

CERIAS Tech Report 2005-62

MODEL-BASED TESTING OF ACCESS CONTROL SYSTEMS THAT EMPLOY

RBAC POLICIES

by Ammar Masood, Rafae Bhatti, Arif Gahfoor, Aditya P. Mathur

This Tech Report was produced jointly with SERC

Center for Education and Research in

Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

Model-based Testing of Access Control Systems that Employ RBAC Policies

Ammar Masood1, Rafae Bhatti1, Arif Ghafoor1 and Aditya Mathur2
1School of Electrical & Computer Engineering, Purdue University, West Lafayette, IN

2Department of Computer Science, Purdue University, West Lafayette, IN

ammar@purdue.edu,bhattir@purdue.edu,ghafoor@ecn.purdue.edu,apm@cs.purdue.edu

Abstract

Access control is the key security service used for information and system security. The access control

mechanisms can be used to enforce various security policies, but the desired access control objectives

can only be achieved if the underlying software implementation is correct. It therefore becomes

essential to not only verify that the implementation conforms to the given policy but also to confirm

the absence of any violations in it. We propose a model-based strategy for testing implementations of

access control systems that employ the RBAC policy specification. Our approach is based on the

construction of a structural and behavioral model of the corresponding RBAC specification. The model

is then used to generate static and dynamic test suites for the corresponding implementation. The code

coverage and mutation score were used as metrics to determine the efficacy of the proposed approach

in a case study. The results of the case study show that the tests generated using the proposed approach

not only provide good control flow coverage of the implementation but are also effective in detecting

faults induced via mutation operators.

1 INTRODUCTION

Access control is used widely to restrict access to information. It is the key security service providing

the foundation for information and system security. Effective use of access control protects the system

from unauthorized users [Sandhu94]. The security policy enforced by access control mechanisms

could be specified through different representations, such as role based access control (RBAC)

[Ferra01], discretionary access control (DAC), and mandatory access control (MAC) [Sandhu94].

Regardless of the specification mechanism used, the desired access control objectives of a system can

only be achieved if the corresponding policy specifications are correctly enforced by the underlying

software implementation. Hidden functionality, coding errors, wrong configuration, etc. can seriously

jeopardize the effectiveness of the corresponding access control mechanism [Thom03]. It therefore

becomes essential to assure that the implementation realizes the specified policy correctly and

accurately. Such assurance requires the verification of an implementation�s conformance to the given

 1

policy, known as security functional testing [Chan04], and also the confirmation of the absence of any

violations, known as security vulnerability testing [Du00].

 We propose a model-based strategy for testing implementations of access control systems that

employ the RBAC policy specification. The model-based testing approach has been adopted as it can

be applied to systems developed in house, and to Commercial Off The Shelf (COTS) [Jilani98]

products. Through a case study, we show how a finite state model of the access policy specifications

can be used to automatically derive tests using a well known algorithm [Chow78]. Tests so derived

attained a high degree of control flow coverage of the implementation and, with the aid of program

mutation, were found effective in the detection of faults.

 Adopting model-based testing allows one to work with software specifications; the source code

is not required to perform the test. Using specifications for test generation has several other advantages

as compared to code/structure based test generation. As a specification provides the test oracle, a

strong relationship exists between the specification and tests that facilitate the location and existence of

errors [Stock96]. The test generation process also helps in finding the inconsistencies and ambiguities

in the specifications [Offutt03]. Another significant advantage of model-based testing is that tests can

be designed earlier in the life cycle of product development allowing for efficient resource allocation.

 An implementation is often tested for the presence of security vulnerabilities by execution

against a suite of test cases that represent known exploits [Thom03]. This methodology is restricted by

the assumption that only known exploits will be used against the product. In contrast, security

functional testing is able to verify the conformance to specifications though unable to determine any

unspecified or undesired behavior [Dima99]. We therefore argue that a model-based security testing

strategy, in which a formal model is used to generate tests, would be complementary to a strategy

based only on known exploits. As shown in this work, model-based testing provides a systematic

procedure for generating test cases for both security-functional and security-vulnerability testing. The

models can be constructed either from the underlying structure of the implementation or from the

corresponding access control policy specification; the testing technique can be considered, respectively,

as white or black box testing [Beiz90], [Beiz95], [Spence94], [Demillo87].

Contributions

Our contributions are summarized below.

 A method for the construction of structural and behavioral models of RBAC policy

specification.

 2

 Automated generation of a test suite from the structural and behavioral models for security

testing of the implementation.

 The adequacy and effectiveness assessment of proposed model-based security testing approach

through a case study.

 The remainder of this paper is organized as follows: Section 2 provides brief introduction to

model-based testing techniques; in particular finite state model based testing techniques. The RBAC

policy specification is formally defined in Section 3. Construction of structural and behavioral models

corresponding to a given RBAC policy specification is discussed in Section 4. Details of using these

models to generate a test suite for security testing are also presented in Section 4. In Section 5 we

describe a case study using the proposed model-based security testing method to test a prototype

RBAC system. We use control flow coverage and program mutation scores to assess the adequacy and

fault-detection effectiveness of tests generated automatically. The corresponding results are also

presented in Section 5. Section 6 summarizes the results of the case study. The related literature in

model-based testing and security testing is discussed in Section 7. Our conclusions and suggested

avenues for further research appear in Section 8.

2 MODEL-BASED TESTING USING FINITE STATE MODELS

One approach for applying black box testing uses a formal model of the implementation, usually

derived from its requirements, to determine test sequences. The model captures the expected behavior

of the implementation. This explicit modeling of the expected behavior makes it simpler and cheaper

to perform testing [Beiz95]. A common type of modeling is to represent the product under test by

means of finite-state machines (FSM) or state-transition diagrams (or state graphs) [Berto04]. State

graphs are a useful way to think about software behavior and testing [Beiz95].

For software designs modeled by a finite state machine (FSM), the W-method is a classic and

effective test generation approach [Chow78]. The W-method works by initially generating a test tree

from an FSM model and then concatenating the test sequences, generated from the test tree, with the

determined state characterization set (W). The resultant test cases generated are able to uniquely

identify each leaf node in the test tree. This strategy for test data selection was proved to be both valid

and reliable [Chow78, Good75]. The automata theoretic approach used in the W-method has been

used as a basis for other software testing strategies where the software design is modeled by FSMs.

The unique input output (UIO) [Sabn88] and the partial W (W-p) [Fuji91] methods are examples of

 3

methods that evolved out of the W-method. Automatic generation of test cases that satisfy different

coverage criteria such as transition coverage and state coverage for state-based specifications, has been

studied by Offutt et.al. [Offutt03]. The state-based specifications imply that the software functional

requirements are expressed in terms of states and transitions.

 The FSM model of a software design can be viewed as a directed graph with vertices

representing the program state and arcs indicating the input/stimuli that change the program state. Each

test case consists of a sequence of inputs which when applied to the implementation under test would

result in state changes and an expected behavior. The state changes are monitored for verifying the

adherence of implementation to its design. The FSM model representing a program can be very huge

as the number of states in the FSM grows exponentially [Fried02]. This phenomenon is traditionally

referred to as state explosion. The number of states increases as the model attempts to capture more

software execution details. State explosion would also result into test cases explosion. One technique

to cope with the state explosion problem utilizes a projected state machine model, where a projected

state represents a class of states under some equivalence relation [Fried02]. A reduction technique for

handling state explosion problem by utilizing structural symmetry information in the system

description has been presented in [Ip96]. The test case explosion problem has also been handled by a

combinatorial approach in which the generated tests ensure coverage of n-way combinations of the test

parameters [Cohen96, Dalal98].

Our focus in this paper is the security testing of access control systems using RBAC policy. In the

next section, we provide the details of an RBAC policy specification.

3 RBAC POLICY SPECIFICATION

In RBAC, the access control policy is specified by mapping permissions to roles to which users are

assigned. The permissions map the possible authorizations of a role in terms of specific operations that

a user activating that role can perform on the corresponding system resource. A user assigned to a role

cannot invoke the permissions of that role until the time that user actually activates that role.

Separation of duty (SoD) is a well-known authorization constraint used in commercial application

environments [Ahn2000]. A SoD constraint is intended to prevent a user from acquiring membership

of two constrained roles. An RBAC specification provides the rules for user-role assignment

(activation) SoD constraints, role hierarchy semantics and static/dynamic user (role) cardinality

constraints. A formal definition of RBAC policy specification follows.

 4

Definition 1 (RBACp): An RBAC policy (RBACp) is a structure RBACp={R, U, P, , Status,

Permitted, I}such that,

 R={r1, r2,��.. rn} is a set of n roles where each ri={Id, cs, cd} 1 i n is a tuple such that

(a) Id is the unique identification of ri

(b) cs
+
 is the static cardinality i.e. the maximum number of users that can be assigned

to this role

(c) cd
+

is the dynamic cardinality i.e. the maximum number of users that can activate

this role

 U={u1, u2,��..um} is the set of m users where ui={Id,cs,cd} 1 i m is a tuple such that

(a) Id is the unique identification of ui

(b) cs
+
 is the static cardinality i.e. the maximum number of roles to which this user can

be assigned

(c) cd
+

is the dynamic cardinality i.e. the maximum number of roles which this user can

activate

 P={p1, p2,��..pq} is a set of q permissions where pi={Id,obj,op}1 i q is a tuple such that

(a) Id is the unique identification of pi

(b) obj SystemResources
1
 is the system resource/object on which the specified operation

op SystemOperations can be carried out by a user activating such role to which pi is assigned

 (R x R) where ={ A, I} provides partial ordering on the set of roles such that

(a) ri A rj means that rj is senior to ri as per activation hierarchy (A-hierarchy) semantics

[Sandhu98]; a user assigned to rj can also be able to activate ri without being actually assigned

to it

(b) ri I rj means that rj is senior to ri as per inheritance hierarchy (I-hierarchy) semantics

[Sandhu98]; a permission assigned to ri will also be accessible by rj without being actually

assigned to it

 Status=URassign URactive PRassign is a set of status predicates partitioned as follows:

(a) URassign : U x R [0|1] where a 1(0) indicates that the given user is assigned (not

assigned) to the given role

1 SystemResources and SystemOperations are system specific sets that represent, respectively, all system resources and all

allowed system operations.

 5

(b) URactive : U x R [0|1] where a 1(0) indicates that the given user has activated (not

activated) the given role

(c) PRassign: P x R [0|1] where 1 (0) indicates that the given permission is assigned (not

assigned) to the given role

 Permitted=URcanAssign URcanActivate PRcanAssign is a set of allowable predicates partitioned as

follows:

(a) URcanAssign: D1 U x R [0|1] where the value of 1 (0) indicates that the given user can

be assigned (not assigned) to the given role

(b) URcanActivate: D2 U x R [0|1] where a 1(0) indicates that the given user can activate

(not activate) the given role

(c) PRcanAssign: D3 P x R [0|1] where a 1(0) indicates that the given permission can be

assigned (not assigned) to the given role

 I={Assignur, DeAssignur, Activateur, DeActivateur, Assignpr, DeAssignpr} is the set of input

requests allowed under the policy such that

(a) Assignur(u U, r R) is the input request to assign u to r

(b) DeAssignur(u U, r R) is the input request to remove assignment of u to r

(c) Activateur(u U, r R) is the input request to allow u to activate r

(d) DeActivateur(u U, r R) is the input request to allow u to Deactivate r

(e) Assignpr(p P, r R) is the input request to assign p to r

(f) DeAssignpr(p P, r R) is the input request to remove assignment of p to r

 As already mentioned, RBAC implements access control decisions by mapping users to roles;

permissions are assigned to roles. The access control decisions are guided by formally specified rules.

The set of Status and Permitted predicates provided by RBACp are used to define the rules that

constrain the possible assignments and activations within the given RBAC policy. These rules are

provided by the rule set () defined below.

Definition 2 (): The rule set ={ urAssignCard, urActivationCard, urSSoD, urDSoD, urHier, prHier, 1, 2, 3}

is the set of system rules that controls the access control decisions in a given RBACp={R, U, P, ,

Status, Permitted, I}. The rules are given in Table 1.

 6

Table 1: Rules in the rule set
Rule Explanation

urAssignCard(u U, r R)=1 iff URcanAssign(u,r)=1

URassign(u,r)=0 URassign(u,ri) cs|u
2

URassign(ui,r) cs|r

R

U

urAssignCard can only be 1 if the static cardinality constraints

corresponding to the given user u and role r are not violated by the

assignment of u to r.

urActivationCard(u U, r R)=1 iff [URcanActivate(u,r)=1

 urHier(u, r)=1] URactive(u,r)=0

URactive(u,ri) cd|u URassign(ui,r) cd|r
R U

urActivationCard can only be 1 if the dynamic cardinality constraints

corresponding to the given user u and role r are not violated by the

activation of r by u.

urSSoD(u U, r R)=1 given cssod |R r| iff

URassign(u,ri) cssod
R

where R is the static SoD (SSoD) set corresponding to r and cssod is

the cardinality of SSoD set i.e. the maximum number of roles to

which u can be simultaneously assigned in the set R r. urSSoD can

only be 1 if user u can be assigned to r such that the total number of

user-role assignments corresponding to u in the set R are less than

cssod.

urDSoD(u U, r R)=1 given cdsod |R r| iff

URactive(u,ri) cdsod
R

where R is the dynamic SoD (DSoD) set corresponding to r and cdsod

is the cardinality of DSoD set i.e. the maximum number of roles in

the set R r which can be concurrently activated by u. urDSoD can

only be 1 if user u can activate r such that the total number of user-

role activations corresponding to u in the set R are less than cdsod.

urHier(u U, r R)=1 iff URactive(u,r)=0 r R |

R R URassign(u, r)=1

where R :{r | r A r }. R is the set of all roles senior to r as per A-

hierarchy semantics (r is also member of this set). urHier(u,r)=1

implies that there is at least one such role r (could be r), senior to r,

to which u is currently assigned. A-hierarchy semantics thus permit

activation of a junior role by the user provided that the user is

assigned to at least one role senior to former.

prHier(p P, r R)=1 iff r R | R R

PRassign(p, r)=1

where R :{r | r I r }. R is the set of all roles junior to r as per I-

hierarchy semantics (r is also member of this set). prHier(p,r)=1

implies that there is at least one such role r (could be r), junior to r,

to which p is currently assigned. I-hierarchy semantics thus permit

assignment of permissions to a senior role on the basis of there being

assigned to a junior role.

1: Assignur(u U, r R)

Updatestatus
3 [URassign(u,r)=1] Updatepermitted

[URcanActivate(u,r)=1] iff urAssignCard(u, r)=1

urSSoD(u, r)=1 and DeAssignur(u U, r R)

Updatestatus [URassign(u,r)=0] Updatestatus

[URactive(u,r)=0]

This rules ensures that the user-role assignment corresponding to the

input Assignur(u,r) is allowed only if the user/role static cardinality

constraints and role SSoD constraints are not violated by such

assignment4.

2: Activateur(u U, r R) Updatestatus

[URactive(u,r)=1] iff urActivationCard(u, r)=1

urDSoD(u, r)=1 and DeActivateur(u U, r R)

Updatestatus [URactive(u,r)=0]

This rule ensures that the user-role activation corresponding to the

input Activateur(u,r) is allowed only if the user/role dynamic

cardinality constraints, role DSoD/A-hierarchy constraints are not

violated by such activation.

3: Assignpr(p P, r R) Updatestatus

[PRassign(p,r)=1] iff PRcanAssign(p,r)=1 prHier(p,

r)=1and DeAssignpr(p P, r R) Updatestatus

[PRassign(p,r)=0]

This rules ensures that the permission-role assignment corresponding

to the input Assignpr(p,r) is done only either if such assignment is

permitted directly in the policy or is allowed by virtue of I-hierarchy

semantics.

2 cs|u (cs|r) indicates static cardinality cs corresponding to u (r). The dynamic cardinality is also referenced similarly.
3 Updatestatus[x Status=0/1] implies that assignments/activations in the current RBAC state are updated so that the current

value of the corresponding predicate becomes 0/1, Updatepermitted denotes update of permitted predicate to the new value
4 The effect of complementary inputs e.g. DeAssignur is obvious and is thus not further explained

 7

 It is to be noted that in , all the access control decisions are actually enforced by the three

final rules 1, 2 and 3 while the remaining rules serve to support the final rules. The following

example elucidates security testing and illustrates a few of the rules mentioned above.

Example 1: Consider an RBAC policy specification involving users u1, u2 and roles r1, r2, r3. Suppose

that u1 is assigned to r1 and r2, and u2 is assigned to r2 and r3. Further, there is a SoD constraint on the

activation of r1 and r2. Subject policy is required to be enforced by an implementation. In this case,

security functional testing would be carried out to ensure the conformity of the implementation to its

specifications e.g. user u2 is always able to activate r2, user u1 cannot violate the SoD constraint and be

able to activate r1 and r2 simultaneously, etc. However, security vulnerability testing would test the

implementation for the presence of any undesired behavior, which in this case could be to test whether

or not it is possible for user u1 to become assigned to role r3 without any provision for such assignment

in the policy. The different components of the corresponding RBACp are:

U= {u1, u2} where u1= {u1, 2, 1} and u2= {u2, 2, 2}

R={r1, r2, r3} where r1={r1, 2, 1}, r2={r2, 2, 2}, r3={r3, 1, 1} and the DSoD set R corresponding to

r2(r1)={ r1}({r2}) with cR=1

Consider P= {p1, p2}, where p1= {p1, file, read} and p2= {p2, file, write}

The initial value of Permitted and Status predicates is shown in Table 2. We assume that the set of

inputs as given in Table 2 is already applied to the system when a decision is to be made regarding the

input Activateur(u1, r2). At that time the values of Permitted and Status predicates would have changed

from their initial value and are given by the �Final Value� in the table.

Table 2: Example 2
Initial Value Final Value

Permitted predicates Status predicates

Inputs Permitted predicates Status predicates

URcanAssign(u1, r1)=1

URcanAssign(u1, r2)=1

URcanAssign(u2, r2)=1

URcanAssign(u2, r3)=1

URcanActivate(u1, r1)=0

URcanActivate(u1, r2)=0

URcanActivate(u2, r2)=0

URcanActivate(u2, r3)=0

PRcanAssign(p1,r1)=1

URassign(u1, r1)=0

URassign(u1, r2)=0

URassign(u2, r2)=0

URassign(u2, r3)=0

URactive(u1, r1)=0

URactive(u1, r2)=0

URactive(u2, r2)=0

URactive(u2, r3)=0

PRassign((p1,r1)=0

Assignur(u1, r1)

Assignur(u1, r2)

Assignur(u2, r2)

Assignur(u2, r3)

Activateur(u1, r1)

URcanAssign(u1, r1)=1

URcanAssign(u1, r2)=1

URcanAssign(u2, r2)=1

URcanAssign(u2, r3)=1

URcanActivate(u1, r1)=1

URcanActivate(u1, r2)=1

URcanActivate(u2, r2)=1

URcanActivate(u2, r3)=1

PRcanAssign(p1,r1)=1

URassign(u1, r1)=1

URassign(u1, r2)=1

URassign(u2, r2)=1

URassign(u2, r3)=1

URactive(u1, r1)=1

URactive(u1, r2)=0

URactive(u2, r2)=0

URactive(u2, r3)=0

PRassign((p1,r1)=0

By rule 2, which decides the outcome of Activateur(u1, r2), u1 will be able to activate r2 only if

urActivationCard(u1, r2)=1 urDSoD(u1, r2)=1. However, in this case, as urDSoD(u1, r2)=0, the requested

activation will not be allowed.

 8

 As mentioned in Section 1, a software implementation is expected to fully enforce the access

control policy specified by RBACp . However, due to implementation errors, the policy may not be

correctly enforced. The purpose of security testing is to check the behavior exhibited by an

implementation for conformance to the expected behavior specified by RBACp. We envisage the

following sequential steps, shown graphically in Figure 1, that lead to a fully tested implementation.

 Step 1

Security

Testing (see

Figures 2 & 9)

Step 2Access Control

Policy

Specifications

Consistent

Specifications

Access Control

System

Implementation

Specification

verification

Policy

Implementation (RBACp)

Step 3

Security Verified

Implementation

Figure 1: Sequential steps leading to a verified implementation

 The first step in obtaining a security verified implementation is to verify the access control

system specifications for consistency. The result of specification verification is a consistent

specification (RBACp
5
) shown to be free of any conflicts. In step 2, RBACp is realized by the

underlying software implementation. Finally in step 3, the security testing is carried out, which is also

the scope of this paper, to validate the implementation with respect to RBACp.

4 MODEL-BASED SECURITY TESTING

We now propose a model-based strategy for security testing where RBACp is used directly to construct

the expected structural and behavioral models of the implementation. These models serve as inputs to

the test generation algorithm to generate the static and dynamic test suites (Figure 2). The test suites

are executed against the implementation and the results are correlated with the models. The advantages

of using models, directly based on RBACp, are two-pronged. First it offers a systematic procedure to

generate test suites directly from specifications and secondly, as already discussed in Section 2, proven

techniques exist for generating tests from suitable models, which can also be leveraged for our current

application.

5 We assume that RBACp is free of all inconsistencies and conflicts and is thus considered a verified policy. We thus do not

consider the problem of policy verification which has been addressed previously [Ahmed03, Lupu99]

 9

 In carrying out security testing of the implementation, the goal would ideally be to exhaustively

perform both the security functional and security vulnerability testing. However, as already mentioned,

vulnerability testing is limited by the extent of knowledge about the known exploits against the system.

While the proposed model-based approach for vulnerability testing remains restricted by the extent of

the implementation details captured by the model, it provides a systematic way to generate test cases

that directly correlate with the specifications.

SpecificationsSpecifications

State
Variables

State
Variables

Structural & Behavior
Models

Test Generator &
Output Correlator

ImplementationImplementation

Inputs

Outputs

SpecificationsSpecifications

State
Variables

State
Variables

Structural & Behavior
Models

Test Generator &
Output Correlator

ImplementationImplementation

Inputs

Outputs

Figure 2: Model based Security Testing

 We believe that security testing of access control systems can be performed under two

different paradigms: developer-oriented and user-oriented. In developer-oriented paradigm, the focus is

on the verification of the implementation with respect to the possible constraints/rules in the policy

specification. In the user-oriented paradigm, the focus is directed towards the verification of the

implementation within the constraints of the user operational domain. In the latter case, the end user

performs security testing to assure the effectiveness of the given access control system with respect to

the access control policies within the user�s expected operational environment. As compared to user-

oriented testing where RBACp would be readily available as a domain specification, in developer-

oriented testing, an additional requirement would be to generate suitable RBACp models to ensure

complete testing of the system. Our model-based security testing approach is equally applicable to

both the paradigms.

 10

4.1 Structural Model

 The structural model of the implementation includes all possible user-role and permission-role

pairs in RBACp. Hereafter, user-role and permission-role are abbreviated as UR and PR, respectively.

It is important to capture this information as RBACp might not convey information about all the

possible UR and PR assignments (i.e. D1 UxR and D3 PxR, as per Definition 1) whereas all

ambiguities must be resolved for verification of the implementation. The structural model is defined

below.

Definition 3 (Mstruct): The structural model (Mstruct) corresponding to RBACp is a tuple

Mstruct={URstruct, PRstruct} such that,

 URstruct={urstruct|urstruct U x R} is the set of urstruct elements where urstruct={ui, rj} 1 i m, 1 j

 n. Hence |URstruct|=m x n

 PRstruct={prstruct|prstruct P x R} is the set of prstruct elements where prstruct={pi, rj} 1 i q, 1 j

n. Hence |PRstruct|=q x n

 The static test suite, generated from the structural model, considers all ambiguous assignments

not to be allowed, and thus is also able to support vulnerability testing by looking for possible exploits

in the UR and PR assignments. One such exploit of u1 being able to get assigned to r3 was discussed in

Example 1. The static test suite is generated, and the implementation is executed against it, using

algorithm RunstructTest below. In RunstructTest, the actual output/response of the implementation for all

inputs is referenced by attaching the prefix �Out� to the corresponding input e.g OutAssignur(urstruct)

denotes the output corresponding to the input Assignur(urstruct).

 The algorithm RunstructTest, takes the structural model Mstruct and RBACp as inputs and applies

the UR (PR) assignment inputs, corresponding to all the URstruct (PRstruct) elements of Mstruct, to the

implementation. The results of the assignment operations are compared with the desired values

determined by the application of rule 1 or 3 on the corresponding input. If the former agrees with the

latter then the test passes, else it fails. The PR assignment tests are also able to verify the correctness of

the implementation of the I-hierarchy. It is to be noted that the de-assignment inputs are also applied to

the implementation to ensure the conformance of its structural model to RBACp.

Example 2: For the RBACp in Example 1, the corresponding Mstruct is:

URstruct={u1r1, u1r2, u1r3, u2r1, u2r2, u2r3}, PRstruct={p1r1, p1r2, p1r3, p2r1, p2r2, p2r3}

 In the algorithm RunstructTest, the for loop at lines 2-8 tests the implementation against all the

members of URstruct. As per RBACp, all these assignments should be valid except for u1r3 and u2r1. Any

 11

mismatch between the implementation and RBACp would lead to a failed test. Similarly, the for loop at

lines 9-15 tests the implementation for all the de-assignment operations corresponding to Mstruct.

 The for loop at lines 17-23 (and at lines 24-30) tests the implementation for conformance to

RBACp relative to the expected and desired outcome of the operations on members of PRstruct.

Algorithm RunstructTest 16 i 1, j 1
Input: Mstruct, RBACp 17 for each prstruct PRstruct
Output: URresult={urres1, urres2, ��urresm x n}, 18 do apply input Assignpr(prstruct)
PRresult={prres1, prres2, ��prresq x n} 19 apply rule 3 on Assignpr(prstruct) to determine

PRassign(prstruct)

1 i 1, j 1 20 do if OutAssignpr(prstruct)= PRassign(prstruct)
2 for each urstruct URstruct 21 then prresi �pass�
3 do apply input Assignur(urstruct) 22 else prresi �fail�
4 apply rule 1 on Assignur(urstruct) to determine

URassign(urstruct)
23 i i+1

24 for each prstruct PRstruct
5 do if OutAssignur(urstruct)= URassign(urstruct) 25 do apply input DeAssignpr(prstruct)
6 then urresi �pass� 26 apply rule 3 on DeAssignpr(prstruct) to determine

PRassign(prstruct) 7 else urresi �fail�

8 i i+1 27 do if OutDeAssignpr(prstruct)= PRassign(prstruct)

prresj �pass� 9 for each urstruct URstruct

10 do apply input DeAssignur(urstruct) 28 then prresj �pass�
11 apply rule 1 on DeAssignur(urstruct) to determine

URassign(urstruct)
29 else prresj �fail�

30 j j+1
12 do if OutDeAssignur(urstruct)= URassign(urstruct)

urresj = �pass�
31 return URresult, PRresult

13 then urresj �pass�

14 else urresj �fail�

15 j j+1

Figure 3: Procedure for running the static test suite.

4.2 Behavior Model

 As already noted, RBAC is used to manage a user�s ability to exercise permissions through the

mechanism of UR activations. Access to system resources is allowed only if the user activates a

suitable role to which the corresponding permission for desired access is assigned, or authorized, as per

the I-hierarchy. Thus the primary source of exploits in the implementation would be the user�s ability

to activate unauthorized roles. It therefore becomes important to not only completely test the

implementation for conformance of UR activations to the given RBACp, but also to verify that the

implementation does not allow any exploits, i.e. allow users to activate unauthorized roles not

specifically constrained by the policy.

 We therefore construct the behavior model (Mbehav) that represents an implementation�s desired

response to all possible sequences of UR activation inputs (Activateur). The behavior model is

essentially an FSM representing the expected behavior of the implementation corresponding to the

applied inputs. While constructing Mbehav, it is assumed that Mstruct has been verified through the

 12

execution of implementation against the static test suite, URstruct is then modified to generate URbehav

defined below:

Definition 4 (URbehav): It is obtained by trimming URstruct such that URbehav={urstruct| urstruct URstruct

 [(urres(urstruct)=pass Assignur(urstruct)=1) urHier(urstruct)=1]} where urres(urstruct) indicates the

value of urresi corresponding to the specific urstruct element.

 The urstuct would be a member of URbehav either if urres(urstruct)=pass URassign(urstruct)=1

which would be true if after performing the test using the static test suite, the corresponding UR

assignment is found valid in the system, or urHier(urstruct)=1. urHier(urstruct)=1 would be true if

corresponding to urstruct=(u,r), there is a ur struct=(u,r) such that URassign(ur struct)=1, and r R (as in

urHier(urstruct) definition). This condition would thus be true if the UR activation corresponding to the

given urstruct element is allowed as per A-hierarchy semantics. URassign(ur struct)=1 should now be valid

as the static test suite has already been used to verify the implementation.

 It is to be noted that URbehave URstruct, because URbehave includes only such elements of URstruct

for which the above definition holds. This is essential to reduce the number of state variables in the

model (see Definition 5); however, this would also limit the ability of a dynamic test suite to identify

such exploits where a user can activate a role without even being assigned to it or to some senior role

in the A-hierarchy. In order to overcome this shortcoming, we suggest the static validation of all

urstruct URbehave by verifying that corresponding to the application of input Activateur(urstruct) and rule

2, OutActivateur(urstruct)=0= URactive(urstruct), i.e. the specific UR activation is also not permitted in the

implementation.

4.2.1 Model Construction

 In Mbehav, a set of state variables characterizes the system state. Each state variable corresponds

to a UR pair and represents activation/deactivation of the given role by the corresponding user. Starting

from an initial state, the system state would change in response to the application of UR

activation/assignment (deactivation/deassignment) inputs. Without any constraints on the allowable set

of inputs, the state model would explode. We make the following assumptions to avoid state explosion

while constructing Mbehav.

(a) Users are assigned to the roles initially and no deassignment takes place dynamically.

 13

(b) A role cannot be deactivated after a user has activated a role. This restriction allows for the

identification of maximal states in Mbehav, i.e. the final states in the model. Without this

assumption the length of input sequences could be infinite.

(c) Once a particular UR activation has occurred, the corresponding input, which led to that

activation, is not available until the time the given activation terminates. This is a valid

assumption for access control implementations as in practice a logged user cannot login again

in the same system.

Definition 5 (Mbehav): The behavior model (Mbehav) of RBACp is a tuple Mbehav={ S, Ib, S , } such that,

 S={s1, s2, �..,st}is a finite set of t states such that si={URactive(urstruct)| urstruct URbehav} 1 i t,

is a set of status predicates corresponding to all elements of URbehav. Further, s1={ 0,0,0,�.0} is the

initial state i.e. initially there are no UR activations in the implementation.

 Ib={Activateur(urstruct)| urstruct URbehav} is the set of activation inputs corresponding to all such

urstruct elements which are also member of URbehav.

 S S x Ib , if S = S x Ib then Mbehav is fully specified; however as already discussed in

assumption (c), Mbehav will always be partially specified.

 : S S is the state transition function

Figure 4: Procedure for constructing

the behavior model

Algorithm Constructbehav
Input: URbehav, RBACp

Output: Mbehav

1 s1 {0,0,0,�.0} where |s1|=|URbehav|

2 generatenextState(s1, Ib|s1)

generatenextState(s, Ib|s)

3 for each Activateur(urstruct) Ib|s

4 do apply rule 2 on Activateur(urstruct)

5 to determine s {s | URactive(urstruct)}

6 (s, Activateur(urstruct)) s

7 do if s s

8 then generatenextState(s , Ib|s)

8 end for
s | URactive(urstruct) indicates new value of s

with updated value of URactive(urstruct)

 In algorithm Constructbehav (Figure 4) used for the

construction of Mbehav, Ib|s represents the set of activation

inputs available in state s, which would be constrained by

assumption (c) discussed above. After creating the initial state,

procedure generatenextState is called recursively until all possible

states are visited using depth first traversal. In generatenextState,

corresponding to each application of input Activateur(urstruct),

there could be two possible cases for the next state. First, the

next state is the same as the current state, which would be true

if the corresponding UR activation cannot be made due to the

violation of constraints as identified by 2. Second, the

algorithm would recursively traverse a different next state. It is easy to conclude that the algorithm

would terminate as there are only a finite number of possible states.

 Corresponding to Example 2, URbehav={u1r1, u1r2, u2r2, u2r3} and the resultant Mbehav generated

using Constructbehav is shown in Figure 5.

 14

s= (URactive(u1,r1), URactive(u1,r2), URactive(u2,r2) , URactive(u2,r3))

Activateur(ui,rj) is shown as uirj

0000

1000 0100 0010 0001

1010 1001 0110 0101 00111010 0110 00111001 0101

u1r1

u1r1

u1r2

u1r2

u2r2 u2r3

u2r3

u2r2 u2r3

1011

u2r2

0111

u2r3 u2r2

u2r3u2r2

1011 0111 1011 1011 0111 1011

u1r2u1r1 u2r3 u2r2u1r2u1r1

u2r3u2r3 u1r2 u1r1 u2r2 u1r2 u1r1u2r2

u1r2 u1r2

u1r2 u1r2 u1r2 u1r2

u1r1u1r2

u1r1

u1r1

u1r1

u1r1 u1r1

u1r1

u1r2

s= (URactive(u1,r1), URactive(u1,r2), URactive(u2,r2) , URactive(u2,r3))

Activateur(ui,rj) is shown as uirj

s= (URactive(u1,r1), URactive(u1,r2), URactive(u2,r2) , URactive(u2,r3))

Activateur(ui,rj) is shown as uirj

0000

1000 0100 0010 0001

1010 1001 0110 0101 00111010 0110 00111001 0101

u1r1

u1r1

u1r2

u1r2

u2r2 u2r3

u2r3

u2r2 u2r3

1011

u2r2

0111

u2r3 u2r2

u2r3u2r2

1011 0111 1011 1011 0111 1011

u1r2u1r1 u2r3 u2r2u1r2u1r1

u2r3u2r3 u1r2 u1r1 u2r2 u1r2 u1r1u2r2

u1r2 u1r2

u1r2 u1r2 u1r2 u1r2

u1r1u1r2

u1r1

u1r1

u1r1

u1r1 u1r1

u1r1

u1r2

Figure 5: Mbehav corresponding to Example 2

4.2.2 Dynamic Test Suite

 The dynamic test suite is constructed from Mbehav which is effectively an FSM representation.

The W-method is a classic test generation method [Chow78] to generate tests from an FSM

specification. Due to the proven fault detection effectiveness of test generated using the W method; we

decided to use it for generating the dynamic test suite. As mentioned earlier, the W-method works by

first generating a test tree from the FSM model and then concatenating the test sequences (generated

from the test tree) with the determined state characterization set (W).

0000

1000 0100 0010 0001

1010 10011000 0110 01010100 00111010 0110 00111001 0101

10111010

1011

01110110

0111

10111001

1011

01110101

0111

10111010

1011

01110110

0111

01111011

01111011

01110101

0111

01111011

01111011

10111001

1011

u1r1 u1r2 u2r2 u2r3

u2r2 u2r3 u2r3u2r2 u1r2u1r1 u2r3 u2r2u1r2u1r1u1r2 u1r1

u1r2 u1r2 u1r2 u1r2

u1r2 u1r2 u1r2 u1r2 u1r2 u1r2

u1r1u1r1 u1r1

u1r1 u1r1 u1r1 u1r1 u1r1 u1r1

u1r1 u1r1u2r3 u2r3 u2r3 u1r2u2r2 u2r2 u2r3 u1r2 u2r2 u2r2 u1r1

0000

1000 0100 0010 0001

1010 10011000 0110 01010100 00111010 0110 00111001 0101

10111010

1011

01110110

0111

10111001

1011

01110101

0111

10111010

1011

01110110

0111

01111011

01111011

01110101

0111

01111011

01111011

10111001

1011

u1r1 u1r2 u2r2 u2r3

u2r2 u2r3 u2r3u2r2 u1r2u1r1 u2r3 u2r2u1r2u1r1u1r2 u1r1

u1r2 u1r2 u1r2 u1r2

u1r2 u1r2 u1r2 u1r2 u1r2 u1r2

u1r1u1r1 u1r1

u1r1 u1r1 u1r1 u1r1 u1r1 u1r1

u1r1 u1r1u2r3 u2r3 u2r3 u1r2u2r2 u2r2 u2r3 u1r2 u2r2 u2r2 u1r1

Figure 6: Test Tree corresponding to Mbehav of Example 2

 15

 The W set consists of input sequences that can distinguish between behaviors of every pair of

states in the minimal FSM. We assume the existence of such reliable methods in the implementation

that can be used to directly check the state. Under this assumption, the states of Mbehav are readily

observable and therefore the W set is not required. Such an assumption has also been used in the

Binder round trip method [Binder99] for class testing in object-oriented programs. The dynamic test

suite is thus constructed from the test tree; the W set is not required. In constructing the test tree from

the FSM, if the added node at depth k is the same as some other node at depth i, i k, then that node is

terminated with no further edge out of it [Chow78]. The test tree corresponding to Mbehav of Figure 5 is

shown in Figure 6. The dynamic test suite is constructed from the test tree and executed on the

implementation via algorithm RundynamicTest given in Figure 7.

 In the algorithm RundynamicTest, nnode is the next

node in the path and is obtained through the function

nodenext that returns the next node in the path, to which

the implementation state is compared after applying the

input Activateur| (,currentnode, nnode). The input Activateur|

(,currentnode, nnode) denotes the input on the edge between

currentnode and nnode in the path in the test tree. On

reaching the last node of , the DeActivateur inputs are

applied in reverse order to the Activateur inputs so as to

take the implementation back to its initial state i.e. no UR

activations exist in the system. Applying RundynamicTest on

the test tree of Figure 6, it can be observed that one test

sequence would be u1r1, u2r2, u1r2, u1r 2, u2r 2, u1r 1, where

uir j denotes DeActivateur(ui,rj).

Algorithm RundynamicTest
Input: TestTree

Output: result {pass, fail}

1 n0 noderoot, currentnode n0, nnode null

2 for each path TestTree

3 do nnode nodenext

4 do while nnode null

5 do apply input Activateur| (,currentnode, nnode)

6 do if current implementation state nnode

7 then result �fail�

8 return result

9 else currentnode nnode

10 end while

11 do apply DeActivateur inputs in reverse order

12 to take implementation back to initial state

13 end for

14 result �pass�

15 return result

Figure 7: Procedure for constructing and

executing the dynamic test suite

 The total number of test sequences can be reduced by constructing a modified test tree where

instead of terminating a path at a repeated node, i.e. at a state with a self edge in Mbehav, the repeated

nodes, whenever encountered, are included explicitly in the path. This can be easily observed in the

modified test tree shown in Figure 8. In our case study (Section 5) we used the original test tree for

constructing the dynamic test suite.

 16

0000

1000 0100 0010 0001

1010 1001

1000

0110 0101

0100
00111010 0110 00111001 0101

1011

1010

1011

0111

0110

0111

1011

1001

1011

0111

0101

0111

1011

1010

1011

0111

0110

0111

01111011

01111011

0111

0101

0111

01111011

01111011

1011

1001

1011

u1r1 u1r2 u2r2 u2r3

u2r3

u2r3

u2r3

u2r2

u1r2

u1r1u1r2

u1r2

u1r2

u1r1

u1r1

u1r1

u1r1

u1r1

u1r1

u1r1u1r2

u1r2

u1r2

u1r2

u2r2 u2r2

u2r2

u2r3
u2r2

u1r1

u1r1

u1r1u1r2 u1r2

u1r2u1r2u1r1

u1r2 u1r1

u2r3

u2r3u2r3 u2r2 u2r2

0000

1000 0100 0010 0001

1010 1001

1000

0110 0101

0100
00111010 0110 00111001 0101

1011

1010

1011

0111

0110

0111

1011

1001

1011

0111

0101

0111

1011

1010

1011

0111

0110

0111

01111011

01111011

0111

0101

0111

01111011

01111011

1011

1001

1011

u1r1 u1r2 u2r2 u2r3

u2r3

u2r3

u2r3

u2r2

u1r2

u1r1u1r2

u1r2

u1r2

u1r1

u1r1

u1r1

u1r1

u1r1

u1r1

u1r1u1r2

u1r2

u1r2

u1r2

u2r2 u2r2

u2r2

u2r3
u2r2

u1r1

u1r1

u1r1u1r2 u1r2

u1r2u1r2u1r1

u1r2 u1r1

u2r3

u2r3u2r3 u2r2 u2r2

Figure 8: Modified Test Tree corresponding to Mbehav of Example 2

 The complexity of the algorithm RundynamicTest primarily depends on the complexity of the W-

method in construction of the test tree which is bounded by product of the number of states (in this

case 2^|URbehave|) and the number of input symbols (|URbehave|). However, by virtue of our experience

with the case study conducted in Section 5, it was observed that for most of the developer-oriented

testing, the number of states is not very high except for the tests related to �Role Activation

Constraints� (Table 4) for which we reduced the number of test cases by only traversing the test tree to

depth 1. For a large number of state variables, one solution could be to use combinatorial testing

strategies, such as covering arrays, to reduce the number of test cases [Dalal98].

5 CASE STUDY

In this section we present a case study in which the proposed model-based security testing approach

was used to verify a variant
6
 of the X-GTRBAC prototype system [Bhatti05]. The central idea is that

the system uses credentials supplied by users to assign them to roles subject to any assignment

constraints. The users can then access resources according to their role memberships subject to any

dynamic access constraints. The X-GTRBAC is an XML based system in which RBACp is specified

using XML policy files. The basic policy files are shown in Table 3 and the system architecture, with

added security testing module, is given in Figure 9. Details of the X-GTRBAC system are described

elsewhere [Bhatti05].

6 We considered the variant without temporal constraints

 17

Table 3: X-GTRBAC Policy Files [Bhatti05]
File Name Purpose
XML User Sheet (XUS) Declares the users and their authorization credentials

XML Role Sheet (XRS) Declares the roles, their attributes, role hierarchy, and any

separation of duty and temporal constraints associated with roles

XML Permission Sheet (XPS) Declares the available permissions

XML User-to-Role Assignment Sheet (XURAS) Defines the rules for assignment of users to roles; these

assignments may have associated temporal constraints

XML Permission-to-Role Assignment Sheet (XPRAS) Defines the rules for assignment of permissions to roles; these

assignments may have associated temporal constraints

XML Separation Of Duty Definition Sheet (XSoDDef) Defines the separation of duty constraints on roles

XML Credential Type Definition Sheet (XCredTypeDef) Defines the available credential types

5.1 X-GTRBAC System Security Test Process
The testing of X-GTRBAC system is performed through developer-oriented security testing for which

suitable RBACp models are generated to completely test the system as mentioned in Section 4. This is

achieved by generating a suitable set of policy files corresponding to the requirement of each RBACp

model. As shown in Figure 9, the test policies generated by the security testing module act as input to

both the system and the model generator. The model generator creates both the structural and behavior

models from the corresponding RBACp, and also constructs the respective test suites. The test vectors

sub-module runs both the static and dynamic suites on the system using the X-GTRBAC system

application programmer interface (API). Test results are compared with the expected outputs to verify

the system function.

X-GTRBAC Module

GTRBAC

Module

UR ,PR DataSet

TRIG DataSet

Sessions

DataSet

XML

Sessions

Log

GTRBAC Processor

Policy

Loader

Policy

Validation

Module

XML Processor

DOM

XML

Parser

Security Testing Module

Test

Policy

Model

Generator

Test Vectors
Output

Correlator

Expected

Output

Test Results

X-GTRBAC Module

GTRBAC

Module

UR ,PR DataSet

TRIG DataSet

Sessions

DataSet

XML

Sessions

Log

GTRBAC Processor

Policy

Loader

Policy

Validation

Module

XML Processor

DOM

XML

Parser

XML Processor

DOM

XML

Parser

Security Testing Module

Test

Policy

Model

Generator

Test Vectors
Output

Correlator

Expected

Output

Test Results

Figure 9: X-GTRBAC System + Security Testing Module

 18

5.2 Constructing Test Policies

 By using the test policy files, we are able to verify the ability of the X-GTRBAC system to

properly parse the XML files and correspondingly correctly implement the relevant RBACp. Different

policy files are composed depending on the particular aspect of the X-GTRBAC system to be verified.

Table 4: Policy Files Corresponding to Test Objectives
Test objectives XUS XRS XPS XURAS XPRAS XSoDDef
User Cardinality # user=1

User card=k

Add Cred=true

role=k+1

Role card=1

Hierarchy=false

Activ const=false

perms=p # user=1

not Assigned=0

role=k+1

perms=p

role=k+1

DSoD=null

SSoD=null

Role Cardinality # user=k+1

User card=1

Add Cred=true

role=1

Role card=k

Hierarchy=false

Activ const=false

perms=p # user=k+1

not Assigned=0

role=1

perms=p

role=k

DSoD=null

SSoD=null

DSoD # user=1

User card=k+1

Add Cred=true

role=k+1

Role card=1

Hierarchy=false

Activ const=false

perms=p # user=1

not Assigned=0

role=k+1

perms=p

role=k+1

DSoD card=k

SSoD=null

SSoD # user=1

User card=k+1

Add Cred=true

role=k+1

Role card=1

Hierarchy=false

Activ const=false

perms=p # user=1

not Assigned=0

role=k+1

perms=p

role=k+1

DSoD=null

SSoD card=k

Role Hierarchy # user=1

User card=k

Add Cred=true

role=k

Role card=1

Hierarchy=true

Activ const=false

perms=p # user=1

not Assigned=0

role=1

perms=p

role=1

DSoD=null

SSoD=null

User-Role

Assignment

user=k

User card=k

Add Cred=true

role=k

Role card=k

Hierarchy=false

Activ const=false

perms=p # user=k

not Assigned=k/2

role=k

perms=p

role=k

DSoD=null

SSoD=null

User-Role

Assignment Empty

user=k

User card=k

Add Cred=false

role=k

Role card=k

Hierarchy=false

Activ const=false

perms=p No entries made No entries made DSoD=null

SSoD=null

Role Activation

Constraints

user=1

User card=k

Add Cred=true

role=k

Role card=1

Hierarchy=true

Activ const=true

perms=p # user=1

not Assigned=0

role=k

perms=p

role=k-1

DSoD=null

SSoD=null

 Table 4 lists the details for each policy file created to verify a particular aspect of the system.

XCredTypeDef is the same for all tests and consists of two credentials, each with five attributes. While

testing the system for �User-Role Assignment� related objectives, the users are assigned credentials

from XCredTypeDef, which are compared with the role assignment constraints for allowing the

assignment, or otherwise. In Table 4, the test objectives specify a particular aspect of the system that is

verified using the corresponding policy files. The RBACp corresponding to the test policy files is used

to create the structural and behavioral models which are further used to generate the static and dynamic

test suites. In order to understand the semantics of the test objectives used in Table 4, we consider two

examples of �Role Hierarchy� and �User-Role Assignment.� We also tested the system for the

handling of incorrect and duplicate files.

 19

5.2.1 Role Hierarchy

Role hierarchy represents the objective to verify the correct implementation of X-GTRBAC hierarchy

semantics. This is achieved by generating such policy files in which a single user is assigned to the

most senior role from among a total of k roles (see the XURAS column in Table 4). The dynamic test

suite is then used to verify a user�s ability to activate all the junior roles as per the A-hierarchy

semantics. The I-hierarchy semantics are verified by only assigning p permissions to the most junior

role, and then verifying the assignment of the same to all senior roles through the static test suite. The

user and role activation cardinalities are set to k and 1, respectively. The �Add Cred= true� clause

imply that, user has credentials specified in XUS which are compared with role attributes in XURAS

for UR assignment. Moreover the �Activ const=false� clause of XRS implies that roles do not have

any activation restrictions. This permits the tests to only focus on the verification of hierarchy

semantics and not the UR assignment or the role activation semantics. The �DSoD=null� and

�SSoD=null� clauses imply that there are no DSoD and SSoD constraints on the UR assignments and

activations.

5.2.2 User-Role Assignment

 The objective of user-role assignment is to verify the correct implementation of UR assignment

controls as specified in the X-GTRBAC system. As already mentioned, the UR assignment is allowed

only if the corresponding user credentials satisfy the role assignment constraints specified in XURAS.

This is verified by creating XUS and XRS for an equal number (k) of roles and users. All users in

XURAS are assigned to all the roles such that the evaluation of assignment constraints would not allow

the assignments for k/2 users out of the total k users. In the X-GTRBAC system, the assignment

constraints can consist of multiple assignment conditions that are first evaluated individually, and then

collectively, through the use of one of the logical operators from the set {OR, NOT, AND}. Moreover,

the assignment conditions can also have multiple logical expressions whose collective evaluation is

again determined on the basis of the logical operator specified in the assignment condition. The

assignment constraints are therefore constructed such that all desired combinations of logical operators

for the assignment conditions, expressed as logical expressions, are checked for either true or false

value. The XURAS construction in this manner therefore permits the static test suite to fully verify the

correctness of the evaluation logic corresponding to the UR assignment constraints. The �User-Role

Assignment empty� test is designed to verify the system for the case where although there are users

 20

and permissions in XUS and XPS respectively, but no assignments for same are explicitly made in the

system.

5.3 Measuring Test Adequacy

We used statement coverage and condition coverage to assess the adequacy of the tests generated using

proposed model-based testing approach. Code coverage values are an indicator of the ability of the

tests to exercise various parts of the system. We used the Clover tool [Clover] to measure code

coverage in terms of �statement� and �conditional� coverage. For the test parameters given in Table 4,

the values used for measuring the code coverage are shown in Table 5.

Table 5: Test Parameters
Parameter Values Test objectives

k p
User Cardinality 3 2

Role Cardinality 3 2

DSoD 3 2

SSoD 3 2

Role Hierarchy 3 4

User-Role Assignment 20 2

User-Role Assignment Empty 3 2

Role Activation Constraints 20 2

 Except for �User-Role Assignment� for which only the static test suite was executed on the X-

GTRBAC system, both the dynamic and static test suites were executed on the system for the

remaining test objectives. The resultant coverage results for the complete system and individual

classes
7
 are presented in Tables 6 and 7, respectively. The coverage results are for a total of 29 classes

in 21 files with a total of 7,381 lines of code for 367 methods. The coverage results for the both tables

are categorized into statement, conditional, and methods coverage. The �initial coverage� in Table 7

shows the coverage results after we first executed the tests on the system by directly using the policy

files, generated as per the details in Section 5.2, without any modifications.

Table 6: Coverage Results: Complete System
Coverage Conditional Statement Methods Total
Initial 86% 94% 91.8% 91.7%
Final 97.2% 97.8% 95.4% 97.4%

 The reasons for less than 100% coverage were then investigated and shown in the �Initial

Comments� column in Table 7 Based on �Initial Comments,� corresponding to a test objective,

variants of test policy files were created to test the required functionality. The �final coverage� depicts

7The coverage of GUI classes is not measured as the tests directly use the API of the X-GTRBAC system and are not

designed to test the GUI classes in the system.

 21

the coverage results obtained after the modified test suites were executed on the system. The �Final

Comments� column indicates the reasons of less than perfect coverage even after execution against the

modified test suite. In most cases, the reason for less than complete coverage is either the presence of

redundant methods, included in the system for future extensions, or the presence of infeasible

conditionals.

Table 7: Coverage Results: Individual Classes
Class Initial

Coverage
Initial Comments Final

Coverage
Final Comments

CredType 95.2% Multiple addition of same credentials not checked 100 %

CredType.Attribute 100% 100%

DOMReader 96.4% Exception not tested for instantiation of

DocumentBuilder

96.4% Same as initial comments

DSDRoleSet 82.6% One method is redundant, multiple additions of same

role not checked, method called for displaying DSoD

set not checked

91.3% One method is redundant

GTRBACModule 93.5% One method is redundant, exceptions not tested for

files not found when trying to close/open the file or

parsing the file. One conditional not tested for true

97% Exceptions for file closing not tested. The

conditional cannot be tested for true because

decision parameter always has same value.

One method is redundant

LogicalExpr (LX) 98% One conditional not tested which checks for operator

to be null

100%

LX.SimplePredicate 100% 100%

PermRoleAssign (PRA) 90% Conditional for checking no permission addition not

tested for false

90% Conditional cannot be tested so because all

paths lead to true value

PRA.AssignPermission 76.7% One method is redundant 76.7% Same as initial comments

Permission 86.7% Three methods used for displaying relevant

information not tested. One conditional not tested for

false

96.7% The conditional cannot be tested for false

because all calls to it can only lead to true

value

Policy 69.4% Nine methods are redundant. Ten methods used for

displaying policy sheets not tested. Four conditional

not tested for false

91.2% Four conditionals cannot be tested for false

because all calls only lead to true value. Nine

methods are redundant

Role 98.1% Two conditionals to check addition of same

DSoD/SSoD not tested for true

100%

Role.RoleCondition 100% 100%

Role.RoleConstraint 92.8% Three logical expression operations not checked for

both true and false values

100%

SSDRoleSet 73.9% Two methods are redundant, a conditional to check

duplicate addition of same role is not checked for true

82.6% Two methods are redundant

Session 100% 100%

User 91.5% One method is redundant; a conditional to check

duplicate addition of same credential is not tested for

true. Absence of required credential not tested.

Conditional for checking absence of logical

expression in assign condition not tested for false.

95.8% Five conditionals cannot be tested for all

values because of constraints on all the paths

reaching them. One method is redundant.

UserRoleAssign (URA) 92.1% Two methods are redundant. A conditional to check

duplicate addition of same user not checked for true

94.7% Two methods are redundant.

URA.AssignCondition 100% 100%

URA.AssignConstraint 93.1% Conditional checking for no match of opCode not

tested for true. Conditional to check change in

duration expression not tested for false

100%

URA.CandidateUser 100% 100%

XCredTypeDef_DTDSc

anner

95.9% Conditionals for matching tags/attribute names in the

scanned XML file not tested for false

100%

XGTRBACMain 100% 100%

XPRAS_DTDScanner 96% Conditionals for matching tags/attribute names in the

scanned XML file not tested for false

100%

XPS_DTDScanner 96.8% 100%

XRS_DTDScanner 97.4% 100%

XSoDDef_DTDScanner 96.8% 100%

XURAS_DTDScanner 96.6% 100%

XUS_DTDScanner 98.7% 100%

 22

 Tables 6 and 7 show that the proposed model-based testing approach is able to achieve high

code coverage. These results are dependent on the correct identification of the test objectives and the

selection of the right parameters for the corresponding test policy files.

5.4 Measuring Test Effectiveness

Test adequacy was also measured using program mutation [Demillo78]. Program mutation creates

versions of the original program, known as mutants, through simple syntactic changes. The original

program and the mutants are then executed against the test cases to assess their adequacy. If the test

cases are able to distinguish a mutant from the original program then that mutant is considered

distinguished. Mutants, other then the ones distinguished, are considered live. A mutant could be live

because of one of two reasons: (a) the test cases are not strong enough to distinguish it from the

original program and (b) the program logic does not change from the original in the mutated program

i.e. the mutant is semantically equivalent to the original program. The latter type of live mutants are

considered equivalent and in general their identification is an undecidable problem. Test effectiveness

is measured as the ratio of distinguished mutants to the total number of non-equivalent mutants. This

ratio, multiplied by 100, is also known as the mutation score or mutant score. Higher mutation score

reflects a more effective test set. Program mutation has thus been widely used to compare the

effectiveness of different testing strategies [Kim00, Briand04, Andrews05].

 Table 8: Method Level Mutation Operators [Mujava]
Operator Description
AOR Arithmetic Operator Replacement

AOD Arithmetic Operator Insertion

AOI Arithmetic Operator Deletion

ROR Relational Operator Replacement

COR Conditional Operator Replacement

COI Conditional Operator Insertion

COD Conditional Operator Deletion

SOR Shift Operator Replacement

LOR Logical Operator Replacement

LOI Logical Operator Insertion

LOD Logical Operator Deletion

ASR Assignment Operator Replacement

 We used the Mujava tool [Mujava, Ma05] to perform mutation testing of the XGTRBAC

system. Mujava provides a framework for both the efficient generation of mutants and test case

execution for programs written in Java. Mujava uses two types of mutation operators, class level

[Ma02] and method level [Offutt96]. It uses an extended set of method level mutation operators that

 23

are based on the selective operator set proposed by Offutt et al. [Offutt96]. The method and class level

mutation operators are shown in Tables 8 and 9, respectively. Further details of the class level and

traditional mutation operators are in [Ma02, Ma05, Offutt96]. Mujava differentiates between live and

distinguished mutants by comparing the output from the execution of the original program against that

of a mutant on a test case.

 The results of mutation testing on the XGTRBAC system are summarized in Table 10. The

mutants were generated for the same set of class files (the inner classes are not shown separately) as in

Table 7. No mutant was generated for XGTRBACMain class because it simply initializes the testing

framework. Also, unused code, identified during the measurement of code coverage, was not mutated.

Mujava generates mutants, compiles them, and executes them automatically against the test cases,

provided in a separate class file. The original program and the mutants were executed against the same

set of tests used during coverage measurement.

Table 9: Class Level Mutation Operators [Ma05], [Mujava]
Language Feature Operator Description

IHD Hiding variable deletion

IHI Hiding variable insertion

IOD Overriding method deletion

IOP overriding method calling position change

IOR Overriding method rename

ISD super keyword deletion

ISI super keyword insertion

Inheritance

IPC Explicit call of a parent's constructor deletion

PNC new method call with child class type

PMD Instance variable declaration with parent class type

PPD Parameter variable declaration with child class type

PCI Type cast operator insertion

PCC Cast type change

PCD Type cast operator deletion

Polymorphism

PRV Reference assignment with other comparable type

OMR Overloading method contents change

OMD Overloading method deletion Overloading

OAC Arguments of overloading method call change

JTD this keyword deletion

JTI this keyword insertion

JSI static modifier insertion

JSD static modifier deletion

JID Member variable initialization deletion

Java-Specific

Features

JDC Java-supported default constructor creation

EOA Reference assignment and content assignment replacement

EOC Reference comparison and content comparison replacement

EAM Accessor method change

Common Programming

Mistakes

EMM Modifier method change

 24

 The results in Table 10 show a cumulative mutation score of 94%. A mutation score of 88%

was obtained corresponding to class mutants. The lack of 100% mutation score is explained in the

following section. Equivalent mutants were identified through manual analysis.

Table 10: Mutation Testing Results (Categorized by Classes)
Method Mutants Class Mutants Class

Total Disting
uished

Mutant
Score

(initial)

Equi-
vale-

nt

Mutant
Score
(final)

Total Disting
uished

Mutant
Score

(initial)

Equi-
vale-

nt

Mutant
Score
(final)

CredType 30 24 80% 5 96% 14 13 92% 0 92%

DOMReader 0 - - - - 3 1 33% 1 50%

DSDRoleSet 16 10 62% 6 100% 6 3 50% 0 50%

GTRBACModule 218 201 92% 13 98% 6 1 16% 5 100%

LogicalExpr 132 127 96% 5 100% 24 20 83% 4 100%

PermRoleAssign 26 24 92% 2 100% 18 12 66% 0 66%

Permission 43 42 98% 0 98% 35 28 80% 0 80%

Policy 376 362 96% 14 100% 39 20 51% 0 51%

Role 377 338 90% 12 93% 118 115 97% 0 97%

SSDRoleSet 16 10 62% 6 100% 6 3 50% 0 50%

Session 17 13 76% 2 87% 3 3 100% - 100%

User 246 220 89% 20 97% 28 18 64% 2 69%

UserRoleAssign 139 112 81% 15 90% 29 19 65% 0 65%

XCredTypeDef_DTDScanner 78 62 79% 0 79% 24 13 54% 4 65%

XPRAS_DTDScanner 90 79 87% 0 87% 71 56 78% 13 97%

XPS_DTDScanner 66 62 94% 0 94% 79 65 82% 11 96%

XRS_DTDScanner 287 256 89% 1 90% 222 173 77% 33 92%

XSoDDef_DTDScanner 122 111 90% 0 90% 111 90 81% 17 96%

XURAS_DTDScanner 203 203 100% - 100% 188 154 81% 26 95%

XUS_DTDScanner 214 189 88% 0 88% 152 108 71% 20 82%

All Classes (cumulative) 2696 2445 91% 101 94% 1176 915 78% 136 88%

6 DISCUSSION

The major task in developer oriented security testing, as is the case with security testing of XGTRBAC

system, is the creation of suitable RBACp specifications to adequately test the system. This is

important because RBACp is the sole source for construction of both structural and dynamic models

which are in turn used to generate the static and dynamic test suites, respectively. The test suites will

only be able to adequately exercise the implementation if the corresponding RBACp specifications are

able to completely exercise all the rules in the related rule set. The high code coverage results for

XGTRBAC system are thus primarily due to the correct identification of the test objectives and

selection of associated parameters for the creation of RBACp specifications.

 The results of mutation testing indicate a strong correlation between code coverage and

mutation score for method mutants. This is also expected because method mutants modify the

expressions in the program by replacing, adding, or inserting primitive operators; therefore, if tests

have good statement and conditional coverage then there reasonable chances of such mutants getting

distinguished. As compared to method mutants, mutation score for class mutants is not as high (88% as

 25

compared to 94% for method mutants). The following discussion is based on Table 11 which presents

the results of the mutation testing categorized by individual operators. It is to be noted that the

operators for which no mutants were generated are not included in Table 11.

Table 11: Mutation Testing Results (Categorized by Operators)
Method Level Mutation Operators

Mutant Score
Operator Total Distinguished Live Equivalent Original After Equivalence

Analysis
AOR 178 178 0 0 100% 100%

AOD 29 1 28 21 3% 12.5%

AOI 1489 1329 160 53 89% 93%

ROR 463 411 52 27 89% 94%

COR 8 6 2 0 75% 75%

COI 20 18 2 0 90% 90%

COD 6 5 1 0 83.3% 83.3%

LOI 503 497 6 0 99% 99%

Combined 2696 2445 251 101 91% 94%
Class Level Mutation Operators

Mutant Score
Operator Total Distinguished Live Equivalent Original After Equivalence

Analysis
PRV 116 96 20 3 83% 85%

JTI 6 6 0 - 100% 100%

JTD 6 6 0 - 100% 100%

JSI 75 30 45 15 40% 50%

JSD 20 0 20 18 0% 0%

JDC 2 2 0 - 100% 100%

EAM 918 746 172 100 81% 91%

EMM 33 29 4 0 88% 88%

Combined 1176 915 251 136 78% 88%

 It can be observed that the mutation score corresponding to all the major contributing method

level operators (AOI, LOI, ROR, AOR) is quite high (93%, 99%, 94%, 100%), thus resulting in a

overall good mutation score for method mutants. More than half (55%) of the total method level

mutants are due to the application of the AOI operator that inserts basic unary and short-cut arithmetic

operators in the code [Mujava]. As compared to AOR mutants, for which the mutation score is highest

(100%), the score corresponding to AOD mutants is much lower (12.5%) and has the highest ratio of

equivalent mutants (75%). Our analysis of AOD mutants revealed that the remaining 7 live mutants,

after equivalence analysis, were not distinguished by the test cases because of the limited check on the

return value of some function calls.

 Application of �EAM: accessor method change� class mutation operator generates most of the

class mutants (81% of total class mutants correspond to the application of EAM operator).

Consequently most of the non-equivalent live class mutants also belong to EAM mutants (63% of all

 26

live class mutants). EAM operator replaces an accessor method name with that of other compatible

accessor methods e.g. EAM_1 live mutant of Permission class changes �for (int i = 0; i <

policy.getPRAssignCount(); i++)� to �for (int i = 0; i < policy.getDSDRoleSetCount(); i++)�. The test

cases are not able to distinguish this change because of the same value of policy.getPRAssignCount()

and policy.getDSDRoleSetCount() established through the test policy files. In order to verify that the

subject mutant is not really equivalent, we actually created a test case to distinguish it. Our

investigation revealed similar reasons for nearly all of the other live EAM mutants.

 Although there are only 75 mutants (6% of total class mutants) generated through the

application of �JSI: static modifier insertion� class mutation operator, yet 50% of the JSI mutants (30

out of 60) are determined to be live even after equivalence analysis. As the JSI operator adds the static

modifier to change instance variables to class variables [Mujava], therefore if only a single instance of

an object is created by the test cases, the corresponding JSI mutant cannot be distinguished from the

original code. The above reason is the prime cause of the inability of the test cases to distinguish all the

live JSI mutants. It is also interesting to observe that the test cases were not able to distinguish any

class mutants corresponding to the application of �JSD: static modifier deletion� operator which

removes the static modifier to change the class variables to instance variables [Mujava]. The JSD

mutants were generated by Mujava only for the document scanner classes (last 7 classes in Table 10)

which are used for parsing the policy sheets, so only a single instance of these classes will be always

created and hence most of the corresponding JSD mutants could not be distinguished by any test case

and were thus considered equivalent.

 The above discussion highlights the fact that while performing mutation testing for class

mutants, their impact should be carefully considered while creating the RBACp specifications. As in

our case study, such analysis was not made at the initial stage of test policy construction (Section 5.2),

therefore the mutation score for class mutants is not very high.

 Mutation testing is based on the premise that the faults injected in the system through the

application of mutation operators, are representative of the actual possible faults. The mutation score

can therefore be used as a predictor of the fault detection effectiveness of the corresponding testing

strategy. A recent study by Andrews et.al. [Andrews05] also concludes that careful application of

mutation testing can provide a good estimate of the fault detection capability of the given testing

strategy. However, more experiments are needed to generalize these results to the assessment of fault

detection effectiveness of security testing strategies.

 27

7 RELATED WORK

7.1 Access Control Policies

Ferraiolo and Kuhn [Ferra92] proposed Role Based Access Control (RBAC). RBAC is shown to be a

more flexible approach as compared to DAC and MAC and can be used to represent both DAC and

MAC policies [Osborn00]. In DAC, the basic premise is that subjects have ownership over objects of

the system and subjects can grant or revoke access rights on the objects they own to other subjects at

the original subject�s discretion. Subjects can be users, groups, or processes that act on behalf of other

subjects. In MAC, the access is governed on the basis of subjects and objects classifications. The

subjects and objects are classified based on some predefined sensitivity levels. MAC policy is focused

towards controlling information flow with the aim to ensure confidentiality and integrity of

information, whereas DAC lacks in providing this support. RBAC has several advantages that allow it

to provide simplified security management [Bert99]. These include the abstraction of roles and use of

role hierarchy, principles of least privilege and separation of duty (SoD), and policy neutrality [Josh01].

These advantages distinguish RBAC from other models as a powerful model for specifying policies

and for specifying rules from any arbitrary organization-specific security model.

7.2 Model Checking based Testing

Model checking [Clark99] has also been used for software testing [Amma98, Gargan99]. Model

checking is an automatic technique used for verifying finite state systems. The properties to be verified

(normally specifications) are usually expressed as formulas in temporal logic. The formal model of the

system and the temporal formulas are then fed as input to a model checker which returns �true� if the

property holds or generates a counter example. The capability of model checker to generate counter

examples is used to create test cases [Amma98]. The mutation analyses of specifications yield mutants

which are used by the model checker to generate counter examples. Franseco et.al. [Franc03] have

used model checking to verify �secure information flow� and �secure termination� properties for

programs written in high-level languages. Model checking technique has also been used to analyze

security flaws in programs for which control flow graph is available [Besson01]. In [Besson01], a

formalism based on a linear-time temporal logic is introduced for specifying global security properties

pertaining to the control flow of the program. A model checking based approach for finding security

flaws in programs and verifying the absence of certain classes of vulnerabilities in them has been

presented in [Chen02]. Dependence of these techniques on the availability of control flow information

 28

restricts their usage for software products for which structural information is not available, which is

mostly the case with COTS components.

 Model checking has also been used for verification of sequential circuits [Burch94]. A tool for

automatic test pattern generation (ATPG) using model checking to detect physical defects in an

asynchronous circuit has been suggested in [Marco97]. A method similar to model checking has been

proposed for verifying finite state machines by using Ordered Binary Decision Diagrams [Coud89].

7.3 Specification Based Testing

Specification based testing has proposed using model-based specification languages such as Z and

VDM. Z and VDM have been used to represent the software specifications formally using

mathematical models. A predicate oriented approach based on VDM specifications is presented in

[Dick93]. Using Z based specifications for testing is discussed in [Stocks93], [Hier97], and

[Burt2000]. Specification based testing has also been investigated by converting the informal

specifications to cause effect graphs and applying a Boolean operator strategy to design and select test

cases [Parad97]. A method to generate tests from Boolean specifications of software is given in

[Weyu94]. In this study the quality of test cases is determined by applying the test cases against few

mutation-style faults. A scenario-based object oriented testing framework, which uses test scenario

specification as input has been proposed in [Tsai03] for adaptive and rapid testing.

7.4 Security Testing

A model-based approach for security functional testing has been proposed in [Chan04]. The text based

specifications of security functions are first transformed to SCR (software cost reduction) formal

language specifications which are later used to create the SCR behavioral model. The behavior model

is used to create test vectors which are then executed on the product. The necessity of risk-based

approaches for security testing is argued in [Potter04]. In risk-based approach, the risks are first

identified in the system and tests are then created based on the identified risks. A white box testing

approach for vulnerability testing of software systems using a variant of the fault injection technique

has been proposed in [Du00]. In this approach, each environment perturbation is considered a fault

which is then injected into the system and the resultant system response is observed to determine the

system�s ability to tolerate the fault. Another approach for penetration/vulnerability testing

recommends construction of tests based on perceived risks and the integration of test results back into

the organization software development life cycle [Arkin05].

 29

8 SUMMARY AND CONCLUSIONS

We have proposed a model-based approach for security testing of access control systems. The

proposed approach generates the static and dynamic test suites, for testing an implementation, from the

structural and behavioral models respectively of the corresponding RBAC policy specification. It thus

provides a systematic procedure for the construction of test suites.

 Code coverage and mutation score are measured in a case study to assess test adequacy and

effectiveness of the proposed model-based security testing approach. The results from our case study

indicate that in addition to the test generation technique, test adequacy and effectiveness is also

dependent on the correct identification of suitable RBAC specifications, which essentially acts as the

source for the proposed structural and dynamic models. The results of test coverage and effectiveness

measurements from our case study indicate a strong correlation between mutation score for method

mutants and code coverage. Moreover, it was observed that the mutation score of class mutants is also

strongly dependent on the construction of RBAC specifications. In the future, we would like to extend

our model-based testing approach to access control systems using RBAC policy specifications with

temporal constraints.

References

[Ahmed03] T. Ahmed and A.R. Tripathi, Static Verification of Security Requirements in Role Based

CSCW Systems. Proc.of ACM SACMAT, pp. 196-203, 2003.

[Ahn2000] G. Ahn, R. Sandhu. Role-Based Authorization Constraints Specification. ACM Transactions on
Information and System Security, 3(4), pp. 207-226, 2000.

[Amma98] P. E. Ammann, P. E. Black, and W. Majurski. Using Model Checking to Generate Tests from

Specifications. Proc. of 2nd IEEE International Conference on Formal Engineering Methods (ICFEM'98), pp.

46-54, 1998.

[Andrews05] J.H. Andrews, L.C. Briand and Y. Labiche. Is mutation an appropriate tool for testing

experiments?. Proc 27th international conference on Software engineering (ICSE’05), pp. 402-411, 2005.

[Arkin05] B. Arkin, S. Stender, G. McGraw. Software penetration testing. IEEE Security & Privacy
Magazine, 3(1), pp. 84 � 87, 2005.

[Beiz90] B. Beizer. Software Testing Techniques. Van Nostrand Reinhold, 1983.

[Beiz95] B. Beizer. Black Box Testing. John Wiley & Sons, Inc. 1995

[Bert99] E. Bertino, E. Ferrari and V. Atluri. The specification and enforcement of authorization

constraints in workflow management systems. ACM Transactions on Information and System Security, 2(1), pp.

65-104, 1999.

 30

http://www.sqi.gu.edu.au/icfem98/

 [Besson01] F. Besson, J. Jensen, D.L. Me´tayer, and T. Thorn. Model Checking Security Properties of

Control Flow Graphs. Journal Computer Security, 9(3), pp. 217-250, 2001.

[Bhatti05] R. Bhatti, J.B.D. Joshi, E. Bertino and A. Ghafoor. X-GTRBAC: An XML-based Policy

Specification Framework and Architecture for Enterprise-wide Access Control. ACM Transactions on
Information and System Security (TISSEC), 8(2), pp. 187-227, 2005.

[Binder99] R.V Binder. Testing Object-Oriented Systems - Models, Patterns, and Tools. Object Technology,
Addison-Wesley, 1999.

[Briand04] L.C. Briand, M. Di Penta and Y. Labiche. Assessing and improving state-based class testing: a

series of experiments. IEEE Transactions on Software Engineering, 30(11), pp. 770- 783, 2004.

[Burch94] J.R. Burch, E.M. Clarke, D.E. Long, K.L. McMillan and D.L. Dill. Symbolic model checking

for sequential circuit verification. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems. 13(4) pp. 401 � 424, 1994.

[Burt2000] S. Burton. Automated Testing From Z Specifications. TR YCS-2000-329 Department of
Computer Science ,University of York, Heslington, York.

[Chan04] R. Chandramouli. M. Blackburn. Automated Testing of Security Functions using a combined

Model & Interface driven Approach. Proc. 37th Hawaii International Conference on System Sciences, pp. 299-

308, 2004

[Chen02] H. Chen, D. Wagner. MOPS: An infrastructure for examining security properties of software.

Proc. 9th ACM Conference on Computer and Communications Security, pp. 235-244, 2002.

[Chow78] T. S. Chow. Testing Software Design Modeled by Finite-State Machines. IEEE Transactions on
Software Engineering, 4(3), pp. 178-187, 1978.

[Clark99] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[Clover] Java Coverage Tool. www.cenqua.com/clover/

[Cohen96] D.M. Cohen, S. R. Dalal, J. Parelius and G. C. Patton. The combinatorial design approach to

automatic test generation. IEEE Software. 13(5), pp. 83-88, 1996.

[Coud89] O. Coudert, C. Berthet, and J. C. Madre. Verification of synchronous sequential machines based

on symbolic execution. International Workshop on Automatic Verification Methods for Finite State Systems.
Lecture Notes in Computer Science Springer Verlag, 407,1989.

[Dalal98] S.R. Dalal, A. Jain, N. Karunanithi, J. M Leaton and C. M. Lott. Model-based testing of a

highly programmable System. Proc. Ninth International Symposium on Software Reliability Engineering
(ISSRE), pp. 174-179, 1998.

[Demillo78] R.A. DeMillo, R.J. Lipton and F.G. Sayward. Hints on test data selection: help for the

practicing programmer. IEEE Computer, 11(4). pp. 34-41, 1978.

[Demillo87] R.A. DeMillo, M. McCracken, R.J. Martin and J F. Passafiume. Software testing and Evaluation.

The Benjamin/Cummins Publishing Company. 1987

 31

[Dick93] J. Dick and A. Faivre. Automating the generation and sequencing of test cases from model-

based specifications. Proc. FME '93: Industrial-Strength Formal Methods, Springer-Verlag Lecture Notes in
Computer Science, 670, pp. 268-284, 1993.

[Dima99] A.Dima, J. Wack and S. Wakid. Raising the bar on software security testing. IT Professional,
1(3), pp. 27-32, 1999.

[Du00] Wenliang Du and A. P. Mathur. Testing for Software Vulnerability Using Environment

Perturbation. Proc. workshop On Dependability Versus Malicious Faults, International Conference on
Dependable Systems and Networks (DSN 2000), pp. 603-612, 2000.

[Ferra92] D. Ferraiolo and R. Kuhn. A role-based access control. Proc. of the NIST-NSA National (USA)
Computer Security Conference, pp. 554-563, 1992.

[Ferra01] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn and R. Chandramouli. Proposed NIST

Standard for Role-Based Access Control. ACM Transactions on Information and System Security, 4(3), pp. 224�

274, 2001.

[Fried02] G. Friedman, A. Hartman, K. Nagin and T. Shiran. Projected state machine coverage for

software testing. ACM SIGSOFT International Symposium on Software Testing and Analysis, pp. 134-143, 2002.

[Fuji91] S. Fujiwara , G.v. Bochmann, F. Khendek, M. Amalou and A. Ghedamsi. Test selection based

on finite state models . IEEE Transactions on Software Engineering, 17(6), pp. 591 � 603, 1991.

[Gargan99] A. Gargantini, C. Heitmeyer. Using model checking to generate tests from requirements

specifications. Proc. of the 7th European software engineering conference held jointly with the 7th ACM
SIGSOFT international symposium on Foundations of software engineering, pp. 146 � 162, 1999.

[Gon70] G. Gonenc. A method for the design of fault detection experiments. IEEE transactions on
computers. Vol C-19. pp. 551-558, 1970.

[Good75] J. B. Goodenough and S. L. Gerhart. Toward a theory of test data selection. Proc. Int Conf
Reliable Software, 1975.

[Hier97] R. Hierons. Testing from a Z specification. Software Testing Verification and Reliability, 7(1),

pp. 19�33, 1997.

[Ip96] C.N. Ip and D.L. Dill. Better Verification Through Symmetry. Formal methods in system design,

pp. 41-75, 1996.

[Jilani98] L.L. Jilani and A. Mili. Estimating COTS integration: An analytical approach. Proc. 5th
Maghrebian Conf. on Software Eng. and Artificial Intelligence, Dec. 1998.

[Jiwn02] K. Jiwnani and M. Zelkowitz . Maintaining Software with a Security Perspective. Proc.
International Conference on Software Maintenance (ICSM'02), pp. 194-203, 2002.

[Josh01] J.B.D. Joshi, W.G. Aref, A. Ghafoor and E.H. Spafford. Security Models for Web-based

Applications. Communications of the ACM, 44(2), pp. 38-72, 2001.

 32

http://www.cs.purdue.edu/people/duw
http://www.cs.purdue.edu/people/apm

[Kim00] S. Kim, J.A. Clark, and J.A. McDermid. Investigating the Effectiveness of Object-Oriented

Testing Strategies with the Mutation Method. Software Testing, Verification & Reliability, 11(3), pp. 207-225,

2001.

[Lee94] D. Lee and M. Yannakakis. Testing finite-state machines: state identification and verification.

IEEE Transactions on computers, 43(3), pp. 306-320, 1994.

[Lupu99] E. Lupu and M. Sloman. Conflicts in Policy-based Distributed Systems Management, IEEE

Transactions on Software engineering, 5(6), pp. 852-869, 1999.

[Ma02] Y.S. Ma, Y.R. Kwon and J. Offutt. Inter-Class Mutation Operators for Java. Proc 13th
International Symposium on Software Reliability Engineering, pp. 352-363, 2002.

[Ma05] Y.S. Ma, J. Offutt and Y.R. Kwon. MuJava: An Automated Class Mutation System. Journal of
Software Testing, Verification and Reliability, 15(2), pp. 97-133, 2005.

[Marco97] A.P. Marco, E. Pastor and J.Cortadella. Symbolic Techniques for the Automatic Test Pattern

Generation for Speed-Independent Circuits.

Tech. Report Num. RR-1997-04, Universitat Politècnica de Catalunya. 1997.

[Mujava] Mujava, A mutation system for Java programs. http://salmosa.kaist.ac.kr/LAB/MuJava/

[Offutt96] J. Offutt, A. Lee, G. Rothermel, R. Untch and C. Zapf. An Experimental Determination of

Sufficient Mutation Operators. ACM Transactions on Software Engineering Methodology, 5(2), pp. 99-118,

1996.

[Offutt03] J. Offutt, S. Liu, A. Abdurazik and P. Ammann. Generating Test Data From State-based

Specifications. The Journal of Software Testing, Verification and Reliability, 13(1), pp. 25-53, 2003.

[Osborn00] S. L. Osborn, R. Sandhu and Q. Munawer, Configuring Role-Based Access Control to Enforce

Mandatory and Discretionary Access Control Policies. ACM Transactions on Information and System Security,

3(2), pp. 85-106, 2000.

[Parad97] A. Paradkar, K. C. Tai and M. A. Vouk. Specification-based testing using cause-effect graphs.

Annals of Software Engineering, 4, pp. 133 � 157, 1997.

[Potter04] B. Potter and G. McGraw. Software security testing. IEEE Security & Privacy Magazine, 2(5),

pp. 81 � 85, 2004.

[Sabn88] K.K. Sabhani and A.T. Dahbura. A Protocol Test Generation Procedure. Computer Networks,

15, pp. 285-297, 1988.

[Sandhu94] R. Sandhu and P. Samarati. Access Control: Principles and Practice. IEEE Communications,

32(9), pp. 40-48, 1994.

[Sandhu98] R. Sandhu. Role activation hierarchies. Proc. third ACM workshop on Role-based access
control, pp. 33-40, 1998.

[Stock96] P. Stocks and D. Carrington. A Framework for Specification-Based Testing. IEEE transactions
on software engineering, 22(11), pp. 777-793, 1996.

 33

http://portal.acm.org/results.cfm?query=author%3AP403649&querydisp=author%3AAmit%20%20Paradkar&coll=GUIDE&dl=ACM&CFID=27487871&CFTOKEN=24304881
http://portal.acm.org/results.cfm?query=author%3AP155447&querydisp=author%3AK%2E%20C%2E%20Tai&coll=GUIDE&dl=ACM&CFID=27487871&CFTOKEN=24304881
http://portal.acm.org/results.cfm?query=author%3AP184924&querydisp=author%3AM%2E%20A%2E%20Vouk&coll=GUIDE&dl=ACM&CFID=27487871&CFTOKEN=24304881
http://www.informatik.uni-trier.de/%7Eley/db/journals/cn/index.html

[Spence94] I. Spence and C. Meudec. Generation of Software Tests from Specifications. International
Conference on software quality management, pp. 517-530, 1994.

[Stocks93] P. A. Stocks. Applying formal methods to software testing. PhD Thesis. Department of
Computer Science, The University of Queensland, Australia. 1993.

[Thom03] H.H Thompson. Why security testing is hard? IEEE Security & Privacy Magazine, 1(4), pp. 83-

86, 2003.

[Tsai03] W.T. Tsai, A. Saimi, L. Yu and R. Paul. Scenario-based object-oriented testing framework.

Proc. third International Conference on Quality Software, pp. 410-477, 2003.

[Weyu94] E. Weyuker, T. Goradia and A. Singh. Automatically generating test data from a Boolean

specification. IEEE Transactions on Software Engineering, 20(5), pp. 353�363, 1994.

 34

	Model-based Testing of Access Control Systems that Employ RB
	INTRODUCTION
	MODEL-BASED TESTING USING FINITE STATE MODELS
	RBAC POLICY SPECIFICATION
	MODEL-BASED SECURITY TESTING
	Structural Model
	Behavior Model
	Model Construction
	Dynamic Test Suite

	CASE STUDY
	X-GTRBAC System Security Test Process
	Constructing Test Policies
	Role Hierarchy
	User-Role Assignment

	Measuring Test Adequacy
	Measuring Test Effectiveness

	DISCUSSION
	RELATED WORK
	Access Control Policies
	Model Checking based Testing
	Specification Based Testing
	Security Testing

	SUMMARY AND CONCLUSIONS

