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Abstract

In automated trust negotiation (ATN), two parties exchange digitally signed credentials that contain attribute in-
formation to establish trust and make access control decisions. Because the information in question is often sensitive,
credentials are protected according to access control policies. In traditional ATN, credentials are transmitted either in
their entirety or not at all. This approach can at times fail unnecessarily,either because a cyclic dependency makes
neither negotiator willing to reveal her credential before her opponent, because the opponent must be authorized for
all attributes packaged together in a credential to receive any of them, orbecause it is necessary to fully disclose the
attributes, rather than merely proving they satisfy some predicate (such as being over 21 years of age). Recently,
several cryptographic credential schemes and associated protocolshave been developed to address these and other
problems. However, they can be used only as fragments of an ATN process. This paper introduces a framework
for ATN in which the diverse credential schemes and protocols can be combined, integrated, and used as needed. A
policy language is introduced that enables negotiators to specify authorization requirements that must be met by an
opponent to receive various amounts of information about certified attributes and the credentials that contain it. The
language also supports the use of uncertified attributes, allowing them to be required as part of policy satisfaction,
and to place their (automatic) disclosure under policy control.

1 Introduction

In automated trust negotiation (ATN) [16, 27, 28, 29, 30, 31,32, 33, 36, 37], two parties exchange digitally signed
credentials that contain attribute information to establish trust and make access control decisions. In traditional ATN
approaches the only way to use a credential is to send it as a whole, thus disclosing all the information in the credential.
In other words, a digital credential is viewed as a black-box, and the information in a credential is disclosed in an all-
or-nothing fashion. In these approaches sensitive attribute values stored in a credential are protected using access
control techniques. There is an access control policy associated with each credential and a credential can be disclosed
if its access control policy has been satisfied. Viewing a credential as a black-box severely limits the power of ATN.
The following are some of the limitations.

• If there is a cyclic dependency among credentials and their policies, negotiations can fail unnecessarily. For
example, in a negotiation betweenA andB, supposeA has a credentialc1 that can be disclosed only ifB has
c2, andB hasc2, but can disclose it only ifA hasc1. Using traditional ATN techniques, the negotiation would
fail because neitherc1 andc2 can be disclosed before the other is, even though allowingA andB to exchange
bothc1 andc2 would not violate either negotiator’s policy.

• Because attribute information is disclosed in an all-or-nothing fashion, each attribute can be disclosed only
when the policy governing the credential and its entire contents is satisfied, leading to unnecessary failure. For
example, supposeB would allowA to access a resource provided thatA is over21, andA has a digital driver
license that includesA’s date of birth (DoB) and address. IfA does not want to reveal her address (or her exact
DoB) toB, the negotiation would fail, even ifA would be willing to prove she is over21.

• When one negotiator does not want to disclose detailed information about his policy and the other negotiator
does not want to disclose too much information about her attributes, a negotiation can fail even though the
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amount of information that needs to be disclosed by each party is acceptable to both. For example, supposeB is
a bank that offers a special-rate loan andA would like to know whether she is eligible for such a loan before she
applies.B is willing to reveal that his loan-approval policy uses one’s DoB, current salary, and the length of the
current employment; however,B considers further details of this policy to be a trade secretthat he is unwilling
to reveal.A would like to know whether she is eligible for the loan while disclosing as little information about
her attributes as possible. In particular,A does not want to disclose the exact values of her DoB or salarylevel.
Using traditional ATN techniques, this negotiation would fail.

A number of cryptographic credential schemes and associated protocols have been developed to address these and
other problems. Oblivious signature based envelope [21], hidden credentials [6, 17], and secret handshakes [2] can
be used to address the policy cycle problem. Oblivious Attribute Certificates (OACerts) [19], private credentials [7],
and anonymous credentials [8, 9, 10, 25] together with zero-knowledge proof protocols can be used to prove that
an attribute satisfies a policy without disclosing any otherinformation about the attribute. Certified input private
policy evaluation (CIPPE) [20] enablesA andB to determine whetherA’s attribute values satisfyB’s policies without
revealing additional information aboutA’s attributes orB’s policies.

While these credential schemes and associated protocols alladdress some limitations in ATN, they can be used
only as fragments of an ATN process. For example, a protocol that can be used to handle cyclic policy dependencies
should be invoked only when such a cycle occurs during the negation process. A zero-knowledge proof protocol can
be used only when one knows the policy that needs to be satisfied and is willing to disclose the necessary information
to satisfy the policy. An ATN framework that harness these powerful cryptographic credentials and protocols has yet
to be developed. In this paper, we develop an ATN framework that does exactly that. Our framework has the following
salient features.

• The ATN framework supports diverse credentials, includingstandard digital credentials (such as X.509 certifi-
cates [3, 18]) as well as OACerts, hidden credentials, and anonymous credentials.

• In addition to attribute information stored in credentials, the ATN framework supports also attribute information
that is not certified. For example, oftentimes one is asked toprovide a phone number in an online transaction,
and the phone number may not be certified in any certificate. Inour framework, uncertified attribute information
and certified attribute information are protected in a uniform fashion.

• The ATN framework has a logic-based policy langauge that we call Attribute-based Trust Negotiation Language
(ATNL), which allows one to specify policies that govern thedisclosure of partial information about a sensitive
attribute. ATNL is based on the RT family of Role-based Trust-management languages [22, 23, 24].

• The ATN framework has a negotiation protocol that enables the various cryptographic protocols to be used to
improve the effectiveness of ATN. This protocol is an extension of the Trust-Target Graph (TTG) ATN proto-
col [30, 31].

The rest of this paper is organized as follows. We discuss related work in Section 2, and then review several
credential schemes and associated protocols that can be used in ATN in Section 3. In Section 4, we present the
language ATNL. In Section 5 we present our negotiation protocol. We conclude our paper in Section 6.

2 Related Work

Automated trust negotiation was introduced by Winsboroughet al. [32], who presented two negotiation strategies: an
eager strategy in which negotiators disclose each credential as soon as its access control policy is satisfied, and a “par-
simonious” strategy in which negotiators disclose credentials only after exchanging sufficient policy content to ensure
that a successful outcome is ensured. Yu et al. [37] developed a family of strategies called the disclosure tree family
such that strategies within the family can interoperate with each other in the sense that negotiators can use different
strategies within the same family. Seamons et al. [27] and Yuand Winslett [36] studied the problem of protecting
contents of policies as well as credentials. On the aspect ofsystem architecture for trust negotiation, Hess et al. [16]
proposed the Trust Negotiation in TLS (TNT) protocol, whichis an extension to the SSL/TLS handshake protocol by
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adding trust negotiation features. Winslett et al. [34] introduced the TrustBuilder architecture for trust negotiation sys-
tems. The problem of leaking attribute information was recognized by Winsborough and Li [30], Seamons et al. [28],
and Yu and Winslett [35]. Winsborough and Li [29, 30, 31] introduced the notion of acknowledgement policies to pro-
tect this information and provided a formal notion of safetyagainst illegal attribute information leakage. Bonatti and
Samarati [4] proposed a framework for regulating service access and information release on the web. Their framework
supports both certified attributes and uncertified attributes.

Recent work on using cryptographic protocols for ATN includes hidden credentials [6, 15, 17], secret hand-
shakes [2], oblivious signature based envelope [21], oblivious commitment based envelope [19], certified input pri-
vate policy evaluation [20], and policy-based cryptography [1]. While these protocols are useful tools and build-
ing blocks for ATN, they are not general enough to solve arbitrary trust negotiation problems in a systematic way.
Credential schemes that can be used in ATN include OACerts [19], private credentials [7], and anonymous creden-
tials [8, 9, 10, 25]. We will summarize the features of these protocols and credential schemes in the next section.

3 Overview of Cryptographic Credentials and Tools for ATN

We now give an overview of six properties that are provided bycryptographic credential schemes and their associated
cryptographic tools. These properties can improve the privacy protection and effectiveness of ATN.

1. Separation of credential disclosure from attribute disclosure: In several credential systems, including private
credentials [7], anonymous credentials [8, 9, 10, 25], and OACerts [19], a user’s attribute values are not stored
in the clear; instead, they are stored in a committed form in her credentials. When the commitment of an
attribute value is stored in a credential, looking at the commitment does not enable one to learn anything about
the attribute value. Therefore, a credential holder can disclose her credentials without revealing the attribute
values in them. For example, consider a digital driver license certificate from Bureau of Motor Vehicles (BMV)
consisting of name, gender, DoB, and address. In trust negotiation, a user can show that her digital driver license
is valid, i.e., that she is currently a valid driver, without disclosing any of her name, gender, DoB, and address.

2. Selective show of attributes:A credential holder can select which attributes she wants todisclose (and which
attribute she does not want to disclose) to the verifier. As each attribute in a credential is in committed form, the
credential holder can simply open the commitments of the attributes she wants to reveal. For instance, using the
digital driver license, the credential holder can show her name and address to a verifier without disclosing her
gender and DoB. Cryptographic properties of the commitmentschemes ensure that the credential holder cannot
open a commitment with a value other than the one that has beencommitted.

3. Zero-knowledge proof of attributes satisfying a policy:A credential holder can use zero-knowledge proof
protocols [5, 11, 12, 14] to prove that her attributes satisfy some property without revealing the actual attribute
values. For example, a credential holder can prove that she is older than 21 by using her digital driver license
without revealing any other information about her actual DoB.

4. Oblivious usage of a credential:A credential holder can use her credentials in an oblivious way to access
resources using Oblivious Signature Based Envelope (OSBE)[21], hidden credentials [17], or secret hand-
shakes [2]. In OSBE, a user sends the contents of her credential (without the signature) to a server. The server
verifies that the contents satisfy his requirement, then conducts a joint computation with the user such that in the
end the user sees the server’s resource if and only if she has the signature on the contents she sent earlier. The
hidden credentials and the secret handshakes share the similar concept; however, they assume that the server can
guess the contents of the user’s credentials; thus the user does not need to send the contents to the server. The
oblivious usage of a credential enables a user to obtain a resource from a server without revealing the fact that
she has the credential.

5. Oblivious usage of an attribute:A credential holder can use her attributes in an oblivious way to access re-
sources using Oblivious Commitment Based Envelop (OCBE) [19]. In OCBE, a credential holder and a server
run a protocol such that in the end the credential holder receives the server’s resource if and only if the attributes
in her credential satisfy the server’s policy. The server does not learn anything about the credential holder’s
attribute values, not even whether the values satisfy the policy or not.
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6. Certified input private policy evaluation (CIPPE):In CIPPE [20], a credential holder and a server run a protocol
in which the credential holder inputs the commitments of herattribute values from her credentials, and the server
inputs his private policy function. In the end, both partieslearn whether the credential holder satisfies the server’s
policy, without revealing the attribute values to the server or the private function to the credential holder. For
example, suppose that the server’s policy is that age must begreater than 25 and the credential holder’s age
is 30. The credential holder can learn that she satisfies the server’s policy without revealing her exact DoB or
knowing the threshold in the server’s policy.

There are other useful properties achieved in the private credentials [7] and the anonymous credentials [8, 9, 10,
25], such as multi-show unlinkable property, anonymous property, etc. Some of these properties require anonymous
communication channels to be useful. In this paper, we focuson the six properties described above, because we believe
they are most related to trust negotiation. Our goal is to integrate them into a coherent trust negotiation framework.

Note that we do not assume each negotiating participant supports all six properties. For instance, if one participant
uses an anonymous credential system and supports properties 1–3, and the other participant supports properties 1–6,
then they can use properties 1–3 when they negotiate trust. We present an ATN framework that can take advantage of
these properties when they are available, but that does not require them.

4 The Language of Credentials and Policies

In this section, we present the Attribute-based Trust Negotiation Language (ATNL), a formal language for specifying
credentials and policies. ATNL is based onRT , a family of Role-base Trust-management languages introduced
in [22, 23, 24]. We first give an example trust negotiation scenario in ATNL, then describe the syntax of ATNL in
detail in Section 4.2.

4.1 An Example

In this example, the two negotiators are BookSt (a bookstore) and Alice. We give the credentials and policies belonging
to BookSt first, then give those for Alice, and then describe anegotiation process between BookSt and Alice.

BookSt ’s credentials:
ℓ1 : SBA.businessLicense ←− BookSt
ℓ2 : BBB.goodSecProcess ←− BookSt

BookSt ’s policies:
m1 : BookSt.discount(phoneNum = x3) ←− StateU.student(program = x1) ∩ BookSt.DoB(val = x2)

∩ Any.phoneNum(val⇒ x3) ;
((x1 = ‘cs’) ∧ (x2 > ‘01/01/1984’))

m2 : BookSt.DoB(val = x) ←− BMV.driverLicense(DoB = x)
m3 : BookSt.DoB(val = x) ←− Gov.passport(DoB = x)

Figure 1: The credentials and policies ofBookSt

BookSt’s credentials and policies are given in Figure 1. BookSt has a credential (ℓ1) issued by the Small Business
Administration (SBA) asserting that BookSt has a valid business license. BookSt is certified in (ℓ2) by the Better
Business Bureau (BBB) to have a good security process.

BookSt offers a special discount to anyone who satisfies the policy (m1), which means that the requester should
be certified by StateU to be a student majoring in computer science, under 21, and willing to provide a phone number.
Since the discount is a resource, the head of this policy,BookSt.discount(phoneNum = x3), defines a part of the
application interface provided by the ATN system using thispolicy; the parameterphoneNum is made available to
the application through this interface. That is, the application will issue a query to determine whether the requester
satisfiesBookSt.discount(phoneNum = x3), and if it succeeds, the variablex3 will be instantiated to the phone
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number of the requester. The body of policy (m1) (i.e., the part to the right of←−) consists of the following two parts.
Part 1: StateU.student(program = x1) ∩ BookSt.DoB(val = x2) ∩ Any.phoneNum(val⇒ x3)
Part 2: ((x1 = ‘cs’) ∧ (x2 > ’01/01/1984’))

Part 1 describes the role requirement of the policy and consists of the intersection of 3 roles. To satisfy the role
StateU.student(program = x1), one must provide a credential (or a credential chain) showing that one is certified
by StateU to be a student;program = x1 means that the value of theprogram field is required to satisfy additional
constraints. InAny.phoneNum(val ⇒ x3), the keywordAny means that the phone number does not need to be
certified by any party and the symbol⇒means that the phone number must be provided (enabling it to be returned to
the application). Part 2 describes the constraints on specific field values.

BookSt’s policies(m2) and(m3) mean that BookSt considers both a driver license from BMV anda passport
issued by the government (Gov) to be valid documents for DoB.

Alice ’s credentials:
n1 : StateU.student ←− CoS.student
n2 : CoS.student(program = ‘cs’, level = ‘sophomore’) ←− Alice
n3 : BMV.driverLicense(name = commit(‘Alice’),DoB = commit(‘03/07/1986’)) ←− Alice

Alice ’s attribute declarations:
o1 : phoneNum = ‘(123)456-7890’ :: :: sensitive
o2 : DoB = ‘03/07/1986’ :: BMV.driverLicense(DoB) :: sensitive
o3 : program = ‘cs’ :: CoS.student(program) :: non-sensitive
o4 : level = ‘sophomore’ :: CoS.student(level) :: non-sensitive

Alice ’s policies:
p1 : disclose(ac,CoS.student) ←− SBA.businessLicense
p2 : disclose(full,DoB) ←− BBB.goodSecProcess
p3 : disclose(full,phoneNum) ←− BBB.goodSecProcess
p4 : disclose(range,DoB, year) ←− true

Figure 2: The credentials and policies possessed by Alice

Alice’s credentials and policies are given in Figure 2. Alice holds three credentials. Credential (n1) is issued by
StateU and delegates to College of Science (CoS) the authority to certify students. Credential (n2) is Alice’s student
certificate issued by CoS. Credentials (n1, n2) prove that Alice is a valid student from StateU. Credential(n3) is her
digital driver license issued by BMV. For simplicity, we assume that the digital driver license contains only name and
DoB. Among her credentials, Alice considers her student certificate to be sensitive, and provides it only to those who
have a valid business license from SBA (p1). Alice does not protect the content of her driver license, except for its
DoB field. She considers her date of birth and phone number to be sensitive information, thus she reveals them only to
organizations whose security practices are adequate to provide reasonable privacy (p2, p3). For this, we assume that
BBB provides a security process auditing service. Further,Alice is willing to reveal to everyone her year of birth (p4).

A negotiation between BookSt and AliceWhen Alice requests a discount sale from BookSt, BookSt responds
with his discount policy (m1). Alice first discloses her driver license (n3), which is assumed to be an OACert, to
BookSt without revealing her DoB. To protect her phone number and her student certificate, Alice wants BookSt to
show a business license issued by SBA and a good security process certificate issued by BBB. After BookSt shows
the corresponding certificates (ℓ1, ℓ2), Alice reveals her student certificate chain (n1, n2) and phone number (o1). As
Alice is allowed by her policyp4 to reveal her year of birth to everyone, she uses a zero-knowledge proof protocol
to prove to BookSt that her DoB in her driver license is between ‘1/1/1986’ and‘12/31/1986’. BookSt now knows
that Alice is younger than 21, thus satisfies his discount policy. During the above interactions, Alice proves that she is
entitled to obtain the discount.

The above negotiation process uses the first three properties described in Section 3.
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〈list of X〉 ::= 〈X〉 | 〈X〉 “ ,” 〈list of X〉 (1)
〈set of X〉 ::= ǫ | 〈X〉 〈set of X〉 (2)

〈policy-base〉 ::= 〈set of credential〉 〈set of attr-decl〉 〈set of policy-stmt〉 (3)

〈credential〉 ::= 〈member-cred〉 | 〈delegation-cred〉 (4)
〈member-cred〉 ::= 〈role〉 “←−” 〈prin〉 (5)
〈delegation-cred〉 ::= 〈role〉 “←−” 〈role〉 (6)

〈role〉 ::= 〈prin〉 “ .” 〈role-term〉 (7)
〈role-term〉 ::= 〈role-name〉 | 〈role-name〉 “ (” 〈list of field〉 “ )” (8)
〈field〉 ::= 〈field-name〉 “=” ( 〈var〉 | 〈constant〉 | 〈commitment〉 ) (9)

〈attr-decl〉 ::= 〈attr-name〉 “=” 〈constant〉 “ ::” [ 〈list of attr-ref〉 ]
“ ::” ( “ sensitive” | “non-sensitive” ) (10)

〈attr-ref〉 ::= 〈prin〉 “ .” 〈role-name〉 “ (” 〈field-name〉 “ )” (11)

〈policy-stmt〉 ::= 〈policy-head〉 “←−” 〈policy-body〉 (12)
〈policy-body〉 ::= 〈p-role-req〉 [ “ ;” 〈p-constraint〉 ] | true (13)
〈p-role-req〉 ::= [〈pre-cond〉 “ !”] 〈conj-of-p-roles〉 (14)
〈p-constraint〉 ::= [〈pre-cond〉 “ !”] 〈constraint〉 (15)
〈pre-cond〉 ::= 〈role〉 | “ false” (16)

〈conj-of-p-roles〉 ::= 〈p-role〉 | 〈p-role〉 “∩” 〈conj-of-p-roles〉 (17)
〈p-role〉 ::= 〈prin〉 “ .” 〈p-role-term〉 | Any.〈p-role-term〉 (18)

〈p-role-term〉 ::= 〈role-name〉 | 〈role-name〉 “ (” 〈list of p-field〉 “ )” (19)
〈p-field〉 ::= 〈field-name〉 ( “=” | “⇒” ) ( 〈var〉 | 〈constant〉 ) (20)

〈policy-head〉 ::= 〈role〉 | 〈dis-ack〉 | 〈dis-ac〉 | 〈dis-full〉 | 〈dis-bit〉 | 〈dis-range〉 (21)
〈dis-ack〉 ::= “disclose” “ (” “ ack” “ ,” 〈role〉 “ )” (22)
〈dis-ac〉 ::= “disclose” “ (” “ ac” “ ,” 〈role〉 “ )” (23)
〈dis-full〉 ::= “disclose” “ (” “ full” “ ,” 〈attr-name〉 “ )” (24)
〈dis-bit〉 ::= “disclose” “ (” “ bit” “ ,” 〈attr-name〉 “ )” (25)

〈dis-range〉 ::= “disclose” “ (” “ range” “ ,” 〈attr-name〉, 〈precision〉 “ )” (26)

Figure 3: Syntax of ATNL in BNF. The first two definitions〈list of X〉 and〈set of X〉 are macros parameterized by X.
The symbolǫ in (2) denotes the empty string. The symbols〈var〉, 〈constant〉, and〈prin〉 each represents a variable,
a constant, and a principal respectively. The symbols〈role-name〉, 〈field-name〉, and〈attr-name〉 represent identifiers
drawn from disjoint sets. The syntax for non-terminals〈commitment〉, 〈precision〉, 〈constraint〉 are not defined here;
they are explained in the text.

4.2 The Syntax

Figure 3 gives the syntax of ATNL in Backus Naur Form (BNF). Inthe following, we explain the syntax. The numbers
in the text below correspond to the numbers of definitions in Figure 3.

Each negotiation party has apolicy base(3) that contains all information that may be used in trust negotiation. A
party’s policy base consists of three parts:credentials, attribute declarations, andpolicy statements. In the following,
we discuss each of the three parts in detail.
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4.2.1 Credentials and Roles

Two central concepts that ATNL takes fromRT [23, 24] are principals and roles. A principal is identified with an
individual or agent, and may be represented by a public key. In this sense, principals can issue credentials and make
requests. Arole designates a set of principals who are members of this role. Each principal has its own localized name
space for roles in which it has sole authority to define roles.A role (7) takes the form of a principal followed by a role
term, separated by a dot. The simplest kind of a role term consists of just a role name. As roles are parameterized, a
role term may also contain fields, which will be explained later. We useA,B,D, S, andV , sometimes with subscripts,
to denote principals. We useR, often with subscripts, to denote role terms. A roleA.R can be read asA’s R role.
OnlyA has the authority to define the members of the roleA.R, andA does so by issuing role-definition statements.

In ATNL, a credential can be either a membership credential or a delegation credential. Amembership credential
(5) takes the form ofA.R←−D, whereA andD are (possibly the same) principals. This means thatA definesD to
be a member ofA’s roleR. A delegation credential(6) takes the form ofA.R←−B.R1, whereA andB are (possibly
the same) principals, andR andR1 are role terms. In this statement,A defines itsR role to include all members of
B’s R1 role.

For example, BookSt’s credential (ℓ1) in Figure 1 is a membership credential. It means SBA issued abusiness
license certificate for BookSt. Alice’s credential (n1) in Figure 2 is a delegation credential. It says that StateU
delegates its authority over identifying students to CoS. Alice’s credential (n2) in Figure 2 means that CoS asserts that
Alice is a sophomore student in StateU majoring in computer science.

A role term (8) is a role name possibly followed by a list of fields. Eachfield (9) has a field name and a field
value. A field value can be a variable, a constant, or a commitment. For example,SBA.businessLicense is a
role without any fields,CoS.student(program = ‘cs’, level = ‘sophomore’) andBMV.driverLicense(name =
commit(‘Alice’),DoB = commit(‘03/07/1986’)) are roles with fields. In the preceding roles,CoS is a principal
name,student is a role name,program is a field name,‘cs’ is a constant of string type, andcommit(‘Alice’) is a
commitment. In ATNL, acommitmenttakes of the form ofcommit(c), wherec is a constant, andcommit denotes the
output of a commitment algorithm of a commitment scheme [13,26]1.

If a credential is a regular certificate, such as an X.509 certificate [18], then each field in the credential takes the
form of x = c, wherex is the field name andc is a constant. For example, Alice’s student certificate (n2) may be an
X.509 certificate. When a credential is implemented as a cryptographic certificate, such as an OACert or an anonymous
credential, the attribute values are committed in the credential. Therefore, each field takes the form ofx = commit(c),
wherecommit(c) is the commitment of a constantc. For example, Alice’s digital driver license (n3) is modeled as a
cryptographic certificate.

4.2.2 Attribute declarations

Eachattribute declaration(10) gives the name of the attribute, the value of the attribute, a list of attribute references
that correspond to this attribute, and whether this attribute is considered sensitive or not. For example, Alice’s attribute
declaration (o1) in Figure 2 means that Alice has a phone number (123)456-7890 and she considers her phone number
to be sensitive information. Alice’s attribute declaration (o3) indicates that Alice’s major is ‘cs’ and that her program
appears in her student certificate, issued by CoS. We useattr to denote attribute names.

Each attribute reference(11) corresponds to a field name in a role. The attribute reference is used to link
the declared attribute to a specific role field. For example, Alice’s DoB attribute declaration has an attribute
referenceBMV.driverLicense(DoB), it means that Alice’s DoB is documented in theDoB field of the role
BMV.driverLicense. It is possible to have several attribute references for an attribute. This means that the attribute is
documented by several roles2. For example, suppose Alice also has a passport, and her DoB is certified in her passport.

1In order to have the hiding property, a commitment scheme usuallycannot be deterministic, thus the commitment of a value also depends on a
secret random value. For simplicity of presentation, we do not explicitly model the random secret in the representation ofa commitment.

2We assume that the attribute values from different roles are the same, however we do not require each principal to use the samefield name. For
example,BMV may useDoB as the field name for date of birth, whereasGov usesBirthDate as the field name. Name agreement for different
field names can be achieved using application domain specification documents [23, 24].

7



Then the attribute declaration for herDoB looks like

DoB = ‘03/07/1986’ :: BMV.driverLicense(DoB),
Gov.passport(BirthDate) :: sensitive

Because the disclosure of attribute values in a credential can be separated from the disclosure of the credential, one
purpose of the attribute declarations is to uniformly manage the disclosure of an attribute value that appears in dif-
ferent credentials. That is, the policy author gives disclosure policies for attributeDoB, instead of assigning separate
disclosure policies forBMV.driverLicense(DoB) andGov.passport(BirthDate).

When the list of the attribute references is empty, the corresponding attribute does not appear in any role that
is certified by a credential. In other words, the attribute isuncertifiedby any authorities. Unlike most prior trust
negotiation systems, our framework supports uncertified attributes. In many online e-business scenarios, like the
example in Section 4.1, the access control policies requiresome personal information about the requester, such as
phone number and email address, which may not be documented by any digitally signed credentials. Like certified
attributes, uncertified attributes may be sensitive, and should be protected in the same way. We treat all attributes
uniformly, whether certified or not, by protecting them withdisclosure policies.

If an attribute is not sensitive, then the keywordnon-sensitive appears at the end of its corresponding attribute
declaration. This means that the attribute can be revealed to anyone. There is no access control policy for this attribute.
On the other hand, if an attribute is treated as a sensitive resource, the attribute owner will mark its attribute declaration
with the keywordsensitive. In this case, if there are disclosure policy statements forthis attribute, one has to satisfy
the body of one of these statements to learn information about the attribute. If there is no disclosure policy statement
for a sensitive attribute, it means the attribute must neverbe disclosed.

4.2.3 Policy statements

In ATNL, a policy statement(12) takes the form〈policy-head〉←−〈policy-body〉 in which〈policy-body〉 either istrue

or takes the form:
pre-cond-1 ! B1.R1 ∩ · · · ∩Bk.Rk ;
pre-cond-2 ! ψ(x1, . . . , xn)

whereB1, . . . , Bk are principals,R1, . . . , Rk are role terms,k is an integer greater than or equal to 1,pre-cond-1
andpre-cond-2 are two pre-conditions (which we discuss shortly),ψ is a constraint from a constraint domainΦ,
andx1, x2, . . . , xn are the variables in the fields ofR1, . . . , Rk. The constraintψ(x1, . . . , xn) is optional. We call
B1.R1 ∩ · · · ∩Bk.Rk in the policy statement anintersection.

A pre-condition(16) is defined to be a role or the keywordfalse. The motivation for the pre-condition is that,
oftentimes, policies may contain sensitive information. The policy enforcer does not want to reveal the policy statement
to everyone. If a pre-condition isfalse, the pre-condition is never satisfied. If the pre-conditionis a role, sayB.R,
then the negotiation opponent has to be a member ofB.R for the pre-condition to be satisfied. Returning to the
policy body, if pre-cond-1 is satisfied (or ifpre-cond-1 is omitted), then the negotiation opponent is allowed to see
B1.R1 ∩ · · · ∩ Bk.Rk, otherwise, she is not permitted to know the content of this policy body. Oncepre-cond-1 is
satisfied, ifpre-cond-2 is also satisfied, then the negotiation opponent is allowed to see the constraintψ(x1, . . . , xn).

Verifying that a principal satisfies a policy body takes two steps. In the first step, the policy enforcer verifies that
the principal has all roles and has provided all uncertified attributes given byB1.R1, . . . , Bk.Rk. In the second step,
the policy enforcer verifies that the variables in the parameters ofR1, . . . , Rk satisfy the constraintψ(x1, . . . , xn).
Such two-step policy verification process is made feasible by using cryptographic credentials and the associated cryp-
tographic tools (see Section 3). The first step corresponds to verifying that the principal has the desired credentials.
The second step corresponds to verifying that the principal’s attribute values in the credentials satisfy the constraint
ψ(x1, . . . , xn). If ψ(x1, . . . , xn) is disclosed, which happens only when the second pre-condition has been satisfied,
then the principal can use zero-knowledge proof protocols to prove that her attribute values satisfy the constraint;
otherwise, the principal can elect to run a private policy evaluation protocol with the policy enforcer, enabling each to
determine whether she satisfies the constraint.

Using the example in Section 4.1, BookSt’s policy (m2) in Figure 1 is a policy statement with no constraint. It
states thatBookSt considers a driver license from BMV to provide adequate documentation of date of birth. The

8



variablex is used in the statement to indicate that the field value ofBookSt.DoB is the same as theDoB field value
in BMV.driverLicense.

The BookSt policy statement (m1) means that, in order to be a member of the roleBookSt.discount, a principal
has to have the rolesBookSt.student(program = x1), BookSt.DoB(val = x2), andAny.phoneNum(val⇒ x3). It
further requires that the program field valuex1 in BookSt.student and the DoB field valuex2 in BookSt.DoB satisfy
the constraint(x1 = ‘cs’) ∧ (x2 > ’01/01/1984’). The symbol⇒ in the roleAny.phoneNum(val ⇒ x3) indicates
that BookSt must receive a phone number from the negotiationopponent. Where the equality symbol= is used, the
policy requires only proof that the associated field value satisfies any constraints given in the policy statement.

4.2.4 Policy heads

The policy head in a policy statement determines which resource is to be disclosed and how it is to be disclosed.
A policy head(21) can be a role or a disclosure. When the policy head is a role, the statement means that if the
negotiation opponent satisfies the policy body, then she is amember of the role. Roles defined in policy statements
are controlled by the policy owner and are calleddummy rolesbecause they are not defined in signed credentials, but
serve only to aid in defining local policies. If the policy head is a disclosure, then the opponent is granted a permission
specified in the disclosure, once the policy body is satisfied. This section explains each type of disclosure and its
associated permission.

We call (the body of) a policy statement with headdisclose(ack, A.R) (22) anAck policyfor the roleA.R. The
opponent has to satisfy one ofA.R’s Ack policies to gain permission to learn whether the policy enforcer is a member
of A.R. Until such satisfaction is shown, the policy enforcer’s behavior should not depend in any way on whether she
belongs toA.R.

We call a policy statement with headdisclose(ac, A.R) (23) anAC policy for the credentialA.R←− D. We
assume, in this case, that the policy enforcer isD and thatD has the membership credentialA.R←−D. When the
negotiation opponent has satisfied an AC policy for the credentialA.R←−D, he is authorized to receive a copy of the
credential.

We call a policy statement with headdisclose(full, attr) (24) afull policy for the attributeattr. If a full policy for
attr is satisfied, the negotiation opponent is allowed to see the full value ofattr. Whenattr is an uncertified attribute,
the policy enforcer can simply disclose its value. When the field value linked to the attribute reference ofattr is a
commitment, the policy enforcer can open the commitment to the opponent.

We call a policy statement with headdisclose(bit, attr) (25) abit policy for the attributeattr. Bit policies are
defined only for certified attributes. If a bit policy forattr is satisfied, the negotiation opponent has the permission
to receive one bit of information about the value ofattr, in the sense of receiving the answer to the question whether
the value satisfies some predicate. We stress that the one bitinformation ofattr in our context is not necessarily
the value of a certain bit in the binary representation ofattr, but can be the output of any predicate onattr. More
specifically, the policy enforcer can run a private policy evaluation with the opponent in which the opponent learns
whetherattr, together with other attributes of the enforcer, satisfies the opponent’s private policy. While specifying
the bit disclosure policy, one should be aware that the bit disclosure ofattr is vulnerable to a probing attack. If an
adversarial opponent runs the private policy evaluation multiple times using different policies that constrainattr, she
may learn more information about the value ofattr.

We call a policy statement with headdisclose(range, attr, precision) (26) arange policyfor the attributeattr.
Range policies are define only for certified attributes of certain data types, such as finite integer type, finite float type,
and ordered enumeration type. If the range policy forattr is satisfied, then the negotiation opponent has permission
to learn thatattr belongs to a range with the given precision. For example, if the negotiation opponent has satisfied
the policy fordisclose(range,DoB, year), then she is allowed to know the year ofDoB, but not the exact date. How
to specify a precision depends on the data type of the attribute. For example, assume credit score takes integer values
from 1 to 1000, and Alice has a credit score of 722 documented in her credit report certificate using cryptographic
credential schemes. IfBookSt satisfies Alice’s policy ofdisclose(range, score, 50), then Alice can prove toBookSt
that her credit score is between 701 and 750 using zero-knowledge proof protocols. Similarly, the policy with head
disclose(range, score, 10) means that if the policy is satisfied, the opponent can learn that Alice’s credit score is
between 721 to 730.
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5 The Extended Trust Target Graph (ETTG) Protocol

In this section, we introduce a trust negotiation protocol that can take advantage of ATNL and the cryptographic
protocols. This protocol extends the trust-target graph protocol introduced in [30, 31], to deal with the additional
features of ATNL and cryptographic certificates.

In this protocol, a trust negotiation process involves the two negotiators working together to construct atrust-target
graph(TTG). A TTG is a directed graph, each node of which is a trust target. Introduced below, trust targets represent
questions that negotiators have about each other. When a requester requests access to a resource, the access mediator
and the requester enter into a negotiation process. The access mediator creates a TTG containing one target, which we
call theprimary target. The access mediator then tries to process the primary target by decomposing the question that
it asks and expanding the TTG accordingly in a manner described below. It then sends the partially processed TTG
to the requester. In each following round, one negotiator receives new information about changes to the TTG, verifies
that the changes are legal and justified, and updates its local copy of the TTG accordingly. The negotiator then tries
to process some nodes, making its own changes to the graph, which it then sends to the other party, completing the
round. The negotiation succeeds when the primary target is satisfied; it fails when the primary target is failed, or when
a round occurs in which neither negotiator changes the graph.

5.1 Nodes in a Trust-Target Graph

A node in a TTG is one of the five kinds of targets, defined as follows. we use the notatione և S for several different
categories ofe, meaning thatS belongs to, satisfies, or has the propertye. We introduce the various usages of the
notation informally as they are used in the following list.

• A role target takes the form〈V : A.R
?

և S〉, in which V is one of the negotiators,A.R is a role, andS is a
principal. S is oftenopp(V ), the negotiator opposingV , but it can be any principal. This target means thatV

wants to see the proof ofA.R և S.

• A policy targettakes the form〈V : policy-id
?

և S〉, in whichV is one of the negotiators,S is a principal, and
policy-id uniquely identifies a policy statement inV ’s policy base. We assume each negotiator assigns each of
her policy statements a unique identifier for this purpose. This target means thatV wants to see the proof thatS
satisfies the body of the statement corresponding topolicy-id.

• An intersection targettakes the form〈V :B1.R1 ∩ · · · ∩ Bk.Rk

?
ևS〉, in whichV is one of the negotiators,S

is a principal,B1.R1, . . . , Bk.Rk are roles,k is an integer greater than 1. This means thatV wants to see the
proof ofB1.R1 ∩ · · · ∩Bk.Rk և S.

• A trivial target takes the form〈V : S
?

և S〉, in whichV is one of the negotiators, andS is a principal. Trivial
targets provide placeholders for edges in the TTG.

• An attribute goal takes the form〈V : attr
?

և S〉, in which attr is the name of an attribute inS’s attribute
declaration. This goal means thatV wants to learn some information about the value ofattr, e.g., V may want
to learn the full value of the attribute, or to learn partial information about the attribute, e.g., whether it satisfies
a policy.

In each of the above forms of targets, we callV the verifier, andS the subjectof this node. Each target has a
satisfaction state, which has one of three values:satisfied, failed, or unknown. The value is determined inductively
depending on the containing TTG structure and the credentials present, as discussed below.

5.2 Edges in a Trust-Target Graph

Seven kinds of edges are allowed in a trust-target graph, listed below. We use֋ to represent edges in TTG’s.
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• A credential edgetakes the form〈V :A.R
?

ևS〉֋〈V :e
?

ևS〉, in whichA.R is a role, ande is either a principle

or a role. We call〈V :e
?

ևS〉 a credential child of〈V :A.R
?

ևS〉. (We use similar “child” terminology for other
kinds of edges.) An edge always points from the child to the parent. Unlike the other kinds of edges, a credential
edge needs to bejustifiedto be added into the TTG; a credential edge is justified if the edge is accompanied by
a credential that provesA.R և e.

• A policy edgetakes the form〈V :A.R
?

ևS〉֋〈V :policy-id
?

ևS〉, in whichpolicy-id is a policy identifier and
A.R is the role in the head of the policy statement (that corresponds topolicy-id).

• A policy control edgetakes the form〈V : policy-id
?

և S〉֋ 〈V : A.R
?

և S〉, in which policy-id is a policy
identifier andA.R is one of the pre-conditions in the policy statement.

• A policy expansion edgetakes the form〈V : policy-id
?

և S〉֋ 〈V : B1.R1 ∩ · · · ∩ Bk.Rk

?
և S〉, in which

policy-id is a policy identifier andB1.R1 ∩ · · · ∩ Bk.Rk is the intersection in the policy statement. Ifk > 1,
the policy expansion child is an intersection target; otherwise, it is a role target. Each policy expansion edge has
associated with it up to one tag consisting of a constraint.

• An intersection edgetakes the form〈V :B1.R1 ∩ · · · ∩Bk.Rk

?
ևS〉֋〈V :Bi.Ri

?
ևS〉, wherei is in 1..k, and

k is greater than 1.

• An attribute edgetakes the form〈V :A.R
?

ևS〉֋ 〈V : attr
?

ևS〉, in whichS is the negotiation opponent ofV ,
attr is an attribute name, andA.R is a role. This is used when the attributeattr is linked to a specific field in
A.R in S’s attribute declarations.

• An attribute control edgetakes the form〈V : e
?

և S〉֋ 〈opp(V ) : policy-id
?

և V 〉, in which opp(V ) denotes
the opponent ofV , policy-id is a policy identifier, ande is the role or attribute name in the head of the policy
statement. Attribute control edges are used for handling disclosure policies. Each attribute control edge has a
tag consisting of one of ac, ack, full, bit, or range; in the range case, it also includes a precision parameter.

The optional tag on a policy expansion edge is used to expressthe constraint portion of the policy statement
identified bypolicy-id. The tag on an attribute control edge characterizes the information thatV can gain permission
to learn by satisfying the body of the statement identified bypolicy-id.

5.3 Overview of The Extended Trust-Target Graph (ETTG) Protocol

We now sketch the ETTG protocol. Details of the ETTG protocolare given in Appendix A. We begin with an example
of the ETTG protocol, then briefly discuss how to process eachnode in TTG, and how to handle constraints in the
policies.

Example 1 This example is a simple instance of the ETTG protocol and illustrates the usage of the first three prop-
erties described in Section 3. Referring to the bookstore example in Section 4.1, we depict the final TTG in Figure 4.
Alice and BookSt run the ETTG protocol as follows: As BookSt wants to see the proof ofBookSt.discount և Alice
in order to grant Alice access, BookSt creates the primary target (node 1) for the negotiation and sets its satisfaction
state to be unknown. If node 1 becomes satisfied, then the negotiation succeeds. In BookSt’s policy base, there is a
policy statement (m1) for BookSt.discount, hence BookSt creates a policy target (node 2) and adds a policy edge
between node 1 and node 2. As the policy statement (m1) has no pre-conditions, BookSt reveals the policy by adding
a policy expansion child (node 3) and a constraint tag between the parent (node 2) and the child (node 3). Based on
the policy (m1), BookSt wants to see Alice’s phone number and wants to know whether Alice’s program and DoB
satisfy his constraint. BookSt then creates node 4, 5, 6 and adds them as intersection children to node 3. Since the role
BookSt.DoB is a dummy role and there are policies (m2,m3) associated with it, BookSt adds a policy target (node
7) as the policy child to node 6. BookSt then adds a policy expansion child (node 8) to node 7. Similarly, BookSt adds
node 9 and 10. Essentially, BookSt wants to see Alice’s DoB from either a driver license or a passport. Now BookSt
cannot process the TTG any more.
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Figure 4: Final TTG for the bookstore example. In this figure,← denotes the symbolև, A denotesAlice, andB
denotesBookSt. The white nodes are created byBookSt and the grey nodes are created byAlice.

After receiving the TTG from BookSt, Alice begins to processthe graph. Alice first discloses her credentialn1 (as
it is not sensitive) and adds a credential child (node 11). She cannot disclosure her student credential (n2) immediately,
as there exists an AC policy (p1) for n2. Therefore Alice adds a policy target (node 12) and expands it with a role
target (node 13). Note that the edge between node 11 and 12 is an attribute control edge, which means that if node 12
is satisfied, then Alice can disclose her student credential(n2). Alice also reveals her digital driver license (without
revealing her DoB) to BookSt, creates a trivial target (node14), and adds a credential edge between node 8 and node
14. At this point, Alice notices that she needs to prove she isyounger than ‘1/1/1984’ and to reveal her phone number,
she adds an attribute goal (node 15) for herDoB attribute and another attribute goal (node 19) for herphoneNum, she
also expands the TTG by adding nodes 16, 17, 18, 20. As the node16 is trivially satisfied (because the policy forp4
is true), Alice proves to BookSt that she is born in 1986. Alice’s year of birth flows up from node 8 to node 3.

BookSt shows to Alice hisStateU.businessLicense certificate andBBB.goodSecProcess certificate, which trig-
gers the satisfaction of the nodes 12 and 20. Alice then reveals her student credential (n2) and her uncertified
phoneNum. The values of Alice’s attributeprogram and phoneNum flow up to node 3, where BookSt verifies
that Alice’s attributes satisfy the constraint. Finally, the primary target is satisfied and the negotiation succeeds.

Node Processing in ETTGWe briefly explain how each node is processed in the ETTG protocol.

1. Role target.Suppose the role in a role targetT = 〈V : V.R
?

և S〉 is a dummy role. For each of the verifier’s
policies that haveV.R as the policy head, the verifier adds a new policy child forT . The role target is satisfied
if one of its children is satisfied.

Now suppose the role in a role targetT = 〈V :A.R
?

և S〉 is not a dummy role. If the opponent ofV has an
Ack policy forA.R, he adds an attribute control child forT . Once the Ack policy (if any) has been satisfied, if
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the opponent has an AC policy forA.R, he adds another attribute control child. After all ofT ’s attribute control
children have been satisfied, the opponent can disclose his credential forA.R (if any), adds a credential edge,
and marksT satisfied. If the credential disclosed is a membership credential, then for each field inA.R, if there
is a sensitive attribute linked to the field in the opponent’sattribute declarations, the opponent adds an attribute
child for that attribute.

2. Policy target. Consider the policy targetT = 〈V : policy-id
?

և S〉. Suppose the policy body associated with
policy-id takes the formpre-cond-1! B1.R1 ∩ · · · ∩ Bk.Rk ; pre-cond-2! ψ(x1, . . . , xn). The verifier first
adds a policy control child forpre-cond-1. Once the policy control child is satisfied, the verifier addsa policy
expansion child forB1.R1 ∩ · · · ∩Bk.Rk and a policy control child forpre-cond-2. If the policy control child
for pre-cond-2 is satisfied, the verifier adds the constraintψ(x1, . . . , xn) as a tag on the policy expansion edge.
A policy target is satisfied if its policy expansion child is satisfied and the constraint is evaluated and satisfied.
We explain how and when to evaluate a constraint below.

3. Intersection target.For the intersection targetT = 〈V : B1.R1 ∩ · · · ∩ Bk.Rk

?
և S〉, the verifier adds an

intersection child for each roleBi.Ri. The intersection target is satisfied if all of its intersection children are
satisfied.

4. Attribute goal.For the attribute targetT = 〈V : attr
?

ևS〉, the opponent adds an attribute policy child for each
disclosure policy that containsattr in the policy head.

Constraint Handling We now explain how the constraint of a policy is evaluated. Ifthere is a constraint tag in the
policy expansion edge of the policy (i.e., the constraint is revealed to the opponent), it can be evaluated as follows:
Whenever a full disclosure policy or a range disclosure policy for an attribute is satisfied by the verifier, the opponent
reveals the attribute information accordingly. The attribute information flows from the attribute goal to the policy
expansion edge where the constraint is attached. At the policy expansion edge, when the verifier receives enough
information from the opponent to determine whether or not the constraint is satisfied, he evaluates the constraint based
on the attribute information received so far and outputs theresult.

If there is no constraint tag in the policy expansion edge (i.e., the pre-condition for the constraint has not been
satisfied), the verifier can satisfy all the full disclosure policies of the attributes required in the constraint, enabling it
to obtain all the attribute values from the opponent. The verifier then evaluates the constraint secretly and informs the
opponent the result of the evaluation. Alternatively, the verifier can try to satisfy all the bit disclosure policies of the
attributes, and then run a private policy evaluation protocol with the opponent.

5.4 Additional Examples

In this section, we give two additional examples that illustrate the ATNL language and the ETTG protocol. Example 2
deals with the scenario in which the constraint is private; example 3 illustrates how the ETTG protocol breaks the
policy cycles.

Example 2 This example illustrates the usage of properties 1, 2, and 6 (private policy evaluation) described in Sec-
tion 3. Suppose BankWon, an online bank certified by NationalCredit Union Administration (NCUA), offers a special-
rate loan. Before applying the loan, an applicant is required to show a valid driver license. The loan policy is that
the applicant must have either (1) a credit score more than 680 and an income more than 55k, or (2) a credit score
more than 700 and an income more than 45k. BankWon considers his loan policy as private information, and discloses
(the thresholds of) the policy only to BankWon’s preferred members. Carol, who is not one of BankWon’s preferred
members, wants to know whether she is eligible for that loan.She has a credit report from Experian and a tax certifi-
cate from Internal Revenue Service (IRS). Carol considers her credit score and her income to be sensitive attributes.
BankWon and Carol’s credentials and policies are given in Figure 5.

Using the ETTG protocol, BankWon and Carol can negotiate trust successfully. The final TTG of the negotiation
is given in Figure 6. In the ETTG protocol, BankWon first creates a primary target (node 1), a policy target (node 2),
and a role target (node 3). The edge between node 2 and 3 is a policy control edge. After Carol reveals her driver
license and adds node 4, BankWon is able to expand the loan policy and adds nodes 5 – 14. Carol then reveals her tax
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Bank ’s credentials and policies:
q1 : NCUA.member ←− Bank
r1 : Bank.loan ←− BMV.driverLicense ! IRS.tax(income = x1) ∩ Bank.credScore(val = x2) ;

Bank.preferred ! ((x1 > 680) ∧ (x2 > ‘55k’)) ∨ ((x1 > 700) ∧ (x2 > ‘45k’)
r2 : Bank.credScore(val = x) ←− Equifax.credReport(score = x)
r3 : Bank.credScore(val = x) ←− Experian.credReport(score = x)
r4 : Bank.credScore(val = x) ←− TransUnion.credReport(score = x)

Carol ’s credentials:
s1 : Experian.credReport(score = commit(720)) ←− Carol
s2 : IRS.tax(income = commit(‘65k’), employer = commit(‘Company A’)) ←− Carol
s3 : BMV.driverLicense(name = ‘Carol’,DoB = commit(‘06/18/1972’)) ←− Carol

Carol ’s attribute declarations:
t1 : DoB = ‘06/18/1972’ :: BMV.driverLicense(DoB) :: sensitive
t2 : score = 720 :: Experian.credReport(score) :: sensitive
t3 : income = ‘48k’ :: IRS.tax(income) :: sensitive
t4 : employer = ‘Company A’ :: IRS.tax(employer) :: non-sensitive

Carol ’s policies:
u1 : disclose(full,DoB) ←− BBB.goodSecProcess
u2 : disclose(bit, score) ←− NCUA.member
u3 : disclose(range, score, 50) ←− true

u4 : disclose(bit, income) ←− true

u5 : disclose(range, income, 10k) ←− BBB.goodSecProcess

Figure 5: The credentials and policies for Example 2

certificate and credit report without revealing her sensitive attributes to BankWon, and adds two attribute goals (node
15 and 19) to TTG. As node 6 is not satisfied, the constraint of the loan policy is not revealed to Carol. However, as the
bit policies for Alice’sincome andscore are satisfied, Carol and BankWon are able to run a private policy evaluation
on income andscore with BankWon’s private constraint. After the private policy evaluation outputstrue (i.e., Carol’s
certified attributes satisfy the constraint), node 2 becomes satisfied. In the end, node 1 is also satisfied and the ETTG
protocol succeeds.

Example 3 This example illustrates the usage of properties 1, 2, 4, and5 (oblivious usage of credentials and attributes)
described in Section 3. Suppose Bob, a CIA agent, has a secretdocument to which the access is allowed by CIA agents
only. Bob has a security clearance certificate from Gov with the security level committed in it. Bob can show his CIA
agent credential only to his peers, and can reveal his security clearance level only to those whose security level is
greater than or equal to 3. Similarly, Alice has a CIA agent credential and a security clearance certificate with certain
disclosure policies. Alice shows her CIA agent credential only to CIA agents with security level greater than or equal
to 2. And she discloses her security level only to CIA agents.See Figure 7 for the description of the credentials and
policies in ATNL. When Alice wants to access Bob’s document, they engage the ETTG protocol and build a TTG as
depicted in Figure 8(a).

There are two policy cycles in the TTG, one cycle has nodes 3, 4, 5, 6, and 8, the other cycle has nodes 3, 4, 5,
7, 10, 11, 12, 14, 15, 6, and 8. Without breaking the policy cycles, the negotiation between Alice and Bob would
fail, because neither Alice nor Bob can update the TTG any more. As the two policy cycles share common nodes,
we cannot break them separately. See Figure 8(b) for the dependency relation between Alice and Bob’s attributes. To
break the policy cycles, Alice and Bob run an OSBE protocol [21] in which Bob delivers an envelope to Alice with the
property that Alice can open the envelope if she has a CIA agent credential. This envelope contains Bob’s CIA agent
credential. In the mean time, they run an OCBE protocol [19] in which Bob delivers another envelope to Alice such
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Figure 6: Final TTG for Example 2. In this figure,← denotes the symbolև,B denotesBank, andC denotesCarol.
The white nodes are created byBank and the grey nodes are created byCarol.

Bob’s credentials, attributes, and policies:
v1 : CIA.agent ←− Bob
v2 : Gov.secClearance(level = commit(3)) ←− Bob
v3 : level = 3 :: Gov.secClearance(level) :: sensitive
w1 : Bob.document ←− CIA.agent
w2 : disclose(ack,CIA.agent) ←− CIA.agent
w3 : disclose(full, level) ←− Gov.secClearance(level = x) ; x ≥ 3

Alice ’s credentials, attributes, and policies:
x1 : CIA.agent ←− Alice
x2 : Gov.secClearance(level = commit(4)) ←− Alice
x3 : level = 4 :: Gov.secClearance(level) :: sensitive
y1 : disclose(ack,CIA.agent) ←− CIA.agent ∩Gov.secClearance(level = x) ; x ≥ 2
y2 : disclose(full, level) ←− CIA.agent

Figure 7: The credentials and policies for Example 3

that Alice can open the envelope if and only if her security level is greater than 2. In the second envelope, Bob opens
the commitment of his security level. Bob learns nothing from the previous interactions. After Alice opened the two
envelopes, she verifies whether the received CIA credentialand security level satisfy her policies. If so, she reveals
her CIA agent credential and her security level to Bob. Now the policy cycles are broken.
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Figure 8: (a) Final TTG for the Example 3. In this figure,← denotes the symbolև, A denotesAlice, andB denotes
Bob. The white nodes are created byBob and the grey nodes are created byAlice. (b) Disclosure dependency graph
for Alice’s and Bob’s sensitive attributes.

6 Conclusion and Future Work

We have introduced a framework for ATN that supports the combined use of several cryptographic credential schemes
and protocols that have been previously introduced piecemeal to provide capabilities that are useful in various nego-
tiation scenarios. Our framework enables these various schemes to be combined flexibly and synergistically, on the
fly as the need arises. The framework has two key components: ATNL, a policy language that enables negotiators to
specify authorization requirements that must be met by an opponent to receive various amounts of information about
certified attributes and the credentials that contain it; ETTG, an ATN protocol that organizes negotiation objectives
and the use of cryptographic techniques to meet those objectives. We have shown several examples that illustrate how
our framework enables negotiations to succeed that would not were they conducted using traditional ATN techniques.
The appendix presents the details of the process of constructing the trust target graph and other aspects of the ETTG
negotiation state. In on-going research we are developing comprehensive analysis algorithms that negotiators will use
to recognize all cyclic dependencies that can be resolved.
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A Details of the ETTG protocol

In this Appendix, we present the details of the ETTG protocol. We first describe how states are propagated in TTG,
then describe the messages in the protocol, finally present how nodes are processed.

A.1 State Propagation in TTG

Each node has aprocessing state, which is a pair of boolean states: verifier-processed and opponent-processed. A
node isverifier-processedwhen the verifier cannot process the node any further,i.e., the verifier cannot add any new
child to the node. A node isopponent-processedwhen the opponent cannot process the node any further. When a node
is both verifier-processed and opponent-processed, we say that it isfully processed.

Each target has asatisfaction state, which has one of three values: satisfied, failed, and unknown. For each field
in the roles of a role node or an intersection node, there is afield state. Each field state has multiple entries depending
on how many disclosure policies this attribute has. For example, if an attribute has a full disclosure policy and a bit
disclosure policy, then the field state has two entries, one for the full policy, the other for the bit policy. The entry in
the field state for the bit policy takes eithertrue or false value. The entry for other policies can take arbitrary values.
Each attribute has anattribute state. An attribute state has multiple entries depending on how many disclosure policies
this attribute has. Each entry can be one of the two values:true or false. A true value means the corresponding policy
in that entry has been satisfied. Afalse value means the corresponding policy has not been satisfied.

We now describe how to determine the satisfaction state of targets, the field state of fields, and the attribute state
of attribute goals.

Satisfaction state The trust target satisfaction state is determined as follows:

1. Role target.The initial satisfaction state a role target is unknown. It becomes fully satisfied when one of its
credential children or one of its policy children is fully satisfied, and for each field in its role with the⇒ symbol
(the verifier wants to see the full value of this field), the full policy entry in its field state table is not empty (the
full value of the field has been disclosed). It becomes failedwhen it is full processed and it has no child, or
all of its children are failed, or there exists some field in the role with the⇒ symbol whose value has not been
disclosed.

2. Policy target. Let policy-id be the policy identifier in this policy target. If the policy body corresponding to
policy-id is true, then the satisfaction state of this target is fully satisfied. Otherwise, the initial satisfaction state
of a policy target is unknown.

(a) If there is no constraint in the policy corresponding topolicy-id, the satisfaction state of the policy target
becomes satisfied when it is full processed and its policy expansion child is satisfied. It becomes failed
when either it has no policy expansion child (the pre-condition for the policy has not been satisfied) or its
policy expansion child is failed.
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(b) If there is a constraint in the policy corresponding topolicy-id, the satisfaction state of the policy target
becomes satisfied when it is full processed, its policy expansion child is satisfied, and the constraint is
evaluated and also satisfied. If the constraint has been revealed (i.e., there exists a policy control child for
the constraint), it can be evaluated when the value or the range of each variable in the constraint has been
disclosed. If the constraint is private, it can be evaluatedusing the private policy evaluation, or the full
value of each variable in the policy has been disclosed. It becomes failed when it has no policy expansion
child, or its policy expansion child is failed, or the constraint cannot be evaluated, or the constraint is not
satisfied.

3. Intersection target.The initial satisfaction state of an intersection target isunknown. It becomes satisfied when
it is fully processed and all of its children are satisfied. Itbecomes failed when one of its children is failed.

4. Trivial target. A trivial target is always fully satisfied.

Field state Informally speaking, the values of field state flow up from child to parent. There is no entry when a field
state is initialized. The values of the field state are copiedfrom one of its children or its grandchildren, if the values
are available. If the current node has a non-delegation credential child and the corresponding credential is a regular
credential (such as X.509 certificate), then write the full value of the field to the full entry. Otherwise, if the current
node has an attribute child, depends on the attribute state of the attribute goal, the opponent reveals the attribute value
according. For example, if the full entry in the attribute child is true, then the opponent reveals the full value of the
field and write the value in the full entry of the field state. Ifthe bit entry in the attribute state of the attribute child is
true, the bit entry in the field state is set to betrue also. If a range disclosure entry in the attribute state of the attribute
child is true, the opponent proves that the field value belongs to some range according the precision parameter.

Attribute state Let attr be the attribute name in the attribute goal. If there is a disclosure policy forattr, we add an
entry in the attribute state. The initial value for that entry is false. If the satisfaction state of the attribute control child
corresponding to the disclosure policy becomes satisfied, the value of the entry becomestrue.

The legal update operations do not remove nodes or edges oncethey have been added, and once a node is fully
processed, it remains so thereafter. Consequently, once a target becomes satisfied or failed, it retains that state for the
duration of the negotiation.

A.2 Messages in the Protocol

As described before, negotiators cooperate through use of the protocol in constructing a shared TTG, a copy of which
is maintained by each negotiator. Negotiators alternate transmitting messages that each contains a sequence of TTG
update operations and a set of credentials to be used in justifying credential edges. Negotiators may also run a set
of cryptographic protocols described in Section 3 during the ETTG protocol. On receiving a update operation, a
negotiator verifies it is legal before updating its local copy of the shared TTG. The following arelegal TTG update
operations:

• Initialize the TTG to contain a given primary trust target (TT), specifying a legal initial processing state for this
node. (See below.)

• Add a justified edge (not already in the graph) from a TT that isnot yet in the graph to one that is, specifying a
legal initial processing state for the new node. The new TT isadded to the graph as well as the edge.

• Add a justified edge (not already in the graph) from an old nodeto an old node.

• Mark a node processed. If the sender is the verifier, this marks the node verifier-processed; otherwise, it marks
it opponent-processed.

The legal initial processing state of a trivial target is fully-processed. Both a policy target and an intersection
target are initially opponent-processed. An attribute goal is initially verifier-processed. A role target is initially either
opponent-processed or verified processed. These operations construct a connected graph. Satisfaction state of trust
targets, field state of fields in trust targets, and attributestate of attribute goals are not transmitted in messages; instead,
each negotiation party infers them independently.
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A.3 Node Processing

Previously we described the TTG negotiation protocol, in which two negotiators exchange update messages. The
protocol defines what updates are legal, and the receiver of amessage can verify that the updates in the message is
legal. We now describe procedures forcorrect processing, which update the TTG in a manner designed to satisfy the
primary target whenever this is possible, while enforcing each negotiator’s policies. Correct processing continues until
either the primary target is satisfied (negotiation success), it is failed (negotiation failure), or neither negotiator can
perform a correct update (also negotiation failure).

Note that a negotiator cannot be forced to follow the correctprocedures, and when it does not, the other negotiator
may not be able to tell. The protocol and the correct processing procedures are intended to guarantee that a misbehav-
ing negotiator can never gain advantage (either learn information or gain access without satisfying relevant policies
first) over a faithful negotiator who follows the protocol and the correct procedures. Therefore, a normal negotiator
has no incentive to misbehave. Still, it is always within thepower of either negotiator to behave incorrectly, and doing
so may prevent the negotiation from succeeding. For instance, either negotiator can simply abort the negotiation at
any time.

A.3.1 Node Processing State Initialization

When a new node is added to a TTG, its processing state should beinitialized as follows:

• A trivial target is fully processed.

• For a role target,〈KV :K.r
?

ևKS〉, if K.r is a dummy role, the target is opponent-processed, which means that
the opponent cannot process it; otherwise, it is verifier-processed.

• A policy target is initially opponent-processed.

• An intersection target is initially opponent-processed.

• An attribute goal is initially verifier-processed.

A.3.2 Verifier-Side Processing

We now describe how a negotiatorV process a node when it is the verifier of the node. These rules apply to nodes that
are not yet marked verifier-processed.

1. ProcessingT = 〈V :A.R
?

ևS〉
(a) For each ofV ’s local policy statements in whichA.R is a dummy role in the policy head andpolicy-id is the
corresponding policy identifier,V can add a policy edgeT ֋〈V :policy-id

?
ևS〉.

(b) V can markT as verifier-processed only after (a) isdone, meaning that all edges that can be added according to
(a) have been added.

2. ProcessingT = 〈V :policy-id
?

ևS〉
(a) Let [pre-cond-1 !] B1.R1 ∩ · · · ∩ Bk.Rk ; [[pre-cond-2 !] ψ(x1, . . . , xn)] be the policy body corresponding to

policy-id. If pre-cond-1 is a role, sayA1.R1, V can add a policy control edgeT ֋〈V :A1.R1

?
ևS〉.

(b) After (a) is done and〈V :A1.R1

?
և S〉 is satisfied, or there is no pre-condition for the intersection,V can add a

policy expansion edgeT ֋〈V :B1.R1 ∩ · · · ∩Bk.Rk

?
ևS〉.

(c) Suppose there is a constraint for this policy. Ifpre-cond-2 is a role, sayA2.R2, V can add a policy control edge
T ֋〈V :A2.R2

?
ևS〉.

(d) After (c) is done and〈V :A2.R2

?
ևS〉 is satisfied, or there is no pre-condition for the constraint, V can add a tag

to the policy expansion edge with the constraint in it.
(e)V can markT as verifier-processed only after (d) isdoneor (b) isdoneif there is no constraint for the policy.
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3. ProcessingT = 〈V :B1.R1 ∩ · · · ∩Bk.Rk

?
ևS〉

(a)V can add thek intersection edges,T ֋〈V :Bi.Ri

?
ևKS〉, 1 ≤ i ≤ k

(b) V can markT verifier-processed only after (a) is done.

A.3.3 Opponent-Side Processing

We now describe how a negotiatorS process a node when it is the opponent of the verifier of the node. These rules
apply to nodes that are not yet marked opponent-processed.

1. ProcessingT = 〈V :A.R
?

ևS〉
(a) If there exists a policy statement with headdisclose(ack, A.R), S can add an attribute control edgeT ֋ 〈S :

ack-id
?

ևV 〉, whereack-id is the policy identifier for the ack policy.

(b) After (a) is done and〈S : ack-id
?

ևV 〉 is satisfied (if it exists), ifS has the credentialA.R←−S, and if there exist

a policy statementac-id with headdisclose(ac, A.R), S can add an attribute control edgeT ֋〈S :ac-id
?

ևV 〉.

(c) After (b) is done and〈S :ac-id
?

ևV 〉 (if it exists) is satisfied,S can add the credential edgeT ֋〈V :S
?

ևS〉.

(d) After (a) is done and〈S : ack-id
?

ևV 〉 is satisfied, ifS has a delegation credentialA.R←−A1.R1, S can add the

credential edgeT ֋〈V :A1.R1

?
ևS〉.

(e)S can markT as opponent-processed ifT is satisfied, or all of the above steps are done.

2. ProcessingT = 〈V :attr
?

ևS〉
(a) If there exists a policy statementfull-id with headdisclose(full, attr), S can add an attribute control edgeT ֋

〈S : full-id
?

ևV 〉.
(b) If there exists a policy statementbit-id with headdisclose(bit, attr), S can add an attribute control edgeT ֋〈S :

bit-id
?

ևV 〉.
(c) If there exists a policy statementrange-id with headdisclose(range, attr,precision), S can add an attribute

control edgeT ֋〈S : range-id
?

ևV 〉.
(d) S can markT as opponent-processed ifT is satisfied, or all of the above steps are done.
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