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Abstract

In automated trust negotiation (ATN), two parties exchange digitally sigredkeatials that contain attribute in-
formation to establish trust and make access control decisions. Betbeisformation in question is often sensitive,
credentials are protected according to access control policies. In treedii®N, credentials are transmitted either in
their entirety or not at all. This approach can at times fail unnecessaitiygr because a cyclic dependency makes
neither negotiator willing to reveal her credential before her opponenguse the opponent must be authorized for
all attributes packaged together in a credential to receive any of themecause it is necessary to fully disclose the
attributes, rather than merely proving they satisfy some predicate (sulshilgg over 21 years of age). Recently,
several cryptographic credential schemes and associated protaseldeen developed to address these and other
problems. However, they can be used only as fragments of an ATbegso This paper introduces a framework
for ATN in which the diverse credential schemes and protocols camibioed, integrated, and used as needed. A
policy language is introduced that enables negotiators to specify autimmizaquirements that must be met by an
opponent to receive various amounts of information about certifieibatts and the credentials that contain it. The
language also supports the use of uncertified attributes, allowing them &mbieed as part of policy satisfaction,
and to place their (automatic) disclosure under policy control.

1 Introduction

In automated trust negotiation (ATN) [16, 27, 28, 29, 30,3, 33, 36, 37], two parties exchange digitally signed
credentials that contain attribute information to estbtrust and make access control decisions. In traditiomal A
approaches the only way to use a credential is to send it askeythus disclosing all the information in the credential.

In other words, a digital credential is viewed as a black;l@amd the information in a credential is disclosed in an all-
or-nothing fashion. In these approaches sensitive at&ridalues stored in a credential are protected using access
control techniques. There is an access control policy &ssatwith each credential and a credential can be disclosed
if its access control policy has been satisfied. Viewing aential as a black-box severely limits the power of ATN.
The following are some of the limitations.

¢ If there is a cyclic dependency among credentials and th@icips, negotiations can fail unnecessarily. For
example, in a negotiation betweehand B, supposed has a credential, that can be disclosed only B has
c2, and B hasc,, but can disclose it only ifl hasc;. Using traditional ATN techniques, the negotiation would
fail because neither; andc, can be disclosed before the other is, even though allowimad B to exchange
both¢; ande, would not violate either negotiator’s policy.

e Because attribute information is disclosed in an all-athitg fashion, each attribute can be disclosed only
when the policy governing the credential and its entire eot#t is satisfied, leading to unnecessary failure. For
example, supposB would allow A to access a resource provided thais over21, and A has a digital driver
license that included’s date of birth (DoB) and address. Af does not want to reveal her address (or her exact
DoB) to B, the negotiation would fail, even # would be willing to prove she is over.

e When one negotiator does not want to disclose detailed irdtom about his policy and the other negotiator
does not want to disclose too much information about heibaters, a negotiation can fail even though the



amount of information that needs to be disclosed by eacly gacceptable to both. For example, suppBde

a bank that offers a special-rate loan ahdould like to know whether she is eligible for such a loan bbefehe
applies.B is willing to reveal that his loan-approval policy uses @nebB, current salary, and the length of the
current employment; howeveRB considers further details of this policy to be a trade setyathe is unwilling
to reveal. A would like to know whether she is eligible for the loan whilsalosing as little information about
her attributes as possible. In particuldrdoes not want to disclose the exact values of her DoB or skdaey.
Using traditional ATN techniques, this negotiation wousgdl f

A number of cryptographic credential schemes and assdaggeetocols have been developed to address these and
other problems. Oblivious signature based envelope [2dfieém credentials [6, 17], and secret handshakes [2] can
be used to address the policy cycle problem. Oblivious Bute Certificates (OACerts) [19], private credentials [7],
and anonymous credentials [8, 9, 10, 25] together with kemwledge proof protocols can be used to prove that
an attribute satisfies a policy without disclosing any otimormation about the attribute. Certified input private
policy evaluation (CIPPE) [20] enablesand B to determine whethed'’s attribute values satisfi’s policies without
revealing additional information abouts attributes orB’s policies.

While these credential schemes and associated protoc@ddréss some limitations in ATN, they can be used
only as fragments of an ATN process. For example, a protdedldan be used to handle cyclic policy dependencies
should be invoked only when such a cycle occurs during thati@yprocess. A zero-knowledge proof protocol can
be used only when one knows the policy that needs to be sedtagfidis willing to disclose the necessary information
to satisfy the policy. An ATN framework that harness thesegrdul cryptographic credentials and protocols has yet
to be developed. In this paper, we develop an ATN framewakdbes exactly that. Our framework has the following
salient features.

e The ATN framework supports diverse credentials, includitapdard digital credentials (such as X.509 certifi-
cates [3, 18]) as well as OACerts, hidden credentials, andyanous credentials.

¢ In addition to attribute information stored in credentjale ATN framework supports also attribute information
that is not certified. For example, oftentimes one is askqudwide a phone number in an online transaction,
and the phone number may not be certified in any certificateutframework, uncertified attribute information
and certified attribute information are protected in a umiféashion.

e The ATN framework has a logic-based policy langauge thatalleAdtribute-based Trust Negotiation Language
(ATNL), which allows one to specify policies that govern titisclosure of partial information about a sensitive
attribute. ATNL is based on the RT family of Role-based Trustnagement languages [22, 23, 24].

e The ATN framework has a negotiation protocol that enablesvirious cryptographic protocols to be used to
improve the effectiveness of ATN. This protocol is an exten®f the Trust-Target Graph (TTG) ATN proto-
col [30, 31].

The rest of this paper is organized as follows. We discusge@lwork in Section 2, and then review several
credential schemes and associated protocols that can beru#dN in Section 3. In Section 4, we present the
language ATNL. In Section 5 we present our negotiation maitde conclude our paper in Section 6.

2 Related Work

Automated trust negotiation was introduced by Winsboroefgl. [32], who presented two negotiation strategies: an
eager strategy in which negotiators disclose each credestsoon as its access control policy is satisfied, and a “par
simonious” strategy in which negotiators disclose creidéonly after exchanging sufficient policy content to emsu
that a successful outcome is ensured. Yu et al. [37] devdladamily of strategies called the disclosure tree family
such that strategies within the family can interoperatéwdch other in the sense that negotiators can use different
strategies within the same family. Seamons et al. [27] anénl Winslett [36] studied the problem of protecting
contents of policies as well as credentials. On the aspexjstém architecture for trust negotiation, Hess et al. [16]
proposed the Trust Negotiation in TLS (TNT) protocol, whiskan extension to the SSL/TLS handshake protocol by



adding trust negotiation features. Winslett et al. [34jadticed the TrustBuilder architecture for trust negatiagys-
tems. The problem of leaking attribute information was ggiped by Winsborough and Li [30], Seamons et al. [28],
and Yu and Winslett [35]. Winsborough and Li [29, 30, 31] aduced the notion of acknowledgement policies to pro-
tect this information and provided a formal notion of safatjainst illegal attribute information leakage. Bonattilan
Samarati [4] proposed a framework for regulating serviaeas and information release on the web. Their framework
supports both certified attributes and uncertified atteibut

Recent work on using cryptographic protocols for ATN in&achidden credentials [6, 15, 17], secret hand-
shakes [2], oblivious signature based envelope [21], @hlsy commitment based envelope [19], certified input pri-
vate policy evaluation [20], and policy-based cryptogsapt]. While these protocols are useful tools and build-
ing blocks for ATN, they are not general enough to solve eahjttrust negotiation problems in a systematic way.
Credential schemes that can be used in ATN include OACe®s fitivate credentials [7], and anonymous creden-
tials [8, 9, 10, 25]. We will summarize the features of thes#qrols and credential schemes in the next section.

3 Overview of Cryptographic Credentials and Tools for ATN

We now give an overview of six properties that are providedtdyptographic credential schemes and their associated
cryptographic tools. These properties can improve thepyiprotection and effectiveness of ATN.

1. Separation of credential disclosure from attribute distlee: In several credential systems, including private
credentials [7], anonymous credentials [8, 9, 10, 25], aA€€rts [19], a user’s attribute values are not stored
in the clear; instead, they are stored in a committed formandredentials. When the commitment of an
attribute value is stored in a credential, looking at the gdtment does not enable one to learn anything about
the attribute value. Therefore, a credential holder caalalie her credentials without revealing the attribute
values in them. For example, consider a digital driver lgecertificate from Bureau of Motor Vehicles (BMV)
consisting of name, gender, DoB, and address. In trust izigot, a user can show that her digital driver license
is valid, i.e., that she is currently a valid driver, without disclosing ari her name, gender, DoB, and address.

2. Selective show of attributesA credential holder can select which attributes she wantistdose (and which
attribute she does not want to disclose) to the verifier. A& @dtribute in a credential is in committed form, the
credential holder can simply open the commitments of thibates she wants to reveal. For instance, using the
digital driver license, the credential holder can show hena and address to a verifier without disclosing her
gender and DoB. Cryptographic properties of the commitraehémes ensure that the credential holder cannot
open a commitment with a value other than the one that hasdmemitted.

3. Zero-knowledge proof of attributes satisfying a polick credential holder can use zero-knowledge proof
protocols [5, 11, 12, 14] to prove that her attributes sassfme property without revealing the actual attribute
values. For example, a credential holder can prove thatssbklér than 21 by using her digital driver license
without revealing any other information about her actuaBDo

4. Oblivious usage of a credential:A credential holder can use her credentials in an oblivioay @ access
resources using Oblivious Signature Based Envelope (O$EH) hidden credentials [17], or secret hand-
shakes [2]. In OSBE, a user sends the contents of her cratiémihout the signature) to a server. The server
verifies that the contents satisfy his requirement, thewlgots a joint computation with the user such that in the
end the user sees the server’s resource if and only if shéhbasgnature on the contents she sent earlier. The
hidden credentials and the secret handshakes share ther siamcept; however, they assume that the server can
guess the contents of the user’s credentials; thus the ossrribt need to send the contents to the server. The
oblivious usage of a credential enables a user to obtaincaires from a server without revealing the fact that
she has the credential.

5. Oblivious usage of an attribute:A credential holder can use her attributes in an obliviouy Waaccess re-
sources using Oblivious Commitment Based Envelop (OCB&) [th OCBE, a credential holder and a server
run a protocol such that in the end the credential holdeivesé¢he server’s resource if and only if the attributes
in her credential satisfy the server’s policy. The servezsdnot learn anything about the credential holder’s
attribute values, not even whether the values satisfy theypor not.



6. Certified input private policy evaluation (CIPPE)n CIPPE [20], a credential holder and a server run a protocol
in which the credential holder inputs the commitments ofdigibute values from her credentials, and the server
inputs his private policy function. In the end, both partessn whether the credential holder satisfies the server’s
policy, without revealing the attribute values to the seiwethe private function to the credential holder. For
example, suppose that the server’s policy is that age mugtdster than 25 and the credential holder’s age
is 30. The credential holder can learn that she satisfiesetiverss policy without revealing her exact DoB or
knowing the threshold in the server’s policy.

There are other useful properties achieved in the privagderttials [7] and the anonymous credentials [8, 9, 10,
25], such as multi-show unlinkable property, anonymougperty, etc. Some of these properties require anonymous
communication channels to be useful. In this paper, we fooubke six properties described above, because we believe
they are most related to trust negotiation. Our goal is tegrdate them into a coherent trust negotiation framework.

Note that we do not assume each negotiating participantstgpgll six properties. For instance, if one participant
uses an anonymous credential system and supports prepkfre and the other participant supports properties 1-6,
then they can use properties 1-3 when they negotiate triesprégent an ATN framework that can take advantage of
these properties when they are available, but that doegqgoire them.

4 The Language of Credentials and Policies

In this section, we present the Attribute-based Trust Nagoh Language (ATNL), a formal language for specifying
credentials and policies. ATNL is based &Y', a family of Role-base Trust-management languages intextiu
in [22, 23, 24]. We first give an example trust negotiationnse® in ATNL, then describe the syntax of ATNL in
detail in Section 4.2.

4.1 An Example

In this example, the two negotiators are BookSt (a bookytone Alice. We give the credentials and policies belonging
to BooksSt first, then give those for Alice, and then describegotiation process between BookSt and Alice.

BookSt's credentials:
/1: SBA.businessLicense +— DBookSt
{2 : BBB.goodSecProcess «— BookSt

BookSt's policies:
ml: BookSt.discount(phoneNum = z3) «— StateU.student(program = 1) N BookSt.DoB(val = x3)
N Any.phoneNum(val = x3) ;
((x1 = ‘cs’) A (x2 > ‘01/01/1984))
m2: BookSt.DoB(val = z) «—— BMV.driverLicense(DoB = z)
m3: BookSt.DoB(val = z) — Gov.passport(DoB = )

Figure 1: The credentials and policiesi®fokSt

BookSt's credentials and policies are given in Figure 1. ERBidas a credential]) issued by the Small Business
Administration (SBA) asserting that BookSt has a valid bass license. BookSt is certified if2f by the Better
Business Bureau (BBB) to have a good security process.

BookSt offers a special discount to anyone who satisfies dhieyp(m1), which means that the requester should
be certified by StateU to be a student majoring in computeinse, under 21, and willing to provide a phone number.
Since the discount is a resource, the head of this pdBogkSt.discount(phoneNum = xz3), defines a part of the
application interface provided by the ATN system using fhoticy; the parametephoneNum is made available to
the application through this interface. That is, the agian will issue a query to determine whether the requester
satisfiesBookSt.discount(phoneNum = z3), and if it succeeds, the variabig will be instantiated to the phone



number of the requester. The body of poliey1) (i.e., the part to the right 6f—) consists of the following two parts.

Part 1: StateU.student(program = x1) N BookSt.DoB(val = z2) N Any.phoneNum(val = x3)

Part2: ((z1 = ‘cs’) A (a2 >01/01/1984"))
Part 1 describes the role requirement of the policy and stmsif the intersection of 3 roles. To satisfy the role
StateU.student(program = x1), one must provide a credential (or a credential chain) shgwhat one is certified
by StateU to be a studenirogram = x; means that the value of theogram field is required to satisfy additional
constraints. InAny.phoneNum(val = x3), the keywordAny means that the phone number does not need to be
certified by any party and the symbel means that the phone number must be provided (enabling & tetbrned to
the application). Part 2 describes the constraints on péeld values.

BookSt's policies(m2) and (m3) mean that BookSt considers both a driver license from BMV ammhssport
issued by the government (Gov) to be valid documents for DoB.

Alice’s credentials:
nl: StateU.student +—— CoS.student
n2: CoS.student(program = ‘cs’, level = ‘sophomore’) «—— Alice
n3: BMV.driverLicense(name = commit(‘Alice’), DoB = commit(‘03/07/1986’)) «— Alice

Alice’s attribute declarations:

ol: phoneNum = ¢(123)456-7890° :: :: sensitive
02: DoB = ‘03/07/1986’ :: BMV.driverLicense(DoB) :: sensitive
03 : program = ‘cg’ . CoS.student(program) ::  non-sensitive
od: level = ‘sophomore’ . CoS.student(level) ::  non-sensitive

Alice’s policies:

pl: disclose(ac, CoS.student) +«— SBA.businessLicense
p2: disclose(full, DoB) «—— BBB.goodSecProcess
p3 : disclose(full, phoneNum) +—— BBB.goodSecProcess
p4 . disclose(range, DoB, year) «— true

Figure 2: The credentials and policies possessed by Alice

Alice’s credentials and policies are given in Figure 2. Allwolds three credentials. Credential) is issued by
StateU and delegates to College of Science (CoS) the atthocertify students. Credentiab®) is Alice’s student
certificate issued by CoS. Credentiald {n2) prove that Alice is a valid student from StateU. Crederttidl) is her
digital driver license issued by BMV. For simplicity, we asse that the digital driver license contains only name and
DoB. Among her credentials, Alice considers her studertifizate to be sensitive, and provides it only to those who
have a valid business license from SBAL). Alice does not protect the content of her driver licenseeet for its
DoB field. She considers her date of birth and phone numbeg s®bsitive information, thus she reveals them only to
organizations whose security practices are adequate widpreeasonable privacyZ, p3). For this, we assume that
BBB provides a security process auditing service. Furthiiee is willing to reveal to everyone her year of birthd).

A negotiation between BookSt and AliceWhen Alice requests a discount sale from BookSt, BookSt redpo
with his discount policy{:1). Alice first discloses her driver licensed), which is assumed to be an OACert, to
BookSt without revealing her DoB. To protect her phone nunamel her student certificate, Alice wants BookSt to
show a business license issued by SBA and a good securitggzaertificate issued by BBB. After BookSt shows
the corresponding certificate®l( ¢2), Alice reveals her student certificate chairl (n2) and phone numben{). As
Alice is allowed by her policyp4 to reveal her year of birth to everyone, she uses a zero-kaugel proof protocol
to prove to BookSt that her DoB in her driver license is betwa¢g1,/1986° and‘12/31/1986’. BookSt now knows
that Alice is younger than 21, thus satisfies his discouritpaDuring the above interactions, Alice proves that she is
entitled to obtain the discount.

The above negotiation process uses the first three propegseribed in Section 3.



(listof X) = (X) | (X)*“,” (list of X} 1)
(setof X) := €] (X) (set of X) )
(policy-base ::= (set of credential(set of attr-decl (set of policy-stmit 3
(credential ::= (member-crefl| (delegation-cred 4)
(member-cref::=  (role) “— (prin) (5)
(delegation-cred::=  (role) “—" (role) 6)
(role) ::=  (prin) “.” (role-term @)
(role-term} ::=  (role-namé | (role-namé “(” (list of field) “)” (8)
(field) :=  (field-name “=" ( (var) | (constant| (commitment ) ©)]
(attr-dec} ::=  (attr-namé “=" (constant“::" [ (list of attr-ref) ]
“::" (“sensitive” | “non-sensitive”) (20)
(attr-refy ::=  (prin) “.” (role-name “ (" (field-name “)” (11)
(policy-stm} ::=  (policy-head “— (policy-body) 12)
(policy-body) ::=  (p-role-req [“;” (p-constraint] | true (13)
(p-role-req ::=  [{pre-cond “!"] {(conj-of-p-roles (14)
(p-constraint::=  [(pre-cond “!"] (constraint (15)
(pre-cond ::= (role) | “false” (16)
(conj-of-p-roles ::=  (p-role) | (p-role) “N” (conj-of-p-role$ (17)
(p-role) ::= (prin) “.” (p-role-term | Any.(p-role-term) (18)
(p-role-term) ::=  (role-namé | (role-namé “(” (list of p-field) “)” (29)
(p-field) ::=  (field-namé (“=" | “=") ( (var) | (constant) (20)
(policy-head ::= (role) | (dis-ack | (dis-ag | (dis-full) | (dis-bit) | (dis-rangé (21)
(dis-ack ::= “disclose” “ (" “ack”“,” (role) “)" (22)
(dis-ag ::= “disclose”“ (" “ac"“,” (role) “)” (23)
(dis-full) ::=  “disclose” “ (" “ full”“,” (attr-namé “)” (24)
(dis-bit) ::=  “disclose” “ (" “ bit" “,” (attr-namé “)” (25)
(dis-rangé ::= “disclose” “ (" “range” “,” (attr-name, (precision “)” (26)

Figure 3: Syntax of ATNL in BNF. The first two definitiorq#ist of X) and(set of X) are macros parameterized by X.
The symbole in (2) denotes the empty string. The symbglar), (constant, and(prin) each represents a variable,
a constant, and a principal respectively. The symbale-namé, (field-namé, and(attr-namé represent identifiers
drawn from disjoint sets. The syntax for non-termin@lemmitment, (precisior), (constraint are not defined here;
they are explained in the text.

4.2 The Syntax

Figure 3 gives the syntax of ATNL in Backus Naur Form (BNF)tHa following, we explain the syntax. The numbers
in the text below correspond to the numbers of definitionsigufe 3.

Each negotiation party hagmlicy base(3) that contains all information that may be used in trugfatiation. A
party’s policy base consists of three paxtgedentials attribute declarationsandpolicy statementdn the following,
we discuss each of the three parts in detail.



4.2.1 Credentials and Roles

Two central concepts that ATNL takes froRil" [23, 24] are principals and roles. A principal is identifiedtiwan
individual or agent, and may be represented by a public keyhis sense, principals can issue credentials and make
requests. Aole designates a set of principals who are members of this raleh Brincipal has its own localized name
space for roles in which it has sole authority to define rofesole (7) takes the form of a principal followed by a role
term, separated by a dot. The simplest kind of a role termistansf just a role name. As roles are parameterized, a
role term may also contain fields, which will be explaine@tatWe used, B, D, S, andV, sometimes with subscripts,

to denote principals. We us®, often with subscripts, to denote role terms. A rdle? can be read ad’s R role.

Only A has the authority to define the members of the rl&, and A does so by issuing role-definition statements.

In ATNL, a credential can be either a membership credential@elegation credential. membership credential
(5) takes the form ofd. R <—— D, whereA and D are (possibly the same) principals. This means thdefinesD to
be a member ofi’s role R. A delegation credentigl) takes the form ofl. R<—— B.R;, whereA and B are (possibly
the same) principals, anll and R; are role terms. In this statement,defines itsR role to include all members of
B’s R; role.

For example, BookSt's credential] in Figure 1 is a membership credential. It means SBA issukdsiess
license certificate for BookSt. Alice’s credentiall} in Figure 2 is a delegation credential. It says that StateU
delegates its authority over identifying students to Colie’s credential 42) in Figure 2 means that CoS asserts that
Alice is a sophomore student in StateU majoring in computienge.

A role term(8) is a role name possibly followed by a list of fields. Edighd (9) has a field name and a field
value. A field value can be a variable, a constant, or a comemtm For exampleSBA .businessLicense is a
role without any fieldsCoS.student(program = ‘cs’,level = ‘sophomore’) and BMV .driverLicense(name =
commit(‘Alice’), DoB = commit(‘03/07/1986")) are roles with fields. In the preceding rol&€%S is a principal
name,student is a role hameprogram is a field name;cs’ is a constant of string type, ardmmit(‘Alice’) is a
commitment. In ATNL, ecommitmentakes of the form ofommit(c), wherec is a constant, ancbmmit denotes the
output of a commitment algorithm of a commitment scheme 263

If a credential is a regular certificate, such as an X.509fiate [18], then each field in the credential takes the
form of x = ¢, wherez is the field name andis a constant. For example, Alice’s student certificat®) (nay be an
X.509 certificate. When a credential is implemented as a ogypphic certificate, such as an OACert or an anonymous
credential, the attribute values are committed in the ariale Therefore, each field takes the formuof= commit(c),
wherecommit(c) is the commitment of a constant For example, Alice’s digital driver licenseg) is modeled as a
cryptographic certificate.

4.2.2 Attribute declarations

Eachattribute declaration(10) gives the name of the attribute, the value of the atieipba list of attribute references
that correspond to this attribute, and whether this atteilgiconsidered sensitive or not. For example, Alice’statte
declaration ¢1) in Figure 2 means that Alice has a phone number (123)456-@6868 she considers her phone number
to be sensitive information. Alice’s attribute declarati@3) indicates that Alice’s major is ‘cs’ and that her program
appears in her student certificate, issued by CoS. Wetis¢o denote attribute names.

Each attribute referenceg(11) corresponds to a field name in a role. The attribute eefsr is used to link
the declared attribute to a specific role field. For exampléce’s DoB attribute declaration has an attribute
referenceBMV .driverLicense(DoB), it means that Alice’s DoB is documented in th®B field of the role
BMYV .driverLicense. It is possible to have several attribute references foitmibate. This means that the attribute is
documented by several rofesor example, suppose Alice also has a passport, and herdetified in her passport.

1In order to have the hiding property, a commitment scheme uscaitigiot be deterministic, thus the commitment of a value alsordispen a
secret random value. For simplicity of presentation, we deerplicitly model the random secret in the representatioa @dmmitment.

2We assume that the attribute values from different rolestersame, however we do not require each principal to use thefsctheame. For
example BMV may useDoB as the field name for date of birth, whergasv usesBirthDate as the field name. Name agreement for different
field names can be achieved using application domain spemficddcuments [23, 24].



Then the attribute declaration for hBpB looks like

DoB = 03/07/1986’ :: BMV .driverLicense(DoB),
Gov.passport(BirthDate) :: sensitive

Because the disclosure of attribute values in a crederdiabe separated from the disclosure of the credential, one
purpose of the attribute declarations is to uniformly mantge disclosure of an attribute value that appears in dif-
ferent credentials. That is, the policy author gives disgte policies for attribut®oB, instead of assigning separate
disclosure policies foBMV .driverLicense(DoB) andGov.passport(BirthDate).

When the list of the attribute references is empty, the cpmeding attribute does not appear in any role that
is certified by a credential. In other words, the attributeinsertifiedby any authorities. Unlike most prior trust
negotiation systems, our framework supports uncertifigdbates. In many online e-business scenarios, like the
example in Section 4.1, the access control policies reqaree personal information about the requester, such as
phone number and email address, which may not be documentadytdigitally signed credentials. Like certified
attributes, uncertified attributes may be sensitive, amilshbe protected in the same way. We treat all attributes
uniformly, whether certified or not, by protecting them wilisclosure policies.

If an attribute is not sensitive, then the keywardn-sensitive appears at the end of its corresponding attribute
declaration. This means that the attribute can be revealadytone. There is no access control policy for this atteibut
On the other hand, if an attribute is treated as a sensitbairee, the attribute owner will mark its attribute dediara
with the keywordsensitive. In this case, if there are disclosure policy statementghisrattribute, one has to satisfy
the body of one of these statements to learn informationtabeuattribute. If there is no disclosure policy statement
for a sensitive attribute, it means the attribute must nbeatisclosed.

4.2.3 Policy statements

In ATNL, a policy statemen{l2) takes the fornfpolicy-head < (policy-body) in which (policy-body) either istrue

or takes the form:
pre-cond-1! B1.R1N---N By. Ry, ;

pre-cond-2 ! ¥(x1, ..., 2,)

whereB,, ..., By, are principals,Rq, ..., R;, are role termsk is an integer greater than or equal topte-cond-1
and pre-cond-2 are two pre-conditions (which we discuss shortly)js a constraint from a constraint domain
andzy, xs, ..., z, are the variables in the fields &, ..., R;. The constraini)(z,...,x,) is optional. We call

By.R; N ---N By.Ry in the policy statement aintersection

A pre-condition(16) is defined to be a role or the keywodse. The motivation for the pre-condition is that,
oftentimes, policies may contain sensitive informatiohepolicy enforcer does not want to reveal the policy statéme
to everyone. If a pre-condition false, the pre-condition is never satisfied. If the pre-condii®m@a role, sayB.R,
then the negotiation opponent has to be a membeB.&f for the pre-condition to be satisfied. Returning to the
policy body, if pre-cond-1 is satisfied (or ifpre-cond-1 is omitted), then the negotiation opponent is allowed to see
By.R; N --- N Bg.Ry, otherwise, she is not permitted to know the content of thitcp body. Oncepre-cond-1 is
satisfied, ifpre-cond-2 is also satisfied, then the negotiation opponent is allowesé the constraint(x1, . .., x,).

Verifying that a principal satisfies a policy body takes tweps. In the first step, the policy enforcer verifies that
the principal has all roles and has provided all uncertifigsibaites given byB;. R4, . .., Bx.Ry. In the second step,
the policy enforcer verifies that the variables in the patenseof Ry, ..., Ry, satisfy the constraing(z1,...,z,).
Such two-step policy verification process is made feasipleding cryptographic credentials and the associated cryp-
tographic tools (see Section 3). The first step correspangerifying that the principal has the desired credentials.
The second step corresponds to verifying that the prinsipdribute values in the credentials satisfy the constrai
V(x1,...,xn). If (x1,...,2,) is disclosed, which happens only when the second pre-éondias been satisfied,
then the principal can use zero-knowledge proof protoamlgrove that her attribute values satisfy the constraint;
otherwise, the principal can elect to run a private policgleation protocol with the policy enforcer, enabling eazh t
determine whether she satisfies the constraint.

Using the example in Section 4.1, BookSt's poliey2) in Figure 1 is a policy statement with no constraint. It
states thaBookSt considers a driver license from BMV to provide adequate dwentation of date of birth. The



variablez is used in the statement to indicate that the field valuB@afkSt.DoB is the same as thBoB field value
in BMV.driverLicense.

The BookSt policy statement(l) means that, in order to be a member of the i&dekSt.discount, a principal
has to have the rold3ookSt.student(program = x1), BookSt.DoB(val = x2), andAny.phoneNum(val = z3). It
further requires that the program field valugin BookSt.student and the DoB field value, in BookSt.DoB satisfy
the constraintx; = ‘cs’) A (z2 > ’01/01/1984’). The symbok- in the roleAny.phoneNum(val = z3) indicates
that BookSt must receive a phone number from the negotiafimonent. Where the equality symbelis used, the
policy requires only proof that the associated field valuisBas any constraints given in the policy statement.

4.2.4 Policy heads

The policy head in a policy statement determines which nesois to be disclosed and how it is to be disclosed.
A policy head(21) can be a role or a disclosure. When the policy head is a ttotestatement means that if the
negotiation opponent satisfies the policy body, then shenieimber of the role. Roles defined in policy statements
are controlled by the policy owner and are calteanmy roledbecause they are not defined in signed credentials, but
serve only to aid in defining local policies. If the policy ldéa a disclosure, then the opponent is granted a permission
specified in the disclosure, once the policy body is satisfi€his section explains each type of disclosure and its
associated permission.

We call (the body of) a policy statement with hedidclose(ack, A.R) (22) anAck policyfor the roleA.R. The
opponent has to satisfy one df R's Ack policies to gain permission to learn whether the poéioforcer is a member
of A.R. Until such satisfaction is shown, the policy enforcersé@edor should not depend in any way on whether she
belongs toA. R.

We call a policy statement with heatisclose(ac, A.R) (23) anAC policyfor the credentiad.R «+—— D. We
assume, in this case, that the policy enforcebiand thatD has the membership credentialR «—— D. When the
negotiation opponent has satisfied an AC policy for the argdleA. R «— D, he is authorized to receive a copy of the
credential.

We call a policy statement with heaisclose(full, attr) (24) afull policy for the attributeattr. If a full policy for
attr is satisfied, the negotiation opponent is allowed to seeuthgdlue ofattr. Whenattr is an uncertified attribute,
the policy enforcer can simply disclose its value. When thig fialue linked to the attribute reference aftr is a
commitment, the policy enforcer can open the commitmertiécpponent.

We call a policy statement with heatisclose(bit, attr) (25) abit policy for the attributeattr. Bit policies are
defined only for certified attributes. If a bit policy fextr is satisfied, the negotiation opponent has the permission
to receive one bit of information about the valueatfr, in the sense of receiving the answer to the question whether
the value satisfies some predicate. We stress that the ongdsination ofattr in our context is not necessarily
the value of a certain bit in the binary representationtef, but can be the output of any predicate aanr. More
specifically, the policy enforcer can run a private policaleation with the opponent in which the opponent learns
whetherattr, together with other attributes of the enforcer, satistiesdpponent’s private policy. While specifying
the bit disclosure policy, one should be aware that the bitldsure ofattr is vulnerable to a probing attack. If an
adversarial opponent runs the private policy evaluatioftipie times using different policies that constraittr, she
may learn more information about the valueaofr.

We call a policy statement with healisclose(range, attr, precision) (26) arange policyfor the attributeattr.
Range policies are define only for certified attributes ofaierdata types, such as finite integer type, finite float type,
and ordered enumeration type. If the range policyafiar is satisfied, then the negotiation opponent has permission
to learn thatittr belongs to a range with the given precision. For exampldeifrtegotiation opponent has satisfied
the policy fordisclose(range, DoB, year), then she is allowed to know the yearld6B, but not the exact date. How
to specify a precision depends on the data type of the atitrilitor example, assume credit score takes integer values
from 1 to 1000, and Alice has a credit score of 722 documemtduer credit report certificate using cryptographic
credential schemes. BookSt satisfies Alice’s policy oflisclose(range, score, 50), then Alice can prove tBookSt
that her credit score is between 701 and 750 using zero-leugel proof protocols. Similarly, the policy with head
disclose(range, score, 10) means that if the policy is satisfied, the opponent can Id@ah Alice’s credit score is
between 721 to 730.



5 The Extended Trust Target Graph (ETTG) Protocol

In this section, we introduce a trust negotiation prototwittcan take advantage of ATNL and the cryptographic
protocols. This protocol extends the trust-target gragitquol introduced in [30, 31], to deal with the additional
features of ATNL and cryptographic certificates.

In this protocol, a trust negotiation process involves thenegotiators working together to construdtust-target
graph(TTG). ATTG is a directed graph, each node of which is a traigjet. Introduced below, trust targets represent
guestions that negotiators have about each other. When astequequests access to a resource, the access mediator
and the requester enter into a negotiation process. Theswtediator creates a TTG containing one target, which we
call theprimary target The access mediator then tries to process the primaryttaygiecomposing the question that
it asks and expanding the TTG accordingly in a manner desttfilelow. It then sends the partially processed TTG
to the requester. In each following round, one negotiatogives new information about changes to the TTG, verifies
that the changes are legal and justified, and updates itsdopg of the TTG accordingly. The negotiator then tries
to process some nodes, making its own changes to the grajith iwthen sends to the other party, completing the
round. The negotiation succeeds when the primary targatisfied; it fails when the primary target is failed, or when
a round occurs in which neither negotiator changes the graph

5.1 Nodes in a Trust-Target Graph

A node ina TTG is one of the five kinds of targets, defined asfal we use the notatian« S for several different
categories ok, meaning thats belongs to, satisfies, or has the propertyWe introduce the various usages of the
notation informally as they are used in the following list.

e A role targettakes the form(V : A.R <~ S), in which V is one of the negotiators}.R is a role, andS is a
principal. S is oftenopp(V'), the negotiator opposing, but it can be any principal. This target means tHat
wants to see the proof of. R « S.

e A policy targettakes the form'V : policy-id & S), in which V' is one of the negotiators is a principal, and
policy-id uniquely identifies a policy statement¥fis policy base. We assume each negotiator assigns each of
her policy statements a unique identifier for this purpodes Target means th&t wants to see the proof that
satisfies the body of the statement correspondingtiy-id.

e An intersection targetakes the form(V: B;.R; N --- N By Ry, & S), in which V' is one of the negotiators
is a principal,B1.R1, ..., Bi.Ry are rolesk is an integer greater than 1. This means fiavants to see the
proofof By.R; N---N B.Ry « S.

e A trivial target takes the form(V : S & S), in which V' is one of the negotiators, arfflis a principal. Trivial
targets provide placeholders for edges in the TTG.

e An attribute goaltakes the form(V : attr & S), in which attr is the name of an attribute if’s attribute
declaration. This goal means tHatwants to learn some information about the valuatof, e.g, V' may want
to learn the full value of the attribute, or to learn parti#birmation about the attribute, e.g., whether it satisfies
a policy.

In each of the above forms of targets, we dalthe verifier, and S the subjectof this node. Each target has a
satisfaction statewhich has one of three valuesatisfied failed, or unknown The value is determined inductively
depending on the containing TTG structure and the credsmiasent, as discussed below.

5.2 Edgesin a Trust-Target Graph

Seven kinds of edges are allowed in a trust-target grapbdliselow. We use— to represent edges in TTG's.
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A credential edgéakes the form{(V : A.R <~ S) — (V :e«- S), in which A.R is a role, and: is either a principle

or arole. We callV :e <~ S) a credential child of V' : A. R <~ S). (We use similar “child” terminology for other
kinds of edges.) An edge always points from the child to threqa Unlike the other kinds of edges, a credential
edge needs to hastifiedto be added into the TTG; a credential edge is justified if thgeds accompanied by
a credential that proved.R « e.

e A policy edgetakes the form{(V': A.R <~ S) — (V : policy-id <~ S), in which policy-id is a policy identifier and
A.Ris the role in the head of the policy statement (that corredpaopolicy-id).

e A policy control edgdakes the formV : policy-id “« S) —<(V:AR “« S), in which policy-id is a policy
identifier andA. R is one of the pre-conditions in the policy statement.

e A policy expansion edgekes the formV : policy-id <~ S) «< (V : By.Ry N --- N By.Ry < S), in which
policy-id is a policy identifier and3,.R; N - - - N By. Ry, is the intersection in the policy statement.klf> 1,
the policy expansion child is an intersection target; otl&g, it is a role target. Each policy expansion edge has
associated with it up to one tag consisting of a constraint.

e Anintersection edgéakes the form(V : By.Ry N --- N By. Ry, <~ S) —(V: B;.R; <~ S), wherei is in 1..k, and
k is greater than 1.

e An attribute edgeakes the formV : A.R <~ S) — (V :attr <~ S), in which S is the negotiation opponent &f,
attr is an attribute name, and. R is a role. This is used when the attributer is linked to a specific field in
A.Rin S’s attribute declarations.

e An attribute control edgaakes the formV' : e <~ S) « (opp(V') : policy-id <~ V), in which opp(V') denotes
the opponent of/, policy-id is a policy identifier, ane is the role or attribute name in the head of the policy
statement. Attribute control edges are used for handlinglaure policies. Each attribute control edge has a
tag consisting of one of ac, ack, full, bit, or range; in thega case, it also includes a precision parameter.

The optional tag on a policy expansion edge is used to exphessonstraint portion of the policy statement
identified bypolicy-id. The tag on an attribute control edge characterizes themation thatl” can gain permission
to learn by satisfying the body of the statement identifieghblycy-id.

5.3 Overview of The Extended Trust-Target Graph (ETTG) Protocol

We now sketch the ETTG protocol. Details of the ETTG prota@relgiven in Appendix A. We begin with an example
of the ETTG protocol, then briefly discuss how to process emxte in TTG, and how to handle constraints in the
policies.

Example 1 This example is a simple instance of the ETTG protocol andtithtes the usage of the first three prop-
erties described in Section 3. Referring to the bookstoaente in Section 4.1, we depict the final TTG in Figure 4.
Alice and BookSt run the ETTG protocol as follows: As Book3ints to see the proof @&ookSt.discount « Alice

in order to grant Alice access, BookSt creates the primagetagnode 1) for the negotiation and sets its satisfaction
state to be unknown. If node 1 becomes satisfied, then theiatgo succeeds. In BookSt’s policy base, there is a
policy statementi1) for BookSt.discount, hence BookSt creates a policy target (node 2) and adds eypadge
between node 1 and node 2. As the policy statemean) pas no pre-conditions, BookSt reveals the policy by adding
a policy expansion child (node 3) and a constraint tag betwee parent (node 2) and the child (node 3). Based on
the policy n1), BookSt wants to see Alice’s phone number and wants to knbether Alice’s program and DoB
satisfy his constraint. BookSt then creates node 4, 5, 6 ddsl hem as intersection children to node 3. Since the role
BookSt.DoB is a dummy role and there are policiesq, m3) associated with it, BookSt adds a policy target (node
7) as the policy child to node 6. BookSt then adds a policy Bgjeen child (node 8) to node 7. Similarly, BookSt adds
node 9 and 10. Essentially, BookSt wants to see Alice’s DoBhfeither a driver license or a passport. Now BookSt
cannot process the TTG any more.
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’ 1. B: B.discount < A ‘ —> Credential edges
T = Control edges

—— Other edg
(x1="cs’) A (x2>°1/1/1984°) | [2.B:ml — A crefes

3. B: StateU.stu(prog = x1) N B.DoB(val = x2)

N Any.phone(val = x3) < A
4.B: StateUstuprog=x1) < A |  [5.B:BDoB(val=x2) <A | 6. B: Anyphone(val = x3) < A |
Y 3 X v
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21.A:B<B

Figure 4: Final TTG for the bookstore example. In this figure denotes the symbat, A denotesAlice, and B
denoteBookSt. The white nodes are created ByokSt and the grey nodes are createdAlyce.

After receiving the TTG from BookSt, Alice begins to procéss graph. Alice first discloses her credential(as
it is not sensitive) and adds a credential child (node 11& &mnot disclosure her student credentid) immediately,
as there exists an AC policy]) for n2. Therefore Alice adds a policy target (node 12) and expandgh a role
target (node 13). Note that the edge between node 11 and aZitridute control edge, which means that if node 12
is satisfied, then Alice can disclose her student credeftiyl Alice also reveals her digital driver license (without
revealing her DoB) to BookSt, creates a trivial target (nbdg and adds a credential edge between node 8 and node
14. At this point, Alice notices that she needs to prove seumger than ‘1/1/1984’ and to reveal her phone number,
she adds an attribute goal (node 15) for heiB attribute and another attribute goal (node 19) forpiemeNum, she
also expands the TTG by adding nodes 16, 17, 18, 20. As theX®dgetrivially satisfied (because the policy fof
is true), Alice proves to BookSt that she is born in 1986. Alice’siyegbirth flows up from node 8 to node 3.

BookSt shows to Alice hiStateU.businessLicense certificate andBBB.goodSecProcess certificate, which trig-
gers the satisfaction of the nodes 12 and 20. Alice then levea student credentiahf) and her uncertified
phoneNum. The values of Alice’s attribut@rogram and phoneNum flow up to node 3, where BookSt verifies
that Alice’s attributes satisfy the constraint. Finallyetprimary target is satisfied and the negotiation succeeds.

Node Processing in ETTG We briefly explain how each node is processed in the ETTG pobto
1. Role target.Suppose the role in a role targét= (V : V.R & S) is a dummy role. For each of the verifier’s
policies that havé’. R as the policy head, the verifier adds a new policy childforThe role target is satisfied
if one of its children is satisfied.
Now suppose the role in a role targét= (V : A.R & S) is not a dummy role. If the opponent &f has an
Ack policy for A.R, he adds an attribute control child fét Once the Ack policy (if any) has been satisfied, if
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the opponent has an AC policy far. R, he adds another attribute control child. After allig$ attribute control
children have been satisfied, the opponent can disclosedidgmtial forA.R (if any), adds a credential edge,
and markd" satisfied. If the credential disclosed is a membership erglethen for each field il. R, if there

is a sensitive attribute linked to the field in the opponeattsbute declarations, the opponent adds an attribute
child for that attribute.

2. Policy target. Consider the policy targel' = (V' : policy-id < S). Suppose the policy body associated with
policy-id takes the fornpre-cond-1! B1.R; N -+ N By.Ry, ; pre-cond-2! ¢ (x1,...,x,). The verifier first
adds a policy control child fopre-cond-1. Once the policy control child is satisfied, the verifier addlicy
expansion child fo3,.R, N --- N By. Ry, and a policy control child fopre-cond-2. If the policy control child
for pre-cond-2 is satisfied, the verifier adds the constrairit, ..., x, ) as a tag on the policy expansion edge.
A policy target is satisfied if its policy expansion child etisfied and the constraint is evaluated and satisfied.
We explain how and when to evaluate a constraint below.

3. Intersection target.For the intersection targét = (V : B;.Ry N -+ N By.Ry & S), the verifier adds an
intersection child for each rol8;.R;. The intersection target is satisfied if all of its intersactchildren are
satisfied.

4. Attribute goal.For the attribute targef = (V : attr &« S), the opponent adds an attribute policy child for each
disclosure policy that contairstr in the policy head.

Constraint Handling We now explain how the constraint of a policy is evaluatedhdfre is a constraint tag in the
policy expansion edge of the policid., the constraint is revealed to the opponent), it can be ateduas follows:
Whenever a full disclosure policy or a range disclosure gdlic an attribute is satisfied by the verifier, the opponent
reveals the attribute information accordingly. The atttébinformation flows from the attribute goal to the policy
expansion edge where the constraint is attached. At theypekpansion edge, when the verifier receives enough
information from the opponent to determine whether or netdbnstraint is satisfied, he evaluates the constraint based
on the attribute information received so far and outputgéiselt.

If there is no constraint tag in the policy expansion edge, the pre-condition for the constraint has not been
satisfied), the verifier can satisfy all the full disclosutdigies of the attributes required in the constraint, emapit
to obtain all the attribute values from the opponent. Théfieethen evaluates the constraint secretly and informs the
opponent the result of the evaluation. Alternatively, tleefier can try to satisfy all the bit disclosure policies bét
attributes, and then run a private policy evaluation protedgth the opponent.

5.4 Additional Examples

In this section, we give two additional examples that ilatt the ATNL language and the ETTG protocol. Example 2
deals with the scenario in which the constraint is privatgneple 3 illustrates how the ETTG protocol breaks the
policy cycles.

Example 2 This example illustrates the usage of properties 1, 2, anigate policy evaluation) described in Sec-
tion 3. Suppose BankWon, an online bank certified by Nati@matlit Union Administration (NCUA), offers a special-
rate loan. Before applying the loan, an applicant is reguiceshow a valid driver license. The loan policy is that
the applicant must have either (1) a credit score more th@na®8 an income more than 55k, or (2) a credit score
more than 700 and an income more than 45k. BankWon consigeisan policy as private information, and discloses
(the thresholds of) the policy only to BankWon'’s preferredmiers. Carol, who is not one of BankWon's preferred
members, wants to know whether she is eligible for that I&ire has a credit report from Experian and a tax certifi-
cate from Internal Revenue Service (IRS). Carol considerstedit score and her income to be sensitive attributes.
BankWon and Carol’s credentials and policies are givengufé 5.

Using the ETTG protocol, BankWon and Carol can negotiatet successfully. The final TTG of the negotiation
is given in Figure 6. In the ETTG protocol, BankWon first ce=aa primary target (node 1), a policy target (node 2),
and a role target (node 3). The edge between node 2 and 3 iscg pohtrol edge. After Carol reveals her driver
license and adds node 4, BankWon is able to expand the loay pold adds nodes 5 — 14. Carol then reveals her tax
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Bank's credentials and policies:
ql : NCUA.member +«— Bank
rl: Bank.loan «—— BMV.driverLicense ! IRS.tax(income = x1) N Bank.credScore(val = z5) ;
Bank.preferred ! ((z1 > 680) A (z2 > ‘55k’)) V ((x1 > 700) A (x5 > ‘45k’)
r2: Bank.credScore(val = ) «— Equifax.credReport(score = )
r3: Bank.credScore(val = 2) «— Experian.credReport(score = x)
r4: Bank.credScore(val = ) «— TransUnion.credReport(score = z)

Carol’s credentials:
sl : Experian.credReport(score = commit(720)) «—— Carol
s2: IRS.tax(income = commit(‘65k’), employer = commit(‘Company A’)) «— Carol
s3: BMV.driverLicense(name = ‘Carol’, DoB = commit(‘06/18/1972’))  «— Carol

Carol’s attribute declarations:

tl1: DoB = ‘06/18/1972’ : BMV.driverLicense(DoB) . sensitive
t2: score = 720 : Experian.credReport(score) :: sensitive
t3: income = ‘48K’ . IRS.tax(income) ;. sensitive
t4: employer = ‘Company A’ : IRS.tax(employer) :: non-sensitive

Carol's policies:

ul : disclose(full, DoB) «—— BBB.goodSecProcess
u2: disclose(bit, score) «—— NCUA.member

u3: disclose(range, score, 50) — true

u4 :  disclose(bit, income) — true

ub: disclose(range, income, 10k) «— BBB.goodSecProcess

Figure 5: The credentials and policies for Example 2

certificate and credit report without revealing her sewsitittributes to BankWon, and adds two attribute goals (node
15and 19) to TTG. As node 6 is not satisfied, the constrairitefdan policy is not revealed to Carol. However, as the
bit policies for Alice’sincome andscore are satisfied, Carol and BankWon are able to run a privateypelialuation
onincome andscore with BankWon's private constraint. After the private pglievaluation outputsrue (i.e., Carol’'s
certified attributes satisfy the constraint), node 2 becosagisfied. In the end, node 1 is also satisfied and the ETTG
protocol succeeds.

Example 3 This example illustrates the usage of properties 1, 2, 45dnblivious usage of credentials and attributes)
described in Section 3. Suppose Bob, a CIA agent, has a slea@nent to which the access is allowed by CIA agents
only. Bob has a security clearance certificate from Gov withgecurity level committed in it. Bob can show his CIA
agent credential only to his peers, and can reveal his $galearance level only to those whose security level is
greater than or equal to 3. Similarly, Alice has a CIA ageratlential and a security clearance certificate with certain
disclosure policies. Alice shows her CIA agent credentidy ®o CIA agents with security level greater than or equal
to 2. And she discloses her security level only to CIA age8te Figure 7 for the description of the credentials and
policies in ATNL. When Alice wants to access Bob’s documemytengage the ETTG protocol and build a TTG as
depicted in Figure 8(a).

There are two policy cycles in the TTG, one cycle has nodes 3, 8, and 8, the other cycle has nodes 3, 4, 5,
7, 10, 11, 12, 14, 15, 6, and 8. Without breaking the policyley,cthe negotiation between Alice and Bob would
fail, because neither Alice nor Bob can update the TTG anyemés the two policy cycles share common nodes,
we cannot break them separately. See Figure 8(b) for thendepey relation between Alice and Bob's attributes. To
break the policy cycles, Alice and Bob run an OSBE protoct] [2 which Bob delivers an envelope to Alice with the
property that Alice can open the envelope if she has a ClAtagedential. This envelope contains Bob’s CIA agent
credential. In the mean time, they run an OCBE protocol [h9¥hich Bob delivers another envelope to Alice such
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Figure 6: Final TTG for Example 2. In this figure; denotes the symbel-, B denotesBank, andC' denotesgCarol.
The white nodes are created Byink and the grey nodes are createddytrol.

Bob’s credentials, attributes, and policies:

vl: CIA.agent «—— Bob

v2:  Gov.secClearance(level = commit(3)) «— Bob

v3: level = 3 1 Gov.secClearance(level) ::  sensitive

wl: Bob.document «—— CIA.agent

w2 : disclose(ack, CIA.agent) «—— CIA.agent

w3 : disclose(full, level) «—— Gov.secClearance(level = z) ; x > 3

Alice’s credentials, attributes, and policies:

x1l: CIA.agent — Alice

x2:  Gov.secClearance(level = commit(4)) «— Alice

x3: level = 4 1 Gov.secClearance(level) ::  sensitive

yl: disclose(ack, CIA.agent) «—— CIA.agent N Gov.secClearance(level = z) ; x > 2
y2: disclose(full,level) —— CIA.agent

Figure 7: The credentials and policies for Example 3

that Alice can open the envelope if and only if her securitglés greater than 2. In the second envelope, Bob opens
the commitment of his security level. Bob learns nothingrfrilne previous interactions. After Alice opened the two
envelopes, she verifies whether the received CIA credemtidisecurity level satisfy her policies. If so, she reveals
her CIA agent credential and her security level to Bob. Nosvghlicy cycles are broken.
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Figure 8: (a) Final TTG for the Example 3. In this figure,denotes the symbel-, A denotesAlice, and B denotes
Bob. The white nodes are created Byb and the grey nodes are createdAilyce. (b) Disclosure dependency graph
for Alice’s and Bob’s sensitive attributes.

6 Conclusion and Future Work

We have introduced a framework for ATN that supports the daetbuse of several cryptographic credential schemes
and protocols that have been previously introduced pieaktogrovide capabilities that are useful in various nego-
tiation scenarios. Our framework enables these variousnseh to be combined flexibly and synergistically, on the
fly as the need arises. The framework has two key componeifitsL Aa policy language that enables negotiators to
specify authorization requirements that must be met by aowegnt to receive various amounts of information about
certified attributes and the credentials that contain itT&Tan ATN protocol that organizes negotiation objectives
and the use of cryptographic techniques to meet those algeciVe have shown several examples that illustrate how
our framework enables negotiations to succeed that wouldiare they conducted using traditional ATN techniques.
The appendix presents the details of the process of cotisgube trust target graph and other aspects of the ETTG
negotiation state. In on-going research we are develogingpeehensive analysis algorithms that negotiators wél us
to recognize all cyclic dependencies that can be resolved.
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A Details of the ETTG protocol

In this Appendix, we present the details of the ETTG protodigé first describe how states are propagated in TTG,
then describe the messages in the protocol, finally presenhbdes are processed.

A.1 State Propagationin TTG

Each node has processing statewhich is a pair of boolean states: verifier-processed ampobmgnt-processed. A
node isverifier-processedvhen the verifier cannot process the node any furitesrthe verifier cannot add any new
child to the node. A node ispponent-processaghen the opponent cannot process the node any further. Whaaea n
is both verifier-processed and opponent-processed, wéaty isfully processed

Each target has satisfaction statewhich has one of three values: satisfied, failed, and unkndwor each field
in the roles of a role node or an intersection node, therdieddhstate Each field state has multiple entries depending
on how many disclosure policies this attribute has. For gtanif an attribute has a full disclosure policy and a bit
disclosure policy, then the field state has two entries, onéhe full policy, the other for the bit policy. The entry in
the field state for the bit policy takes eithene or false value. The entry for other policies can take arbitrary value
Each attribute has aattribute state An attribute state has multiple entries depending on howyndésclosure policies
this attribute has. Each entry can be one of the two valtres:or false. A true value means the corresponding policy
in that entry has been satisfied.ffise value means the corresponding policy has not been satisfied.

We now describe how to determine the satisfaction statergéts, the field state of fields, and the attribute state
of attribute goals.

Satisfaction state The trust target satisfaction state is determined as fatlow

1. Role target. The initial satisfaction state a role target is unknown. de@mes fully satisfied when one of its
credential children or one of its policy children is fullytisdied, and for each field in its role with the symbol
(the verifier wants to see the full value of this field), thd pdlicy entry in its field state table is not empty (the
full value of the field has been disclosed). It becomes faiben it is full processed and it has no child, or
all of its children are failed, or there exists some field ia thle with the=- symbol whose value has not been
disclosed.

2. Policy target. Let policy-id be the policy identifier in this policy target. If the policytly corresponding to
policy-id is true, then the satisfaction state of this target is fully satikfi@therwise, the initial satisfaction state
of a policy target is unknown.

(a) If there is no constraint in the policy correspondingtdicy-id, the satisfaction state of the policy target
becomes satisfied when it is full processed and its policesion child is satisfied. It becomes failed
when either it has no policy expansion child (the pre-caodifor the policy has not been satisfied) or its
policy expansion child is failed.
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(b) If there is a constraint in the policy correspondingptdicy-id, the satisfaction state of the policy target
becomes satisfied when it is full processed, its policy egjmenchild is satisfied, and the constraint is
evaluated and also satisfied. If the constraint has beealesl/¢ e., there exists a policy control child for
the constraint), it can be evaluated when the value or thgeraheach variable in the constraint has been
disclosed. If the constraint is private, it can be evaluatsidg the private policy evaluation, or the full
value of each variable in the policy has been disclosed.dbimes failed when it has no policy expansion
child, or its policy expansion child is failed, or the corétt cannot be evaluated, or the constraint is not
satisfied.

3. Intersection targetThe initial satisfaction state of an intersection targetriknown. It becomes satisfied when
it is fully processed and all of its children are satisfiedodtomes failed when one of its children is failed.

4. Trivial target. A trivial target is always fully satisfied.

Field state Informally speaking, the values of field state flow up froml@ho parent. There is no entry when a field
state is initialized. The values of the field state are cofiiech one of its children or its grandchildren, if the values
are available. If the current node has a non-delegatioreatéd child and the corresponding credential is a regular
credential (such as X.509 certificate), then write the fallie of the field to the full entry. Otherwise, if the current
node has an attribute child, depends on the attribute st#ite attribute goal, the opponent reveals the attributaeval
according. For example, if the full entry in the attributeldhis true, then the opponent reveals the full value of the
field and write the value in the full entry of the field statetHé bit entry in the attribute state of the attribute child is
true, the bit entry in the field state is set to bee also. If a range disclosure entry in the attribute state efttribute
child istrue, the opponent proves that the field value belongs to somerargprding the precision parameter.

Attribute state Let attr be the attribute name in the attribute goal. If there is aldssge policy forattr, we add an
entry in the attribute state. The initial value for that grigrfalse. If the satisfaction state of the attribute control child
corresponding to the disclosure policy becomes satistiedvdlue of the entry becomesie.

The legal update operations do not remove nodes or edgestmceave been added, and once a node is fully
processed, it remains so thereafter. Consequently, orarget becomes satisfied or failed, it retains that statehtor t
duration of the negotiation.

A.2 Messages in the Protocol

As described before, negotiators cooperate through useqfrbtocol in constructing a shared TTG, a copy of which
is maintained by each negotiator. Negotiators alternatestnitting messages that each contains a sequence of TTG
update operations and a set of credentials to be used ifyjogticredential edges. Negotiators may also run a set
of cryptographic protocols described in Section 3 during BTTG protocol. On receiving a update operation, a
negotiator verifies it is legal before updating its local @b the shared TTG. The following ategal TTG update
operations:

e Initialize the TTG to contain a given primary trust targeT§Tspecifying a legal initial processing state for this
node. (See below.)

e Add a justified edge (not already in the graph) from a TT thafoisyet in the graph to one that is, specifying a
legal initial processing state for the new node. The new Tadided to the graph as well as the edge.

e Add a justified edge (not already in the graph) from an old rtod® old node.

e Mark a node processed. If the sender is the verifier, this snidid node verifier-processed; otherwise, it marks
it opponent-processed.

The legal initial processing state of a trivial target isifitprocessed. Both a policy target and an intersection
target are initially opponent-processed. An attributel gomitially verifier-processed. A role target is initiglkither
opponent-processed or verified processed. These operatmstruct a connected graph. Satisfaction state of trust
targets, field state of fields in trust targets, and attristage of attribute goals are not transmitted in messagetedd,
each negotiation party infers them independently.
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A.3 Node Processing

Previously we described the TTG negotiation protocol, inclhwo negotiators exchange update messages. The
protocol defines what updates are legal, and the receiventdssage can verify that the updates in the message is
legal. We now describe procedures émrrect processingwhich update the TTG in a manner designed to satisfy the
primary target whenever this is possible, while enforciaghenegotiator’s policies. Correct processing continunti u
either the primary target is satisfied (negotiation sugcéss failed (negotiation failure), or neither negotiatan
perform a correct update (also negotiation failure).

Note that a negotiator cannot be forced to follow the conpestedures, and when it does not, the other negotiator
may not be able to tell. The protocol and the correct pronggsiocedures are intended to guarantee that a misbehav-
ing negotiator can never gain advantage (either learnnmdition or gain access without satisfying relevant policies
first) over a faithful negotiator who follows the protocoldathe correct procedures. Therefore, a normal negotiator
has no incentive to misbehave. Still, it is always within plogver of either negotiator to behave incorrectly, and doing
S0 may prevent the negotiation from succeeding. For instagither negotiator can simply abort the negotiation at
any time.

A.3.1 Node Processing State Initialization
When a new node is added to a TTG, its processing state shoulitiakized as follows:

e Atrivial target is fully processed.

For arole target( Ky : K.r & Kg), if K.risadummy role, the target is opponent-processed, whicmsnibat
the opponent cannot process it; otherwise, it is verifiecpssed.

A policy target is initially opponent-processed.

An intersection target is initially opponent-processed.

An attribute goal is initially verifier-processed.

A.3.2 \Verifier-Side Processing

We now describe how a negotiafigrprocess a node when it is the verifier of the node. These rplayg o nodes that
are not yet marked verifier-processed.

1. Processingl’ = (V: A.R<S)

(a) For each of/’s local policy statements in whicH.R is a dummy role in the policy head anplicy-id is the
corresponding policy identifief/ can add a policy edgé «— (V: policy—id«?—S>.

(b) V can markT" as verifier-processed only after (a)dene meaning that all edges that can be added according to
(a) have been added.

2. Processingl’ = (V : policy-id < S)

(a) Let[pre-cond-1!] By.Ry N--- N By.Ry, ; [[pre-cond-2 !] ¥(z1,...,x,)] be the policy body corresponding to
policy-id. If pre-cond-1 is a role, sayd;.R;, V can add a policy control edgé— (V: A;.R; «?—S>.

(b) After (a) is done andV : A;.R; < S) is satisfied, or there is no pre-condition for the intergettl” can add a
policy expansion edg€ «— (V:B;.R; N --- N By. Ry «?—S>.

(c) Suppose there is a constraint for this policypté-cond-2 is a role, sayds. Ry, V can add a policy control edge
T —(V:Ay.Ry < S).

(d) After (c) is done andV : A2.R» &« S) is satisfied, or there is no pre-condition for the constrdintan add a tag

to the policy expansion edge with the constraint in it.
(e) V can markI as verifier-processed only after (d)deneor (b) isdoneif there is no constraint for the policy.
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3. Processingl’ = (V:By.Ry N -+ N Bg.Ry, LS)
(a) V can add the: intersection edge§, <V:Bi.Ri«?—KS>, 1<i<k
(b) V can marKI verifier-processed only after (a) is done.

A.3.3 Opponent-Side Processing

We now describe how a negotiatSrprocess a node when it is the opponent of the verifier of thendtiese rules
apply to nodes that are not yet marked opponent-processed.

1. Processingl’ = (V: A.R<S)

(a) If there exists a policy statement with hedidclose(ack, A.R), S can add an attribute control ed@e— (S :
ack-id < V'), whereack-id is the policy identifier for the ack policy.

(b) After (a) is done an(dS:ack-id«?—W is satisfied (if it exists), ifS has the credential. R <—— S, and if there exist
a policy statementc-id with headdisclose(ac, A.R), S can add an attribute control ed@ie— (S : ac-id <~ V).

(c) After (b) is done andsS': ac—id«?—V> (if it exists) is satisfiedS can add the credential edg@e— (V': S S).

(d) After (a) is done andS': ack-id «- V') is satisfied, ifS has a delegation credentidl R «—— A;.R;, S can add the
credential edgé — (V: A1. R, < S).

(e) S can marKI" as opponent-processedrifis satisfied, or all of the above steps are done.

2. Processingl’ = (V :attr < S)

(a) If there exists a policy statemefiill-id with headdisclose(full, attr), S can add an attribute control ed@e—
(S full-id <~ V).

(b) If there exists a policy statemehit:-id with headdisclose(bit, attr), S can add an attribute control ed@e— (S
bit-id <~ V).

(c) If there exists a policy statemeninge-id with headdisclose(range, attr, precision), S can add an attribute
control edgel” — (S :range-id <~ V).

(d) S can markl’ as opponent-processedlifis satisfied, or all of the above steps are done.
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