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1 Introduction

Many problems in computational geometry come from application areas (such as pattern
recognition, computer graphics, operations research, computer-aided design, robotics, etc)
that require real-time speeds. This need for speed makes parallelism a natural candidate for
helping achieve the desired performance. For many of these problems, we are already at the
limits of what can be achieved through sequential computation. The traditional sequential
methods can be inadequate for those applications in which speed is important and that
involve a large number of geometric objects. Thus, it is important to study what kinds of
speed-ups can be achieved through parallel computing. As an indication of the importance of
this research direction, we note that four of the eleven problems used as benchmark problems
to evaluate parallel architectures for the DARPA Architecture Workshop Benchmark Study
of 1986 were computational geometry problems.

In parallel computation, it is the rule rather than the exception that the known sequen-
tial techniques do not translate well into a parallel setting; this is also the case in parallel
computational geometry. The difficulty is usually that these techniques use methods which
either seem to be inherently sequential, or would result in inefficient parallel implementa-
tions. Thus new paradigms are needed for parallel computational geometry. The goal of
this chapter is to give a detailed look at the currently most successful techniques in parallel
computational geometry, while simultaneously highlighting some open problems, and dis-
cussing possible extensions to these techniques. It differs from [33] in that it gives a much
more detailed coverage of the shared-memory model at the expense of the coverage of net-
works of processors. Since it is impossible to describe all the parallel geometric algorithms
known, our focus is on general algorithmic techniques rather than on specific problems;
no attempt is made to list exhaustively all of the known deterministic parallel complexity
bounds for geometric problems. For more discussion of parallel geometric algorithms, the
reader is referred to [15, 139].

The rest of the chapter is organized as follows. Section 2 briefly reviews the PRAM par-
allel model and the notion of efficiency in that model, Section 3 reviews basic subproblems
that tend to arise in the solutions of geometric problems on the PRAM, Section 4 is about
inherently sequential (i.e. non-parallelizable) geometric problems, Section 5 discusses the
parallel divide and conquer techniques, Section 6 discusses the cascading technique, Section

7 discusses parallel fractional cascading, Section 8 discusses cascading with labeling func-
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Figure 1: The PRAM model.

tions, Section 9 discusses cascading in the EREW model, Section 10 discusses parallel matrix
searching techniques, Section 11 discusses a number of other useful PRAM techniques, and

Section 12 concludes.

2 PRAM Models

The PRAM (Parallel Random Access Machine) has so far been the main vehicle used to
study the parallel algorithmics of geometric problems, and hence it is the focus of this
chapter. This section briefly reviews the PRAM model and its variants.

The PRAM model of parallel computation is the shared-memory model in which the
processors operate synchronously [153], as illustrated in Figure 1. A step on a PRAM
consists of each processor reading the content of a cell in the shared memory, writing data
in a cell of the shared memory, or performing a computation within its own registers.
Thus all communication is done via the shared memory. There are many variants of the
PRAM, differing from one another in the way read and/or write conflicts are treated. The
CREW (Concurrent Read Exclusive Write) version of this model allows many processors
to simultaneously read the content of a memory location, but forbids any two processors
from simultaneously attempting to write in the same memory location (even if they are
trying to write the same thing). The CRCW (Concurrent Read Concurrent Write) version
of the PRAM differs from the CREW one in that it also allows many processors to write
simultaneously in the same memory location: In any such common-write contest, only one
processor succeeds, but it is not known in advance which one. (There are other versions of
the CRCW PRAM but we shall not concern ourselves with these here.) The EREW PRAM

is the weakest version of the PRAM: It forbids both concurrent reading and concurrent



writing.

The PRAM has been extensively used in theoretical studies as a vehicle for designing
parallel algorithms. Although it captures important parameters of a parallel computation,
the PRAM does not account for communication and synchronization (more recent variations
of the model do account for these factors, but we do not discuss them since essentially no
parallel geometric algorithms have yet been designed for them). The PRAM is generally
considered to be a rather unrealistic model of parallel computation. However, although
there are no PRAMs commercially available, algorithms designed for PRAMs can often be
efficiently simulated on some of the more realistic parallel models. The PRAM enables the
algorithm designer to focus on the structure of the problem itself, without being distracted
by architecture-specific issues. Another advantage of the PRAM is that, if one can give
strong evidence (in the sense explained in the next paragraph) that a problem has no fast
parallel solution on the PRAM, then there is no point in looking for a fast solution to it on
more realistic parallel models (since these are weaker than the PRAM).

We now review some basic notions concerning the speed and efficiency of PRAM com-
putations. The time x processor product of a PRAM algorithm is called its work (i.e., the
total number of operations performed by that algorithm). A parallel algorithm is said to
run in polylogarithmic time if its time complexity is O(log® n), where n is the problem size
and k is a constant independent of n (i.e., K = O(1)). A problem solvable in polylogarithmic
time using a polynomial number of processors is said to be in the class NC. It is strongly
believed (but not proved) that not all problems solvable in polynomial time sequentially are
solvable in polylogarithmic time using a polynomial number of processors (i.e., it is believed
that P # NC). As in the theory of NP-completeness, there is an analogous theory in parallel
computation for showing that a particular problem is probably not in NC: By showing that
the membership of that problem in NC would imply that P = NC. Such a proof consists
of showing that each problem in P admits an NC reduction to the problem at hand (an
NC reduction is a reduction that takes polylogarithmic time and uses a polynomial number
of processors). Such a problem is said to be P-complete. For a more detailed discussion
of the class NC and parallel complexity theory, see (for example) [189] or [156]. A proof
establishing P-completeness of a problem is viewed as strong evidence that the problem is
“inherently sequential”.

Once one has established that a geometric problem is in NC, the next step is to design a



PRAM algorithm for it that runs as fast as possible, while being efficient in the sense that
it uses as few processors as possible. Ideally, the parallel time complexity of the PRAM
algorithm should match the parallel lower bound of the problem (assuming such a lower
bound is known), and its work complexity should match the best known sequential time
bound of the problem. A parallel lower bound for a geometric problem is usually established
by showing that such an algorithm can be used to solve some other (perhaps non-geometric)
problem having that lower bound. For example, it is well known [94] that computing the
logical OR of n bits has an Q(logn) time lower bound on a CREW PRAM. This can easily
be used to show that detecting whether the boundaries of two convex polygons intersect also
has an Q(logn) time lower bound in that same model, by encoding the n bits whose OR we
wish to compute in two concentric regular n-gons such that the ¢th bit governs the relative
positions of the ith vertices of the two n-gons. Interestingly, if the word “boundaries”
is removed from the previous sentence then the lower bound argument falls apart and it
becomes possible to solve the problem in constant time on a CREW PRAM, even using a
sublinear number of processors [43, 224].

Before reviewing the techniques that have resulted in many PRAM geometric algorithms
that are fast and efficient in the above sense, a word of caution is in order. From a theoretical
point of view, the class NC and the requirement that a “fast” parallel algorithm should run
in polylogarithmic time, are eminently reasonable. But from a more practical point of
view, not having a polylogarithmic time algorithm does not entirely doom a problem to
being “non-parallelizable”. One can indeed argue [221] that, e.g., a problem of sequential
complexity ©(n) that is solvable in O(y/n) time by using /n processors is “parallelizable”

in a very real sense, even if no polylogarithmic time algorithm is known for it.

3 Basic Subproblems

This section reviews some basic subproblems that tend to be used as subroutines in the

design of PRAM geometric algorithms.

3.1 Sorting and Merging

Sorting is probably the most frequently used subroutine in parallel geometric algorithms.
Fortunately, for PRAM models we know how to sort n numbers optimally: O(logn) time

and n processors on the EREW PRAM [87, 12]. Merging on the PRAM is easier than



sorting [211, 222, 54, 147]; on the CREW PRAM it is O(loglogn) time with n/loglogn

processors, and O(logn) time with n/logn processors on the EREW PRAM.

3.2 Parallel Prefix

Given an array A of n elements and an associative operation denoted by 4+, the parallel
prefix problem is that of computing an array B of n elements such that B(i) = YL _; A(k).
Parallel prefix can be performed in O(logn) time and n/logn processors on an EREW
PRAM [159, 164], O(logn/loglogn) time and nloglogn/logn processors on a CRCW
PRAM [92]. Computing the smallest element in array A is a special case of parallel prefix:
In the CRCW model, this can be done faster than general parallel prefix—in O(1) time
with n!T¢ processors for any positive constant € or, alternatively, in O(loglogn) time with

n/ loglogn processors [211].
3.3 List Ranking

List ranking is a more general version of the parallel prefix problem: The elements are given
as a linked list, i.e., we are given an array A each entry of which contains an element as well
as a pointer to the entry of A containing the predecessor of that element in the linked list.
The problem is to compute an array B such that B(i) is the “sum” of the first 7 elements
in the linked list. This problem is considerably harder than parallel prefix, and most tree
computations as well as many graph computations reduce, via the FEuler tour technique
(described below), to solving this problem. EREW PRAM algorithms that run in O(logn)

time and n/logn processors are known for list ranking [90, 24].

3.4 Tree Contraction

Given a (not necessarily balanced) rooted tree T', the problem is to reduce T to a 3-node
tree by a sequence of rake operations. A rake operation can be applied at a leaf v by
removing v and the parent of v, and making the sibling of v a child of v’s grandparent (note
that rake cannot be applied at a leaf whose parent is the root). This is done as follows:
Number the leaves 1, 2, ..., etc., in left to right order, and apply the rake operation first
to all the odd-numbered leaves that are left children, then to the other odd-numbered
leaves. Renumber the remaining leaves and repeat this operation, until done. The number
of iterations performed by such an algorithm is logarithmic because the number of leaves

is reduced by half at each iteration. Note that applying the rake to all the odd-numbered



leaves at the same time would not work, as can be seen by considering the situation where v
is an odd-numbered left child, w is an odd-numbered right child, and the parent of v is the
grandparent of w (what goes wrong in that case is that v wants to remove its parent p and
simultaneously w wants its sibling to become child of p). Tree contraction is an abstraction
of many other problems, including that of evaluating an arithmetic expression tree [175].
Many elegant optimal EREW PRAM algorithms for it are known [1, 90, 128, 158], running

in O(logn) time with n/logn processors.
3.5 Brent’s Theorem

This technique is frequently used to reduce the processor complexity of an algorithm without

any increase in the time complexity.

Theorem 3.1 (Brent): Any synchronous parallel algorithm taking time T that consists
of a total of W operations can be simulated by P processors in time O((W/P) +T).

There are actually two qualifications to the above Brent’s theorem [60] before one can
apply it to a PRAM: (i) At the beginning of the i-th parallel step, we must be able to
compute the amount of work W; done by that step, in time O(W;/P) and with P processors,
and (ii) we must know how to assign each processor to its task. Both (i) and (ii) are generally
(but not always) easily satisfied in parallel geometric algorithms, so that the hard part is

usually achieving W operations in time 7'.

3.6 Euler Tour Technique

“Wrapping a chain” around a tree defines an Euler tour of that tree. More formally, if T’
is an undirected tree, the Euler tour of T is obtained in parallel by doing the following for
every node v of T: Letting wq, w1, ..., wk—_1 be the nodes of T' adjacent to v, in the order
in which they appear in the adjacency list of v, we set the successor of each (directed) edge
(w;,v) equal to the (directed) edge (v, W(i+1) mod k). See Figure 2 for an illustration. Most
tree computations as well as many graph computations reduce, via the Euler tour technique,

to the list ranking problem [216], as the following examples demonstrate.

1. Rooting an undirected tree at a designated node v: Create the Euler tour of the tree,
“open” the tour at v (thus making the tour an Euler path), then do a parallel prefix

along the linked list of arcs described by the successor function (with a weight of 1 for



Figure 2: The Euler tour of a tree T

each arc). For each undirected edge {z,y} of the tree, if the prefix sum of the directed
edge (z,y) in the Euler tour is less than that of the directed edge (y,z), then set z to

be the parent of y. This parallel computation of parents makes the tree rooted at v.

2. Computing post-order numbers of a rooted tree, where the left-to-right ordering of
the children of a vertex is the one implied by the Euler path: Do a list ranking on the
Euler path, where each directed edge (x,y) of the Euler path has a weight of unity if

y is the parent of z, and a weight of zero if z is the parent of y.

3. Computing the depth of each node of a rooted tree: Do a list ranking on the Euler
path, where each directed edge (z,y) of the Euler path has a weight of —1 if y is the
parent of x, and a weight of +1 if x is the parent of y.

4. Numbering of descendants of each node: Same computation as for post-order numbers,
followed by making use of the observation that the number of descendants of v equals

the list rank of (v, parent(v)) minus that of (parent(v),v).

These examples of reductions of so many problems to list ranking demonstrate the impor-
tance of the list ranking problem. See [216, 153] for other examples, and for more details

about the above reductions.

3.7 Lowest Common Ancestors (LCA)

The problem is to preprocess a rooted tree T' so that a lowest common ancestor (LCA)
query of any two nodes z,y of T' can be answered in constant time by one processor. The
preprocessing is to be done in logarithmic time and n/logn EREW PRAM processors.

The problem is easy when 7T is a simple path (list ranking does the job), or when it is



a complete binary tree (it is then solved by comparing the binary representations of the
in-order numbers of z and y, specifically finding the leftmost bit where they disagree). For
a general tree, the problem is reduced to that of the range minima: Create an Euler tour of
the tree, where each node v knows its first and last appearance on that tour as well as its
depth (i.e., the distance from the root) in the tree. This reduces the problem of answering
an LCA query to determining, in constant sequential time, the smallest entry in between
two given indices ¢,j in an array. This last problem is called the range-minima problem.
The book [153] contains more details on the reduction of LCA to range minima, a solution
to range minima, and references to the relevant literature for this problem.

The above list of basic subproblems is not exhaustive in that (i) many techniques that
are basic for general combinatorial problems were omitted (we have focused only on those
most relevant to geometric problems rather than to general combinatorial problems), and
(ii) among the techniques applicable to geometric problems, we have postponed covering

the more specialized ones.

4 Inherently Sequential Geometric Problems

Most of the problems shown to be P-complete to date are not geometric (most are graph
or algebra problems). This is no accident: Geometric problems in the plane tend to have
enough structures to enable membership in NC. Even the otherwise P-complete problem
of linear programming [119, 120] is in NC when restricted to the plane. In the rest of this
section, we mention the (very few) planar geometric problems that are known to be P-
complete, and also a problem that is conjectured to be P-complete. Several of the problems
known to be P-complete involve a collection of line segments in the plane.

The P-completeness proofs of the three problems in the following subsections were given
in [28]; for the third problem see also [149]. The proofs consist of giving NC reductions from
the monotone circuit value problem and planar circuit value problem, which are known to
be P-complete [129, 160, 181]. These reductions typically involve the use of geometry to

simulate a circuit, by utilizing the relative positions of objects in the plane.

4.1 Plane-Sweep Triangulation

One is given a simple n-vertex polygon P (which may contain holes) and asked to produce

the triangulation that would be constructed by the following sequential algorithm: Sweep



the plane from left to right with a vertical line L, such that each time L encounters a vertex v
of P one draws all diagonals of P from v that do not cross previously drawn diagonals. This
problem is a special case of the well-known polygon triangulation problem (see [124, 193]),

and it clearly has a polynomial time sequential solution.

4.2 'Weighted Planar Partitioning

Suppose one is given a collection of n non-intersecting line segments in the plane, such
that each segment s is given a distinct weight w(s), and asked to construct the partitioning
of the plane produced by extending the segments in the sorted order of their weights.
The extension of a segment “stops” at the first segment (or segment extension) that is
“hit” by the extension. This problem has applications to “art gallery problems” [98, 186],
and is P-complete even if there are only 3 possible orientations for the line segments. It
is straightforward to solve it sequentially in O(nlog®n) time (by using the dynamic point-

location data structure of [194]), and in O(n log n) time by a more sophisticated method [98].
4.3 Visibility Layers

One is given a collection of n non-intersecting line segments in the plane, and asked to label
each segment by its “depth” in terms of the following layering process (which starts with
i = 0): Find the segments that are (partially) visible from point (0,400), label each such
segment as being at depth i, remove each such segment, increment ¢, and repeat until no
segments are left. This is an example of a class of problems in computational geometry
known as layering problems or onion peeling problems [63, 165, 187], and is P-complete

even if all the segments are horizontal.

4.4 Open Problems

Perhaps the most famous open problem in the area of geometric P-completeness is that of
the convex layers problem [63]: Given n points in the plane, mark the points on the convex
hull of the n points as being layer zero, then remove layer zero and repeat the process,
generating layers 1,2,..., etc. See Figure 3 for an example. Some recent work has shown
that a generalization of the convex layers problem, called multi-list ranking [114], is indeed
P-complete. Although the results in [114] shed some light on the convex layers problem,
the P-completeness of the convex layers problem remains open.

In view of the P-completeness of the above-mentioned visibility layers problem, it seems
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Figure 3: The convex layers of a point set in the plane.

reasonable to conjecture that the convex layers problem is also P-complete; however not
all layering problems are P-complete. For example, the layers of maxima problem (defined
analogously to convex layers but with the words “maximal elements” playing the role of
“convex hull”) is easily shown to be in NC by a straightforward reduction to the computation
of longest paths in a directed acyclic graph [31] (each input point is a vertex, and there is
a directed edge from point p to point ¢ iff both the z and y coordinates of p are > those of

g, respectively).

5 Parallel Divide and Conquer

As in sequential algorithms, divide and conquer is a useful technique in parallel computation.

Parallel divide and conquer comes in many flavors which we discuss next.

5.1 Two-Way Divide and Conquer

The sequential divide and conquer algorithms that have efficient PRAM implementations
are those for which the “conquer” step can be done extremely fast (e.g., in constant time).
Take, for example, an O(n logn) time sequential algorithm that works by recursively solving
two problems of size n/2 each, and then combining the answers they return in linear time.
In order for a PRAM implementation of such an algorithm to run in O(logn) time with n
processors, the n processors must be capable of performing the “combine” stage in constant
time. For some geometric problems this is indeed possible (e.g., the convex hull problem
[43, 224]). The time complexity T'(n) and processor complexity P(n) of such a PRAM

implementation then obey the recurrences
T(n) <T(n/2) +c,

P(n) < max{n,2P(n/2)},

11



with boundary conditions 7'(1) < ¢y and P(1) = 1, where ¢; and ¢y are positive constants.
These imply that T'(n) = O(logn) and P(n) = n.

But for many problems, such an attempt at implementing a sequential algorithm fails
because of the impossibility of performing the “conquer” stage in constant time. For these,

the next approach often works.

5.2 “Rootish” Divide and Conquer

By “rootish”, we mean partitioning a problem into n'/k subproblems to be solved recursively
in parallel, for some positive constant integer k (usually, ¥ = 2). For example, instead of
dividing the problem into two subproblems of size n/2 each, we divide it into (say) /n
subproblems of size v/n each, which we recursively solve in parallel. That the conquer stage
takes O(logn) time (assuming it does) causes no harm with this subdivision scheme, since

the time and processor recurrences in that case would be
T(n) <T(v/n) + cilogn,

P(n) < max{n,v/nP(y/n)},

with boundary conditions 7'(1) < ¢3 and P(1) = 1, where ¢; and co are positive constants.
These imply that T'(n) = O(logn) and P(n) = n.

The problems that can be solved using rootish divide and conquer scheme include the
convex hull of points [4, 42, 131], the visibility of non-intersecting planar segments from
a point [53], the visibility of a polygonal chain from a point [36], the convex hull of a
simple polygon [71], detecting various types of weak visibility of a simple polygon [69, 72,
73, 74], triangulating useful classes of simple polygons [71, 132], and the determination of
monotonicity of a simple polygon [76]. This scheme also finds success in other computational
models such as the hypercube [32, 70]. The scheme is useful in various ways and forms,
and sometimes with recurrences very different from the above-mentioned ones, as the next

example demonstrates.
5.3 Example: Visibility in a Polygon

Given a source point ¢ and a simple n-vertex polygonal chain P in the plane, this visibility
problem is that of finding all the points of P that are visible from ¢ if P is “opaque”. We
seek an algorithm that takes O(logn) time and uses O(n/logn) EREW PRAM processors,

which is optimal to within a constant factor because (i) there is an obvious Q(n) sequential

12
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Figure 4: The visibility chain VIS(C) of a polygonal chain C from the point g = (0, 00).

lower bound for the problem, and (ii) an Q(logn) lower bound on its EREW PRAM time
complexity can be obtained by reducing to it the problem of computing the maximum of n
entries, a problem with a known logarithmic time lower bound [94].

This is one instance of a problem in which one has to use a hybrid of two-way divide and
conquer and rootish divide and conquer, in order to obtain the desired complexity bounds.
The recursive procedure we sketch below follows [36] and takes two input parameters (one of
which is the problem size) and uses either fourth-root divide and conquer or two-way divide
and conquer, depending on the relative sizes of these two parameters. The role played by
the geometry is central to the “combine” step (other algorithms of this kind can be found
in [68, 71, 72, 73, 74, 130, 131, 132] for solving many problems on polygons and point sets).

We call VisChain the recursive procedure for computing the visibility chain of a simple
polygonal chain from the given source point ¢ (see Figure 4 for an example of the visibility
chain VIS(C) from the point ¢ = (0,00)). The procedure is outlined below. Let |C]|
denote the number of vertices of a polygonal chain C. The initial call to the procedure is

VisChain(P,n,logn), where P is a simple polygonal chain and n = |P].

VisChain(C, m,d)
Input: A simple polygonal chain C, m = |C|, and a positive integer d of our choice.
Output: The visibility chain of C, VIS(C), from the point q.

Step 1. If m < d, then compute VIS(C) with one processor in O(m) time, using any of

the known sequential linear-time algorithms.

Step 2. If d < m < d?, then divide C into two subchains C; and C, of equal length
and recursively call VisChain(Cy, |C|,d) and VisChain(Cy,|Cs|,d) in parallel.

13



Then compute VIS(C) from VIS(C4) and VIS(Cs), in O((logm)?) time and using one

processor.

Step 3. If m > d?, then partition C into g = (m/d)'/* subchains Cy, Cs, ..., C, of length
m?3/*d'/* each. In parallel, call VisChain(Cy,|C|,d), VisChain(Cy,|Cy|,d), ...,
VisChain(Cy, |Cy|,d). Then compute VIS(C) from VIS(C1), VIS(Cy), ..., VIS(C,),

in O(logm) time and using m/d processors (we henceforth use g to denote (m/d)'/*).
end.

The main difficulty lies in the “conquer” steps: Even though C; and C; do not intersect,
there can be more than one intersection between their visibility chains VIS(C;) and VIS(C}),
and we have (cf. Step 3 above) only g2 = (m/d)'/? processors to compute these intersections
between each pair (VIS(C;), VIS(C};)). Doing this in O(logm) time may appear impossible
at first sight: the length of each of VIS(C;) and VIS(C;) can be m3/*d*/*, and there is a
well-known linear lower bound [65] on the work needed for computing the two intersections

of two arbitrary simple polygonal chains that intersect twice. This seems to imply that,

1/2 —-1/2

since we have only (m/d)'/? processors assigned to the task, it will take m3/4d'/*(m/d)
= m!/*d3/* time rather than the claimed O(logm). What enables us to achieve O(logm)
time is the fact that both C; and C; are subchains of a simple polygonal chain.

Observe that, if we could perform the various steps of the above algorithm within the

claimed bounds, then it would indeed run in O(d + logm) time with O(m/d) processors

since its time and processor complexities would satisfy the following recurrences:

cam ifm<d
t(m,d) = t(m/2,d) + ca(logm)? if d <m < d?
t(m3/*d"/* d) + c3logm if d> < m
max{1, m/d} ifm<d
p(m,d) = max{2p(m/2,d), m/d} ifd <m < d?
max{(m/d)/*p(m3/*d'/*,d), m/d} ifd?> <m

where c1, co, c3 are constants. From the above recurrences, the following bounds for ¢(m, d)

and p(m, d) are easy to prove by induction:

aid iftm<d
t(m,d) < asd + B2(logm)?logd if d<m < d?
asd + Bzlogm ifd®> <m

p(m,d) = m/d

14



where a1, asg, B2, as, B3 are constants.

Choosing d to be logm, the above implies that t(m,logm) = O(logm) and p(m,logm)
= O(m/logm). Hence the call VisChain(P,n,logn) would compute VIS(P) in O(logn)
time using O(n/logn) processors.

Thus it suffices to show how, with m/d processors, to do the “combine” part of Step 2
in O((logm)?) time, and more importantly, how to implement the “combine” part of Step

3 in O(logm) time. The geometric facts that make this possible are:

e If ' is a subchain of a chain C then VIS(C) N VIS(C') has at most three connected

components (i.e., at most three separate portions of VIS(C') appear in VIS(C)).

e If C' and C" are two subchains of C that are disjoint except that they may share one

endpoint, then there are at most fwo intersections between VIS(C') and VIS(C").

Although the above limits to two the number of possible intersections between the
visibility chains of two subchains of C' that are disjoint (except possibly at a common
endpoint), the linear-work lower bound we mentioned earlier for detecting intersections
between polygonal chains [65] holds even for two chains that intersect each other no more
than twice. The solution in [36] exploits the fact that the two chains are subchains of
a simple chain in order to get around the lower bound when solving the two-intersection
case. Specifically, it shows how to compute, for each C;, the (at most two) portions of
VIS(C;) that are hidden. Once one has done this (in parallel) for every i € {1,...,g}, it
is easy to “stitch” the resulting ¢’ < 3g pieces of VIS(C) and create VIS(C): first split the
trees representing VIS(C,), VIS(Cy), ..., VIS(Cy), in order to discard all portions of the
VIS(C;)’s that are invisible in VIS(C); then the problem essentially becomes that of sorting
(by the polar angles) the O(g) endpoints of those portions of the VIS(C;)’s that are visible
in VIS(C), which can be done in time O(logm) using O(g) EREW PRAM processors [87].

There are g* processors available, more than enough to do this sorting.

6 Cascading

Cascading is a sampling and iterative refinement method that was introduced by Cole [87]
for the sorting problem, and was further developed in [37, 130] for the solutions of geometric
problems. It has proved to be a fundamental technique, one that enables optimal solutions

when most other techniques fail. Since its details are intricate even for sorting, the next
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subsection gives a rough sketch — too broad to be useful but enough to give the reader a
feel for the main idea (later subsections give a more detailed description and illustrate with

examples).

6.1 A Rough Sketch of Cascading

Since this technique works best for problems that are solved sequentially by divide and
conquer, we use such a hypothetical problem to illustrate the discussion: Consider an
O(nlogn) time sequential algorithm that works by recursively solving two subproblems of
size n/2 each, followed by an O(n) time conquer stage. Let T" be the tree of recursive calls
for this algorithm, i.e., a node of this recursion tree at height s corresponds to a subproblem
of size equal to the number of leaves in its subtree (= 2?). A “natural” way of parallelizing
such an algorithm would be to mimic it by using n processors to process 7" in a bottom up
fashion, one level at a time, completing level h before moving to level A+ 1 of T' (where by
“level h”, we mean the set of nodes of 7' whose height is h). Such a parallelization will yield
an O(logn) time algorithm only if processing each level can be done in constant time. It
can be quite nontrivial to process one level in constant time, so this natural parallelization
can be challenging. However, it is frequently the case that processing one level cannot
be done in constant time, and it is precisely in these situations that the cascading idea
can be useful. In order to be more specific when sketching this idea, we assume that the
hypothetical problem being solved is about a set S of n points, with the points stored in
the leaves of T'.

In a nutshell, the general idea of cascading is as follows. The computation proceeds
in a logarithmic number of stages, each of which takes constant time. Each stage involves
activity by the n processors at more than one level, so the computation diffuses up the tree
T, rather than working on only one level at a time. For each node v € T, let h(v) be the
height of v in T, L(v) be the points stored in the leaves of the subtree of v in T', and let
I(L(v)) be the information we seek to compute for node v (the precise definition of I(-)
varies from problem to problem). The ultimate goal is for every v € T to compute the
I(L(v)) array. Each v € T lies “dormant” and does nothing until the stage number exceeds
a certain value (usually h(v)), at which time node v “wakes up” and starts computing, from
stage to stage, I(L') for a progressively larger subset L' of L(v), a subset L' that (roughly)
doubles in size from one stage to the next of the computation. I(L') can be thought of

as an approximation of the desired I(L(v)), an approximation that starts out being very
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rough (when L' consists of, say, a single point) but gets repeatedly refined from one stage
to the next. When L’ eventually becomes equal to L(v), node v becomes inactive for all
the future stages (i.e., it is done with its computation, since it now has I(L(v))). There are
many (often intricate) implementation details that vary from one problem to the next, and
many times the scheme substantially deviates from the above rough sketch, but the above
nevertheless gives the general idea of cascading.

The cascading technique has been used to solve many problems (not just geometric
ones). The next section explains in more detailed the basic version of the technique, for the
problem of sorting. Some of the geometric problems for which it has been used are covered
later, in order to illustrate variants of the method. The exposition follows [37], with proofs

and details omitted.

6.2 Cascading Merge Sort

In this section we sketch the cascading technique for the merge sorting problem; later we
show how it can be modified to solve geometric problems. Suppose we are given a binary
tree T (not necessarily complete) with items, taken from some total order, placed at the
leaves of T', so that each leaf contains at most one item. For simplicity, we assume that the
items are distinct. We wish to compute for each internal node v € T the sorted list U(v)
that consists of all the items stored in descendant nodes of v. We show how to construct
U (v) for every node in the tree in O(height(T")) time using |T'| processors, where |T’| denotes
the number of nodes in 7. Without loss of generality, we assume that every internal node
v of T has two children (otherwise we can add an extra leaf child that is empty, i.e., does
not store any items from the total order).

Let two sorted (nondecreasing) lists A = (a1,4a2,...,a,) and B = (by,ba,...,by,) be
given. We define the rank of an element a; in B to be the number of elements in B that
are less than a;. We say that A is ranked in B if for every element in A we know its rank
in B. We say that A and B are cross ranked if A is ranked in B and B is ranked in A. We
define AU B to be the sorted merged list of all the elements in A or B. If B is a subset of
A, then we define A — B to be the sorted list of the elements in A that are not in B.

Let T be a binary tree. For any node v in T the altitude, denoted alt(v), is height(T) —
depth(v). Desc(v) denotes the set of descendant nodes of v (including v itself).

Let a sorted list L and a sorted list J be given. We say that L is a c-cover of J if

between each two adjacent items in (—oo, L, 00) there are at most ¢ items from J. We let
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SAMP,(L) denote the sorted list consisting of every c-th element of L, and call this list the
c-sample of L. That is, SAM P,(L) consists of the c-th element of L followed by the (2¢)-th
element of L, and so on.

The algorithm for constructing U(v) for each v € T proceeds in stages. Intuitively, in
each stage we will be performing a portion of the merge of U(lchild(v)) and U(rchild(v)) to
give the list U(v). After performing a portion of this merge we will gain some insight into
how to perform the merge at v’s parent. Consequently, we will pass some of the elements
formed in the merge at v to v’s parent, so we can begin performing the merge at v’s parent.

Specifically, we denote the list stored at a node v in T' at stage s by Us(v). Initially,
Up(v) is empty for every node except the leaf nodes of 7', in which case Uy(v) contains the
item stored at the leaf node v (if there is such an item). We say that an internal node v is
active at stage s if |s/3] < alt(v) < s, and we say v is full at stage s if alt(v) = [s/3]. As
will become apparent below, if a node v is full, then Us(v) = U(v). For each active node

v € T we define the list U] (v) as follows:

SAMP;(Us(v)) if alt(v) > s/3
i1(v) =< SAMP,(Us(v)) if alt(v) = (s —1)/3
SAMP, (Us(v)) if alt(v) = (s —2)/3

At stage s+1 we perform the following computation at each internal node v that is currently
active:

Per-Stage Computation(v,s+ 1):

Form the two lists U (Ichild(v)) and Uj, (rchild(v)), and compute the new
list Usy1(v) = U,y (lchild(v)) U U, (rchild(v)).

This formalizes the notion that we pass information from the merges performed at the
children of v in stage s to the merge being performed at v in stage s + 1. Note that until
v becomes full U, (v) will be the list consisting of every fourth element of Uy(v). This
continues to be true about Uj_,;(v) up to the point that v becomes full. If s, is the stage at
which v becomes full (and Us(v) = U(v)), then at stage s, + 1, U, (v) is the two-sample
of Uy(v), and, at stage s, + 2, U, (v) = Us(v) (= U(v)). Thus, at stage s, + 3, parent(v)
is full. Therefore, after 3 * height(T) stages every node has become full and the algorithm
terminates. We have yet to show how to perform each stage in O(1) time using n processors.

The next lemma states that the number of items in Usyq(v) can be only a little more

than twice the number of items in Uy(v), a property that is essential to the construction.
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Lemma 6.1: For any stage s > 0 and any node v € T, |U;11(v)| < 2|Us(v)| + 4.
The next lemma states that the way in which the U,(v)’s grow is “well behaved.”

Lemma 6.2: Let [a,b] be an interval with a,b € (—oo, Ul (v),00). If [a,b] intersects k + 1
items in (—oo, U}(v), 00), then it intersects at most 8k + 8 items in Us(v) for all k > 1 and

s> 1.
Corollary 6.3: The list (—oo, Uj(v), o) is a 4-cover for U] (v), for all s > 0.

This corollary is used in showing that we can perform each stage of the merge procedure
in O(1) time. In addition to this corollary, we also need to maintain the following rank

information at the start of each stage s:
1. For each item in U!(v): its rank in U.(sibling(v)).
2. For each item in U}(v): its rank in U,(v) (and hence, implicitly, its rank in U], (v)).

The lemma that follows states that the above information is sufficient to allow us to
merge U, (Ichild(v)) and U} (rchild(v)) into the list Usy1(v) in O(1) time using |Us1(v)|

Processors.

Lemma 6.4 (The Merge Lemma): Suppose one is given sorted lists A,, A, , B;, By 1,

Cs, and C |, where the following (input) conditions are true:
1. A;=B'UCY;
2. Al is a subset of Ag;
3. B} is a c;-cover for B, ;

is a cg-cover for C|_ y;

5. Bl is ranked in B} ;

6. C; is ranked in C} ;

7. Bl and C! are cross ranked.

Then in O(1) time using |B; | + |C4, | processors in the CREW PRAM model, one

can compute the following (output computations):
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1. the sorted list A1 = B UC, ;
2. the ranking of A | in Asyq;

3. the cross ranking of B}, and C} .

We apply this lemma by setting Ay, = Uy(v), A}, = Ul 1(v), A1 = Usy1(v), Bl =
Ui(z), Biy, = Ul (x), C; = Ui(y), and Cl; = Ul,(y), where x = leftchild(v) and
y = rightchild(v). Note that assigning the lists of Lemma 6.4 in this way satisfies input
conditions 1-4 from the definitions. The ranking information we maintain from stage to
stage satisfies input conditions 5-7. Thus, in each stage s we can construct the list Usy1(v)
in O(1) time using |Us41(v)| processors. Also, the new ranking information (of output
computations 2 and 3) gives us the input conditions 5-7 for the next stage. By Corollary 6.3
we have that the constants ¢; and ¢y (of input conditions 3 and 4) are both equal to 4. Note
that in stage s it is only necessary to store the lists for s — 1; we can discard any lists for
stages previous to that.

The method for performing all these merges with a total of |T'| processors is basically
to start out with O(1) virtual processors assigned to each leaf node, and each time we pass
k elements from a node v to the parent of v (to perform the merge at the parent), we also
pass O(k) virtual processors to perform the merge. When v’s parent becomes full, then
we no longer “store” any processors at v. There can be at most O(n) elements present
in active nodes of T for any stage s (where n is the number of leaves of T'), since there
are n elements present on the full level, at most n/2 on the level above that, n/8 on the
level above that, and so on. Thus, we can perform the entire cascading procedure using
O(n) virtual processors, or n actual processors (by a simple simulation argument). This
also implies that we need only O(n) storage for this computation, in addition to that used
for the output, since once a node v becomes full we can consider the space used for U(v)
to be part of the output. Equivalently, if we are using the generalized merging procedure
in an algorithm that does not need a U(v) list once v’s parent becomes full, then we can
implement that algorithm in O(n) space by deallocating the space for a U(v) list once it is
no longer needed.

It will often be more convenient to relax the condition that there is at most one item
stored at each leaf. So, suppose there is an unsorted set A(v) (which may be empty) stored

at each leaf. In this case one can construct a tree 7" from T by replacing each leaf v of
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T with a complete binary tree with |A(v)| leaves, and associating each item in A(v) with
one of these leaves. T would now satisfy the conditions of the method outlined above. We
incorporate this observation in the following theorem, which summarizes the discussion of

this section:

Theorem 6.5: Suppose one is given a binary tree T such that there is an unsorted set
A(v) (which may be empty) stored at each leaf. Then one can compute, for each node
v € T, the list U(v), which is the union of all items stored at descendants of v, sorted in
an array. This computation can be implemented in O(height(T') + log(max, |A(v)|)) time
using a total of n + N processors in the CREW PRAM computational model, where n is

the number of leaves of T' and N is the total number of items stored in T'.

The next three sections give specific examples of other applications and extensions of

the cascading technique.

7 Fractional Cascading in Parallel

Fractional cascading is a fundamental technique that has a large number of different ap-
plications in geometry [67]. First we briefly review the problem. Given a directed graph
G = (V,E), such that every node v contains a sorted list C'(v) (called a catalogue), the
fractional cascading problem is to construct an O(n) space data structure that, given a
walk (v1,v2,...,Vy) in G and an arbitrary element x, enables a single processor to locate
z quickly in each C(v;), where n = |V|+ |E| 4+ X, ¢y |C(v)|. Fractional cascading problems
arise naturally from a number of computational geometry problems. As a simple exam-
ple of a fractional cascading problem, suppose one has five different English dictionaries
and would like to build a data structure that would allow one to look up a word w in all
the dictionaries. Chazelle and Guibas give an elegant O(n) time sequential method for
constructing a fractional cascading data structure from any graph G, as described above,
achieving a search time of O(log n+ m log d(G)), where d(G) is the maximum degree of any
node in G. However, their approach does not appear to be “parallelizable.”

In this section, which follows [37], we show how to construct a data structure achieving
the same performance as that of Chazelle and Guibas in O(logn) time using [n/logn]
processors. The method begins with a preprocessing step similar to one used by Chazelle

and Guibas where we “expand” each node of G into two binary trees—one for its in-edges
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and one for its out-edges—so that each node in our graph has in-degree and out-degree
at most 2. We then perform a cascading merge procedure in stages on this graph. Each
catalogue C(v) is “fed into” the node v in samples that double in size with each stage
and these lists are in turn sampled and merged along the edges of G. Lists continue to
be sampled and “pushed” across the edges of G (even in cycles) for a logarithmic number
of stages, at which time we stop the computation and add some links between elements
in adjacent lists. We show that this gives us a fractional cascading data structure, and
that the computation can be implemented in O(logn) time and O(n) space using [n/logn]
Processors.

We show below how to perform the computations in O(logn) time and O(n) space using
n processors. It is possible to get the number of processors down to [n/logn]| by a careful
application of Brent’s theorem.

Define In(v,G) (resp. Out(v,G)) to be the set of all nodes w in V' such that (w,v) € E
(resp. (v,w) € E). The degree of a vertex v, denoted by d(v), is defined as d(v)
max{|In(v,G)|,|Out(v,G)|}. The degree of G, denoted by d(G), is defined as d(G) =

max,ey{d(v)}. A sequence (vi,vs,...,vn) of vertices is a walk if (v;,v;y1) € E for all
i€{1,2,...,m—1}.

As mentioned above, we begin the construction by preprocessing the directed graph G
to convert it into a directed graph G = (V, E) such that d(G) < 2 and such that an edge
(v,w) in G corresponds to a path in G of length at most O(log d(G)). Specifically, for each
node v € V we construct two complete binary trees T'* and T°U*. Each leaf in T® (resp.,
TOU) corresponds to an edge coming into v (resp., going out of v). So there are |In(v,G)|
leaves in Ti" and |Qut(v, G)| leaves in To". We call T\ the fan-in tree for v and T°U the
fan-out tree for v. An edge e = (v, w) in G corresponds to a node e in @G such that e is a leaf
of the fan-out tree for v and e is also a leaf of the fan-in tree for w. The edges in T/ are
all directed up towards the root of T, and the edges in 7" are all directed down towards
the leaves of T2". For each v € V we create a new node v’ and add a directed edge from
v’ to v, a directed edge from the root of Ti" to v’ and an edge from v’ to the root of 72U,
We call v’ the gateway for v. Note that d(é) = 2. We assume that for each node v we have
access to the nodes in In(v, G) as well as those in Out(v, G). We structure fan-out trees so
that a processor needing to go from v to w in G, with (v,w) € E, can correctly determine

the path down T°" to the leaf corresponding to (v, w). More specifically, the leaves of each
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fan-out tree are ordered so that they are listed from left to right by increasing destination
name, i.e., if the leaf in T for e = (v,u) is to the left of the leaf for f = (v,w), then
u < w. (The leaves of Ti" need not be sorted, since all edges are directed towards the root
of that tree.) If we are not given the Out(v, G) sets in sorted order, then we must perform
a sort as a part of the 79" construction, which can be done in O(logd(G)) time using n
processors using Cole’s merge sorting algorithm [87]. We also store in each internal node z
of T2 the leaf node u that has the smallest name of all the descendents of z.

The above preprocessing step is similar to a preprocessing step used in the sequential
fractional cascading algorithm of Chazelle and Guibas. This is where the resemblance to
the sequential algorithm ends, however.

The goal for the rest of the computation is to construct a special sorted list B(v), which
we call the bridge list, for every node v € V. We shall define these bridge lists so that
B(v) = C(v) if v is in V, and, if v is in V but not in V, then for every (v, w) € E if a single
processor knows the position of a search item z in B(v), then it can find the position of z
in B(w) in O(1) time.

The construction of the B(v)’s proceeds in stages. Let Bs(v) denote the bridge list
stored at node v € V at the end of stage s. Initially, Bo (v) =0 for all v in V. Intuitively,
the per-stage computation is designed so that if v came from the original graph G (i.e.,
v € V), then v will be “feeding” B,(v) with samples of the catalogue C(v) that double in
size with each stage. These samples are then cascaded back into the gateway v’ for v and
from there back through the fan-in tree for v. We will also be merging any samples “passed
back” from the fan-out tree for v with B, (v'), and cascading these values back through the
fan-in tree for v as well. We iterate the per-stage computation for [log N| stages, where N
is the size of the largest catalogue in G. We will show that after we have completed the last
stage, and updated some ranking pointers, G will be a fractional cascading data structure
for G. More details follow.

Recall that By(v) = 0 for all v € V. For stage s > 0 we define B, 1(v) and By;1(v) as

follows:

Bl () — SAMP,(B,(v)) ifveV -V
s+l SAMP,)(C(v)) ifveV,
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,G

wr1(w1) UBL (w2) if Out(v,G) = {wi,ws}
Bsi1(v) = 1 (w) if Out(v A) {w}
0 if Out(v,G) =0,
where c(s) = 2Mog N1=s and N is the size of the largest catalogue. The per-stage computa-

tion, then, is as follows:

Per-Stage Computation(v,s + 1):

Using the above definitions, construct B, (v) for all v € V in parallel (using

| Bs+1(v)| processors for each v).

The function c(s) is defined so that if v € V, then as the computation proceeds the list
B!, 1(v) will be empty for a while, then at some stage s 4+ 1 it will consist of a single
element of C(v) (the (2/°6 ¥1=5)-th element), in stage s 4 2 at most three elements (evenly
sampled), in stage s + 3 at most five elements, in stage s + 4 at most nine elements, and so
on. This continues until the final stage (stage [log N|), when B! (v) = C(v). Intuitively,
the c(s) function is a mechanism for synchronizing the processes of “feeding” the C(v)
lists into the nodes of @ so that all the processes complete at the same time. We show
below that each stage can be performed in O(1) time, resulting in a running time of the
cascading computations that is O(log N) (plus the time it takes time to compute the value

of N: namely, O(logn)). The following important lemma is similar to Lemma 6.1 in that

it guarantees that the bridge lists do not grow “too much” from one stage to another.
Lemma 7.1: For any stage s > 0 and any node v € T, |Bsy1(v)| < 2|Bs(v)| + 4.

Corollary 7.2: The list (—oo, B{(v),00) is a 4-cover for B} (v), for s > 0.

A~

Corollary 7.3: The list (—oo, Bs(v),o0) is a 14-cover for Bs(w), for s > 0 and (v,w) € E.

The first of these two corollaries implies that we can satisfy all the c-cover input con-
ditions for the Merge Lemma (Lemma 6.4) for performing the merge operations for the
computation at stage s in O(1) time using ns processors, where n; = 3 v |Bs(v)|. We
use the second corollary to show that when the computation completes we will have a frac-
tional cascading data structure (after adding the appropriate rank pointers). We maintain

the following rank information at the start of each stage s:

1. For each item in B (v): its rank in B’ (w) if In(v,G) N In(w, G) is non-empty, i.e, if

there is a vertex u such that (u,v) € E and (u,w) € E.
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2. For each item in B} (v): its rank in B,(v) (and thus, implicitly, its rank in B;_;(v)).

By having this rank information available at the start of each stage s we satisfy all the
ranking input conditions of the Merge Lemma. Thus, we can perform each stage in O(1)
time using ng processors. Moreover, the output computations of the Merge Lemma allow
us to maintain all the necessary rank information into the next stage. Note that in stage s
it is only necessary to store the lists for s — 1; we can discard any lists for stages previous
to that, as in the generalized cascading merge.

Recall that we perform the computation for [log N| stages, where N is the size of the
largest catalogue. When the computation completes, we take B(v) = B;(v) for all v € v,
and for each (v,w) € E we rank B(v) in B(w). We can perform this ranking step by the
following method. Assign a processor to each element b in B(v) for all v € V in parallel.
The processor for b can find the rank of b in each B!(w) such that w € Out(v,G) in O(1)
time because B(v) contains B.(w) as a proper subset (B.(w) was one of the lists merged
to make Bg(v)). This processor can then determine the rank of b in B(w) = Bs(w) for each
w € Out(v,G) in O(1) time by using the ranking information we maintained (from B/ (w)

to Bs(w)) for stage s (rank condition 2 above).

Given a walk W = (v1,...,vp), and an arbitrary element z, the query that asks for
locating z in every C(v;) is called the multilocation of x in (vi,...,v,). To perform a
multilocation of z in a walk (v1,...,v,) we extend the walk W in G to its corresponding

walk W = (D14 .eey Oy) In G and perform the corresponding multilocation in G, similar to the
method given by Chazelle and Guibas for performing multilocations in their data structure.
The multilocation begins with the location of z in B(91) = B(v}), the gateway bridge list
for v1, by binary search. For each other vertex in this walk we can locate the position of
z in B(9;) given its position in B(9;_1) in O(1) time. The method is to follow the pointer
from x’s predecessor in B(%;_1) to the predecessor of that element in B(%;) and then locate
z in B(?;) by a linear search from that position (which will require at most 13 comparisons
by Corollary 7.3). In addition, if 9; corresponds to a gateway v’, then we can locate z in
C(v) in O(1) time given its position in B(v') by a similar argument. Since each edge in the
walk W corresponds to a path in W of length at most O(logd(G)), this implies that we can
perform the multilocation of z in (v1,...,vy) in O(log |B(v})|+mlogd(G)) time. In other
words, @ is a fractional cascading data structure. The next lemma states that G uses O(n)

space.
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Lemma 7.4: Let n, denote the amount of space that is added to G because of the presence

of a particular catalogue C(v), v € V. Then n, < 2|C(v)|.

Corollary 7.5: The total amount of space used by the fractional cascading data structure

is O(n), where n = |V|+ |E| + > v |C(v)].

Note that the upper bound on the space of the fractional cascading data structure holds
even if G contains cycles. This corollary, then, implies that we can construct a fractional
cascading data structure G from any catalogue graph G in O(logn) time and O(n) space
using n processors, even if G contains cycles. See [37] for details of how to assign these n

processors to their respective jobs. In fact [37] establishes the following stronger result.

Theorem 7.6: Given a catalogue graph G = (V, E), such that d(G) is O(1) or one is given
each Out(v,G) set in sorted order, one can build a fractional cascading data structure for
G in O(logn) time and O(n) space using [n/logn| processors in the CREW PRAM model,
where n = |V| + |E| + > ,cy |C(v)|. This bound is optimal.

8 Cascading with Labeling Functions

The merging procedure of Section 6.2 can be combined with divide-and-conquer strategies
based on merging lists with labels defined on their elements. This gives rise to variants
of cascading that resulted in efficient parallel solutions to many geometric problems. We
illustrate some of these here. For most of these problems this approach gives an efficient
sequential alternative to the known sequential algorithms (which typically use the plane-
sweeping paradigm), as well as giving rise to efficient parallel algorithms. We begin with

the 3-dimensional maxima problem.

8.1 The 3-Dimensional Maxima Problem

Let V = {p1,p2,...,pn} be a set of points in R3. For simplicity, we assume that no two
input points have the same z (resp., y, z) coordinate. We denote the z, y, and z coordinates
of a point p by z(p), y(p), and z(p), respectively. We say that a point p; 1-dominates another
point p; if z(p;) > z(p;), 2-dominates p; if z(p;) > x(p;) and y(p;) > y(p;), and 3-dominates
pj if z(p;) > z(p;), y(pi) > y(pj), and z(p;) > z(p;). A point p; € V is said to be a mazimum
if it is not 3-dominated by any other point in V. The 3-dimensional maxima, problem, then,

is to compute the set, M, of maxima in V. We show how to solve the 3-dimensional maxima,
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problem efficiently in parallel in the following algorithm. The method is based on cascading
a divide-and-conquer strategy in which the merging step involves the computation of two
labeling functions for each point. The labels we use are motivated by the optimal sequential
plane-sweeping algorithm of Kung, Luccio, and Preparata [163]. Specifically, for each point
p; we compute the maximum z-coordinate from all points which 1-dominate p; and use that
label to also compute the maximum z-coordinate from all points which 2-dominate p;. We
can then test if p; is a maximum point by comparing z(p;) to this latter label.

Without loss of generality, assume the input points are given sorted by increasing
y-coordinates, i.e., y(p;) < y(pi+1).- Let T be a complete binary tree with leaf nodes
V1,2, ...,0, (in this order). In each leaf node v; we store the list B(v;) = (—o0,p;), where
—o0 is a special symbol such that z(—o0) < z(p;) and y(—o0) < y(p;) for all points p; in V.
Initializing 7" in this way can be done in O(logn) time using n processors. We then perform
a generalized cascading-merge from the leaves of T' as in Theorem 6.5, basing comparisons
on increasing z-coordinates of the points (not their y-coordinates). Using the notation of
Section 6.2, we let U(v) denote the sorted array of the points stored in the descendants
of v € T sorted by increasing z-coordinates. For each point p; in U(v) we store two la-
bels: zod(p;,v) and ztd(p;,v), where zod(p;,v) is the largest z-coordinate of the points in
U(v) that 1-dominate p;, and ztd(p;,v) is the largest z-coordinate of the points in U(v)
that 2-dominate p;. Initially, zod and ztd labels are only defined for the leaf nodes of T.
That is, zod(p;, v;) = ztd(ps, v;) = —o0 and zod(—o00,v;) = ztd(—o0,v;) = z(p;) for all leaf
nodes v; in T' (where U(v;) = (—o0,p;)). In order to be more explicit in how we refer to
various ranks, we let pred(p;,v) denote the predecessor of p; in U(v) (which would be —oo
if the z-coordinates of the input points are all larger than z(p;)). As we are performing the
cascading-merge, we update the labels zod and ztd based on the equations in the following

lemma:

Lemma 8.1: Let p; be an element of U(v) and let u = lchild(v) and w = rchild(v). Then

we have the following:

- max{zod(p;,u), zod(pred(p;,w),w)} if p; € U(u)
zod(pi, v) { max{zod(pred(p;,u),u), zod(p;,w)} if p; € U(w) (1)
ctd(psv) = { :;Z)(c;iz,tzgpi,u), zod(pred(ps, w), w)} ii z; 2 ZEZ)) )

We use these equations during the cascading merge to maintain the labels for each point.

By Lemma 8.1, when v becomes full (and we have U(u), U(w), and U(v) = U(u) U U(w)

27



available), we can determine the labels for all the points in U(v) in O(1) additional time
using |U(v)| processors. Thus, the running time of the cascading-merge algorithm, even
with these additional label computations, is still O(logn) using n processors. Moreover,
after v’s parent becomes full we no longer need U(v) any more, and can deallocate the
space it occupies, resulting in an O(n) space algorithm, as outlined in Section 6.2. After
we complete the merge, and have computed U(root(T)), along with all the labels for the
points in U(root(T)), note that a point p; € U(root(T)) is a maximum if and only if
ztd(p;, root(T)) < z(p;) (there is no point that 2-dominates p; and has z-coordinate greater
than z(p;)). Thus, after completing the cascading merge we can construct the set of maxima
by compressing all the maximum points into one contiguous list using a simple parallel prefix

computation. We summarize in the following theorem:

Theorem 8.2: Given a set V of n points in R?, one can construct the set M of maximal
points in V in O(logn) time and O(n) space using n processors in the CREW PRAM model,

and this is optimal.

(The optimality follows from the fact that [163] have shown that this problem has an
Q(nlogn) sequential lower bound.)

It is worth noting that one can use roughly the same method as that above as the basis
step of a recursive procedure for solving the general k-dimensional maxima problem for
k > 3. The resulting time and space complexities are O((log n)*~?2) time using n processors
in the CREW PRAM model.

Next, we address the two-set dominance counting problem.

8.2 The Two-Set Dominance Counting Problem

In the two-set dominance counting problem we are given a set A = {¢1,42,---,¢m} and a
set B = {ry,rg,...,r} of points in the plane, and wish to know for each point r; in B the
number of points in A that are 2-dominated by r;. For simplicity, we assume that the points
have distinct x (resp. y) coordinates. The approach to this problem is similar to that of
the previous subsection, in that we will be performing a cascading merge procedure while
maintaining two labeling functions for each point. In this case the labels maintain for each
point p; (from A or B) how many points of A are 1-dominated by p; and also how many
points of A are 2-dominated by p;. As in the previous solution, the first label is used to

maintain the second. The details follow.
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Let Y = {p1,p2,---,Pi+m} be the union of A and B with the points listed by increasing
y-coordinate, i.e., y(p;) < y(pi+1). We can construct Y in O(logn) time using n pro-
cessors [87], where n = [ + m. The method for solving the two-set dominance counting
problem is similar to the method used in the previous subsection. As before, we let T
be a complete binary tree with leaf nodes vi,vs,...,v,, in this order, and in each leaf
node v; we store the list U(v;) = (—o0,p;), (—oo still being a special symbol such that
z(—00) < z(p;) and y(—o0) < y(p;) for all points p; in Y). We then perform a gener-
alized cascading-merge from the leaves of T' as in Theorem 6.5, basing comparisons on
increasing z-coordinates of the points (not their y-coordinates). We let U(v) denote the
sorted array of the points stored in the descendants of v € T sorted by increasing z-
coordinate. For each point p; in U(v) we store two labels: nod(p;,v) and ntd(p;,v) The
label nod(p;,v) is the number of points in U(v) that are in A and are 1-dominated by p;,
and the label ntd(p;,v) is the number of points in U(v) that are in A and are 2-dominated
by p;. Initially, the nod and ntd labels are only defined for the leaf nodes of T. That is,
nod(p;,v;) = nod(—oo,v;) = ntd(p;,v;) = ntd(—oo,v;) = 0. For each p; € Y we define
the function W 4(p;) as follows: Wa(p;) = 1 if p; € A, and U4(p;) = 0 otherwise. (We
also use pred(p;,v) to denote the predecessor of p in U(v).) As we are performing the

cascading-merge, we update the labels nod and ntd based on the following lemma.

Lemma 8.3: Let p; be an element of U(v) and let u = lchild(v) and w = rchild(v). Then

we have the following:

nod(p;, u) + nod(pred(p;, w), w) + U 4(pred(p;, w))
if p; € U(u)

nodPis) =9 pod(pred(pi, u), u) + nod(pi, w) + W (pred(ps, u)) ©)

if p; € U(w)
ntd(pi,u) if pi € U(u)
ntd(p;,v) = nod(pred(p;, u),u) + ntd(p;,w) + ¥ 4(pred(p;, u)) 4)
if p; € U(w)

By Lemma 8.3, when v becomes full (and we have U(u), U(w), and U(v) = U(u) UU (w)
available), we can determine the labels for all the points in U(v) in O(1) additional time
using |U(v)| processors. Thus, the running time of the cascading-merge algorithm, even
with these additional label computations, is still O(logn) using n processors. After we
complete the merge, and have computed U (root(T')), along with all the labels for the points

in U(root(T)), then we are done. We summarize in the following theorem:
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Theorem 8.4: Given a set A of | points in the plane and a set B of m points in the
plane, one can compute for each point p in B the number of points in A 2-dominated by
p in O(logn) time and O(n) space using n processors in the CREW PRAM model, where

n =1+ m, and this is optimal.

There are a number of other problems that can be reduced to two-set dominance count-
ing, and can thus be solved within the same bounds (i.e., in logarithmic time with linear
space and processors). We mention two here, the first being the multiple range-counting
problem: Given a set V of [ points in the plane and a set R of m isothetic rectangles
(ranges) the multiple range-counting problem is to compute the number of points interior
to each rectangle. Another problem that reduces to two-set dominance counting is rectilin-
ear segment intersection counting: Given a set S of n rectilinear line segments in the plane,

determine for each segment the number of other segments in S that intersect it.

8.3 Other Applications of Cascading

Cascading can be used to solve other problems, too many to cover in detail. We mention

the following:

e Trapezoidal decomposition. Given a set S of n planar line segments, determine for
each segment endpoint p the first segment encountered by starting at p and walking
vertically upward (or downward). An O(logn) time and n-processor CREW PRAM
algorithm is known [37]. This implies similar bounds for the polygon triangulation

problem [130, 132, 227].

e Topological sorting of n non-intersecting line segments. This is the problem of ordering
the segments so that, if a vertical line [ intersects segments s; and s; and ¢ < j, then the
intersection between [ and s; is above the intersection between [ and s;. An O(logn)
time, n-processor CREW PRAM algorithm is easily obtained by implementing the
main idea of the mesh algorithm of [45] (which reduces the problem to a trapezoidal

decomposition computation followed by a tree computation).

e Planar point location. Given a subdivision of the plane into polygons called faces,
build a data structure that enables one processor to quickly locate, for any query
point, the face containing it. Using n processors, cascading can be used to achieve

O(logn) time for both construction and query [37, 214, 93]. The planar point location
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problem itself tends to arise rather frequently, even in geometric problems apparently

unrelated to it.

e Intersection detection, all nearest neighbors, visibility from a point. For these prob-

lems, cascading can be used to achieve O(logn) time with n processors [37, 88].

Alternative approaches to cascading have been proposed for some of the above problems;
for example, see [53, 197, 226] and also the elegant parallel hierarchical approach of Dadoun
and Kirkpatrick [100, 99].

9 Cascading Without Concurrent Reads

In this section we briefly note that the same techniques as employed by Cole in [87] to
implement his merging procedure in the EREW PRAM model (no simultaneous reads) can
be applied to the algorithms for generalized merging, fractional cascading, 3-dimensional
maxima, 2-set dominance counting, and many others, resulting in EREW PRAM algorithms
for these problems. Applying Cole’s techniques to these algorithms results in EREW PRAM
algorithms with the same asymptotic bounds except that the space bounds for the problems
addressed in Section 8 all become O(nlogn). The reason that his techniques increase the
space complexity of these problems is because of our use of labeling functions. Specifically,
it is not clear how to perform the merges on-line and still update the labels in O(1) time
after a node becomes full. This is because a label whose value changes on level [ may have
to be broadcast to many elements in level [ — 1 to update their labels, which would require
Q(logn) time in this model if there were O(n) such elements.

One can get around the problems arising from the labeling functions, however [37].
For the 3-dimensional maxima problem and the two-set dominance counting problem we
separate the computation of the U(v) lists and computation of the labeling functions into
two separate steps, rather than “dove-tailing” the two computations as before. Each of
the labeling functions we used for these two problems can re-defined so as to be EREW-
computable. Specifically, the label for an element p in U(v), on level I, can be expressed
in terms of a label pref(p,v) and a label up(p,v), where pref(p,v) can be computed by
performing a parallel prefix computation [159, 164] in U(v) and up(p,v) can be defined
in terms of pref(pred(p,lchild(v)),lchild(v)), pref(pred(p,rchild(v)),rchild(v)), and the
up label p had on level | + 1 (say, in U(rchild(v)) if p € U(rchild(v))). In particular, for
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the 3-dimensional maxima problem pref(p,v) = zod(p,v) and up(p,v) = ztd(p,v), and for
the two-set dominance counting problem pref(p,v) = nod(p,v) and up(p,v) = ntd(p,v).
One can compute all the pref(p,v) labels in O(logn) time using n processors by assigning
[|U(v)|/logn] processors to each node v [159]. One can then broadcast each pref(p,v)
label to the successor of v in sibling(v), which takes O(logn) time using n processors by
assigning [|U(v)|/ log n] processors to each node v. Finally, one can compute all the up(p, v)
labels in O(logn) additional time by assigning a single processor to each point p and tracing
the path in the tree from the leaf node which contains p up to the root. This is an EREW
operation because computing all the up(p,v) labels only depends upon accessing memory
locations associated with the point p.

The EREW solution to the visibility from a point problem requires O(n logn) space for
a different reason (cf. [37]).

10 Matrix Searching Techniques

A significant contribution to computational geometry (both sequential and parallel) is the
formulation of many geometric problems as searching problems in monotone matrices [8, 6].
Geometric problems amenable to such a formulation include the largest empty rectangle
[10], various area minimization problems [8, 9, 206] (such as finding a minimum area cir-
cumscribing d-gon of a polygon), perimeter minimization [8] (finding a minimum perimeter
triangle circumscribing a polygon), the layers of maxima problem [8, 35], rectilinear shortest
paths in the presence of rectangular obstacles [29, 30], longest increasing chains [31, 35],
approximation of certain geometric shapes used in VLSI design [77], and shortest paths in
certain planar graphs with geometric structures [34, 204]. Many more problems are likely to
be formulated as such matrix searching problems in the future. This section discusses the

current best deterministic parallel solutions to these monotone matrix searching problems.

10.1 Row Minima

An important matrix searching technique for solving geometric problems was introduced by
Aggarwal et al. in [6], where a linear time sequential solution was also given. The technique
has myriads of applications to geometric and combinatorial problems [8, 6].

Suppose we have an m X n matrix A and we wish to compute the array 64 such that, for

every row index r (1 < r < m), 04(r) is the smallest column index ¢ that minimizes A(r, c)

32



(that is, among all the ¢’s that minimize A(r,c), 64(r) is the smallest). If 4 satisfies the
following sorted property:
0a(r) < 0a(r+1),

and if for every submatrix A’ of A, 64 also satisfies the sorted property, then matrix A is
said to be totally monotone [8, 6].

Given a totally monotone matrix A, the problem of computing array 64 is known as
that of “computing the row minima” of A [8]. The best EREW PRAM algorithm for this

problem runs in O(logn) time and n processors [46] (where m = n).

Theorem 10.1: The row minima (that is, the array 64) of an m X n totally monotone
matrix A can be computed in O(logm + logn) time with O(m + n) processors in the

EREW PRAM model.

Any improvement in these parallel complexity bounds will also imply corresponding
improvements on the parallel complexities of many geometric applications of this problem.
In fact [46] proves a somewhat stronger result: an implicit description of 64 can be com-
puted, within the same time bound as in the above theorem, by O(n) processors. From this
implicit description, a single processor can obtain any particular 64(r) value in O(logn)
time. One important ingredient that is crucial to the overall scheme is an O(max(n,logm))
time algorithm using min(n,logm) processors in the EREW PRAM model. The heart of
the CREW method uses a new kind of sampling and pipelining, where samples are evenly
spaced (and progressively finer) clusters of elements and where the “help” for computing
the information at a node does not come only from its children (as it did in Cascading)
but also from some of its subtree’s leaves. This CREW algorithm is later improved into an
EREW algorithm; this is achieved by (i) storing each leaf solution in a suitable parallel data
structure, and (ii) re-defining the nature of the information stored at the internal nodes. A
more specific overview follows.

Since the matrix A is understood, we henceforth use 8 as a shorthand for 4. Let R
denote the set of m row indices of A, C its n column indices. An interval of rows or columns
is a non-empty set of contiguous (row or column) indices [i, j] = {7,7+1,---,7}. We imagine
row indices to lie on a horizontal line, so that a row is to the left of another row if and only if
it has a smaller index (similarly “left of” is defined for columns). We say that interval I is

to the left of interval Is, and I5 is to the right of I, if the largest index of I; is smaller than
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the smallest index of I. Let I be a column interval, and let A; be the m x |I| submatrix of
A consisting of the columns of A in I. We use 67 as a shorthand for 64,. That is, if r is a
row index, then 6;(r) denotes the smallest ¢ € I for which A(r,c) is minimized. Note that
01(r) usually differs from 6(r), since we are minimizing only over I rather than C. Instead
of storing 6y directly, we shall instead store a function 7; which is an implicit description

of 0[.

Definition 1: For any column interval I and any column index ¢, w;(c) is the row interval
such that, for every row index r in that interval, we have 01(r) = c¢; wr(c) is empty if no

such r exists.

Note that the monotonicity of A implies that, if ¢; < ¢z, then 77(c;) is to the left of
mr(ce).

Note that each 77(c) can be stored in O(1) space, since we need only store the beginning
and end of that row interval. We actually use n; as an implicit description of #;. The
advantage of doing so is that we use O(|I|) storage instead of the O(|R|) that would be
needed for explicitly storing ;. The disadvantage is that, given a row index r, a processor
needs to binary search in the n; array for the position of row index r in order to determine
0:(r). Had we stored directly 07, 67(r) would be readily available in constant time. From
now on, we consider our problem to be that of computing the m¢ array. Once we have
me, it is easy to do a postprocessing computation that obtains (explicitly) 6 from 7o with
m processors: each column c gets assigned |mc(c)| processors which set 6(r) = ¢ for every

r € mc(c). Therefore Theorem 10.1 would easily follow if we can establish the following.

Theorem 10.2: 7¢ can be computed in O(log m + logn) time and O(n) processors in the

EREW PRAM model.
The following lemma is an important ingredient in the overall solution.

Lemma 10.3: The ¢ array can be computed in O(max(n,logm)) time with min(n,logm)

processors in the EREW PRAM model.

The bounds of the above lemma might look unappealing at first sight, but their signif-
icance lies in the fact that m can be much larger than n. In fact the overall solution uses

this lemma on problems of size m x (logn).
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Simple-minded approaches to proving the above lemma, like “use one processor to binary
search for m¢(c) in parallel for each ¢ € C” do not work, the difficulty being that we do
not know which m¢(c)’s are empty. In fact, if we knew which n¢(c)’s are empty then
we could easily achieve O(logm) time with n processors (by using the above-mentioned
straightforward binary search—e.g., binary search for the right endpoint of 7¢(c) by doing
logm comparisons involving the two columns ¢ and ¢, where ¢’ is the nearest column to
the right of ¢ having a nonempty m¢(c’)). The proof of the above lemma is in fact quite
elaborate (cf. [46] for its details).

In addition to using the above lemma, the overall CREW algorithm for this problem
also uses sampling and iterative refinement methods that are reminiscent of cascading, and
are similar to those used in [25] for solving in parallel the string editing problem. As in
cascading, it is useful to think of the computation as progressing through the nodes of a
tree T" which we now proceed to define.

Partition the column indices into n/logn adjacent intervals I, - - -, I,/ 10gp Of size logn
each. Call each such interval I; a fat column. Imagine a complete binary tree 7' on top
of these fat columns, and associate with each node v of this tree a fat interval I(v) (i.e.,
an interval of fat columns) in the following way: The fat interval associated with a leaf is
simply the fat column corresponding to it, and the fat interval associated with an internal
node is the union of the two fat intervals of its children. Thus a node v at height h has a fat
interval I(v) consisting of |I(v)| = 2" fat columns. The storage representation we use for
a fat interval I(v) is a list containing the indices of the fat columns in it; we also call that
list I(v), in order to avoid introducing extra notation. For example, if v is the left child of
the root, then the I(v) array contains (1,2,---,n/(2logn)). Observe that > o7 |[I(v)| =
O(|T|log |T|) = O((n/logn)logn) = O(n).

The ultimate goal is to compute 7o (c) for every ¢ € C.

Let leaf problem I; be the problem of computing 7z, (c) for all ¢ € I;. Thus a leaf problem
is a subproblem of size m x logn. From Lemma 10.3 it easily follows that the leaf problems
can all be solved in O(logn + logm) time by n processors. It remains to show that an

additional O(logn + logm) time with O(n) processors is enough for obtaining 7.

Definition 2: Let J(v) be the interval of original columns that belong to fat intervals in
I(v) (hence |J(v)| = |I(v)| - logn ). For every v € T, fat column f € I(v), and subset R’
of R, let 1, (R', f) be the interval in R’ such that, for every r in that interval, ;(,)(r) is a
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column in fat column f. We use “i,(R',*)” as a shorthand for “i,(R', f) for all f € I(v))”.

We henceforth focus on the computation of the 1,7y (R, *) array, where root(T') is the
root node of T'. Once we have the array 1,01 (R, *), it is easy to compute the required
me array within the prescribed complexity bounds: For each fat column f, we replace the
Yroot(r) (R, f) Tow interval by its intersection with the row intervals in the 7, array (which

are already available at the leaf Iy of T').

Lemma 10.4: (R, *) for every v € T can be computed by a CREW PRAM in time
O(height(T)+logm) and O(n) processors, where height(T') is the height of T (= O(logn)).

Since Y, e (|I(v)| + logn) = O(n), we have enough processors to assign |I(v)| + logn
of them to each v € T. The computation proceeds in logm + height(T) — 1 stages, each
of which takes constant time. Each v € T will compute 1, (R', x) for progressively larger
subsets R’ of R, subsets R’ that double in size from one stage to the next of the computation.
We now state precisely what these subsets are. Let R; denote the (m/2¢)-sample of R, so
that |R;| = 2°.

At the ¢-th stage of the algorithm, a node v of height h in T will use its |I(v)| + logn
processors to compute, in constant time, ¥, (R;_p, *) if h < ¢t < h+logm. It does so with the
help of information from ty(Ry 14, *), Yrefichitaw)(Be—hs*)s and Yrignichitdaw) (Be—hs *)s
all of which are available from the previous stage ¢t — 1 (note that (¢t —1) — (h—1) =t —h).
Ift < hort> h+logm then node v does nothing during stage ¢. Thus before stage h the
node v lies “dormant”, then at stage ¢t = h it first “wakes up” and computes v, (Ry, *), then
at the next stage t = h + 1 it computes 1, (R, %), etc. At stage t = h + logm it computes
Yy (Riogm, *), after which it is done.

See [46] for the details of what information v stores and how it uses its |I(v)| + logn
processors to perform stage t in constant time. In [46] a method is also given for avoiding
the use of the “concurrent read” capability of the CREW PRAM, thus making the results
hold in the EREW PRAM model.

10.2 Tube Minima

In what can be viewed as the three-dimensional version of the above row minima problem
[8], one is given an n; Xng X ng matrix A and one wishes to compute, for every 1 < ¢ < n; and

1 < j < mng, the ny x n3 matrix 4 such that 64(i,7) is the smallest index & that minimizes

36



A(i, k,j) (that is, among all the k’s that minimize A(i,k, j), 604(i,7) is the smallest). The

matrix A is such that 64 satisfies the following sorted property:
HA(Z,J) < HA(Z,] + 1)5

Furthermore, for any submatrix A’ of A, 64 also satisfies the sorted property.

Given such a matrix A, the problem of computing array 64 is called by Aggarwal and
Park [8] “computing the tube minima” of A. Many geometric applications of this problem
are mentioned in [8]. There are many non-geometric applications to this problem as well.
These include parallel string editing [25], constructing Huffmann codes in parallel [48], and
other tree-construction problems. (In [48], the problem was given the name “multiply-
ing two concave matrices”.) The best CREW PRAM algorithms for this problem run in
O(logn) time and n?/logn processors [8, 25], and the best CRCW PRAM algorithm runs
in O(loglogn) time and n?/loglogn processors [27] (where n = n; = ny = n3). Both the
CREW and the CRCW bounds are easily seen to be optimal.

We sketch the CRCW solution, which is an example of rootish divide and conquer.
A crucial ingredient in the solution is the judicious use of the “aspect ratio condition”:
intuitively, the idea is to allow the aspect ratio of the subproblems solved recursively to
deteriorate, but not too much, and in a controlled fashion.

We sketch a version of the algorithm that has the right time complexity, but does too
much work (hence uses too many processors).

The procedure is recursive, and requires that A be £ x h x £ with h < £2. We call
this last condition the aspect ratio requirement; we assume it to be true initially, and we
maintain it through the recursion (doing so without damaging the time complexity or the
work complexity is, in fact, the main difficulty in this preliminary algorithm). The prelim-
inary CRCW PRAM algorithm runs in O(loglog¢) time and has work (that is, number of
operations) complexity O((¢h + £2)(log £)?).

Before describing the algorithm, we need a few definitions and a review of some prop-
erties.

Let X (resp., Y) be a subset of the row (resp., height) indices of A, and let Z be a
contiguous interval of the column indices of A. The problem induced by the triplet (X, Z,Y)
is that of finding 0 4/ for the | X|x |Z| X |Y| submatrix A’ of A induced by X, Z and Y. That
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is, it consists of finding, for each pair u,v with u € X and v € Y, the smallest index k € Z
such that A(u,k,v) is minimized. This k need not equal 64 (u,v) since we are minimizing
only over Z. However, the following property holds [8, 25]. Assume X (resp., Y) is a
contiguous interval of row (resp., height) indices of A. Let z,z,y (resp., =/, 2',y') be the
smallest (resp., largest) indices in X, Z,Y respectively. If O4(z,y) = z and 04(z',y") = 2/,
then the solution to the triplet (X,Y, Z) gives the correct value of 64(u,v) for all u € X
and v € Y (this follows from the sortedness of 64).

The first stage of the computation partitions the row indices of A into £'/3 contiguous
intervals X1, Xo, -+, X,1/3 of size ¢%/3 cach. Similarly, the height indices of A are partitioned
into £/3 contiguous intervals Y7,Ys, - - -, Y13 of size 0213 each. An endpoint of an interval
X; (resp., Y;) is the largest or smallest index in it. For each pair v,w such that v is an
endpoint of X; and w is an endpoint of Y}, we assign h1*T(/6) processors which compute,
in constant time, the index @4 (v, w). (Computing the minimum of h entries using h'*(1/6)
processors is known to take constant time [211].) The total number of processors used in
this step of the algorithm is O(£/3¢1/3p1+(1/6)) which is O(¢h) because h < ¢2.

Let x (resp., ') be the smallest (resp., largest) index in X;, and let y (resp., y') be the
smallest (resp., largest) index in Y;. Let Z; ; be the interval [a,b] where a = 04(z,y) and
b=6a(z',y’). In the sequel, when we want to define such a Z; j, we shall simply say “let
Z; ; denote the interval of column indices of A defined by the set 64 (v, w) such that v € X;
and w € Y;”; we do so for simplicity of expression, although it is an abuse of language
(because Z; ; might include an index k that is not the 04(u,v) of any pair u € X;,v € Yj).

After the above stage of the computation we know the beginning and end of each such
interval Z; ;. As already observed, for any pair of indices u,v where v € X; and v € Y},
we have 04(u,v) € Z; ;. Thus it suffices to solve all of the subproblems defined by triplets
(Xi,Zij,Yj). However, some of these triplets might violate the aspect ratio condition
because their Z; ; is too large (larger than |X;|? = £*/3): Each such troublesome triplet (we
call it a bad triplet) will be further partitioned into k; ; = [|Z; j|/¢*/] smaller subproblems,
by partitioning Z; ; into k; ; pieces of size 2*/3 each (except that possibly the k; j-th piece
might be smaller). Specifically, if ZZ-(,’;-) denotes the k-th piece from this partition of Z; ;, then
the k-th subproblem spawned by the bad triplet (X;, Z; ;,Y;) is (X, Zi(f;-),Y}-). Of course

k

such a spawned subproblem (Xj;, Z (k)

i ,Y;) no longer has the property that 64(u,v) € ZZ-(’I;-)

for v € X; and v € Y;. However, the answer returned by solving such an (Xj, Zl-(’];-),Yj) is
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not meaningless: We can obtain @4 (u,v) for u € X; and v € Y; by choosing the best among
the k; ; candidates returned by the k; ; subproblems (XZ-,ZZ-(";-),YJ-), 1 <k <k We are
now ready to give the details of the second stage of the computation.

The second stage of the computation “fills in the blanks” by doing one parallel recursive
call on a number of problems, defined as follows. In what follows, we describe these problems
one at a time, but one should keep in mind that they are all solved in parallel. The first
class of problems to be solved recursively are the good ones, those defined by triplets
(X4, Zij,Y;) where |Z; ;| < ¢4/3. The Z; j of such a good problem is not large enough to
violate the aspect ratio constraint (because it satisfies |Z; ;| < |X;|?). The second class of
problems to be solved recursively are those spawned by the bad triplets (X;, Z; ;,Y;), namely
subproblems (X, ZZ-(’I;-), Y;), 1 < k < k; ;. By definition, each such (X;, Zz-(,];-), Y;) satisfies the
aspect ratio requirement. When these recursive calls return, we need not do further work
for the good triplets, but for the bad ones we only have the answers for the k; ; subproblems
they spawned. We can use these k; ; subanswers to get the correct answers in constant time,
however. For each bad triplet (X;, Z; ;,Y}), we need to compute, for every pair u € X; and

€ Y, the minimum among ; ; entries. We do so by using k; ;4'/® processors for each such
pair u € X; and v € Yj (this is enough, since we are then computing the minimum of &; ;

+(1/6)
J

entries using > kz-ly processors). Since there are ¢*/3 such u, v pairs per bad triplet, the

total work done for this “bad triplet postprocessing” is upper-bounded by ¢A/3p1/6 i ki

now, since
/31 /31
Yokij= > Dkas< Y 2w/ =0(n/),
iaj /6:—@1/3—1—1 7 ﬂ:_£1/3+1

this work is O(¢4/3h1/6h/¢) = O(h) (where the fact that h < £2 was used).

The bottom of the recursion is as usual: We stop when £ is some small enough constant
(note that, by the aspect ratio condition, a constant £ implies a constant h, since h < £2).

Analysis of the above shows that the time complexity satisfies T'(¢,h) = O(loglog¥),
and the work complexity satisfies W (£, h)O((¢h + £?)(log £)?).

The above algorithm does too much work. We refer the reader to [27] for a solution
that uses the above algorithm to achieve an optimal amount of work without requiring any

aspect ration condition.
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10.3 Generalized Monotone Matrices

Aggarwal et al. [7] considered some generalizations of monotone matrices. An m x n array

A is called staircase monotone if the following conditions hold:
1. Every entry of A is either a real number or co.

2. A[i,j] = oo implies that A[i,l] = oo for all I with [ > j, and A[k, j] = oo for all k£ with

k> 1.

3. Forany 1 <i<k<mandl<j<l<mn,Ali,j]+ Alk,I1] < Al 1] + Ak, j] if all the

four entries involved are finite.

Clearly, monotone matrices are a special case of staircase monotone matrices. It was in-
dicated in [7] that staircase monotone matrices, like monotone matrices, appear in numerous
applications (see [7] for references).

Efficient parallel algorithms for computing row-maxima in n X n staircase monotone
matrices were presented in [7]. In particular, the algorithms take O(logn) time and n
processors on the CRCW PRAM, and O(lognloglogn) time and n/loglogn processors
on the CREW PRAM. Using these parallel row-maxima algorithms for two-dimensional
staircase monotone matrices, several geometric problems were solved efficiently, such as
the largest-area empty rectangle among points contained in a given rectangle, the nearest-
visible or farthest-visible neighbors between two non-intersecting convex polygons, and other

related problems [7].

11 Other Useful PRAM Techniques

There are other geometric techniques on the PRAM that we did not describe in detail, yet

are also very useful. In particular, the following techniques are noteworthy.

11.1 Geometric Hierarchies

The paradigm of geometric hierarchies has proved extremely useful and general in com-
putational geometry, both sequential [157, 116, 117, 118] and parallel [100, 99]. Generally
speaking, the method consists of building a sequence of descriptions of the geometric objects
under consideration, where an element of the sequence is simpler and smaller (by a constant
factor) than its predecessor, and yet “close” enough that information about it can be used

to obtain in constant time information about the predecessor. This “information” could
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be, for example, the location of a query point in the planar subdivision, assuming that the
elements of the sequence are progressively simpler subdivisions of the plane (in that case,
pointers exist between faces of a subdivision and those of its predecessor — these pointers
are part of the data structure representing the sequence of subdivisions). This technique

turns out to be useful for other models than the PRAM.

11.2 From CREW to EREW

In order to turn a CREW algorithm into an EREW one, one needs to get rid of the read
conflicts, the simultaneous reading from the same memory cell by many processors. Such
read conflicts often occur in the conquer stage, and can take the form of concurrent searching
of a data structure by many processors (e.g., see [36, 68, 71]). To avoid read conflicts during

such concurrent searching, the scheme of [190] can be helpful:

Lemma 11.1 (Paul, Vishkin, Wagener): Suppose T is a 2-3 tree with m leaves, sup-
pose a1, ag, ..., a are data items that may or may not be stored in (the leaves of) T,
and suppose each processor P; wants to search for a; in T, 5 = 1, 2, ..., k. Then in
O(logm + log k) time, the k processors can perform their respective searches without read

conflicts.

Many types of searches can be accommodated by the above lemma. The following tends to

occur in geometric applications:
e Type 1: Searching for a particular item in the tree, and
e Type 2: Searches of the type “find the t-th item starting from item p in the tree”.

The search tree need not be a 2-3 tree: The requirements for the concurrent searching
scheme of [190] to be applicable are that (i) each node of the tree has O(1) children, and (ii)
the k searches should be “sortable” according to their ranks in the sorted order of the leaves
of the tree. (The scheme of [190] has other requirements, but they are needed only for the
concurrent insertions and deletions that it can also handle, not for searching.) Requirement
(i) is usually satisfied in geometric applications. Requirement (ii) is also clearly satisfied
for the searches of Type 1. It can be made to be satisfied for searches of Type 2 by sorting
the queries according to the leaf orders of their targets (this requires first doing a search of

Type 1 to determine the leaf order of p).
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11.3 Array-of-Trees

The array-of-trees data structure was originally developed in a non-geometric framework
[47] for designing parallel algorithms, and was later generalized in [133, 140] for parallelizing
a number of sweeping algorithms for geometric problems.

The array-of-trees data structure can be viewed as a parallel version of the persistence
paradigm of Driscoll et al. [121]. Suppose a sequence S of n operations is to be performed
in an on-line fashion, and S contains m < n set-modifying operations (e.g., insert, delete,
extract-minimum, etc). The idea in [47] is to maintain m relevant “snapshots” of a sequen-
tial data structure for evaluating S on-line, with O(logm) time per operation. Of course,
storing explicitly the m copies of the sequential data structure (with one copy for each
set-modifying operation) would be very expensive. Hence, a single “compressed” structure
T for the m logical data structures is used, such that this structure can be built and pro-
cessed in O(logm) time with m processors. Actually, the structure 7' can be considered as
an array of m trees that share nodes, such that the ¢-th tree stores the information that
is present right after the ¢-th set-modifying operation in S is performed (hence the name
“array-of-trees”). T is represented as a complete binary tree with m leaves. A node of T,
called a super-node, contains a number of minor-nodes that are nodes of the m individual
trees represented by 7'.

The array-of-trees data structures were generalized in [133, 140], becoming a general
technique for parallelizing sweeping algorithms for geometric problems. Note that the
“sweeping” paradigm has been widely used in designing sequential geometric algorithms
[124, 165, 193]. The array-of-trees based parallel methods in [133, 140] address those ge-
ometric problems for which the sweeping can be described either as a single sequence of
data operations or as a related collection of operation sequences. These methods establish
efficient parallel bounds for a number of geometric problems, such as computing the in-
tersections of line segments in the plane [133], several types of hidden-surface elimination,

CSG evaluation, and construction of the contour of a collection of rectangles [140].

11.4 Deterministic Geometric Sampling

A general type of geometric structure that has proven very useful in designing efficient ran-
domized as well as deterministic geometric algorithms is the geometric partition (e.g., see

[82, 84, 148]). The general framework is that given a collection X of n geometric objects
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in the d-dimensional space R? (e.g., lines or hyperplanes) and a parameter 7, one is to
construct a partitioning of the space R¢ into O(r¢) small sized cells, such that each cell
intersects as few objects of X as possible. This structure is particularly amenable to the
recursive design of divide and conquer based geometric data structures and algorithms. As
shown in [82, 84, 148], it is often possible to apply random sampling to construct a ge-
ometric partitioning of space, such that each cell intersects O(%g—r) objects on average.
Further, Chazelle and Friedman [66] proved that such a partitioning can be obtained de-
terministically in polynomial time (through derandomization), and it was also shown that
in certain situations even NC implementations are possible [51, 182]. Derandomization of
geometric algorithms based on random samples is often achieved by quantifying the combi-
natorial properties used by the random samples and by showing that the sets having such
combinatorial properties can be constructed efficiently in the deterministic fashion. Most
of the combinatorial properties needed by geometric random samples can be described by
the notions of the e-approximation [173, 223] and the e-net [148, 173].

Deterministic geometric sampling techniques have also been generalized by Amato,
Goodrich, and Ramos to designing parallel geometric algorithms, achieving parallel bounds
for a number of important problems that are more efficient than the previously known solu-
tions [18, 19, 22, 135, 136, 138, 142, 196]. These include 3-dimensional convex hull [18, 136],
d-dimensional convex hull for any fixed d > 3 [18], d-dimensional linear programming for
any fixed d > 2 [138, 142], intersections of planar line segments [19], arrangements of lines
and hyperplanes [135], lower envelope of constant degree algebraic functions of one variable
[196], various Voronoi diagrams [22, 196], etc. More interestingly, the parallel geometric
algorithms based on deterministic geometric sampling techniques often are also efficient in
the sense of being output-sensitive (see Subsection 11.5 for more discussion of this type of

parallel geometric algorithms).

11.5 Output-Sensitive Algorithms

Parallel output-sensitive algorithms are those whose complexity bounds depend on not only
the size of the input but also the size of the output. For example, when computing the
intersections of n line segments in the plane, the time and number of processors used by an
algorithm may depend on n as well as the number of the actual intersections between the
given line segments [19, 133, 202]. There have been quite a few interesting deterministic

output-sensitive PRAM algorithms for geometric problems. Notable examples of such algo-
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rithms are 3-dimensional convex hull [18], intersections of planar line segments [19, 133, 202],
lower envelope of constant degree algebraic functions of one variable [196], various Voronoi
diagrams [22, 196], rectilinear hidden-surface elimination [140], contour construction for a
collection of rectangles [140], construction of the visibility graph of a simple polygon [143],
etc.

The above parallel output-sensitive geometric algorithms are in general based on the
paradigm that the pool of virtual processors (in a slightly different PRAM model) can grow
as the computation progresses, provided that the processor allocation happens globally
[133, 202]. In this paradigm, r new processors are allowed to be allocated in time ¢ only
if an r-element array that stores pointers to the r tasks on which these new processors are
to begin performing in time ¢ + 1 has been constructed. This PRAM model is essentially
the same as the “standard” PRAM, with the exception that in the “standard” PRAM,

processors are requested and allocated only once (at the beginning of the computation).

11.6 Stratified Decomposition Trees

The stratified decomposition tree was used in [143] for solving efficiently in parallel visibility
and shortest path problems on a simple polygon. These polygon problems include shortest
path queries, visibility from an edge, visibility graph, finding the convex rope, finding all-
farthest neighbors, etc [143].

Given a triangulation of an n-vertex simple polygon P, let T' be a centroid decomposition
tree of the graph-theoretic planar dual of the triangulation (the centroid decomposition tree
T can be constructed from the triangulation of P in O(logn) time and n/logn processors
[91]). The tree T represents a decomposition of P into subpolygons. Let d be a chosen
integer parameter. A contraction operation is first performed on 7', such that for each node
v of T', the subtree T, of T rooted at v is “contracted” into a single node at v if and only if
the subtree T, of T rooted at every child w of v has less than d vertices but T, has at least
d vertices. Let T" be the contracted tree obtained from 7. Then mark every vertex v of T"
ifvisat alevel ixdof T" for i =0, 1, ..., or if v is a leaf of T". Let the marked vertices
form a “compressed” version S(T") of T" based on their ancestor-descendant relation in T7”.
The tree S(T") so obtained is the stratified decomposition tree for P (the name “stratified
decomposition tree” refers to the “layering” of the marked vertices in T"). By storing
appropriate information about certain shortest paths in the subpolygons associated with

the vertices of S(T"), the stratified decomposition tree can be used for answering shortest
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path queries in P and for solving other problems [143]. By choosing d = r[log*n] for a
certain constant r, the stratified decomposition tree can be built in O(logn) time using

n/logn CREW PRAM processors [143].

11.7 Prune-and-Search

Prune-and-search techniques have been used by many sequential geometric algorithms
[193]. In parallel, Cole [86] gave an efficient prune-and-search algorithm for solving the
selection problem [57, 95] on the EREW PRAM. Cole’s parallel selection algorithm takes
O(lognlog* n) time and O(n) work. When the k-th smallest element is to be selected from

an n-element set S, Cole’s algorithm [86] performs the following main steps:

1. Use k to find in S two “good” approximations to the k-th smallest element with ranks

k1 and ks respectively, such that k1 < k < kg and ks — k1 is sufficiently small.

2. Eliminate from S all the elements whose ranks are not in the range of [k1, k2], and

recursively solve the problem on the remaining elements in S.
3. When |S] is O(n/logn), use Cole’s parallel merge sort [87] to finish the selection.

Cole’s selection algorithm consists of O(log* n) recursion levels, with O(logn) time per level.

A key feature of Cole’s parallel selection algorithm is that the approximations are deter-
mined based on an already known rank k. But, this feature could limit the applicability of
Cole’s parallel prune-and-search technique. For certain problems such as two-variable linear
programming [122, 174] and weighted selection [95], finding in parallel good approximations
based on rank information as in [86] can be difficult, since useful rank information is not as
readily available as for the selection problem.

Actually, an EREW PRAM algorithm for two-variable linear programming can be
obtained by a straightforward parallelization of a sequential prune-and-search algorithm
[122, 174]: Select the median of the candidate elements, eliminate a constant fraction of
these elements, and recurse on the remaining elements. By using Cole’s EREW PRAM
algorithm for approximate median selection [86], one can simulate in parallel this sequential
prune-and-search procedure, until the number of the remaining elements is O(n/logn) (at
that point, one can simply apply a parallel algorithm for computing common intersection
of half-planes such as [71]). Such a parallel prune-and-search algorithm for two-variable

linear programming takes O(lognloglogn) time and O(n) work on the EREW PRAM. In
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fact, Deng [113] gave an O(logn) time, O(n) work algorithm on the CRCW PRAM for
two-variable linear programming that is based on such a parallelization of the sequential
prune-and-search procedure.

A more general parallel prune-and-search technique was recently developed in [78]. This
technique is different from Cole’s [86] in that it does not depend on any given rank infor-
mation. This new parallel prune-and-search technique has led to O(logn log* n) time, O(n)
work algorithms for two-variable linear programming and other problems on the EREW
PRAM. This is an improvement over the EREW PRAM algorithms of [123, 142] when ap-
plied to the two-variable case (the algorithms in [123, 142] are based on more sophisticated
parallel techniques). A key procedure used in the prune-and-search algorithms [78] is the

parallel algorithm of Chen et al. for partitioning sorted sets [75].

12 Further Remarks

In addition to the open problems in parallel computational geometry that we already men-

tioned earlier, the following open problems are likely to receive attention in the future:

e O(logn) time, optimal-work deterministic construction on the CREW or EREW
PRAM for Voronoi diagrams in the plane. The current best parallel bounds are
O(lognloglogn) time and %&gﬂn CREW PRAM processors [89], or O(log?n) time
and n/logn EREW PRAM processors [22, 196].

e O(logn) time, optimal-work deterministic construction on the CREW or EREW
PRAM for 3-dimensional convex hull. The current best parallel bounds are O(logn)
time and O(n!T¢) work on the CREW PRAM [21] (for any constant ¢ > 0), or
O(log® n) time and O(nlogn) work on the EREW PRAM [18, 136].

e O(logn) time, optimal-work deterministic EREW PRAM solutions for linear pro-
gramming in any fixed dimension d > 2. The current best EREW PRAM bounds are
O(lognlog* n) time and O(n) work for d = 2 [78], and O(log n(loglogn)?~1) time and
O(n) work for any fixed d > 3 [142].

e O(logn) time, optimal-work deterministic EREW PRAM solution for the row minima
in an n x n totally monotone matrix. The current best EREW PRAM bounds are
O(logn) time and O(nlogn) work [46] (and O(logn) time and O(n) work, but a

randomized solution [195]).
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The following are additional promising directions for future research:

e Output-sensitive PRAM algorithms. Most geometric problems remain open when
being looked at from the parallel output-sensitive perspective, that is, time and work
optimal algorithms are yet to be found. This is the case with the known deterministic
output-sensitive PRAM solutions [18, 19, 22, 133, 140, 143, 196, 202]. Recently, there
are also several randomized output-sensitive PRAM algorithms [83, 127, 134, 146, 196].

e Robust parallel algorithms. Recall that robust algorithms are such that their correct-
ness is not destroyed by roundoff errors. Most existing parallel geometric algorithms
misbehave if implemented with rounded arithmetic. There has been recently an in-
creasing interest in designing efficient and robust sequential algorithms for geometric
problems (see [169] for a list of references), and it is natural for this activity to spread

to the design of parallel geometric algorithms as well.
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