1] then (i + 1, j) is also in

V , and an edge from (i, j) to (i + 1, j) labeled e1[i + 1] exists in E.

• If (i, j) is in V , j < m2, and e1[i + 1] �= e2[j + 1] then (i, j + 1) is also

in V , and an edge from (i, j) to (i, j + 1) labeled e2[j + 1] exists in E.

• If (i, j) is in V , i < m1 and j < m2, and e1[i + 1] = e2[j + 1] then

(i+ 1, j + 1) is also in V , and an edge from (i, j) to (i+ 1, j + 1) labeled

e1[i + 1] (= e2[j + 1]) exists in E.

• A self-loop from vertex (i, j) to itself exists and has label equal to (i)

A if i = m1 or j = m2, (ii) A− {e1[i + 1]} − {e2[j + 1]} if i < m1 and

j < m2.

The following observations, in which we do not count self-loops towards the

in-degree and out-degree of a vertex, follow from the above definition of G(E).

• The in-degree of vertex (0, 0) (start vertex) equals zero, the out-degree

of vertices (m1, j), (i,m2) for i ≤ m1, j ≤ m2 (end-vertices) equals zero.

• The in-degree and out-degree of every vertex (i, j) is at most |E|.

• |V | = O(m1m2) and |E| = O(|E|m1m2).

Figure 10.3.: Inductive definition of G(E)

Example: Consider A = {a, b, c, d}, E = {[a, b], [a, c]} and w = 3. We use G(E)

from Figure 10.5 and applying (10.5) we enumerate elements of W∃(3, E) which are

shown in Table 10.2. Clearly, using the presented method we generate all members

of W∃(3, E) without duplicates. If we compare Figure 10.1 with Figures 10.4 and

10.5 it is clear that G(E) for a set containing only one episode reduces to the graph

64

Table 10.2: Enumeration of W∃(3, E) for A = {a, b, c, d} and E = {[a, b], [a, c]} using

G(E) from Figure 10.5

End vertex W∃(3, E) n0,0 n1,1 n2,1 n1,2

(2, 1) ab × A 0 0 1 0

(2, 1) aab 0 1 0 0

(2, 1) adb 0 1 0 0

(2, 1) bab 1 0 0 0

(2, 1) cab 1 0 0 0

(2, 1) dab 1 0 0 0

(1, 2) ac × A 0 0 1 0

(1, 2) aac 0 1 0 0

(1, 2) adc 0 1 0 0

(1, 2) bac 1 0 0 0

(1, 2) cac 1 0 0 0

(1, 2) dac 1 0 0 0

65

An2,0(A− b − c)n1,0

(A− a − c)n0,0

a

c

0, 0

0, 1

(A− a − d)n0,1

a

d

1, 0
b

c

0, 2

2, 0

1, 1

An0,2

(A− b − d)n1,1

b

d
An1,2

1, 2

An2,1

2, 1

Figure 10.4.: G(E) for E = {[a, b], [c, d]}

0, 0

An2,1

An1,2

2, 1

1, 2

(A− a)n0,0

(A− b − c)n1,1

1, 1
a

b

c

Figure 10.5.: G(E) for E = {[a, b], [a, c]}

representing W∃(w, e) for a serial episode. The formulas (10.4), (10.5) and (10.2)

lead to the following theorem.

Theorem 10.2.1 Consider a 0-order Markov event sequence with P (ei[k]) being the

probability of generating the k-th symbol of ei ∈ E = {e1, e2}. Let also

P (Edges(path)) =
∏

edge∈Edges(path)

P (label(edge)).

66

Then for m1, m2 and w ≥ mi we have

P ∃(w, m1, m2) =
∑

path∈R
P (Edges(path))

w−|Edges(path)|
∑

g=0
∑

(i,j)∈V ertices(path),
P

ni,j=g

∏

(i,j)

[1 − P ({e1[i + 1]} ∪ {e2[j + 1]})]ni,j ,

where 0 ≤ ni,j ≤ w − |Edges(path)|.

Proof. Easily follows from (10.4), (10.5) and (10.2).

Thus, the reason that V ertices(path) does not include the last vertex is because

in the memoryless model P (Ani,j) = 1 for 0 ≤ ni,j .

For the purpose of our experiments, we implemented an efficient dynamic pro-

gramming algorithm based on Theorem 10.2.1. The time complexity of the algorithm

is O(|R|w2), where m = min{m1, m2} since we consider |R| paths and each of them

requires O(w2) [15]. In section 11.4.2 we present evidence that Theorem 10.2.1 works

on real data by showing that Ω∃(n, w) closely approximates P ∃(w, E).

10.2.2 Parallel episode

We also solved P ∃(w, E) for an important special case when E consist of all

permutations of a single pattern, which is the case of a parallel episode. Using

Theorem 10.2.1 directly for a parallel episode as a set of patterns would be inefficient

because we would then need to consider a graph having a disastrous |V | = O(mm!).

In order to simplify the graph G(E) that would result from all permutations, and

bring its number of vertices down to a manageable size (quantified below), we exploit

the structure of the set of all permutations to design a different graph. Notice that,

for a parallel episode, every path in R is a permutation of symbols in e. In addition,

the out-degree of a vertex is at most m if all symbols of e are different. Furthermore

a transition from from P ∃(k, i, j, . . .) to P ∃(k+1, i′, j′, . . .) takes place for any symbol

of e not seen so far since the order of symbols does not matter. This observations

allow us to introduce a variant of G(E) called G‖(e).

67

Let G‖(e) = (V, E) be a directed edge-labeled graph defined as follows. The ver-

tex set V consists of submultisets of size i = 0, 1, . . . , m of the multiset of symbols in

e = {e[1], e[2], . . . , e[m]}. Let e′ = {e′[1], e′[2], . . . e′[m′]} be the set of cardinality m′

obtained from e by eliminating duplicates and then sorting it. Let ci for i = 0, 1 . . .m′

be the number of times symbol e′[i] occurs in e. We represent the submultisets as

integer vectors of the form (i1, i2, . . . , im′), where 0 ≤ ij ≤ cj if the vertex contains

ij symbols e′[j] in its submultiset. Figure 10.6 contains an inductive definition of

G‖ = (V, E), where ∪ is multiset union (e.g.{c} ∪ {c} = {c, c} = ∪2c).

• (0, 0, . . . , 0) and (c1, c2, . . . , cm′) are in V .

• If (i1, i2, . . . , im′) is in V and
∑m′

j=1 ij < m then (k1, k2, . . . , km′) is in

V such that
∑m′

j=1 kj =
∑m′

j=1 ij + 1 and an edge with label equal to

{∪k1e′[1],∪k2e′[2], . . . ,∪kme′[m]} − {∪i1e′[1],∪i2e′[2], . . . ,∪ime′[m]} ex-

ists in E.

• A self-loop from vertex (i1, i2, . . . , im′) to itself exists and has label equal

to (i) A for (c1, c2, . . . , cm′), (ii) A−⋃

ij=1{e′[ij]} otherwise.

The following observations, in which we do not count self-loops towards the

in-degree and out-degree of a vertex, follow from the above definition of G‖(e).

• The in-degree of the start-vertex (0, 0, . . . , 0) equals zero, the out-degree

of the end-vertex (c1, c2, . . . , cm′) equals zero. The in-degree and out-

degree of every vertex is at most m.

• |V | = O(2m) and |E| = O(|V |m).

Figure 10.6.: Inductive definition of G‖(e)

Examples of G‖(e) are shown in Figure 10.7 and in Figure 10.8. As in the case

of G(E) for every vertex (i1, i2, . . . , im′) we annotated its self-loop with ni,j denoting

68

the number of times a path from the start-vertex to the end-vertex uses the loop.

The next theorem is an adoption of Theorem 10.2.1 to the case of a parallel episode.

{}

a

b

c

{c}

{b}

(A− a − c)n0,1,0

(A− a − b)n0,0,1

c

(A− b − c)n1,0,0

{a}

a

a

b

c

b

(A− c)n1,1,0

{a, b}

(A− b)n1,0,1

{a, c} b

c

(A− a)n0,1,1

{b, c}

{a, b, c}

An1,1,1

a

(A− a − b − c)n0,0,0

Figure 10.7.: G‖(e) for e = {a, b, c} and A = {a, b, c, d}

(A− a)n0,2

(A− a − c)n0,0 An1,2

(A− c)n1,1

{c}

{a}

{}

{a, c}

{c, c}

c

a

c

c

c

a

a

{a, c, c}
(A− a − c)n0,1

(A− c)n1,0

Figure 10.8.: G‖(e) for e = {a, c, c} and A = {a, b, c, d}

69

Theorem 10.2.2 Consider a 0-order Markov event sequence with P (e[k]) being the

probability of generating the k-th symbol of e where e is a parallel episode with

P (e) =
m
∏

i=1

P (e[i])

then for all m and w ≥ m we have

P ∃(w) = P (e)
∑

path∈R

w−m
∑

g=0

∑

(i1,...,im′)∈V ertices(path),
P

ni1,...,i
m′ =g

∏



1 − P





⋃

ij=0

{e[ij]}









ni1,...,i
m′

,

where 0 ≤ ni1,...,im′ ≤ w − m.

Proof. Easily follows from (10.5) and (10.2).

For the purpose of our experiments we implemented an efficient dynamic pro-

gramming algorithm based on Theorem 10.2.2. The time complexity of the algo-

rithm is O(m!w2), since we consider |R| = O(m!) paths and each of them requires

O(w2) [15]. In section 11.4.1 we present evidence that Theorem 10.2.2 works on real

data by showing that Ω∃(n, w, E) closely approximates P ∃(w, E).

70

11 EXPERIMENTAL RESULTS

The main purpose of experiments, presented in this chapter, was to test the derived

analytic formulas for P ∃(w) for real data since the accuracy of the threshold mecha-

nism in detecting significant episodes is determined by the accuracy of the respective

formulas for P ∃(w) in predicting frequencies of episodes in the reference sequence.

To accomplish this we compared Ω∃(n, w) with P ∃(w) for different values of w using

the following error metric d

d =

[

1

r

r
∑

i=1

|Ω∃(n, wi) − P ∃(wi)|
Ω∃(n, wi)

]

100% (11.1)

where w1 < w2 < . . . wr are the tested window sizes.

We used the following sources in experiments in this chapter: English text in

Section 11.1, web accesses in Section 11.2, DNA in sections 11.3 and Wal-Mart

transactions in Section 11.4.

11.1 English text source

In this section we consider an English text represented by an on-line version of

War and Peace by Leo Tolstoy. The purpose of the experiments in this section was to

test how the formula for P ∃(w, e) for 0-order model works for a source that apparently

is not 0-order. The attractiveness of 0-order models of a reference sequence stems

from the fact that we can use the presented fast algorithms for computing P ∃(w) in

such models. An English text is of course not memoryless. As an example consider

string “th” which occurs more frequently than “tz” or “ts”. So in this example the

letter “h” will occur more likely if the previous letter was “t”. Thus, in order to

test the formulas we assumed a 0-order model of the text and estimated the model

parameters from frequencies of observed symbols.

71

11.1.1 Serial episode

In this experiment we compare Ω∃(n, w, e), discovered using Algorithm 3, with

P ∃(w, e), computed using Algorithm 7. We set an example episode

e = [g, w, a, d, e, r, a] and compared Ω∃(n, w) with P ∃(w) for selected values of w.

Figure 11.1 illustrates the results that show two main facts: P ∃(w) approaches 1 as

w goes to infinity and P ∃(w) very closely approximates Ω∃(n, w) with d = 12%.

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1234567
1234

Figure 11.1.: Ω∃(n, w) and P ∃(w) for a serial episode

72

11.1.2 Upper threshold

In this experiment we demonstrate the application of the upper threshold τu(w).

We assumed that the reference sequence is represented by a 0-order model and

computed the parameters from the monitored sequence. We set β(b) = 10−8, w =

100 and kept injected an example episode e = [w, o, j, c, i, e, c, h] as a w-windowed

subsequence into different places of the source. After each insertion we discovered

Ω∃(n, w) and checked whether it exceeded τu(w). To make it more interesting we

considered two values of gaps between inserted symbols of e: gap = 0 and gap = 11.

In other words we injected e as s1g
gaps2g

gap . . . ggapsm, where g ∈ A+. The results

are shown in Figure 11.2.

The horizontal dash-dot line shows P ∃(w, e) and the solid line shows τu(w). We

can see that if gap = 0, then we only need two episodes to exceed τu(w) versus three

if gap = 11. This makes a sense if we notice that if the episode is stretched to the

window boundaries (gap = 11) then it is more noise-like compared to the case when

gap = 0, which suggests an intentional action (attack) and should be detected early.

Clearly, τu(w) provides a sharp detection of significant episodes.

11.2 Web accesses

In this section we consider web accesses represented by logs of user accesses

to the music machines web site (currently at http://machines.hyperreal.org),

which recorded accesses from 1/01/99 through 4/30/99 . We focused on the http://

machines.hyperreal.org/manufacturers/ web page containing links to 81 pages

of manufacturers of music instruments and created an event sequence by considering

only unique accesses made by the same originating host to one of the manufacturers,

i.e, if a given host made many accesses to the same manufacturer per session then

we treated it as one access and consider the first access only. The purpose of the

experiment in this section was to test how the formula for P ∃(w, e) for 0-order

model works for a source that apparently is not 0-order. The web accesses are not

73

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.01

0.02

0.03

0.04

0.05

0.06

(number of inserted episodes)/n

Ω
e123456789101

Ω
e123456789101

Figure 11.2.: Detection of injected serial episode

memoryless not only because of hierarchical structure but also because of correlations

between links. For example a person looking for a product in an on-line store will

most likely visit all manufacturers of the search product category.

11.2.1 Serial episode

In this experiment we compare Ω∃(n, w, e) discovered using Algorithm 3 with

P ∃(w, e), computed using Algorithm 7. We set an example episode e = {Akai, ARP ,

Korg, Moog, Y amaha, Casio, Sequential} and compared Ω∃(n, w) with P ∃(w) for

74

selected values of w. Figure 11.3 illustrates the results that show that P ∃(w, e) still

provides a good approximation of Ω∃(n, w) with d = 14%.

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1234567
1234

Figure 11.3.: Ω∃(n, w) and P ∃(w) for the web accesses

11.3 DNA

In this section we consider genomic data represented as strings of nucleotide

symbols over the alphabet A = {A, C, G, T}. The main purpose of experiments in

this section was to test the prediction accuracy of computational formula for P ∃(w)

for variable-length Markov models learned using the IMM algorithm (Section 9.2)

and the context algorithm (Section 9.1).

75

Markov models of DNA sequences have frequently been used in gene finding

algorithms [30], where the interest was in finding strings of symbols instead of subse-

quences. Furthermore, we do not score the testing sequence using a trained Markov

model, as in the work on gene discovery. Adapting the method of scoring the se-

quence for episode discovery would mean training a separate Markov model for every

combination of window size and episode type. Note that in the episode framework

we consider Ω∃(n, w), which is a function of a Markov chain rather than a well de-

fined structure (coding/non-coding region) of the sequence as in the gene discovery

methods. Therefore, in our method for the reliable detection of significant episodes

we use a Markov model only to compute the thresholds. Because of the sequen-

tial nature of Markov sources we considered only serial episodes. We do not test

the thresholds directly in experiments by computing its value and simulating occur-

rences of significant episode as in Section 11.1.2 because we already showed that the

accuracy of the thresholds is determined by prediction accuracy of the formula for

P ∃(w). Therefore, we test the formulas for thresholds indirectly by focusing on the

predictive performance of the formula for P ∃(w) for Markov models. Perhaps the

most intriguing question is whether we can improve our detection method on DNA

sequences in terms of accuracy by employing a k-order Markov model for k > 0

rather than the 0-order Markov model. As we will see in experiments the answer to

this question is affirmative. To evaluate the performance of a model we used (11.1).

11.3.1 Full versus IMM for the same training and testing sequence

In this experiment we experimentally confirm the correctness of our theoretical

results including Theorem 8.0.3 and the algorithm for P ∃(w) (Section 10.1.2). We

expected to achieve a better prediction accuracy using the 5-order (full and IMM)

comparing to the 0-order. To exclude a possibility of model over-fitting we used

the the same sequence of Haemophilius influenzea as a training and testing source.

We selected an example serial episode e = [C, C, G, T] and for each k-order full

76

model for k = 0, 1, 2, 3, 4, 5 and 5-order IMM we compared Ω∃(n, w) with P ∃(w) for

w = [5, 20] by computing the prediction error (11.1). The computed prediction errors

are represented with a bar graph in Figure 11.4 that shows that: (1) the prediction

error decreases monotonically starting from 1-order full model up; and (2) 5-order

(full and IMM) gives the best prediction significantly outperforming the 0-order.

This validates our theoretical and algorithmic results. 5-order IMM performs closely

to 5-order full model since the training source was sufficiently large and the IMM

did not use the lower order models.

Comparison of prediction error for full Markov models and 5−order IMM

Full Markov models and 5−order IMM

P
re

di
ct

io
n

er
ro

r %

0 1 2 3 4 5
0

1

2

3

4

5

6

5−order IMM

Figure 11.4.: Prediction error d between Ω∃(n, w) and P ∃(w) for a serial episode

using a k-order full Markov models for k = 0, 1, 2, 3, 4, 5 and 5-order

IMM

77

11.3.2 Full versus IMM for training sequence different form testing sequence

In this experiment we compared the full 5-order with 5-order IMM. We used

Haemophilius influenzea for computing the conditional probabilities and we tested

the performance of both models on Helicobacter pylori. We expected the IMM to

perform better than the full model because of its smoothing properties while we ex-

pected the full model to suffer from over-fitting. Also we did not expect a significant

improvement in accuracy of IMM because the training set of size (1,830,025) was

sufficiently large to find all context strings. We selected an example serial episode

e = [C, C, G, T] and for each k-order full model for k = 0, 1, 2, 3, 4, 5 and 5-order IMM

we compared Ω∃(n, w) with P ∃(w) for w = [5, 20] by computing the prediction error

(11.1). The results, shown as a bar graph in Figure 11.5, confirm our expectations

and the IMM performed slightly better than 5-order full model. Also 1-order full

turned out to be the winner probably because there is a difference in the structure

of DNA of Helicobacter pylori and Haemophilius influenzea and the 1-order captured

the necessary structure without over-fitting.

11.3.3 Frequent episodes

In this section we experiment on a DNA sequence of Escherichia coli from ftp://

ftp.ncbi.nlm.nih.gov/genomes/Bacteria/Escherichia_coli_K12/. The purpose

of this experiment was to demonstrate the applicability of the upper threshold and

frequent episode mining for recognizing coding regions of the DNA. The idea of using

a Markov model of coding and non-coding regions of DNA for gene identification is

not new [35] but the novelty of our approach is to use frequent episodes mining in-

stead of pattern matching and sequence scoring. A DNA sequence can be segmented

into three functional parts: (1) protein-coding (gene) in the direct strand; (2) gene

shadow (protein-coding in the complementary strand); and (3) non-coding [35]. Be-

cause the coding and non-coding regions exhibit different probabilistic characteris-

tics, we considered these two regions independently. For this purpose we created two

78

Comparison of prediction error for full Markov models and 5−order IMM

Full Markov models and 5−order IMM

P
re

di
ct

io
n

er
ro

r %

0 1 2 3 4 5
8.5

9

9.5

10

10.5

11

11.5

5−order IMM

Figure 11.5.: Prediction error d between Ω∃(n, w) and P ∃(w) for a serial episode

using a k-order full Markov models for k = 0, 1, 2, 3, 4, 5 and 5-order

IMM

sequences: (1) a coding sequence by merging protein coding and shadow regions; and

(2) non-coding sequence by merging respective regions. We treated the non-coding

sequence as a reference sequence and built a variable-length Markov model in order

to recognize the coding sequence in terms of frequent significant episodes. To accom-

plish this we selected a class of serial episodes of length 6, the window size w = 15,

and we discovered the most frequent episodes from this class in the coding sequence.

Then for each of the 50 most frequent episodes we computed the upper threshold for

the significance level β(b) = 0.01. As it turns out, all the 50 most frequent episodes,

79

discovered in the coding sequence, were significant with respect to the non-coding

sequence. This clearly confirms that there is a significant difference in the structure

between the coding sequence and non-coding sequence. We also ranked the 50 most

frequent significant episodes with respect to significance. The results, presented in

Figure 11.6, show that frequency of occurrence does not always monotonically de-

termine the significance rank. The most significant of the most frequent 50 episodes

in the coding sequence was episode [G, C, G, C, G, C].

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50
50 most frequent episodes and their significance rank

i−th most frequent episode

si
gn

ifi
ca

nc
e

ra
nk

Figure 11.6.: 50 most frequent significant episodes and their significance rank

80

11.4 Wal-Mart transactions

In this section we use Wal-Mart data available to the Department of Computer

Sciences, Purdue University. The database contains part of Wal-Mart sales data for

the years 1999 and 2000 in 135 stores. We selected one of the stores, one category

of items of cardinality 35 (|A| = 35) and extracted records from table Item Scan,

sorted by scan time. The choice of Wal-Mart data in experiments was motivated by

the fact that the transaction data is an ideal real source for testing the formula for

P ∃(w) for a parallel episode. Given the transaction data we also tested the formulas

for P ∃(w) for sets of serial episodes and compared the results to P ∃(w) for a parallel

episode. In Sections 11.4.1-11.4.3 we compare Ω∃(n, w) with P ∃(w) for different

values of w and using the 0-th order Markov model of the event sequence. Finally, in

section 11.4.4 we give an example of a less frequent episode that is more significant

than a more frequent episode. Whenever we referenced an alphabet symbol ai we

used the index i instead of its real name.

11.4.1 Parallel episode

We selected an example parallel episode e = {0, 4, 5, 6, 9, 10, 17} and for w ∈
[10, 180] we compare Ω∃(n, w), discovered using Algorithm 4, with P ∃(w) computed

using Theorem 10.2.2. The results are shown in Figure 11.7, that indicate an ex-

ceptionally close fit between Ω∃(n, w) and P ∃(w) with d = 2%. The results confirm

our expectations that the 0-th order Markov model and a parallel episode models

well sources as the Wal-Mart item scans where the source seems to generate events

independently.

11.4.2 Set of two serial episodes

We selected a serial episode e1 = [0, 4, 5, 6, 9, 10, 17] and its permuted version

e2 = [0, 6, 5, 4, 10, 9, 17]. This case reflects a situation when a pattern of interest is

81

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1234567
1234

Figure 11.7.: Ω∃(n, w) and P ∃(w) for a parallel episode, using Wal-Mart data

only partially restricted and the serial case is too restrictive but the parallel case

too relaxed. For w ∈ [10, 180] we compare Ω∃(n, w), discovered using Algorithm

5, with P ∃(w) computed using Theorem 10.2.1. The results are shown in Figure

11.8, which indicate a very close fit between Ω∃(n, w) and P ∃(w) with d = 13%.

Notice that since the reference sequence is modeled by a 0-th order Markov source

any set of two episodes where e2 is a permutation of e1 will have the same P ∃(w).

This property clearly shows why episode mining may produce redundant patterns.

If an event sequence is almost memoryless then the algorithm for discovering the

most frequent serial episodes from a given class of serial episodes will return the

82

most frequent serial episode and all its permutations. Clearly, this problem does not

concern discovering frequent parallel episodes.

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1234567
1234

Figure 11.8.: Ω∃(n, w) and P ∃(w) for a set E = {e1, e2} of serial episodes, using

Wal-Mart data

11.4.3 Comparison of the three cases: parallel, two serial and one serial

In this experiment we investigate the relationship between P ∃(w) and Ω∃(n, w)

for an episode in the following three forms: parallel e1, set of two serial {e1, e2}
(e2 is a permutation of e1) and serial e1. For the first two cases we use the results

83

obtained in the previous experiments. To obtain the results for the serial episode for

w ∈ [10, 180] we ran the respective algorithms.

The resulting graphs for P ∃(w) are shown in Figures 11.9 and the corresponding

graphs for Ω∃(w, n) are shown in Figure 11.10. The figures confirms our expectations

that the serial and parallel cases of an episode e establish the lower and upper bound

on the probability of existence of e in window of size w.

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1e234 (parallel)
1e234 (set of two serial)
1e234 (serial)

Figure 11.9.: P ∃(w) for three cases: parallel, set of two serial and serial, using Wal-

Mart data

84

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1e23456 (parallel)
1e23456 (set of two serial)
1e23456 (serial)

Figure 11.10.: Ω∃(n, w) for three cases: parallel, set of two serial and serial, using

Wal-Mart data

11.4.4 Frequency of an episode does not determine significance

In this experiment we show that, for a given w and episode length m, a lower-

frequency episode can be more significant than a higher-frequency episode. We

selected three example parallel episodes e1, e2, e3 of length m = 7 each and for each

of them we computed the pair τ(w, ei), P ∃(w, ei) for w = 50, β(b) = 10−4 and the

reference model was built for the whole sequence. The results, presented in Table

11.1, show that τ(w, e1) > P ∃(w, e1) > τ(w, e2) > P ∃(w, e2) > τ(w, e3) > P ∃(w, e3),

85

Table 11.1: An example of a lower-frequency episode (e3) that is more significant

than higher-frequency episodes (e2 and e1)

Episode w Ω∃(n,w) P ∃(w) τu(w)

e1 = {0, 4, 5, 6, 9, 10, 19} 50 4.64e-01 5.07e-02 5.19e-01

e2 = {7, 14, 15, 17, 20, 26, 29} 50 3.49e-02 5.40e-02 5.93e-02

e3 = {8, 12, 14, 18, 29, 31, 32} 50 2.26e-03 1.28e-03 2.12e-03

Ω∃(n, w, e3) < Ω∃(n, w, e2) < Ω∃(n, w, e1) and only e3 is significant even though it is

the least frequent among the episodes.

86

12 A SLIDING WINDOW AD HOC QUERY ANSWERING WITH

PROBABILISTIC GUARANTEES

As a variation on the solved problem of identification of significant sets of episodes,

we can also use the consequences of Theorem 8.0.3 to provide approximate answerers

to sliding window episode queries referencing past data in data streams where we

use P ∃(w) as an approximation of Ω∃(w, n) and the probabilistic guaranties follow

form the fact that Ω∃(w, n) is normally distributed.

Thus, in this chapter we present a novel method for providing approximate an-

swers, with probabilistic guarantees, to a class of ad hoc sliding window queries

referencing past data in data streams. The class of queries comprises aggregate slid-

ing window stream join queries computing the frequency of past windows that satisfy

given join conditions between multiple streams. To represent the join conditions we

introduce a concept of a two-dimensional episode (2D-episode) that defines a set

of tuples satisfying given intra-stream and inter-stream constrains in the window.

Using our method we can also compute iceberg queries computing the most frequent

2D-episodes from a class of 2D-episodes without the use of any external memory,

i.e., “on-the-fly”, whereas an exact answer to such a query requires a polynomial

number of passes over the history of the data streams. As a summarization method,

for each stream independently, we propose to use a space efficient variable-length

Markov model learned while observing the data streams. Experiments, conducted

on Wal-Mart transactions, demonstrate remarkable accuracy of our method, thereby

confirming our theoretical analysis.

Systems designed to monitor continuous streams of data are becoming increas-

ingly important in many applications including network monitoring, monitoring sen-

sors installed in complex systems (traffic control, passenger aircrafts, power-plants),

monitoring stock data reported from various exchanges. The purpose of such a multi-

87

stream monitoring application is to discover an unusual (“interesting”) behavior in

the environment being monitored in order to raise an alarm when it is appropriate.

Given the streams of data from multiple sensors the monitoring systems employ a

sliding window approach since the streams are unbounded in size and without a slid-

ing window approach the systems would have to save to much state. Furthermore

the window cannot be so long such that any subsequence would likely occur within it.

Given such an observation window, comprising multiple streams, an unusual activ-

ity in the environment being monitored is manifested by a configuration (sequence)

of events satisfying certain intra-stream and inter-stream constraints between the

events in the configuration. In many applications given a certain configuration of

events in the current window it is of interest to know whether some known or some

unusually frequent/rare configurations of events occurred in the past, where the

frequency of occurrence is defined as the number of windows containing the config-

uration out of a given number of shifts of the sliding window. However, since the

streams are unbounded in size and events arrive at high rate on-line, the amount

of storage required to compute an exact answer to a query referencing past events

is also unbounded. Therefore, high-quality approximate answers to such queries,

using appropriate main memory data reduction and summarization methods of past

events, are of great importance. Furthermore, the monitoring system must be able

to answer queries that are not known in advance. This type of queries is called ad

hoc queries referencing past data in event streams. As an example of such a query,

consider a situation where a router has been compromised and one needs to find out

whether there were some signatures, that occurred within a window of a given size,

on multiple network interfaces of the router.

Here, we propose a novel method for providing approximate answers with prob-

abilistic guarantees, without the use of any external memory, to sliding window

stream join queries computing the frequency of past windows that satisfy given join

conditions between multiple streams. To represent the join conditions we introduce

a concept of a two-dimensional episode (2D-episode) that defines a set of tuples (a

88

configuration of events) satisfying given intra-stream and inter-stream constraints

in the window. Using our method we can also compute iceberg queries computing

the most frequent 2D-episodes from a class of 2D-episodes without the use of any

external memory, i.e., “on-the-fly”, where an exact answer to such a query requires

a polynomial number of passes over the history of the data streams. As a summa-

rization method, for each stream independently, we propose to use a space efficient

variable-length Markov model learned while observing the data streams. We pro-

vide approximate answers to the queries by computing the expected value of the

frequency of windows containing an occurrence of a 2D-episode using the variable-

length Markov models of the streams. The probabilistic guarantees follow from the

fact that the frequency of windows containing a 2D-episode is normally distributed

and one can set a narrow confidence interval on the difference between an observed

frequency and the expected value of the frequency.

To the best of our knowledge, this is the first work on providing approximate

answers to ad hoc sliding window queries using variable-length Markov model of

stream data as a summarization method. Also this is the first work defining 2D-

episode queries.

12.1 2D-episodes

To represent the join conditions between tuples in a window comprising multiple

data streams we introduce a concept of a two-dimensional episode (2D-episode) as

an extension of the concept of an episode, defined in [1], to multiple streams of data

monitored simultaneously. Formally, a 2D-episode is a set of tuples satisfying the

following types of time constraints:

1. intra-stream constraints

2. inter-stream constraints

where the constraints may concern given symbols and/or symbol variables. We use

small letters to denote symbols (e.g., S1.a) and capital letters to denote symbols

89

variables (e.g., S2.X), where we use a notation S1.a and S2.X to denote a symbol a

in stream S1 and symbol variable X in stream S2 respectively.

A 2D-episode can be represented as a graph where nodes represent tuples (sym-

bols) and directed edges between nodes represent the time constraints. We distin-

guish the following types of nodes

1. symbol nodes: drawn as filled circles

2. symbol variable nodes: drawn as empty circles. They are used to represent

equijoins between symbols in different streams

We also distinguish two types of edges: (1) directed edges: corresponding to intra-

stream and inter-stream constraints and drawn as solid lines (2) undirected edges:

corresponding to an equijoin and drawn as dashed lines.

In general, a 2D-episode can be viewed as an AND/OR graph, where we have the

AND semantics unless otherwise stated. The OR semantics can be used to specify

sets of 2D-episodes where by a join condition we mean a logical OR of occurrences

of the members of the set.

12.1.1 Intra-stream, inter-stream constraints and an equijoin

This example illustrates a query computing the number of windows satisfying a

join between three streams, where the join condition consists of an occurrence of a

2D-episode with intra-stream, inter-stream constraints and an equijoin. A graph rep-

resenting the 2D-episode and a window containing an occurrence of the 2D-episode

is shown in Figure 12.1.b and 12.1.a respectively.

The 2D-episode in Figure 12.1 has the following constraints: (1) equijoin: S1.X =

S2.X = S3.X (2) intra-stream constraints: S1.X → S1.a → S1.b, S2.X → S2.c (3)

inter-stream constraints: S2.c → S3.d, S2.c → S3.e, where S1.a, S1.b ∈ A1, S2.c ∈ A2,

S3.d, S3.e ∈ A3 and X ∈ A1 ∩ A2 ∩ A3.

A SQL query corresponding to the 2D-episode in Figure 12.1 is shown in Figure

12.2. To count windows containing at least one occurrence of a specified 2D-episode

90

S1

S2

S3

b

ed

a

c

S1.a S1.b

S2.c

S3.d S3.e

S1.X

S2.X

S3.X

(a) (b)

Figure 12.1.: A window join (a) corresponding to an occurrence of a 2D-episode (b)

we use an SQL aggregate operator WCOUNT(*) that can be converted to a standard

SQL. To specify 2D-episodes we introduce WINDOW() construct that is similar to

the WINDOW(A, B) construct introduced in [36]. WINDOW() operator can be

used as follows:

1. WINDOW(S)=w: where S is a stream and w is a positive integer. Defines a

window of size w in stream S

2. WINDOW=w: defines a window of size w over all streams

3. WINDOW(S)[i] = ’a’ AND WINDOW(S)[j] = ’b’ AND i < j : where i, j are

integer variables. In this construct i and j are used to specify the intra-stream

constraint S.a → S.b. Similarly we can use the subscript variables to specify

inter-stream constraints.

12.2 Approximate query answering

In order to provide approximate answers to the queries we use yet another aspect

of Theorem 8.0.3. While in the reliable identification of significant episodes we used

Theorem 8.0.3 to derive the formulas for the thresholds here we use P ∃(w) as the

the approximation of Ω∃(w, n) given a variable-length Markov model of the past

91

SELECT WCOUNT(*)

FROM S[1], S[2], S[3]

WHERE

WINDOW(S[1])[c1]=WINDOW(S[2])[c2]

AND

WINDOW(S[2])[c2]=WINDOW(S[3])[c3]

AND

WINDOW(S[1])[i1]=’a’ AND

WINDOW(S[1])[i2]=’b’ AND

WINDOW(S[2])[j1]=’c’ AND

WINDOW(S[3])[k1]=’d’ AND

WINDOW(S[3])[k2]=’e’ AND

c1 < i1 AND

c2 < j1 AND

i1 < i2 AND

j1 < k1 AND

j1 < k2

WINDOW=11

Figure 12.2.: Query corresponding to Figure 12.1

events, where the probabilistic guarantees follow directly from Theorem 8.0.3. Thus,

building on the research on reliable identification of significant episodes we present

a method for providing approximate answers to ad hoc queries counting the number

of windows, that join multiple streams on the presence of a 2D-episode containing

intra-stream and inter-stream constraints.

Consider two event streams S1 and S2 over alphabets A1 and A2 respectively,

monitored using a window of size w1 over S1 and a window of size w2 over S2. In

our framework there is no requirement that the windows must be of the same size as

long as they end at the same position in all streams and are shifted simultaneously

92

one event at a time. Thus, the case w1 = w2 is equivalent to a “single window” over

both streams and throughout this chapter we assume the single window case unless

otherwise specified. Assume our summarization method has built a pair consisting

of a model with parameters (M1, Θ1) and (M2, Θ2) corresponding to each stream.

Let Ω∃
�
(n, w) denote the random variable corresponding to an observed number of

past windows containing (joining on) a 2D-episode and let Ω∃
�
(n, w) = Ω∃

�(n,w)
n

be

the relative frequency of the number of windows. Clearly Ω∃
�
(n, w) satisfies the CLT

with E[Ω∃
�
(n, w)] = P ∃

�
(w) and Var[Ω∃

�
(n, w)] ≈ P ∃

�
(w)(1 − P ∃

�
(w)), where P ∃

�
(w)

is the probability that a window ending at a given position in the streams contains

(joins on) a 2D-episode. We call this probability probability of existence of a join or

shortly probability of a join. Then we approximate Ω∃
�
(n, w) using its expected value

P ∃
�
(w), where the probabilistic guarantees can be easily written as follows

P
(

P ∃
�
(w) − b · σ(w, n) < Ω∃

�
(n, w) < P ∃

�
(w) + b · σ(w, n)

)

= Φ(b, b),

where σ(w, n) =
√

P ∃
�
(w)(1 − P ∃

�
(w)) and Φ(x1, x2) is the probability that a normal

random variable assumes a value in the range [x1, x2]. As an example consider a

confidence level of Φ(b, b) = 0.99 for which b = 2.58.

The difficulty of efficiently computing P ∃
�
(w) stems from the following facts: (1)

a structure of the tree models (variable-length Markov models) of the streams can

range from a full tree to the empty tree; (2) presence of dependencies between streams

(e.g. streams generate symbols dependently if an occurrence of a given symbol in

one stream depends on occurrences of symbols in other stream). To capture the

dependencies one would need to maintain a Markov model of such a dependence while

monitoring the streams; and (3) presence of inter-stream and/or equijoin constraints

in the 2D-episode.

In the following sections, we present preliminary results by considering the case

where the streams are modeled as 0-order Markov sources and generate symbols

independently of each other. Given such a model of the streams we present efficient

algorithms for computing the probability of a join P ∃
�
(w) for queries containing inter-

stream and intra-stream constraints.

93

12.3 Problem definition

The problem of computing an answer to an ad hoc sliding window query com-

puting the frequency of a 2D-episode can be formally defined as follows.

Given:

• event streams S1, S2, . . . , Sk over finite alphabets A1,A2, . . . ,Ak where the

stream are synchronized meaning that the symbols are generated at the same

rate in all streams

• we assume that each stream Si for 1 ≤ i ≤ k is represented by a sequence of

(variable-length Markov model, parameters) (Mi,1, Θi,1), . . . (Mi,ni
, Θi,ni

) sum-

marizing the history of the stream, where each pair (model, parameters) cor-

respond to a change of probability distribution in the event stream

• sliding windows sizes w1, w2, . . . , w|k| in each stream

• n the number of past tuples

• a 2D-episode

• a sliding window query computing the frequency of past windows satisfying a

join condition given by the 2D-episode,

compute the frequency of a join Ω∃
�
(n, w) using a formula for P ∃

�
(w) efficiently (in

time polynomial in the window sizes and in time independent on the number of past

tuples), with probabilistic guarantees and using only the main memory.

12.4 Solutions

In this section we provide solutions to: (1) queries computing the frequency

of past windows containing at least one occurrence of a 2D-episode consisting of

intra-stream (Section 12.4.1) and inter-stream (Section 12.4.2) constraints (2) iceberg

queries computing the most frequent 2D-episodes from a class of 2D-episodes (Section

94

12.4.3). For each type of query we present an example SQL query using the syntax

introduced in Section 12.1.1.

For clarity of the presentation we provide the solutions to the case of two streams

S1 and S2 although the results easily generalize to a larger number of streams.

Furthermore, we assume that the streams generate symbols independently of each

other and they are modeled as 0-order Markov sources. Also, we consider a 2D-

episode e, where by e1 and e2 we denote subepisodes of e corresponding to streams

S1 and S2 respectively.

12.4.1 Intra-stream constraints case of P ∃
�
(w)

Since the streams generate symbols independently and there are no inter-stream

constraints occurrences of windows containing subepisodes e1 in S1 and e2 in S2 of

episode E are independent of each other. Therefore,

P ∃
�
(w) = P ∃(w, e1) · P ∃(w, e2), (12.1)

where P ∃(w, e1) and P ∃(w, e2) is the probability of existence of episode e1 and e2

respectively.

Computing P ∃
�
(w) takes O(w2) time and O(w ·max(|e1|, |e2|)) space using Algo-

rithm 7.

Query: intra-stream constraints

This example illustrates a query computing the number of windows satisfying

a join between three streams, where the join condition consists of an occurrence of

a 2D-episode with intra-stream constraints. This query is an example of a query

where the window sizes are different. A graph representing the 2D-episode and a

window containing an occurrence of the 2D-episode is shown in Figure 12.3.b and

12.3.a respectively.

95

The 2D-episode in Figure 12.3.a has the following intra-stream constraints: S1.a →
S1.b → S1.c corresponding to a serial episode, S2.d → S2.e corresponding to a se-

rial episode and unconstrained symbols S3.g, S3.h, S3.f corresponding to a parallel

episode.

S1

S2

S3

a cb

gfh

ed

S1.a S1.b S1.c

S3.g S3.h S3.f

S2.d S2.e

(a) (b)

Figure 12.3.: A window join (a) corresponding to an occurrence of a 2D-episode

containing only intra-stream constraints (b)

12.4.2 Inter-stream constraints case of P ∃
�
(w)

In the presence of inter-stream constraints only a subset of occurrences of e1

and a subset of occurrences of e2 satisfy the inter-stream constraints. Therefore, we

cannot compute P ∃
�
(w) for e as a product of corresponding probabilities of existence

of e1 and e2.

Enumerative approach

Let C∃
inter be a set of inter-stream constraints and let W∃

1(w) and W∃
2(w) be the

sets of windows of sizes w containing episode e1 and e2 as a subsequence respectively.

Therefore, we can express a computational formula for P ∃
�
(w) as follows

P ∃
�
(w) =

∑

C∃
inter

P (W∃
1(w, e1)[i]) · P (W∃

2(w, e2)[j]) (12.2)

96

where the W∃
1(w, e1)[i], W∃

2(w, e2)[j] are the i-the and j-th element in the respective

set and i ≤ |(W∃
1(w)|, j ≤ |(W∃

2(w)|. Thus, we could enumerate elements from both

sets that satisfy the inter-stream conditions C∃
inter, using Theorem 10.1.1. However,

such a method would require O
(

(

w

|e1|
)

·
(

w

|e2|
)

)

.

Merging streams

An alternative method is based on the observation that we can reduce the inter-

stream constraints to intra-stream constraints by merging streams S1, S2 over alpha-

bets A1, A2, and by creating one stream S over alphabet A = A1×A2. Probabilities

of symbols in the new alphabet are computed as P (S1.i × S2.j) = P (S1.i) · P (S2.j)

where S1.i and S2.j is the i-th and j-th symbol in A1 and A2 respectively.

We illustrate this idea in the following example.

Example 1.. Let A1 = {a, b}, A2 = {c, d} and we have the following intra-stream

and inter-stream constraints C∃
intra = {S1.a → S1.b, S2.a → S2.b} and C∃

inter =

{S1.a → S2.c, S2.d → S1.b}. Thus, we merge the alphabets and obtain alphabet

A = {A = ac, B = ad, C = bc, D = bd}. After reducing the inter-stream constraints

to corresponding intra-stream constraints over alphabet A we obtain the following

set of serial episodes E = {A → A → B → C, A → A → B → D, A → A →
D → C, A → A → D → D, A → C → B → C, A → C → B → D, A → C →
D → C, A → C → D → D}. Figure 12.4 shows a 2D-episode with intra-stream

and inter-stream constraints and the corresponding set of episodes E represented as

a trie.

The advantage of this method versus the enumerative approach is that, given E
we can compute P ∃

�
(w) efficiently using Theorem 10.2.1 for sets of serial episodes.

Thus, the probability of the join can be computed as follows

P ∃
�
(w) = P ∃(w, E). (12.3)

Computing P ∃
�
(w) takes O(|E| ·w2) time and O(w ·max(|E1|, |E2|)) space. However,

this method does not scale well as the number of streams grows.

97

C

D

C

D

C

A

A

B

D

B

C

D C

D

D

E
(b)(a)

E S1.a S1.b

S2.c S2.d

A1 = {a, b}
A2 = {c, d}
A = A1 ×A2 = {A = ac, B = ad, C = bc, D = bd}

Figure 12.4.: Conversion from a 2D-episode E (a) to a set of serial episodes E rep-

resented as a trie (b)

Query: inter-stream and intra-stream constraints

This example illustrates a query computing the number of windows satisfying

a join between three streams, where the join condition consists of an occurrence of

a 2D-episode with intra-stream and inter-stream constraints. A graph representing

the 2D-episode and a window containing an occurrence of the 2D-episode is shown

in Figure 12.5.b and 12.5.a respectively.

The 2D-episode in Figure 12.5.b has the following constraints (1) intra-stream

constraints: S1.a → S1.b, S2.d → S2.e and S3.g → S3.h (2) inter-stream constraints:

S3.f → S1.a, S1.b → S2.d and S1.c → S3.g.

12.4.3 Iceberg queries

We can compute iceberg queries computing the most frequent 2D-episodes from

a class of 2D-episodes without the use of external memory. The idea of the standard

Apriori-like algorithm for computing frequent episodes [1] is based on a level-wise

search, where at each level the algorithm generates candidate frequent subepisodes

of size k using frequent episodes of size k− 1 and then performs a full database scan

to compute frequencies of the candidates in order to select frequent episodes, i.e.

98

S1

S2

S3

a

f h

bc

S3.f

S1.a S1.b S1.c

S3.g S3.h

S2.e

ed

g

S2.d

(a) (b)

Figure 12.5.: A window join (a) corresponding to a 2D-episode containing intra-

stream and inter-stream constraints (b)

episodes whose frequency is greater than a user defined minimum frequency, of size

k. The search starts from subepisodes of size k = 1 and finishes if no more frequent

episodes can be found.

The idea of our method is to compute frequencies of candidate frequent 2D-

subepisodes using formulas for P ∃
�
(w) instead of performing multiple database scans

over the history of data streams. Thus, given a set of candidate frequent k-2D-

episodes Ck we compute their frequencies, in order to obtain a set of frequent k-2D-

episodes Lk. Let Fm be the set of frequent 2D-episodes in multiple streams over an

alphabet A, within a window of size w, satisfying a minimum frequency min support

and from a class of 2D-episodes E consisting of m events. We use symbol variables

to specify classes. As an example consider a class E = {S1.X → S1.Y, S2.X →
S2.Y, S1.X = S2.X, S1.Y = S2.Y } that describes 2D-episodes of size m = 4 such

that the same sequence of two symbols (a serial episode) occurs in both streams

simultaneously. We call such a special class the class of serial 2D-episodes of size 2.

Algorithm 8 computes a collection of the most frequent 2D-episodes, from a class

of 2D-episodes, without the use of external memory in stream environment.

99

Algorithm 8: Algorithm for computing frequent 2D-episodes, from a class of

2D-episodes, without the use of external memory in stream environment
Input: m, w, min support, E , A
Output: Fm

begin

for i = 1; i ≤ |A|; i = i + 1 do

if P ∃
�
(w, ai) > min support then

F1 = F1 ∪ ai

for k = 2; k ≤ m and Fk−1 �= ∅; k = k + 1 do

Ck = candidateGenerate(Fk−1, min support)

foreach c ∈ Ck do

if P ∃
�
(w, c) > min support then

Fk = Fk ∪ c

end

12.5 Experiments

The purpose of our experiments was to test applicability of the analytical formulas

for P ∃
�
(w) for real sources. Therefore, we chose Wal-Mart transaction available to

the Department of Computer Sciences, Purdue University. The database contains a

part of Wal-Mart sales data for the years 1999 and 2000 in 135 stores. We selected

two stores, one category of items of cardinality 35 (|A| = 35) and for each store we

extracted one stream of item scans sorted by the scan time corresponding to streams

S1 and S2 respectively. Thus, the streams are independent of each other and there

is no dependency between symbols in a given stream.

To evaluate the quality of an answer to a query we used (11.1), where in place

Ω∃(w, n) and P ∃(w) in that formula we used Ω∃
�
(n, w) and P ∃

�
(w) respectively.

100

12.5.1 Intra-stream constraints

In this experiment we test the quality of an answer to a query computing the

frequency of a join on a 2D-episode containing only intra-stream constraints. The

2D-episode is show in Figure 12.6.

To compute the error between observed frequencies and answers to the query we

choose 20 values of the window size w and for each of them we computed (11.1) for

P ∃
�
(w), computed using (12.1), and Ω∃

�
(n, w). The results, presented in Figure 12.7,

show that in the worst case an answer differs by 33% from the observed value. The

average error is equal to 16%. Furthermore, the envelope of the bar graph in Figure

12.7 resembles the shape of the standard deviation curve in Figure 7.2. This validates

our theoretical results and proves that our method provides good approximation of

observed frequencies. In particular it validates (12.1).

S1.0 S1.4 S1.5 S1.6 S1.10 S1.19

S2.14 S2.15 S2.17 S2.20 S2.26

S1.9

S2.7 S2.29

Figure 12.6.: 2D-episode containing intra-stream constraints

12.5.2 Intra-stream and Inter-stream constraints

In this experiment we test the quality of an answer to a query computing the

frequency of a join on a 2D-episode containing both the intra-stream and inter-stream

constraints. The episode is show in Figure 12.8.

To compute the error between observed frequencies and answers to the query we

choose 20 values of the window size w and for each of them we computed (11.1) for

P ∃
�
(w), computed using (12.2), and Ω∃

�
(n, w). The results, presented in Figure 12.9,

show that in the worst case an answer differs by 30% from the observed value. The

101

20 30 40 50 60 70 80 90
0

5

10

15

20

25

30

35
Prediction error for the intra−stream case

Sliding window size: w

P
re

di
ct

io
n

er
ro

r %

Figure 12.7.: Comparison between analytic frequencies and observed frequencies for

2D-episode from Figure 12.6

average error is equal to 13%. This validates our theoretical results and proves that

our method provides quality answers. In particular it validates (12.2).

S1.4 S1.5 S1.6

S2.10 S2.17

S1.0

S2.9

Figure 12.8.: 2D-episode containing intra-stream and inter-stream constraints

102

10 15 20 25 30 35 40 45 50 55
0

5

10

15

20

25

30

35
Prediction error for the inter−stream case

Sliding window size: w

P
re

di
ct

io
n

er
ro

r %

Figure 12.9.: Comparison between analytic frequencies and observed frequencies for

2D-episode from Figure 12.8

12.5.3 Iceberg queries

In this experiment we use our query mechanism to compute “on-the-fly” approx-

imate answers to iceberg queries computing the most frequent 2D-episodes from a

class of 2D-episodes. Although the algorithm works for any class of 2D-episode we

focus in experiments on a class of frequent parallel 2D-episodes. By a 2D-parallel

episode we mean the same unordered set of events (parallel episode) that occurs

within the same window in all streams simultaneously. We compare the quality of

approximate answers by computing 10 most frequent 2D-episodes from the class and

103

comparing them to actual 10 most frequent episodes discovered using the standard

Apriori-like algorithm.

12.5.4 Frequent parallel 2D-episodes

In this experiment we compute an approximate answer to a query computing 10

most frequent 2D-parallel episodes of length 5 within a window of size 15. Figure

12.10 shows the class of parallel 2D-episodes of size 5. The results are presented in

Figure 12.11, where the computed (approximate) i-the most frequent parallel 2D-

episode is compared with its actual rank using bar graphs. The computed and actual

rank is the same for the first most frequent parallel 2D-episode and differs by one

for the next nine most frequent parallel 2D-episode. This clearly shows that we can

obtain exact answers to a query computing the most frequent parallel 2D-episodes by

using our approximate answers as long as the approximate frequencies are consistent

with the true ordering of the actual frequencies.

S1

S2

Figure 12.10.: The class of parallel 2D-episodes of length 5

12.6 Stream query processing

There has been an extensive research on stream query processing however there

was a comparably little work on approximate ad hoc query processing. We start by

defining types of queries considered in stream query processing.

With respect to the knowledge of future queries to be issued, we distinguish

two types of queries: predefined queries and ad hoc queries. A predefined query is

supplied to the data stream management system before any data has arrived, and

104

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25
Computed and actual frequencies of 10 most frequent parallel 2D−episodes

i−th most frequent parallel 2D−episode

Fr
eq

ue
nc

y

computed
actual

Figure 12.11.: Analytic 10 most frequent parallel 2D-episodes and their actual rank

the system can select an appropriate summarization method for that given query.

An ad hoc query, on the other hand, is issued on-line after some number of events has

already arrived. Ad hoc queries complicate the design of a data steam management

system, because they are not known in advance and a summarization method for this

type of queries must use the available main memory resources to store appropriately

general information to be able to provide good approximate answers to a broad range

of possible future queries.

With respect to the duration of time a query is processed, we distinguish continu-

ous queries and one-time queries. One-time queries (a class that includes traditional

105

DBMS queries) are queries that are evaluated once over a point-in-time snapshot of

the data stream. Continuous queries are evaluated continuously as events arrive.

The work on approximate query answering led to many general methods for data

reduction and summarization. Example data reduction methods include:

• sliding window: reduces the amount of input data by evaluating a query over

the sliding window instead over the entire history of the stream. Thus, the most

recent elements in the window are called active data elements while the rest

are called expired and they no longer contribute to query answers or statistics

on the data set. In general sliding windows have two distinct purposes: either

they are an important part of the query semantics or they are an approximation

scheme to improve efficiency by considering only a limited past.

• random sampling: reduces the amount of input data by sampling

Data summarization methods are data structures that approximate stream data

using main memory synopsis or sketches of the exact data. The difficulty of designing

a summarization method in general stems from the fact that it must adapt to rapidly

changing characteristics of the data streams. Example summarization methods,

studied in the literature, include:

• sketches: summary of data stream using a set of parameters that allow to

estimate the answer to certain queries [37, 38]

• histograms: capture the distribution of values in a data stream [39,40]

• wavelets: wavelets with Haar bases were used to build the space efficient

histograms on the underlying data distribution that estimate the fraction of

records in the database that satisfy a query (selectivity estimation) [41]

In order to use the window paradigm we need an ordering of events within the

window. There are two conventions used: implicit timestamps when the elements ar-

rive sequentially in order and explicit timestamps when the elements have an explicit

106

timestamp attribute in which case the elements may arrive unordered. Also there are

two methods of measuring the window size: physical units and logical units. Physical

units measure a window size as the number of elements in the window. Logical units,

on the other hand, measure a window size as a range of time covered by the window.

An in-depth review of the state of the art in the research on stream query processing

is presented in [42].

107

13 SUMMARY

In Chapters 8-10 we presented a solution to the problem of identification of significant

sets of subsequence patterns. We provided computational formulas for the proba-

bility of existence P ∃(w) for an arbitrary set of serial episodes in an event sequence

represented with a variable-length Markov model. Using the formulas we showed

how to compute the significance thresholds and how to select the window size to

guarantee that an occurrence of a set of subsequence patterns is meaningful. In par-

ticular for the case of a 0-th order event sequence we presented efficient algorithms

for computing P ∃(w). The importance of the efficient algorithms for P ∃(w) for the

0-order Markov model stems from the following facts: (1) in many situations when

a model of the reference sequence is not known in order to find significant episodes

in a monitored sequence we will choose the 0-order model of the monitored sequence

as a reference sequence; and (2) even for non-memoryless reference sequences, as

the experimental results suggest, the formulas may provide a sufficient prediction

accuracy to guarantee a sharp detection of the thresholds.

In Chapter 11 we presented experimental results that confirmed a remarkable

accuracy of our formulas. In experiments conducted on non-memoryless sources:

the English text and web access data we showed that, even for these cases, P ∃(w)

for the 0-order model closely approximated Ω∃(w, n), which demonstrated that the

memoryless assumption did not limit the practical usefulness of the formulas. We

also showed that the threshold mechanism indeed provided a sharp detection of

significant episodes. In experiments conducted on Wal-Mart transactions we showed

an exceptional closeness between P ∃(w) for a parallel episode for the 0-order model

and Ω∃(w, n). We also gave an example of a lower-frequency episode that was more

significant than a higher-frequency episode. In experiments conducted on DNA

sequences we showed that higher order Markov models outperformed the 0-order

108

model in terms of accuracy in predicting occurrences of episodes. The drawback of

using higher order Markov models is the high computational cost of computing the

thresholds. This could be overcome by using a combination of the 0-order model and

a higher order model. In such a technique we could use the higher model for small

values of w where the accuracy of the prediction would be crucial and the 0-order

model for large w, where P ∃(w) converges to 1 for both models.

In Chapter 12 we presented a novel method for ad hoc sliding window query an-

swering with probabilistic approximation guarantees for a class of queries computing

the frequency of past windows containing a given join condition between multiple

data streams. To specify the join conditions we introduced the concept of a 2D-

episode. As a summarization technique we proposed a variable-length Markov model

continually learned while monitoring multiple streams. We also showed that using

our method we could answer iceberg queries without the use of external memory. In

experiments, conducted on streams of Wal-Mart transactions, we confirmed that our

approximate method provided quality answers for the real-life data. There are many

extensions of the work on query answering. Examples include: (1) to design efficient

algorithms for computing the probability of a join for the equijoin constraint and the

case of dependent streams (2) to implement the change of distribution mechanism

and characterize its usefulness in improving the quality of answers for fast varying

stream data (3) to use formulas for the probability of a join for providing fast answers

to continuous queries.

109

LIST OF REFERENCES

[1] H. Mannila, H. Toivonen, and A. Verkamo. Discovery of frequent episodes in
event sequences. Data Mining and Knowledge Discovery, 1(3):259–289, 1997.

[2] L. Boasson, P. Cegielski, I. Guessarian, and Y. Matiyasevich. Window-
accumulated subsequence matching problem is linear. In Proceedings of the
Principles of Database Systems, pages 327–336, 1999.

[3] P. Flajolet, Y. Guivarc’h, W. Szpankowski, and B. Vallée. Hidden pattern
statistics. Lecture Notes in Computer Science, 2076:152–165, 2001.

[4] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In
Proceedings of the 20th International Conference Very Large Data Bases, pages
487–499, September 1994.

[5] M. Atallah, R. Gwadera, and W. Szpankowski. Detection of significant sets of
episodes in event sequences. In Fourth IEEE International Conference on Data
Mining, pages 67–74, October 2004.

[6] G. Das, R. Fleischer, L. Ga̧sieniec, D. Gunopulos, and J. Kärkkäinen. Episode
matching. In Proceedings of the 8th Annual Symposium on Combinatorial Pat-
tern Matching, pages 12–27, 1997.

[7] W. Lee and S. Stolfo. Data mining approaches for intrusion detection. In
Proceedings of the 7th USENIX Security Symposium, 1998.

[8] K. Julisch and M. Dacier. Mining intrusion detection alarms for actionable
knowledge. In Proceedings of the 8th ACM International Conference on Knowl-
edge Discovery and Data Mining, 2002.

[9] M. Qin and K. Hwang. Frequent episode rules for internet anomaly detection.
In Proceedings of the IEEE International Symposium on Network Computing
and Applications, pages 161–168, August 2004.

[10] J. Luo, S. Bridges, and R. Vaugham. Fuzzy frequent episodes for real-time
intrusion detection. In IEEE International Conference on Fuzzy Systems, pages
368–371, December 2001.

[11] M. Klementtinen. A Knowledge Discovery Methodology for Telecommunication
Network Alarm Data. PhD thesis, University of Helsinki, 1999.

[12] G. Ramstein, P. Bunelle, and Y. Jacques. Discovery of ambiguous patterns in
sequences: Application to bioinformatics. In Proceedings of the 4th European
Conference on Principles of Data Mining and Knowledge Discovery, pages 581–
586, 2000.

110

[13] R. Gwadera. A sliding window ad hoc query answering with probabilistic guar-
antees. Technical report, Purdue University, Department of Computer Science,
2005.

[14] S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: Generalizing
association rules to correlations. In Proceedings ACM SIGMOD International
Conference on Management of Data, pages 265–276, May 1997.

[15] R. Gwadera, M. Atallah, and W. Szpankowski. Reliable detection of episodes
in event sequences. In Third IEEE International Conference on Data Mining,
pages 67–74, November 2003.

[16] P. Bilingsley. Probability and Measure. John Wiley and Sons, 1995.

[17] R. Bradley. Basic properties of strong mixing conditions: A survey and some
open questions. Probability Surveys, 2:107–144, 2005.

[18] G. Jones. On the Markov chain central limit theorem. Probability Surveys,
1:299–320, 2004.

[19] J. Rissanen. A universal data compression system. IEEE Transactions on
Information Theory, IT-29(5):656–664, 1983.

[20] A. Martin, G. Seroussi, and M. Weinberger. Linear time universal coding and
time reversal of tree sources via FSM closure. IEEE Transaction on Information
Theory, 50(7):1442–1468, 2004.

[21] J. Rissanen. Fast universal coding with context models. IEEE Transactions on
Information Theory, 45(4):1065–1071, 1999.

[22] P. Bühlmann and A. Wyner. Variable length Markov chains. Annals of Statis-
tics, 27:480–513, 1999.

[23] P. Bühlmann. Model selection for variable length Markov chains and tuning the
context algorithm. Annals of the Institute of Statistical Mathematics, 52:287–
315, 2000.

[24] M. Mächler and P. Bühlmann. Variable length Markov chains: Methodology,
computing and software. Journal of Computational and Graphical Statistics,
13:435–455, 2004.

[25] F. Willems, Y. Shtarkov, and T. Tjalkens. The context-tree weighting method:
Basic properties. IEEE Transactions on Information Theory, IT-41:653–664,
1995.

[26] S. Chen and J. Goodman. An empirical study of smoothing techniques for
language modeling. Technical Report 10-98, Computer Science Group, Harvard
University, 1998.

[27] S. Katz. Estimation of probabilities from sparse data for the language model
component of a speech recognizer. IEEE Transactions on Acoustics, Speech and
Signal Processing, 35(3):400–401, 1987.

[28] F. Jelinek and R. Mercer. Interpolated estimation of Markov source parame-
ters from sparse data. In Proceedings of Workshop on Pattern Recognition in
Practice, pages 381–397, May 1980.

111

[29] E. Ristad and R. Thomas. Nonuniform Markov models. In International Con-
ference on Acoustics, Speech, and Signal Processing, page 791, April 1997.

[30] S. Salzberg, A. Delcher, S. Kasif, and O. White. Microbial gene identification
using interpolated Markov models. Nucleic Acids Research, 26(2), 1998.

[31] W. Li. DNA segmentation as a model selection process. In RECOMB ’01: Pro-
ceedings of the Fifth Annual International Conference on Computational Biol-
ogy, pages 204–210, 2001.

[32] W. Szpankowski, W. Ren, and L. Szpankowski. An optimal DNA segmenta-
tion based on the MDL principle. In IEEE Computer Society Bioinformatics
Conference, pages 541–546, 2003.

[33] R. Gwadera, M. Atallah, and W. Szpankowski. Markov models for discovering
significant episodes. In SIAM International Conference on Data Mining, pages
404–414, April 2005.

[34] W. Szpankowski. Average Case Analysis of Algorithms on Sequences. John
Wiley, 2001.

[35] R. Azad and M. Borodovsky. Probabilistic methods of identifying genes in
prokaryotic genomes: Connections to the HMM theory. Briefings in Bioinfor-
matics, 5(2):118–130, 2004.

[36] M. Hammad, W. Aref, and A. Elmagarmid. Stream window join: Tracking
moving objects in sensor-network databases. In Proceedings of the 15th Inter-
national Conference on Scientific and Statistical Database Management, pages
75–84, July 2002.

[37] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi. Processing complex
aggregate queries over data streams. In Proceedings of the 2002 ACM SIGMOD
International Conference on Management of Data, pages 61–72, 2002.

[38] J. Gehrke, F. Korn, and D. Srivastava. On computing correlated aggregates over
continual data streams. In Proceedings of the 2001 ACM SIGMOD International
Conference on Management of Data, pages 13–24, 2001.

[39] S. Guha, N. Koudas, and K. Shim. Data-streams and histograms. In Proceedings
of the Thirty-third Annual ACM Symposium on Theory of Computing, pages
471–475, 2001.

[40] H. Jagadish, V. Poosala, N. Koudas, K. Sevcik, S. Muthukrishnan, and T. Suel.
Optimal histograms with quality guarantees. In Proceedings of the 24th Inter-
national Conference on Very Large Data Bases, pages 275–286, 1998.

[41] Y. Matias, J. Vitter, and M. Wang. Wavelet-based histograms for selectivity
estimation. In Proceedings of the 1998 ACM SIGMOD International Conference
on Management of Data, pages 448–459, June 1998.

[42] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues
in data stream systems. In Proceedings of the Twenty-first ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, pages 1–16,
2002.

112

VITA

Robert Gwadera received the M.S. degree in Electrical and Computer Engineer-

ing from the Department of Electronics, Telecommunication and Informatics, Tech-

nical University of Gdansk, Poland in 1995, where in 1996 he started a postgraduate

program in Electronics, Telecommunication and Informatics and continued until De-

cember 1998. In January 1999 he joined the Department of Computer Science,

Purdue University to pursue a Ph.D. in Computer Science. In 2003 he received the

M.S. in Computer Sciences from Purdue University. In September 2005 he joined

the Laboratory of Computer and Information Science at Helsinki University of Tech-

nology, Finland. He received the Ph.D. in December, 2005. His research interests

are data mining, databases and security.

