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Abstract

A considerable effort has been recently devoted to the

development of Database Management Systems (DBMS)

which guarantee high assurance security and privacy. An

important component of any strong security solution is rep-

resented by intrusion detection (ID) systems, able to detect

anomalous behavior by applications and users. To date,

however, there have been very few ID mechanisms specif-

ically tailored to database systems. In this paper, we pro-

pose such a mechanism. The approach we propose to ID

is based on mining database traces stored in log files. The

result of the mining process is used to form user profiles

that can model normal behavior and identify intruders. An

additional feature of our approach is that we couple our

mechanism with Role Based Access Control (RBAC). Under

a RBAC system permissions are associated with roles, usu-

ally grouping several users, rather than with single users.

Our ID system is able to determine role intruders, that is,

individuals that while holding a specific role, have a be-

havior different from the normal behavior of the role. An

important advantage of providing an ID mechanism specifi-

cally tailored to databases is that it can also be used to pro-

tect against insider threats. Furthermore, the use of roles

makes our approach usable even for databases with large

user population. Our preliminary experimental evaluation

on both real and synthetic database traces show that our

methods work well in practical situations.

1. Introduction

Data represent today an important asset. We see an in-

creasing number of organizations that collect data, very of-

ten concerning individuals, and use them for various pur-
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poses, ranging from scientific research, to demographic

trend analysis and marketing purposes. Organizations may

also give access to their data, or even release such data

to third parties. The increasing number of data sets be-

ing available, poses serious threats against the privacy

of individuals and organizations. Since privacy is to-

day an important concern, several research efforts have

been devoted to address issues related to the development

of privacy-preserving data-management techniques, such

as anonymization [21] and other privacy-preserving data-

mining techniques [11, 23]. Those techniques however

mainly aim at modifying raw data before releasing them to

other parties. The problem of developing Database Man-

agement Systems (DBMS) with high-assurance privacy and

confidentiality guarantees is not that trivial ([4]). To start

with, it requires a revision of architectures and techniques

adopted by current DBMS ([3]). In [3] it is also pointed out

that an important component of the new generation security-

aware DBMS is an Intrusion Detection (ID) mechanism.

ID systems specific to DBMS have not been much inves-

tigated before, whereas several ID approaches for networks

and operating systems exist. We believe that there are two

important reasons that motivate the development of DBMS-

specific ID systems. The first is that actions malicious for

a database application are not necessarily malicious for the

network or the operating system; thus ID systems specifi-

cally designed for the latter would not be effective for data-

base protection. The second, and more relevant motiva-

tion, is that ID systems designed for networks and oper-

ating systems are not adequate to protect databases against

insider threats, which is an important issue when dealing

with privacy. These threats are much more difficult to de-

fend against, because they are from subjects that are legiti-

mate users of the system, and thus may have access rights to

data and resources. As an example, suppose that a clerk in

a hospital usually accesses the tables and corresponding at-

tributes containing the addresses of patients to whom billing



information need to be send. Suppose now, that suddenly

this clerk issues a query accessing all attributes from the

relevant tables and retrieving all patient addresses at once.

Such a behavior, being so different from the normal behav-

ior, should at least raise an alarm. We believe that building

accurate profiles of legitimate user behavior and checking

user access patterns against such profiles guarantees better

control on the data usage, and it is a fundamental building

block of any privacy solution. In this paper we address this

problem by proposing a DBMS-specific ID system. It is im-

portant to note that our approach is based on the assumption

that these DBMS require a high degree of assurance and se-

curity and, hence, they have well defined usage and access

control policies in place. In the absence of such policies,

like in the case when all users are allowed to randomly ac-

cess every part of the database, the anomalies will be not

well-defined and therefore, non-trivial to detect.

1.1. Our Approach

One important fact that needs to be considered is that

databases typically have very large number of users. Thus,

keeping a profile for each single user is not feasible in prac-

tice. We have thus based our approach on the well-known

role-based access control (RBAC) model; we build a pro-

file for each role and check the behavior of each role with

respect to such profile. The RBAC model is widely used

for access-control management, both in closed and open

systems [10]. Authorizations are specified with respect to

roles and not with respect to individual users. One or more

roles are assigned to each user and privileges are assigned

to roles. Managing a few roles is much more efficient than

managing many individual users. With respect to ID, us-

ing roles means that the number of profiles to build and

maintain is much smaller than those one would need when

considering individual users. Other important advantages of

RBAC are that it has been standardized (see the NIST model

[19]) and has been adopted in various commercial DBMS

products as well in security enterprise solutions [12]. This

implies that an ID solution, based on RBAC, could be de-

ployed very easily in practice.

In the paper, we develop our ID solution for RBAC data-

base systems and in this context, the problem we address is

as follows: how to build and maintain role profiles repre-

senting accurate and consistent user behavior; and how to

use these profiles for the intrusion detection task at hand.

The approach we follow relies on the use of intrusion-free

database traces to extract user behavior. We build role pro-

files using a classifier. This classifier is then used for detect-

ing anomalous behavior.

The main challenge in attacking the problem is to ex-

tract the right information from the database traces so that

accurate profiles can be built. To address this problem, we

Figure 1. Overview of the ID process

propose several representations for the database log records.

Each such representation is characterized by different gran-

ularity and correspondingly, by different accuracy levels.

By using those representations, we then address our prob-

lem as a standard classification problem.

1.2. System Architecture

The system’s architecture consists of four main compo-

nents: the user that enters queries, the conventional DBMS

mechanism that handles the query evaluation process, the

database log files and the ID mechanism. The latter three

components constitute the new extended DBMS that is en-

hanced with an independent ID system, operating at the

database (application) level. The flow of the interactions

are as follows (Figure 1). Every time a query is issued, the

database log files are updated. In the training phase, the

intrusion detection system mines the existing log files and

forms role profiles. In the detection phase, for every new

query, the ID mechanism checks the query statement to de-

termine whether it is anomalous. If this is the case, an alarm

is raised. It should be noted that the role profiles are periodi-

cally updated (forming the New DB log in Figure 1), so that

they represent the most current and relevant role behavior

and false alarms are minimized.

1.3. Related Work

As we already mentioned, several approaches to ID at

the operating system and network level have been devel-

oped [5, 1, 13, 17, 22]. In addition to that, some schemes

have been proposed in the past related to developing an In-

trusion Detection mechanism for databases. Zhu et al. [9]

and Peng Liu [16] propose architectures for intrusion toler-

ant database systems. However, these approaches are more

focused on architectures for intrusion detection, and data-

base recovery in case of an attack rather than proposing

specific algorithms for performing the intrusion detection

task on a DBMS. Shu et al. [24] also describe an archi-

tecture for securing web based database systems without



proposing any specific intrusion detection schemes. Lee et

al. [14] describe a method for intrusion detection applica-

ble only to real-time database systems. Among the most

notable approaches towards a database-specific ID mecha-

nism are those of Hu et al. [8] and DEMIDS [6]. Hu et al.

provide mechanisms for finding dependency relationships

among transactions and use this information to ascertain

hidden anomalies in the database log. However, the work

which is conceptually most similar to our work is DEMIDS.

DEMIDS is a misuse detection system tailored to relational

database systems. It uses audit-log data to derive profiles

that describe typical users’ activities. The drawback of such

an approach, as mentioned earlier, is that the number of

users for a database system can be quite large and main-

taining/updating profiles for such large number of users is

not a trivial task. Moreover, the approach used by DEMIDS

to build user profiles assumes domain knowledge about the

data structures and semantics encoded in a given database

schema. This can adversely affect the general applicability

of their methods. We, on the other hand, propose to build

profiles using syntactic information from the SQL queries

which makes our approach more generic than others.

Other approaches to database security include privacy-

preserving DBMS. Architectures for hippocratic databases

[3] have been proposed as a mechanism to preserve the pri-

vacy of data they manage. But, even though the architec-

ture includes ID as a core component, it does not spec-

ify any methods for performing the ID task. Other re-

cent work related with privacy-preserving databases mainly

deals with topics such as data anonymization, privacy-

preserving data mining, or fine-grained access control and

auditing [15, 2, 20].

1.4. Paper road map

Next section describes the format of the log records and

the three different representation levels we propose. Sec-

tion 3 describes in detail the classifier used in our approach.

Section 4 reports experimental results on both synthetic and

real database traces. We conclude the paper by discussing

future work.

2. Preliminaries

In order to identify user behavior, we use the data-

base log files which are the primary source that naturally

comes to mind when information regarding users’ actions is

needed. We use the log-file entries, after being processed,

in order to form profiles of acceptable actions. Each entry

of the log file is represented as a separate data unit and then

these units are combined to form the desired profiles.

We assume that users of the database issue commands,

where each command is a different entry of the log file,

structured according to the SQL language. In particular, in

the case of queries such commands have the format:

SELECT [DISTINCT] {TARGET-LIST}
FROM {RELATION-LIST}

In order to build profiles, we need to transform the log

file entries into a format that can be processed and analyzed.

Therefore, we represent each entry by a data basic unit that

contains three fields, and thus it is called triplet.

Triplets are our basic unit for viewing the log files and

are the basic components for forming user and role pro-

files, since subjects’ actions are characterized by sequences

of such triplets. Each triplet contains information about the

SQL command issued by the user, the set of relations ac-

cessed and the set of attributes within the relations that are

referenced in the command. Therefore, the abstract form of

such a command consists of three fields (SQL Command,

Relation Information, Attribute Information). For sake of

simplicity in the adopted notation, we represent a generic

triplet with T (c,R,A) 1, where c corresponds to the com-

mand, R to the relation information and A to the attribute

information.

Depending on the detail required in the profile-

construction and in the ID phase, we generate the triplets

from the log files entries according to three different strate-

gies, each characterized by a different amount of recorded

information.

The first strategy generates triplets recording the least

amount of information. This strategy uses the so-called

coarse triplets or c-triplets which only record counters on

the number of relations and attributes required by a given

command. Therefore, c-triplets only model the cardinality

of the TARGET-LIST and RELATION-LIST, rather than

the specific elements they contain. The c-triplets are defined

as follows:

Definition 1. A coarse triplet or c-triplet is a represen-

tation of a log record of the database log file. Each c-

triplet consists of 3 fields (SQL-CMD, REL-COUNTER,
ATTR-COUNTER). The first field is symbolic and corre-

sponds to the issued SQL command, while the other two are

numeric and correspond to the number of relations and at-

tributes involved in the issued SQL command, respectively.

In terms of the triplet notation T (), here both R and A
have one element each, corresponding to the number of re-

lations and attributes involved in the query respectively. Ap-

parently, a large amount of valuable information in the log

is ignored by the c-triples. It is however useful to consider

1Depending on the type of triplet the two arguments R and A can be

of different types, but for simplicity and clarity we allow the symbols to be

overloaded. Whenever the type of triplet is vital, we will explicitly specify

it. However, when it is not specified our claims hold for all types of triplets.

Additionally note that R and A can also be viewed generically as vectors.



such a “primitive” data unit since it is sufficient in the case

of a small number of well-separated roles. Moreover, more

sophisticated representations of log file entries are based on

the definition of c-triplets.

The strategy records more information in the triplets

record more information than the first one. Such a strat-

egy uses the so-called medium-grain triplets or m-triplets.

These triplets extend the coarse triplets by further exploiting

the information in the query-log entry. Again, the m-triplet

represents a single log entry of the database log file and we

further consider each relation of the database separately by

recording the number of attributes, accessed by the SQL

command at hand, of each such relation. In terms of the

triplet notation T (), R and A are vectors of the same size

which is equal to the number of relations in the database.

The m-triplets are defined as follows:

Definition 2. A medium-grain triplet or m-triplet is a

data object which corresponds to a single entry of the

database log file and consists of 3 fields (SQL-CMD,
REL-BIN[], ATTR-COUNTER[]). The first field is

symbolic and corresponds to the issued SQL command, the

second is a binary (bit) vector of size equal to the number

of relations in the database. This bit vector contains 1 in its

i-th position if the i-th relation is included in the SQL com-

mand. The third field of the triplet is a vector of size equal

to the size of the REL-BIN[] vector. The i-th element of

the ATTR-COUNTER[] vector corresponds to the number

of attributes of the i-th relation that are involved in the SQL

command.

Finally, the third strategy is the one that extracts the

largest amount of information from the log files. This strat-

egy uses the so-called fine triplets or f-triplets; their struc-

ture is similar to that of the m-triplets. In particular, the first

two fields of the f-triplets are the same of the m-triplets. F-

triplets and m-triplets only differ for the third field which

in the f-triplets is a vector, called BIN-ATTR[[]], of vec-

tors. The i−th element of BIN-ATTR[[]] is a vector cor-

responding to the i-th relation of the database and having

size equal to the number of attributes of relation i. The vec-

tor elements are binary values indicating whether specific

attributes of the relation i have been used by the SQL com-

mand.

Here, R is a vector of size equal to the number of rela-

tions in the database while A is a vector of the same size,

but with each element i being a vector of size equal to the

number of attributes in relation i. The formal definition of

the f-triplets is as follows:

Definition 3. A fine triplet or f-triplet is a detailed repre-

sentation of a log entry. It consists of 3 fields (SQL-CMD,
REL-BIN[], ATTR-BIN[[]]). The first field is sym-

bolic and corresponds to the issued SQL command, the

second is a binary vector that contains 1 in its i-th posi-

tion if the i-th relation is included in the issued SQL com-

mand. The third field is a vector of N vectors, where

N is the number of relations in the database. Element

ATTR-BIN[i][j] = 1 if the SQL command at hand ac-

cesses the j-th attribute of the i-th relation and 0 otherwise.

Table 1 shows two SQL commands corresponding to se-

lect statements and their representations according to the

three different types of triplet. In the example we consider

a database consisting of two relations R1 = {A1, B1, C1}
and R2 = {B2,D2, E2}.

3. Classifier

This section describes in detail the classifier that has

been used for forming the profiles as well as for deciding

when to raise an intrusion alarm. Because information re-

lated to the roles of individuals is available from the data-

base traces, the problem at hand is transformed into a clas-

sification (supervised learning) problem and has been ad-

dressed as such. For starters, we describe a standard method

of solving the classification problem using the Naive Bayes

Classifier. Despite some modeling assumptions that one

would expect to degrade the performance of the classifier,

Naive Bayes classifier has several properties that make it

surprisingly useful in practice. Like all probabilistic clas-

sifiers under the Maximum Aposteriori Probability (MAP)

decision rule, it arrives at the correct classification as long as

the correct class is more probable than any other class; class

probabilities do not have to be estimated very well. In other

words, the overall classifier is robust to serious deficiencies

of its underlying naive probability model [7]. Additionally,

the probabilistic nature of the model enables us to raise an

alarm when the probability of a user, acting according to the

role he is claiming to have, is low.

In the sequel, we describe the general principles of the

Naive Bayes classifier (for details see [18]) and then we

show how they can be applied to our setting. In the super-

vised learning case each instance x of the data is described

as a conjunction of attribute values, and the target function

f(x) can only take values from some finite set V . Appar-

ently, the attributes correspond to the set of observations and

the elements of V are the distinct classes observed. In the

classification problem, a set of training examples DT is pro-

vided, and a new instance with attribute values (a1, ..., an)
is given. The goal is to predict the target value, or the class,

of this new coming instance.

The approach we describe here is to assign to this new

instance the most probable class value vMAP , given the at-

tributes (a1, ..., an) that describe it:

vMAP = arg max
vj∈V

P (vj |a1, a2, ..., an).



SQL Command c-triplet m-triplet f-triplet

SELECT A1, B1 select< 1 > < 2 > select < 1, 0 >< 2, 0 > select < 1, 0 >

FROM R1 < [1, 1, 0, 0, 0], [0, 0, 0, 0, 0] >

SELECT R1.A1, R1.C1, R2.B2, R2.D2 select< 2 > < 4 > select < 1, 1 >< 2, 2 > select < 1, 1 >

FROM R1, R2 < [1, 0, 1, 0, 0], [0, 1, 0, 1, 0] >

WHERE R1.E1 = R2.E2

Table 1. Triplets construction example

Using Naive Bayes Theorem we can rewrite the expression:

vMAP = arg max
vj∈V

P (vj |a1, a2, ..., an)

= arg max
vj∈V

P (a1, a2, ..., an|vj)P (vj)

P (a1, a2, ..., an)

= arg max
vj∈V

P (a1, a2, ..., an|vj)P (vj).

The last derivation is feasible because the denominator does

not depend on the choice of vj and thus it can be omit-

ted from the arg max argument. Estimating p(vj) is easy

since it requires just counting its frequency in the training

data. However calculating P (a1, a2, ..., an|vj) is not that

easy considering a large dataset and a reasonably large num-

ber of attributes. The Naive Bayes classifier is based on the

simplifying assumption that the attribute values are condi-

tionally independent. In this case:

vMAP = arg max
vj∈V

P (vj)
∏

i

P (ai|vj) (1)

The computational cost is thus reduced significantly be-

cause calculating each one of the P (ai|vj) requires a fre-

quency counting over the tuples in the training data with

class value equal to vj .

The conditional independence assumption seems to

solve the computational cost. However, there is another

issue that needs to be discussed. Assume an event E oc-

curring nEj number of times in the training dataset for a

particular class Cj with size |DCj | . While the observed

fraction (
nEj

|DCj |
) provides a good estimate of the probability

in many cases, it provides poor estimates when nEj is very

small. An obvious example is when nEj = 0. The cor-

responding zero probability will bias the classifier in an ir-

reversible way, since according to the last equation the zero

probability when multiplied with the other probability terms

will give zero as its result. To avoid this difficulty we adopt

a standard Bayesian approach in estimating this probability,

using the m-estimate defined as follows:

Definition 4. Given a dataset DT with size |DT | and an

event E that appears nEj times in the dataset for a class

Cj with size |DCj | and nE times in the entire dataset, then

the m-estimate of the probability pe =
nEj

|DCj |
is defined to

be:

pm
E =

nEj + m · nE

|DT |

|DCj | + m
.

The parameter m is a constant and is called equivalent sam-

ple size, which determines how heavily to weight pE relative

to the observed data. If nE is also 0, then we simply assume

the probability pm
E = 1

|DCj |
.

So far we have described how the Naive Bayes Classifier

works in a general setting. Applying the model to our in-

trusion detection framework is rather straightforward. The

set of classes that we consider is the set of roles R in the

system while the observations are the log-file triplets. In

the sequel, we show how equation 1 applies when the three

different types of triplets are considered.

For the case of c-triplets the application is straightfor-

ward since there are three attributes to consider namely the

command, the relation information and the attribute infor-

mation. Therefore, we have three numeric attributes c,R,A

that correspond to those three fields. If R denotes the set

of roles, predicting the role rj ∈ R of a given observation

(ci, Ri, Ai) requires, in accordance to equation ( 1):

rMAP = arg max
rj∈R

P (rj)P (ci|rj)P (Ri|rj)P (Ai|rj)

In the m-triplets, we again have three fields (c,R,A),
where R and A are vectors of the same cardinality. Except

for the command attribute c, the rest of the attributes con-

sidered in this case come from the product RAT . Therefore

there are |R · AT | + 1 attributes and equation (1) can be

rewritten as follows:

rMAP = arg max
rj∈R

P (rj)

N∏

i=1

p(R · AT [i]|rj).

Finally, in the case of f-triplets, where fields R and A are

vectors and vectors of vectors the corresponding equation

is:

rMAP = arg max
rj∈R

P (rj)

N∏

i=1

p(R[i] · A[i]|rj).



Now with the above definitions in place, the ID task is

rather straightforward. For every new query, its rMAP is

predicted by the trained classifier. If this rMAP is different

from the original role associated with the query, an alarm is

raised.

The procedure for ID can easily be generalized for the

case when a user can exercise more than one role at a time.

This is because our method detects intruders on a per query

basis and not on a per user basis; hence, as long as the role

associated with the query is consistent with the role pre-

dicted by the classifier, the system will not raise an alarm.

4. Experimental evaluation

In this section, we report results from our experimental

evaluation of the proposed approach and illustrate its per-

formance as an ID mechanism. Our experimental setting

consists of experiments with both synthetic and real data

sets. The objective of this evaluation is two-fold. First,

we present results comparing the behavior of our classifier

when log files are modeled using the three different triplet

representations. Second, we measure the performance of

our classifier in terms of the computational cost associated

with the training and detection phases. Before describing

our experimental findings, we give a brief outline of the data

sets and the quality measures we use for our evaluation.

4.1. Quality Measures

For the experimental evaluation, we analyze the quality

of results of our approach as an ID mechanism using the

standard measures of Precision and Recall. The precision

and recall statistics are defined as follows:

Precision =
# True Positives

# True Positives + # False Positives

Recall =
# True Positives

# True Positives + # False Negatives

Here, # False Positives is the number of false alarms

while # False Negatives is the number of times the system

is not able to detect the anomalous queries.

4.2. Data sets

Synthetic data sets: The synthetic data are generated ac-

cording to the following model: Each role r has a probabil-

ity, p(r), of appearing in the log file. Additionally, for each

role r the generating model specifies the following three

probabilities: (i) the probability of using a command cmd

given the role, p(cmd|r), (ii) the probability of accessing a

table T given the role, p(T |r) and (iii) the probability of ac-

cessing an attribute within a table a ∈ T given the role and

the table p(a|r, T ).

Real Data set: The real data set used for evaluating our

approach consists of over 6000 SQL traces from eight dif-

ferent applications submitting queries to a MS SQL server

database. The database itself consists of 119 tables with

1142 attributes in all. For more detailed description of the

data set we refer the reader to [25].

Intruder Queries generation: The intruder/anomalous

queries are generated by taking into account the insider

threat scenario. They are taken from the same probability

distribution as of normal queries, but with role information

negated. For example, if the role information associated

with a normal query is 0, then we simply change the role to

any role other than 0 to make the query anomalous.

4.3. Results

Test Cases 1, 2 and 3 show the relative accuracy of our

classifier with respect to the three triplet representations.

Test Case 1 (Figure 2) shows the inferior performance of

c-triplets compared to the other two alternatives. In this test

case, each role issues queries accessing approximately an

equal number of columns but from different tables. For this

reason, the queries when modeled by the c-triplets show a

lot of homogeneity across the roles. Hence, the classifier is

not effective in distinguishing between queries across dif-

ferent roles. This results in the low precision and recall

values for c-triplets. Test Case 2 (Figure 3) establishes the

superiority of f-triplets over c and m-triplets. In this case,

there is a partial overlap in the table access pattern of the

queries issued by the various roles. In addition to this, each

role accesses only a subset of the columns within a table

with a high probability. In such a scenario, f-triplets per-

form the best because they take into account the column ac-

cess pattern of the queries within a table, unlike m-triplets

which only take into account the number of columns ac-

cessed per table and c-triplets which only maintain a count

of total number of columns and tables accessed. Also, the

performance of all three triplet types improves with increas-

ing amount of training data. Test Case 3 (Figure 4) is a vari-

ant of Test Case 2 with varying number of roles and constant

training data (1000 tuples). As expected, f-triplets give the

best results in this case as well.

Finally, we tested our classifier on the real data set. For

this experiment, we consider 6602 SQL traces from 4 dif-

ferent applications as the training data for the classifier. Ta-

bles 2 and 3 show the quality of the results for the three

different triplet types. Not surprisingly, high quality is

achieved for all triplet types.
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Figure 2. Test Case 1: Precision and Recall statistics
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Figure 3. Test Case 2: Precision and Recall statistics
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Overall, the experimental evaluation reveals that in most

cases m and f-triplets capture the behavior of the data much

better than the c-triplets.

Triplet type False Negatives(%) False Positives(%)

c-triplet 2 18

m-triplet 2 15

f-triplet 3.4 16

Table 2. Real data, False negatives/positives

statistics

Triplet type Recall(%) Precision(%)

c-triplet 82 97.62

m-triplet 85 97.7

f-triplet 84 96.1

Table 3. Real data, Precision and Recall sta-

tistics

4.4. Performance

One of the many desirable properties of Naive Bayes

Classifier is its low computational cost. This is due to the

simple underlying probability model that assumes condi-

tional independence among the attributes. Due to this, the

role profiles can be built by the classifier in just one pass

over the training data. In this section we present results

demonstrating the low execution time of our approach, for

both the training phase and the intrusion detection phase.

Figure 5 shows the training time as a function of the

number of tuples in the training data, for the three proposed

triplet representations. As expected, the training time in-

creases linearly with the number of tuples in the training

data. Moreover, the training time for c-triplets is negligible,

since c-triplets need just three attributes to be represented.

One notable observation is that the training time for both m

and f-triplets is of the same order of magnitude. This is be-

cause both m and f-triplet representations contain the same

number of attributes. Still, the time for f-triplets is higher

than m-triplets approximately by a factor of 3. The reason

for this difference is the vectors of vectors representation of

f-triplets which makes their attribute-domain values much

larger than that of m-triplets. Figure 6 shows the training

time as a function of the number of attributes in the under-

lying database tables. Not surprisingly, the training time

increases with the number of attributes for both m and f-

triplets. Again, the order of magnitude of training time is

same for both of them.

The time complexity of the detection algorithm for our

classifier is in O(R × A) where R is the number of roles
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Figure 5. Training Time vs Training Data

 0

 500

 1000

 1500

 2000

 10  20  30  40  50  60  70  80  90  100

T
ra

in
in

g
 T

im
e

 f
o

r 
5

0
0

0
 t

u
p

le
s
 (

in
 m

s
)

Number of Attributes

m-triplet
f-triplet

Figure 6. Training Time vs Number of At-

tributes

present in the database and A is the number of attributes

considered by the classifier. Figure 7 gives the variation of

the detection time per query for databases with different to-

tal number of attributes. As expected, the detection time

increases almost linearly for increasing values in the num-

ber of attributes for both m and f-triplet types. However,

the worst-case scenario is still 1.54 milliseconds per query

(f-triplets, 100 attributes), which is negligible.

Overall, the performance experiments confirm the low

overhead associated with our approach. This gives us an

opportunity to explore the possibility of integrating our ap-

proach with other query processing features of a database

for an integrated online ID mechanism embedded inside a

database.
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5. Conclusions and Future Work

In this paper we investigated incorporating an intrusion

detection mechanism inside a DBMS. We considered three

models, of different granularity, to represent the log records

appearing in the database log files. In that way, we managed

to extract useful information from the log records regarding

the access patterns of the users. Since role information was

available in the log records, we used it for training a clas-

sifier that was then used as the basic component for our in-

trusion detection mechanism. Experimental results for both

real and synthetic data sets showed that our methods per-

form reasonably well.

As part of future work, we will investigate the case when

role information is not present in the log records. The prob-

lem of forming user profiles is then clearly unsupervised

and thus can be treated similarly to a clustering problem. In

this case, standard clustering algorithms can be employed

for constructing groups of users that seem to behave simi-

larly. These groups may also help the Database Adminis-

trator (DBA) to decide which roles to define. The intrusion

detection phase can then be addressed as an outlier detec-

tion problem. Another direction for future research is to

maintain sub-profiles within a role profile to capture the nor-

mal user behavior in a more intuitive sense. For example,

consider the behavior of a reservation agent that needs to

add bookings, modify bookings, cancel bookings, forward

bookings, run statistics on bookings, etc..Each of these can

be a separate class of behavior within the profile of a reser-

vation agent role. The intrusion detection task can then be

carried out as a combination of supervised and anomaly de-

tection approaches. In addition to this, we will also explore

better representations of SQL queries so as to capture not

only the syntactic but also the semantic information con-

tained in them.
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