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Abstract 

Access control is the key security service used for information and system security. The access control 

mechanisms can be used to enforce various security policies, but the desired access control objectives 

can only be achieved if the underlying software implementation is correct. It therefore becomes 

essential to not only verify that the implementation conforms to the given policy but also to confirm 

the absence of any violations in it. We propose a model-based strategy for testing implementations of 

access control systems that employ the RBAC policy specification. Our approach is based on the 

construction of a structural and behavioral model of the corresponding RBAC specification. The model 

is then used to generate static and dynamic test suites for the corresponding implementation. The code 

coverage and mutation score were used as metrics to determine the efficacy of the proposed approach 

in a case study. The results of the case study show that the tests generated using the proposed approach 

not only provide good control flow coverage of the implementation but are also effective in detecting 

faults induced via mutation operators. 

1 INTRODUCTION 

Access control is used widely to restrict access to information. It is the key security service providing 

the foundation for information and system security. Effective use of access control protects the system 

from unauthorized users [Sandhu94]. The security policy enforced by access control mechanisms 

could be specified through different representations, such as role based access control (RBAC) 

[Ferra01], discretionary access control (DAC), and mandatory access control (MAC) [Sandhu94]. 

Regardless of the specification mechanism used, the desired access control objectives of a system can 

only be achieved if the corresponding policy specifications are correctly enforced by the underlying 

software implementation. Hidden functionality, coding errors, wrong configuration, etc. can seriously 

jeopardize the effectiveness of the corresponding access control mechanism [Thom03]. It therefore 

becomes essential to assure that the implementation realizes the specified policy correctly and 

accurately. Such assurance requires the verification of an implementation�s conformance to the given 
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policy, known as security functional testing [Chan04], and also the confirmation of the absence of any 

violations, known as security vulnerability testing [Du00 ]. 

 We propose a model-based strategy for testing implementations of access control systems that 

employ the RBAC policy specification. The model-based testing approach has been adopted as it can 

be applied to systems developed in house, and to Commercial Off The Shelf (COTS) [Jilani98] 

products. Through a case study, we show how a finite state model of the access policy specifications 

can be used to automatically derive tests using a well known algorithm [Chow78]. Tests so derived 

attained a high degree of control flow coverage of the implementation and, with the aid of program 

mutation, were found effective in the detection of faults.  

 Adopting model-based testing allows one to work with software specifications; the source code 

is not required to perform the test. Using specifications for test generation has several other advantages 

as compared to code/structure based test generation. As a specification provides the test oracle, a 

strong relationship exists between the specification and tests that facilitate the location and existence of 

errors [Stock96]. The test generation process also helps in finding the inconsistencies and ambiguities 

in the specifications [Offutt03]. Another significant advantage of model-based testing is that tests can 

be designed earlier in the life cycle of product development allowing for efficient resource allocation.  

 An implementation is often tested for the presence of security vulnerabilities by execution 

against a suite of test cases that represent known exploits [Thom03]. This methodology is restricted by 

the assumption that only known exploits will be used against the product. In contrast, security 

functional testing is able to verify the conformance to specifications though unable to determine any 

unspecified or undesired behavior [Dima99].  We therefore argue that a model-based security testing 

strategy, in which a formal model is used to generate tests, would be complementary to a strategy 

based only on known exploits. As shown in this work, model-based testing provides a systematic 

procedure for generating test cases for both security-functional and security-vulnerability testing. The 

models can be constructed either from the underlying structure of the implementation or from the 

corresponding access control policy specification; the testing technique can be considered, respectively, 

as white or black box testing [Beiz90], [Beiz95], [Spence94], [Demillo87].   

Contributions  

Our contributions are summarized below. 

 A method for the construction of structural and behavioral models of RBAC policy 

specification. 
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 Automated generation of a test suite from the structural and behavioral models for security 

testing of the implementation. 

 The adequacy and effectiveness assessment of proposed model-based security testing approach 

through a case study.  

 The remainder of this paper is organized as follows: Section 2 provides brief introduction to 

model-based testing techniques; in particular finite state model based testing techniques. The RBAC 

policy specification is formally defined in Section 3. Construction of structural and behavioral models 

corresponding to a given RBAC policy specification is discussed in Section 4. Details of using these 

models to generate a test suite for security testing are also presented in Section 4. In Section 5 we 

describe a case study using the proposed model-based security testing method to test a prototype 

RBAC system. We use control flow coverage and program mutation scores to assess the adequacy and 

fault-detection effectiveness of tests generated automatically. The corresponding results are also 

presented in Section 5. Section 6 summarizes the results of the case study. The related literature in 

model-based testing and security testing is discussed in Section 7. Our conclusions and suggested 

avenues for further research appear in Section 8. 

2 MODEL-BASED TESTING USING FINITE STATE MODELS  
 

One approach for applying black box testing uses a formal model of the implementation, usually 

derived from its requirements, to determine test sequences. The model captures the expected behavior 

of the implementation.  This explicit modeling of the expected behavior makes it simpler and cheaper 

to perform testing [Beiz95].  A common type of modeling is to represent the product under test by 

means of finite-state machines (FSM) or state-transition diagrams (or state graphs) [Berto04].  State 

graphs are a useful way to think about software behavior and testing [Beiz95].   

For software designs modeled by a finite state machine (FSM), the W-method is a classic and 

effective test generation approach [Chow78].  The W-method works by initially generating a test tree 

from an FSM model and then concatenating the test sequences, generated from the test tree, with the 

determined state characterization set (W). The resultant test cases generated are able to uniquely 

identify each leaf node in the test tree.  This strategy for test data selection was proved to be both valid 

and reliable [Chow78, Good75].  The automata theoretic approach used in the W-method has been 

used as a basis for other software testing strategies where the software design is modeled by FSMs. 

The unique input output (UIO) [Sabn88] and the partial W (W-p) [Fuji91] methods are examples of 

 3



methods that evolved out of the W-method.  Automatic generation of test cases that satisfy different 

coverage criteria such as transition coverage and state coverage for state-based specifications, has been 

studied by Offutt et.al. [Offutt03]. The state-based specifications imply that the software functional 

requirements are expressed in terms of states and transitions.  

 The FSM model of a software design can be viewed as a directed graph with vertices 

representing the program state and arcs indicating the input/stimuli that change the program state. Each 

test case consists of a sequence of inputs which when applied to the implementation under test would 

result in state changes and an expected behavior. The state changes are monitored for verifying the 

adherence of implementation to its design. The FSM model representing a program can be very huge 

as the number of states in the FSM grows exponentially [Fried02]. This phenomenon is traditionally 

referred to as state explosion. The number of states increases as the model attempts to capture more 

software execution details. State explosion would also result into test cases explosion. One technique 

to cope with the state explosion problem utilizes a projected state machine model, where a projected 

state represents a class of states under some equivalence relation [Fried02]. A reduction technique for 

handling state explosion problem by utilizing structural symmetry information in the system 

description has been presented in [Ip96]. The test case explosion problem has also been handled by a 

combinatorial approach in which the generated tests ensure coverage of n-way combinations of the test 

parameters [Cohen96, Dalal98]. 

Our focus in this paper is the security testing of access control systems using RBAC policy. In the 

next section, we provide the details of an RBAC policy specification. 

3  RBAC POLICY SPECIFICATION 

In RBAC, the access control policy is specified by mapping permissions to roles to which users are 

assigned. The permissions map the possible authorizations of a role in terms of specific operations that 

a user activating that role can perform on the corresponding system resource. A user assigned to a role 

cannot invoke the permissions of that role until the time that user actually activates that role.  

Separation of duty (SoD) is a well-known authorization constraint used in commercial application 

environments [Ahn2000]. A SoD constraint is intended to prevent a user from acquiring membership 

of two constrained roles. An RBAC specification provides the rules for user-role assignment 

(activation) SoD constraints, role hierarchy semantics and static/dynamic user (role) cardinality 

constraints. A formal definition of RBAC policy specification follows. 
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Definition 1 (RBACp): An RBAC policy (RBACp) is a structure RBACp={R, U, P, , Status, 

Permitted, I}such that, 

 R={r1, r2,��.. rn} is a set of n roles where each ri={Id, cs, cd} 1  i  n is a tuple such that  

(a) Id is the unique identification of ri  

(b)  cs 
+
 is the static cardinality i.e. the maximum number of users that can be assigned 

to this role 

(c) cd 
+ 

is the dynamic cardinality i.e. the maximum number of users that can activate 

this role 

 U={u1, u2,��..um} is the set of m users where ui={Id,cs,cd} 1  i  m is a tuple such that  

(a) Id is the unique identification of ui  

(b)  cs 
+
 is the static cardinality i.e. the maximum number of roles to which this user can 

be assigned  

(c) cd 
+ 

is the dynamic cardinality i.e. the maximum number of roles which this user can 

activate 

 P={p1, p2,��..pq} is a set of q permissions where pi={Id,obj,op}1  i  q is a tuple such that  

(a) Id is the unique identification of pi  

(b)  obj  SystemResources
1
 is the system resource/object on which the specified operation 

op  SystemOperations can be carried out by a user activating such role to which pi  is assigned 

   (R x R) where ={ A, I} provides partial ordering on the set of roles such that 

(a)  ri A rj means that rj is senior to ri as per activation hierarchy (A-hierarchy)  semantics  

[Sandhu98]; a user assigned to rj can also be able to activate ri without being actually assigned 

to it 

(b) ri I rj means that rj is senior to ri as per inheritance hierarchy  (I-hierarchy)  semantics  

[Sandhu98]; a permission assigned to ri will also be accessible by rj without being actually 

assigned to it 

 Status=URassign  URactive  PRassign is a set of status predicates partitioned as follows: 

(a) URassign : U x R  [0|1] where a 1(0) indicates that the given user is assigned (not 

assigned) to the given role 

                                                 
1 SystemResources and SystemOperations are system specific sets that represent, respectively, all system resources  and all 

allowed system operations. 
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(b)  URactive : U x R  [0|1] where a 1(0) indicates that the given user has activated (not 

activated) the given role 

(c) PRassign: P x R  [0|1] where 1 (0) indicates that the given permission is assigned (not 

assigned) to the given role 

 Permitted=URcanAssign  URcanActivate  PRcanAssign is a set of allowable predicates partitioned as 

follows: 

(a) URcanAssign: D1 U x R  [0|1] where the value of 1 (0) indicates that the given user can 

be assigned (not assigned) to the given role 

(b) URcanActivate: D2 U x R  [0|1] where a 1(0) indicates that the given user can activate 

(not activate) the given role 

(c) PRcanAssign: D3 P x R  [0|1] where a 1(0) indicates that the given permission can be 

assigned (not assigned) to the given role 

 I={Assignur, DeAssignur, Activateur, DeActivateur, Assignpr, DeAssignpr} is the set of input 

requests allowed under the policy such that  

(a) Assignur(u U, r R) is the input request to assign u to r  

(b) DeAssignur(u U, r R) is the input request to remove assignment of u to r  

(c) Activateur(u U, r R) is the input request to allow u to activate r 

(d) DeActivateur(u U, r R) is the input request to allow u to Deactivate r 

(e) Assignpr(p P, r R) is the input request to assign p to r 

(f) DeAssignpr(p P, r R) is the input request to remove assignment of  p to r 

 As already mentioned, RBAC implements access control decisions by mapping users to roles; 

permissions are assigned to roles. The access control decisions are guided by formally specified rules. 

The set of Status and Permitted predicates provided by RBACp are used to define the rules that 

constrain the possible assignments and activations within the given RBAC policy. These rules are 

provided by the rule set ( ) defined below. 

Definition 2 ( ): The rule set ={ urAssignCard, urActivationCard, urSSoD, urDSoD, urHier, prHier, 1, 2, 3} 

is the set of system rules that controls the access control decisions in a given RBACp={R, U, P, , 

Status, Permitted, I}. The rules are given in Table 1. 
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Table 1: Rules in the rule set  
Rule Explanation 

urAssignCard(u U, r R)=1 iff URcanAssign(u,r)=1  

URassign(u,r)=0   URassign(u,ri)  cs|u
2

  

URassign(ui,r)  cs|r 

R

U

urAssignCard can only be 1 if the static cardinality constraints 

corresponding to the given user u and role r are not violated by  the 

assignment of u to r. 

urActivationCard(u U, r R)=1 iff [URcanActivate(u,r)=1 

 urHier(u, r)=1]  URactive(u,r)=0   

URactive(u,ri)  cd|u  URassign(ui,r)  cd|r 
R U

urActivationCard can only be 1 if the dynamic cardinality constraints 

corresponding to the given user u and role r are not violated by  the 

activation of r by u. 

urSSoD(u U, r R)=1 given cssod |R r| iff 

URassign(u,ri)  cssod 
R

where R  is the static SoD (SSoD) set corresponding to r and cssod is 

the cardinality of SSoD set i.e. the maximum number of roles to 

which u can be simultaneously assigned in the set R r. urSSoD can 

only be 1 if user u can be assigned to r such that the total number of 

user-role assignments corresponding to u in the set R  are less than 

cssod. 

urDSoD(u U, r R)=1 given cdsod |R r| iff 

URactive(u,ri)  cdsod 
R

where R  is the dynamic SoD (DSoD) set corresponding to r and cdsod 

is the cardinality of DSoD set i.e. the maximum number of roles in 

the set R r which can be concurrently activated by u. urDSoD can 

only be 1 if user u can activate r such that the total number of user-

role activations corresponding to u in the set R  are less than cdsod. 

urHier(u U, r R)=1 iff URactive(u,r)=0   r  R | 

R R URassign(u, r )=1 

where R :{r | r A r }. R  is the set of all roles senior to r as per A-

hierarchy semantics (r is also member of this set). urHier(u,r)=1 

implies that there is at least one such role r (could be r), senior to r, 

to which u is currently assigned. A-hierarchy semantics thus permit 

activation of a junior role by the user provided that the user is 

assigned to at least one role senior to former. 

prHier(p P, r R)=1 iff  r  R | R R 

PRassign(p, r )=1 

where R :{r | r  I r }. R  is the set of all roles junior to r as per I-

hierarchy semantics (r is also member of this set). prHier(p,r)=1 

implies that there is at least one such role r (could be r), junior to r, 

to which p is currently assigned. I-hierarchy semantics thus permit 

assignment of permissions to a senior role on the basis of there being 

assigned to a junior role. 

1: Assignur(u U, r R)  

Updatestatus
3 [URassign(u,r)=1]  Updatepermitted 

[URcanActivate(u,r)=1] iff urAssignCard(u, r)=1  

urSSoD(u, r)=1 and DeAssignur(u U, r R)  

Updatestatus [URassign(u,r)=0]  Updatestatus 

[URactive(u,r)=0] 

This rules ensures that the user-role assignment corresponding to the 

input Assignur(u,r) is allowed only if the user/role static cardinality 

constraints and role SSoD constraints are not violated by such 

assignment4.  

2: Activateur(u U, r R)  Updatestatus 

[URactive(u,r)=1] iff urActivationCard(u, r)=1  

urDSoD(u, r)=1  and DeActivateur(u U, r R)  

Updatestatus [URactive(u,r)=0] 

This rule ensures that the user-role activation corresponding to the 

input Activateur(u,r) is allowed only if the user/role dynamic 

cardinality constraints, role DSoD/A-hierarchy constraints are not 

violated by such activation. 

3: Assignpr(p P, r R)  Updatestatus 

[PRassign(p,r)=1] iff PRcanAssign(p,r)=1   prHier(p, 

r)=1and DeAssignpr(p P, r R)  Updatestatus 

[PRassign(p,r)=0] 

This rules ensures that the permission-role assignment corresponding 

to the input Assignpr(p,r) is done only either if such assignment is 

permitted directly in the policy or is allowed by virtue of I-hierarchy 

semantics. 

                                                 
2 cs|u (cs|r) indicates static cardinality cs corresponding to u (r). The dynamic cardinality is also referenced similarly.  
3 Updatestatus[x Status=0/1] implies that assignments/activations in the current RBAC state are updated so that the current 

value of the corresponding predicate becomes 0/1, Updatepermitted denotes update of permitted predicate to the new value  
4 The effect of complementary inputs e.g. DeAssignur is obvious and is thus not further explained 
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 It is to be noted that in ,  all the access control decisions are actually enforced by the three 

final rules 1, 2 and 3 while the remaining rules serve to support the final rules. The following 

example elucidates security testing and illustrates a few of the rules mentioned above.  

Example 1: Consider an RBAC policy specification involving users u1, u2 and roles r1, r2, r3. Suppose 

that u1 is assigned to r1 and r2, and u2 is assigned to r2 and r3. Further, there is a SoD constraint on the 

activation of r1 and r2. Subject policy is required to be enforced by an implementation. In this case, 

security functional testing would be carried out to ensure the conformity of the  implementation to its 

specifications e.g. user u2 is always able to activate r2, user u1 cannot violate the SoD constraint and be 

able to activate r1 and r2 simultaneously, etc. However, security vulnerability testing would test the 

implementation for the presence of any undesired behavior, which in this case could be to test whether 

or not it is possible for user u1 to become assigned to role r3 without any provision for such assignment 

in the policy. The different components of the corresponding RBACp are: 

U= {u1, u2} where u1= {u1, 2, 1} and u2= {u2, 2, 2} 

R={r1, r2, r3} where r1={r1, 2, 1}, r2={r2, 2, 2}, r3={r3, 1, 1} and the DSoD set R  corresponding to 

r2(r1)={ r1}({r2}) with cR=1 

Consider P= {p1, p2}, where p1= {p1, file, read} and p2= {p2, file, write} 

The initial value of Permitted and Status predicates is shown in Table 2. We assume that the set of 

inputs as given in Table 2 is already applied to the system when a decision is to be made regarding the 

input Activateur(u1, r2). At that time the values of Permitted and Status predicates would have changed 

from their initial value and are given by the �Final Value� in the table.   

Table 2: Example 2 
Initial Value  Final Value 

Permitted predicates Status predicates 

 
Inputs Permitted predicates Status predicates 

URcanAssign(u1, r1)=1 

URcanAssign(u1, r2)=1 

URcanAssign(u2, r2)=1 

URcanAssign(u2, r3)=1 

URcanActivate(u1, r1)=0 

URcanActivate(u1, r2)=0 

URcanActivate(u2, r2)=0 

URcanActivate(u2, r3)=0 

PRcanAssign(p1,r1)=1 

URassign(u1, r1)=0 

URassign(u1, r2)=0 

URassign(u2, r2)=0 

URassign(u2, r3)=0 

URactive(u1, r1)=0 

URactive(u1, r2)=0 

URactive(u2, r2)=0 

URactive(u2, r3)=0 

PRassign((p1,r1)=0 

Assignur(u1, r1) 

Assignur(u1, r2) 

Assignur(u2, r2) 

Assignur(u2, r3) 

Activateur(u1, r1) 

URcanAssign(u1, r1)=1 

URcanAssign(u1, r2)=1 

URcanAssign(u2, r2)=1 

URcanAssign(u2, r3)=1 

URcanActivate(u1, r1)=1 

URcanActivate(u1, r2)=1 

URcanActivate(u2, r2)=1 

URcanActivate(u2, r3)=1 

PRcanAssign(p1,r1)=1 

URassign(u1, r1)=1 

URassign(u1, r2)=1 

URassign(u2, r2)=1 

URassign(u2, r3)=1 

URactive(u1, r1)=1 

URactive(u1, r2)=0 

URactive(u2, r2)=0 

URactive(u2, r3)=0 

PRassign((p1,r1)=0 

 

By rule 2, which decides the outcome of Activateur(u1, r2), u1 will be able to activate r2 only if 

urActivationCard(u1, r2)=1  urDSoD(u1, r2)=1. However, in this case, as urDSoD(u1, r2)=0, the requested 

activation will not be allowed.  
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 As mentioned in Section 1, a software implementation is expected to fully enforce the access 

control policy specified by RBACp . However, due to implementation errors, the policy may not be 

correctly enforced.  The purpose of security testing is to check the behavior exhibited by an 

implementation for conformance to the expected behavior specified by RBACp. We envisage the 

following sequential steps, shown graphically in Figure 1, that lead to a fully tested implementation.  

 

  Step 1 

Security 

Testing (see 

Figures 2 & 9)

Step 2Access Control 

Policy 

Specifications 

Consistent 

Specifications 

Access Control 

System 

Implementation 

Specification 

verification 

Policy 

Implementation (RBACp) 

 

 
 

 
Step 3  

Security Verified 

Implementation 
 

 

 

 

Figure 1: Sequential steps leading to a verified implementation 

 

 The first step in obtaining a security verified implementation is to verify the access control 

system specifications for consistency. The result of specification verification is a consistent 

specification (RBACp
5
) shown to be free of any conflicts. In step 2, RBACp is realized by the 

underlying software implementation. Finally in step 3, the security testing is carried out, which is also 

the scope of this paper, to validate the implementation with respect to RBACp. 

4 MODEL-BASED SECURITY TESTING 

We now propose a model-based strategy for security testing where RBACp is used directly to construct 

the expected structural and behavioral models of the implementation. These models serve as inputs to 

the test generation algorithm to generate the static and dynamic test suites (Figure 2). The test suites 

are executed against the implementation and the results are correlated with the models. The advantages 

of using models, directly based on RBACp, are two-pronged. First it offers a systematic procedure to 

generate test suites directly from specifications and secondly, as already discussed in Section 2, proven 

techniques exist for generating tests from suitable models, which can also be leveraged for our current 

application.  

                                                 
5 We assume that RBACp is free of all inconsistencies and conflicts and is thus considered a verified policy. We thus do not 

consider the problem of policy verification which has been addressed previously [Ahmed03, Lupu99] 
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 In carrying out security testing of the implementation, the goal would ideally be to exhaustively 

perform both the security functional and security vulnerability testing. However, as already mentioned, 

vulnerability testing is limited by the extent of knowledge about the known exploits against the system. 

While the proposed model-based approach for vulnerability testing remains restricted by the extent of 

the implementation details captured by the model, it provides a systematic way to generate test cases 

that directly correlate with the specifications. 

SpecificationsSpecifications

State 
Variables

State 
Variables

Structural & Behavior
Models

Test Generator &
Output Correlator

ImplementationImplementation

Inputs

Outputs

SpecificationsSpecifications

State 
Variables

State 
Variables

Structural & Behavior
Models

Test Generator &
Output Correlator

ImplementationImplementation

Inputs

Outputs

 

Figure 2: Model based Security Testing 

  

   We believe that security testing of access control systems can be performed under two 

different paradigms: developer-oriented and user-oriented. In developer-oriented paradigm, the focus is 

on the verification of the implementation with respect to the possible constraints/rules in the policy 

specification. In the user-oriented paradigm, the focus is directed towards the verification of the 

implementation within the constraints of the user operational domain. In the latter case, the end user 

performs security testing to assure the effectiveness of the given access control system with respect to 

the access control policies within the user�s expected operational environment. As compared to user-

oriented testing where RBACp would be readily available as a domain specification, in developer-

oriented testing, an additional requirement would be to generate suitable RBACp models to ensure 

complete testing of the system.  Our model-based security testing approach is equally applicable to 

both the paradigms.   
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4.1 Structural Model  

 The structural model of the implementation includes all possible user-role and permission-role 

pairs in RBACp. Hereafter, user-role and permission-role are abbreviated as UR and PR, respectively. 

It is important to capture this information as RBACp might not convey information about all the 

possible UR and PR assignments (i.e. D1 UxR and D3 PxR, as per Definition 1) whereas all 

ambiguities must be resolved for verification of the implementation. The structural model is defined 

below. 

Definition 3 (Mstruct): The structural model (Mstruct) corresponding to RBACp is a tuple 

Mstruct={URstruct, PRstruct} such that, 

 URstruct={urstruct|urstruct  U x R} is the set of urstruct elements where urstruct={ui, rj} 1  i  m, 1  j 

 n. Hence  |URstruct|=m x n 

 PRstruct={prstruct|prstruct  P x R} is the set of prstruct elements where prstruct={pi, rj} 1  i  q, 1  j  

n. Hence  |PRstruct|=q x n 

 The static test suite, generated from the structural model, considers all ambiguous assignments 

not to be allowed, and thus is also able to support vulnerability testing by looking for possible exploits 

in the UR and PR assignments. One such exploit of u1 being able to get assigned to r3 was discussed in 

Example 1. The static test suite is generated, and the implementation is executed against it, using 

algorithm RunstructTest below. In RunstructTest, the actual output/response of the implementation for all 

inputs is referenced by attaching the prefix �Out� to the corresponding input e.g OutAssignur(urstruct) 

denotes the output corresponding to the input Assignur(urstruct). 

 The algorithm RunstructTest, takes the structural model Mstruct and RBACp as inputs and applies 

the UR (PR) assignment inputs, corresponding to all the URstruct (PRstruct) elements of Mstruct, to the 

implementation. The results of the assignment operations are compared with the desired values 

determined by the application of rule 1 or 3 on the corresponding input. If the former agrees with the 

latter then the test passes, else it fails. The PR assignment tests are also able to verify the correctness of 

the implementation of the I-hierarchy. It is to be noted that the de-assignment inputs are also applied to 

the implementation to ensure the conformance of its structural model to RBACp.  

Example 2:  For the RBACp in Example 1, the corresponding Mstruct is: 

URstruct={u1r1, u1r2, u1r3, u2r1, u2r2, u2r3}, PRstruct={p1r1, p1r2, p1r3, p2r1, p2r2, p2r3} 

 In the algorithm RunstructTest, the for loop at lines 2-8 tests the implementation against all the 

members of URstruct. As per RBACp, all these assignments should be valid except for u1r3 and u2r1. Any 
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mismatch between the implementation and RBACp would lead to a failed test. Similarly, the for loop at 

lines 9-15  tests the implementation for all the de-assignment operations corresponding to Mstruct.  

 The for loop at lines 17-23 (and at lines 24-30) tests the implementation for conformance to 

RBACp relative to the expected and desired outcome of  the operations on members of PRstruct. 

 

Algorithm RunstructTest  16 i 1, j 1 
Input: Mstruct, RBACp 17 for each prstruct  PRstruct 
Output: URresult={urres1, urres2, ��urresm x n}, 18     do apply input Assignpr(prstruct) 
PRresult={prres1, prres2, ��prresq x n} 19     apply rule 3 on Assignpr(prstruct) to determine 

PRassign(prstruct)  

1 i 1, j 1 20     do if OutAssignpr(prstruct)= PRassign(prstruct)  
2 for each urstruct  URstruct 21          then prresi  �pass�  
3     do apply input Assignur(urstruct) 22     else prresi  �fail�  
4     apply rule 1 on Assignur(urstruct) to determine 

URassign(urstruct) 
23     i  i+1 

24 for each prstruct  PRstruct 
5     do if OutAssignur(urstruct)= URassign(urstruct)  25     do apply input DeAssignpr(prstruct) 
6          then urresi  �pass�  26     apply rule 3 on DeAssignpr(prstruct) to determine 

PRassign(prstruct) 7     else urresi  �fail�  

8     i  i+1 27     do if OutDeAssignpr(prstruct)= PRassign(prstruct)  

prresj  �pass� 9 for each urstruct  URstruct 

10     do apply input DeAssignur(urstruct) 28          then prresj  �pass�  
11     apply rule 1 on DeAssignur(urstruct) to determine 

URassign(urstruct) 
29     else prresj  �fail�  

30     j  j+1 
12     do if OutDeAssignur(urstruct)= URassign(urstruct)  

urresj = �pass� 
31 return URresult, PRresult 

 
13          then urresj  �pass� 

14    else urresj  �fail�  

15    j  j+1 

Figure 3: Procedure for running the static test suite. 

4.2 Behavior Model  

 As already noted, RBAC is used to manage a user�s ability to exercise permissions through the 

mechanism of UR activations. Access to system resources is allowed only if the user activates a 

suitable role to which the corresponding permission for desired access is assigned, or authorized, as per 

the I-hierarchy. Thus the primary source of exploits in the implementation would be the user�s ability 

to activate unauthorized roles. It therefore becomes important to not only completely test the 

implementation for conformance of UR activations to the given RBACp, but also to verify that the 

implementation does not allow any exploits, i.e. allow users to activate unauthorized roles not 

specifically constrained by the policy.  

 We therefore construct the behavior model (Mbehav) that represents an implementation�s desired 

response to all possible sequences of UR activation inputs (Activateur). The behavior model is 

essentially an FSM representing the expected behavior of the implementation corresponding to the 

applied inputs. While constructing Mbehav, it is assumed that Mstruct has been verified through the 
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execution of implementation against the static test suite, URstruct is then modified to generate URbehav 

defined below: 

Definition 4 (URbehav): It is obtained by trimming URstruct such that URbehav={urstruct| urstruct  URstruct  

 [(urres(urstruct)=pass   Assignur(urstruct)=1)   urHier(urstruct)=1]} where urres(urstruct) indicates the 

value of urresi corresponding to the specific urstruct element. 

 The urstuct would be a member of URbehav either if urres(urstruct)=pass   URassign(urstruct)=1 

which would be true if after performing the test using the static test suite, the corresponding UR 

assignment is found valid in the system, or urHier(urstruct)=1.  urHier(urstruct)=1 would be true if 

corresponding to urstruct=(u,r), there is a ur struct=(u,r ) such that URassign(ur struct)=1, and r R  (as in 

urHier(urstruct) definition). This condition would thus be true if the UR activation corresponding to the 

given urstruct element is allowed as per A-hierarchy semantics. URassign(ur struct)=1  should now be valid 

as the static test suite has already been used to verify the implementation. 

 It is to be noted that URbehave  URstruct, because URbehave includes only such elements of URstruct 

for which the above definition holds. This is essential to reduce the number of state variables in the 

model (see Definition 5); however, this would also limit the ability of a dynamic test suite to identify 

such exploits where a user can activate a role without even being assigned to it or to some senior role 

in the A-hierarchy. In order to overcome this shortcoming, we suggest the static validation of all 

urstruct  URbehave by verifying that corresponding to the application of input Activateur(urstruct) and rule 

2, OutActivateur(urstruct)=0= URactive(urstruct), i.e. the specific UR activation is also not permitted in the 

implementation. 

4.2.1 Model Construction 

 In Mbehav, a set of state variables characterizes the system state. Each state variable corresponds 

to a UR pair and represents activation/deactivation of the given role by the corresponding user. Starting 

from an initial state, the system state would change in response to the application of UR 

activation/assignment (deactivation/deassignment) inputs. Without any constraints on the allowable set 

of inputs, the state model would explode. We make the following assumptions to avoid state explosion 

while constructing Mbehav. 

(a) Users are assigned to the roles initially and no deassignment takes place dynamically.  
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(b) A role cannot be deactivated after a user has activated a role. This restriction allows for the 

identification of maximal states in Mbehav, i.e. the final states in the model. Without this 

assumption the length of input sequences could be infinite. 

(c) Once a particular UR activation has occurred, the corresponding input, which led to that 

activation, is not available until the time the given activation terminates. This is a valid 

assumption for access control implementations as in practice a logged user cannot login again 

in the same system. 

Definition 5 (Mbehav): The behavior model (Mbehav) of RBACp is a tuple Mbehav={ S, Ib, S , } such that, 

 S={s1, s2, �..,st}is a finite set of t states such that si={URactive(urstruct)| urstruct URbehav} 1  i  t, 

is a set of status predicates corresponding to all elements of URbehav. Further, s1={ 0,0,0,�.0} is the 

initial state i.e. initially there are no UR activations in the implementation.  

 Ib={Activateur(urstruct)| urstruct URbehav} is the set of activation inputs corresponding to all such 

urstruct elements which are also member of URbehav. 

 S   S x Ib , if S  = S x Ib then Mbehav is fully specified; however as already discussed in 

assumption (c), Mbehav will always be partially specified. 

 : S   S is the state transition function  

Figure 4: Procedure for constructing 

the behavior model 

Algorithm Constructbehav  
Input: URbehav, RBACp 

Output: Mbehav 

1 s1  {0,0,0,�.0} where |s1|=|URbehav| 

2 generatenextState(s1, Ib|s1) 

 

generatenextState(s, Ib|s) 

3 for each Activateur(urstruct)  Ib|s 

4     do apply rule 2 on Activateur(urstruct) 

5  to determine s {s | URactive(urstruct)} 

6     (s,  Activateur(urstruct))  s  

7     do if s   s 

8          then generatenextState(s , Ib|s )  

8 end for  
s | URactive(urstruct) indicates new value of s  

with updated value of URactive(urstruct) 

 In algorithm Constructbehav (Figure 4) used for the 

construction of Mbehav, Ib|s represents the set of activation 

inputs available in state s, which would be constrained by 

assumption (c) discussed above. After creating the initial state, 

procedure generatenextState is called recursively until all possible 

states are visited using depth first traversal. In generatenextState, 

corresponding to each application of input Activateur(urstruct), 

there could be two possible cases for the next state. First, the 

next state is the same as the current state, which would be true 

if the corresponding UR activation cannot be made due to the 

violation of constraints as identified by 2. Second, the 

algorithm would recursively traverse a different next state. It is easy to conclude that the algorithm 

would terminate as there are only a finite number of possible states. 

 Corresponding to Example 2, URbehav={u1r1, u1r2, u2r2, u2r3} and the resultant Mbehav generated 

using Constructbehav is shown in Figure 5. 

 14



 

s= (URactive(u1,r1), URactive(u1,r2), URactive(u2,r2) , URactive(u2,r3))

Activateur(ui,rj) is shown as uirj

0000

1000 0100 0010 0001

1010 1001 0110 0101 00111010 0110 00111001 0101

u1r1

u1r1

u1r2

u1r2

u2r2 u2r3

u2r3

u2r2 u2r3

1011

u2r2

0111

u2r3 u2r2

u2r3u2r2

1011 0111 1011 1011 0111 1011

u1r2u1r1 u2r3 u2r2u1r2u1r1

u2r3u2r3 u1r2 u1r1 u2r2 u1r2 u1r1u2r2

u1r2 u1r2

u1r2 u1r2 u1r2 u1r2

u1r1u1r2

u1r1

u1r1

u1r1

u1r1 u1r1

u1r1

u1r2

s= (URactive(u1,r1), URactive(u1,r2), URactive(u2,r2) , URactive(u2,r3))

Activateur(ui,rj) is shown as uirj

s= (URactive(u1,r1), URactive(u1,r2), URactive(u2,r2) , URactive(u2,r3))

Activateur(ui,rj) is shown as uirj

0000

1000 0100 0010 0001

1010 1001 0110 0101 00111010 0110 00111001 0101

u1r1

u1r1

u1r2

u1r2

u2r2 u2r3

u2r3

u2r2 u2r3

1011

u2r2

0111

u2r3 u2r2

u2r3u2r2

1011 0111 1011 1011 0111 1011

u1r2u1r1 u2r3 u2r2u1r2u1r1

u2r3u2r3 u1r2 u1r1 u2r2 u1r2 u1r1u2r2

u1r2 u1r2

u1r2 u1r2 u1r2 u1r2

u1r1u1r2

u1r1

u1r1

u1r1

u1r1 u1r1

u1r1

u1r2

 

Figure 5: Mbehav corresponding to Example 2 

 

4.2.2 Dynamic Test Suite 

 The dynamic test suite is constructed from Mbehav which is effectively an FSM representation.  

The W-method is a classic test generation method [Chow78] to generate tests from an FSM 

specification. Due to the proven fault detection effectiveness of test generated using the W method; we 

decided to use it for generating the dynamic test suite. As mentioned earlier, the W-method works by 

first generating a test tree from the FSM model and then concatenating the test sequences (generated 

from the test tree) with the determined state characterization set (W). 
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Figure 6: Test Tree corresponding to Mbehav of Example 2 
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 The W set consists of input sequences that can distinguish between behaviors of every pair of 

states in the minimal FSM. We assume the existence of such reliable methods in the implementation 

that can be used to directly check the state. Under this assumption, the states of Mbehav are readily 

observable and therefore the W set is not required. Such an assumption has also been used in the 

Binder round trip method [Binder99] for class testing in object-oriented programs. The dynamic test 

suite is thus constructed from the test tree; the W set is not required. In constructing the test tree from 

the FSM, if the added node at depth k is the same as some other node at depth i, i k, then that node is 

terminated with no further edge out of it [Chow78]. The test tree corresponding to Mbehav of Figure 5 is 

shown in Figure 6. The dynamic test suite is constructed from the test tree and executed on the 

implementation via algorithm RundynamicTest given in Figure 7. 

 In the algorithm RundynamicTest, nnode is the next 

node in the path  and is obtained through the function 

nodenext that returns the next node in the path, to which 

the implementation state is compared after applying the 

input Activateur| ( ,currentnode, nnode). The input Activateur| 

( ,currentnode, nnode) denotes the input on the edge between 

currentnode and nnode in the path  in the test tree. On 

reaching the last node of , the DeActivateur inputs are 

applied in reverse order to the Activateur inputs so as to 

take the implementation back to its initial state i.e. no UR 

activations exist in the system. Applying RundynamicTest on 

the test tree of Figure 6, it can be observed that one test 

sequence would be u1r1, u2r2, u1r2, u1r 2, u2r 2, u1r 1, where 

uir j denotes DeActivateur(ui,rj).  

Algorithm RundynamicTest  
Input: TestTree 

Output: result  {pass, fail} 

 

1 n0  noderoot, currentnode  n0, nnode  null 

2 for each path  TestTree 

3    do nnode  nodenext 

4    do while nnode  null 

5  do apply input Activateur| ( ,currentnode, nnode) 

6          do if current implementation state  nnode 

7              then result  �fail�  

8              return result 

9     else currentnode  nnode 

10     end while 

11     do apply DeActivateur inputs in reverse order  

12 to take implementation back to initial state 

13   end for  

14 result  �pass�  

15 return result 

Figure 7: Procedure for constructing and 

executing the dynamic test suite 

 The total number of test sequences can be reduced by constructing a modified test tree where 

instead of terminating a path at a repeated node, i.e. at a state with a self edge in Mbehav, the repeated 

nodes, whenever encountered, are included explicitly in the path. This can be easily observed in the 

modified test tree shown in Figure 8. In our case study (Section 5) we used the original test tree for 

constructing the dynamic test suite. 
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Figure 8: Modified Test Tree corresponding to Mbehav of Example 2 

   

 The complexity of the algorithm RundynamicTest primarily depends on the complexity of the W-

method in construction of the test tree which is bounded by product of the number of states (in this 

case 2^|URbehave|) and the number of input symbols (|URbehave|). However, by virtue of our experience 

with the case study conducted in Section 5, it was observed that for most of the developer-oriented 

testing, the number of states is not very high except for the tests related to �Role Activation 

Constraints� (Table 4) for which we reduced the number of test cases by only traversing the test tree to 

depth 1.  For a large number of state variables, one solution could be to use combinatorial testing 

strategies, such as covering arrays, to reduce the number of test cases [Dalal98]. 

5 CASE STUDY 

In this section we present a case study in which the proposed model-based security testing approach 

was used to verify a variant
6
 of the X-GTRBAC prototype system [Bhatti05]. The central idea is that 

the system uses credentials supplied by users to assign them to roles subject to any assignment 

constraints. The users can then access resources according to their role memberships subject to any 

dynamic access constraints. The X-GTRBAC is an XML based system in which RBACp is specified 

using XML policy files. The basic policy files are shown in Table 3 and the system architecture, with 

added security testing module, is given in Figure 9. Details of the X-GTRBAC system are described 

elsewhere [Bhatti05].  

 

                                                 
6 We considered the variant without temporal constraints 
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Table 3: X-GTRBAC Policy Files [Bhatti05] 
File Name  Purpose 
XML User Sheet (XUS) Declares the users and their authorization credentials 

XML Role Sheet (XRS) Declares the roles, their attributes, role hierarchy, and any 

separation of duty and temporal constraints associated with roles 

XML Permission Sheet (XPS) Declares the available permissions 

XML User-to-Role Assignment Sheet (XURAS) Defines the rules for assignment of users to roles; these 

assignments may have associated temporal constraints 

XML Permission-to-Role Assignment Sheet (XPRAS) Defines the rules for assignment of permissions to roles; these 

assignments may have associated temporal constraints 

XML Separation Of Duty Definition Sheet (XSoDDef) Defines the separation of duty constraints on roles 

XML Credential Type Definition Sheet (XCredTypeDef) Defines the available credential types 

5.1 X-GTRBAC System Security Test Process 
The testing of X-GTRBAC system is performed through developer-oriented security testing for which 

suitable RBACp models are generated to completely test the system as mentioned in Section 4. This is 

achieved by generating a suitable set of policy files corresponding to the requirement of each RBACp 

model. As shown in Figure 9, the test policies generated by the security testing module act as input to 

both the system and the model generator. The model generator creates both the structural and behavior 

models from the corresponding RBACp, and also constructs the respective test suites. The test vectors 

sub-module runs both the static and dynamic suites on the system using the X-GTRBAC system 

application programmer interface (API). Test results are compared with the expected outputs to verify 

the system function. 
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Figure 9: X-GTRBAC System + Security Testing Module 
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5.2 Constructing Test Policies 

 By using the test policy files, we are able to verify the ability of the X-GTRBAC system to 

properly parse the XML files and correspondingly correctly implement the relevant RBACp. Different 

policy files are composed depending on the particular aspect of the X-GTRBAC system to be verified.  

 

Table 4: Policy Files Corresponding to Test Objectives 
Test objectives XUS XRS XPS XURAS XPRAS XSoDDef 
User Cardinality # user=1 

User card=k 

Add Cred=true 

# role=k+1 

Role card=1 

Hierarchy=false 

Activ const=false 

# perms=p # user=1 

# not Assigned=0 

# role=k+1 

# perms=p 

# role=k+1 

 

DSoD=null 

SSoD=null 

Role Cardinality # user=k+1 

User card=1 

Add Cred=true 

# role=1 

Role card=k 

Hierarchy=false 

Activ const=false 

# perms=p # user=k+1 

# not Assigned=0 

# role=1 

# perms=p 

# role=k 

 

DSoD=null 

SSoD=null 

DSoD # user=1 

User card=k+1 

Add Cred=true 

# role=k+1 

Role card=1 

Hierarchy=false 

Activ const=false 

# perms=p # user=1 

# not Assigned=0 

# role=k+1 

# perms=p 

# role=k+1 

 

DSoD card=k 

SSoD=null 

SSoD # user=1 

User card=k+1 

Add Cred=true 

# role=k+1 

Role card=1 

Hierarchy=false 

Activ const=false 

# perms=p # user=1 

# not Assigned=0 

# role=k+1 

# perms=p 

# role=k+1 

 

DSoD=null 

SSoD card=k 

Role Hierarchy # user=1 

User card=k 

Add Cred=true 

# role=k 

Role card=1 

Hierarchy=true 

Activ const=false 

# perms=p # user=1 

# not Assigned=0 

# role=1 

# perms=p 

# role=1 

 

DSoD=null 

SSoD=null 

User-Role 

Assignment 

# user=k 

User card=k 

Add Cred=true 

# role=k 

Role card=k 

Hierarchy=false 

Activ const=false 

# perms=p # user=k 

# not Assigned=k/2 

# role=k 

# perms=p 

# role=k 

 

DSoD=null 

SSoD=null 

User-Role 

Assignment Empty 

# user=k 

User card=k 

Add Cred=false 

# role=k 

Role card=k 

Hierarchy=false 

Activ const=false 

# perms=p No entries made No entries made  DSoD=null 

SSoD=null 

Role Activation 

Constraints 

# user=1 

User card=k 

Add Cred=true 

# role=k 

Role card=1 

Hierarchy=true 

Activ const=true 

# perms=p # user=1 

# not Assigned=0 

# role=k 

# perms=p 

# role=k-1 

 

DSoD=null 

SSoD=null 

 

 Table 4 lists the details for each policy file created to verify a particular aspect of the system. 

XCredTypeDef is the same for all tests and consists of two credentials, each with five attributes. While 

testing the system for �User-Role Assignment� related objectives, the users are assigned credentials 

from XCredTypeDef, which are compared with the role assignment constraints for allowing the 

assignment, or otherwise. In Table 4, the test objectives specify a particular aspect of the system that is 

verified using the corresponding policy files. The RBACp corresponding to the test policy files is used 

to create the structural and behavioral models which are further used to generate the static and dynamic 

test suites. In order to understand the semantics of the test objectives used in Table 4, we consider two 

examples of �Role Hierarchy� and �User-Role Assignment.� We also tested the system for the 

handling of incorrect and duplicate files. 
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5.2.1 Role Hierarchy 

Role hierarchy represents the objective to verify the correct implementation of X-GTRBAC hierarchy 

semantics. This is achieved by generating such policy files in which a single user is assigned to the 

most senior role from among a total of k roles (see the XURAS column in Table 4). The dynamic test 

suite is then used to verify a user�s ability to activate all the junior roles as per the A-hierarchy 

semantics. The I-hierarchy semantics are verified by only assigning p permissions to the most junior 

role, and then verifying the assignment of the same to all senior roles through the static test suite. The 

user and role activation cardinalities are set to k and 1, respectively. The �Add Cred= true� clause 

imply that, user has credentials specified in XUS which are compared with role attributes in XURAS 

for UR assignment. Moreover the �Activ const=false� clause of XRS implies that roles do not have 

any activation restrictions. This permits the tests to only focus on the verification of hierarchy 

semantics and not the UR assignment or the role activation semantics. The �DSoD=null� and 

�SSoD=null� clauses imply that there are no DSoD and SSoD constraints on the UR assignments and 

activations. 

5.2.2 User-Role Assignment 

 The objective of user-role assignment is to verify the correct implementation of UR assignment 

controls as specified in the X-GTRBAC system. As already mentioned, the UR assignment is allowed 

only if the corresponding user credentials satisfy the role assignment constraints specified in XURAS. 

This is verified by creating XUS and XRS for an equal number (k) of roles and users. All users in 

XURAS are assigned to all the roles such that the evaluation of assignment constraints would not allow 

the assignments for k/2 users out of the total k users. In the X-GTRBAC system, the assignment 

constraints can consist of multiple assignment conditions that are first evaluated individually, and then 

collectively, through the use of one of the logical operators from the set {OR, NOT, AND}. Moreover, 

the assignment conditions can also have multiple logical expressions whose collective evaluation is 

again determined on the basis of the logical operator specified in the assignment condition. The 

assignment constraints are therefore constructed such that all desired combinations of logical operators 

for the assignment conditions, expressed as logical expressions, are checked for either true or false 

value. The XURAS construction in this manner therefore permits the static test suite to fully verify the 

correctness of the evaluation logic corresponding to the UR assignment constraints. The �User-Role 

Assignment empty� test is designed to verify the system for the case where although there are users 
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and permissions in XUS and XPS respectively, but no assignments for same are explicitly made in the 

system. 

5.3 Measuring Test Adequacy 

We used statement coverage and condition coverage to assess the adequacy of the tests generated using 

proposed model-based testing approach. Code coverage values are an indicator of the ability of the 

tests to exercise various parts of the system. We used the Clover tool [Clover] to measure code 

coverage in terms of �statement� and �conditional� coverage. For the test parameters given in Table 4, 

the values used for measuring the code coverage are shown in Table 5. 

Table 5: Test Parameters  
Parameter Values Test objectives 

k p 
User Cardinality 3 2 

Role Cardinality 3 2 

DSoD 3 2 

SSoD 3 2 

Role Hierarchy 3 4 

User-Role Assignment 20 2 

User-Role Assignment Empty 3 2 

Role Activation Constraints 20 2 

  

 Except for �User-Role Assignment� for which only the static test suite was executed on the X-

GTRBAC system, both the dynamic and static test suites were executed on the system for the 

remaining test objectives. The resultant coverage results for the complete system and individual 

classes
7
 are presented in Tables 6 and 7, respectively. The coverage results are for a total of 29 classes 

in 21 files with a total of 7,381 lines of code for 367 methods. The coverage results for the both tables 

are categorized into statement, conditional, and methods coverage. The �initial coverage� in Table 7 

shows the coverage results after we first executed the tests on the system by directly using the policy 

files, generated as per the details in Section 5.2, without any modifications.  

Table 6: Coverage Results: Complete System 
Coverage Conditional Statement Methods Total 
Initial 86% 94% 91.8% 91.7% 
Final 97.2% 97.8% 95.4% 97.4% 

 The reasons for less than 100% coverage were then investigated and shown in the �Initial 

Comments� column in Table 7 Based on �Initial Comments,� corresponding to a test objective, 

variants of test policy files were created to test the required functionality. The �final coverage� depicts 

                                                 
7The coverage of GUI classes is not measured as the tests directly use the API of the X-GTRBAC system and are not 

designed to test the GUI classes in the system. 
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the coverage results obtained after the modified test suites were executed on the system. The �Final 

Comments� column indicates the reasons of less than perfect coverage even after execution against the 

modified test suite. In most cases, the reason for less than complete coverage is either the presence of 

redundant methods, included in the system for future extensions, or the presence of infeasible 

conditionals. 

Table 7: Coverage Results: Individual Classes  
Class Initial 

Coverage 
Initial Comments Final 

Coverage
Final Comments 

CredType 95.2% Multiple addition of same credentials not checked 100 %  

CredType.Attribute 100%  100%  

DOMReader 96.4% Exception not tested for instantiation of 

DocumentBuilder 

96.4% Same as initial comments 

DSDRoleSet 82.6% One method is redundant, multiple additions of same 

role not checked, method called for displaying DSoD 

set not checked 

91.3% One method is redundant 

GTRBACModule 93.5% One method is redundant, exceptions not tested for 

files not found when trying to close/open the file or 

parsing the file. One conditional not tested for true 

97% Exceptions for file closing not tested. The 

conditional cannot be tested for true because 

decision parameter always has same value. 

One method is redundant 

LogicalExpr  (LX) 98% One conditional not tested which checks for operator 

to be null 

100%  

LX.SimplePredicate  100%  100%  

PermRoleAssign (PRA) 90% Conditional for checking no permission addition not 

tested for false  

90% Conditional cannot be tested so because all 

paths lead to true value 

PRA.AssignPermission 76.7% One method is redundant 76.7% Same as initial comments 

Permission  86.7% Three methods used for displaying relevant 

information not tested. One conditional not tested for 

false 

96.7% The conditional cannot be tested for false 

because all calls to it can only lead to true 

value 

Policy  69.4% Nine methods are redundant. Ten methods used for 

displaying policy sheets not tested. Four conditional 

not tested for false 

91.2% Four conditionals cannot be tested for false 

because all calls only lead to true value. Nine 

methods are redundant 

Role  98.1% Two conditionals to check addition of same 

DSoD/SSoD not tested for true 

100%  

Role.RoleCondition  100%  100%  

Role.RoleConstraint 92.8% Three logical expression operations not checked for 

both true and false values 

100%  

SSDRoleSet  73.9% Two methods are redundant, a conditional to check 

duplicate addition of same role is not checked for true 

82.6% Two methods are redundant 

Session  100%  100%  

User  91.5% One method is redundant; a conditional to check 

duplicate addition of same credential is not tested for 

true. Absence of required credential not tested.  

Conditional for checking absence of logical 

expression in assign condition not tested for false. 

95.8% Five conditionals cannot be tested for all 

values because of constraints on all the paths 

reaching them. One method is redundant. 

UserRoleAssign (URA) 92.1% Two methods are redundant. A conditional to check 

duplicate addition of same user not checked for true  

94.7% Two methods are redundant. 

URA.AssignCondition  100%  100%  

URA.AssignConstraint  93.1% Conditional checking for no match of opCode not 

tested for true. Conditional to check change in 

duration expression not tested for false 

100%  

URA.CandidateUser 100%  100%  

XCredTypeDef_DTDSc

anner 

95.9% Conditionals for  matching tags/attribute names in the 

scanned XML file not tested for false 

100%  

XGTRBACMain  100%  100%  

XPRAS_DTDScanner 96% Conditionals for  matching tags/attribute names in the 

scanned XML file not tested for false 

100%  

XPS_DTDScanner 96.8%  100%  

XRS_DTDScanner 97.4%  100%  

XSoDDef_DTDScanner 96.8%  100%  

XURAS_DTDScanner  96.6%  100%  

XUS_DTDScanner  98.7%  100%  
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 Tables 6 and 7 show that the proposed model-based testing approach is able to achieve high 

code coverage. These results are dependent on the correct identification of the test objectives and the 

selection of the right parameters for the corresponding test policy files.  

5.4 Measuring Test Effectiveness 

Test adequacy was also measured using program mutation [Demillo78]. Program mutation creates 

versions of the original program, known as mutants, through simple syntactic changes. The original 

program and the mutants are then executed against the test cases to assess their adequacy. If the test 

cases are able to distinguish a mutant from the original program then that mutant is considered 

distinguished. Mutants, other then the ones distinguished, are considered live. A mutant could be live 

because of one of two reasons: (a) the test cases are not strong enough to distinguish it from the 

original program and (b) the program logic does not change from the original in the mutated program 

i.e. the mutant is semantically equivalent to the original program. The latter type of live mutants are 

considered equivalent and in general their identification is an undecidable problem. Test effectiveness 

is measured as the ratio of distinguished mutants to the total number of non-equivalent mutants. This 

ratio, multiplied by 100, is also known as the mutation score or mutant score.  Higher mutation score 

reflects a more effective test set. Program mutation has thus been widely used to compare the 

effectiveness of different testing strategies [Kim00, Briand04, Andrews05]. 

 Table 8: Method Level Mutation Operators [Mujava] 
Operator  Description 
AOR  Arithmetic Operator Replacement 

AOD  Arithmetic Operator Insertion 

AOI  Arithmetic Operator Deletion 

ROR  Relational Operator Replacement 

COR  Conditional Operator Replacement 

COI  Conditional Operator Insertion 

COD  Conditional Operator Deletion 

SOR  Shift Operator Replacement 

LOR  Logical Operator Replacement 

LOI  Logical Operator Insertion 

LOD  Logical Operator Deletion 

ASR  Assignment Operator Replacement 

 

 We used the Mujava tool [Mujava, Ma05] to perform mutation testing of the XGTRBAC 

system. Mujava provides a framework for both the efficient generation of mutants and test case 

execution for programs written in Java. Mujava uses two types of mutation operators, class level 

[Ma02] and method level [Offutt96]. It uses an extended set of method level mutation operators that 
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are based on the selective operator set proposed by Offutt et al. [Offutt96]. The method and class level 

mutation operators are shown in Tables 8 and 9, respectively. Further details of the class level and 

traditional mutation operators are in [Ma02, Ma05, Offutt96]. Mujava differentiates between live and 

distinguished mutants by comparing the output from the execution of the original program against that 

of a mutant on a test case.  

 The results of mutation testing on the XGTRBAC system are summarized in Table 10. The 

mutants were generated for the same set of class files (the inner classes are not shown separately) as in 

Table 7. No mutant was generated for XGTRBACMain class because it simply initializes the testing 

framework. Also, unused code, identified during the measurement of code coverage, was not mutated. 

Mujava generates mutants, compiles them, and executes them automatically against the test cases, 

provided in a separate class file.  The original program and the mutants were executed against the same 

set of tests used during coverage measurement. 

Table 9: Class Level Mutation Operators [Ma05], [Mujava] 
Language Feature Operator Description 

IHD  Hiding variable deletion 

IHI  Hiding variable insertion 

IOD  Overriding method deletion 

IOP  overriding method calling position change 

IOR  Overriding method rename 

ISD  super keyword deletion 

ISI  super keyword insertion 

Inheritance 

IPC  Explicit call of a parent's constructor deletion 

PNC  new method call with child class type 

PMD  Instance variable declaration with parent class type 

PPD Parameter variable declaration with child class type 

PCI Type cast operator insertion 

PCC Cast type change 

PCD Type cast operator deletion 

Polymorphism 

PRV Reference assignment with other comparable type 

OMR  Overloading method contents change 

OMD Overloading method deletion Overloading 

OAC Arguments of overloading method call change 

JTD  this keyword deletion 

JTI this keyword insertion 

JSI static modifier insertion 

JSD static modifier deletion 

JID  Member variable initialization deletion 

Java-Specific  

Features 

JDC  Java-supported default constructor creation 

EOA  Reference assignment and content assignment replacement 

EOC Reference comparison and content comparison replacement 

EAM  Accessor method change 

Common Programming  

Mistakes 

EMM Modifier method change 
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 The results in Table 10 show a cumulative mutation score of 94%. A mutation score of 88% 

was obtained corresponding to class mutants. The lack of 100% mutation score is explained in the 

following section. Equivalent mutants were identified through manual analysis. 

Table 10: Mutation Testing Results (Categorized by Classes) 
Method Mutants Class Mutants Class 

Total Disting
uished

Mutant 
Score 

(initial)

Equi-
vale-

nt 

Mutant 
Score  
(final) 

Total Disting
uished

Mutant 
Score 

(initial) 

Equi- 
vale-

nt 

Mutant 
Score  
(final) 

CredType 30 24 80% 5 96% 14 13 92% 0 92% 

DOMReader 0 - - - - 3 1 33% 1 50% 

DSDRoleSet 16 10 62% 6 100% 6 3 50% 0 50% 

GTRBACModule 218 201 92% 13 98% 6 1 16% 5 100% 

LogicalExpr  132 127 96% 5 100% 24 20 83% 4 100% 

PermRoleAssign  26 24 92% 2 100% 18 12 66% 0 66% 

Permission  43 42 98% 0 98% 35 28 80% 0 80% 

Policy  376 362 96% 14 100% 39 20 51% 0 51% 

Role  377 338 90% 12 93% 118 115 97% 0 97% 

SSDRoleSet  16 10 62% 6 100% 6 3 50% 0 50% 

Session  17 13 76% 2 87% 3 3 100% - 100% 

User  246 220 89% 20 97% 28 18 64% 2 69% 

UserRoleAssign 139 112 81% 15 90% 29 19 65% 0 65% 

XCredTypeDef_DTDScanner 78 62 79% 0 79% 24 13 54% 4 65% 

XPRAS_DTDScanner 90 79 87% 0 87% 71 56 78% 13 97% 

XPS_DTDScanner 66 62 94% 0 94% 79 65 82% 11 96% 

XRS_DTDScanner 287 256 89% 1 90% 222 173 77% 33 92% 

XSoDDef_DTDScanner 122 111 90% 0 90% 111 90 81% 17 96% 

XURAS_DTDScanner  203 203 100% - 100% 188 154 81% 26 95% 

XUS_DTDScanner  214 189 88% 0 88% 152 108 71% 20 82% 

All Classes (cumulative) 2696 2445 91% 101 94% 1176 915 78% 136 88% 

6 DISCUSSION 

The major task in developer oriented security testing, as is the case with security testing of XGTRBAC 

system, is the creation of suitable RBACp specifications to adequately test the system. This is 

important because RBACp is the sole source for construction of both structural and dynamic models 

which are in turn used to generate the static and dynamic test suites, respectively. The test suites will 

only be able to adequately exercise the implementation if the corresponding RBACp specifications are 

able to completely exercise all the rules in the related rule set. The high code coverage results for 

XGTRBAC system are thus primarily due to the correct identification of the test objectives and 

selection of associated parameters for the creation of RBACp specifications. 

 The results of mutation testing indicate a strong correlation between code coverage and 

mutation score for method mutants. This is also expected because method mutants modify the 

expressions in the program by replacing, adding, or inserting primitive operators; therefore, if tests 

have good statement and conditional coverage then there reasonable chances of such mutants getting 

distinguished. As compared to method mutants, mutation score for class mutants is not as high (88% as 
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compared to 94% for method mutants).  The following discussion is based on Table 11 which presents 

the results of the mutation testing categorized by individual operators. It is to be noted that the 

operators for which no mutants were generated are not included in Table 11.  

Table 11: Mutation Testing Results (Categorized by Operators) 
Method Level Mutation Operators 

Mutant Score 
Operator Total Distinguished Live Equivalent Original After Equivalence 

Analysis 
AOR 178 178 0 0 100% 100% 

AOD 29 1 28 21 3% 12.5% 

AOI 1489 1329 160 53 89% 93% 

ROR 463 411 52 27 89% 94% 

COR 8 6 2 0 75% 75% 

COI 20 18 2 0 90% 90% 

COD 6 5 1 0 83.3% 83.3% 

LOI 503 497 6 0 99% 99% 

Combined 2696 2445 251 101 91% 94% 
Class Level Mutation Operators 

Mutant Score 
Operator Total Distinguished Live Equivalent Original After Equivalence 

Analysis 
PRV 116 96 20 3 83% 85% 

JTI 6 6 0 - 100% 100% 

JTD 6 6 0 - 100% 100% 

JSI 75 30 45 15 40% 50% 

JSD 20 0 20 18 0% 0% 

JDC 2 2 0 - 100% 100% 

EAM 918 746 172 100 81% 91% 

EMM 33 29 4 0 88% 88% 

Combined 1176 915 251 136 78% 88% 

  

 It can be observed that the mutation score corresponding to all the major contributing method 

level operators (AOI, LOI, ROR, AOR) is quite high (93%, 99%, 94%, 100%), thus resulting in a  

overall good mutation score for method mutants. More than half (55%) of the total method level 

mutants are due to the application of the AOI operator that inserts basic unary and short-cut arithmetic 

operators in the code [Mujava]. As compared to AOR mutants, for which the mutation score is highest 

(100%), the score corresponding to AOD mutants is much lower (12.5%) and has the highest ratio of 

equivalent mutants (75%). Our analysis of AOD mutants revealed that the remaining 7 live mutants, 

after equivalence analysis, were not distinguished by the test cases because of the limited check on the 

return value of some function calls. 

 Application of �EAM: accessor method change� class mutation operator generates most of the 

class mutants (81% of total class mutants correspond to the application of EAM operator). 

Consequently most of the non-equivalent live class mutants also belong to EAM mutants (63% of all 
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live class mutants). EAM operator replaces an accessor method name with that of other compatible 

accessor methods e.g. EAM_1 live mutant of Permission class changes �for (int i = 0; i < 

policy.getPRAssignCount(); i++)�  to �for (int i = 0; i < policy.getDSDRoleSetCount(); i++)�. The test 

cases are not able to distinguish this change because of the same value of policy.getPRAssignCount() 

and policy.getDSDRoleSetCount() established through the test policy files. In order to verify that the 

subject mutant is not really equivalent, we actually created a test case to distinguish it. Our 

investigation revealed similar reasons for nearly all of the other live EAM mutants.  

 Although there are only 75 mutants (6% of total class mutants) generated through the 

application of �JSI: static modifier insertion� class mutation operator, yet 50% of the JSI mutants (30 

out of 60) are determined to be live even after equivalence analysis. As the JSI operator adds the static 

modifier to change instance variables to class variables [Mujava], therefore if only a single instance of 

an object is created by the test cases, the corresponding JSI mutant cannot be distinguished from the 

original code. The above reason is the prime cause of the inability of the test cases to distinguish all the 

live JSI mutants. It is also interesting to observe that the test cases were not able to distinguish any 

class mutants corresponding to the application of �JSD: static modifier deletion� operator which 

removes the static modifier to change the class variables to instance variables [Mujava]. The JSD 

mutants were generated by Mujava only for the document scanner classes (last 7 classes in Table 10) 

which are used for parsing the policy sheets, so only a single instance of these classes will be always 

created and hence most of the corresponding JSD mutants could not be distinguished by any test case 

and were thus considered equivalent. 

 The above discussion highlights the fact that while performing mutation testing for class 

mutants, their impact should be carefully considered while creating the RBACp specifications.  As in 

our case study, such analysis was not made at the initial stage of test policy construction (Section 5.2), 

therefore the mutation score for class mutants is not very high.  

 Mutation testing is based on the premise that the faults injected in the system through the 

application of mutation operators, are representative of the actual possible faults. The mutation score 

can therefore be used as a predictor of the fault detection effectiveness of the corresponding testing 

strategy.  A recent study by Andrews et.al. [Andrews05] also concludes that careful application of 

mutation testing can provide a good estimate of the fault detection capability of the given testing 

strategy. However, more experiments are needed to generalize these results to the assessment of fault 

detection effectiveness of security testing strategies.  
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7 RELATED WORK 

7.1 Access Control Policies 

Ferraiolo and Kuhn [Ferra92] proposed Role Based Access Control (RBAC). RBAC is shown to be a 

more flexible approach as compared to DAC and MAC and can be used to represent both DAC and 

MAC policies [Osborn00]. In DAC, the basic premise is that subjects have ownership over objects of 

the system and subjects can grant or revoke access rights on the objects they own to other subjects at 

the original subject�s discretion. Subjects can be users, groups, or processes that act on behalf of other 

subjects. In MAC, the access is governed on the basis of subjects and objects classifications. The 

subjects and objects are classified based on some predefined sensitivity levels. MAC policy is focused 

towards controlling information flow with the aim to ensure confidentiality and integrity of 

information, whereas DAC lacks in providing this support. RBAC has several advantages that allow it 

to provide simplified security management [Bert99]. These include the abstraction of roles and use of 

role hierarchy, principles of least privilege and separation of duty (SoD), and policy neutrality [Josh01]. 

These advantages distinguish RBAC from other models as a powerful model for specifying policies 

and for specifying rules from any arbitrary organization-specific security model.  

7.2 Model Checking based Testing 

Model checking [Clark99] has also been used for software testing [Amma98, Gargan99].  Model 

checking is an automatic technique used for verifying finite state systems. The properties to be verified 

(normally specifications) are usually expressed as formulas in temporal logic. The formal model of the 

system and the temporal formulas are then fed as input to a model checker which returns �true� if the 

property holds or generates a counter example. The capability of model checker to generate counter 

examples is used to create test cases [Amma98]. The mutation analyses of specifications yield mutants 

which are used by the model checker to generate counter examples. Franseco et.al. [Franc03] have 

used model checking to verify �secure information flow� and �secure termination� properties for 

programs written in high-level languages. Model checking technique has also been used to analyze 

security flaws in programs for which control flow graph is available [Besson01].  In [Besson01], a 

formalism based on a linear-time temporal logic is introduced for specifying global security properties 

pertaining to the control flow of the program. A model checking based approach for finding security 

flaws in programs and verifying the absence of certain classes of vulnerabilities in them has been 

presented in [Chen02]. Dependence of these techniques on the availability of control flow information 
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restricts their usage for software products for which structural information is not available, which is 

mostly the case with COTS components.  

 Model checking has also been used for verification of sequential circuits [Burch94]. A tool for 

automatic test pattern generation (ATPG) using model checking to detect physical defects in an 

asynchronous circuit has been suggested in [Marco97]. A method similar to model checking has been 

proposed for verifying finite state machines by using Ordered Binary Decision Diagrams [Coud89]. 

7.3 Specification Based Testing 

Specification based testing has proposed using model-based specification languages such as Z and 

VDM. Z and VDM have been used to represent the software specifications formally using 

mathematical models. A predicate oriented approach based on VDM specifications is presented in 

[Dick93].  Using Z based specifications for testing is discussed in [Stocks93], [Hier97], and 

[Burt2000].  Specification based testing has also been investigated by converting the informal 

specifications to cause effect graphs and applying a Boolean operator strategy to design and select test 

cases [Parad97].  A method to generate tests from Boolean specifications of software is given in 

[Weyu94].  In this study the quality of test cases is determined by applying the test cases against few 

mutation-style faults.  A scenario-based object oriented testing framework, which uses test scenario 

specification as input has been proposed in [Tsai03] for adaptive and rapid testing. 

7.4 Security Testing 

A model-based approach for security functional testing has been proposed in [Chan04]. The text based 

specifications of security functions are first transformed to SCR (software cost reduction) formal 

language specifications which are later used to create the SCR behavioral model. The behavior model 

is used to create test vectors which are then executed on the product. The necessity of risk-based 

approaches for security testing is argued in [Potter04]. In risk-based approach, the risks are first 

identified in the system and tests are then created based on the identified risks. A white box testing 

approach for vulnerability testing of software systems using a variant of the fault injection technique 

has been proposed in [Du00]. In this approach, each environment perturbation is considered a fault 

which is then injected into the system and the resultant system response is observed to determine the 

system�s ability to tolerate the fault. Another approach for penetration/vulnerability testing 

recommends construction of tests based on perceived risks and the integration of test results back into 

the organization software development life cycle [Arkin05]. 
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8 SUMMARY AND CONCLUSIONS 

We have proposed a model-based approach for security testing of access control systems. The 

proposed approach generates the static and dynamic test suites, for testing an implementation, from the 

structural and behavioral models respectively of the corresponding RBAC policy specification. It thus 

provides a systematic procedure for the construction of test suites.  

 Code coverage and mutation score are measured in a case study to assess test adequacy and 

effectiveness of the proposed model-based security testing approach. The results from our case study 

indicate that in addition to the test generation technique, test adequacy and effectiveness is also 

dependent on the correct identification of suitable RBAC specifications, which essentially acts as the 

source for the proposed structural and dynamic models. The results of test coverage and effectiveness 

measurements from our case study indicate a strong correlation between mutation score for method 

mutants and code coverage. Moreover, it was observed that the mutation score of class mutants is also 

strongly dependent on the construction of RBAC specifications. In the future, we would like to extend 

our model-based testing approach to access control systems using RBAC policy specifications with 

temporal constraints.  
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