
CERIAS Tech Report 2005-76

DENIAL OF SERVICE ATTACKS AND DEFENSES IN DECENTRALIZED TRUST
MANAGEMENT

by Jiangtao Li, Ninghui Li, Xiaofeng Wang, Ting Yu

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

Denial of Service Attacks and Defenses in
Decentralized Trust Management

Jiangtao Li1 Ninghui Li1 XiaoFeng Wang2 Ting Yu3

1Department of Computer Science, Purdue University, {jtli,ninghui}@cs.purdue.edu
2School of Informatics, Indiana University, xw7@indiana.edu

3Department of Computer Science, North Carolina State University, tyu@unity.ncsu.edu

Abstract

Trust management is an approach to scalable and flexible access control in decentralized systems. In trust
management, a server often needs to evaluate a chain of credentials submitted by a client, which requires the
server to perform multiple expensive digital signature verifications. In this paper, we study low-bandwidth
Denial-of-Service (DoS) attacks that exploit the existence of trust management systems to deplete server
resources. Although DoS threat has been studied for some application-level protocols, e.g. authentication
protocols, we show that it is especially destructive for trust management systems: exploiting the delegation
feature in trust management languages, an attacker can forge a long credential chain to force a server to
consume a large amount of computing resource. Using game theory as an analytic tool, we demonstrate that
unprotected trust management servers will easily fall prey to a witty attacker who moves smartly. We report
our empirical study of existing trust management systems, which manifests the gravity of this threat. We also
propose a defense technique using credential caching, and show that it is effective in the presence of intelligent
attackers.

1 Introduction

As the world is increasingly connected by the Internet, the need for entities from different security domains to dy-
namically collaborate, share resources and conduct sensitive transactions grows more and more important. Trust
management (TM) [2, 3, 4, 7, 9, 12, 15, 18, 19, 20, 22] is an approach to enable such collaboration and resource
sharing. In decentralized trust management, an entity’s privilege is often based on its attributes instead of its
domain-specific identities. An entity’s attributes are demonstrated through the use of digitally signed credentials.
Delegation is an important mechanism for scalable and flexible trust management. Instead of relying on one or
a few pre-agreed trusted parties (e.g., certificate authorities), delegation allows each domain to autonomously
determine who can access its resources and how such trust decisions can be propagated to entities from other
domains, which nicely models complicated trust relationships between collaborating parties. Thus, in order to
access a local resource, an entity from other domains usually has to submit a chain of credentials (or a set of
credentials that form a graph) to prove its privileges. A trust management server will check the authenticity of
the submitted credentials and determine whether these credentials form the right proof of the legitimacy of the
entity’s access request.

In this paper, we study denial-of-service (DoS) attacks in trust management systems. Recently, DoS attacks
that exploit application-level vulnerabilities have become an increasing concern for Internet applications. Dif-
ferent from DoS attacks on network protocols, these attacks usually consume a small amount of bandwidth and
therefore are more difficult to detect. For example, an attack that exploits the fact that an authentication server

1

needs to perform expensive RSA decryption operations needs only a bandwidth of several Megabits/second to
bring down a website [6]. Such an attack rate could easily be mingled into normal traffic. Compared with au-
thentication systems, decentralized trust management are even more susceptible to this type of DoS attacks. Like
authentication systems, trust management systems require a server to verify signatures, a computation-intensive
operation. According to [6], most secure sites cannot sustain more than 1000 verifications per second.Unlike au-
thentication systems in which every service request leads to only a single or at most a few verification operations,
trust management systems allow delegation, which opens the door for an attacker to force a server to perform
tens or even hundreds of verification operations with a single request. The length of a credential chain can be
arbitrarily large in theory. Because many credentials are not secret and are often sent in the clear, an attacker can
obtain credentials both from public data and by eavesdropping. An attacker can also generate new public/private
keys and create new credentials. Therefore, an attacker has a lot of freedom in carefully crafting credential
chains to most effectively consume server resources. In addition, credential-chain based DoS is also stealthier
than authentication based DoS. While 1000 concurrent SSL sessions may trigger the alarm on a website, 20 trust
management sessions, each asking the server to verify 50 credentials, could appear less suspicious.

Automated trust negotiation (ATN) [26, 27, 28] adopts the basic TM approach but considers the fact that
credentials may contain sensitive information and need protection just as resources do. ATN techniques enable
strangers to establish trust in each other through cautious, iterative, bilateral disclosure of credentials and policies.
Because ATN adopts the TM approach, it is subject to the same kind of DoS attacks as TM systems. The issue of
DoS attacks in ATN systems has been discussed in a previous paper [23]; however, the gravity of the problem was
not analyzed. The approach proposed in [23] is for the server to abort once it receives an irrelevant credential, and
after that to ban the client at the firewall. This approach requires protection from external mechanisms such as a
firewall. Even with this protection, a single malicious client can still force a server to spend significant resources,
and a small number of coordinating malicious clients can bring down the server.

In this paper, we present the first systematic study of the problem of DoS attacks in TM systems. There
are three types of resources involved in the interaction between the server and the clients, CPU, memory and
bandwidth. Among them, CPU resource for signature verification is usually the bottleneck for a TM system, and
thus becomes the focus of this research.

We illustrate that DoS attacks are a real concern in two steps. We first present a qualitative study that identify
the DoS vulnerabilities in existing trust management systems. We choose KeyNote [2] and TrustBuilder [27] as
the two sample systems to study. The problems we identify likely exist in other TM systems as well. We then
build a multi-threaded server that uses KeyNote, and successfully launch a DoS attacks to bring down the server.

We analyze the strategies attackers and servers can use in DoS attacks against TM systems. The server’s goal
is to identify an attacker as quickly as possible; and the attacker’s goal is to make the server verify as many as
possible. Using game theory, we show that the equilibrium strategy pair is randomized, and the expected number
of credentials that need to be verified is on average half of the length of the credential chain. This shows that: if
the attacker moves intelligently, it becomes impossible for an unprotected trust management server to determine
the legitimacy of a service request before committing a substantial amount of computing resources.

We propose the first countermeasure to this threat, credential caching, which allows the server to cache valid
credentials that have appeared before to reduce the cost of credential chain verifications. Credential caching
improves the performance even when no DoS attacks are being carried out. In addition, credential caching
implicitly enables legitimate users to help a trust management server defend against DoS attacks. The more
legitimate users a trust management interacts with, the more valid and relevant credentials will be cached by
the server, which will in turn significantly reduce the verification cost even if attackers submit forged credential
chains. This feature is not available in existing countermeasures against DoS attacks. We empirically evaluate the
effectiveness of this approach. There has been a lot of research activities in TM and ATN. Before these systems
are more widely deployed, the risk of DoS attacks should be carefully analyzed and countermeasures should be

2

studied and implemented.
The rest of the paper is organized as follows. In section 2, we review existing work on trust management

and denial of service attacks. In section 3, we conduct case studies of two existing trust management systems,
and qualitatively analyze their vulnerability to DoS attacks. Our attack models and assumptions for DoS in trust
management are presented in section 4. In section 5, we use game theory as a tool to analyze the gravity of DoS
attacks against trust management. We propose in section 6 credential caching as a countermeasure. An empirical
evaluation of the effectiveness of credential caching against DoS attacks is presented in section 7. We conclude
the paper in section 8.

2 Related Work

A large amount of work has been done on trust management. The term trust management was coined by Blaze,
Feigenbaum, and Lacy, in [3]. They also presented PolicyMaker, the first design of a trust management system.
Blaze et al. later introduced KeyNote [2], which includes a well-defined format and semantics for credentials and
policies. SDSI (Simple Distributed Security Infrastructure) [22] and SPKI (Simple Public Key Infrastructure)
were two public key infrastructures which also support delegations. They were later merged into a unified frame-
work [4, 9]. Li et al. introduced Delegation Logic [18], a logic-based trust management language, and RT [19], a
family of Role-based Trust-management languages that combine features from trust management and role-based
access control. Other trust management languages that have appeared over the years include the Query Certificate
Managers [12], the Secure Dynamically Distributed Datalog language [15], and the Binder language [7].

All the above work assumes uni-directional trust establishment, i.e., the service provider is trusted, and only
the client has to show its credentials to prove its privilege. In the approach of automated trust negotiation [26, 27],
mechanisms for mutual trust establishment were proposed, which support the protection of the contents of the
client’s credentials as well. Hess et al. [14] proposed the Trust Negotiation in TLS (TNT) protocol to integrate
trust negotiation into the SSL/TLS handshake protocol.

Denial-of-service attacks and defense have been studied for two decades. Most existing work, however,
focuses on the high-bandwidth network DoS, in which attackers produce a large volume of attack traffic to
saturate the victim’s links. By comparison, low-bandwidth DoS attacks are easier to launch and less visible to
the victim, but equally destructive. Most of these attacks exploit application-level vulnerabilities. For example,
stack smashing1 and the ping-of-death attack2 crash an Internet server by overflowing vulnerable buffers inside
the server software. Some attacks can exploit algorithmic weaknesses: Crosby and Wallah’s work [5] shows
that carefully crafted inputs could degrade hash tables to linked lists, and thus force a web proxy to run at its
worse-case performance.

An important type of low-bandwidth DoS attacks targets at authentication protocols. Authentication relies on
resource-consuming public-key decryption. Attackers can send a large number of messages with bogus signatures
to deplete an authentication server’s CPU cycles. Meadows [21], Aura et al [1] and Dean and Stubblefield [6]
have pointed out this problem.

A potential defense against authentication-based DoS is incremental authentication which requires a weak but
high-speed authentication first and a stronger authentication later [21]. An alternative is client puzzles which ask
the client to solve a puzzle and prove to the server its work before authentication begins. An inherent weakness
of many Internet applications is that attackers may consume significant server resources at little cost. Client
puzzles strive to improve this situation: the client is required to commit resources before the server does. This
technique has been used to mitigate DoS threats to network protocols [16, 24, 25]. Aura et al. first introduces it

1http://www.phrack.org/show.php?p=49&a=14
2http://www.insecure.org/sploits/ping-o-death.html

3

to authentication protocols [1] and its effectiveness has been empirically evaluated by Dean and Stubblefield [6],
using TLS as an example.

To the best of our knowledge, the only work discussing DoS in trust management is by Ryutov et al. [23].
Several heuristics, such as the server’s load, the relevancy of credentials, and the number of rounds of credential
exchanges, have been used to identify potential DoS attacks as well as other abnormal activities. They, however,
do not provide a systematic analysis of the problem. Also, there are no evaluations of the gravity of DoS attacks
and the effectiveness of their proposed heuristics.

3 Denial of Service Vulnerabilities in Trust Management

In this section, we analyze the denial of service vulnerabilities in existing trust management systems. After
comparing with several candidates, we choose to analyze KeyNote [2] and TrustBuilder [27]. The former is
the most mature and efficient publicly available implementation of trust management that we are able to find,
while the latter is the only trust negotiation prototype system that we have access to. Our analysis in this section
is qualitative. In Section 7, we build a multi-threaded server that runs the KeyNote program, and successfully
launch a DoS attacks to disable the server.

3.1 Case Study: KeyNote

KeyNote [2] is a simple and flexible trust management system designed to work well for a variety of Internet-
based applications. It has been published as Internet RFC 2704 in 1999. In KeyNote, both policies and credentials
are modeled as assertions, which contain predicates that describe the trusted actions allowed by the key holders.
KeyNote credentials have the same syntax as KeyNote policies, but are signed by the principal delegating the
trust.

The latest implementation of KeyNote, version 2.3 [17], contains a command line tool and a reference library.
There are four basic functions in the KeyNote library: key generation, signature generation, signature verification,
and request evaluation. The key generation function can be used to generate a pair of public and private keys. The
signature generation and verification functions are used to sign credentials and verify credentials. The request
evaluation function are used to determine whether an action request should be granted or denied, given a set of
assertions (i.e., policies and credentials). The KeyNote reference library is written in C, and is very efficient.
In our experiments on a 2.53GMz Intel Pentium 4 machine with 384MB RAM running RedHat Linux 9.0, the
speed of a credential verification is about 3.5ms if the signature algorithm uses DSA with 1024 bit key length. In
the above setting, verifying a credential chain length of 10, 100, and 1000 takes about 35ms, 354ms, and 3.77s,
respectively.

In a typical setup of KeyNote, whenever a client wants to access a resource, it needs to connect to an au-
thorization server and submits an action request along with a set of credentials. The authorization server will
evaluate the legitimacy of the client’s request according to the submitted credentials and the server’s policies.

We observe the following DoS vulnerabilities in authorization servers using KeyNote:

• No upper bound on the number of credentials. Since KeyNote only provides a reference library instead
of a complete software package for the implementation of an authorization server, the request evaluation
function itself does not impose any upper bounds on the number of credentials that it will accept. If an
authorization server uses the library as it is without considering possible DoS attacks, then an attacker can
send an arbitrarily large number of credentials to the server, exhausting its computational resources.

• Not fail-stop during signature verification. In fail-stop model [11], whenever a party detects any deviation
from the protocol by the other participant, it terminates the communication immediately. The KeyNote

4

implementation does not adopt the fail-stop strategy when verifying credential signatures. If a client sends
a set of credentials along with an action request, the request evaluation function will verify the signatures
of all credentials even when some invalid signatures have been detected. The reason of this design may
be, according to the trust management semantics, even if one credential fails to verify, as long as among
all credentials submitted there exist a valid chain, the authorization should still be allowed. However, this
design, while logically correct, may be exploited by malicious clients to launch denial of service attacks,
even if it does not possess any valid credentials.

• Asymmetric computational load. The computational cost for the server is much higher than the cost of
a client, as the server needs to perform signature verifications whereas the client simply needs to send
credentials to the server. An attacker may continuously send action requests and credentials to the server,
exhausting its computational resources.

Note that this property is not specific to servers using KeyNote. Instead, it holds for any credential-
based authorization server. However, since KeyNote request evaluation function does not use the fail-stop
strategy, the vulnerability of servers using KeyNote is particularly severe.

3.2 Case Study: TrustBuilder

TrustBuilder [27] is the first implementation of ATN. It was designed and developed by researchers at Internet
Security Research Lab at Brigham Young University. TrustBuilder was developed in Java, and uses X.509v3
certificates. The policy language and compliance checker use IBM Research’s Trust Establishment system [13].
We ran our experiments on TrustBuilder on a 1.70GMz Intel Pentium M processor with 768MB RAM running
Windows XP Professional. Each X.509 credential is signed using the RSA signature algorithm with 1024-bit key
length. In our experiments, a client and a server, both running TrustBuilder, communicate with each other using
a TCP socket. A trust negotiation involving a single credential takes 1.94 seconds. A credential chain of 28 raises
the negotiation time to 4.46 seconds.

TrustBuilder has an upper-bound on the number of credentials received each round, e.g., the server can
receive at most 30 credentials from the client at each step of the negotiation.

The latest version of TrustBuilder is vulnerable to DoS attacks in the following perspectives:

• Verification of irrelevant credentials. A client’s credential is useful for a negotiation session only when
it is relevant to the server’s access control policy. In the current implementation of TrustBuilder, a server
first verifies all the credentials received from the client, whether they are relevant to the negotiation or not.
An attacker is thus able to send unrelated credentials to the server, making the server verify all of them.
Note that this attack does not even require the attacker to forge credentials, since the attacker can always
assume new identities by creating new public/private key pairs, and issue irrelevant credentials by using
these identities.

• Not fail-stop. Same as the Keynote system, TrustBuilder does not use the fail-stop strategy. When the
server receives an invalid credential, the server ignores the credential and continues the negotiation.

From the above two case studies we see that the current design of trust management systems does not take
application-level DoS attacks into consideration. We show in Section 7 that, with the current design of trust
management systems, DoS attacks can be easily launched to effectively deny the service of an authorization
server.

5

4 Model and Assumptions in Analyzing DoS Attacks

We now describe the model and assumptions for analyzing DoS attacks in trust management. One important
feature of TM and ATN systems is that trust is distributed among multiple principals and can be delegated from
one principal to another. Here, we present a simple model to capture the delegation feature. In the model, there
are multiple principals, each of which has a unique public-private key pair. Every policy is described by a trust
tree. The trust tree corresponding to a server’s policy will have the server as the root of the tree. A node of the
tree represents a principal, and an edge represents a digital credential. Given an edge v → w in the tree, the
corresponding credential means that the parent node v delegates the trust to the child node w. The credential is
signed by the private key of v. The leaf nodes in the tree represent the principals who do not have delegation
right, whereas the non-leaf nodes represent principals who can delegate trust to others.

For example, Alice is a student at StateU. She has a student credential from College of Science (CoS), which
has a credential issued by StateU. StateU is certified by Accreditation Board for Engineering and Technology
(ABET). The credential chain to prove that Alice is a valid student takes the form root → ABET → StateU →
CoS → Alice. There are four credentials associated with this chain. Suppose the server’s policy is that students
can access the resource. Alice could show the credential chain to the server, proving that she satisfies the policy.

When a client and a server begin interaction, they first establish a secure communication channel so that
they can verify each other’s identity. Such a channel can be established using, for example, TLS/SSL [8] with
self-signed certificates. After such a channel is established, both client and server are certain that the other party
holds the private key corresponding to the claimed identity (i.e., public key). After the session is established,
the server can determine whether the client possess credentials that satisfy the server’s policy for the requested
resource.

Attackers Assumptions and Strategies There are two kinds of attackers: insiders and outsiders. An insider
attacker is someone who has a valid credential chain and can legally access the server. An outsider attacker
does not have a valid credential chain to gain access, and aims at bringing down the server. An insider attacker
may constantly connect and disconnect from the server, making the server verify its credential chain again and
again. An insider attacker can behave exactly as a regular principal within each session. Insider attackers can be
addressed in several ways, such as session caching, limiting the number of sessions, and deterrence measures such
as revoking access once DoS behavior is detected. Because the number of insiders is limited and the possibility
of using deterrence measures, we believe that outsiders are more serious concerns in DoS attacks. We thus focus
our analysis on outsiders. We note that the credential caching techniques we propose in Section 6 can be used in
defending against insider attackers as well as outsider attackers.

As an outsider attacker does not satisfy the server’s policy, it does not control any node in the trust tree
corresponding to the server’s policy. However, the attacker can collect a large number of credentials in the trust
tree and can forge arbitrary new credentials. An outside attacker can carry out the following attacks.

1. Sending a large number of valid, but irrelevant credentials.

2. Sending a valid credential chain of another principal.

3. Sending a credential chain from the trust root to itself; however, some credentials in the chain are faked,
i.e., have signatures that do not verify. We observe that an attacker only needs to have one faked credential
in such a chain: The attacker first collects a valid credential chainv0 → v1 → · · · → vk where v0 is the
trust root principal and vk is another leaf principal who has legal access. The attacker can then generate
n − k + 1 new principals v′k, v

′

k+1
, . . . , v′n, and creates a credential chain v′k → v′k+1

→ · · · → v′n;
however, to link the above two chains together, the attacker has to fake the credential vk−1 → v′k, as it does

6

not control the principal vk. Note that all the credentials except the one from vk−1 to v′k in the chain could
be valid. We also observe that in this case, the credential chain can be arbitrarily long.

Server Strategies: We now describe the strategies a TM server should use when facing the threat of DoS
attacks.

1. The server does not verify any credential until it receives a complete credential chain that connects to the
trust root at one end and to the client identity (that has been authenticated during the establishment of
the communication channel) at the other end. In other words, the server starts verifying credentials in a
chain only after it is certain that if all credentials in the chain are valid, then the client will gain access.
This prevents against attacker strategies such as sending irrelevant credentials and sending other principals’
valid credential chains.

2. The server sets an upper bound for the length of a credential chain. If the server receives a credential chain
longer than that limit, it refuses to process the chain. Because the delegation feature in trust management
allows local autonomy, the server may not know the length of all valid chains. Choosing the right bound
becomes a tradeoff between DoS threats and cutting off some legitimate principals.

3. The server uses fail-stop model [11] for credential chain verification, that is, when the server finds one
invalid credential, it stops verifying the chain and terminates the communication session.

4. Given a credential chain, the server may not necessarily verify the chain from the beginning to the end. We
will further discuss this in next section.

By using the above strategies, the only attacker strategy that remains effective is the one of sending a chain
that connects the trust root to the attacker, but has one faked credential in the chain. We analyze this situation in
the next section.

5 A Game Theoretical Analysis on Credential Chain Verification

Using the model in the previous section, we study the following problem: the attacker tries to deplete the server’s
CPU cycles by having the server verify a long credential chain faked by the attacker. This problem, which we call
the credential chain verification problem, can be specified as follows. The attacker sends to the server a credential
chain of length n, in which one credential is invalid (i.e., with invalid signature). Assuming the attacker can place
the invalid credential in any position of the chain, it has to determine where to place it so that the number of
signature verifications performed by the server is maximized. On the other hand, given a set of credentials,
the server intends to find an optimal strategy to verify the credential chain such that the number of signature
verifications is minimized. This game can be modeled as a two-player zero-sum game (see Definition 1), as the
interests of the attacker and the server are diametrically opposite.

Definition 1 (Two-player zero-sum game) In the two-player zero-sum game (also called matrix game), there
are two players A and B. Player A has n strategies and player B has m strategies. The strategies chosen by the
two players determine the outcome of the game. Each possible outcome has two payoffs, one for each player;
and the sum of the payoffs is always zero. We use an n ×m matrix to represent the payoffs of A for each of the
n ·m possible outcomes (the payoffs of B are the opposite of A’s, thus are not presented in the matrix).

We assume that the server fixes its upper bound on the length of acceptable credential chains ton and the
attacker also knows this bound. In the matrix game for our credential verification problem, the attacker hasn

7

possible strategies, the ith strategy placing the invalid credential to the ith position of the chain. The server has
n! possible strategies, each of which corresponds to a unique verification order (or a permutation of{1, . . . , n}).
For example, the server’s strategy (x1, . . . , xn) represents a verification order, i.e., the server first verifies the
x1th position, then verifies thex2th position, and so on. The payoff for the attacker is the number of signature
verifications the server performs before it detects the invalid credential, which the attacker tries to maximize
while the server tries to minimize. This game is called “verification game”. Figure 1 describes a verification
game where the length of the credential chain is 3.

(123) (132) (213) (231) (312) (321)
1 1 1 2 3 2 3
2 2 3 1 1 3 2
3 3 2 3 2 1 1

Figure 1: The verification game withn = 3. The rows in the matrix stand for the attacker’s strategy and the
columns in the matrix stand for the server’s strategy. Each entry in the matrix stands of the payoff of the attacker,
i.e., the number of signature verification before the server detects the invalid credential.

The above game has a “solution” in which both players’ strategies are optimal. This has been formally
described in the following minimax theorem.

Theorem 1 (Minimax Theorem) [10] Every n×m matrix game has a solution. that is, there is a value of the
game v, and there are optimal strategies for players A and B such that (1) if A plays its optimal strategies, A’s
expected payoff will be ≥ v, no matter what B does, and (2) if B plays its optimal strategies, A’s expected payoff
will be ≤ v, no matter what A does.

In the above game, no matter which strategy the attacker chooses, there is always a corresponding strategy
for the server such that the payoff for the attacker is minimized (i.e., to 1); similarly, given any strategy chosen
by the server, there is always a strategy for the attacker to maximize its payoff (i.e., to n). This suggests that an
optimal strategy here must be probabilistic, in the sense that either player will randomly choose their strategies
according to some probability distribution. Such a probabilistic strategy is also called “mixed strategy” in game
theory.

In the following proposition, we show that the verification game has a simple solution.

Proposition 2 In the verification game, the optimal mixed strategy for the attacker is to play each possible
strategy with 1/n probability, the optimal mixed strategy for the server is to play the strategy (y1, . . . , yn) with
the probability of 1/2 and (yn, . . . , y1) with the probability of 1/2, where (y1, . . . , yn) can be any permutation
to array (1, . . . , n).

Proof. We first show that the mix strategy which play each possible strategy with1/n probability is an optimal
strategies for the attacker. It is equivalent to show that the attacker’s expected payoff will be ≥ (n + 1)/2, no
matter what the server does. We first consider the case that the server plays single strategies. Assume the server
chooses a strategy (x1, . . . , xn), then the expected payoff for the attacker is

E(attacker’s payoff) = (x1 + · · ·+ xn)/n = (1 + · · ·+ n)/n = (n+ 1)/2.

8

Now consider the server plays mixed strategies. Let m = n! and let pi, for 1 ≤ i ≤ m, be the probability that the
server chooses the ith strategy and p1 + · · ·+ pm = 1, the expected payoff for the attacker is

E(attacker’s payoff) =
n
∑

i=1

1

n
· E(attacker’s payoff when the attacker chooses ith strategy)

=
n
∑

i=1

1

n
·





m
∑

j=1

Mij · pj



 =
m
∑

j=1

pj ·

(

n
∑

i=1

Mij/n

)

=

m
∑

j=1

pj ·
n+ 1

2
=
n+ 1

2
·

m
∑

j=1

pj =
n+ 1

2

where Mij is the attacker’s payoff when the attacker chooses ith strategy and the server chooses jth strategy.
We now show that the mixed strategy in which the server plays the two strategies (y1, . . . , yn) and

(yn, . . . , y1), each with 1/2 probability is an optimal strategy for the server, i.e., show that the attacker’s ex-
pected payoff ≤ (n + 1)/2. We first consider the case that the attacker plays single strategies. Assume the
attacker chooses ith strategy, then if the server chooses to play (y1, . . . , yn), the payoff for the attacker is α
where yα = i; if the server chooses to play (yn, . . . , y1), the payoff for the attacker is β where yn+1−β = i.
Observe that α+ β = n+ 1. Thus, the expected payoff for the attacker is

E(attacker’s payoff) = (α+ β)/2 = (n+ 1)/2.

Now consider the attacker plays mixed strategies. Let pi, for 1 ≤ i ≤ n, be the probability that the attacker
chooses the ith strategy and let p1 + · · ·+ pm = 1, the expected payoff for the attacker is

E(attacker’s payoff) =
n
∑

i=1

pi · E(attacker’s payoff when the attacker chooses ith strategy)

=

n
∑

i=1

pi ·
n+ 1

2
=
n+ 1

2
·

m
∑

1=1

pi =
n+ 1

2

The above proposition shows that the optimal strategy for the attacker is to randomly pick a position between
1 to n to place the invalid credential. The optimal strategy for the server is to first determine an order of all the
credentials, and then choose to verify the credential chain by that order or by the reverse order with the same
probability. Note that the optimal strategy here is not unique. For example, the mixed strategy that the server
uniformly randomly picks a strategy from the n! possible strategy is also optimal.

Conclusion of this game Our analysis shows that if a server sets its upper bound to n, then a strategic attacker
can make the server verify (n + 1)/2 credentials on the average, no matter what verification strategy the server
uses. This demonstrates that trust management systems are vulnerable to denial of server attacks.

6 Defense: Caching Verified Credentials

In this section, we present a simple defense mechanism against DoS attacks in TM systems: the server caches a
credential in the memory once it verifies the signature successfully. When a server needs to verify a credential, it
first checks whether the credential has been cached. If so, it does not need to perform the signature verification

9

computation. To make this defense mechanism effective, we have to answer the following questions: What
strategy the server should use to verify a credential chain when a cache exists? When the cache is full, which
credential should be discarded? When answering this questions, we have to keep in mind that the attacker will
try to decrease the effectiveness of caching by cleverly ordering the credentials to be presented.

Credential chain verification with unlimited cache
Input:

c1, . . . , cn: the credential chain in order.
D: the database of cached credentials.

Output:
true or false: the result of the verification.
D: the updated credential database.

Procedure:
For i = 1, . . . , n

Compute hi = hash(ci),
If hi 6∈ D, verify the signature of ci

If ci is invalid, return false,
Otherwise D = D ∪ hi,

Return true.

Figure 2: Pseudocode for credential chain verification using cache

To save memory, the server stores the hashes of the credentials rather than the credentials themselves. We
use D to denote the database of cached credentials. The algorithm for credential chain verification is presented
in Figure 2. Note that in the algorithm the server always verifies the credential chain from the trust root to the
client. This is different from the optimal strategy we derived in the previous section. The presence of a cache
changed the optimal strategy. There are two reasons that one should verify the credential chain in order. First, if
the server verifies the credential chain from the trust root, only credentials in the trust tree can be added into the
database. Recall that the attacker can create new principals and issues credentials between these principals. Since
such credentials do not belong to the trust tree, they will not be cached in the credential database. An attacker
thus cannot fill the database with irrelevant credentials. Second, when the server caches enough valid credentials,
the number of credential verifications needed is minimized when the server verifies the credential chain starting
from the trust root.

We observe that if all credentials in the trust tree that have been collected by an attacker is cached, then the
server can detect any faked credential chain within one signature verification. Given a credential chainc1, . . . , cn
created by the attacker. There exists a k ∈ [1..n] such that ck is an invalid credential, c1, . . . , ck−1 are valid
credentials in S, and ck+1, . . . , cn are valid credentials but not in S. Clearly, when the server verifies the chain
from the beginning, c1, . . . , ck−1 are all cached and do not need to be verified. Therefore, the server only needs
to verify the signature of ck before it detects the faked chain.

In many scenarios, the server does not have enough memory to store all the credentials in the trust tree. It
thus needs to decide which cached credentials to be replaced when the cache is full. One naive approach is to use
well-known memory caching replacement strategies, such as LFU and LRU. However, these caching strategies
may not be optimal in our model, as the traditional caching strategies focus on overall performance for normal
users, whereas in our model we need to consider the worst case scenario launched by a sophisticated attacker.

To design a caching strategy that makes DoS attacks less effective, we first give some theoretical analysis,
assuming that we know T , the trust tree corresponding to the server’s policy. Let S be the set of all credentials
in the tree. Let m be size of the server’s cache, i.e., the server can store at most m credentials. Given an edge

10

u → v in the tree, let c be the corresponding credential, we use d(c) to denote the maximum distance between v
and all the descendants of v. In our strategy, the server only keeps credentials whose distance is larger than some
threshold. More specifically, letSi = {c ∈ S | d(c) ≥ i}. Clearly, S0 = S and Si+1 ⊆ Si for any positive i. Let
σ be the threshold such that |Sσ| ≤ m and |Sσ−1| > m. The best caching strategy for the server is to cache all
the credentials in Sσ and as many credentials in Sσ−1 as one can. We now prove that this strategy is optimal for
the server.

Claim 1 If the server caches Sσ, then no matter how the attacker chooses its strategy, the number of credential
verifications needed by the server is bounded byσ + 1.

Proof. Recall that the attacker creates a faked credential chain and sends it to the server for verification. Suppose
the attacker collects all the credentials in S. To fake a credential chain of length n, the attacker chooses a node vk
in the tree with depth k. Let c1, . . . , ck denote the credentials in the path from the root v0 to vk. The attacker then
fakes a credential ck+1 and creates n − k − 1 valid credentials ck+2, . . . , cn. Observe that, for 1 ≤ i ≤ k, d(ci)
is greater than or equal to k − i. Therefore c1, . . . , ck−σ ∈ Sσ. When the server verifies the credential chain,
the server does not need to verify c1, . . . , ck−σ, as they are already stored in the cache. The only credentials
potentially need to be verified by the server areck−σ+1, . . . , ck+1. Thus, the number of credential verifications is
bounded by σ + 1.

Claim 2 Suppose |Sσ| = m. If the server caches any credentials not in Sσ, then it is possible for an attacker to
construct a credential chain such that the server has to perform more than σ + 1 credential verification.

Proof. Since |Sσ| = m, if the server caches any credentials not in Sσ, then at least on credential in Sσ is not
cached. Let c be such a credential. Since d(c) ≥ σ, there exists a valid credential chain c1, . . . , ci = c, . . . , ck
such that k − i ≥ σ. Then if the attacker submits c1, . . . , ck, c

′, where c′ is a credential with a forged signature,
then the server at least has to verify the validity of credentials ci, . . . , ck, c′, which involves more than σ + 1
signature verifications.

The above two claims show the optimality of caching Sσ. When the server knows the trust tree, it can
statically compute Sσ and achieve this optimality easily. However, in reality, the server does not know the whole
trust tree, since a large part of the tree is constructed by other domains which directly or indirectly get delegation
from the server. Thus, it cannot pre-compute Sσ. We need to let the server dynamically adjust the cached
credentials so that the database can approximate Sσ.

To achieve this goal, we propose a new caching strategy where the server keeps the credential hash along with
the maximum distance to leaf. If the cache becomes full, the server replace the credential that has the smallest
distance. Note that if distance of the newly verified credential is shorter than that of any existing credential in the
cache, then no replacement will take place. The caching algorithm is presented in Figure 3.

The caching algorithm in Figure 3 takes two steps. In the first step, the server finds the credential that is
invalid by going through the credentials in the chain one by one. In the second step, if the credential ci is already
in the database, the server updates its distance (if needed) by setting the d(ci) = max(d(ci), k − i). If the
credential ci is not in the database, the server inserts the credential hash in the database along with the distance
d(ci). The server can implement this caching algorithm using a hash table for the credential hashes and a priority
queue for the distances. We shall discuss the implementation issues in details in next section.

Benefits and Limitations of Credential Caching The credential caching approach has the following advan-
tages.

11

Credential chain verification with limited cache
Input:

c1, . . . , cn: the credential chain in order.
D: the database of cached credentials.

Output:
true or false: the result of the verification.
D: the updated credential database.

Procedure:
Set k = n,
For i = 1, . . . , n

Compute hi = hash(ci),
If hi 6∈ D, verify the signature of ci,

If ci is invalid, k = i− 1, break;
For i = 1, . . . , k

If there exists an entry 〈hi, d〉 ∈ D, update the entry with 〈hi,max(d, k − i)〉,
Otherwise, insert 〈hi, k − i〉 into D;
If |D| > m, remove those tuples from D that has the smallest distance.

If k = n, return true, otherwise return false.

Figure 3: Pseudocode for credential chain verification with cache replacement strategy

• Credential caching is beneficial even when there are no DoS attacks. Many legitimate credential chains
share common credentials. For example, consider the credential chains proving university students, if the
credentials for all universities and colleges are cached, then verifying a student’s credential chain only
requires one more signature verification.

• Credential caching implicitly has legitimate users involved in defending against DoS attacks. Once a trust
management server interacts with a legitimate user, all the user’s valid credentials will be cached. These
credentials will then not be helpful to attackers. Thus, the more legitimate users the server serves, the more
resilient the server is against DoS attacks. This property is not observed in other countermeasures against
DoS attacks.

• Credential caching allows the server to set a larger upper-bound on the length of credential chains that can
be accepted. This enables the server to be able to handle unusually long valid credential chains. With
credential caching, the upper bound does not affect the number of credentials to be verified by the server.
This is because even when an attacker presents a very long chain, only those that are in the trust tree
with at most one addition credential will be verified. This bound can thus be set based on other resource
limitations, such as bandwidth concerns, and result in a larger bound.

We point out that credential caching cannot completely eliminate the DoS threat to a TM system. This is
because a TM server will still have to verify at least one credential from the client. However, as we will discuss
in the follow-up section, caching helps greatly mitigate the threat of DoS attacks, making them more difficult to
happen. We believe that an effective combination of credential caching with other existing DoS countermeasures
such as puzzles [1, 6] will make a TM system robust against DoS attacks.

12

7 Experiment Results

In this section, we present the results of our empirical study on DoS attacks and defenses in trust management
and negotiation systems. We first use KeyNote [2] as an example to demonstrate that a DoS attack can easily
paralyze a trust management server (Section 7.1). Then, we evaluate the effectiveness of an implementation of
credential caching system in mitigation of DoS threats (Section 7.2).

7.1 Multi-Client KeyNote Server

KeyNote is an open-source library for the KeyNote trust management system. To study the DoS vulnerability of
KeyNote, we first built a multi-client KeyNote server using C, and then launched a DoS attack on that server. In
our implementation, a client connected to the KeyNote server through TCP socket. Each connection to the server
is handled by a different thread. Among these threads, there is a shared memory protected by mutexes for storing
the counting information. Upon receiving the public key and credentials from the client, the server calls KeyNote
API to verify the credentials and further check whether the whole credential chain satisfies the server’s policy.

We carried out the experiment on a 2.53GMz Intel Pentium 4 machine with 384MB of RAM running RedHat
Linux 9.0. We use 1024-bit DSA algorithm as the key generation and signature algorithm. The key file and
credential file are stored in base64 format. The size of a credential is about 1.6KB. As discussed in Section 3,
the KeyNote program is able to verify a credential in 3.5ms. In theory, the server can be paralyzed by less
than 457KBps of traffic. In our experiments, a KeyNote client kept sending credential chains of length 20 to
the server at the rate of 40 requests per second. Each request was about 32KB in size. As shown in Figure 4,
the number of requests in the server’s queue kept increasing until the server reached its limits in the number of
socket connections allowed. The server had been completely disabled after 280 requests (7 seconds). Figure 5
illustrates the latency experienced by legitimate users who tried to connect to the server during and after a DoS
attack. We assume the legitimate users connect to the server at a constant rate of 2 requests per second for 50
seconds. The DoS attack was launched at the first 10 seconds. From Figure 5, we can see that even after the DoS
attack finished for 5 seconds, the latency for a legitimate request was still around 4 seconds. This is because the
server was still busy at processing the pending credentials received from the attacker. These results demonstrate
that an unprotected KeyNote server is indeed vulnerable to DoS attacks.

0

20

40

60

80

100

120

140

160

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281

Requests

R
eq

ue
st

s
in

 q
ue

ue

Figure 4: Number of requests in server’s queue at each request during attack

13

0

2

4

6

8

10

12

1 11 21 31 41 51 61 71 81 91

Requests

La
te

nc
y

(s
ec

on
ds

)

Figure 5: Latency for legitimate keynote clients during and after attack. The DoS attack was launched during the
first 20 requests.

7.2 Credential Cache System

We implemented a credential cache system using C++. Our system maintains three data structures: a hash table,
a credential cache, and a binary heap table. The hash table is used to quickly query whether a credential hash is
in the cache. Let m be the size of the cache, i.e., maximum number of credentials that can be cached. The size
of the hash table is 2` where ` is the bit length of m. As the hash value of a credential is close to random, given
a hash value, the index in the hash table can be computed from the last ` bits of the hash value. The binary heap
table is used to implement a priority queue, so that we can efficiently remove the least distance credential from
the cache when the cache is full. The credential cache is used to store the credential hash values. The credential
cache is an array of size m, but virtually operates as multiple linked lists. The hash values with the same heap
table index are organized as a linked list in the credential cache. For a cache system of size 1M, assuming the
hash value is 20 bytes long, the memory needed for the hash table, the credential cache, and the heap table is (at
most) 8MB, 30MB, and 6MB respectively. Therefore, we can cache 1M credentials using 44MB memory.

We also implemented a credential signature verification toolkit. Given a credential chain of lengthn, the
toolkit verifies the signatures of each credential as follow: it first hashes each credential using SHA-1, then
queries the cache. If the credential is already in the cache, it updates the distance to leaf (if necessary), otherwise,
it verifies the signature of the credential and inserts the corresponding hash into the cache. Note that this toolkit
does not check the contents of the credentials, and can be viewed as a signature verification tool.

In order to measure the effectiveness of the cache system, we simulate a trust tree. We create a tree with 500k
node. With the probability of 0.5, each node has either 0 child or 1-8 children. The maximum depth of the tree
is 16. For a randomly chosen node in the tree, the average distance to the root is 13.3. We create a credential for
each edge of the tree.

Our experiment was carried out on a 2.53GMz Intel Pentium 4 machine with 384MB of RAM running
RedHat Linux 9.0. Using OpenSSL’s DSA implementation and benchmarks, the server can perform a 1024-bit
signature verification in 2.81ms. In our experiment, we generated 1M requests for credential chain verification.
For each request, we randomly picked a node from the tree, and passed the corresponding credential chain (from
the root to the node) to the verification program. For every 1000 requests, we recorded the total verification time
and the number of signature verification performed. It took about 37 seconds and 13.3k signature verifications
to process 1000 requests without cache support. With the support of the caching system, the processing time

14

dropped quickly. For example, in the case that the cache size was equal to the size of the tree, after processed
500k requests, the server only needed to verify 299 credentials out of 13266 credentials and hence the hitting
rate was 97.7%. If the cache size was 1/8 of the tree size, the hitting rate after 500k requests also became more
than 90.3%. A performance chart of the cache system is given in Figure 6. In the figure, “full cache” refers to
the setting in which the cache size is the same as the tree size; similarly, “1/2 cache” means the cache size is half
of the tree size. Note that the cost of the cache maintenance operation (e.g., insert, delete, update) is negligible
comparing with the cost of credential verification.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 101 201 301 401 501 601 701 801 901

Requests

V
er

ifi
ca

tio
n

tim
e

(m
s)

full cache
1/2 cache
1/4 cache
1/8 cache
no cache

0

2000

4000

6000

8000

10000

12000

14000

16000

1 101 201 301 401 501 601 701 801 901

Requests
S

ig
na

tu
re

 v
er

ifi
ca

tio
n

nu
m

be
r

full cache
1/2 cache
1/4 cache
1/8 cache
no cache

Figure 6: Credential verification time and numbers of signature verifications per each 1000 requests

8 Conclusion and Future Work

We analyzed the vulnerabilities of DoS attacks in trust management systems, and proposed credential caching as
a countermeasure to such attacks. Empirical studies have showed that credential caching is an effective means
of mitigating DoS attacks against TM servers. Future work includes integrating the credential caching system
with KeyNote and TrustBuilder. As ATN protocols are more complicated than a single credential chain verifica-
tion, future work also includes studying other DoS vulnerabilities in ATN systems and providing corresponding
defense mechanisms.

References

[1] T. Aura, P. Nikander, and J. Leiwo. Dos-resistant authentication with client puzzles. In Proceedings of the
Cambridge Security Protocols Workshop 2000. LNCS, Springer-Verlag, 2000.

[2] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis. The KeyNote trust-management system,
version 2. IETF RFC 2704, Sept. 1999.

[3] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In Proceedings of the 1996 IEEE
Symposium on Security and Privacy, pages 164–173. IEEE Computer Society Press, May 1996.

[4] D. Clarke, J.-E. Elien, C. Ellison, M. Fredette, A. Morcos, and R. L. Rivest. Certificate chain discovery in
SPKI/SDSI. Journal of Computer Security, 9(4):285–322, 2001.

15

[5] S. A. Crosby and D. S. Wallach. Denial of service via algorithmic complexity attacks. USENIX Security,
2003.

[6] D. Dean and A. Stubblefield. Using client puzzles to protect tls. In Proceedings of the 10th USENIX
Security Symposium. USENIX, Aug. 2001.

[7] J. DeTreville. Binder, a logic-based security language. In Proceedings of the 2002 IEEE Symposium on
Security and Privacy, pages 105–113. IEEE Computer Society Press, May 2002.

[8] T. Dierks and C. Allen. The TLS Protocol Version 1.0, Jan. 1999. http://www.ietf.org/rfc/rfc2246.txt.

[9] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen. SPKI certificate theory. IETF
RFC 2693, Sept. 1999.

[10] D. Fudenberg and J. Tirole. Game Theory. MIT Press, 1991.

[11] L. Gong and P. Syverson. Fail-stop protocols: An approach to designing secure protocols. In Proceedings of
the 5th International Working Conference on Dependable Computing for Critical Applications, September
1995.

[12] C. A. Gunter and T. Jim. Policy-directed certificate retrieval. Software: Practice & Experience,
30(15):1609–1640, Sept. 2000.

[13] A. Herzberg, Y. Mass, J. Mihaeli, D. Naor, and Y. Ravid. Access control meets public key infrastructure, or:
Assigning roles to strangers. In Proceedings of the 2000 IEEE Symposium on Security and Privacy, pages
2–14. IEEE Computer Society Press, May 2000.

[14] A. Hess, J. Jacobson, H. Mills, R. Wamsley, K. E. Seamons, and B. Smith. Advanced client/server authen-
tication in TLS. In Network and Distributed System Security Symposium, pages 203–214, Feb. 2002.

[15] T. Jim. SD3: A trust management system with certified evaluation. In Proceedings of the 2001 IEEE
Symposium on Security and Privacy, pages 106–115. IEEE Computer Society Press, May 2001.

[16] A. Juels and J. Brainard. Client puzzles: A cryptographic defense against connection depletion attacks. In
Proceedings of the 1999 Network and Distributed System Security Symposium, February 1999.

[17] A. D. Keromytis. The KeyNote trust-management system. http://www.cis.upenn.edu/∼angelos/keynote.html.

[18] N. Li, B. N. Grosof, and J. Feigenbaum. Delegation Logic: A logic-based approach to distributed autho-
rization. ACM Transaction on Information and System Security, 6(1):128–171, Feb. 2003.

[19] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a role-based trust management framework. In
Proceedings of the 2002 IEEE Symposium on Security and Privacy, pages 114–130. IEEE Computer Society
Press, May 2002.

[20] N. Li, W. H. Winsborough, and J. C. Mitchell. Distributed credential chain discovery in trust management.
Journal of Computer Security, 11(1):35–86, Feb. 2003.

[21] C. Meadows. A Cost-Based Framework for Analysis of Denial of Service Networks. Journal of Computer
Security, 9:143–164, 2001.

[22] R. L. Rivest and B. Lampson. SDSI — a simple distributed security infrastructure, Oct. 1996. Available at
http://theory.lcs.mit.edu/∼rivest/sdsi11.html.

16

[23] T. Ryutov, L. Zhou, C. Neuman, T. Leithead, and K. E. Seamons. Adaptive trust negotiation and access
control. In Proceedings of the tenth ACM symposium on Access control models and technologies (SACMT),
pages 139–146, 2005.

[24] X. Wang and M. Reiter. Defending against denial-of-service attacks with puzzle auction. In IEEE Sympo-
sium on Security and Privacy, May 2003.

[25] X. Wang and M. Reiter. Mitigating bandwidth-exhaustion attacks using congestion puzzles. In Proceedings
of the 11th ACM conference on Computer and Communication Security, November 2004.

[26] W. H. Winsborough, K. E. Seamons, and V. E. Jones. Automated trust negotiation. In DARPA Information
Survivability Conference and Exposition, volume I, pages 88–102. IEEE Press, Jan. 2000.

[27] M. Winslett, T. Yu, K. E. Seamons, A. Hess, J. Jacobson, R. Jarvis, B. Smith, and L. Yu. Negotiating trust
on the web. IEEE Internet Computing, 6(6):30–37, November/December 2002.

[28] T. Yu, M. Winslett, and K. E. Seamons. Supporting structured credentials and sensitive policies through
interoperable strategies for automated trust negotiation. ACM Transactions on Information and System
Security, 6(1):1–42, Feb. 2003.

17

