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Abstract

Specifying and managing access control policies is a challenging problem. We propose to develop
formal verification techniques for access control policies to improve the current state of the art of policy
specification and management. In this paper, we formalize classes of security analysis and adminis-
trative insider threat assessment problems in the context of Role-Based Access Control. We show that
in general these problems are PSPACE-complete. We also study the factors that contribute to the
computational complexity by considering a lattice of various subcases of the problem with different
restrictions. We show that several subcases remain PSPACE-complete, several further restricted sub-
cases are NP-complete, and identify two subcases that are solvable in polynomial time. We also discuss
our experiences and findings from experimentations that use existing formal method tools, such as model
checking and logic programming, for addressing these problems.

1 Introduction

Access control is one of the most fundamental and pervasive security mechanisms in use today. It controls
which principals (users, processes, machines) have access to which resources in a system; for example,
which files they can read, which programs they can execute, and how they share data with other princi-
pals. The specification and management of access control policies is a challenging problem, and today’s
administrators have no tools to assist them. As a result, a large number of security breaches are caused by
policy misconfigurations. Administrators are often reluctant to change policy settings, as they do not have
confidence in whether the resulting policy configurations indeed enforce the policy objectives. The current
state of the art of access control policy specification and management is still “what you specify is what you
get, but not necessarily what you want”. This can be compared to software/hardware development before
formal verification techniques [9, 37, 38] were developed and successfully deployed. We believe that formal
verification techniques for access control policies can be developed to improve this current state of the art.
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In almost all access control systems, there is a need to change the authorization state; for example, users
and objects are added and removed, users start sharing resources at one moment and stop such sharing later,
and users’ job functionalities change. This dynamic aspect makes access control particularly challenging.
A fundamental problem that deals with the dynamic aspect of access control is safety analysis, which was
first formulated by Harrison, Ruzzo, and Ullman [22] for the access matrix model [19, 32]. Safety analysis
decides whether undesirable right leakage could occur in future states. Recently, the notion of security
analysis, which generalizes safety analysis, was introduced [34, 35]. A Security Analysis Problem (SAP)
instance asks whether an access control system preserves security policy invariants (which encode desired
security properties) across state changes. Security analysis also allows the explicit specification of trusted
principals. This enables one to ask questions such as: suppose that a set of trusted principals will not
initiate any potentially dangerous actions; does a policy invariant hold in all future states? A positive answer
provides the assurance that the security of the system depends only on the cooperation of trusted principals.

In this paper, we introduce the notion of Administrative Insider Threat Assessment Problems (AITAP)
in access control. An AITAP instance specifies a set A; of principals and asks whether the system can
preserve a policy invariant as long as no more than k principals in A; actively initiate any action. The
policy invariant can specify a security requirement that should always hold, in which case a “yes” answer
assures that the system is robust to the collusion of any % insiders. An AITAP instance can also be used
to verify that certain kinds of state changes can be made only when at least k + 1 principals are involved.
In an AITAP instance, principals in A; are neither completely trusted nor completely untrusted. They are
insiders who have privileges and whose potential damage to the system is what we want to analyze. In other
words, AITAP generalizes SAP to deal with threats posed by administrative insiders. Insider threat has long
been recognized as a serious problem in security [52, 57]. Not only are insider attacks more pervasive,
but they are also more destructive. Insiders have greater access to sensitive resources, deeper knowledge
of internal systems, and greater opportunity to carry out their plans. Typically, malicious insiders exploit
gaps in the enforcement of enterprise security policies. Even though the insider threat problem has been
widely recognized as a serious problem, it has rarely been formulated in a way that technical measures can
be developed to analyze and mitigate such threats.

In this paper we formally define SAP and AITAP, and study SAP and AITAP in the context of Role-
Based Access Control (RBAC). We give the computational complexities of these problems, and describe
our experiences building tools for performing these analyses using model checking and logic programming.
Our choice of RBAC as the problem domain is motivated by the fact that RBAC [4, 14, 15, 16, 17, 50] is
today’s most influential access control model. The past decade has seen an explosion of research in RBAC.
The industry’s interest in RBAC has also increased dramatically, with most major information technology
vendors offering products that incorporate some form of RBAC. Today, all major DBMS products support
RBAC. Microsoft has brought RBAC to the Windows operating systems by introducing Authorization Man-
ager in Windows Server 2003 [39]. RBAC has also been used in Enterprise Security Management Systems,
such as IBM Tivoli Policy Manager [25] and SAM Jupiter [5, 26, 27, 28].

The spirit of our work can be viewed as providing techniques to help administrators precisely understand
how well their access control systems can withstand various kinds of adversaries. In AITAP, we ask whether
the system can withstand adversaries who control fewer than k£ administrative insiders.

The contributions of this paper are as follows:

e In Section 2, we provide precise definitions for SAP and AITAP. We also define URA-SAP and URA-
AITAP, which are SAP and AITAP in RBAC with the URA97 administrative scheme [47, 49].

e In Section 3, we show that in general URA-SAP and URA-AITAP are PSPA CE-complete. We also



study the factors that contribute to the computational complexity by considering a lattice of various
subcases of the problem with different restrictions. We show that several subcases remain PSPA CE-
complete, several further restricted subcases are NP-complete, and we identify two subcases that are
solvable in polynomial time. We observe that the administrative scheme implemented in Oracle’s
RBAC system falls into one of the two tractable subcases.

e In Section 4, we compare two approaches to using existing tools to perform URA-SAP and URA-
AITAP and report our findings. One approach is to use model checking (specifically, the tool
NuSMV [42]); the other is to use logic programming (specifically, the language XSB [20]).

We discuss related work in Section 5 and conclude in Section 6.

2 Problem Definitions

In this section, we give precise problem definitions for SAP and AITAP. We also describe the URA97 RBAC
scheme and present the special cases of SAP and AITAP for the scheme.

2.1 Access Control Schemes

In existing work on security analysis in access control systems [34, 35], an access control scheme is defined
as a state-transition system (I, @, F, ¥), in which T is a set of states, @ is a set of queries, ¥ is a set of
state-transition rules, and : I' x @ — {true, false} determines whether a query in @ is true or not in a
given state in I'. Each ¢ € U is viewed abstractly as a binary relation on I, i.e., 1 C I" x T; it determines
whether one state can immediately reach another state. Abstracting a state transition rule as a binary relation
on I' suffices for the purpose of defining security analysis, which asks whether a security policy invariant
holds in every state that is reachable from a given initial state. However, to define insider threat assessment
problems, we need to identify which principals initiate a particular action to effect a state transition. We
now give a definition of access control schemes that makes the initiators explicit.

Definition 1 (Access Control Schemes) An access control scheme is given by a 6-tuple (I', Q, -, A, 3, ¥),
where I is a set of states, @) is a set of queries, -: I' x @) — {true, false} determines whether a query is
true or not in a state, A is a set of principals, 3 is a set of actions, and W is a set of state-transition rules.

A state, v € T', contains all the information necessary to make access control decisions at a given time.
When a query, ¢ € @, arises from an access request, v F ¢ means that the access corresponding to the
request ¢ is granted in the state v, and v I/ ¢ means that the access corresponding to q is denied. One
may also ask a query that does not correspond to a specific request; for example, one may ask whether
every principal that has access to a resource is an employee of an organization. Such queries are useful for
understanding the properties of a complex access control system.

Each action o € ¥ is a function mapping I" to I. We write o(~y) to denote the state that results from
applying the action o on the state 7. Note that o () could be ~; for example, this would happen if the
application of the action o on the state y fails. Each action o is associated with a set of principals, denoted by
init(o), i.e., init(o) C A. Principals in init(c) are called the initiators of the action; these are the principals
that actively carry out the action 0. In most existing access control schemes, each action is carried out by
one initiator, in which case init(o) is a singleton set. When init(co) includes two principals u; and wug, it
means that the active participation of u; and us is needed to carry out o.



Each state-transition rule 1) € WU is given by a subset of ¥, i.e., ¢ C 3. The state transition from y to 1
is allowed by 1) (we write v —; 1) When there exists an action o in 1) such that () = 1.

Given an access control scheme (I', Q, -, A, X, ¥), an access control system is specified by a pair (v, 1),
where v € T is the state of the system and ¢ € W is the state-transition rule that determines which state
transitions are allowed.

We say that a set A of principals can take an access control system (7, ) to a state -, if principals in
A can initiate actions that change the state of the access control system from v to v, i.e., there exists a
sequence of actions 01, 09, - - - , 0, such that the following two conditions hold:

1. for each i such that 1 < i < n, we have o; € ¥ and init(o;) C A.

2. (- o2(01(7) ) =g

Definition 2 (SAP) Given an access control scheme (I, Q,F, A, X, ¥), a security analysis problem (SAP)
instance is given by a 4-tuple (Ap,v,, q), where A C A is a finite set of trusted principals, (v, ) defines
an access control system, and ¢ € () is a query.

The answer to the instance is true if principals other than those in A can take the access control system
(7,) to a state in which ¢ evaluates to true. That is, this instance asks whether there exists a state -y, such
that principals in the set A — A7 can take (v, ¢) to the state v, and v, F g.

In an instance of SAP, g typically encodes an unsafe situation that should never occur; that is, ~¢ would
be a policy invariant that should always hold. Oftentimes a security policy specifies that certain kinds of
changes to the access control system can be made, but only through appropriate administrative channels. For
example, a policy may require that in order to assign a user who is a normal employee to be a member of
the manager role, at least two administrators need to be involved. Such a policy does not specify an unsafe
condition that should not occur; rather, it specifies some properties about how state changes may occur
and the initiators of the state changes. In this problem, the administrators are neither completely trusted
nor completely untrusted. Rather, they are insiders who have privileges and whose potential to damage the
system is what we want to analyze. This leads to the following definition of AITAP.

Definition 3 (AITAP) Given an access control scheme (I', Q, F, A, 3, ¥), an administrative insider threat
assessment problem (AITAP) instance is given by a 6-tuple (A, Ay, k,~v,1,q), where Ar,~,, and q are
as in Definition 2, A; C A — Ar is a finite set of insiders and & is a nonnegative integer.

Given an AITAP instance, the set A of all principals is partitioned into three disjoint sets: Ar, the set of
trusted principals, Ay, the set of insiders, and Ay = A — (Ap U Aj), the set of untrusted principals.

The instance (Ar, Ar, k,v,, q) asks whether there exists a set M of k insiders (principals in A7) such
that principals in M and Ay can take the access control system to a state -y, such that vy, I g. If the answer
is no, then one knows that to take the access control system to a state satisfying g, the involvement of at least
k + 1 insiders is needed.

In our model, principals in A7 are trusted in the sense that we do not want to analyze the threat posed by
them. Therefore, we assume that they do not initiate any actions. The set A7 can be empty if no principal
is assumed to be trusted. Principals in A; may possess privileges that enable them to change the state of the
access control system, e.g., the privileges to grant certain permissions to other principals. In this sense they
are administrative insiders. However, some principals in A; may misuse their privileges and we want to
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assess the damages that may be caused by the collusion of principals in A;. Principals in Ay are untrusted,;
they may collude with malicious insiders and each other to compromise security.

We observe that, given an algorithm that solves AITAP, one can use the algorithm to solve SAP, as each
SAP instance (Ar,~,,q) can be translated into an equivalent AITAP instance (Ap,{,0,~,,q). This
implies that the time and space computational complexity of SAP is no worse than that of AITAP.

2.2 The URA97 RBAC Scheme

We now define the access control scheme that we study in this paper, the URA97 RBAC scheme, which is
based on the ARBAC97 administrative scheme for RBAC [47, 49]. To our knowledge, ARBACY97 is the
first comprehensive and the most influential administrative model for RBAC.

URAJ97 is one of the three components of ARBAC97 [49]. The other components of ARBAC97 are
PRA97 and RRA97, for administering permission-role assignment/revocation, and the role hierarchy, re-
spectively. In this paper, we study the effect of decentralizing user-role assignment and revocation, and
assume that changes to the permission-role assignment relation and the role hierarchy are centralized, i.e,
made only by trusted users. In other words, whoever is allowed to make changes to permission-role as-
signment and the role hierarchy will use security analysis and only make those changes that do not violate
desirable security properties.

We assume that there are three countable sets: U (the set of all possible users), R (the set of all possible
roles), and P (the set of all possible permissions). While the set of all users in any RBAC state is finite, the
set of all users that could be added is potentially unbounded. One can think of I/ as the set of all possible
user-identifiers in a system.

States (I'): An RBAC state +y is a 6-tuple (UA, PA, RH, CA, CR, CO). We call UA, PA, and RH parts
of the basic state, and CA, CR, CO parts of the administrative state. The basic state is described below; the
administrative state is described when we discuss state transitions.

The user assignment relation UA C U x R associates users with roles, the permission assignment
relation PA C R x P associates roles with permissions, and the role hierarchy relation RH C R x R is
an irreflexive and acyclic relation over R. We use = py to denote the partial order induced by RH, i.e., the
transitive and reflexive closure of RH. That r; > gy 72 means that every user who is authorized for r; is
also authorized for r2 and every permission that is associated with r5 is also associated with 7.

Given a state vy, each user has a set of roles for which the user is authorized. We formalize this by
defining for every state -y a function authorizedRoles : U/ — 2

authorizedRoles(u) = {reR | Ir1 € R [(u,m1) € UAN(r1 =gu )] }

When r € authorizedRoles(u), we say that the user w is authorized for the role r, or equivalently, u is a
member of r. We also define down(r) to be the set of all roles dominated by r and up(r) to be the set all
roles that dominate r as follows:

down(r) = {reR | r=gur} up(r) = {reR | " =gyr}

State Transition: A, ¥, and ¥: We now specify A, 3, and ¥, which determine how states may change
in the URA97 scheme. A is defined to be U, the set of all possible users. > consists of two kinds of actions:
assignment and revocation actions. Whether these actions succeed or not when applied in a state depends
on the administrative state of v, namely CA, CR, and CO, which we describe below.



e The relation CA C R x C x 2R determines who can assign users to roles and the preconditions these
users must satisfy. C'is the set of conditions, which are expressions formed using roles, the binary
operators N and U, the unary operator —, and parentheses. A tuple (74, ¢, rset) in CA means that
members of the role r, can assign any user whose role memberships satisfy the condition ¢, to any
role r € rset. For example, (rg,r1 Nre N —rs, {rs}) € CA means that a user that is a member of the
role ¢ is allowed to assign a user that is a member of both 7 and 2, and is not a member of r3, to be
a member of 4.

e The relation CR C R x 2% determines who can remove users from roles. That (ry,rset) € CR
means that the members of role r, can remove a user from a role r € rset.

We assume that C'A and CR satisfy the property that the administrative roles are not affected by C'A
and CR. The administrative roles are those that appear in the first component of each tuple in CA or
CR. These roles should not appear in the last component of any C'A or CR tuple. This condition is
satisfied in URA97, which assumes the existence of a set of administrative roles that is disjoint from
the set of normal roles.

e CO is a set of mutually exclusive role constraints. Each constraint in C'O has the form
smer({ry,...,rm},t) where each r; is a role, and m and ¢ are integers such that 1 < ¢ < m.
This constraint forbids a user from being a member of ¢ or more roles in {ri,...,r,}. We say that
a set R of roles satisfies a constraint smer({ri,...,mn},t) if and only if |[R N {ry,...,rm}| < t,
where | | gives the cardinality of a set.

For example, smer({r1, 72} ,2) means that no user is allowed to be a member of both r; and ro. In
an RBAC state v, if 71 € authorizedRoles(u) for a user u, then an assignment action that assigns the
user u to any role in up(r2) would fail because of the constraint.

>, the set of all actions, is defined as follows:

Y = {assign(ug, ug, 7¢) | ug,ur €U A1y € R} U {revoke(ug, u, 1) | ug,us €U N1y € R}

e An assignment action assign(ug, ut, r¢) means that the user u,, assigns the user u; to the role ;. When
this action is applied to an RBAC state -, it succeeds if and only if the following three conditions hold:

- (ug, ) & UA, i.e., the user u; is not already assigned the role ;.

— There exists a tuple (rq,c,rset) € CA such that r, € authorizedRoles(uy,),
authorizedRoles(u;) satisfies ¢, and r; € rset.

— authorizedRoles(u;) U down(ry) satisfies every constraint in CO, i.e., the new role memberships
of u; do not violate any constraint.

We allow the assignment action assign (uq, ut, ¢ ) to succeed when u, is already authorized for r; indi-
rectly through other roles. For example, even when (ug, 75) € UA and s =pp 14, assign(ug, ug, 1)
can succeed. The rationale is that these memberships often represent independent relationships. For
example, (u,rs) € UA may represent a shorter-term role assignment for u; because of temporary
staff shortages, and (u, ;) € UA may represent a longer-term role assignment; then we want to add
(ug, ) to UA so that when (uy, r5) is removed from UA, uy is still authorized for r;.

When the assignment action is successfully applied to an RBAC state +, the resulting state ' differs
from v only in the user-role relation. The result of a successful application is UA" = UAU{(u, )}
When the application is not successful, the state does not change.



e A revocation action is of the form revoke(ug, ut, r+), which means that the user u, revokes the user
u; from the role 7. When this action is applied to an RBAC state -, it succeeds if and only if the
following two conditions hold:

- (ug, ) € UA, i.e., the user uy is assigned to the role ;.

— There exists a tuple (r, rset) € CR such that r, € authorizedRoles(u,), and r; € rset.

When the revocation action is successfully applied to an RBAC state +, the resulting state ~/ differs
from ~y only in the user-role relation. The result of a successful application is UA" = UA — {(u¢,7¢)}.
When the application is not successful, the state does not change.

W consists of a single state-transition rule, ¢/, where v includes all actions in X.

2.3 SAP and AITAP in URA97

Definition 4 (URA-SAP) A URA-SAP instance 1is given by an RBAC state 7 =
(UA, PA,RH, CA, CR, CO), aset Ay C U of trusted users, and a query.

We deliberately leave the syntax for queries unspecified in the above definition. Different kinds of
queries may be needed for different policy analyses. The simplest kind is to ask whether a user v is a member
of a role . More sophisticated queries may ask whether a user’s role membership satisfy a condition (e.g.,
71U (r2 N —r3)), or whether the set of members of one role is a subset of the set of members of another role.

Observe that a query that asks whether a user is a member of a role can be used to handle several other
kinds of queries. For example, if one wants to know whether the system can reach a state in which u’s role
membership includes a set {r1, 2} and excludes {r3}, one can add a new user u,, two new roles r, and r,
a user assignment (ugq, 7o), and a new tuple (r4, (11 N re N —r3), {r:}) to CA, and use u € r; as the query.
Similarly, if one wants to know whether the system can go to a state in which u possesses a certain set of
permissions, one can compute the role condition that is necessary and sufficient to have the permissions and
then translate that into a query about a single role.

Definition 5 (URA-RC-SAP) A URA-RC-SAP instance is a special case of URA-SAP in which a query
has the form u € 7.

Definition 6 (URA-AITAP and URA-RC-AITAP) A URA-AITAP instance is given by an RBAC state
v = (UA,PA,RH, CA, CR, CO), aset Ay C U of trusted users, a set A; C U of insiders, an integer k,
and a query. A URA-RC-AITAP instance is a URA-AITAP instance where the query has the form v € r.

2.4 An example

Figure 1 shows the role-hierarchy of a branch of a bank. This example is inspired by a case-study of a com-
mercial bank that appears in the literature [51]. The bank has two departments, Loans and Retail. The
bank prefers that an employee be a member of exactly one (functional) role. However, owing to practical
considerations, employees have to sometimes be allowed to be members in multiple roles across the two
departments. We quote from [51]: “Ideally, each employee is assigned to one role. However, in special cir-
cumstances an employee may be given up to four roles (e.g., in case of illness of a colleague)”. Furthermore,
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Figure 1: A branch of a bank that comprises the two departments, Loans and Retail. The roles
Admin_L is the administrative role for the three roles in the Loans department; and the role Admin_R is
the administrative role for three roles in the Retail department. The role Admin_H is the administrative
role associated with the Human Resources department. This role has control over Accountant and
Employee, which do not fall into either the Loans or the Retail department.

there is a role, Accountant, that does not fall in either department, and therefore is directly administered by
the Human Resources department.

In Appendix A, we detail the state and a rather comprehensive state-change rule (assign and revoke oper-
ations, and constraints) associated with this role-hierarchy. Consider the query ¢ = “Bob € {Cashier}”, for
some user Bob that is not a member of any role. The only entry in CA with Cashier in its third component
is (Admin_R, Accountant A —Loan Officer, { Cashier, Teller, Retail Manager}). In our example, the admin-
istrative user Andy is a member of Admin_R. Therefore, provided Bob is already a member of Accountant
and not a member of Loan Officer (the latter may be via inheritance, as the role has two senior roles), Andy
can assign Bob to the role Cashier. In our discussion in Appendix A, we consider the more complex issue of
whether Bob can become a member of both Cashier and Loan Officer simultaneously, as a result of actions
taken by some maximum number of colluding administrators. We observe there that the collusion of at least
three administrators is needed for an undesirable state (a state in which Bob is a member of both Cashier
and Loan Officer) to be reachable.

3 Computational Complexity

In this section we study the computational complexity of URA-SAP. In particular, we show that URA-RC-
SAP is PSPA CE-complete. We also relate the computational complexity of AITAP to SAP.

The main source of the complexity of SAP is the fact that the state space that needs to be explored is
potentially large. We would like to understand how different features in URA97 affect this search space;
therefore, we consider special cases of URA-SAP that result from restricting the URA scheme in various
ways. Answers to the following questions affect the computational complexity of URA-SAP.



o What queries are considered? If queries are allowed to contain conjunctions and disjunctions of roles,
then URA-SAP is likely to be intractable. For example, in [35], queries such as ((r; Ury) Nr3) C
((ri Urg) N (ro Urs)) can be posed. The intractability results in [35] are consequences of the fact
that these sophisticated queries can encode propositional formulas to show NP-hardness. In this
section, we focus on the simplest kind of queries, i.e., whether a user u is a member of a role r,
to better understand the complexity caused by features within URA97. In other words, we consider
URA-RC-SAP.

e Do the preconditions involve only conjunctions? Each tuple in C'A has a precondition. It is conceiv-
able that if the precondition involves arbitrary conjunction, disjunction, and negation of roles, then
this could make the problem intractable; however, such a result would be less insightful and of less
practical interest. In practical systems, one would not expect the precondition to be an arbitrary logical
formula in CNF with many conjuncts. Furthermore, we show below that for the general case allowing
complex preconditions does not affect the computational complexity. For these reasons, in this paper
we focus on the special case in which each precondition is a conjunction of roles or their negations.

e [s negation allowed in preconditions in CA? When preconditions in C'A may contain negation, one
needs to consider the revocation of a users’ role memberships in order to satisfy the precondition and
be assigned to a new role.

e Are SMER constraints allowed, i.e., is CO = { }? When constraints are allowed, one may need to
consider revocations in order to be able to assign a user to a new role.

e Are revocations allowed, i.e., whether CR = { }? One may want to consider the special case that role
memberships cannot be revoked.

We summarize the variations we consider in this paper in Figure 2. The main results of this paper are
stated in the following theorem. These results are also summarized in Figure 3.

Theorem 1 The computational complexity for URA-RC-AITAP, URA-RC-SAP, and its various subcases are
as shown in Figure 3.

Some subcases of the problem are not listed in Figure 3, because they are special cases of the two cases
that are known to be in P; thus they are solvable in polynomial time as well. We make several observations
from Theorem 1 and Figure 3.

e URA-RC-AITAP has the same space and time-complexity as URA-RC-SAP (they are both
PSPACE-complete). This follows a general result that AITAP can be solved using essentially the
same space as SAP (Lemma 2).

e Whether we allow only conjunctive preconditions or allow arbitrary preconditions does not change the
computational complexity of URA-RC-SAP in general. The problem is PSPACE-complete with or
without the conjunctive restriction.

e There are three cases in which the problem’s complexity changes from PSPACE-complete to NP-
complete. All three result from making C'R empty. The reason is that if CR is empty, then one only
needs to consider role assignments. Any role assignment sequence can have length at most polynomial
in the size of the problem instance. This makes the problem in NP. On the other hand, there may
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[CR] [CO]

Conjunctive
[CA(conjunctive)] No No
‘ [CR={}] [CO={}]

Negation—free
[CA(positive conjunctive)]

Every precondition = TRUE
[CA(no preconditions)]

Figure 2: The possible variations in the features we consider for the preconditions in CA, revocation
and constraints. A dotted line connects a case with a subcase. For example, negation-free preconditions
([CA (positive conjunctive)]) is a subcase of conjunctive preconditions ([C'A (conjunctive)]). Various
combinations from the three columns are possible. For example, we can consider the analysis problem
with negation-free preconditions, with revocation, but without constraints, which corresponds to URA-
RC-SAP[CA (positive conjunctive), CR, CO = { }].

be exponentially many such possible assignment sequences; thus the problem remains NP-complete.
However, when CR is not empty, the sequence necessary for entering a user into a role may be of
exponential length.

e The effect of non-empty CO is identical to the effect of negation in preconditions of C'A from the
standpoint of computational complexities. The reason is that the effect of a constraint in CO can be
“simulated” using negative preconditions in C'A, and vice versa. We use this fact, for example, in the
proofs for Lemmas 5 and 8.

The rest of this section proves the results in Theorem 1.

URA-RC-AITAP, URA-RC-SAP, and three subcases are PSPACE-complete: We first show
that SAP and AITAP can be solved in the same space complexity. = We then show that the
general case of URA-RC-SAP is in PSPACE. Finally, we show that two subcases URA-
RC-SAP|CA(positive conjunctive), CR, CO], and URA-RC-SAP[CA(conjunctive), CR, CO = { }] are
PSPACE-hard. These results together prove the five PSPA CE-completeness result in Theorem 1. In
Appendix B, we present background information related to Turing machines that we use to establish these
results.

Lemma 2 For any access control scheme, if SAP has space complexity O(f(n)) then AITAP has space
complexity O(f(n) 4+ n).

Proof: Given an algorithm that solves SAP, and an AITAP instance, (Ar, A1, k,7,1,q), we enumer-
ate through all size-k subsets of Aj, and for each such subset S we solve the SAP instance (Ar U
(Ar —S),v,%¢,q). In addition to the space used by the algorithm to solve SAP, we need to remember
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AITAP-RC-SAP
PSPACE—-complete

URA-RC-SAP
PSPACE-complete

URA—RC—SAP[CA(cbnjunctive), CR, CO]
PSPACE—-complete

URA-RC-SAP[CA (positive URA-RC-SAP[CA(conjunctive), URA-RC-SAP[CA (conjunctive),
conjunctive), CR, CO] CR,CO={}] CR={}, CO]

PSPACE—-complete PSPACE—-complete NP—cgranete
URA-RC-SAP[CA(no URA-RC-SAP[CA (positive URA-RC-SAP[CA (positive URA-RC-SAP[CA(conjunctive),
preconditions), CR, CO] conjunctive, CR, CO = { }] conjunctive), CR = { }, CO] CR={},CO={}]

P P NP—complete NP—complete

AATU : URA-RC-SAP[CA (positive
conjunctive), CR={},CO={}]

P

Figure 3: The summary of computational complexity results for various cases of URA-RC-SAP. A
dotted line links a case to a subcase. For example, URA-RC-SAP[CA (positive conjunctive), CR, CO ]

is a subcase of URA-RC-SAP[CA (conjunctive), CR, CO ].
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the AITAP instance and a marker denoting which subsets of A; have been checked. This takes space linear
in the size of the AITAP instance.

Lemma 3 URA-RC-SAP is in PSPACE.

Proof: Given a URA-RC-SAP instance, let v = (UA, PA, RH, CA, CR, CO), let Ur be a set of trusted
users, and let u € r be the query. Notice that the only component of the state that changes is UA. Fur-
thermore, we only need to maintain u’s role memberships (the number of roles does not change from the
start state). It takes polynomial space to represent the u’s role memberships. Recall that in URA97, admin-
istrative roles (i.e., roles that appear in the first component of a tuple in CA and CR) are not affected by
CA and CR. Therefore, we do not need to consider memberships of users other than u because these role
memberships do not affect whether u can be assigned to a role or not. Observe that in order to determine
whether u can be added to a role, the precondition is only about w’s role memberships.

Observe that if we relax the restriction that administrative roles are not affected by C'A and CR, then
we need to maintain role memberships of all users, which can still be done in polynomial space. Therefore,
URA-RC-SAP is in PSPACE even without this restriction.

We describe a Non-Deterministic Turing Machine (NDTM) NM to solve this problem. Initially, NM
sets initial state g to be equal to . Given that that NM is in state ;, it continues its computation as follows:

e If v; - q, NM stops and outputs yes.

e Assume that v; I/ g. N M guesses a next state ~y;+; that changes the user u’s role memberships. NM
ensures that such a change conforms to C'A and CR and satisfies the constraints in CO. NM ensures
also that the only users that effect an assign or revoke action are the ones do not belong to Ur.

The construction given above proves that URA-RC-SAP is in NSPACE(O(n)), where n is the space
needed to represent the input URA-RC-SAP instance. Using Savitch’s theorem we can conclude that URA-
RC-SAP is in DSPACE(O(n?)). O

Lemma 4 URA-RC-SAP [ CA (positive conjunctive), CR, CO ]is PSPACE-hard.

The proof is given in Appendix C. The proof is by a reduction from the membership problem for linear
bounded automata (LBA), which is known to be PSPACE-complete. A LBA is a restricted form of a
Turing machine. It differs from a Turing machine in that while the tape is initially considered infinite, only
a finite contiguous portion whose length is a linear function of the length of the initial input can be accessed
by the read/write head.

Lemma 5 URA-RC-SAP [CA (conjunctive), CR, CO = ()] is PSPACE-hard.

The proof for the above lemma is similar to the proof for Lemma 4. The proof for Lemma 4 uses
2-2 SMER constraints. We simulate the use of such constraints in the proof for Lemma 5 using negative
preconditions in C'A. For example, if a 2-2 SMER constraint smer({r;,72},2) is used in the proof for
Lemma 4, we can add — r; to the precondition of each rule that assigns to 73 and add — 9 to the precondition
of each rule that assigns to r;.
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URA-RC-SAP [CA (conjunctive), CR = { }, CO ] and its two subcases are NP-complete: We first
demonstrate that disallowing revocations in URA-RC-SAP causes the problem to be in NP. We then
demonstrate that two subcases are both NP-hard. The first subcase is when we disallow negative precon-
ditions in CA. The second subcase is when we disallow constraints. These results together prove the three
NP-completeness results in Theorem 1.

Lemma 6 URA-RC-SAP [CA (conjunctive), CR = { }, CO ]is in NP.

Proof. We need to demonstrate that if an instance of URA-RC-SAP [CA (conjunctive), CR = { }, CO ]
is true, then there exists an evidence of size polynomial in the problem that can be efficiently verified. Let
the query ¢ in the problem instance be about user u’s membership in the role r. As the evidence, we use the
shortest state-change sequence from the initial state g to a state -y, such that v, - ¢. Each state-change in
this sequence is the assignment of u to a role of which he is not already a member. There can be at most |R|
such assignments, where R is the set of roles in the system. (See the proof of Lemma 3 about why we only
need to consider assignment of user u. Also observe that even if considering assignment of all users, the
total number of such assignments is still polynomial in the size of the instance.) Therefore, the state-change
sequence of length at most | R|, which is polynomial in the input and can certainly be verified in polynomial
time. |

Lemma 7 URA-RC-SAP [CA (conjunctive), CR = { }, CO = { }] is NP-hard.
The proof is in Appendix D; it uses a reduction from the 3SAT problem.
Lemma 8 URA-RC-SAP [CA (positive conjunctive), CR = { }, CO ] is NP-hard.

The proof is in Appendix E. This result should not be surprising given Lemma 7; as discussed earlier,
the effects of SMER constraints and negation in preconditions in C'A are very similar.

Two subcases that are in P: As we show above, either negation in preconditions or SMER constraints
is sufficient to make URA-RC-SAP intractable. However, URA-RC-SAP [CA (positive conjunctive), CR,
CO = { }], that is, when neither negations in preconditions nor SMER constraints are allowed, the problem
can be solved in linear time. The reason is that to determine whether u can be a member of a role  in some
future state, there is no need to consider revocation as there is no negation in preconditions in CA and there
are no SMER constraints. A straightforward quadratic algorithm is to try each tuple in C'A and see whether
u can be assigned to more roles. As the number of roles that can be assigned according to C'A is bounded
by the size of C'A, this algorithm takes at most quadratic time. A linear time algorithm can be obtained by
reducing this to the Horn-SAT problem, which can be solved in linear time [13]. Each rule in C'A can be
viewed as a Horn rule; for example, if one such rule says r; N ry is the precondition for r3, then this can
be translated into a Horn clause “r3 «— r1,72”. Each initial role membership of the user can be translated
into a Horn clause. The query can be translated into a Horn query clause.

Another tractable subcase is URA-RC-SAP [CA (no preconditions), CR, CO ], which can be solved in
quadratic time. In this subcase, every pre-condition in C'A is “true”, but we allow revocations and SMER
constraints. The algorithm is to first check whether the user u is already a member of the role r (where u
and r comprise the query). If not, we revoke « from as many roles as possible using entries from CR. We
then check whether there exists an entry in C'A that we can exercise to cause u to become a member of r,
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while not violating any entry in C'O. If yes, the algorithm returns “true” and otherwise, it returns “false.”
This is linear in the sizes of CA, CR and CO.

We observe that in some RBAC schemes in practical systems, such as the RBAC scheme in the Oracle
database, there is no precondition in role assignment. Security analysis there thus falls under the above
tractable case.

Note that for more sophisticated queries, URA-SAP even in these basic versions may not be tractable.
For example, the computational complexity when considering queries that ask whether members of a role
r1 is always a subset of the role s is still open.

4 Experimental Results

The fact that URA-RC-SAP and several of its subcases are intractable (PSPACE-complete or NP-
complete) means that there exist difficult problem instances. In this section, we describe our experiences
using logic programming and model checking tools for some realistic instances of URA-RC-SAP. Our goals
for performing these experiments are two-fold. First, we would like to see whether security analysis in-
stances of nontrivial sizes can be solved in reasonable amounts of time. Our experimental results show that
the answer is positive. Second, we would like to compare the effectiveness of model checking and logic
programming in security analysis. Our results demonstrate that logic programming outperforms model
checking in smaller instances; however, model checking appears to scale better than logic programming.

The Logic Programming Approach: Logic programming is a declarative, relational style of program-
ming based on first-order logic. A logic program is composed of a set of facts and a number of rules which
specify how to derive new facts from known ones. We use XSB [20], a Prolog-variant logic-programming
system developed at SUNY, Stony Brook. XSB uses SLG resolution [8], which can correctly evaluate many
recursive logic programs that would cause SLD-resolution-based Prolog systems to fail to terminate.

Our implementation is a natural reduction from instances of URA-RC-SAP to logic programs. Recall
that an instance of URA-RC-SAP consists of an RBAC state (UA, PA, RH,CA,CR,CO) and a query of
the form w € 7, where v € U is a user and » € R is a role. Our logic program defines a predicate over
states that is true when the state is reachable. Each tuple in C'A and CR is represented as a rule, while RH
and CO are incorporated in the rules representing C'A entries. The initial role memberships of the user u is
given as a fact, and the evaluation’s goal is to find a state in which the answer to the query u € r is true.

The Model Checking Approach: Model checking is a technique for determining whether a formal
model M of a system satisfies a temporal-logic property p. A model M can be represented as a 4-tuple
(S, R, s, L), where S is a finite set of states, R C (S x ) is a transition relation, sy € S is an initial state,
and L : S — 247 is a labeling of states with propositional formulas from AP (given a state s, L(s) denotes
the atomic propositions in AP that are true in s). We express safety property p in Computation Tree Logic
(CTL) with the form AGf (i.e., p = AGf, where f is a formula in propositional logic). (AG f means that
always globally the atomic proposition f is true, or in other words f is true in every state reachable from
the initial state sg.) If the model M satisfies the property p, a model checker reports true. If M does not
satisfy p, a model-checker produces a counter-example that shows an execution that leads to a violation of
the property. A thorough treatment of model checking is provided in [9].

The model checker we used is NuSMV [42]. We implemented a program that reads an instance of URA-
RC-SAP and then generates a NuSMV program for the instance. Encoding an instance of URA-RC-SAP
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as a model in NuSMV is straightforward, e.g., states correspond to user assignments to roles and transitions
correspond to rules in C' A and C'R.

Preprocessing: We observe that given a URA-RC-SAP instance, many rules in CA and CR may be
irrelevant to the query. We use a preprocessing stage to remove these rules. Our experimental data shows
that preprocessing can be very effective. Given a query v € r and an RBAC state, our preprocessing does
the following two kinds of pruning:

e Forward pruning: We remove rules that will never be successfully executed. We first compute R,
the set of roles in the initial state that cannot be revoked by rules in CR. We then compute 2, the set
of roles that may be assigned to the user u, and A, the set of assignment rules that may be successfully
applied. To do this, we initialize R, with I, the initial set of roles that v is a member of, and A with
(). For each assignment rule v in CA, if the target role of « is not in Ry, the positive precondition
of v is satisfied by R,,;, and the negative precondition of « does not contain any role in Iz;,, we add
the target role of « to R,,;, and add o to A. We repeat this process of iterating through C'A until R,,,
does not grow. Only assignment rules in A and revocation rules that revoke roles in R,,;, are kept
after the pruning. Letting | CA| be the number of rules in C'4, the computation of R,,, and A requires
O(|C A?) rule-consideration steps, because each pass through CA adds at least one o € CA to A and
each such o needs not be considered thereafter.

e Backward pruning: Some roles may be irrelevant to assigning the role r in the query. The backward
pruning removes assignment and revocation rules about those roles. We compute two sets of roles:
Ry, is the set of roles that r positively depends on, and I2,,. is the set of roles that r negatively depends
on. We remove assignment rules that assign roles outside 1, and revocation rules that revoke roles
outside Ry.. R, is the smallest set that satisfies the following three conditions: (1) r € Rp,; (2) if
rp € Rpo, then any role that dominates 7, is also in R,,; (3) if 7, € R,,, then any role that appears
in the positive precondition of a C'/A entry assigning to 7, is also in R,,. R, is the smallest set that
satisfies the following conditions: (1) if 7, € R,,, then any role that appears (or dominates a role that
appears) in the negative precondition of a C'A entry assigning to 7, is in R,.; (2) if r, € R, then
any role that is (or dominates a role that is) mutually exclusive with 7, is in ..

The preprocessing takes time at most cubic in the size of the instance.

Experimental results: We performed experiments using two kinds of instances. Manually crafted in-
stances are designed to “hide” an unsafe state after a long sequence of transitions. These instances forced
the analysis tools to search deep in the state space. Randomly generated instances contain a relatively large
number of roles and transition rules.

Experiments were performed on a workstation with an Intel P4 3G processor and 512M of memory,
running Windows XP Professional. We tested the performance of NuSMV and XSB on several instances.
Table 1 presents results for seven instances, two of which were manually generated and five of which were
randomly generated.

Experimental results show that the number of rules is a crucial factor in determining runtime. Therefore,
the preprocessing step plays an important role in improving the efficiency of both logic programming and
model checking implementations. Many instances, such as Rand2, that cannot be solved within 30 minutes
without preprocessing are solved within a few seconds with preprocessing.
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Man1 Man2 Rand1 Rand2 Rand3 Rand4 Rand5
Num. of Roles 12 16 15 100 40 30 25
Num. of Rules 31 40 45 250 92 88 79
Num. of Rules (AP) 22 29 34 20 27 37 57
Transition Length 15 22 1 2 3 2 6
Total States 1.70E+7 | 1.76E+9 | 6.60E+8 NA NA NA NA
Reachable States 1.31E+5 | 2.69E+6 | 7.54E+5 NA NA NA NA
XSB Runtime 0.55s 14.22s | 109.64s NA NA NA NA
NuSMYV Runtime 0.188s 1.78s 2.10s NA NA NA NA
Total States( AP) 1.22E+7 | 1.29E+9 | 5.02E+8 | 1.08E+49 | 3.40E+20 | 7.82E+15 | 4.90E+13
Reachable States (AP) 3456 6000 6720 75264 7.31E+5 | 3.11E+6 | 3.98E+7
XSB Runtime (AP) 0.02s 0.05s 0.06s 0.55s 5.70s 19.94s NA
NuSMYV Runtime (AP) 0.11s 0.13s 0.13s 0.94s 1.27s 5.44s 72.94s

Table 1: Experimental data on URA-RC-SAP instances using XSB and NuSMV. Instances with names
beginning with Man were manually crafted, while those beginning with Rand were randomly generated.
Statistics on total states and reachable states is for NuSMV only. Rows marked (AP) present results after
preprocessing. NA indicates that, for the NuSMV cases, the program did not finish running within 30
minutes, or, for the XSB case, ran out of the memory.

Both XSB and NuSMYV are efficient in cases that have a small number of transition rules. For the
example in Section 2.4, XSB uses 0.016 seconds and NuSMV uses 0.125 seconds. When tested on a
manually crafted instance Man2 with 16 roles and 40 rules (29 left after preprocessing) that requires a
sequence of at least 22 transitions before reaching an unsafe state, XSB uses 0.05 seconds and NuSMV uses
0.13 seconds. When preprocessing is effective, such as instance Rand2 with 100 roles and 250 rules (20
rules left after preprocessing), XSB uses 0.55 seconds and NuSMV executes in 0.94 seconds.

It appears that using XSB does not scale as well as using NuSMV. For example, when it came to the
randomly generated instance Rand5, with 25 roles and 79 rules (57 left after preprocessing), XSB ran out of
memory after 29 minutes, while NuSMV returned with an answer within 73 seconds. An observation is that
the runtime of the XSB grows linearly with the number of reachable states.! However, NuSMV uses binary
decision diagrams (BDDs) to represent its state space, so its runtime depends on the regularity of the state
space. A point worth mentioning is that XSB consumes memory quickly. For the instance Rand4 with 30
roles and 88 rules (27 left after preprocessing), XSB uses more than 400MB of memory. The high demand
on memory impairs the scalability of our XSB program. In contrast, the BDD-based NuSMYV requires less
memory than XSB.

Both model checking and logic programming have been used in network-vulnerability analysis [23, 53].
Recently, Ou et al. [43] showed that, in the context of network-vulnerability analysis, logic programming is
much more scalable than model checking. Our experimentation data show that for URA-RC-SAP scalability
of logic programming is worse than model checking. This is because in network vulnerability analysis, one
can make the monotonicity assumption, i.e., if an attacker gains a privilege, it never loses it. However,
in security analysis, because of negative preconditions and mutual exclusion constraints, the monotonicity
assumption does not hold, and one has explore the state space.

'The statistics on total states and reachable states in Table 1 are actually for NuSMV, but the statistics for XSB should be similar.
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In real-word large-scale RBAC systems, even though the number of roles in the whole system may be
large, we expect that the roles that are relevant for any given query will be only a small portion of all roles.
Therefore, we conjecture that our approach of combining preprocessing with existing tools such as NuSMV
will be able to handle many queries.

5 Related Work

In their landmark paper [22], Harrison et al. formalized the safety analysis problem in the access matrix
model [32, 19]; the problem determines whether a protection system can reach a state in which a particular
right is leaked. They show that safety analysis is undecidable in their scheme [22]. Since then, safety analy-
sis has attracted considerable attention in the research community. Safety analysis in monotonic versions of
the HRU scheme has been studied in [21]. Jones et al. introduced the Take-Grant scheme [24, 36], in which
safety can be decided in linear time. Sandhu et al. introduced the Schematic Protection Model [45], the
Extended Schematic Protection Model [1, 2], and the Typed Access Matrix model [46]. Budd [7] and Mot-
wani et al. [40] studied grammatical protection systems. Soshi et al. [55, 56] studied safety analysis in the
Dynamic Typed Access Matrix model. These models all have subcases where safety is decidable. Solworth
and Sloan [54] introduced a discretionary access control model in which safety is decidable. This thread
of research has produced many new access control schemes but has had limited impact on access control
systems used in practice, probably because the proposed schemes are either too simplistic to be useful or
too arcane to be usable. In this paper, we focus on policy analysis problems in RBAC, which was invented
not for the purpose of safety analysis, but for meeting the access control need of real-world applications.

The notion of roles was first introduced in access control in the context of database security [6, 58] as a
means to group permissions together to ease security administration. Influential works on RBAC include the
pioneering work by Ferraiolo et al. [14, 15] and the widely cited RBAC96 family of formal RBAC models
developed by Sandhu et al. [50]. Recently, a standard for RBAC has been proposed and adopted as an ANSI
Standard [4, 17]. Administration of RBAC is about controlling who can update the various relations in an
RBAC system. The most well-known work on administration of RBAC is ARBAC97, developed by Sandhu
et al. [47, 48, 49]. Recently, Crampton and Loizou [11, 12] introduced the notion of administrative scope
and an RBAC administration scheme based on it.

An administrative scheme in conjunction with the representation for an RBAC state naturally lends itself
to the safety question in RBAC. The work that is closest to this paper is such work on safety and security
analysis in RBAC. Li and Tripunitara [35] studied security analysis for two particular RBAC schemes de-
rived from ARBAC97 [49]: AATU (Assignment And Trusted Users) and AAR (Assign And Revocation),
both of which are sub-schemes of the URA97 scheme [49]. The main results in [35] are that security analysis
in AATU and AAR are intractable (NP-hard) in general, but can be solved in polynomial time for semi-
static queries. The intractability results there are consequences of the fact that a query may be able to encode
an arbitrary boolean formula. The techniques used to establish tractable results was to reduce the problem to
security analysis in the RT family of trust-management languages [34]. We observe that neither AATU nor
AAR allows negative preconditions or constraints. We have shown that URA-RC-SAP with these restric-
tions are solvable in quadratic time and given direct algorithm for solving them. We point out, even though
the role-containment queries are special cases of semi-static queries, our two tractable cases do not follow
from results in [35], because AATU does not allow revocation and AAR does not allow trusted users. In
essence, the results in [35] deal with very simple state transition rules but sophisticated queries. In this paper,
we consider simple queries, but sophisticated state transitions. Since RT [33] is monotonic, it is unclear how
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to extend the techniques in [35] to deal with negative preconditions or constraints. Li and Tripunitara [35]
explicitly mentioned dealing with negative preconditions and constraints as an open problem.

Koch et al. have proposed an RBAC scheme based on a graph-based formalism [29, 31] and have demon-
strated that safety is decidable in a sub-scheme [30]. However, the decidable fragment of the graph-based
formalism [30] does not allow negative application conditions, which are used to specify negative precondi-
tions in assignment rules in the graph-based formalism for RBAC [29, 31]. Therefore, the decidability result
applies only to the subcase without negative preconditions or mutual exclusion constraints. Furthermore,
in [30], it has only been shown that safety is decidable in this case; no concrete computational complexity
result is given in [30]. The proof shows that the search space is finite; however, searching the space likely
takes exponential time. We show that for the case that can be modeled in the decidable fragment, namely,
without negative precondition or constraints, URA-RC-SAP is decidable in quadratic time. For cases with
negative preconditions and/or constraints, we have given precise computational complexities for them.

Some work related to safety in access control (e.g., [54]) refers to the work by Crampton [10] and
Munawer and Sandhu [41] to claim that safety is undecidable in the ARBAC97 scheme. We point out that the
undecidability results in Crampton [10] and Munawer and Sandhu [41] are not about the ARBAC97 scheme.
The scheme considered by Crampton [10] adds two new features to ARBAC97. One is to allow changes
to the CA and CR relations. (Sandhu et al. [49] state specifically that it is assumed that in an ARBAC97
system, these relations are static and may be changed only by (a trusted) chief security officer.) The other
is to allow a state-change rule to include an arbitrary command specified using a construct similar to that
proposed by Harrison et al. [22]. Such constructs do not exist in ARBAC97. Munawer and Sandhu [41]
present a simulation of the Augmented Typed Access Matrix (ATAM) scheme [3] in a particular RBAC
scheme that has similar features as those in Crampton [10].

6 Conclusion and Future Work

We have formalized classes of security analysis and insider threat assessment problems in the context of
RBAC. We have shown that the URA-SAP and URA-AITAP are PSPACE-complete in the general case
and that a number of special cases of the problems are NP-complete. We have also shown that model
checking is a promising approach to solve these problems. In the future we plan to look at SAP and AITAP
with more sophisticated queries and other administration schemes.
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A Details of the Example from Section 2.4

This appendix gives details of the example that we discussed in Section 2.4. We use RH pyqncn to denote the
role-hierarchy, and CApranchs CRpranch and CO pranen to denote the administrative relations for role assign-
ment, revocation and mutually exclusive role constraints respectively (as shown in Figure 4). The Loans
department has the Loan Officer role, for which we have two specializations, Commercial Loan Officer
and Personal Loan Officer. As the entry in COppupen indicates, a user cannot be a member of both
Commercial Loan Officer and Personal Loan Officer. The Retail department has the roles Cashier and
Teller, and the role Retail Manager is senior to both those roles. The role Accountant does not fall in ei-
ther department. The roles Admin_H, Admin_L and Admin_R are the administrative roles for the Human
Resources, Loans and Retail department respectively. As the entry in CO pqncp indicates, a user can
be a member of at most one of those administrative roles. An additional entry in C'O g, asserts that a
user can be a member of at most two out of the four roles, Cashier, Teller, Accountant and Loan Officer.
Thereby, the bank limits the maximum number of (functional) roles of which a user can be a member. This
provides some added guarantee that a user will not have unrestricted access to resources.

The bank prefers that a user, other than someone that is assigned to Retail Manager, not be a member
of more than one functional roles. However, during peak hours, the Retail department has a heavy
work-load, and therefore members of Accountant may occasionally act as cashiers or tellers. An entry in
CApranen, permits an administrator that is a member of Admin_R to assign someone that is a member of
Accountant, but not Loan Officer, to any of the roles in the Retail department. The bank also allows
some cashiers to act as personal loan officers. However, this must be controlled tightly to avoid wrongdoing
on the part of employees. Consider the query, qprancn, = “Bob € {Cashier, Personal Loan Officer}”, which
we use to denote that the user Bob is a member of both the Cashier and Personal Loan Officer roles. We
would now like to ensure that a user can become a member of both Cashier and Personal Loan Officer only
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RH prane, = {(Accountant, Employee) , (Cashier, Employee) , (Teller, Employee) ,
(Retail Manager, Cashier) , (Retail Manager, Teller)
(Commercial Loan Officer, Loan Officer) , (Personal Loan Officer, Loan Officer)}

CAprancn, = {(Admin_H, true, Employee), (Admin_H, Employee A —Loan Officer, Accountant),
(Admin_R, Accountant A —Loan Officer, { Cashier, Teller, Retail Manager}),
(Admin_L, Employee A —=Accountant, { Commercial Loan Officer,
Personal Loan Officer, Loan Officer})}

CRpranch, = {(Admin_H, {Employee, Accountant}),
(Admin_L, {Commercial Loan Officer, Personal Loan Officer, Loan Officer}),
(Admin_R, {Retail Manager, Cashier, Teller})}

COpranc, = {smer{({Commercial Loan Officer, Personal Loan Officer} , 2},
smer({Cashier, Teller, Accountant, Loan Officer} , 3},
smer({Admin_H, Admin_L, Admin_R},2)}

UA, = {(Alice, Admin_H), (Adam,Admin_L), (Andy, Admin_R)}

o = assign (Alice, Bob, Employee) , assign (Alice, Bob, Accountant) ,
assign (Andy, Bob, Cashier) , revoke (Alice, Bob, Accountant)
assign (Adam, Bob, Personal Loan Officer)

Figure 4: Relations in the example. RH yrqncr, gives the role hierarchy. UA. gives the user-role assign-
ment in the current state. The user Bob is not assigned to any role in . The sequence of actions, o, is the
minimal sequence necessary to have Bob be assigned to both the Cashier and the Personal Loan Officer
roles.
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with the involvement of at least three administrators. Our assignment of users to the three administrative
roles Admin_H, Admin_L and Admin_R is shown in Figure 4.

We let Ap = 0, Ay = {Alice, Adam, Andy} and k = 2. Then, the URA-AITAP instance
(A1, A1, k.7, Qbranch ), captures our intent to check whether at least three administrators are needed be-
fore someone can become a member of the two roles Cashier and Personal Loan Officer. which are in two
different departments. The instance is false, as desired. However, if we set k = 3, then the URA-AITAP
instance is true, as the three (administrative) users Alice, Adam and Andy can cause Bob to become a
member of both Cashier and Personal Loan Officer. We present a corresponding sequence of actions as o
in Figure 4.

B Turing Machines

A Turing Machine is denoted as M = (Q, 3, T, 0, qo, B, F'), where () is the finite set of states, I is the finite
set of allowable tape symbols, B € T is the blank symbol, ¥ C I" — { B} is the set of input symbols, § is
the next move function and is a partial function from Q x I'to @ x I x {L, R}, qo € Q is the start state,
and F' C Q) is the set of final states. A nondeterministic Turing machine (NDTM) allows a finite number of
choices for its next move, i.e., ¢ is a function from @ x I' to the power set of @ x I" x {L, R}. The first
definition describes a deterministic Turing machine (DTM).

The language accepted by M (denoted by L(M)) is the set of words in ¥* that cause M to enter a final
state when placed justified at the left on the tape of M, with M in state ¢y, and the tape head of M at the
leftmost cell. A language L is accepted by a DTM if and only if it is accepted by a NDTM. A language
L is said to be in DSPACE(S(n)) if there exists a DTM M accepting L that takes at most S(n) space,
where n is the size of the input. Similarly, L is said to be in NSPACE(S(n)) if there exists a NDTM M
accepting L that takes at most S(n) space. A language L is said to be in PSPACE if and only if it is in
DSPACE (p(n)) for some polynomial p (L is accepted by a DTM that takes space polynomial in the size of
the input). We refer the reader to [44] for more details on these and related concepts.

C Proof of Lemma 4

We show that URA-RC-SAP is PSPACE-hard by a reduction from the membership problem for linear
bounded automata (LBA), which is known to be PSPACE-complete. A LBA is a restricted form of a
Turing machine. It differs from a Turing machine in that while the tape is initially considered infinite, only
a finite contiguous portion whose length is a linear function of the length of the initial input can be accessed
by the read/write head.

Let M = (Q,%,T, 9, qo, B, F') be any LBA that uses at most p(n) space, where n is the size of the input
and p is a degree-1 polynomial. (We assume that the polynomial p(n) is know. However, it suffices that
there exists a polynomial time algorithm to compute p(n) given n.) We construct an RBAC system whose
start state is v = (UA, PA, RH, CA, CR, CO) and a query u € r corresponding to the DTM M so that
there is an accepting computation in M on an input x if and only if in the RBAC system there is a sequence
of RBAC states from ~y (which corresponds to input x) to 7/ in which u € 7 is true.

In our construction there are two users ug and u. There is a special role ra (the reader can think of this
as the administrative role) and (ug, ra) € U A. All the assigning and revoking of roles will be performed by
ug. The special user uy can remove users from all roles, i.e. CR is equal to {(ra, R)}, where R consists of
all the roles introduced in the construction except for ra.
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Encoding 7'M configurations. For each state ¢ € Q and 1 < i < p(n) we introduce a role r; ,. For
each state ¢ € @, 1 < i < p(n), and symbol @ in ¥ we introduce a role Tqi,a- These roles are used to
represent the configuration of the TM machine M. Additional roles will be introduced later to simulate
transitions in M. If u is assigned to the role r; , then the i-th cell contains a, and the tape head is not on
cell i. For 1 < i < p(n), u assigned to role 7y ; , indicates that the tape head is on cell 4, M is in state
g, and the i-th cell contains a. We add the following mutual-exclusion constraints to C'O to maintain the
integrity of the encoding. We only add a polynomial number of constraints. We use (71, 72) as a shorthand
for the mutual-exclusion constraint that a user cannot be members of of both r; and r» (this is equivalent to
smer({r1,r2}),2) in our earlier notation).

e M can only be in one state at a time. We add mutual exclusion constraints of the form (7 a, 74 i.q)
forall ¢ # ¢/, i in the range [1,--- ,p(n)] and a € X.

e The tape head can only point to one location. We add mutual-exclusion constraints of the form
(Tqiar Tq,j,a) forall ¢ # j, and for all ¢, a, @'

e One location cannot both have the head and not have the head at the same time. We also add mutual-
exclusion constraints of the form (7 q, 7q.i.q)-

e Each tape cell can only contain one symbol. Therefore, we add constraints of the form (r; q,7; /) and
(Tgiiar Tqia) foralli,a # a',and g € Q.

Encoding the initial configuration. Assume that M starts in initial state qg, the first n cells of the tape
contain ay,- - ,a, (where a; € I'), the rest of tape cells consist of blank symbols B, and the tape head
points to the first cell. The initial state of the RBAC system has user u in role r¢; 1,q4,, 7i,q; for 2 < i < n,
and rj g forn +1 < j <p(n).

Encoding the halting states. We use one role 74.4; to be used in the query, and add the following tuples
to CA:

e For each i in the range [1,--- , p(n)], a € X, and accepting state ¢, add (ra, r¢;a, {Ttarget})

This ensures that the TM M enters an accepting state if and only u can be assigned to 7¢4,4et. The query in
the URA-RC-SAP instance we are constructing is u € T'tqrget-

Encoding the next-move function: During each transition in M, two revocations and two assignments
need to be done to ensure that the next configuration is correctly represented by the role memberships. We
need to make these changes transactional. Therefore, we need to introduce some control roles. We will first
present the construction and then explain how a state transition occurs.

We first introduce two roles 7, and r.. Initially, u is assigned to 73, but not r.. The following tuple is
added to CA:

o (ra, re, {rp})

Suppose d(q, a) is equal to (¢',a’, L) (the case when §(q,a) = (¢, a, R) is similar). The transition
d(g,a) = (¢',d’, L) is modeled by doing the following.
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e For each 2 < i < p(n), add two roles 7“1 o and 7“1 a . Initially, u is not assigned to any of these

roles. We add the following mutual exclusion constraints:

- For each 2 < i < p(n), add constraints of the form (74, Técq/ o)

— For each 2 < i < p(n), add constraints of the form (beq/ o Te)-

e For each 2 < i < p(n), and each a; € 3, add a role rzq
constraints:

ap- We add the following mutual exclusion

. . ld
- Foreach a < i < p(n) — 1, add constraints of the form (ri,q’,a” ).
e We then add the following tuples to the relation CA:

1. Forall2 < i < p(n) weadd (ra, 7q;q N1, {rq i b)-

- Forall 2 <i < p(n) weadd (ra, vt ,, {rl }).
. Forall 2 <i < p(n) we add (ra, ré,ia/, {ria}).

lc

)
)
n) for each ay € ¥ we add (ra, rif; N ria N7iz1q,, {rq dagt)
)
)

. Forall 2 < i < p(n) for each ay € ¥ we add (ra, ré‘fmé, {reit.a,})-

(
2 (
3 (
4. Forall 2 <i < p(
5 (
6 (

. Forall 2 < i < p(n) for each ay € ¥ we add (ra, rq o NTgizta,s {Te})-

Transitions in the RBAC system: Suppose that at one point of computation of M, the tape head is at
position %, the 7’th cell contains a, and the current state is g. Then u is in the role Tqi.a- The only way to
proceed in the RBAC system is use CA tuples added in step 1 to assign u to 7% g il This can succeed only
when u is in rp. Initially, w is in 7; and we will show that u can be assigned to 7} after a transition in M
has been simulated.

Once u is assigned to 7 and then to rlb . o+» the only way to make progress in the RBAC system is to

use CA tuples added in step 2 to assign u to ré ;.ar> however, because of the constraints, one has to revoke
u from 7y, first.

Once u is assigned to 7 and then to rq ;.ar» W can be assigned (using tuples added in step 3) to 7; o
(after revoking v from from 7 ; , first, due to the constraints added for tape integrity). To update roles
corresponding to the z' — 1’th cell, let ay be the symbol on the 7 — 1’th cell, u can be assigned (using tuples
added in step 4) to rq i . Using tuples in step 5, u can be assigned to ry ;1 4.. Finally, after the tape
representation roles have been updated, u can be assigned to 7.. Before doing this, u has to be revoked from
all roles of the form rz o« Decause of the constraints.

To make the next state transition, u must be assigned to 1, which requires u to be revoked from all roles

of the form rlcq, , and rZ ‘o q0» clearing all the intermediate roles used in the simulation.

e’
Summary: An instantaneous description (ID) of a TM M is given by the contents of the tape, the position
of the head, and the state of M. Given two IDs I D; and I Ds, we say that I Dy —j; I Do if I Do follows
from /D, by one move of the M. Given an input z, let I Dy, --- , I D,, be a sequence of IDs such that I D
corresponds to the input x, I D; — s I D;y1, and I D, has an accepting state (the sequence is an accepting

corresponding to the string). Let 7y be the RBAC-state that corresponds to /Djy. Each move of the Turing
machine can be emulated by the RBAC scheme in a number of steps; let this constant be c. Therefore, there
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exists a sequence of RBAC-states ~g, - - - , Yen such that 7.; encodes ID;, v; — 41, and in ., w is in a
role r4; o such that ¢ € F'. And then u can be assigned to 7444¢¢. Hence an accepting computation in M
has a corresponding sequence in the RBAC system.

Our discussion of state transitions in the RBAC system above show that state changes in the RBAC
systems correspond to computations. If a user u is assigned role r,; , in some state in the RBAC system,
there is a corresponding computation in the TM M that reaches state ¢ and has the head on the 7’th position
with the symbol a in the ¢’th position.

Therefore, there is an accepting computation in 7'M on an input z if and only if in there is a sequence of
RBAC-states from 7 (which corresponds to input x) to 7;;,, where w is in role r4g,g¢¢. This proves the result.
O

D Proof for Lemma 7

Proof. We reduce 3SAT to the URA-RC-SAP, which proves that URA-RC-SAP is NP-hard. Let f =
c1 A -+ - A ¢y, be an instance of 3SAT, and let py, .. ., p,, be the propositional variables in f. We associate a
role, 7, with the formula f. We now construct an instance of URA-RC-SAP [ CA (conjunctive), CR = { },
CO = { }] so that a user becomes a member of r if and only if f is satisfiable.

In addition to f, R contains roles cy, . .., ¢, corresponding to the clauses and roles p1, ..., p, corre-
sponding to the propositional variables, plus a role ¢ that will be used for signaling, as will be explained
shortly. We construct C'A so as to allow u to be assigned to any combination of the p;’s. Once this is
done, CA will permit u to be assigned to role ¢, signaling that a second phase has begun in which
can be added to role c¢; just in case u’s assignment to the p;’s represents a truth assignment that makes
clause ¢; true. More precisely, CA = {(a,—t,{p1,...,pn}), (a, true,{t}),(a,c1 N --- N cm, f)} U
{{a,t N pi,{cj|1 < j < m A p;appears positively in ¢;}) [1 < i < n} U {{a,t N —p;, {c;|1 < j <
m A p; appears negatively in ¢;}) |1 < i < n} and CR = .

We now consider an instance of URA-RC-SAP in which Ay, UA, PA and RH are empty, and show that
it is true if and only if f is satisfiable. If the formula f is satisfiable, it is easy to see that a can add u to role
f by first adding u to the role p; if the propositional variable p; is true in the solution to f, then adding u to
t, and then adding u to each ¢; and finally to f.

Conversely, if the problem instance is true, then at some point © must be added to role ¢. Since u cannot
be removed from ¢, u’s assignment to the p; roles at that time enables u to be added to each role ¢;. By
defining the propositional variables p; to be true if and only if the role p; contains w at that time, we get an
assignment that makes at least one literal true in each clause c;. |

E Proof for Lemma 8

Proof. We reduce monotone 3SAT to the problem. Monotone 3SAT is a special case of 3SAT where all
literals in a clause are either all positive or all negative; monotone 3SAT is known to be NP-complete [18].

Lete =ci A...Acg A1 /... \¢, be an instance of monotone 3SAT, where ¢y, . . ., ¢; are the clauses
with only positive literals, and ¢;51, . . . , ¢, are the clauses with only negative literals. Let pq, ..., pg be all
the propositional variables that appear in e, and each ¢; = p;, V p;, V p;, and each ¢; = —p;, V =p;, V —pj,.
We produce a corresponding URA-RC-SAP instance for RBA Cossign,nonegation s follows.

Corresponding to each propositional variable, p;, we have a role, r;. We also have a role, r,,, corre-
sponding to each positive clause ¢; in e. In addition, we have the roles r and a. We assign a user ug to

27



a, that is, (ug,a) € UA. The role a is an administrative role, and appears as the first component of every
entry in CA. We first add the tuple (a,r., A ... A re,7) to CA. Corresponding to each positive clause
¢i = piy V Diy V Diy, we add the three entries (a, 7, ,7¢, ), (@, Tiy, Te; )y (@, Tig, e, ) to CA. If ¢; has fewer than
3 literals, then we only add such entries to C'A that correspond to the literals in ¢;. Clearly, the C'A so con-
structed has no negation in the preconditions of its entries, and each precondition is a conjunction of roles.
We capture the negative clauses in e using entries in C'O. For each negative clause ¢; = —pj, V —pj, V —pjs,,
we add the constraint smer({r,r;,,7j,,7j,},4). If & = —p;;, V —pj, (that is, has only 2 literals), then we
add the constraint smer({r,r;,7j,},3) to CO, and if ¢; = —p;, (has only one literal), then we add the
constraint smer({r,r;, },2) to CO.

We ensure that the user u that is specified in the query ¢ is not a member of 7 or any 7., in the start-state
~. We now assert that there exists a reachable state in which « is a member of r if and only if e is satisfiable.
The reason is that the only way u can become a member of r is by wg successfully exercising the only
entry in C'A that has r as the target role (last component of the tuple in C'A). This is possible if only if «
already satisfies the role-memberships as specified in the precondition, and assigning u to r does not violate
any of the entries in CO. More formally, for the “if” part, assume that e is satisfiable. Then there is some
truth-assignment that makes e true. We use the truth-assignment as the user-role assignment in -y for w. That
is, if the propositional variable p; is true in the truth-assignment that makes e true, then (u,r;) € UA. Now,
uo will be able to assign u to a role r, if and only if (u,r;,) € UA, (u,r;,) € UA or (u,r;,) € UA, where
¢i = pi, V Diy V Pis, and none of the entries in C'O is violated. An entry in CO is violated if and only if u
is a member of all roles other than r in the set of the roles in a constraint. This is the case if and only if the
corresponding negative clause is false, which is impossible given the assumption that e is satisfiable.

For the “only if” part, assume that there exists a reachable state in which u is a member of r. We use
the role-memberships of w in the roles r1,..., 7 in the start-state v as our truth-assignment for e. That
is, if (u,r;) € UA, then we set the corresponding propositional variable, p;, to be true. Given that u can
eventually be assigned to r, we know that u can be assigned to every 7., in . Therefore, each positive
clause is true. Furthermore, given that in the final action, we can assign u to r, we know that no entry in
CO is violated. Consider the constraint smer{({r,r;,,7,,7i;} ,4). This constraint would disallow u( from
assigning u to r if and only if w is already a member of all of r;,, r;, and r;,. As this is not the case, we
know that every negative clause evaluates to is true. |
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