
CERIAS Tech Report 2005-57

SECURE AND PRIVATE ONLINE COLLABORATION

by Keith Frikken

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

SECURE AND PRIVATE ONLINE COLLABORATION

A Thesis

Submitted to the Faculty

of

Purdue University

by

Keith B. Frikken

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2005

ii

ACKNOWLEDGMENTS

During my five years at Purdue, I have had the opportunity to work with many

great people. The person that has influenced my research the most while at Purdue,

is my major professor Mikhail Atallah. I am very thankful for his advice on research

and teaching.

I have had the opportunity to collaborate with many people, some of who have

helped contribute ideas to this thesis including: Michael Goodrich, Roberto Tamma-

sia, and Jiangtao Li. However, there have been many others that I have collaborated

with on other work including: Marina Blanton, Sunil Prabhakar, Rei Safavi-Naini,

Vinayak Deshpande, and Leroy Schwarz.

I would also like to thank many others that have contributed to my academic

career while at Purdue. First, I would like to thank my committee. Also I would

like to thank Susanne Hambrusch who was my GAANN fellowship advisor, and I

would like to thank Greg Frederickson for serving as my teaching mentor. I would

also like to thank the staff at CERIAS. Finally, I would like to thank the anonymous

reviewers of the world who have made much of the work in this thesis stronger with

their helpful comments.

Finally I would like to thank friends and family, especially my fiancee Sara.

Portions of this work were supported by:

Grants EIA-9903545, IIS-0219560, IIS-0312357, and IIS-0242421 from the Na-

tional Science Foundation, Contract N00014-02-1-0364 from the Office of Naval Re-

search, Intel, by sponsors of the Center for Education and Research in Information

Assurance and Security, and by Purdue Discovery Park’s e-enterprise Center.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT . xi

1 Introduction . 1

1.1 Contributions . 3

1.2 Thesis Statement . 3

1.3 Summary of Results . 3

1.3.1 Trust Negotiation . 4

1.3.2 Credit Checking . 4

1.3.3 Services for Location-Aware Devices 5

1.3.4 Contract Negotiation . 6

1.3.5 Biometric Authentication . 6

1.4 Organization of the Thesis . 7

2 Preliminaries . 8

2.1 Overview of Secure Computation . 8

2.2 Definitions and Notations . 9

2.2.1 Models of Behavior for Secure Computations 9

2.2.2 Definitions . 10

2.3 A Formal Definition . 11

2.3.1 Semi-Honest Adversaries . 11

2.3.2 Malicious Adversaries/Multiple Parties 13

2.4 Literature Review . 13

2.4.1 Two-party Computations . 13

2.4.2 Multi-party Computations and Stronger Adversary Models . . 14

iv

Page

2.4.3 Alternate Models . 14

2.4.4 Composition Theorems . 15

2.4.5 Random Oracle Model . 16

2.5 A Survey of Specific Secure Protocols 16

2.5.1 Oblivious Transfer . 17

2.5.2 Private Information Retrieval 17

2.5.3 Set Intersection . 19

2.5.4 Finding the kth Ranked Element 20

2.5.5 Yao’s Millionaire Problem . 20

2.5.6 Secure Auctions . 21

3 Building Blocks . 23

3.1 Encryption . 23

3.1.1 Symmetric Key Encryption: 23

3.1.2 Homomorphic Encryption: . 23

3.1.3 Identity-Based Encryption: . 24

3.2 Split Data . 25

3.3 Oblivious Transfer . 25

3.4 Scrambled Circuit Evaluation . 25

3.5 Scalar Product . 27

3.6 Set Intersection . 28

3.7 Comparing Modular Values . 28

3.7.1 Comparison . 28

3.7.2 Base Reduction . 30

4 Secure Verifiable Oblivious Function Evaluation 33

4.1 Trust Negotiation . 33

4.1.1 Related Work . 36

4.1.2 Problem Definition . 38

4.2 Credit Checking Domain . 41

v

Page

4.2.1 Problem Definition . 43

4.2.2 Privacy and Correctness Requirements 45

4.3 Secure Oblivious Function Evaluation 46

4.3.1 Specific Circuits: . 46

4.3.2 Universal Circuits: . 47

4.3.3 A Single n-ary Gate: . 47

4.4 Protocols for Trust Negotiation . 48

4.4.1 Review of Hidden Credentials System 48

4.4.2 Protocol Phases . 49

4.4.3 Credential Hiding Phase . 50

4.4.4 Blinded Policy Evaluation Phase 55

4.4.5 Security Proofs . 57

4.5 Protocols for Credit Checking . 59

4.5.1 A Preliminary Protocol . 59

4.5.2 Security of Protocols . 63

4.5.3 Extension: Weighted Threshold Based Policies 63

4.5.4 Extension: Combinatorial Circuit Based Policies 64

4.5.5 Extension: General Policies or Criteria 64

4.5.6 Extension: Malicious Adversaries 65

4.5.7 Extension: Multiple CRAs 66

4.6 Summary . 67

5 Services for Location-Aware Devices . 69

5.1 Introduction . 69

5.2 Notations and Definitions . 72

5.3 Secure Protocols . 72

5.3.1 On Using General SFE Results 73

5.3.2 Protocol Design . 74

5.3.3 Distance between Two Points 75

vi

Page

5.3.4 Distance between Point and Line Segment 75

5.3.5 Distance between Two Parametric Equations 78

5.3.6 Distance between Two Line Segments 80

5.4 Perturbation-Based Techniques . 83

5.4.1 Random Perturbation of the Client’s Position 84

5.4.2 Grid Method . 87

5.4.3 Anonymization . 92

5.5 Summary . 93

6 Contract Negotiation . 95

6.1 Introduction . 95

6.2 Related Work . 97

6.3 Secure Contract Framework . 97

6.4 Secure Contract Term Protocols . 99

6.4.1 Determining Satisfiability . 99

6.4.2 Computing a Fair Acceptable Term 99

6.5 Expressing Preferences . 105

6.5.1 Extending FIND-AGREEMENT 108

6.5.2 A Lower Bound on Communication Complexity 108

6.6 Extensions . 108

6.6.1 Interactive Negotiations . 109

6.6.2 Efficient Communication . 110

6.6.3 Dependent Contract Terms 110

6.7 Summary . 111

7 Biometrics . 112

7.1 Introduction . 112

7.1.1 Related Work . 113

7.1.2 Motivation for Our Approach 114

7.1.3 Lightweight Biometric Authentication 115

vii

Page

7.1.4 Our Contributions . 115

7.2 Security Definition for Biometric Authentication 118

7.2.1 Adversary Model . 118

7.2.2 Security Definitions . 119

7.2.3 Summary of Scheme’s Security 120

7.3 Some False Starts . 121

7.4 Our Schemes for Secure Biometric Authentication 124

7.4.1 Boolean Biometric Vectors . 125

7.4.2 Arbitrary Biometric Vectors 126

7.5 Security of the Protocols . 127

7.5.1 Adversary Resources . 127

7.5.2 Proof of Confidentiality . 128

7.5.3 Proof of Integrity . 129

7.5.4 Proof of Availability . 131

7.6 Storage-Computation Tradeoff . 131

7.7 Conclusions and Future Work . 132

8 Summary . 134

8.1 Summary of Main Results . 134

8.2 Future Work . 137

8.2.1 Domain Specific Future Work 137

8.2.2 Greater Challenges . 140

LIST OF REFERENCES . 142

VITA . 151

viii

LIST OF TABLES

Table Page

7.1 Security Properties for Biometric Scheme 121

7.2 Resources for Various Adversaries . 128

ix

LIST OF FIGURES

Figure Page

3.1 Protocol for Comparing Modularly-Split Values 29

3.2 Protocol for Reducing the Base of Modularly-Split Values 31

4.1 Input and Output of Credential Hiding Phase 52

4.2 Credential Hiding Phase Protocol 1 52

4.3 Credential Hiding Phase Protocol 2 53

4.4 Credential Hiding Phase Protocol 3 54

4.5 Protocol for Blinded Policy Evaluation 56

5.1 Secure Protocol for Computing the Distance between Two Points . . 75

5.2 Area of all points within distance T from segment AB 76

5.3 Secure Protocol for Computing the Distance between a Point and a
Line . 76

5.4 Secure Protocol for Determining if a Point is between Two Lines . . . 77

5.5 Secure Protocol for Computing the Distance between a Point and a
Segment . 78

5.6 Secure Protocol for Determining the Minimum of a Polynomial 80

5.7 Secure Protocol for Computing the Distance between Two Parame-
terized Line Segments . 81

5.8 Secure Protocol for Determining if a Line and a Line Segment Intersect 82

5.9 Secure Protocol for Determining the Distance between Two Line Seg-
ments . 83

6.1 Protocol Description . 99

6.2 Protocol FIND-AGREEMENT . 101

6.3 Algorithm SB . 103

6.4 Algorithm SA . 106

6.5 Protocol FILTER . 107

x

Figure Page

7.1 Protocol for Biometric Authentication 126

7.2 Storage-Computation Tradeoff for Biometric Authentication 132

xi

ABSTRACT

Frikken, Keith B. Ph.D., Purdue University, August, 2005. Secure and Private
Online Collaboration. Major Professor: Mikhail J. Atallah.

In this thesis, we investigate confidentiality- and privacy-preserving protocols.

Confidentiality- and privacy-preserving protocols (also called secure protocols) allow

two or more parties to compute some function of their private inputs without reveal-

ing to any group of the parties information other than the cooperatively computed

output and what can be deduced from this output and the group’s individual inputs

(which is unavoidable, as it is inherently part of any such protocol). It has been

shown previously that any function can be computed in such a manner; the study of

computing any function securely is called Secure Multiparty Computation (SMC) or

Secure Function Evaluation (SFE). However, before applying these techniques to a

specific domain, one first has to identify problems where secure protocols are useful.

When there is a situation where a secure protocol is needed, there will always be a se-

cure protocol for computing the function by the general results described in the SMC

literature. However, the general solutions are complex and in many cases there are

more efficient domain-specific solutions. In this thesis we look at several application

domains including: trust negotiation, credit checking, services for location-aware de-

vices, contract negotiation, and secure biometric authentication. In these domains

we identify situations where secure protocols are useful and then develop simple and

efficient protocols for these situations.

1

1 INTRODUCTION

Many trends in computing systems such as pervasive/ubiquitous computing lead

to the availability of massive amounts of new information. The availability of this

new information leads to many opportunities for collaboration, in ways that were

not previously possible. However, these new collaborative situations often violate

an organization’s confidentiality or an individual’s privacy. In such situations one

of two things typically happens: The new collaboration does not occur, or more

disturbingly, the collaboration occurs with careless disregard for the confidentiality

and privacy concerns. The latter case is exacerbated by the fact that the individ-

ual whose privacy is being compromised is often not involved in the collaboration.

However, not performing the collaboration is also undesirable, because one or more

parties stand to benefit from the collaboration. Thus the question becomes whether

it is possible to have the benefit of collaboration without requiring a loss of privacy,

or in other words “can we have our cake and eat it too”. Collaborating in a secure

manner has benefits even when the parties with privacy and confidentiality con-

cerns trust the collaborating parties. While the parties may trust each other, there

is always the problem of an outsider gaining unauthorized access to some of their

systems, from a malicious insider, or from spyware and other malware. Performing

the computations in a secure manner makes these attacks less effective, because the

sensitive information is not revealed to the other parties during the computation. In

this thesis, we examine several domains and introduce confidentiality and privacy-

preserving protocols for many problems and answer the above-mentioned question

in the affirmative.

Confidentiality and privacy-preserving protocols allow two or more entities to

compute some function on private inputs without revealing information to any group

of the parties other than the cooperatively computed output and what can be de-

2

duced from this output and the group’s individual inputs (which is unavoidable, as

it is inherently part of any such protocol). It has been shown previously that any

function can be computed in such a manner; the study of computing any function

securely is called Secure Multiparty Computation (SMC) or Secure Function Eval-

uation (SFE). However, before applying these techniques to a specific domain, one

first has to determine if a private protocol solves some privacy or confidentiality

issue (e.g., if the final result still leaks private data then a secure protocol may not

be useful). When a specific protocol is appropriate, there will always be a secure

protocol for computing the function by the general results described in the SMC

literature. However, the general solutions are complex and in many cases there are

more efficient domain-specific solutions. In this thesis we look at several application

domains including: trust negotiation, credit checking, services for location-aware de-

vices, contract negotiation, and secure biometric authentication. In these domains

we identify situations where secure protocols are useful and then develop simple and

efficient protocols for these situations.

The specific problems we studied were selected because each of them is a good

prototype of an important class of interactions that are similar to it. For exam-

ple, the trust negotiation work and the credit checking work are representative of a

class of interactions where off-line third-party certification of the inputs is needed,

i.e., without online involvement of the third party in every certified-inputs transac-

tion. As another example, the contract negotiations work captures the essence of

the difficulty of the situations where multiple outputs are possible (only one of which

must be produced) and the questions of fairness and efficiency that this raises. The

problem captures a very general form of online negotiation and agreement. For ex-

ample, in electro-mechanical product co-design, one “contract” clause could relate to

a party’s tolerance requirements for manufacturing a particular part, and to another

party’s ability to provide the precision-machining of that part (fully revealing one’s

technical prowess, and the pricing thereof, unnecessarily helps the competition). A

more frivolous example is an online pre-screening interaction for a college roommate

3

arrangement, to help decide whether there is enough compatibility for a face to face

meeting (one may not wish the pre-screening interaction to reveal to a stranger one’s

allergies, work habits and hours, attitude towards parties, etc).

Therefore, although the problems we considered have important similarities (sim-

ilar privacy-preservation framework, related solution techniques), they differ enough

to cover many important facets of online collaborations.

1.1 Contributions

We have been the first to study several of the domains considered, and we have

identified many interesting problems in these areas; we have also investigated previ-

ously studied domains and have expanded upon the previous work. We have intro-

duced protocols for many problems that are more efficient than the corresponding

protocols when using general solutions for SMC, and in many cases our protocols

are simpler. We predict that many of the techniques introduced in this thesis will

be useful in other domains as well.

1.2 Thesis Statement

There are many application domains where collaboration leads to mutual benefit,

but where privacy and confidentiality concerns prevent such fruitful collaborations.

In many of these domains, there are confidentiality or privacy preserving solutions

that mitigate these concerns, while obtaining the benefits of collaboration. Further-

more, for many protocols this can be done in a manner that is more efficient and

simple than general constructions proposed in the SMC literature.

1.3 Summary of Results

In this Section, we introduce the domains that are studied in this thesis. For

each of these domains, we describe the privacy and confidentiality issues that arise,

4

and we briefly describe the specific problems that we address. We also summarize

our results for these specific problems. The full details are given in later Sections of

this document.

1.3.1 Trust Negotiation

In an open environment such as the Internet, the decision to collaborate with a

stranger (e.g., by granting access to a resource) is often based on the characteristics

(rather than the identity) of the requester, via digital credentials: Access is granted if

Alice’s credentials satisfy Bob’s access policy. The literature contains many scenarios

in which it is desirable to carry out such trust negotiations in a privacy-preserving

manner, i.e., so as to minimize the disclosure of credentials and/or of access poli-

cies. Elegant solutions have been proposed for achieving various degrees of privacy-

preservation through minimal disclosure. We introduce protocols that protect both

sensitive credentials and sensitive policies. That is, Alice gets the resource only if she

satisfies the policy, Bob does not learn anything about Alice’s credentials (not even

whether Alice got access or not), and Alice learns neither Bob’s policy structure nor

which credentials caused her to gain access.

1.3.2 Credit Checking

Typically, when a borrower (Bob) wishes to establish a tradeline (e.g., a mort-

gage, an automobile loan, or a credit card) with a lender (Linda), Bob is subjected

to a credit check by Linda. The credit check is done by having Linda obtain financial

information about Bob in the form of a credit report. Credit reports are maintained

by Credit Report Agencies, and contain a large amount of private information about

individuals. To make matters more complicated, Linda’s criteria for loan qualifica-

tion are confidential. We propose a “privacy-preserving” credit check scheme that

allows Bob to have his credit checked without divulging private information to Linda

while protecting Linda’s interests. That is we introduce protocols for credit check-

5

ing that: i) protect Bob’s private information, ii) make sure that Bob cannot lie

about his credit (thus Linda is assured that the information is accurate), iii) protect

Linda’s qualification criteria, iv) prevent the CRA from learning anything other than

“Bob requested a loan from Linda”, and v) has a communication architecture that

is similar to what is done in non-private credit checking today.

1.3.3 Services for Location-Aware Devices

The number of location-aware mobile devices has been rising for several years.

As this trend continues, these devices may be able to use their location information

to provide interesting applications for their owners. Possible applications for such

devices include: determining if a specific route is near an item of interest or finding

the nearest point of interest for a route. The difficulty with such computations is

that the owners of the devices will not want their devices to send their location (or

future locations) to a server to compute the desired function. We explore computing

distance functions for routes in a private manner. We introduce secure protocols for

three distance problems: i) the distance between a point and a line segment, ii) the

distance between two moving points each defined by a parametric equation (with

constant velocity), and iii) the distance between two line segments.

We also explore various “self-protecting” privacy solutions. Our focus is on per-

turbation based techniques for location based queries. In these schemes, the client

will obfuscate his current location and send this query to the server. The server will

then respond to this obfuscated query. Of course such a solution leads to inaccu-

racies in the answer of the query, but this is a tradeoff that the client can choose.

Clearly, from a privacy standpoint privacy-preserving protocols are preferred to these

perturbation based approaches as they reveal less information and do not introduce

inaccuracy into the answer; however due to practicality reasons this error-based

paradigm is useful. This error-based paradigm is particularly useful since: i) the

devices do not need to use expensive cryptography and ii) the server does not need

6

to use special software (i.e., these techniques can be used by devices when the server

is not cooperative).

1.3.4 Contract Negotiation

Suppose Alice and Bob are two entities (e.g. agents, organizations, etc.) that

wish to negotiate a contract. A contract consists of several clauses, and each party

has certain constraints on the acceptability and desirability (i.e., a private “utility”

function) of each clause. If Bob were to reveal his constraints to Alice in order to

find an agreement, then she would learn an unacceptable amount of information

about his business operations or strategy. To alleviate this problem we propose

using a secure protocol to find an agreement between the two parties. There are two

components to this: i) determining whether an agreement is possible (if not then

no other information should be revealed), and ii) in case an agreement is possible,

computing a contract that is valid (acceptable to both parties), fair (when many valid

and good outcomes are possible one of them is selected randomly with a uniform

distribution, without either party being able to control the outcome), and efficient

(no clause is replaceable by another that is better for both parties). It is the fairness

constraint in (ii) that is the centerpiece of our work in this domain.

1.3.5 Biometric Authentication

We present computationally “lightweight” schemes for performing biometric au-

thentication that carry out the comparison stage without revealing any information

that can later be used to impersonate the user (or reveal personal biometric informa-

tion). Unlike some previous computationally expensive schemes—which make use of

the slower cryptographic primitives—we present methods that are particularly suited

to financial institutions that authenticate users with biometric smartcards, sensors,

and other computationally limited devices. In our schemes, the client and server

need only perform cryptographic hash computations on the feature vectors, and do

7

not perform any expensive digital signatures or public-key encryption operations.

In fact, the schemes we present have properties that make them appealing even in

a framework of powerful devices capable of public-key signatures and encryptions.

Our schemes make it computationally infeasible for an attacker to impersonate a user

even if the attacker completely compromises the information stored at the server,

including all of the server’s secret keys. Likewise, our schemes make it computation-

ally infeasible for an attacker to impersonate a user even if the attacker completely

compromises the information stored at the client device (but not the biometric it-

self, which is assumed to remain attached to the user and is not stored on the client

device in any form).

1.4 Organization of the Thesis

The rest of this work is organized as follows. In Chapter 2 we begin by formally

defining secure protocols and giving a literature review. Chapter 3 contains building

blocks that are used by many of our protocols; note that some of these building

blocks are novel contributions to this thesis. In Chapters 4-7 we introduce protocols

in the privacy-preserving framework for trust negotiation, credit checking, services

for location-aware devices, contract negotiation, and biometric authentication. We

summarize our contributions and describe directions for future work in Chapter 8.

8

2 PRELIMINARIES

In this Chapter, we give an overview of the work related to secure protocols. The

purposes of this Chapter include: i) to give a formal definition of what is meant by

a secure protocol, ii) to review the literature on general secure computation, and

iii) to discuss several domain-specific secure protocols. For other surveys on secure

protocols, see [1–3].

2.1 Overview of Secure Computation

Formal definitions of secure protocols were originally formulated by Micali and

Rogaway [4] and by Beaver [5]. In this Section, we give an informal definition of

secure protocols, which we formalize in Section 2.3. Suppose Alice has private input

a, that Bob has private input b, and that Alice and Bob would like to engage in

a protocol to compute f(a, b) for some function f without revealing anything else

about their private inputs. One trivial way to securely compute such a function is

for Alice and Bob to respectively send a and b to some trusted third party (TTP).

The TTP would then compute f(a, b) and send the result to Alice and Bob. Clearly,

this securely computes the function f . Unfortunately, a third party that both Alice

and Bob fully trust often does not exist.

While it is not practical to use a TTP, it does give us an ideal model against

which to compare the security of our protocols. Our goal will be to emulate the

existence of a third party. That is, if Alice (or Bob) can compute something in the

protocol, then they would have to be able to compute the same information in the

trusted third party protocol. In other words, Alice (Bob) does not learn anything

that cannot be deduced from a (b) and f(a, b). At this point it is constructive to

discuss some examples:

9

1. Addition: Suppose f(a, b) = a+b; this is not a very interesting secure protocol,

because when given a + b and a, Alice can deduce b. Note that this is more

interesting if there are multiple parties.

2. Scalar Product: If f is the scalar product of two vectors, then it does not reveal

to either party the other party’s vector. However, if Alice can perform n such

computations (where n is the size of the vector) using linearly independent

inputs while Bob uses the same vector, then she can learn his vector. However,

there are situations where a secure protocol for scalar product is useful.

3. Set Intersection: If f is the intersection between two sets, then in most cases

the output does not reveal one party’s input to the other party. However, if

Alice inputs the universe of all items, then she will learn Bob’s set. Hence,

a secure protocol for set intersection should be used only when the universe

of items is prohibitively large, or if this type of misbehavior can be detected.

There are many situations where a secure protocol for set intersection is useful

(as will become apparent later in this document).

2.2 Definitions and Notations

In this Section we introduce various terms used in this thesis and in the literature

of secure function evaluation.

2.2.1 Models of Behavior for Secure Computations

Two-party vs. Multi-party: Secure computation can involve either two parties,

or multiple parties. The work in this thesis is mostly two-party based, but there

are some exceptions. In either case we model the adversary as a single entity that

controls a subset of the parties.

Semi-Honest Adversaries: A semi-honest (also known as “honest-but-curious”

or passive) adversary engages in the specified protocol exactly, but he will try to

10

compute additional information from the transcript of the protocol. In this thesis,

our primary focus is this adversary model, because if one cannot solve a problem in

this simplified model in a practical matter, then there is no hope that a practical

protocol could be developed for a stronger adversary model.

Malicious Adversaries: A malicious adversary can deviate arbitrarily from the

protocol to either influence the outcome of the protocol or to gain additional infor-

mation. In some cases it is regarded as a violation of security if a set of parties

can force the protocol to terminate. However, if the adversary does not consist of

a strict minority of the parties, then preventing this behavior is impossible (as this

is a natural consequence of the general impossibility results proved for Byzantine

agreement [6]). Note that this implies that early termination cannot be prevented

in two-party computation.

Adaptive Adversaries: An adaptive adversary can corrupt a different set of parties

during each round of the protocol (that is the malicious set can dynamically change

as the protocol unfolds). In this thesis, we focus entirely on non-adaptive adversaries.

Computationally-Bounded Adversaries: In this thesis, we consider only adver-

saries that are computationally-bounded. That is, we model adversaries as proba-

bilistic polynomial time algorithms.

2.2.2 Definitions

In this Section, we informally describe various terms that are used in the remain-

der of this Chapter. To avoid cluttering this exposition with unnecessary formalism,

we omit formal definitions for these terms, but the reader is referred to [7,8] for such

definitions.

1. One-way functions: A one-way function is a function that is easy to evaluate

but is difficult to invert. A similar notion is that of a cryptographic hash

function.

11

2. Pseudorandom functions: A pseudorandom function is a function whose output

is indistinguishable from a randomly generated value.

3. Trapdoor functions: Trapdoor functions are similar to one-way functions in

that they are easy to evaluate and are hard to invert. However, if one knows

certain “trapdoor” information, then it is possible to invert the function.

4. Negligible: A function v is negligible if for every positive polynomial p and

sufficiently large n, v(n) < 1
p(n)

.

5. Rounds: There are some discrepancies in the literature as to what consists of a

round in a protocol. It is either a single message between Alice and Bob or is

a roundtrip (i.e., it is a message from Alice to Bob and then another message

from Bob to Alice). In this thesis, we use message exchange to describe the

former and round to describe the latter.

2.3 A Formal Definition

We intially state a formal definition of security for semi-honest adversaries in two-

party computation, and then later extend it to malicious adversaries and multi-party

computation.

2.3.1 Semi-Honest Adversaries

In this Section, we describe our security model, which is derived from the standard

definitions in the literature [2, 4, 5]. Recall that a protocol securely implements a

function f if the information that can be learned by engaging in the protocol, could

be learned in an ideal implementation of the protocol (i.e., where the functionality is

provided by a trusted oracle). We consider semi-honest adversaries (i.e., those that

will follow the protocol but will try to compute additional information other than

what can be deduced from their input and output alone).

12

Before we review the formal definition of secure protocols, we review computa-

tional indistinguishability [8]. The notion of computational indistinguishability is

used to state that two objects are equivalent from a computational point of view:

Two objects are equivalent to a computationally bounded distinguisher, if no prob-

abilistic polynomial time (PPT) algorithm can distinguish them. We use a stan-

dard notion in computational complexity by looking at infinite sequences of strings.

Specifically, we consider infinite sequences of distributions, {Xn}n∈N ; such a set of

values is called a probability ensemble. Two probability ensembles, {Xn}n∈N and

{Yn}n∈N are computationally indistinguishable if for any PPT algorithm D and any

positive polynomial p, it holds that:

|(Pr(D(Xn, 1
n) = 1))− (Pr(D(Yn, 1

n) = 1))| <
1

p(n)

In what follows, we define an ideal model (with TTP) and a real model (without

TTP) for computing a function f ; we will establish security by showing that any

behavior that is achievable by an adversary in the real model is also achievable by

an adversary in the ideal model. We use XA and XB to represent Alice and Bob’s

respective inputs, and we assume that Bob is honest (a symmetrical definition follows

when Alice is honest).

In the ideal model, Alice (Bob) is viewed as a Probabilistic Polynomial Time

(PPT) algorithm A (B) that can be decomposed into two parts AI and AO (BI

and BO). An ideal-model adversary is admissible if it corrupts at most one of

the parties. Alice’s view of the protocol is represented by IDEALA,B(XA, XB) =

(AO(XA, rA, f(AI(XA, rA), XB)), f(AI(XA, rA), XB)) where rA denotes Alice’s pri-

vate coin flips.

Suppose that the real model uses a protocol Π to compute the function f . In

the real model, Alice and Bob are modeled by arbitrary PPT algorithms A′ and B′.

An adversary is admissible if both parties use the algorithm specified by protocol Π

(recall we are in the semi-honest model). We denote the adversary’s view of protocol

13

Π by REALΠ,A′,B′(XA, XB), which is the output from the interaction of A′(XA) and

B′(XB) for protocol Π.

A protocol Π securely evaluates a function f if for any admissible adversary

(A′, B′) in the real model, there exists an admissible ideal-model adversary (A, B)

such that IDEALA,B(XA, XB) and REALΠ,A′,B′(XA, XB) are computationally indis-

tinguishable.

2.3.2 Malicious Adversaries/Multiple Parties

We now extend the previous definition to the malicious model. The only required

change to the definition is that a real model adversary is said to be admissible if at

least one of the parties use the algorithm specified by protocol Π; the other party is

modeled by an arbitrary PPT algorithm.

To extend this definition to multiple parties, one needs to define an algorithm to

represent the behavior of each party. We represent the adversary by a single PPT

algorithm that controls the malicious subset of the parties.

2.4 Literature Review

In this Section, we briefly describe the relevant previous work in Secure Function

Evaluation (SFE) and Secure Multiparty Computation (SMC).

2.4.1 Two-party Computations

In [9] Yao introduced the notion of a secure protocol. Specifically, his work

focused on comparing two values (called Yao’s Millionaire Problem). His technique

can be extended to securely compute any function, but his original scheme requires

exponential communication.

In [10], Yao introduced a semi-honest constant-round protocol. His scheme allows

the parties to securely evaluate any binary circuit with communication and computa-

14

tion proportional to the size of the circuit. Thus, any function in P can be computed

with polynomial communication and computation. We describe this scheme in more

detail in Section 3.4. Recently, Malkhi et al. [11] implemented Yao’s protocol and

showed that it is practical for some problems. Cachin et al. [12] introduced a single

round version of this protocol.

The above schemes are resilient only against semi-honest adversaries. Goldreich

et al. [13] introduced a malicious model protocol for two parties. However, this

protocol is not a constant-round protocol. Lindell [14] introduced the first constant-

round version of general two-party secure function evaluation under the malicious

model. In [15], Katz and Ostrovsky introduced a constant round protocol for secure

function evaluation in the malicious model. They show that 5 messages exchanges

is enough for any secure protocol in the malicious model, and they prove that there

does not exist a 4 message exchange secure protocol for computing any function in

the malicious model.

2.4.2 Multi-party Computations and Stronger Adversary Models

Goldreich et al. [13] introduced protocols for malicious adversaries and multi-

ple parties. They introduced protocols for evaluating any function in the malicious

model. However, this protocol is impractical for many problems. There have been

several improvements to this work [16–29]. Many protocols for SMC have been

developed for stronger adversary models. These models include: Asynchronous net-

works [30, 31], adaptive adversaries [32, 33], generalizations of the adversary struc-

tures [34], and SMC in the presence of quantum inputs [35].

2.4.3 Alternate Models

There have been many alternate models under which SMC has been studied. We

now describe those that impact this thesis.

15

Feige et al. [36] introduced a minimal model for secure computation. In their

model, they introduce a third party that is untrusted (i.e., it should not learn the

inputs of the parties nor the result). They showed that if the adversary is computa-

tionally bounded and corrupts at most one party, then there is single-round secure

protocol with polynomial communication and computation for any function in P .

Beaver [37] introduced a similar model called the commodity based model. In this

model there are many servers (instead of one) that are untrusted (but are trusted

not to collude with the participants). Their protocols do not require the servers to

interact with other servers, is secure against any coalition of servers, and is secure

even if a minority of the servers are corrupted by one of the participants.

Sander et al. [38] introduced the notion of cryptocomputing. In cryptocomputing,

Alice has a value x, Bob has a circuit C, and at the end of the protocol, Alice learns

C(x). Their protocols requires communication and computation exponential in the

depth of the circuit, and thus this protocol requires polynomial communication and

computation as long as Bob’s circuit is in NC1 (i.e., log-depth circuits). Furthermore,

Alice does not learn anything about C other than what can be deduced from C’s size

and depth and the result. Beaver [39] extended the results of [38] to every function

in NLOGSPACE (Non-deterministic log space).

Naor and Nissim [40] studied a new model for general SMC. Instead of using

circuits to compute the function, they propose a protocol based on the communi-

cation complexity tree for the function. They introduced protocols for computing

a function with communication complexity c securely with communication that is

polynomial in c but with computation that is exponential in c.

2.4.4 Composition Theorems

While it is not always true that two secure protocols can be composed to cre-

ate another secure protocol, Canetti [41] gave conditions where composition is valid

(i.e., preserving security). Suppose a protocol Π for evaluating a function g invokes

16

ideal implementations (i.e., using a trusted third party) of functions f1, f2, . . . , fn

and is proven secure. Then a protocol Π′ for computing g that replaces the ideal

implementations of the fi functions by secure evaluations, is also secure. This com-

position theorem holds for many adversary models including semi-honest, malicious,

and adaptive adversaries.

2.4.5 Random Oracle Model

Bellare and Rogaway [42] introduced the Random Oracle Model as a technique

to prove that various protocols are secure. It assumes that all parties have access

to a shared random oracle (i.e., G : {0, 1}⋆ → {0, 1}k where k is some fixed value).

In other words, the parties have a shared server that provides a random function.

A protocol is developed using this oracle and is proven secure. The protocol is

implemented by replacing the calls to the random oracle with invocations of a one-

way function.

Canetti et al. [43] showed that there exist signature and encryption schemes that

are secure in the Random Oracle Model, but when the oracles are replaced by any

implementation of an oracle the schemes are not secure. While this negative result

casts suspicion on the Random Oracle Model, this model is still widely assumed and

is believed to be valid for many cases. Clearly, a protocol that does not assume the

Random Oracle Model is preferred over one that does assume it.

2.5 A Survey of Specific Secure Protocols

In this Section, we describe several specific secure protocols. These protocols in-

clude: oblivious transfer, private information retrieval (PIR), set intersection, finding

the kth ranked element, Yao’s millionaire problem, and secure auctions.

17

2.5.1 Oblivious Transfer

The notion of oblivious transfer (OT) was introduced by Rabin [44], and one of

its first uses was described in [45]. There are many variations of OT. The original

notion of OT was that the sender has a single message, and the receiver learns this

message with probability one half. A variation of this scheme was described by

Even et al. [46], where the sender has two messages and the receiver obtains exactly

one of these messages with the probability of receiving a specific message being

exactly one half. Another variation, all-or-nothing disclosure of secrets (or chosen

OT), was introduced by Brassard et al. [47]. In chosen OT, Alice has N messages

and Bob gets to choose exactly one of the messages, he learns no information about

any other messages, and Alice learns no information about which message Bob chose.

Combining the results of Brassard et al. [48] and Crépeau [49], leads to the surprising

conclusion that all of the previous forms are equivalent. That is if one of them exists,

then they all exist.

Impagliazzo and Rudich [50] showed that there does not exist a black-box reduc-

tion from OT to one-way functions. They did this by showing that the existence of

such a reduction would prove P 6= NP , and thus it is unlikely that such a reduction

exists. This is interesting for a couple of reasons: i) it shows that OT probably

cannot be implemented in a way that does not require some form of expensive cryp-

tography (such as public key), and ii) there are many problems that OT can be

reduced to, and this implies a level of difficulty for such problems.

There has been other work on developing efficient OT protocols including: [51–53].

2.5.2 Private Information Retrieval

Private Information Retrieval (PIR) was introduced by Chor in [54]. PIR involves

a client and a server (note that the server can be multiple replicated servers). The

server has a n bits x1, . . . , xn and the client has an index i ∈ [1, n]. At the end of

the protocol the client learns xi and the server learns no information about i. This

18

problem may appear to be equivalent to chosen OT, but in PIR the client can learn

more bits than just xi, which is not the case in chosen OT (that is, the other xi’s

are not protected).

Chor et al. [54] studied PIR in an information theoretic sense (i.e., the server

learns nothing about the index of the client). They proved that any single server

solution must require at least n bits of communication. However, when there are

multiple servers a significant savings can be achieved: Chor et al. [54] showed that: i)

when there are two databases O(n1/3) communication is possible, ii) when k servers

are used, O(n1/k) communication is possible, and iii) when (1/3) log n servers are

used, polylogarithmic communication is possible.

Chor and Gilboa [55] studied a less stringent notion of security: Instead of infor-

mation theoretic security, they studied computational security (i.e., resilience against

adversaries that are restricted to probabilistic polynomial time). They showed that

with two servers, there is a PIR scheme that has communication complexity O(nǫ)

for any ǫ > 0. Kushilevitz and Ostrovsky [56] showed that if the model of secu-

rity is computational then replication is not needed (i.e., a single server solution

with sub-linear communication is possible). They introduced a single-server PIR

scheme that has communication complexity O(nǫ) for any ǫ > 0. A polylogarithmic

communication single server PIR solution was proposed by Cachin et al. [57].

Gertner et al. [58] studied a variation on PIR, called Symmetric PIR (SPIR).

In this model, it is required that the client learn only a single bit from the server.

Note that this is very similar to chosen OT; the principal difference is that in SPIR

there can be more than one server. They introduced a SPIR scheme with k servers

that requires O(log n ·n1/2k−1) communication and a solution with log n servers that

requires polylogarithmic communication.

19

2.5.3 Set Intersection

Suppose Alice and Bob each have a private set of n elements, and that they

would like to determine the intersection between their sets. A simple circuit for the

set intersection problem requires O(n2) gates and thus a protocol that simulates this

circuit requires O(n2) communication.

Huberman et al. [59] gave a two-party protocol that requires only O(n) communi-

cation and O(n) modular exponentiations and O(1) rounds. However, this protocol

was only analyzed for semi-honest adversaries with the Random Oracle Model. Pro-

tocols for private computation of set intersection cardinality for multiple parties have

been given by Vaidya and Clifton [60, 61]. These protocols compute the cardinality

of the intersection set size. However, the solutions leak the cardinality of intersec-

tion of two party’s sets to some other party and the protocols given are not resilient

against collusion of even two parties.

The state of the art in this work is Freedman et al. [62]. Their contributions are

summarized below:

1. A two-party set intersection protocol for the semi-honest model that requires

O(n) communications and O(n log log n) modular exponentiations without as-

suming the Random Oracle Model. Protocols are given that compute: i) the

actual intersection, ii) the cardinality of the intersection, and iii) whether the

cardinality of the intersection is above a threshold.

2. A two-party protocol for the malicious model that is provably secure in the

Random Oracle Model.

3. A protocol that approximates the intersection that can be more efficient than

the exact solution. However, this protocol does leak some additional informa-

tion.

4. The protocol is extended to multiple parties.

20

5. A protocol is given for fuzzy set intersection, where items are said to be a

match if they are “close” (e.g., a pair of items match if 3 of their 5 attributes

are a match).

2.5.4 Finding the kth Ranked Element

Suppose Alice and Bob have respective datasets DA and DB, which consist of

elements from a totally ordered domain. The kth ranked element is the item in

DA ∪ DB that has exactly k − 1 items in DA ∪ DB which are smaller than it. Of

course, this can be generalized to more than two parties, and we can assume that

|DA| ≤ k and |DB| ≤ k (since Alice and Bob can truncate their datasets at the kth

item).

Suppose that there are k items in both sets, and that each item is represented by

log M bits. A naive circuit for finding the kth ranked elements would require O(k)

comparisons of size O(log M). Thus, the circuit-based approach for this problem re-

quires O(k log M) communication. A solution based on communication complexity

requires O(k) computation. Aggarwal et al. [63] introduced solutions with sub-linear

communication costs. Their solution is based on a well-known O(log k log M) solu-

tion based on communication complexity [64], and requires O(log k log M) communi-

cation for two-party computation of the kth ranked element without duplicate items

in the semi-honest and malicious models . Aggarwal also introduced a multiple party

protocol that supports duplicate items that requires only O(log2 M) communication.

2.5.5 Yao’s Millionaire Problem

Yao’s Millionaire Problem [9] involves two “millionaires” who want to determine

who has more money without revealing their individual amounts. This involves

computing a comparison function. The communication complexity of comparing two

n-bit numbers is Ω(n). Thus, Yao’s circuit simulation [10] is asymptotically optimal

21

in terms of communication. The problems with this solution is that it involves O(n)

modular exponentiations and extending it to the malicious model is expensive.

Cachin introduced an improved comparison protocol [65]. His scheme utilized

an oblivious third party that did not learn information about either party’s inputs

and did not learn the result of the computation. This third party was trusted not

to collude with either of the participants of the protocol. Cachin’s protocol requires

each party to perform O(n) public key operations, but is secure in the malicious

adversary model when at most one party is corrupt.

Fischlin introduced another protocol for Yao’s Millionaire Problem [66]. His

protocol is probabilistic, and requires only 6nλ modular multiplications where the

probability of an error in the protocol is bounded by 5n2−λ.

2.5.6 Secure Auctions

There are many issues when developing a secure auction service (such as how

to ensure that the winner actually pays, etc.). A first work in this area was [67].

This work assumes that bids could be revealed after the bidding phase of the auction

was closed. However, in many cases it is desirable to compute the winning bidder(s)

along with the bid value(s) without revealing other information.

One approach for computing these values is for the bidders to engage in a secure

protocol. Such a scheme requires a threshold trust assumption (i.e., it is assumed

that a majority of bidders are honest). Some examples of this approach are Harkavy

et al. [68] and Kikuchi [69]. Other protocols do not require threshold trust. Of course

this comes at the cost of robustness (i.e., nodes can force early termination), but this

misbehavior is detectable and it is assumed that such misbehavior is punished outside

of the protocol (by fines perhaps). Thus this is a reasonable model for some auctions.

Some examples of such schemes are: Brandt [70,71] and Brandt and Sandholm [72]

Another approach is to have an untrusted third party engage in a protocol with

the seller, so that neither the seller nor this third party learn any additional infor-

22

mation. In many cases, this third party can be chosen so that it has nothing to gain

from begin dishonest. A benefit of this model is that the bidders only have to submit

their bids, as compared to the previous model where they must engage in a protocol.

Example schemes include: Baudron and Stern [73], Lipmaa et al. [74], and Naor et

al. [75].

23

3 BUILDING BLOCKS

In this Chapter we introduce the building blocks used in the rest of this thesis;

two of these building blocks are novel contributions of this thesis. The building

blocks described in this Section include: encryption, split data, oblivious transfer,

scrambled circuit evaluation, set intersection, scalar product, comparing modularly

split values, and reducing the base of modularly split values.

3.1 Encryption

In this Section, we describe the types of encryption that are used in this thesis.

3.1.1 Symmetric Key Encryption:

We use Enc to denote the encryption algorithm of a symmetric key encryption

scheme (such as AES), and Dec to denote the corresponding decryption algorithm.

Let M be a message and k be a key for the symmetric key encryption scheme. We

use Enc(M, k) to denote the encryption of M with the key k, and we use Dec(M, k)

to represent the decryption of M with the key k. By definition of encryption and

decryption: Dec(Enc(M, k), k) = M .

3.1.2 Homomorphic Encryption:

Another type of encryption used in this thesis is homomorphic encryption. A

cryptographic scheme with encryption function E is said to be homomorphic if the

following holds: E(x) ∗E(y) = E(x + y). Another property of such a scheme is that

E(x)y = E(xy). The arithmetic performed under the encryption is modular, and

the modulus is part of the public parameters for this system. Homomorphic schemes

24

are described in [76–78]. Typically, we utilize homomorphic encryption schemes that

are semantically secure. A scheme is semantically secure if when given the public

parameters to a homomorphic scheme E, and either E(m) for a specific message m

or E(m′) where m′ is chosen uniformly from the message space, then for any PPT

algorithm P , |(Pr(P (E(m))) = 1) − Pr(P (E(m′)) = 1)| is negligible. To restore

the semantic security of a specific encrypted value, it is enough to multiply by E(0),

which refreshes the randomness of the encryption but does not change the encrypted

value.

3.1.3 Identity-Based Encryption:

The concept of Identity-Based Encryption (IBE) was first proposed by Shamir [79]

in 1984, however the first usable IBE systems were discovered only recently [80,81].

An IBE scheme is specified by the following four algorithms:

1. Setup: A Private Key Generator (PKG) takes a security parameter k and

generates system parameters params and a master secret s. params is public,

whereas s is private to PKG.

2. Extract: Given any arbitrary ID ∈ {0, 1}∗, PKG uses params, s, and ID to

compute the corresponding private key dID.

3. Encrypt: It takes params, ID and plaintext M as input and returns ciphertext

C.

4. Decrypt: It takes params, dID and ciphertext C as input and returns the corre-

sponding plaintext M .

An IBE scheme enables Bob to encrypt a message using Alice’s ID as the public

key, and so he avoids obtaining the public key from Alice or a directory. Boneh and

Franklin proposed an IBE scheme from the Weil pairing [80]. Their scheme is secure

against adaptive chosen ciphertext attacks and is semantically secure (note that this

25

last property is useful because it states that an adversary cannot learn which identity

has been used to encrypt a specific message when given the ciphertext).

3.2 Split Data

Sometimes it is desirable to store items in a split manner (i.e., where neither

party knows the values, but each party has a share of the value). This allows for

a straightforward composition of secure building blocks into secure protocol using

composition theorems [41]. In this thesis, we use three types of split data: additive,

modular additive, and exclusive-or (XOR). Whenever a value x is split, we denote

the respective shares by x′ and x′′, where x = (x′ + x′′, x′ + x′′ mod M, x′ ⊕ x′′ for

additive, modular additive, and XOR split respectively). A problem with additively

split data is that it is probabilistically leaky, but it allows for comparison using

standard techniques (see [82]). Later in this Chapter, we introduce protocols for

comparing modular-additively split values.

3.3 Oblivious Transfer

Recall Oblivious Transfer from Section 2.5.1. We use 1-out-of-n Oblivious Trans-

fer (OT) as a basic building block in our protocols. In this thesis, we use chosen 1-

out-of-n OT protocol exclusively. Recall that in this variation there is a sender with n

private messages 〈m0, m1, . . . ,mn−1〉, and a chooser with an index i ∈ {0, . . . , n−1}.

At the end of the protocol, the chooser obtains mi without learning anything else,

while the sender learns nothing about i.

3.4 Scrambled Circuit Evaluation

We now review Yao’s scheme for secure two party circuit simulation in constant

rounds [10]. In this protocol, one party is a generator of a scrambled circuit and

the other party is an evaluator. The generator creates a scrambled circuit where

26

each wire of the circuit has two encodings and the evaluator learns the encoding for

the value of each of the circuit’s wires. This a secure circuit evaluation, because

the evaluator learns only a single encoding per wire and does not know what this

encoding means.

As it is necessary to understand some of our later protocols, we now describe the

details of Yao’s protocol for Scrambled Circuit Evaluation.

• Circuit Generation: For each wire in the circuit w1, . . . , wn, the generator

creates random encodings for the wires (in this case the encodings are keys

for a trapdoor function or are a random seeds that can be used by a pseudo-

random number generator to generate such keys). We denote the encodings

of 0 and 1 for wire wi by wi[0] and wi[1] respectively. In order to evaluate

the circuit, gate information must be constructed that allows the evaluator to

compute the encoding of a gate’s output wire when given the encodings for

this gate’s input wires. The gate information for a 2-ary gate that computes

a function f with input wires wi and wj and with output wire wk consists of

four messages (where q is a publicly defined marker, used to recognize when

an item has been successfully decrypted):

1. Enc(Enc(q||wk[f(0, 0)], wj[0]), wi[0])

2. Enc(Enc(q||wk[f(0, 1)], wj[1]), wi[0])

3. Enc(Enc(q||wk[f(1, 0)], wj[0]), wi[1])

4. Enc(Enc(q||wk[f(1, 1)], wj[1]), wi[1])

Note that the information for a gate consists of these messages in a randomly

permuted order (where this order is known only to the generator). Clearly, the

scrambled circuit with fan-in 2, can be represented in size proportional to the

size of the circuit. The above construction can easily be modified to handle

n-ary gate with m outputs, but where the gates have size 2nm. While this

should be avoided for large n due to the exponential blowup in gate size, there

are situations where this is useful.

27

• Learning Input Wires: In order to evaluate a circuit the evaluator must know

the encodings of the input wires. For input wires corresponding to the gener-

ator’s inputs, the generator simply sends the evaluator the encoding for each

of his inputs. For input wires corresponding to the evaluator’s inputs, the two

parties engage in a chosen 1-out-of-2 Oblivious Transfer(OT) where the two

“messages” are the generator’s encodings for 0 and 1, and the evaluator chooses

the encoding corresponding to his input for that wire.

• Evaluating the Circuit: To evaluate a gate, the evaluator decrypts each value

of the gate’s information with the keys that it has for the input wires. Only

one of these decrypted messages will contain the marker q (the others will look

random), and thus the evaluator will learn exactly one encoding for the output

wire (he will know that it is the correct value for that wire, but of course he

cannot tell whether it corresponds to a 0 or a 1).

• Learning the Result: If the goal is to have the evaluator simply learn the result,

then it is enough for the generator to tell the evaluator both encodings for the

output wires.

Note that the above protocol for Scrambled Circuit Evaluation can securely eval-

uate a 2-ary circuit with m gates and n input wires with O(n) 1-out-of-2 OTs, O(m)

communication proportional, O(m) evaluations of a trapdoor function, and O(1)

rounds; specifically this scheme requires 2 rounds.

3.5 Scalar Product

This protocol allows Alice and Bob to compute the scalar (i.e., “dot”) product

of two vectors. It is denoted by SCALARPRODUCT (~v1, ~v2) where Alice has one

vector and Bob has the other (alternatively both vectors can be modular additively

split between Alice and Bob). Secure protocols for scalar product were proposed by

Du and Atallah [83] and by Vaidya and Clifton [84]. However, Goethals et al. [85],

28

showed that these schemes have security vulnerabilities. Goethals et al. also intro-

duced a scheme based on semantically-secure homomorphic encryption that requires

a single round and where each party performs O(|v1|) modular exponentiations.

3.6 Set Intersection

Freedman et al. [62] introduced an elegant scheme for computing the intersection

of two k element sets with only O(k) communication and O(k ln ln k) modular ex-

ponentiations. We use a simple variation of this scheme where Alice inputs a set of

values SA and Bob inputs a specific value x along with a message M . At the end of

the protocol, Alice learns M if her set contains x and learns a random value other-

wise. This primitive can easily be defined from the protocols in [62] and requires a

single round of interaction between Alice and Bob, O(ρ|SA|) communication (where

ρ is the size of the security parameter), O(|SA|) modular exponentiations performed

by Alice and Bob, and is secure against a malicious Alice.

3.7 Comparing Modular Values

In some of our protocols the intermediate results are stored in modular addi-

tively split fashion between the two parties. There are two difficulties with such an

approach: i) comparing these values and ii) many times the modulus is very large

(much larger than the split value) which leads to inefficient protocols. We intro-

duce protocols for comparing modular additively split values (Section 3.7.1) and for

reducing the modulus of such values (Section 3.7.2).

3.7.1 Comparison

While it is difficult to securely compare modular additively split values efficiently

in all cases, when the modulus is more than double the largest possible value being

compared it is roughly twice as difficult (in terms of communication and computa-

29

tion) as a standard secure comparison. Figure 3.1 introduces a protocol for compar-

ing two modular additively split values when the above conditions hold; we are not

aware of such a protocol elsewhere.

Input: Alice has two values x′ and y′ and Bob has two values x′′ and y′′; all
of these values are in the range [0, M). Furthermore the sums (x′ + x′′) mod M
(i.e., x) and (y′ + y′′) mod M (i.e., y) are in the range [0, m). It is also known
that M ≥ 2m.
Output: Alice and Bob would like to compute in XOR-split fashion whether or
not (x′+x′′) mod M ≤ (y′+y′′) mod M . Note that the protocol below can easily
be modified to support other types of comparison.
Notes: All arithmetic in the protocols is modulo M .

1. Alice computes a← y′ − x′ −m + 1, b← y′ − x′, and c← false. If a ≥ b
(i.e., there is wrap-around), then Alice sets her values to a ← y′ − x′ + 1,
b← y′ − x′ + m− 1, and c← true. Bob computes d← (x′′ − y′′).

2. Alice and Bob engage in a protocol using Scrambled Circuit Evaluation to
evaluate (d ≥ a) ∧ (d ≤ b) in an XOR-split fashion, thereby obtaining rA

and rB. Alice and Bob’s respective outputs are rA ⊕ c and rB.

Figure 3.1. Protocol for Comparing Modularly-Split Values

Before we prove the correctness of the above protocol, we give two examples

which will clarify it. For both of the examples, suppose that m = 4 and the M = 8

(satisfying M ≥ 2m). In what follows when we define ranges [a, b], we are referring

to a range modulo M with the possibility of wrap-around and all arithmetic is done

modulo M (e.g., the range [6, 1] ≡ {6, 7, 0, 1}).

Example 1 Suppose x′ = 3 and y′ = 2. Alice knows that Bob’s values satisfy:

x′′ ∈ {5, 6, 7, 0} and y′′ ∈ {6, 7, 0, 1}. The reader can easily verify that, after step 1

of the protocol, (a, b, c) is (4, 7, false) and (x ≤ y) ≡ (x′′ − y′′ ∈ [4, 7]).

Example 2 Suppose x′ = 3 and y′ = 4. Alice knows that Bob’s values satisfy:

x′′ ∈ {5, 6, 7, 0} and y′′ ∈ {4, 5, 6, 7}. The reader can easily verify that, after step

1 of the protocol, (a, b, c) is (2, 4, true) and (x ≤ y) ≡ (x′′ − y′′ ∈ [6, 1]), which is

equivalent to (x ≤ y) ≡ (x′′ − y′′ 6∈ [2, 4]).

Proof of Correctness: Alice knows that: i) x′′ ∈ [−x′,−x′ + m) and ii) y′′ ∈

[−y′,−y′ + m). Suppose the values of x and y are respectively i and j, then x′′ =

30

−x′+i and y′′ = −y′+j. Clearly, x′′−y′′ = y′−x′+(i−j). Thus, (x ≤ y) ≡ x′′−y′′ ∈

[y′−x′−m+1, y′−x′] and similarly (x ≤ y) ≡ x′′−y′′ 6∈ [y′−x′ +1, y′−x′ +m−1].

Since M ≥ 2m these ranges must be disjoint and thus at most one of the ranges has

wraparound. For a range [a, b] that does not wraparound it is easy to determine if a

value z falls in the range by checking if z ≥ a and z ≤ b. The above clearly mimics

what the protocol does. �

Proof of Security: Clearly, the first step of the protocol does not reveal any

information (as the computations are done locally and there is no communication).

If the implementation of Step 2 was provided by a trusted oracle, then this protocol

would be secure. Since Scrambled Circuit Evaluation will securely evaluate the

second step, this protocol is secure by the composition theorem in [41]. �

3.7.2 Base Reduction

Another problem with using modular additively split values is that many times

such values are modulo the base of a homomorphic encryption scheme (i.e., as in

a scalar product protocol with homomorphic encryption). And if the values are

compared with the technique in the previous Section, then the communication is

proportional to the number of bits in the homomorphic base, which is typically

much larger than the number of bits required to represent the value. Figure 3.2

presents a protocol for reducing the base of a modularly split value (this protocol is

not used explicitly in our protocols as it is not required for correctness, but it will

decrease the communication for many of our protocols at the cost of an additional

round of communication). We are not aware of this protocol elsewhere.

Before we prove the correctness of the above protocol, we give two examples

which will clarify it. For both of the examples, we suppose that m = 4 and the

M = 9 (satisfying M ≥ 2m).

Example 3 Suppose x′ = 3 and x′′ = 0. Alice computes y′ = 3 − r for some

random r, and her list is set to (v0, v1) = (r, r − 1). Since 0 ≤ 3, Bob will choose

31

Input: Alice has a value x′ and Bob has a value x′′; both of these values are in
the range [0, M), but (x′ + x′′) mod M (i.e., x) are in the range [0, m). It is also
known that M ≥ 2m.
Output: Alice and Bob have respective values y′ and y′′ in the range [0, m), such
that (x′ + x′′) mod M = (y′ + y′′) mod m.
Steps:

1. Alice generates a random value r chosen uniformly from the range [0, m).
Alice computes a← (M mod m). Alice sets her output to be y′ ← ((x′ mod
m)− r) mod m. Alice creates a list of two values v0, v1: If x′ ≥ m, then she
sets both values to (r − a) mod m, otherwise she sets the values to r and
(r − a) mod m.

2. Bob computes a Boolean value i← (x′′ > m), where i is either 0 or 1. Alice
and Bob engage in a chosen 1-out-of-2 OT where Bob learns vi. Bob sets
his output to be y′′ ← (x′′ + vi) mod m.

Figure 3.2. Protocol for Reducing the Base of Modularly-Split Values

the first item and thus will obtain r. Alice and Bob’s respective outputs are thus 3-r

and r, which are correct as their sum is 3.

Example 4 Suppose x′ = 5 and x′′ = 5. Alice computes y′ = 1 − r for some

random r, and her list is set to (v0, v1) = (r− 1, r− 1). Since 5 > 3, Bob will choose

the second item and thus will obtain r − 1. Alice and Bob’s respective outputs are

thus 1-r and r, which are correct as they sum to 1.

Proof of Correctness: There are two cases: i) (x′+x′′) ∈ [0, m) (no wraparound)

and (x′+x′′) ∈ [M, M +m) (wraparound). In case i, both x′ and x′′ are smaller than

m, and so y′ = (x′ − r) mod m and y′′ = (x′′ + r) mod m. Thus, (y′ + y′′) mod m =

(x′ + x′′) mod m, which is correct. In case ii, suppose (x′ + x′′) = M + β. The

respective outputs will be, y′ = (x′ − r) mod m and y′′ = (x′′ + r− a) mod m. Now,

(x′ + x′′) mod m = (M + β + r − r − a) mod m, but since a = M mod m, this is

equal to β. �

Proof of Security: The main concern is that Alice or Bob could learn something

about the value of (x′+x′′) mod m by engaging in the protocol. The only interaction

in this protocol is the OT protocol. By definition this reveals nothing to Alice. Bob

32

either obtains r or r − a mod m, but since r is uniformly distributed in [0, m), this

is computationally indistinguishable from a random value. �

33

4 SECURE VERIFIABLE OBLIVIOUS FUNCTION EVALUATION

In this chapter, we introduce a variation on standard secure function evaluation.

What separates this work from traditional SFE is: i) the function that is to be

computed is private to one party, ii) the result of the function is typically revealed

to only one party (and this does not need to be the party with the function), and

iii) one party’s inputs must be verified by a third party that is not necessarily online

during the protocols. We call this type of computation Secure Verifiable Oblivious

Function Evaluation. In this chapter, we present general techniques for achieving

the above-mentioned problem, and then apply these techniques to two domains:

trust negotiation and credit checking. Although we choose to present the techniques

for the trust negotiation and credit checking application domains, they have much

broader applicability and in fact work for any situation where there is a repository

of public and private information about individuals, that is subsequently used for

making decisions that impact the individuals.

The organization of this chapter is as follows: In Section 4.1, we describe trust

negotiation domain, and in Section 4.2 we introduce the credit checking domain. In

Section 4.3 we describe basic techniques used in both domains. We introduce pro-

tocols for trust negotiation and credit checking in Sections 4.4 and 4.5 respectively.

Finally, we summarize this chapter in Section 4.6.

4.1 Trust Negotiation

Whereas in the past access decisions were based on the identity of the entity

requesting a resource, in open systems such as the Internet, this approach is ineffec-

tive when the resource owner and the requester belong to different security domains

controlled by different authorities that are unknown to each other. One alternative is

34

to use digital credentials for satisfying access policies. Digital credentials, the digital

equivalent of paper credentials, are digitally signed assertions about the credential

owner by a credential issuer. Each digital credential contain an attribute (or set

of attributes) about the owner. The decision to access a resource is based on the

attributes in the requester’s credentials, such as age, citizenship, employment, group

membership, or credit status.

A typical scenario for accessing a resource using digital credentials is for the

requester Alice to send her request to Bob, who responds with the policy that governs

access to that resource. If Alice’s credentials satisfy Bob’s policy, she sends the

appropriate credentials to Bob. After Bob receives the credentials and verifies them,

he grants Alice access to the resource. Observe that, in this scenario, Alice learns

Bob’s policy and Bob learns Alice’s credentials. Such a strategy is straightforward

and efficient, however it is unacceptable if the credentials or the access control policies

are considered to be sensitive information. In the following, we give a simple example

where both the credentials and the policy are sensitive.

Example 5 Consider an online business that grants access to media records by

sending access keys to its client’s special media-reader software – keys that the reader

uses to “unlock” encrypted media records that are freely downloaded in encrypted

form (or are given away, in encrypted form, on CDs that are widely distributed for

free). Certain records are treated differently from the rest: The online business grants

access to these records only if the requester has a disability, or is a senior citizen,

or is terminally ill, and has an income of under $30K a year. This requirement

involves four attributes (denote them by attr1, attr2, attr3, attr4) and the policy is

(attr1∨attr2∨attr3)∧attr4. In order to gain access to the sensitive records in Bob’s

database, Alice needs to prove to Bob that she satisfies the policy. However, neither

Alice nor Bob is willing to disclose her/his private information. Alice does not want

to reveal her credentials, as her credentials contain sensitive information about her

(e.g., health, age, income, etc). Bob does not want to reveal the policy, even to

35

those who satisfy the policy, so as to make it harder for an adversary to know which

credentials he should forge or otherwise illicitly obtain.

In other examples, the motivation for hiding the policy is not security from an

evil adversary, but simply the desire to prevent legitimate users from “gaming”

the system – e.g., changing their behavior based on their knowledge of the policy

(which can render economically-motivated policy less effective). This is particularly

important for policies that are not incentive-compatible in economic terms (they

suffer from perverse incentives in that they reward the wrong kinds of behavior,

such as free-loading). In yet other examples, the policy is simply a commercial

secret – e.g., Bob has pioneered a novel way of doing business, and knowledge of the

policy would compromise Bob’s strategy and invite unwelcome imitators.

Finally, it is important to point out that a process that protects Alice’s credentials

from Bob is ultimately not only to Alice’s advantage but also to Bob’s: Bob no longer

needs to worry about rogue insiders in his organization illicitly leaking (or selling)

Alice’s private information, and may even lower his liability insurance rates as a

result of this. Privacy-preservation is a win-win proposition, one that is appealing

even if Alice and Bob are honest and trustworthy entities.

In this Chapter, we give efficient protocols that solve the hidden policies with

hidden credentials problem. Our protocols are built on the hidden credentials sys-

tem [86]. The detailed protocols are presented in Section 4.4. In summary, our

protocols:

• protect the sensitive credentials – Bob learns nothing about Alice’s credentials,

not even whether Alice’s credentials satisfy the policy.

• protect the policies – Alice learns neither Bob’s policy structure nor which

credentials gave her access (she only learns whether she satisfies the policy).

36

4.1.1 Related Work

Our work is related to the area of automated trust negotiation [87–97]. The goal

of trust negotiation is to enable strangers to access sensitive data in open environ-

ments. In trust negotiation, two parties establish trust through iterative disclosure

of credentials and requests for credentials. Most of the research in this area fo-

cuses on protecting credentials and assumes policies can be freely disclosed. Some of

these [87,88,96] consider access policies as sensitive information. Bonatti and Sama-

rati [87] proposed a framework for regulating service access and information release

on the web. Their scheme protects the revelation of policies by dividing policies into

two parts: service prerequisite rules, and service requisite rules. A requisite rule is

disclosed only after prerequisite rules are satisfied. Seamons et al. proposed the con-

cept of policy graphs in [88]. Instead of using a single policy, their scheme uses policy

graphs to represent complex policies and protects polices by gradual disclosure of the

graph nodes. Furthermore, Yu and Winslett proposed a unified scheme (UniPro) for

resource protection [96]. The basic idea of the UniPro scheme is to model policies

as protected resources and protect them in the same way as other resources. Our

work offers better protection of policies: in their schemes, Alice learns (part of) the

policy if her credentials satisfy the policy, whereas in our protocols, Alice does not

learn the policy even if her access request is granted.

Li et al. introduced the notion of Oblivious Signature-Based Envelope (OSBE) [98]

to protect sensitive credentials. They assume the content of a credential is non-

sensitive (as anyone can come up with it), and only the signature of the credential

needs to be protected. In OSBE, Alice sends Bob the content of her credential or

a credential that she does not have, and Bob runs an OSBE protocol with Alice,

sending an encrypted message to Alice such that Alice can decrypt it if and only if

she has the signature on the content. The difference between their work and ours is

that the policies in OSBE have to be revealed, whereas the policies in our protocols

are protected.

37

Recently Holt et al. proposed hidden credentials [86], a system that has several

remarkable properties besides protecting sensitive credentials and policies. First,

their system reduces the network overhead, as it needs fewer rounds of interaction

compared to traditional trust negotiation. Second, their system also solves the “going

first” problem in PKI-authentication systems, where one of the two parties must be

the first to reveal a certificate to a potentially malicious stranger. Our protocols

directly build on their work. However, we believe that the protection of policies in

their system is not sufficient, for three reasons:

1. The policy structures are revealed in their system. For instance, if Bob’s

policy is (attr1∧attr2)∨attr3 where attr1, attr2, and attr3 are three attributes

respectively, Alice learns the structure of the policy is of the form (x ∧ y) ∨ z

even if her credentials do not contain any one of the attributes attr1, attr2,

and attr3.

2. If an access request to a resource is granted, Alice learns which attributes gave

her access. For instance, if Bob’s policy is (attr1 ∧ attr2) ∨ attr3, and Alice’s

credentials contain attr1 and attr2, and Alice gets the resource, she knows that

attr1 ∧ attr2 is part of the access policy.

3. Even if Alice cannot access the resource, she might learn some partial informa-

tion about the policy. For instance, if Bob’s policy is (attr1 ∧ attr2) ∨ (attr3 ∧

attr4), and Alice’s credentials contain attr1 and attr3. Alice learns that attr1

and attr3 are part of Bob’s policy.

Bradshaw et al. [99] extended the hidden credentials system to support complex

access policies expressed as monotonic Boolean functions. They applied a secret

splitting system to conceal the structure of such policies. The extended hidden cre-

dentials system protects the structure of Bob’s polices, however, it is still unable

to solve the problems described in Item 2 and Item 3. However, in our protocols

if Alice’s credentials match an attribute in Bob’s policy, she will not learn that the

38

attribute is part of the policy. In summary, the hidden credentials systems [86]

and the trust negotiation systems ([91, 93, 96, 97], to list a few) do not achieve

the privacy required by our work. Of course, we do so at a cost in protocol com-

plexity, therefore the present work should be viewed as providing another point on

the privacy-performance curve, rather than as an unqualified improvement over the

previous work.

4.1.2 Problem Definition

Before we formally define the hidden policies with hidden credentials problem,

we first discuss what is an attribute and what is a policy in our problem.

An attribute is a statement about a credential holder. An attribute, for exam-

ple, could be gender (male or female), job type (student, faculty, FBI agent, etc.),

state of residence (California, Indiana, Ohio, etc.), status (secret clearance, disabled,

homeless), age (between [0− 17], between [18− 20], between [21− 59], or age ≥ 60),

or annual income (between [0−15K], between [15K−30K], between [30K−60K], or

income > 60K). Let SS be the set of all possible attributes in the hidden credentials

system. The CA publishes SS to every user.

Recall each hidden credential binds a username and an attribute. If a user

has m attributes, she can get m hidden credentials from the CA, one for each at-

tribute. For instance, if Alice is a professor, she can have a professor credential cred1

where cred1.attr = professor; if her age is 30, she has a age credential cred2 where

cred2.attr = age ∈ [21..59] 1.

The goal of our work is to provide privacy-protection for both access control poli-

cies and credentials. The framework for our hidden policies with hidden credentials

problem is informally described as follows: Alice has m credentials issued by the CA,

1For simplicity, if an attribute takes multiple values such as age and income, we bucket these values
into several categories such that it is easier to construct a policy. Consider the policy age ≥ 21, if
we allow age-attribute be any integer value, then the policy would be age = 21 ∨ age = 22 ∨ . . .,
however, if we bucket age-attribute into four groups: [0 − 18], [18 − 20], [21 − 60], [60+], the new
policy is simply [21..59] ∨ [60+].

39

denoted as cred1, . . . , credm. Each credential contains only one attribute. Bob has

a resource M and a policy P for controlling access to M . The policy P is a Boolean

function p(x1, . . . , xn) : {0, 1}n → {0, 1} over n attributes attr1, . . . , attrn, where

xi = 1 if and only if Alice has attribute attri in one of her credentials. Function p

outputs 0 when Alice does not get access, and outputs 1 when she does. When Alice

wants to access M from Bob, she engages in a protocol with Bob. Alice provides the

protocol with a subset of her credentials (she may choose to omit certain credentials),

whereas Bob provides M and the policy P . If the attributes in the credentials that

Alice inputs into the protocol satisfy P , she gets the resource M , otherwise she gets

nothing. We want Alice to learn as little as possible about Bob’s policy, and Bob

to learn as little as possible about Alice’s credentials. In the best scenario, Alice

only learns whether she satisfies the policy or not, and nothing else (other than what

she can deduce from the fact that she gained access), and Bob learns nothing about

Alice’s credentials or whether she gained access.

More formally, let P be a family of policy functions. Each P ∈ P is a policy

function: given any set of hidden credentials C, P (C)→ {0, 1}. More specifically, a

policy function P is a defined by a Boolean function p that is relevant to n attributes

{attr1, attr2, . . . , attrn} ⊂ SS. Now, P (C) = p(x1, x2, . . . , xn) : {0, 1}n → {0, 1},

where xi = 1 if ∃ credj ∈ C such that attri = credj.attr, xi = 0 otherwise.

Let CA be Alice’s hidden credential set. To check whether Alice satisfies a policy

P , it is equivalent to verify whether P (CA) = 1. For example, if Bob’s policy is

female ∧ student, i.e., p(x1, x2) = x1 ∧ x2; Suppose Alice has a female credential

(cred1.attr = female), a professor credential (cred2.attr = professor), and an

Indiana resident credential (cred3.attr = Indiana). Alice does not satisfy Bob’s

policy, as P (cred1, cred2, cred3) = p(x1, x2) = 1 ∧ 0 = 0. Note that x1 = 1 because

Alice has a female credential, x2 = 0 because Alice does not have a student credential.

We now present the hidden polices with hidden credentials problem. Let M be

a private message. Alice and Bob want to compute a function F . Alice has private

40

input CA, a subset of her credentials2. Bob has a private message M and a private

access control policy P over M . The function F is defined as follows:

FBob(M, P) = ⊥

FAlice(CA) = {
M if P (CA) = 1;

⊥ otherwise.

where FAlice represents Alice’s output, FBob represents Bob’s output, and ⊥ is a

special symbol. In other words, our goal is that Bob learns nothing and Alice learns

FAlice(CA) without learning anything else (Alice can infer the result of P (CA) from

her output).

It is possible in our framework to set the policy to be arbitrary, however, it is

common in the literature to assume that the policy does not require the absence of

a credential because of the practical difficulty of verifying an absence, e.g., if policy

is ¬attr then it is possible for Alice who has attr to not input the corresponding

credential if she suspects it can cause her to be denied access. Furthermore, if Alice

knows that her credentials will not be revealed by the protocol and the policy is

monotonic then she has an incentive to input all her credentials. It is therefore

a practical consideration, rather than an inherent limitation of our scheme, that

causes this assumption that the policy does not require the absence of a credential.

Sometimes the absence of a credential (“under 21 years of age”) can be replaced by a

requirement for the presence of the opposite (“over 21 years of age”), but this is not

always possible (e.g., consider requiring the absence of a credential for millionaire).

Another issue that needs to be discussed is probing attacks by either party. Alice

can engage in the protocol with Bob multiple times using different credential sets

(all subsets of her credentials) to gain information about Bob’s policy. This type of

attack is outside of our model for the problem, however our protocols prevent Alice

from probing a policy offline (i.e., requesting a resource once and then trying several

subsets of her credentials). Other means for preventing online probing attacks must

2Alice may choose a subset of her credentials set instead of inputting all her credentials.

41

be taken (e.g., make sure Alice can request a resource from Bob no more than three

times a week). As Bob does not know whether Alice gained access or not, he cannot

carry out probing attacks, although he could if he offered Alice a service rather than

a resource: In such a case he could probe Alice’s credentials; for example, if Bob

sets his policy to be attr (secret agent), he can record those who succeed in getting

his service and learn who is a secret agent (in such situations Alice would be more

conservative when using her sensitive credentials).

4.2 Credit Checking Domain

Typically, when a borrower (Bob) wishes to establish a tradeline (e.g., a mortgage,

an automobile loan, or a credit card) with a lender (Linda), Bob is subjected to

a credit check by Linda. The reason that Linda does a credit check is so that

she will have confidence that Bob is trustworthy enough to pay back the loan. In

order for Linda to do a credit check on Bob, she contacts a Credit Report Agency

(CRA) and obtains a credit report about Bob. It is the purpose of the CRAs to

track financial information about an individual, and currently there are three main

CRAs: Equifax [100], Experian [101], and TransUnion [102]. When Linda obtains

Bob’s credit report, she determines if he qualifies for the loan by determining if

his credit report satisfies certain criteria that she defines. There is a substantial

amount of information in a credit report including: how many tradelines a person

has, how much debt a person owes (and to whom), the number of late payments that

a person has made in the past, and many other facts about the borrower’s financial

history [100–102].

The problem with revealing a borrower’s credit report to the lender is that it un-

necessarily reveals too much information, often too shady entities who may perform

mischief. While many lenders are typically credible organizations, this is not always

the case, and even for credible lenders some employees of the lender may be corrupt.

Another problem besides the obvious leakage of private information is that this can

42

be an aid for identity thieves as it could serve as a filtering process for them to see

who has good credit, and more dangerously, to see who checks their own credit (as

this information is contained in the credit report and someone who periodically looks

at his own credit report is not as likely to be victimized as someone who never looks

at it). Furthermore, lenders do not need to know all of the information in the credit

report, but only need to know if certain conditions are satisfied. One naive way to

provide privacy would be for Linda to reveal her criteria to the CRA who would then

report back to Linda if Bob satisfies her criteria. This is not acceptable for a couple

of reasons: i) the CRA becomes a bottleneck of the loan-processing system and ii)

Linda’s criteria for loan qualification are often confidential.

We propose the usage of privacy-preserving protocols to solve the apparent con-

tradictory goals of being able to determine if a borrower satisfies certain criteria

while not revealing private information about the borrower’s credit report. After

engaging in the protocol, all that Bob should learn is whether or not he qualifies for

a loan. Furthermore, all that Linda should learn is whether or not Bob qualifies for

the loan. However, there is the additional requirement that the borrower should not

be able to lie about his credit report, and thus the information needs to be verified

by a CRA. It is also desirable that the information flow of the proposed protocol

should mimic the way loan-processing takes place today. All that the CRA should

learn is that Bob applied for some line of credit with Linda; of course if Bob qualifies

and then accepts the loan from Linda, then she would report the information about

the loan to the CRA. With such a set of protocols it would be possible for borrowers

to have the option of privacy-preserving credit checking.

In this Chapter, we introduce privacy-preserving protocols for achieving the

above-defined problem. The protocols are efficient in that they require commu-

nication and computation proportional to the size of the credit report and the policy

of the lender, and while the computational overhead for the CRA is larger than

in the current non-private setting, much of this work can be pre-computed off-line.

Furthermore, our protocols are simple in that they mimic the way loan-processing

43

takes place today with the only difference being that a borrower must register with

the CRA(s) if he wishes to use such protocols. Finally, the protocols are private in

that they satisfy the privacy requirements outlined above and are correct in that the

lender has certainty that the borrower’s information is accurate.

4.2.1 Problem Definition

The credit report essentially consists of a set of of Boolean values (e.g., “has the

borrower ever filed for bankruptcy in the past?”) and a set of integers (e.g., the

amount of debt owed). A credit report contains other types of information (such as

to whom the current debt is owed), but this information is not necessary to make

a decision on loan qualification (the type of tradeline might be useful, but this can

be encoded as an integer). The credit report can be represented as a set of Boolean

attributes, where the value is true if a person satisfies that attribute. For Boolean

information, the encoding is trivial; for example “has person X ever been bankrupt?”

would be an attribute. To encode integer values, an attribute would be defined for

each bit in the binary representation of the value; an example in this case would be “is

the 5th bit of person X’s debt true?”. The lender has many criteria that it considers

for determining loan qualification; the criteria can be computed from one or more

attributes. Example criteria include: “does person X have any liens on their home?”,

“is person X’s debt below some threshold?”, and “is the number of tradelines that

person X has had in the past above some threshold?”. If an attribute or a criterion

is true for a person, we say that the person satisfies the attribute or criterion. We

denote the attributes for a credit report by a1, . . . , am and the criteria by c1, . . . , cn,

where each criterion is a function of a subset of the attributes. We define a boolean

function sat where sat(ai) and sat(ci) represent whether or not the person satisfies

attributes ai and criterion ci respectively (i.e., sat(ci) = 1 if ci is satisfied and is 0

otherwise). Finally, the lender has a policy for determining if a borrower qualifies for

a specific loan. This policy is some function of sat(c1), . . . , sat(cn).

44

We make several assumptions in our initial protocol for this problem; many of

these assumptions are relaxed in Sections 4.5.3-4.5.7. The assumptions include:

1. Bounded Credit Report Size: We assume that each integer value in the credit

report can be bounded by some value, and that the total number of entries in

the credit report can also be bounded for all people. To protect the size of the

credit report the CRA must insert dummy entries into each credit report to

make all credit reports not distinguishable by size.

2. Accurate CRA Assumption: It is assumed that the CRA is trusted by the

lenders to provide accurate information, however the CRA is not a “trusted-

third party” in that it should not learn information about a lender’s policy. We

discuss techniques for handling a malicious CRA that colludes with borrowers

to probe a lender’s policy in Section 4.5.7.

3. Single CRA Assumption: Initially, we assume that there is a single CRA which

has all information required by the lender to make a decision about a borrower,

however this is not realistic. There may be multiple CRAs with the same

information and it is possible that there could be a discrepancy between the

CRAs’ information. We discuss extensions of our protocols to multiple CRAs

in Section 4.5.7.

4. Criteria Assumption: We assume that the criteria come in one of two forms:

i) a single attribute criteria or ii) a comparison against a threshold criteria.

This captures most (if not all) common things done to a credit report by the

lender. It is not difficult to extend our protocols to other type of criteria, and

we discuss some mechanisms for this in Section 4.5.5.

5. Known Criteria Assumption: We assume that the lender does not mind re-

vealing the general form of his or her criteria. For example, the lender is not

worried about revealing that it has a criterion that compares a person’s debt

against a threshold, but the lender does not want to reveal the threshold. In

45

many cases a global set of criteria may be used by multiple lenders without

revealing specific information. This is generalized in Section 4.5.5.

6. Policy Assumption: Initially, we assume that the policy is of the form: a

borrower qualifies for a loan if he satisfies at least t criteria (where t is a

private threshold defined by the lender). While this is not a realistic form for a

policy in many cases, it is a preliminary step. We explore generalized policies

in Sections 4.5.3, 4.5.4, and 4.5.5.

7. Passive Behavior Assumption: Initially, we assume that the parties are passive

(i.e., honest-but-curious) in that they will engage in the steps of the protocols,

but will try to learn additional information. We generalize our protocols to the

malicious adversary model (for borrowers and lenders) in Section 4.5.6. We

discuss techniques for handling a malicious CRA that colludes with borrowers

to probe a lender’s policy in Section 4.5.7.

4.2.2 Privacy and Correctness Requirements

We now define the privacy and correctness requirements of our protocols.

Borrower: All that the borrower should learn is whether or not he qualified for

the loan, and nothing else (except of course what he can deduce from this outcome

and from his knowledge of his own credit report, which is unavoidable). Furthermore,

the borrower should not be able to lie about his credit report (i.e., his values must

be the values stored at the CRA).

Lender: The lender should learn whether or not the borrower qualified for the

loan, and nothing else (except of course what he can deduce from this outcome and

from his knowledge of his own policy, which is unavoidable).

CRA: The CRA should learn only that a specific borrower is applying for a loan

with a specific lender. He should learn neither the lender’s policy nor whether the

borrower qualified for the loan. Of course, in practice, if the loan is approved and

does happen, the CRA will be informed by the lender of this fact so he can update

46

the borrower’s record – but if the loan is approved yet does not happen for some

reason (e.g., the borrower and lender could not agree on an interest rate) then the

CRA never learns whether the loan was approved or not.

4.3 Secure Oblivious Function Evaluation

In the construction of a scrambled circuit evaluation, the gates are constructed

for some publicly defined function f ; to achieve security in the malicious model the

generator of the circuit must prove (in zero knowledge) that the circuit is well-formed

to the evaluator. However, there are cases where not having the function be publicly

defined can be useful. In this case, the standard construction for Scrambled Circuit

Evaluation can easily be modified to use oblivious gates where the evaluator does

not know the function that each gate computes. By doing this, it is possible for the

generator to securely evaluate a circuit while only learning its topology (and thus

the generator can hide which function is being computed). We now describe three

techniques for using this: i) build a topology that can handle many useful functions,

ii) use a universal circuit, and iii) use a single n-ary gate for arbitrary functionality.

We now explore each of these options in more detail:

4.3.1 Specific Circuits:

We now show that there are topologies of circuits that compute a wide range

of useful functions, and thus would allow the generator to evaluate one of many

functions. Here are some examples:

1. It is easy to construct an oblivious comparison circuit (i.e., one that can com-

pute =, 6=, >, <, ≥, and ≤ without revealing which comparison is done) with

size proportional to the number of bits in the values.

47

2. A binary tree of oblivious gates (with inputs a1, . . . , an) can be used to compute

many useful functions (without revealing which function is being computed)

including:

(a)
∧n

i=1 ai,
∨n

i=1 ai,
⊕n

i=1 ai, etc.

(b) For any subset of the values S,
∧

i∈S ai,
∨

i∈S ai,
⊕

i∈S ai, etc.

(c) Other functions like: for a subset S1 of the first half of the values and

another subset S2 of the second half of the values, the function
∨

i∈S1
ai ∧

∨

i∈S2
ai.

3. By using oblivious binary trees on the results of other binary trees of oblivious

gates, a wide variety of policies can be computed including any monotonic

circuit and many other useful structures.

4.3.2 Universal Circuits:

Another option is to use a universal circuit, as described by Valiant [103]. Recall

that a universal circuit for a specific size s and depth d is a circuit that can be used

to evaluate any circuit with these dimensions. Furthermore, there is such a universal

circuit of size O(ds log s) and depth O(d log s). Thus when such a universal circuit

is used, it could represent any circuit of a certain size and depth. Clearly, this could

be a wider range of functions than the previous approach, but this comes at a cost

to performance.

4.3.3 A Single n-ary Gate:

A final option is to use a single n-ary gate. This scheme allows the function to be

arbitrary, but it requires exponential communication. However, any protocol that

provides arbitrary functionality must require exponential communication [104].

We have outlined three options for oblivious function evaluation. Furthermore,

expressiveness comes as a cost in terms of computation and communication. In the

48

remainder of this Chapter, we will describe how these techniques can be used for

trust negotiation and the credit checking domains.

4.4 Protocols for Trust Negotiation

In this Section, we give our protocols for trust negotiation. In Section 4.4.1, we

give a review of the hidden credential system that is a basis for our system. In

Section 4.4.2 we outline the two phases of our protocols, and then describe protocols

for each of these phases in Sections 4.4.3 and 4.4.4. Finally, we give proofs of security

in Section 4.4.5.

4.4.1 Review of Hidden Credentials System

In the hidden credentials system proposed by Holt et al. [86], there is a trusted

Credential Authorities (CA) who issues credentials for users in the system. Each user

in the system is assigned a unique nym, where nym could be either a real name or

a pseudonym. A hidden credential is an encrypted assertion about an attribute of a

credential holder by the CA (this behaves similarly to a signature of the credential).

Roughly speaking, given an IBE scheme, a hidden credential cred for username nym

and attribute attr is the private key corresponding to the identity nym||attr. More

specifically, the hidden credentials system has the following four programs:

1. CA Create(): The CA runs the setup program of the IBE system and generates

system parameters params and a master secret s, and publishes params. The

CA also publishes a list of possible attribute names.

2. CA Issue(nym, attr): The CA issues a credential for a user with username

nym and an attribute attr by running the extract program of the IBE system

with ID = nym||attr, and outputs the private key dID as the credential. Given a

hidden credential cred, we use cred.nym to denote the corresponding username,

and cred.attr to denote the corresponding attribute in the credential.

49

3. EIBE(M, nym||attr): This program corresponds to the encrypt algorithm of

the IBE system with system parameters params, ID = nym||attr, and plaintext

M . The output of this program is ciphertext C.

4. DIBE(C, cred): This function corresponds to the decrypt program of the IBE

system with system parameters params, credential cred, and ciphertext C.

The output of this function is plaintext M . These programs must satisfy

the standard consistency constraint, namely for any credential cred and any

message M , DIBE(I(M, cred.nym||cred.attr), cred) = M . In this paper we

assume that, when a user computes DIBE(I(M, cred.nym||cred.attr), cred′)

for some cred′ 6= cred, the value obtained is computationally indistinguishable

from a random value (i.e., we assume that decryption with the wrong key is a

random oracle).

The hidden credentials system is secure against an adaptive chosen ciphertext

attack where an attacker can obtain an unlimited number of other arbitrary creden-

tials [86]. The hidden credentials are also unforgeable [86]. We now give a simple

example of how Alice can access Bob’s resource using a hidden credential. Suppose

Bob’s resource M can only be accessed by a student. Alice has a student credential

cred, i.e., cred.nym = Alice and cred.attr = student. To access M , Alice sends her

username Alice to Bob. Bob responds with EIBE(M, Alice||student). Alice uses her

credential cred to decrypt EIBE(M, Alice||student) and obtains M . Note that, Bob

does not learn if Alice possesses a student credential from the above interaction.

4.4.2 Protocol Phases

There are two primary phases in our protocols: i) a credential hiding phase and ii)

a blinded policy evaluation phase. During the credential hiding phase, Alice and Bob

engage in a protocol that in some way (to be specified later) hides which credentials

that Bob’s policy requires. During the blinded policy evaluation: if Alice satisfies

Bob’s policy then she learns the requested message, and learns nothing about the

50

message if she does not satisfy Bob’s policy. We now describe each phase in more

detail:

• Credential Hiding Phase: Suppose Bob’s policy contains n attributes attr1,

. . . , attrn. At the end of this phase Alice has a set of values ℓ1, . . . , ℓn (i.e.,

one for each attribute), where ℓi ∈ {ri[0], ri[1]}, which are values generated by

Bob. These values will either be encryption keys or seeds for a pseudo-random

generator that can produce such keys. The value of ℓi is subject to the following

constraints:

1. ℓi = ri[1] only if Alice has a credential cred such that cred.attr = attri

(i.e., if Alice does not possess attribute attri she cannot learn the value

ri[1]). Otherwise Alice gets ri[0].

2. A computationally-bounded Alice learns nothing about the value

{ri[0], ri[1]} − {ℓi}.

• Blinded Policy Evaluation Phase: Given the ℓ values from the previous phase,

Alice and Bob engage in a protocol that allows Alice to learn message M

if she satisfies Bob’s policy. His policy is represented by a Boolean function

p : {0, 1}n → {0, 1} (i.e., it maps n values, which correspond to which attributes

Alice has, to a binary value that corresponds to whether or not Alice satisfies

Bob’s policy or not). To formalize the definition of this phase, suppose that,

after the previous phase, Alice’s values are r1[x1], r2[x2], . . . , rn[xn], where xi ∈

{0, 1}, then Alice will receive M if and only if p(x1, x2, . . . , xn) = 1.

4.4.3 Credential Hiding Phase

In this Section, we introduce three protocols for the credential hiding phase.

Figure 4.1 defines the input and output for this phase. There is an inherent secu-

rity/communication complexity tradeoff for these protocols. We denote the number

51

of attributes in Bob’s policy (it may be an upper bound) by n, the number of cre-

dentials Alice is willing to use (it may be an upper bound) by m, and a security

parameter by ρ. The protocols can be summarized as follows:

1. Protocol 1: In this protocol it is assumed that Bob is willing to reveal to Alice a

superset of the attributes in his policy (he chooses this superset and can make

it large enough to achieve a “hiding in a crowd” effect that suits him). While

this is not acceptable for all applications, there are many cases where Alice

could guess with high probability the set of attributes in Bob’s policy before

the protocol, and in such cases this protocol may be acceptable to Bob. The

example given below is a scenario where Bob is willing to reveal a superset

of attributes in his policy. The communication complexity of this protocol is

O(ρn) and it requires 3 message exchanges.

2. Protocol 2: Unlike Protocol 1, this protocol does not assume that Bob is willing

to reveal a superset of the attributes in his policy. In this protocol, Bob learns

the value m and Alice learns: (i) the value n and (ii) the number of attributes

in Bob’s policy that she satisfies (she does not know which of her credentials

are responsible for this). This protocol requires O(ρmn) communication and

5 message exchanges.

3. Protocol 3: This protocol is similar to Protocol 2, but Alice does not even

learn how many attributes she satisfies in Bob’s policy. This protocol requires

O(ρ2mn) communication and 5 message exchanges.

Example 6 An online auto insurance company gives a special promotion to

those who are married and have good credit history. The policy for this special

promotion is married∧good credit. The insurance company may publish a superset

of attributes that the policies may contain such as age, gender, marital status, credit

history, number of accidents in the last three years, state of residence, etc. The actual

promotion policy contains only a small subset of the attributes. The auto insurance

52

company may treat the superset of the attributes as non-sensitive information, but

treat the attributes used in the policy as well as the policy structure as private

information.

Input: Bob has a policy P relative to set of attributes attr1, . . . , attrn, and for
each attribute attri Bob has two random values ri[0] and ri[1]. Alice has a set of
credentials cred1, . . . , credm.
Output: Alice learns a value ℓi for each attribute attri, where ℓi = ri[1] if
and only if there exist a credj, 1 ≤ j ≤ m, in her credentials set such that
credj.attr = attri, and is ri[0] otherwise. Recall that a crucial element of this
protocol is that Alice learns exactly one value for each attribute.

Figure 4.1. Input and Output of Credential Hiding Phase

Protocol 1

This protocol (see Figure 4.2) assumes that Bob is willing to reveal to Alice a

superset of the attributes in his policy. While this is not always reasonable, there

are situations where this is acceptable. This is the most efficient of the protocols,

but also reveals the most information about the attributes in Bob’s policy.

Input/Output: See Figure 4.1.
1. For each attribute attri: Bob generates a random key ki as well as infor-

mation Ci that reveals to Alice what credential she needs to satisfy attri.
Bob then generates an encryption αi = EIBE(ki, nym||attri). He sends the
following information to Alice: (α1, C1), . . . , (αn, Cn).

2. For each ordered pair (αj, Cj), Alice generates a value bj which is 1 if she
possesses a credential credp that satisfies Cj and is 0 otherwise. If bj = 1
she computes kj which is DIBE(αj, credp).

3. For each attribute attri, Alice and Bob engage in a chosen 1-out-of-2 OT
protocol where Bob’s input is the list {ri[0], Enc(ri[1], ki)} and Alice’s input
is bi.

4. If bi is 1, then Alice decrypts Enc(ri[1], ki) with ki (she computed this in
Step 2) and sets the result as her output, and otherwise she sets her output
to be ri[0].

Figure 4.2. Credential Hiding Phase Protocol 1

Complexity Analysis: For each attribute the protocol requires a single en-

cryption to be sent between Alice and Bob as well as the descriptions Ci (which we

53

assume are of size O(1)), and a single chosen 1-out-of-2 OT. Thus, the communica-

tion complexity is O(ρn). The OT can be started during the first round and thus

this protocol requires only 3 message exchanges.

Intuition: The intuition of this protocol is that if Alice does not possess credi,

then she cannot obtain ki. Furthermore, without ki the value Enc(ri[1], ki) reveals

nothing about ri[1] (in a computational sense). And since OT is used she can get at

most one of the values.

Protocol 2

In this protocol (see Figure 4.3) Bob does not reveal to Alice a superset of the

attributes in his policy, but Alice learns how many (but not which) attributes she

satisfies in Bob’s policy. Clearly, if Bob pads his list with superfluous credentials as

in Protocol 1, this reveals less information to Alice.

Input/Output: See Figure 4.1.
1. For each attribute attri, Bob generates two keys ki[0] and ki[1] and a public

marker q. He also computes αi = EIBE(ki[0], nym||attri). He then sends
to Alice α1, . . . , αn along with q.

2. Alice generates a semantically-secure homomorphic encryption system EA.
Then for each value αi and for each of her credentials credj, she creates a
value βi,j = DIBE(αi, credj). Alice and Bob then engage in set intersection
protocol where Bob inputs ki[0] and Alice inputs {βi,1, . . . , βi,m} and where
Bob learns EA(γi) where γi is 0 if Bob’s element is in Alice’s set and is
a random value otherwise. Bob then computes δi = EA(γi) ∗ EA(ki[1]) =
EA(γi+ki[1]); he then forms ordered pairs (δi, Enc(q, ki[1])). Bob randomly
permutes these pairs and sends them to Alice.

3. For each value (δj, Enc(q, kj[1])), Alice computes κj = DA(δj), and then
computes Dec(Enc((q, kj[1])), κj). If this value is q, then she stores κj

(which is kj[1]) and sets bj to 1, and otherwise she sets bj to 0.
4. For each attribute attri (note that these are permuted), Alice and Bob

engage in a chosen 1-out-of-2 OT protocol where Bob’s input is the list
{ri[0], Enc(ri[1], ki[1])} and Alice’s input is bi. Note: that these values are
permuted by Bob above, but Alice does not need to know which value
corresponds to which initial attribute.

5. If bi is 1, then Alice decrypts Enc(ri[1], ki[1]) with ki[1] (she computed this
in Step 3) and sets the result as her output, otherwise she sets her output
to be ri[0].

Figure 4.3. Credential Hiding Phase Protocol 2

54

Complexity Analysis: It is clear from the above that, for each attribute, O(m)

modular exponentiations are required (in the form of homomorphic/identity-based

encryptions and decryptions). Thus there are O(mn) such operations, and thus the

system requires O(ρmn) communication. Furthermore, the OT in Step 4 can be

started in Step 3, and thus this protocol requires 5 message exchanges.

Intuition: That Alice cannot retrieve both ri[0] and ri[1] follows from the fact

that OT is being used. To see why the value ri[1] cannot be obtained if she does not

possess the credential, note that to obtain this value she must have ki[1]. She can

learn this value only when one of the values computed in Step 2, is ki[0], which is

the case only when Alice has the credential (with all but negligible probability).

Protocol 3

This protocol (see Figure 4.4) protects which attributes are in Bob’s policy more

than the previous protocols in that Alice does not learn how many credentials she

satisfies in Bob’s policy. As stated earlier this protocol requires more communica-

tion and computation than the previous protocols. It also uses Scrambled Circuit

Evaluation extensively.

Input/Output: See Figure 4.1.
1. For each attribute attri, Bob generates two keys ki[0] and ki[1]. He also

computes αi = EIBE(ki[0], nym||attri). He then sends to Alice α1, . . . , αn.
2. Alice generates a semantically-secure homomorphic encryption system EA.

Then for each value αi and for each of her credentials credj, she creates a
value βi,j = DIBE(αi, credj). Alice and Bob then engage in set intersection
protocol where Bob inputs ki[0] and Alice inputs {βi,1, . . . , βi,m} and where
Bob learns EA(γi) where γi is 0 if his element is in Alice’s set and is a random
value otherwise. Bob then computes δi = EA(γi)∗EA(ki[1]) = EA(γi+ki[1]).
Bob sends δ1, . . . , δn values to Alice.

3. For each, value δj, Alice computes ηj = DA(δj). Alice and Bob engage in
a Secure Circuit Evaluation with Bob as the generator and Alice as the
evaluator. The circuit that Bob creates is a circuit for an equality test
(which requires O(ℓ) gates for ℓ-bit values). Bob’s input into the circuit is
kj[1] and Alice’s input is ηj. If the values match the circuit outputs rj[1],
otherwise it outputs rj[0].

4. Alice sets her output to the output of the circuit.

Figure 4.4. Credential Hiding Phase Protocol 3

55

Complexity Analysis: There are n circuits defined above, each of which com-

pares m values with ρ bits. Thus there will be O(ρmn) modular exponentiations

and O(ρ2mn) communication. This can be reduced slightly by using a one-way

function on the values in Step 4 before engaging in the circuit. The protocol requires

5 message exchanges.

Intuition: That Alice cannot retrieve both ri[0] and ri[1] follows from the fact

that, in SCE, the evaluator learns only one encoding per wire (which includes the

output wire). To see why she can learn the value ri[1] only if she possesses the

credential, observe that in order to learn this value Alice must be able to (in Step 2)

select m values such that one of them is ki[0], but this is intractable unless she has

a credential that decrypts the value ki[0].

4.4.4 Blinded Policy Evaluation Phase

In this Section we outline a protocol for blinded policy evaluation. Notice that

after the previous phase the values could be used as input wires into a scrambled

circuit (as Alice knows only one value and Bob knows the encodings). Thus the

strategy will be to use an oblivious circuit. In Figure 4.5 we formally define this

phase.

We now give several examples of useful oblivious circuits for this problem:

1. A binary tree of oblivious gates could be used to compute several common types

of policies, including: conjunction (does Alice have all of the attributes?), dis-

junction (does Alice have at least one of the attributes?), conjunction/disjunction

of a subset (does Alice have all(one of) of a subset of the attributes), and other

policies. Note that the size of this circuit is O(ρn).

2. An addition circuit followed by a comparison circuit, would allow for compu-

tation of a threshold based function (i.e., “does Alice have at least 4 of the

credentials”). This could easily be modified to support policies that require a

56

Input: Bob has a policy p : {0, 1}n → {0, 1}, several pairs of values
{r1[0], r1[1]}, . . . , {rn[0], rn[1]}, and a message M . Alice has n values ℓ1, . . . , ℓn

where ℓi ∈ {ri[0], ri[1]}.

Output: Alice learns M if and only if P (ℓ1
?
= r1[1], . . . , ℓn

?
= rn[1]) = 1, and

learns nothing otherwise.
Steps:

1. Bob constructs a circuit C that computes his policy (several “useful cir-
cuits” are described below) that uses the ri values as inputs and that has
an output wire with two encodings: k and some other random value. He
sends the encodings of the circuit’s gates to Alice (note that she already
has input values) along with Enc(M, k).

2. Alice evaluates the circuit and then tries to decrypt the message with the
value she computes for the output wire of the circuit.

Figure 4.5. Protocol for Blinded Policy Evaluation

threshold number of attributes for a subset of the attributes. Note that the

size of the circuit is O(ρn).

3. By having one instance of each of the above, combined with a single oblivi-

ous gate it is possible to have policies that are combinations of: conjunction,

disjunction, and threshold based. Note that the circuit size is still O(ρn).

4. More complex policies can be represented by combining several of the above

defined oblivious circuits together and then connecting them with other cir-

cuits. Of course, when this is done the structure of the policy is revealed

slightly (as the topography of the circuit is revealed). However, the structure

is at a high level, and the individual pieces of the policy are hidden (thus the

evaluator does not learn things like whether or not the binary tree being used

is for conjunction/disjunction, the thresholds that values are being compared

to, and which attributes are being used).

Clearly a large class of useful policies can be used with this technique even without

universal circuits or arbitrary circuits, but if this level of expressiveness is required

then these more expensive techniques can be used.

57

4.4.5 Security Proofs

The proof consists of two parts. The first is showing that the composition of

the Credential Hiding Phase and the Blinded Policy Evaluation Phase is secure.

The next part is to show that the protocols described are secure and do not leak

additional information.

Proof of Composition

We now show that the protocol is secure according to the definition presented in

Section 4.1.2.

Theorem 4.4.1 Given trusted oracles CHP and BPE where CHP provides the Cre-

dential Hiding Phase functionality (see Figure 4.1) and BPE provides the Blinded

Policy Evaluation functionality (see Figure 4.5), the protocol is secure (in as strong

of a model as the weakest of CHP and BPE).

Proof: The CHP oracle requires that Bob input n triples into the system

(attri, ri[0], ri[1]), that Alice learns one of Bob’s ri values per tuple, and that she

learns the ri[1] only if she has a credential satisfying attri. Now BPE requires that

Bob inputs pairs of the form (ri[0], ri[1]) and a policy P , that Alice inputs a single

value from the pair ri[xi], and that she gets M iff she P (x1, . . . , xm) = 1. In order

to make multiple distinct probes at BPE she must be able to learn two values from

the same attribute pair, which is not possible since the CHP oracle allows Alice to

learn at most one value (the values can be chosen to be from a large enough space

as to prevent guessing). Also, she obtains the message only when she has a set of

attributes that matches the policy. Up to this point we have been informal and have

not discussed the effect of the information leaked by our protocols (e.g., an upper

bound on the number of attributes in the policy). As this is a fairly simple extension

of the above proof we do not give all of the details here, but this information does

not give the adversary any significant advantage in breaking the above system. �

58

Proof of Credential Hiding Phase

We must show that the protocols satisfy four properties: i) that Alice gets at

most one of the ri values per attribute, ii) that she only obtains the value if she

possess a credential credi for the attribute, iii) that Bob gains only the previously

mentioned information from the protocol, and iv) that Alice gains only the previously

mentioned information from the protocol. We do not give formal proofs for (iii)

and (iv) as these proofs are natural consequences of the properties of encryption,

semantic-security, secure implementations of OT, set intersection, and scrambled

circuit evaluation(SCE).

Property i: For protocols 1 and 2, this is obvious because these values are sent

with OT, which implies that she obtains only one value. Protocol 3

has this property since it uses SCE, and a condition of SCE is that the

evaluator learns only one encoding per wire.

Property ii: In Protocol 1, Alice learns the value only when she has the credential

since the message is encrypted with ki. In Protocol 2, she needs to learn

ki[1] in order to get the message, but she obtains ki[1] only when she

obtains ki[0]. She obtains this value only when she has a credential

for the attribute. Protocol 3 satisfies this property by the correct

construction of a circuit and the argument for Protocol 2.

Property iii: Given secure implementations of OT, set intersection, and SCE in

the malicious model, it is trivial to see that the protocols are nothing

more than compositions of these protocols. However, the protocols leak

information that was previously specified (such as an upper bound on

the number of credentials in the policy).

Property iv: Similar to the previous property.

59

Proof of Blinded Policy Evaluation

As the protocol for Blinded Policy Evaluation is just SCE all that needs to

be shown is that Alice learns the message only when she has a set of values that

correspond to satisfying the policy. As long as Alice knows only one value per input

wire then she cannot learn anything other than at most one value for the output.

Since Bob generates the circuits to match his policy, the correctness is guaranteed.

4.5 Protocols for Credit Checking

In this Section we introduce the protocols for credit checking. We give a prelim-

inary protocol in Section 4.5.1. We discuss the security of the protocol in Section

4.5.2. Finally, we discuss several extensions in Sections 4.5.3-4.5.7.

4.5.1 A Preliminary Protocol

In this Section we introduce a protocol for achieving privacy-preserving credit

checking. This is not the final protocol, but rather it should be viewed as a “warmup”

for the better protocols that come later on. Furthermore, we use a modular approach

to describe the protocol, but the round efficiency can be greatly improved by com-

bining many of the phases.

Protocol Description

Phase 0: Setup: For each borrower, the CRA has a credit report represented by

attributes a1, . . . , am. When Bob registers with the CRA, the CRA and Bob establish

a shared encryption key (call it k).

Phase 1: Loan Request: When Bob attempts to establish a loan with Linda, she

contacts the CRA to obtain information about Bob’s credit report. When the CRA

receives a request for a credit report, the CRA generates two keys (for a symmetric

encryption scheme) for each attribute (note that these values can be pre-computed).

60

Let the pair for attribute ai be denoted by (e0
i , e

1
i). The CRA sends to the Lender

the following two things: i) All of the key values e0
1, . . . , e

0
m, e1

1, . . . , e
1
m, and ii) the

key values encrypted with the key k (i.e., Enc((e
sat(a1)
1 , . . . , e

sat(am)
m), k)). The Lender

stores the first part of this message, but forwards the second part to the Borrower

who decrypts the value and stores the result. In what follows, the goal is to build

a circuit that determines if the Borrower qualifies for the loan. Thus we need to

address how to obtain the circuit’s input, how to build a circuit, and how to obtain

the results from the circuit.

Phase 2: Attribute Input: In this phase Linda chooses two keys (for a symmet-

ric encryption function) for each attribute, and Bob learns one of the keys if he

satisfies the corresponding attribute but learns the other key if he does not sat-

isfy the attribute. Let the keys for attribute ai be denoted s0
i and s1

i , where the

borrower will learn s
sat(ai)
i . For each attribute ai, Linda computes an ordered pair

(Enc(s0
i , e

0
i), Enc(s1

i , e
1
i)). She sends all of these pairs to Bob. For each attribute ai,

Bob computes Dec(Enc(s
sat(ai)
i , e

sat(ai)
i), d

sat(ai)
i). After this step Bob has only the

keys that correspond to his attributes. Note that it is possible for Linda and Bob

to skip the previous step by using the values (e0
i , e

1
i) as Linda’s output and e

sat(ai)
i

as Bob’s output for the phase. However, this does not allow Linda to precompute

circuits for loan qualification.

Phase 3: Determining Satisfiability of Criterion: For each criterion C, we need

to be able to compute sat(C). A criterion C has a certain set of attributes, and for

each attribute there are two possible keys (one corresponding to Bob satisfying the

attribute and another to Bob not satisfying it), and his input to the circuit will be

his corresponding keys for the attributes. In order to be able to use a circuit on the

output of this satisfiability computation the output of this part should be one of two

keys (which Linda chooses), where one corresponds to a borrower that satisfies the

criterion and the other corresponds to a borrower that does not satisfy the criterion.

If the criterion is a single attribute, then this is trivially done by using the attribute’s

input key as the output key. If the criterion is a comparison, then a standard circuit

61

for comparison can be used. Thus either type of criterion can be implemented in

communication proportional to the number of attributes in the criterion.

Phase 4: Result Combination: After the previous phase, for each criterion Linda

has two keys and Bob has one of these keys. During this phase Linda and Bob

evaluate a circuit that determines if he qualifies for the loan. Recall our assumption

that Bob qualifies if he satisfies at least t criteria, in other words Bob qualifies if
∑n

i=1 sat(ci) > t for some t ≤ n. This can easily be done with the addition circuit,

followed by a comparison circuit with value t. Note that the size of this circuit is of

size proportional to number of criteria.

Phase 5: Obtaining Result: After the previous phase, Bob has one of two keys k0

or k1 (both of which were generated by Linda). Key k1 corresponds to Bob qualifying

for the loan, and key k0 corresponds to Bob not qualifying for the loan. The question

now becomes how does Bob prove he qualified for the loan to Linda. Bob proves this

to Linda by sending her the key that he receives (recall that we assume the honest-

but-curious model in this initial protocol). When Linda receives k1 from Bob, she

is convinced that he qualified for the loan, and if instead she receives k0 then she

denies him the loan.

Summary of the Protocol

We now state the above protocol in more concise terms, leaving out the details

but describing the information flow:

1. To use the privacy-preserving credit check, Bob registers with the CRA and

sets up an account for this service, the CRA and Bob establish a private key

(call it k).

2. When Bob requests a loan from Linda, she contacts the CRA with a request

to run a protocol that determines for her whether Bob’s credit report satisfies

her criteria (without revealing the report itself to her).

62

3. The CRA sends Linda a set of encryption keys; there are two keys for each

attribute (one corresponding to each possible value of the attribute). The CRA

also sends a single encryption key for each attribute (the one that corresponds

to Bob’s actual attribute) encrypted with the value k.

4. Linda builds a scrambled circuit that determines if Bob qualifies for a loan. To

obtain the input for the circuit, she encrypts the encodings with the encryption

functions that she received from the CRA. She sends Bob the following items:

the circuit, a set of messages from which he can obtain the input wire encodings

of the circuit, and the message from the CRA with the decryption keys.

5. Bob decrypts the decryption keys and obtains the inputs to the circuit using

these keys. He then evaluates the circuit and upon finding the output, sends

the result to Linda.

6. Linda tells Bob whether or not he qualifies for the loan.

The communication complexity of the above is proportional to the number of

attributes, and requires one round of messages between Linda and the CRA and

another between Bob and Linda. The CRA must generate the key pairs for each

attribute, but this is not expensive because it is just random number generation.

The CRA must also encrypt Bob’s encryption keys, but this can be done using a fast

symmetric key encryption system (such as AES). Linda needs to do two symmetric

encryption operations for each attribute and needs to generate a circuit for the credit

check, but the latter can be pre-computed. Bob needs to perform a single symmetric

key operation for each attribute, and then needs to evaluate a circuit (where the

circuit has size proportional to the number of attributes), but since this is in the

passive model these operations can be a symmetric key system. The correctness of

the protocols trivially follows from the correctness of secure circuit evaluation.

63

4.5.2 Security of Protocols

We now discuss the security of the above protocol.

Borrower: During Phase 2, the borrower has only one key per attribute and thus

he can obtain at most one input for the circuit. Thus the borrower can find at most

one value for the output of the circuit (assuming he is computationally bounded).

Lender: This design goals for the lender are trivially satisfied in the passive

model as the lender learns only a single value after the computation of the circuit,

and because the message from the CRA is encrypted with a key unknown to Linda.

CRA: The CRA sees only a request from Linda about Bob.

4.5.3 Extension: Weighted Threshold Based Policies

In the protocol in Section 4.5.1, Bob qualifies for a loan if he satisfies at least

t out of n criteria (where t is a private parameter defined by Linda). This can be

generalized to add more flexibility to the system. For example, some criteria may

be more important than other criteria. In the case where the criteria are globally

defined (by and for all lenders) some of the criteria may not apply to Linda. In this

Section we propose a weighted threshold based policy. Each criterion ci is assigned

a weight wi, where wi ∈ {0, . . . , N − 1}. Bob qualifies if
∑n

i=1(sat(ci)wi) > t for

some threshold t (again t is privately defined by Linda). The techniques in Section

4.5.1 can be used, however between phases 3 and 4 another step must then be added

to replace sat(ci) with wisat(ci). Essentially, each criterion value must be expanded

to a (log N)-bit scrambled value. This can easily be done with a 2-ary gate having

(log N) outputs, and size O(log N). The circuit is also changed to add the larger

values. Note that the circuit size is now O(m + n log N) where m is the number of

attributes and n is the number of criteria.

64

4.5.4 Extension: Combinatorial Circuit Based Policies

The previous notion of a weighted policy allows the definition of many policy

types, but it does not allow policies of the following forms:

1. “(At least 3 out of these specific 4 criteria) and (At least 2 out of these specific

5 criteria)”.

2. “Criterion A or (Criterion B and Criterion C), but not (Criterion A and Cri-

terion B).

Thus if the policy has a complex structure, then there may not be a way to repre-

sent it with a weighted threshold system, and even if there is such a representation,

it may not be intuitive. In this Section, we propose a more generic structure that is

more powerful and more intuitive. For this representation the lender defines several

“super-criteria”, which are expressible as threshold policies, weighted threshold poli-

cies, or other combinatorial based circuit policies. The lender defines a set of these

super-criteria and then combines the results using a binary tree of oblivious gates.

Clearly, anything that can be expressed with threshold policies or weighted threshold

policies can be expressed with this mechanism, and the examples given above can

easily be expressed with this representation. This reveals the general structure of the

policy but none of its specifics – actual values of thresholds, cutoffs, etc. However,

to hide the structure, padding the circuit with “dummy” entries can hide further the

structure of the circuit.

4.5.5 Extension: General Policies or Criteria

While the combinatorial circuit-based policies described in the previous Section

allow the lender to represent a large class of policies, it is still limited. In addition,

complicated criteria composed of multiple attributes cannot be represented. To

handle such requirements one could extend the techniques to represent an arbitrary

policy (by using an n input gate that represents the policy). However, such an

65

extension would require exponential communication/computation. Another option

is to use a universal circuit.

4.5.6 Extension: Malicious Adversaries

In our previous protocols we assumed that the behavior of the parties is passive

or honest-but-curious (i.e., that the parties will follow the protocols, but will try

to glean additional information). We postpone discussion of malicious CRAs until

Section 4.5.7, and thus in this Section we assume that the CRA is honest (as it has

very little incentive to behave otherwise). However, in this Section we explore what

happens when Linda or Bob deviates from the protocol.

• As a borrower, there is little Bob can do to deviate from the protocol. The only

type of attack we worry about is Bob falsely qualifying for a loan, and since

his only messages are his loan request and the message which states whether

or not he obtained the loan (which he cannot forge), a malicious Bob has no

extra advantage.

• Linda violates Bob’s privacy if she learns additional information about Bob’s

credit report. She can do some things to try to probe Bob’ credit, and there

are essentially three ways in which she can do this: i) abort the protocol after

receiving the results, ii) having the output gate output more than two things,

iii) creating a malformed circuit. We now examine each of these in more detail

(note that this solution does not require the gates to be some form of encryption

that can be verified with Zero-Knowledge proofs):

1. Linda could create a circuit that computes something other than whether

or not Bob qualifies for a loan, and then she could abort the protocol after

receiving Bob’s response. This “abort” could take the form of a contrived

network failure, and Bob’s only choice would be to run the protocols again

with Linda. To avoid this we propose a modification of Phase 5 of the

66

protocol. Instead of revealing a random string, the circuit reveals one

of two random keys. As part of the circuit Linda also sends a message,

which is an encryption with the “qualify” key of a signed message stating

that Bob qualifies for the loan. Now, Linda cannot do the above abort

attack, because Bob can resend the signed message.

2. Linda could make the output of the gate have more than two outputs,

which would reveal additional information to her about Bob’s credit re-

port. However, this is already handled by the solution offered for the

previous problem, assuming that it is hard to generate two different keys

that encrypt to the same value for two different signatures.

3. Linda could send a circuit that is malformed (i.e., some inputs will lead to

an output, but other sets of inputs lead to Bob not being able to compute

the output by not being able to decrypt any message at a gate). If Bob

reports a problem, then a malicious Linda has more information since

there are now two fail states. To avoid this Bob, sends the same message

if there is an error in the circuit as if he gets to the output gate but does

not qualify.

4.5.7 Extension: Multiple CRAs

The assumption that there is a single CRA is not realistic because in practice

there are multiple CRAs. If the information is used in independent ways, then this

can be handled by a trivial extension to our protocols. Thus we consider the case

where the lender uses multiple CRAs and wants to make sure that the borrower

satisfies the criteria at all of the CRAs (which may have conflicting information).

When there are multiple sources for the same information, a lender would like to

add “defense in depth”, and we propose a conflict resolution strategy that resolves

conflicts with the safest possible approach. Essentially the circuit computes the

criterion for each of the CRAs, and then combines them into a single value. If the

67

criterion is positive (i.e., it helps Bob get the loan) then the lender would want to

make sure that all of the CRAs information states that Bob satisfies that criteria,

which can easily be done with a set of AND gates. If the criterion is negative (i.e., it

hurts Bob’s chances of getting the loan) then the safest approach that Linda could

take is that Bob has the property in question if one or more of the CRAs claim he

has that property, and this can easily be computed with a set of OR gates. Clearly,

either of these cases can be done with a binary tree of oblivious gates.

In the single CRA case, a single malicious CRA that colludes with one or more

borrowers to probe a lender’s policy is unavoidable. However, when multiple CRAs

are used and the policy is to use the safest possible approach (as outlined above),

then unless all of the CRAs are corrupt, the colluding parties are limited in what

they learn about the lender’s policy. The probing of the malicious CRAs is limited to

credit reports that are worse than the borrower’s credit report with the non-colluding

CRAs.

4.6 Summary

In this Chapter, we introduced a variation on standard secure function evaluation

called Secure Verifiable Oblivious Function Evaluation. There are several things that

differentiate this work from traditional SFE including: i) the function that is to be

computed is private to one party, ii) the result of the function is typically revealed

to only one party (and this does not need to be the party with the function), and

iii) one party’s inputs must be verified by a third party that is not online during the

protocols. We introduced general techniques for Secure Verifiable Oblivious Function

Evaluation, and analyzed their applicability to two applications: trust negotiation

and credit checking. While we only presented this work for these two domains, they

have much broader applicability and in fact work for any situation where there is a

repository of public and private information about individuals, that is subsequently

used for making decisions that impact the individuals (a credit rating agency is but

68

one example of such a repository). Other repositories contain information collected

and maintained for different purposes than credit ratings, e.g., information about

peoples’ shopping habits and preferences, level of education, income, number and

age of their children, history of contributions and donations to charities, etc. The

information in these repositories is typically collected without the active and know-

ing participation of the individuals concerned, and the repositories often contain

wrong information that the individual never gets a chance to correct. Moreover,

these repositories are often used for purposes the individual would not approve of,

such as junk mail, spam, and more nefarious purposes such as identity theft. A

privacy-respecting repository of the kind we envision may, because its reputation

and business model are based on offering privacy to its customers, cause individu-

als to actually contribute additional (and accurate) information to the repository,

thereby increasing its value over the competition’s. Such a repository may have

information (backed with proof or certification) that John Doe is fluent in French,

has a degree in Mechanical Engineering, has extensive experience in the analysis of

seismic data, all in addition to the usual financial and personal information stored

in today’s CRAs. The lender-like entities who use such a repository would inquire

about a specific individual only with the individual’s permission (e.g., when he ap-

plies for a loan, a security clearance, a permission to buy restricted merchandise)

would benefit not only from the more accurate information in the repository, but

also from the fact that no one (including the repository) will know the precise nature

of their credit-like inquiries about an individual; this is especially important when

screening a candidate for a security-sensitive position, for access to restricted on-

line material, for eligibility to a special discount, or any other situation where there

is fear that a malevolent individual could “game” the screening system if such an

individual knew the precise screening criteria and algorithm.

69

5 SERVICES FOR LOCATION-AWARE DEVICES

5.1 Introduction

Suppose Bob is visiting an unfamiliar area, and that Bob has a mobile device

which provides him with location information. Furthermore, Bob would like to use

this location information to determine if a certain type of store (coffee shop, rare

bookstore, etc.) is near a route that he will travel on, but for privacy reasons Bob

does not want to reveal his route. Suppose Alice has gathered a large amount of

information and that she provides a subscription-based service to access this infor-

mation. However, Alice cannot simply reveal all of her information to Bob since

this reveals all of Alice’s proprietary information about certain topics, which is un-

acceptable because this is how Alice generates revenue (not to mention that Alice’s

database may be too voluminous to send to Bob). Thus the problem becomes can

Bob learn if there is a specific item of interest near his route, without revealing his

route and without requiring Alice to reveal all of her information.

A similar application of this technology is to help entities with restraining orders

placed against them to avoid the person that they are ordered to avoid. Suppose

Alice has a restraining order on Bob (perhaps she has caught him being malicious

in one too many protocols) that states that he must stay at least 1000 yards from

her. Clearly, Alice wants to stay away from Bob, and Bob would also like to stay

away from Alice. Furthermore, Alice and Bob have the right to privacy, and it would

be potentially dangerous for Alice to tell Bob where she will be at all times during

the day. Thus, Alice and Bob would like to engage in a protocol that tells them if

their routes are safe (i.e., does not get too close to the other party’s route) without

revealing their routes to each other.

70

There are also several natural applications for cooperating but mutually distrust-

ing counties or military organizations (so-called “uneasy allies”). Suppose Alice and

Bob are two governments who are temporarily cooperating to perform a humanitar-

ian relief (or perhaps a military) operation. Bob has an object (vehicle, convoy, or

airplane) that is moving in a space where Alice has certain objects that she wants

to hide from Bob. Although Alice and Bob are cooperating, they do not fully trust

each other; furthermore the less information is disseminated, the smaller the risk

that this information will be leaked by an untrustworthy partner (or by a crooked

insider employed by an otherwise trustworthy partner). A more extreme example

is when both Alice and Bob have moving objects that they want to prevent from

getting too close to each other in order to reduce the likelihood of an accidental

collision or of a “friendly fire” accident.

Another related problem is to help Bob find the nearest object of interest to his

route (rather than learning if his route is “close” to a set of objects). This is a

nearest neighbour problem. Applications for such a protocol include: i) determining

the nearest coffee shop to a route, and ii) determining which of Bob’s friend’s routes

is closest to his to determine if a meeting is possible (or avoidable depending on the

friend).

The above problems are all instances of computational geometry problems where

the operation being computed is proximity between objects. These objects can take

various forms: points, points moving in space (defined by parametric equations), and

line segments. Furthermore, the distance between these objects must be computed

in a secure fashion. This computation should be done in a way that does not reveal

anything other than the result (or what can be computed from the result, as this is

unavoidable in any such protocol). We assume that the inputs (i.e., point coordi-

nates, coefficients of equations, velocities, etc) are integers – so there is an implied

integer “grid”; we also assume that all coordinates are non-negative. Furthermore,

we give protocols for two dimensions, however our protocols can easily be extended to

71

higher dimensions. In this Chapter we introduce protocols to compute the following

quantities:

1. The distance between a segment and point.

2. The distance between two points moving with constant velocity, described by

parametric equations.

3. The distance between two line segments.

One of the drawbacks of the approach outlined above is that the client is at the

mercy of the sever (i.e., if the server does not want to engage in such a protocol

then such techniques are of no use to the client). Because of this reason we also

explore various “self-protecting” privacy solutions. Our focus is on perturbation

based techniques for location based queries. Thus the client will obfuscate his current

location and send this query to the server. The server will then respond to this

obfuscated query. Of course such a solution leads to inaccuracies in the answer of

the query, but this is a tradeoff that the client can choose. For example, there are

cases where privacy is less of a concern than efficiency (i.e., if the client is low on gas

and wants to know the nearest gas station). This approach has the advantage that

the client can use this approach even when the server is not cooperating. It is worth

noting that in many cases the server will have out of band information about the

approximate location of the client; for example when the device is a cell phone and

the server is the cell phone service provider, then the server knows the approximate

location of the cell phone based upon which cell that it is in. In this situation,

these perturbation based techniques are even more attractive as revealing to the

server one’s approximate location does not reveal substantially more information

than what the server already knows.

The rest of this Chapter is organized as follows. In Section 5.2 we define the

notations that are used in this Chapter. In Section 5.3 we introduce secure protocols

for computing distance functions. In Section 5.4 we introduce several perturbation

based techniques. Finally, we summarize our results in Section 5.5.

72

5.2 Notations and Definitions

The following is a list of notations that are used within this Chapter.

1. We use <> to represent vectors.

2. To represent a point in two dimensional space we use the following notation:

P (x, y).

3. To represent a line in two dimensions we use L(A, B, C), where the line is

described by the equation: Ax + By + C = 0.

4. To represent a line segment we use the notation S(P1(x1, y1), P2(x2, y2)) for the

segment between the two points P1 and P2.

5. To represent motion of a point along a line with constant velocity we use

parametric equations: x(t) = (vx)t + x0 and y(t) = (vy)t + y0 to represent the

x and y coordinates of the moving point.

5.3 Secure Protocols

In this Section, we describe secure protocols for distance functions. Atallah and

Du have studied various secure protocols for distance functions [105]. This work

focused on solving three problems: i) the inclusion of a point in a polygon, ii) the

intersection of polygons, and iii) the distance between points; solutions were given

for all of these problems. This Chapter focuses on distance protocols rather than on

intersection protocols, but some of the protocols overlap. The two cases where this

Chapter’s protocols overlap the work of [105] are: i) the computation of the distance

between points and ii) the determination if two line segments intersect. Instead of

placing these protocols in a building block Section we place them with the protocols

that use them, however they are clearly marked as previous work.

The rest of this Section is organized as follows. In Section 5.3.1 we discuss the

difficulties of evaluating distance functions with general SMC results. In Section 5.3.2

73

we introduce the template that our protocols will follow, and then will describe how

this template can be used to compute “interesting” functions. In Sections 5.3.3-5.3.6

we introduce the protocols for securely computing various distance functions.

5.3.1 On Using General SFE Results

Computational geometry problems are difficult in a secure framework because

floating point arithmetic is very expensive in this framework, and so operations such

as square root and division should be avoided. However, their inverses (multiplication

and squaring) are much easier.

However, if a general Boolean circuit is built for computing distance functions

then multiplication is required. The simplest circuits for k-bit multiplication re-

quire O(k2) gates. There are asymptotic improvements to these circuits, but they

come at the cost of large constant factors; the asymptotically best of them (and

the worst in terms of having impractically large constant factors) is a circuit of

size O(k log k log log k) derived from the textbook Schoenhage-Strassen integer mul-

tiplication algorithm (which is itself of mainly theoretical interest, and not used in

practice).

Now there are techniques based upon arithmetic circuits, which conceivably make

multiplications a single operation (using homomorphic encryption). However, in such

cases comparisons are not possible (and these are required by many of our protocols)

unless the modulus is 2, which makes multiplication as expensive as the Boolean

circuit case.

Thus the goal of our protocols will be to use arithmetic circuit based constructions

for the multiplications and additions and then use Boolean circuit based construc-

tions for the comparison. The difficulty of this approach is the conversion between

the two forms, but in Sections 3.7.1 and 3.7.2 we introduced protocols that provide

the necessary building blocks to perform this conversion efficiently.

74

5.3.2 Protocol Design

In the following Sections we give protocol for computing the distance between

two objects (such as points, line segments, etc.). Given such protocols it is possible

to construct other protocols based upon distance (using simple circuits to process

the result). We now outline some examples of this:

1. Given a set of objects S and a specific object x, what is the nearest object in

S to x?

2. Given two objects, are these two objects “close” to one another? This is useful

for determining if a route is close to an object of interest or to determine if two

routes are dangerously close.

3. Given a set of objects, are there any two objects that are close?

Thus all we need to develop are protocols to compute the distance between two

objects. A problem with this is that many distance formulas require square roots and

division. Square roots are handled by computing the square of the distance (notice

that order is still preserved). To handle the division, we will store the distance as two

integer values (the numerator and the denominator); it is still possible to compare

these values (as both with be positive) by cross multiplying and then by comparing.

The communication complexity and computational complexity of these protocols

are not that meaningful because all of the protocols consist of small constant num-

ber of scalar product protocols and scrambled circuit evaluation of simple circuits.

However the round complexity is interesting, because many steps can be done in par-

allel. Thus when describing the complexity of our protocols we will consider only the

round complexity, but we will describe the round complexity in exact terms rather

than asymptotic terms (as O(1) is not that meaningful in this context).

75

5.3.3 Distance between Two Points

The distance between P1 and P2 is
√

(x1 − x2)2 + (y1 − y2)2, and thus we com-

pute (x1 − x2)
2 + (y1 − y2)

2. This protocol is also presented in [105], but for com-

pleteness we give the protocol in Figure 5.1.

Input: Alice has point P1(x1, y1). Bob has a point P2(x2, y2).
Output: Computes (in a split manner) the distance between P1 and P2.
Steps:

1. Alice creates a vector ~a =< x1
2,−2x1, 1, y1

2,−2y1, 1 >. Likewise, Bob
creates a vector ~b =< 1, x2, x2

2, 1, y2, y2
2 >.

2. Alice and Bob engage in protocols to compute d =
SCALARPRODUCT (~a,~b) in a modular additively split manner.

Figure 5.1. Secure Protocol for Computing the Distance between Two Points

The above protocol requires a single round of interaction between Alice and Bob.

5.3.4 Distance between Point and Line Segment

In this Section we introduce protocols for computing the distance between a point

and a line segment. The distance between a point and a line segment is either the

distance between that point and an endpoint of the line segment or it is the distance

between that point and an interior point of the segment. If it is the latter case, then

this point must exist between the lines that are perpendicular to the segment and

that are through the endpoints of the segment. To clarify this, Figure 5.2 contains

all points that are within T units of a specific segment AB.

Before we introduce a protocol for computing the distance between a point and a

line segment, we need three building block protocols: i) one to compute the distance

between two points (Figure 5.1), ii) one that computes the distance between a point

and a line (Figure 5.3), and iii) one that determines if a point is between two lines

(Figure 5.4).

76

�
�

�
�

��
S

S
S�

�
�

�
��

S
S
S

�
�

�
�

��

"!
"!

s
s

A

B

Figure 5.2. Area of all points within distance T from segment AB

Distance between a Point and Line

The distance between P (x, y) and L(A, B, C) is |Ax+By+C√
A2+B2

|. We compute the

square of this distance, which is (Ax+By+C)2

A2+B2 . We give a protocol for computing this

distance in Figure 5.3.

Input: Alice has point P (x, y). Bob has line L(A, B, C).
Output: Computes the distance between P and L in a split fashion.
Steps:

1. Alice creates vectors ~a1 =< x2, 2xy, 2x, y2, 2y, 1 > and ~a2 =< 1 >. Like-
wise, Bob creates vectors ~b1 =< A2, AB, AC,B2, BC, C2 > and ~b2 =<
A2 + B2 >.

2. Alice and Bob engage in protocols to compute the values
SCALARPRODUCT (~a1, ~b1) and SCALARPRODUCT (~a2, ~b2), and
they output these values as the distance.

Figure 5.3. Secure Protocol for Computing the Distance between a
Point and a Line

Note that the above protocol computes the distance with a single round of inter-

action between Alice and Bob. Furthermore, the correctness of the protocol follows

directly from its construction, and the privacy is as strong as the scalar product

protocols.

77

Point between Two Lines

A point P (x, y) is between two parallel lines, L(A, B, C1) and L(A, B, C2) where

C1 < C2, if and only if C1 ≤ Ax + By ≤ C2. Figure 5.4 gives a protocol that

computes this value in a XOR-split fashion.

Input: Alice has point P (x, y). Bob has two parallel lines L1(A, B, C1) and
L2(A, B, C2) (we assume that L2 is above L1 (i.e., C2 > C1)).
Output: Computes if P lies between L1 and L2.
Steps:

1. Alice creates a vector ~a =< x, y >. Likewise, Bob creates a vector ~b =<
A, B >

2. Alice and Bob engage in protocols to compute d =
SCALARPRODUCT (~a,~b) in a modular additively split fashion.

3. Alice and Bob compute (d ≥ C1) ∧ (d ≤ C2) using SCE and output the
result in XOR-split fashion.

Figure 5.4. Secure Protocol for Determining if a Point is between Two Lines

Note that the above protocol computes the result with a single scalar product

protocol and a single circuit evaluation. If the protocol does not use base reduction,

then it is possible to engage in this protocol with 2 rounds of interaction, and if base

reduction is used then 3 rounds are required. Furthermore, the correctness of the

protocol follows directly from its construction, and the privacy is as strong as the

scalar product protocols and SCE.

Distance between a Point and a Segment

We are now ready to give the main protocol of this Section. As discussed earlier

all that needs to be computed is the distance between the point and the endpoints of

the segment and the distance between the point and the line through the segment.

Furthermore, the latter distance is used only when the point in question is between

78

the parallel lines that are through the endpoints of the segment and are perpendicular

to the segment. Figure 5.5 describes this protocol.

Input: Alice has point P (xp, yp). Bob has a line segment S((x1, y1), (x2, y2)).
Output: Computes the distance between P and S.
Steps:

1. Alice and Bob engage in secure protocol for computing the distance between
(xp, yp) and (x1, y1) and store the result d1 in a split fashion.

2. Alice and Bob engage in secure protocol for computing the distance between
(xp, yp) and (x2, y2) and store the result d2 in a split fashion.

3. Bob computes the line through his segment, which is L(A, B, C) where
A = y2−y1, B = x1−x2, and C = x1(y1−y2)+y1(x2−x1). Alice and Bob
engage in protocol to determine the distance between P and L and store
the result d3 in a split fashion.

4. Bob computes the perpendicular lines through the segment endpoints, de-
noted by L1 = (x2 − x1)x + (y2 − y1)y + (x1 − x2)x1 + (y1 − y2)y1 and
L2 = (x2 − x1)x + (y2 − y1)y + (x1 − x2)x2 + (y1 − y2)y2. Alice and Bob
engage in secure protocol to determine if P is between L1 and L2 and store
the result γ in a XOR-split fashion.

5. Alice and Bob use SCE to compute the following distance in a split manner:
if γ then output d3 otherwise output min{d1, d2}.

Figure 5.5. Secure Protocol for Computing the Distance between a
Point and a Segment

Since many of the steps in the above protocol can be done in parallel, the round

analysis of the protocol is non-trivial. However, steps 1 to 4 can be done in parallel

with 2 rounds or 3 rounds if base reductions is used. Furthermore, the last step

requires only a single round, and thus entire protocol requires 3 or 4 rounds. The

security and correctness follow directly from the protocol.

5.3.5 Distance between Two Parametric Equations

Suppose Alice has a route which consists of a set of line segments and Bob has

a route which consists of a set of line segments. Furthermore, suppose that there is

an object that is traveling on each of Alice and Bob’s routes whose position can be

79

described by a point with constant velocity (with parametric equations). Alice and

Bob would like to know the minimum distance between their objects.

General Idea

For this protocol we assume that Alice and Bob’s time intervals are not se-

cret (i.e., only the location, direction, and velocity during the intervals are private,

but it is okay to reveal the time when the direction or velocity changes), and thus

Alice and Bob can easily compute all time intervals where there is a change (in

direction or velocity) by one of the objects. In this Section, we give a protocol

to determine the minimum distance between Alice and Bob’s objects (during the

time interval). Suppose Alice’s point can be described by x1(t) = vx,1t + x0,1 and

y1(t) = vy,1t+y0,1, and likewise Bob’s position can be described as x2(t) = vx,2t+x0,2

and y2(t) = vy,2t + y0,2. The distance between the points at any time t can be

described by
√

(x1(t) − x2(t))2 + (y1(t) − y1(t))2. Thus our goal is to minimize a

quadratic polynomial At2 + Bt + C inside of an interval [s, e].

Quadratic polynomial minimization

The polynomial f(t) = At2 + Bt + C will have a minimum iff A > 0. If A < 0 it

will be a downward parabola (i.e., it will have a maximum) and if A = 0 it will be a

line (i.e., it will not have a maximum or minimum). If f has a minimum, then the

value t that minimizes f(t) can be easily found to be tmin = −B
2A

. Assuming A > 0,

then the minimum is in the interval [s, e] iff 2As ≤ −B ≤ 2Ae. Finally, the minimum

value of f(t) (assuming that there is such a minimum) is f(tmin) = B2

4A
− B2

2A
+C. We

present this protocol in Figure 5.6.

As many of these steps can be done in parallel, the round complexity is non-

trivial. Steps 1-3 can be done in parallel, and thus will require only 2 rounds without

base reduction and 3 rounds with base reduction. The last round requires only 1

round of interaction, and thus the protocol requires only 3 or 4 rounds.

80

Input: Alice and Bob have a polynomial f(t) = At2 + Bt + C where t ∈ [s, e]
and where the values A, B, C, s, and e are additively split between them.
Output: If the minimum of f(t) is in [s,e] output this minimum value otherwise
output ∞.
Steps:

1. Determine if a minimum exists to f(t). Alice and Bob engage in a protocol
γ1 = (A > 0) in an XOR-split fashion.

2. Assuming that there is a minimum determine if the minimum exists in
[s, e]. Alice and Bob engage in a protocol to determine: γ2 = (2As ≤
−B) ∧ (−B ≤ 2Ae) in an XOR-split fashion. Note that the values being
compared can be computed with a secure scalar product.

3. Compute the distance Alice and Bob engage in a protocol to compute
−B2+4AC

4A
and call the result d in a split fashion.

4. Output the final result: Alice and Bob engage in a circuit that will output
d if γ1 ∧ γ2 and will output ∞ otherwise.

Figure 5.6. Secure Protocol for Determining the Minimum of a Polynomial

Two Parameterized Line Segments

Suppose that the routes are paramaterized by time t and that they have constant

velocity. The distance between the two points is
√

(xA − xB)2 + (yA − yB)2. All of

these terms are linear in t (where t is time). This means that there is a polynomial

f(t) = At2 + Bt + C such that the distance is
√

f(t). Either f(t) will have a global

minimum in the interval [s, e] or the minimum value in the interval is min{f(s), f(e)}.

Figure 5.7 gives a protocol for computing this distance.

The above protocol requires 5 or 6 rounds depending on whether or not base

reduction is used. One round to compute the first and second steps, 3-4 rounds to

do step 3, and another round to do step 4.

5.3.6 Distance between Two Line Segments

Suppose Alice has a route which consists of several line segments each associated

with a distance and Bob has a route which consists of a series of segments. Further-

81

Input: Alice has segment x1(t) = vx,1t + x0,1, y1(t) = vy,1t + y0,1. Bob has a line
segment x2(t) = v2,Bt + x0,2 and y2(t) = vy,2t + y0,2. The time interval is known
to Alice and Bob and is represented by s to e.
Output: Computes the minimum distance between the two segments during the
time interval.
Steps:

1. Alice and Bob engage in scalar product protocols to determine the distance
function f(t) = At2 + Bt + C. The values A, B, and C are additively split
between Alice and Bob. To avoid cluttering this exposition, we omit the
exact details of these scalar product computations.

2. Alice and Bob determine the minimum distance at either endpoint of the
interval:
(a) Alice and Bob compute ds = As2 + Bs + C and de = Ae2 + Be + C

in an additively split fashion. Note that these values can easily be
computed without communication.

3. Alice and Bob use Figure 5.6 with parameters A, B, C, s, and e to determine
the minimum point inside the intervals. Alice and Bob store the result as
d in a split manner.

4. Alice and Bob engage in a circuit to compute min{ds, de, d}.

Figure 5.7. Secure Protocol for Computing the Distance between
Two Parameterized Line Segments

more, Alice and Bob want to know the distance between Alice and Bob’s route. In

this case, we need to be able to compute the distance between two segments.

General Idea

In two dimensions, either the segments will intersect or the closest point to the

segment will involve one of the endpoints. Thus Figure 5.5 can be used 4 times (once

with each endpoint and the other segment) to handle the second case. All that is

needed is a protocol for determining if two segments intersect, for which a protocol

is given in [105].

82

Line and Line Segment Intersection

L and S will intersect iff there is the endpoints of S lie on different sides of L or

one or more of the endpoints is on L. The side of a point P (x, y) on L is the sign of

Ax+By+C. Thus, if the value of this is negative for one endpoint and is positive for

the other, then the segment intersects the line. This protocol is described in Figure

5.8, and is also given in [105].

Input: Alice has line L(A, B, C) and Bob has a line segment S((x1, y1), (x2, y2)).
Output: Computes if L and S intersect.
Steps:

1. Alice creates a vector ~a =< A,B,C >. Likewise, Bob creates vectors
~b1 =< x1, y1, 1 > and ~b2 =< x2, y2, 1 >.

2. Alice and Bob engage in protocols to compute d1 =
SCALARPRODUCT (~a, ~b1) in a modular additively split fashion.

3. Alice and Bob engage in a protocol to compute d2 =
SCALARPRODUCT (~a, ~b2) in a modular additively split fashion.

4. In parallel Alice and Bob engage in secure protocols to compute in an XOR-
split fashion γ1, γ2, γ3, γ4 with respective values (d1 ≤ 0), (d2 ≤ 0), (d1 ≥
0), (d2 ≥ 0)

5. Alice and Bob output (γ1 ∧ γ4) ∨ (γ2 ∧ γ3) in a XOR-split fashion.

Figure 5.8. Secure Protocol for Determining if a Line and a Line Segment Intersect

This protocol requires 2 or 3 rounds depending on whether or not base reduction

is used.

Distance between Two Line Segments

All that needs to be done is to compute the distance between each endpoint and

the other segment and to determine if the segments intersect. Figure 5.9 introduces

this protocol.

Step 1 requires 3 or 4 rounds depending on whether or not base reduction is used,

but Steps 2 and 3 can be done at this time also. Finally step 4 requires only a single

round of interaction. Thus this protocol requires 4 or 5 rounds of interaction.

83

Input: Alice has segment S1(P1(x1, y1), P2(x2, y2)) and a threshold T . Bob has
a line segment S2(P3(x3, y3), P4(x4, y4)).
Output: Computes the distance between S1 and S2.
Steps:

1. In parallel Alice and Bob engage in secure protocols to compute in a split
fashion d1, d2, d3, d4 where the values are the result of execution of Protocol
5.5 (distance between a point and a line segment) with respective inputs
(P1 and S2), (P2 and S2), (P3 and S1), and (P4 and S1).

2. Bob computes the line through his segment, which is L2(A, B, C) where
A = y4 − y3, B = x3 − x4, and C = x3(y3 − y4) + y3(x4 − x3). Alice and
Bob engage in Protocol 5.8 on S1 and L2 storing the results in γ1 in an
XOR-split fashion.

3. Alice computes the line through her segment, which is L1(A, B, C) where
A = y2 − y1, B = x1 − x2, and C = x1(y1 − y2) + y1(x2 − x1). Alice and
Bob engage in Protocol 5.8 on S2 and L1 storing the results in γ2 in an
XOR-split fashion.

4. Alice and Bob engage in secure protocols to output a distance d in a split
fashion, where d is 0 if (γ1 ∧ γ2) and is the minimum of d1, d2, d3, and d4

otherwise.

Figure 5.9. Secure Protocol for Determining the Distance between
Two Line Segments

5.4 Perturbation-Based Techniques

In this Section, we investigate nearest neighbour queries (i.e., the post-office prob-

lem), and introduce several perturbation based techniques for protecting privacy in-

cluding: random perturbation of the client’s position, changing the user’s query into

a grid location, anonymizing the client’s identity, asking multiple queries, and hybrid

techniques. In many of these techniques, the client can use the protection without

the cooperation from the server (i.e., the client can use the server even if all that the

server does is answer nearest neighbour queries for points). Furthermore, some of

the techniques introduce inaccuracies into the answer, but this error is controllable,

and thus the client can choose a privacy-accuracy tradeoff. While these techniques

are less private than the secure protocols outlined earlier, these perturbation based

techniques are more efficient.

84

5.4.1 Random Perturbation of the Client’s Position

This Section presents a solution that is simple in the sense that it does not require

any modification to the way the database does its query-processing. It suffers from

drawbacks that will be pointed out below.

Let ~P denote the position vector of the client, given as a pair of geographic

coordinates. The database contains sites of the kind specified in the query (e.g.,

“gas station”, or “post-office”), and the answer to the query is the database site

nearest to ~P . The results of this Section hold for any distance metric, not only the

Euclidean one.

A simple solution consists of the following steps:

1. The client selects a distance δ large enough that the client deems it acceptable

if his location was known by the remote database with an error of δ. Note that

δ is not known to the database, and may vary from one query to the next even

for the same client (because the privacy/accuracy tradeoff for that client may

change over time, or from one query to the next).

2. The client generates a random vector ~Q of length || ~Q|| = δ, and sends as query

the “fake” position ~P + ~Q.

3. The database responds with a position vector ~R of the database site nearest

to ~P + ~Q.

The privacy parameter δ changes from one query to the next, depending on how

important privacy is to the client at that moment of time, relative to the importance

of an accurate answer (if he is very low on gas and wants the nearest gas station

then he may choose δ = 0).

We now quantify how much “damage” is done, to the quality of the answer, by

the perturbation distance of δ. Let ~S be the true answer, the one that would be

returned by the database if δ had been zero. The damage is the difference between

85

the two distances ~P -to-~R and ~P -to-~S where ~R is the answer returned by the database

in Step 3. In other words, the damage is

||~P − ~R|| − ||~P − ~S||.

Worst-case analysis

We now consider the worst-case value of the damage to the query’s answer, that

results from perturbing the query’s location by δ.

Theorem 5.4.1 If, in a nearest-neighbour proximity query, the client position is

randomized by adding to it a random vector of length δ, then the damage to the

answer is no greater than 2δ:

||~P − ~R|| − ||~P − ~S|| ≤ 2δ.

Furthermore, this bound of 2δ is tight, i.e., there is an example where it is achieved.

Proof. We begin with the proof of the upper bound of 2δ on the damage. The

vectors ~P , ~Q, ~R, ~S are as defined in the above query-processing algorithm. If ~R = ~S

then the damage is zero, hence smaller than 2δ and the proof is done. So assume

henceforth that ~R 6= ~S.

First, observe that:

||~P − ~R|| = ||~P + ~Q− ~Q− ~R|| ≤ ||~Q||+ ||~P + ~Q− ~R|| = δ + ||~P + ~Q− ~R|| (1)

where the triangle inequality was used.

Now, the fact that the answer returned is ~R rather than ~S implies the following

||~P + ~Q− ~R|| ≤ ||~P + ~Q− ~S||
which, using the triangle inequality, gives

||~P + ~Q− ~R|| ≤ ||~Q||+ ||~P − ~S|| = δ + ||~P − ~S|| (2)

Combining (1) and (2) gives

||~P − ~R|| ≤ δ + δ + ||~P − ~S||

86

which gives

||~P − ~R|| − ||~P − ~S|| ≤ 2δ.

This completes the proof of the upper bound.

We now given an example that achieves the bound of 2δ just proved. It suffices

to give a one-dimensional example (in which case the vectors are scalars). Choose

S = 0, Q = +δ, R = 6δ, and P = 2δ + ǫ where ǫ is arbitrarily small (much smaller

than δ). The database gets queried for the site nearest to P + Q = 3δ + ǫ, so it

returns the site R = 6δ. The site nearest to P is S = 0. The damage in that case is

|P −R| − |P − S| = |2δ + ǫ− 6δ| − (2δ + ǫ) = (4δ − ǫ)− 2δ − ǫ = 2δ − 2ǫ

which goes to 2δ as ǫ is made arbitrarily small. �

Average-case analysis

The case of worst-case damage is unlikely to occur, in fact it has measure zero in

a probabilistic model of random (uniformly distributed) sites, queries, and “pertur-

bation vectors” ~Q (with a fixed modulus δ for the perturbation, so only its direction

is random). In such a probabilistic model, what is the expected value of the damage?

This Section provides an answer, under one assumption we need to make so as to

handle the case of the perturbation vector ~Q taking the query “outside the map”,

i.e., outside the region in which the n sites lie; to avoid this troublesome situation,

and for the sake of making the analysis tractable, we henceforth assume that the

map wraps around as on the surface of a sphere (hence no perturbation can result

in crossing the map’s boundary, as there is no boundary). If the map in reality does

have a boundary, then our analysis still has some validity as an approximation be-

cause what it means then is that we are only concerning ourselves with points that

are “well within” the bounding box containing the n sites, that we exclude from the

analysis “boundary effects” caused by perturbations that cause boundary-crossing,

or due to sites close to the boundary of the bounding box. In such a case, the justifi-

cation for excluding the boundary sites from the analysis is that they are a negligible

87

fraction of the total number n of sites – in fact they are zero percent for an infinitely

large n (the ratio of boundary to total has a
√

n in its denominator and hence goes

to zero as n goes to infinity).

Theorem 5.4.2 The expected damage is no larger than δ, that is,

E(||~P − ~R|| − ||~P − ~S||) ≤ δ.

Proof. First, observe that the “nearest-neighbour” distance statistics are location-

independent. This implies the following

E(||~P − ~S||) = E(||~P + ~Q− ~R||) (3)

because ~S is to ~P what ~R is to ~P + ~Q (namely, the site nearest to it). Now observe

that

||~P − ~R|| = ||~P + ~Q− ~Q− ~R|| ≤ ||~Q||+ ||~P + ~Q− ~R|| (4)

where the triangle inequality was used. Taking expectations in Equation (4) and

then using Equation (3) gives

E(||~P − ~R||) ≤ δ + E(||~P − ~S||)
and we therefore have:

Expected Damage = E(||~P − ~R|| − ||~P − ~S||) ≤ δ

which completes the proof. �

Discussion of Location Perturbation

The disadvantages of the above technique are: i) the server learns the proximity

of the client and ii) there are inaccuracies in the answer (albeit inaccuracies that

are controllable by the client). However, the client can use this approach without

cooperation from the server and the scheme is very efficient.

5.4.2 Grid Method

In this Section, we present a variation on the scheme presented in the previous

Section: Unlike the previous Section, this variant does not result in any loss of

88

accuracy, but it potentially requires more communication. The idea behind this

scheme is to “grid” the plane, covering it with tiles of dimensions λ × λ; after this

gridding of the plane, the client queries the database with the tile that contains

the client’s location. The database answers the query with all sites that are closest

to at least one point in the query tile; that is, if v is any point of the query tile

(not necessarily a site) and site w is the closest site to v, then w is a part of the

answer that the database will return to the client (note that w could be inside the

query tile, or outside of it, and that a site inside the query tile is always chosen

as a part of the answer). Upon receiving these sites the client determines which of

them is closest to his actual location. The disadvantage of this scheme is that the

client has potential to receive many sites in response to the query – the expected

number received depends on λ but also on the average density ρ of sites per unit

area (the two determine the expected number of sites per tile, which is λ2ρ). Note

that, if the n points are inside a ∆×∆ bounding box, then ρ = n/∆2. It would be

interesting to determine precisely the expected number of sites returned (with the

correct constant factors), assuming a randomly selected query tile and (as usual)

uniformly distributed sites. Since we already know that points inside the query tile

are always included in the answer, their expected number λ2ρ (= nλ2/∆2) is a lower

bound on the expected number of sites returned.

A refinement of the above scheme is to have the database treat the answers that

would be returned by the above scheme merely as “candidates” for the one site that

is returned as answer: The site that has the largest number of “votes” from within

the tile. In other words, if v and w are as above, then the winning candidate w is

the one with the largest number of v’s in the tile that “choose it” as the nearest site

to them. This variant, which we call one-answer variant of the grid method, does

not have the increased communication because a single site is returned as answer,

but it does have an accuracy tradeoff that is quantified below.

89

Worst-Case Analysis of One-Answer Variant

Theorem 5.4.3 In the grid method, the worst-case damage to a query’s answer is

no greater than twice the tile diameter. Furthermore, this bound is tight, i.e., there

is an example where it is achieved.

Proof. Same as for Theorem 1, except that || ~Q|| is no longer δ but rather the

random distance between the actual client location ~P , and the location ~P ′ within

the tile that is “responsible” for the fact that it is the site ~R that was returned as

the answer; that is, ~Q = ~P ′ − ~P . Hence || ~Q|| is, in the worst case, the diameter of a

λ× λ tile. �

Corollary 1 In the grid method and using the Euclidean distance metric, the worst-

case damage to a query’s answer is no greater than 2
√

2λ. Using the Manhattan

distance L1 the worst-case damage is no more than 4λ. Using the L∞ distance it is

no more than 2λ.

Alternative Proof:

Theorem 5.4.4 In the grid method, the worst-case damage to a query’s answer is

no greater than the tile diameter. Furthermore, this bound is tight, i.e., there is an

example where it is achieved.

Proof. Clearly, the answer that is returned will be the location that is closest to the

centroid of the tile. If the answer that is returned is inside the tile then this bound

is obviously the maximum distance between two points in the tile is no larger than

the diameter of the tile (from now on the diameter for the tile is referred to as d).

We now consider points outside the tile.

In what follows we use ~P to denote the client’s location vector, ~Q to denote the

tile’s centroid vector, ~R to denote the database’s answer vector, and ~S to denote the

true answer to the client’s query.

90

Now, all that we must show is that ||~P − ~R|| − ||~P − ~S|| ≤ d. From the triangle

inequality,

||~P − ~R|| = ||~P + ~Q− ~Q− ~R|| ≤ ||~P − ~Q||+ || ~Q− ~R|| ≤ d
2

+ || ~Q− ~R|| (5)

and

||~P − ~S|| = ||~P + ~Q− ~Q− ~S|| ≥ ||~Q− ~S|| − ||~P − ~Q|| ≥ ||~Q− ~S|| − d
2

(6)

Thus combining equations (5) and (6) gives

||~P − ~R|| − ||~P − ~S|| ≤
(d

2
+ || ~Q− ~R||)− (|| ~Q− ~S|| − d

2
) =

d + || ~Q− ~R|| − ||~Q− ~S|| ≤ d

We now give an example that achieves the bound of the diameter of the tile that

was just proved. It suffices to give a one-dimensional example (in which case the

vectors are scalars). Choose S = λ − ǫ, P = 2λ, R = 4λ, and Q = 2.5λ where ǫ is

arbitrarily small. The database receives a query for the tile [2λ, 3λ] so it returns the

site R = 4λ. The site nearest to P is S = λ− ǫ. The damage in that case is

|P −R| − |P − S| = |2λ− (4λ)| − |(2λ− (λ− ǫ)| = (2λ)− (λ + ǫ) = λ− ǫ

which goes to λ (which is the diameter of the tile in one dimension) as ǫ is made

arbitrarily small. �

Average-Case Analysis of One-Answer Variant

The average-case damage, on the other hand, is not the same as in Theorem 2

with δ replaced by the tile diameter, because that δ was fixed, whereas in this case

the “implied perturbation” is random. The following theorem assumes the Euclidean

distance.

Theorem 5.4.5 In the grid method and using the Euclidean distance metric, the

expected damage to a query’s answer is no larger than cλ where

c = (2 +
√

2 + 5 ln(1 +
√

2))/15 = 0.521405 · · ·

Proof. In what follows we use ~P to denote the client’s location vector, ~P ′ to denote

the location of that point in the tile that is responsible for causing the database to

91

return ~R as answer, and ~S to be the true answer to the query. As in the proof of

Theorem 2 (and under the same wraparound assumption as in that proof), we use

the fact that the “nearest-neighbour” distance statistics are location-independent,

which implies the following

E(||~P − ~S||) = E(|| ~P ′ − ~R||) (5)

because ~S is to ~P what ~R is to ~P ′ (namely, the site nearest to it). Now observe that

||~P − ~R|| = ||~P + ~P ′ − ~P ′ − ~R|| ≤
||~P − ~P ′||+ || ~P ′ − ~R|| (6)

where the triangle inequality was used. Taking expectations in Equation (6) and

then using Equation (5) gives

E(||~P − ~R||) ≤ E(||~P − ~S||+ E(||~P − ~P ′||)
and therefore

Expected Damage = E(||~P − ~R|| − ||~P − ~S||) ≤ E(||~P − ~P ′||).
Note that E(||~P − ~P ′||) is the expected distance between two random points in a

λ×λ square. It is well known [106] that the expected distance between two random

points in a unit square is equal to the c in this theorem’s statement, which implies

E(||~P − ~P ′||) = cλ

and the proof is complete. �

Discussion of the Grid Method

Comparing the grid method to the random perturbation method of the previous

Section, we note that the λ for the grid method has to be known to the database

(otherwise it cannot process the query), whereas the δ of the perturbation method

was not known to the database.

The grid method is also more rigid for the following practical reasons. If the tiling

is rigid and λ fixed, then the database can pre-compute, off-line, the site-proximity

set of each tile, making it possible to subsequently perform on-line query-processing

very fast (because processing a query tile is then a simple lookup operation). It

92

is, however, expensive (in terms of query-processing computations at the database’s

end) to allow the client to dynamically change the value of λ from one query to the

next – this would mean more computational overhead that cannot be pre-computed

by the database. (As mentioned earlier, the client may wish to adjust the λ parameter

from one query to another, as his privacy/accuracy tradeoff valuation changes.) One

compromise solution would be to have a fixed menu of k available λ values that the

client could choose from, which would combine giving more flexibility to the client

while the database retains the ability to do off-line pre-processing of each tiling’s

site-proximity information; of course the database now has k separate tilings to

maintain.

5.4.3 Anonymization

Another approach consists of accurately revealing to the database the client’s

location but hiding from the database the identity of the client. This can be done

by interposing an anonymizing intermediary – a mix [107] – between the clients

and the database, so the database knows the exact client location for each query

but does not know who asked the query (thus there is no damage to the quality of

the answer to the query). The intermediary knows the client is asking some query

from the database but does not learn anything about the nature of the query or its

parameters because the client-to-database traffic is encrypted [107] in both directions

after the establishment of a session key through the usual cryptographic techniques

[7]. Achieving the necessary “hiding in a crowd” effect, that is needed for foiling

traffic analysis, requires that queries from many clients are handled by the same

intermediary. Making such an intermediary act like a mix [107] provides resistance

to traffic analysis: An eavesdropper could not make the connection between the

traffic incoming from the many clients and the queries outgoing to the (possibly

many) database(s).

93

The main problem with this kind of approach is its vulnerability to misbehavior

by an intermediary: Even though the use of encryption easily hides from the inter-

mediary the query coming from each client (only the database can decrypt it), all is

lost if the intermediary were to collude with the database (the database could then

associate the client’s query and location with the client’s identity). A cascade of

mixes increases the security (collusion by all intermediaries would be needed for the

system to fail), but also the cost and complexity.

Another drawback is that implementing a mix is difficult. To achieve a sort of

“hiding in a crowd” without a mix, a simple solution would be for the client to send

several locations to the database. All that the database learns is that the client

is at one of several locations. The advantages of this scheme are its simplicity in

that the database does not need to do anything other than answer queries. How-

ever, the disadvantages are that the level of privacy-protection is minimal and the

communication complexity is larger than previous solutions.

The above approach could be modified to use the techniques in Section 5.4.1

(i.e., the client sends several perturbed points to the database). In a naive hybrid

approach, the client would send multiple queries that are perturbations of his actual

location, and the client would choose the resulting answer that was closest to his

true location. This technique is flawed because the server can take the centroid of

the points to obtain an accurate estimate of the client’s location. A better approach

is to perturb the client’s location and then choose a set of perturbed points from

this location. This provides a higher level of privacy and accuracy than the previous

techniques, but comes at a cost in performance.

5.5 Summary

In this Chapter we have introduced privacy-preserving computational geometry

protocols with applications to route planning. These applications include: planning

of routes that do (or do not) get close to certain objects, planning routes of objects

94

with constant velocities that do not get within a certain distance of each other,

and planning routes of objects that do not get within certain distances of each other

without knowing the exact velocity of the objects beforehand. We have also explored

various perturbation based techniques that the client can use without a cooperating

server. These techniques are more efficient than standard secure protocols, but this

comes at the expense of accuracy, privacy, or communication. However, we believe

that there are situations where these latter techniques are useful.

95

6 CONTRACT NEGOTIATION

6.1 Introduction

Suppose Alice and Bob are two entities who are negotiating a joint contract,

which consists of a sequence of clauses (i.e., terms and conditions). Alice and Bob

are negotiating the specific value for each clause. Example clauses include:

1. How will Alice and Bob distribute the revenue received for jointly performing

a task?

2. Given a set of tasks, where Alice and Bob each have a set of tasks that they

are willing and able to perform, who performs which tasks?

3. Given a set of locations to perform certain tasks, in which locations does Alice

(Bob) perform her (his) tasks?

Alice and Bob each have private constraints on the acceptability of each clause

(i.e., rules for when a specific term is acceptable). A specific clause is an agreement

between Alice and Bob if it satisfies both of their constraints. In a non-private

setting, Alice and Bob can simply reveal their constraints to one another. However,

this has two significant drawbacks: i) if there are multiple possible agreements how do

Alice and Bob choose a specific agreement (some are more desirable to Alice, others

are more desirable to Bob), and ii) the revelation of one’s constraints and preferences

is unacceptable in many cases (e.g., one’s counterpart in the negotiation can infer

information about one’s strategies or business processes). This second problem is

exacerbated when Alice and Bob are competitors in one business sector but cooperate

in another sector. We propose a framework and protocols that facilitate contract

negotiation without revealing private constraints. There are two components to such

96

a negotiation: i) the ability to determine if there is a contract that satisfies both

parties’ constraints (without revealing anything other than ”yes/no”) and ii) if there

is a contract that satisfies both parties’ constraints, then a protocol for determining

a contract that is valid (acceptable to both parties), fair (when many valid outcomes

are possible one of them is selected randomly with a uniform distribution, without

either party being able to control the outcome), and efficient (no clause is replaceable

by another that is better for both parties).

We introduce protocols for both of these tasks in the semi-honest model (i.e., the

parties will follow the protocol steps but may try to learn additional information).

The results of the Chapter are summarized as follows:

• The definition of a framework for privacy preserving contract negotiation. This

framework allows multiple independent clauses, but can be extended to support

dependencies between clauses.

• Protocols for determining if there is a valid contract according to both parties’

constraints.

• Protocols for determining a fair, valid, and efficient contract when there is such

a contract. The most difficult of these requirements is fairness, and we believe

that the ability to choose one of several values without either party having

control of the value will have applications in other domains.

The rest of the Chapter is organized as follows. In Section 6.2, an overview of

related work is given. Section 6.3 outlines the framework for secure contract negoti-

ation. Section 6.4 describes protocols for computing the satisfiability of a clause as

well as for computing a fair term for a clause. In Section 6.5, we discuss extensions

to our protocols that allow Alice and Bob to make preferences. Section 6.6 intro-

duces several other extensions to our framework. Finally, Section 6.7 summarizes

our results.

97

6.2 Related Work

The authors are not aware of any directly related work in this area. Much of the

previous work in automated contract negotiation [108,109] focuses on creating logics

to express contract constraints so that agreements can be computed. Our work is

not to be confused with simultaneous contract signing [7], which solves the different

problem of achieving simultaneity in the signing of a pre-existing already agreed-upon

contract. The closest work is in [110], which deals with user preference searching in

e-commerce. The problem addressed here is that a vendor may take advantage of a

customer if that vendor learns the customer’s constraints on a purchase (type of item,

spending range, etc.). To prevent this, [110] suggests using a gradual information

release.

6.3 Secure Contract Framework

In this Section we introduce a framework for secure contract negotiation. We

begin with several definitions:

• A clause is a public set S = {s0, . . . sN−1} of possible values. We refer to each

of these values as terms. We assume that Alice and Bob can agree on S at the

start of the negotiation. Furthermore, there is a defined ordering of the terms,

so that si is the ith term in the set.

• For each clause S, Alice (Bob) has a set of constraints on the acceptability

of each of that clause’s terms. These constraints are represented by sets A

(respectively, B), where A ⊆ S (B ⊆ S) and A (B) is the set of all terms for

clause S that are acceptable to Alice (Bob).

• A term x ∈ S is acceptable iff x ∈ (A ∩B).

• A clause is satisfiable iff A ∩ B 6= ∅, i.e., there is a term for the clause that is

acceptable to both Alice and Bob.

98

• A negotiation is a sequence of clauses S0, . . . , Sk−1. In this paper, we assume

that these clauses are independent (i.e., that the acceptability set of one clause

does not depend on the outcome of another clause). We briefly discuss how to

extend our protocols for dependent clauses in Section 6.6.3. A negotiation is

satisfiable iff each clause is satisfiable.

• A contract for a negotiation is a sequence of terms x0, . . . , xk−1 (where xi ∈ Si).

A contract is valid if each term is acceptable to both parties. A valid contract

is efficient if no term in it is replaceable by another term that is better for both

Alice and Bob (according to their respective private valuation functions).

Example 7 Suppose Alice and Bob are entities that jointly manufacture some

type of device, and furthermore they must negotiate where to manufacture the de-

vices. The clause could take the form S = {London, New York, Chicago, Tokyo,

Paris, Ottawa}. Now suppose Alice’s constraints are A = {London, New York, Paris,

Ottawa} and Bob’s constraints are B = {London, Tokyo, Paris, Ottawa}. The set

of acceptable terms are those in A ∩B = {London, Paris, Ottawa}.
We now outline the framework for our protocols. Protocols for computing the

satisfiability of a clause and an acceptable term for the clause are given in the next

Section. However, this needs to be extended to the contract level, because the

individual results for each clause cannot be revealed when the negotiation is not

satisfiable. Given a protocol that evaluates whether or not a clause is satisfiable

in a split manner, then it is possible to determine if the contract is satisfiable. A

contract is satisfiable if and only if all clauses are satisfiable, which can be computed

easily by computing the AND of many split Boolean values using Scrambled Circuit

Evaluation. A key observation is that if a negotiation is satisfiable, then to find a

valid and fair contract one can find the individual valid and fair clause agreements

independently. Thus given secure protocols for determining whether a clause is

satisfiable and a protocol for determining an acceptable fair term for a satisfiable

clause, it is possible to compute these same values at the negotiation level.

99

6.4 Secure Contract Term Protocols

In this Section, we introduce private protocols for computing: i) the satisfiability

of a clause(yes/no) and ii) a fair agreement for satisfiable clauses (recall that fair

means that the term is chosen uniformly from the set of all acceptable terms and that

neither party has control over the outcome). We postpone discussion of protocols

for computing efficient agreements until Section 6.5. We now define some notation

for our protocols. We assume that Alice and Bob are negotiating a specific clause

with N terms. We represent Alice’s (Bob’s) acceptability for ith term as a Boolean

value ai (bi).

6.4.1 Determining Satisfiability

A clause is satisfiable iff
N−1
∨

i=0

ai ∧ bi is true. Clearly, this satisfiability predicate be

computed with Scrambled Circuit Evaluation with O(N) communication and O(1)

rounds. It is worth noting that Set Disjointness trivially reduces to this problem (in

fact it really is the same problem), and thus there is an Ω(N) communication lower

bound on this protocol [64].

6.4.2 Computing a Fair Acceptable Term

In this Section we introduce a protocol for computing a fair acceptable term for

a clause that is known to be satisfiable. Figure 6.1 describes the protocol template

for computing these values.

Input: Alice has a set of binary inputs a0, . . . , aN−1 and likewise Bob has a set
of inputs: b0, . . . , bN−1. Furthermore it is known that ∃i ∈ [0, N) such that ai∧ bi

is true.
Output: An index j such that aj ∧ bj is true, and if there are many such indices,
then neither party should be able to control which index is chosen (by modifying
their inputs).

Figure 6.1. Protocol Description

100

Figure 6.2 describes our protocol for computing a fair acceptable term. However,

we also discuss three elements about the protocol’s difficulty including: i) we show

that semi-honest chosen OT reduces to the above mentioned problem, ii) we discuss

a solution using circuit simulation for this problem, and iii) we show a false start for

this problem that demonstrates the difficulty of a sub-linear communication protocol.

A Reduction from Semi-Honest OT

Suppose Bob is choosing 1 out of N items (item i) from Alice’s list of binary

values v0, . . . , vN−1. Alice and Bob define a list of 2N values. Alice creates a list

where item a2j+vj
is true and a2j+1−vj

is false for all j ∈ [0, N). Bob creates a similar

list, but sets only values b2i and b2i+1 to true (and all other values are set to false).

Alice and Bob engage in the above mentioned protocol. Clearly from the returned

value, Bob can deduce the value of Alice’s bit vi.

Using Circuit Simulation

In order to make the term fair, the participants could each input a random

permutation into the circuit that would compose the permutations and then permute

the list with the composed permutation. The circuit would then choose the first value

in the list that was an agreement. This would be fair because if at least one party

chose a random permutation than the composed permutation would also be random

(making the first acceptable item a fair choice). However, this would require at least

O(N log N) inputs into the circuit (and thus this many 1-out-of-2 OTs) as this is

the minimum number of bits to represent a permutation. Also, the circuit would

have to perform the permutation, which would involve indirectly accessing a list of

size N exactly N times. The direct approach of doing this would require O(N2)

gates. Thus the standard circuit would require at least O(N log N) OTs (also this

many modular exponentiations) and O(N2) communication. It may be possible to

reduce the number of bits input into the circuit to O(N) by using a pseudorandom

101

permutation, however this would require the computation of a permutation, which

would be a difficult circuit to construct. The protocol we describe requires only

O(N) modular exponentiations, O(N) communication, and O(1) rounds.

Input/Output: See Figure 6.1.
1. Alice does the following:

(a) She chooses a semantically-secure homomorphic encryption function
EA (with modulus MA) and publishes its public keys and public pa-
rameters.

(b) For each item ai in the list a0, . . . , aN−1, she creates a value: αi ←
EA(ai). She sends these values to Bob.

2. Bob does the following:
(a) He chooses a semantically-secure homomorphic encryption function

EB (with modulus MB) and publishes the public keys and the public
parameters.

(b) For each i from 0 to N − 1, Bob chooses/computes:
i. A random value ri chosen uniformly from {0, 1}.
ii. If bi = 0, then he sets βi ← EA(0), and otherwise he sets it to

βi ← αi ∗ EA(0).
iii. if ri = 0, then γi = βi, and otherwise γi =

((βi ∗ EA(MA − 1))MA−1).
iv. δi[0]← EB(ri) and δi[1]← EB(1− ri)

Bob forms ordered triples (γi, δi[0], δi[1]) and randomly permutes all of the
tuples (storing the permutation ΠB), and he sends the permuted list of
ordered triples to Alice.

3. Alice permutes the triples using a random permutation Π′ and then for each
triple in the permuted list (γi, δi[0], δi[1]) (note that these i values are not
the same ones that Bob sent, but are the new values in the permuted list)
she computes/chooses:
(a) ζi ← δi[DA(γi)] ∗ EB(0)
(b) ηi ← ζi ∗ (ηi−1)

2 (if i = 0, then she sets it to ζ0).
(c) She chooses a random qi uniformly from Z

∗
MB

.
(d) θi ← (ηi ∗ EB(−1))qi

Alice permutes the θ values using another random permutation Π′′ and she
computes the permutation ΠA = Π′′Π′. She sends the permuted θ values
along with the permutation ΠA

4. Bob decrypts the values with DB and finds the value that decrypts to 0;
he then finds the original index of this value by inverting the permutation
and he announces this index.

Figure 6.2. Protocol FIND-AGREEMENT

102

Some False Starts for Sub-Linear Communication

It would be desirable for a protocol to have sub-linear (in terms of the number of

possible terms) communication. A possible strategy for this is to use a randomized

approach. This solution works well if it is known that the sets have a “substantial”

intersection, but all that is known is that there is at least one item in the intersection.

Furthermore, the participants do not want to leak additional information about

their own sets, including information about their mutual intersection. And thus any

probabilistic strategy must behave as if there is only a single item in the intersection,

and such a protocol would not have sub-linear communication. As a final note if the

contract is to be fair and efficient then there is a lower bound on the communication

complexity of Ω(N) (we prove this in Section 6.5).

Proof of Correctness

Before discussing the security of the above protocol, we show that the protocol is

correct in that it computes an agreement. It is easy to verify that the permutations

do not affect the result as they are reversed in the opposite order that they were

used, and thus our correctness analysis ignores the permutations. We consider a

specific term with respective acceptability for Alice and Bob as ai and bi (we use ci

to denote ai ∧ bi). We now trace the protocol describing each variable:

1. The value αi is EA(ai).

2. The value βi is EA(ci).

3. It is easy to verify that the value γi is EA(ci⊕ri) (where⊕ denotes exclusive-or).

4. The value δi[0] is EB(ri) and the value δi[1] is EB(1− ri)

5. Now, ζi is δi[0] when ci = ri and is δi[1] otherwise. This implies that ζi =

EB(ci).

103

6. Let î be the first index where ζî is EB(1). For i < î, the value ηi will be EB(0).

Furthermore, the value ηî will be EB(1). However, for i > î the value ηi will

be something other than EB(1), because ηi = ζi + ηi−1
2.

7. If ηi = EB(xi), the value θi will be EB(qi(xi−1)), this value will be EB(0) only

when xi = 1, which will only happen at i = î. �

Proof of Security (semi-honest model)

There are two parts to proving that this protocol is secure: i) that Alice (or Bob)

does not learn additional information about indices that are not the output index,

and ii) since we consider the permutations to be inputs into the protocol, we must

show that that a party cannot choose its permutation to affect the outcome. Since

Alice and Bob’s roles are not symmetrical in the protocol, we must prove security

for both cases.

Alice

We introduce an algorithm SB (mnemonic for “Simulate Bob”) that takes Alice’s

inputs and creates a transcript that is computationally indistinguishable from Alice’s

view in the real model. This algorithm is shown in Figure 6.3.

Input: Alice sees a0, . . . , aN−1, EA, DA, EB and she sees the output index j.
Output: Alice must generate values indistinguishable from Bob’s values in step
2; these values are triples of the form (γi, δi[0], δi[1])

1. Alice generates a sequence of values b̂0, . . . , b̂N−1 where where b̂i is chosen
uniformly from {0, 1} if i 6= j and is 1 if i = j.

2. Alice generates a sequence of random bits r0, . . . , rN−1 chosen uniformly
from {0, 1}.

3. Alice creates tuples of the from (EA(ri ⊕ (ai ∧ b̂i)), EB(ri), EB(¬ri)).
4. Alice permutes the items using a random permutation and then outputs

these tuples.

Figure 6.3. Algorithm SB

104

Lemma 1 In the semi-honest model, SB is computationally indistinguishable from

Alice’s view from running FIND-AGREEMENT.

Proof: Since EB is semantically-secure, the second and third elements of the

tuple are indistinguishable from the real execution. To show that the first item is

computationally indistinguishable, we must show two things: i) that the decrypted

values are indistinguishable (since Alice knows DA), and ii) that from Alice’s previous

information that she created in Step 1 she cannot distinguish the values.

To show (i), the decrypted values from SB are chosen uniformly from {0, 1}. In

the real execution the values are EA(ci⊕ri), where ri is chosen uniformly from {0, 1}.
Thus, the sequences are indistinguishable.

Part (ii) follows from the statement that Bob performs at least one multiplication

on each item or he generates the values himself. By the properties of semantically

secure homomorphic encryption, this implies that these values are indistinguishable.

�

Lemma 2 In the semi-honest model, Alice cannot control which term is chosen by

selecting her permutation in the protocol FIND-AGREEMENT.

Proof: The composition of two permutations, with at least one being random,

is random. Thus, when Bob randomly permutes the tuples in Step 2, Alice cannot

permute them in a way that benefits her, as she does not know Bob’s permutation.

Thus, when she computes the θ values the permutation is random and the term is

chosen fairly.

�

Bob

We introduce an algorithm SA (mnemonic for “Simulate Alice”) that takes Bob’s

inputs and creates a transcript that is computationally indistinguishable from Alice’s

view in the real model. This algorithm is shown in Figure 6.4.

105

Lemma 3 In the semi-honest model, SA is computationally indistinguishable from

Bob’s view from running FIND-AGREEMENT.

Proof: Since EA is semantically-secure, the values EA(â0), . . . , EA(âN−1) are in-

distinguishable from the real execution and the permutation Π̂ is also indistinguish-

able. To show that the the values θ̂0, . . . , θ̂N−1 are computationally indistinguishable

from the real execution, we must show two things: i) that the decrypted values are

indistinguishable (since Bob knows DB), and ii) that from his computations from

Step 2, he cannot distinguish the values.

To show (i), the values in SA are N − 1 random values and a single 0 value

where the 0 is placed randomly. And since in Step 3.d of the protocol, Alice mul-

tiplies the values by a random value and then permutes the items these values are

indistinguishable.

To show (ii), all that needs to be shown is that Alice restores the semantic security

property, which is clearly done in Step 3.a of the protocol, when she multiplies by

EB(0). �

Lemma 4 In the semi-honest model, Bob cannot control which term is chosen by

selecting his permutation in the protocol FIND-AGREEMENT.

Proof: The composition of two permutations, with at least one being random,

is random. Thus when Alice permutes the list with Π′ the values are randomly

permuted, and when the first agreement is chosen from this list, it is fairly chosen.

�

6.5 Expressing Preferences

It is of course unrealistic to assume that Alice and Bob have sets of acceptable

states that are all equally desirable. There can be many terms for a clause that are

a win-win situation for Alice and Bob (i.e., both prefer a specific term), however

the random selection provided by FIND-AGREEMENT does not allow the choice of

106

Input: Bob sees b0, . . . , bN−1, EB, DB, EA and he sees the output index j.
Output: Bob must generate values indistinguishable from Alice’s values in steps
1 and 3; these values include: EA(a0), . . . , EA(aN−1), θ0, . . . , θN−1 and Π.

1. Bob generates a sequence of values â0, . . . , âN−1 where where âi is chosen
uniformly from {0, 1} if i 6= j and is 1 if i = j.

2. Bob generates a list of N items θ̄0, . . . , θ̄N−1 where the jth value is 0 and all
other values are chosen uniformly from Z

∗
MB

. He then creates a random per-

mutation Π̂ and permutes the values. Call this permuted list θ̂0, . . . , θ̂N−1.
3. Bob outputs EA(â0), . . . , EA(âN−1), θ̂0, . . . , θ̂N−1 and Π̂.

Figure 6.4. Algorithm SA

contracts that are efficient in the sense that both parties may prefer another term.

Therefore by efficient we mean Pareto-optimal: Any improvement for Alice must be

at the expense of Bob and vice-versa. In this Section, we describe an extension that

allows Alice and Bob to make preference choices through arbitrary utility functions

that assign a desirability score to each term. We then filter out all terms that are

not Pareto-optimal.

Let UA(x) (respectively, UB(x)) denote Alice’s (Bob’s) utility for term x. In this

Section we introduce a filtering protocol FILTER, that filters out inefficient solutions.

We assume that any terms that are deemed unacceptable to a party have utility of

0 for that party, and we assume that all acceptable terms have unique utility (i.e,

there are no ties). This last constraint is reasonable since if two terms have equal

desirability, then the parties can easily just randomly assign unique utilities to each

of the terms to break the ties.

Example 8 Returning to our example where S = {London, New York, Chicago,

Tokyo, Paris, Ottawa}, A = {London, New York, Paris, Ottawa} and B = {London,

Tokyo, Paris, Ottawa}. Suppose Alice sets her utilities to {London(3), New York(4),

Chicago(0), Tokyo(0), Paris(1), Ottawa(2)}, and Bob sets his utilities to {London(3),

New York(0), Chicago(0), Tokyo(1), Paris(4), Ottawa(2)}. Recall that the original

list of acceptable terms with utilities is {London(3,3), Paris(1,4), Ottawa(2,2)}. In

107

this case Ottawa is an inefficient solution for this negotiation, because both parties

prefer London to it. Thus the efficient terms are {London,Paris}.
It suffices to give a protocol for marking the terms of S that are inefficient. We do

this by computing a value between Alice and Bob that is XOR-split (i.e., each party

has a value, and the exclusive-or of their values is equal to the predicate “term is

efficient”). It is a natural extension of the FIND-AGREEMENT protocol to utilize

such values and we describe some of the details in Section 6.5.1. We omit a detailed

proof of security, as this is a natural extension to the proofs outlined before. This

filtering process is described in Figure 6.5.

Input: Alice has binary values a0, . . . , aN−1, a set of integer utilities
A0, . . . , AN−1, a homomorphic encryption schemes EA (where the modulus is
MA) and DA. Bob also has a list of binary values b0, . . . , bN−1, a set of integer
utilities B0, . . . , BN−1, and has EA. It is also known that there is a term where
ai ∧ bi = 1.
Output: Alice has binary values ā0, . . . , āN−1 and Bob has b̄0, . . . , b̄N−1 where
āi ⊕ b̄i = ai ∧ bi and the utility (Ai, Bi) is not dominated by another term.
Furthermore, this list can be in any order.

1. Alice sends Bob EA(A0), . . . , EA(AN−1).
2. For each i from 0 to N − 1, Bob does the following:

(a) Bob chooses a random values ri in ZMA
.

(b) If bi = 1, then Bob computes αi = EA(ai) ∗ EA(−ri). And if bi = 0,
then Bob computes αi = EA(−ri)

Bob sorts the α values in descending order according to his utility function.
He sends these “sorted” values to Alice.

3. Alice decrypts these values to obtain c′i and Bob sets c′′i = ri (note that
ci = AΠ(i) (for some permutation Π) if aΠ(i) ∧ bΠ(i) and is 0 otherwise).

4. Alice and Bob engage in a Scrambled Circuit Evaluation that for each i
from 0 to N − 1, computes the maximum of the first i− 1 items (for i = 0
this is 0) and calls it mi (which is stored in a split fashion). The circuit
then sets āi and b̄i to (mi < ci) ∧ (ci 6= 0) in a XOR-split fashion. Clearly,
this circuit can be constructed with O(N) comparison circuits.

Figure 6.5. Protocol FILTER

108

6.5.1 Extending FIND-AGREEMENT

The only difference is that the protocol has to work on split values. We must

show how Bob learns the values EA(ai ∧ bi). In this case Alice and Bob have values

ai and bi where ai ⊕ bi is true iff both Alice and Bob find this term satisfiable and

it is efficient. We now give a modified Step 1 and 2 of the FIND-AGREEMENT

protocol to achieve this (we only describe things that are different):

1. Alice does the following: For each item ai in the list a0, . . . , aN−1, she creates

pairs: (EA(ai), EA(¬ai)). She sends these values to Bob.

2. Bob does the following: For each i from 0 to N − 1, Bob chooses/computes:

If bi = 0, then he sets βi ← EA(ai) ∗ EA(0), and otherwise he sets it to

βi ← EA(¬ai) ∗ EA(0).

6.5.2 A Lower Bound on Communication Complexity

We now prove that finding a fair and efficient term has a communication com-

plexity of Ω(N). We do this by showing a reduction from Set Disjointness (which

has a lower bound of Ω(N) [64]). We now give a sketch of this proof:

Suppose Alice has a set A and Bob has a set B. Alice and Bob define another

item (call it c) and both include it in their sets. They assign utilities to all items in

their sets randomly, with the condition that the utility of c has to be lower than the

utilities of all other items in their sets. They engage in a protocol to find a fair and

efficient item. If the item is c, then the sets are disjoint and if the item is not c then

the sets are not disjoint. �

6.6 Extensions

In this Section we outline three extensions. In Section 6.6.1 we discuss interactive

negotiation. In Section 6.6.2 we discuss how to make our protocol’s communication

109

proportional to O(|A|+ |B|) (which could be more efficient than our previous solu-

tion). Finally, in Section 6.6.3 we outline how to handle dependent contract terms.

6.6.1 Interactive Negotiations

Consider what happens when the negotiators run the protocol and learn that

no agreement is possible. If the parties abort the negotiation in this case, then

this system may not be very useful for them. We now outline some strategies that

will help the negotiation become more “interactive”. We propose extending our

previous framework to give feedback when there is no agreement possible. One of

the problems with this approach is that the parties can perform a higher level of

probing. We now explore various types of feedback; all of these types of feedback

can easily be computed with simple circuits.

1. Alice and Bob learn how many clauses that are not satisfiable. If this number is

low, then they could modify their values slightly in order to find an agreement,

and if the number if high then they could break off the negotiation.

2. Alice and Bob learn if the number of clauses where there is no agreement is

below some threshold. This clearly reveals less than the previous case, and it

reveals similar information (i.e., it reveals when the parties are “close” to an

agreement).

3. Alice and Bob could assign weights to each clause, and would learn if the

weighted sum of the unsatisfiable clauses is below some threshold. It is possible

that some terms are more difficult to agree upon than others, and thus this

would allow Alice and Bob to have a more precise notion of what is “close”.

4. Alice and Bob learn which clauses are not satisfiable. This reveals substantially

more than any of the previous feedback techniques, but in this case Alice and

Bob can target their changes.

110

5. Alice and Bob learn the clauses for which there is no agreement iff the number

of terms (or weighted sum) is below some threshold. In this case, Alice and

Bob only learn the information when they are close to an agreement. Thus

nothing extra is revealed when the parties are far from an agreement.

6.6.2 Efficient Communication

The protocols outlined before our not particularly efficient if Alice and Bob’s

acceptability sets are much smaller than N . It would be desirable to have protocols

with communication proportional to |A| + |B|. The downside to such a system is

that it reveals “some” additional information, but we believe there are situations

where such values are acceptable to leak. Our protocols can be modified to support

such clauses, through usage of the protocols in [62]. We now give a high level view

of how our protocols can be modified to achieve this.

To determine satisfiability, this is equivalent to determining if Alice and Bob’s

sets are disjoint, which can easily be computed with a circuit after the intersection

is computed, and there is a protocol in [62] that allows such computations.

To compute a valid term we must determine which items in Alice’s list are in Bob’s

list (in a XOR-split fashion, i.e., the result is split between them as in the protocol for

finding and efficient agreement). Given such values, it is easy to compute a fair term

using the protocol described in Section 6.5.1. This can easily be done by engaging

in the set intersection protocol and then using an equality circuit, which is described

in [62].

6.6.3 Dependent Contract Terms

In this Section we briefly outline an extension to our framework for dependent

clauses. Two clauses are dependent if the value of one clause affects the acceptability

set of another clause. For example, the location of a contract might affect which

tasks a company is willing/capable to do. Another issue with dependency is if the

111

dependency relationship is known globally or if it must be hidden. Here we assume

that information about which clauses are dependent is public.

We now present a more formal definition of two-clause dependency (which can

easily be generalized to n-clause dependency). Alice views clause C2 as dependent on

clause C1 if the acceptability set for C2 (call it A2) is a function of the term chosen

for C1. Any contract with dependent clauses can be handled with our framework by

taking every group of dependent clauses C1, . . . , Ck and making a “super”-clause to

represent all of the clauses. The set of states for this “super”-clause would be the

k-tuples in the set C1 × · · · × Ck.

6.7 Summary

In this paper we define protocols for negotiating a contract between two entities

without revealing their constraints for the contract. There are two essential issues

that need to be addressed: i) is there an agreement for a contract and ii) if there is

an agreement, then what is a valid, fair, and efficient contract. To provide efficiency

we propose assigning utilities to terms and then filtering out inefficient solutions.

To provide fairness the protocols choose a random efficient term in such a way

that neither party has control over the choice of the term; the protocol for achieving

fairness is the centerpiece of this exposition. Furthermore, we gave several extensions

to our base protocols, including: feedback techniques, efficiency improvements for

small sets, and protocols for dependent clauses.

112

7 BIOMETRICS

7.1 Introduction

Biometric-based identification starts with a physical measurement for capturing

a user’s biometric data, followed by the extraction of features from the measurement,

and finally a comparison of the feature vector to some previously-stored reference

vector. While biometric-based identification holds the promise of providing unforge-

able authentication (because the biometric is physically attached to the user), it has

a number of practical disadvantages. For example, the storage of reference vectors

presents a serious privacy concern, since they usually contain sensitive information

that many would prefer to keep private. Even from a security standpoint, biometric

information must be stored and transmitted electronically, and, as the old adage

goes, a user only gets nine chances to change her fingerprint password (and only one

chance to change a retinal password). Thus, we would like to protect the privacy of

biometric reference vectors.

One of the major difficulties with biometric information is that, even when it

comes from the same individual, it is variable from one measurement to the next.

This means that standard encryption of the reference vector is not sufficient to

achieve the desired properties. For, even when the reference vector is stored in en-

crypted form, it appears as though the comparison step (comparing a recently-read

biometric image to the reference vector) needs to be done in the clear. That is, stan-

dard techniques of comparing one-way hashes (or encryptions) of a stored password

and an entered password cannot be used in the context of biometric authentication,

as two very similar readings will produce very different hash (or encrypted) values.

Unfortunately, this cleartext comparison of biometric data exposes sensitive informa-

tion to capture by an adversary who obtains one of the two in-the-clear comparands,

113

e.g., through spy-ware at the client or at the server. Moreover, in addition to this

comparison-step vulnerability, encrypting the reference vector is obviously not suffi-

cient to protect biometric data from an adversary who learns the decryption key, as

could be the case with a dishonest insider at a financial institution. We next review

previous work in overcoming these difficulties.

7.1.1 Related Work

There is a huge literature on biometric authentication, and we briefly focus here

on the work most relevant to this Chapter. There are two broad approaches: The one

where the comparison is done at the remote server, and the one where the compari-

son is done at the client end (the portable device where the biometric measurement

is done). Most of the recent work has focused on the second category, ever since

the landmark paper of Davida et al. [111] proposed that comparisons be done at the

client end (although their scheme is also useful in the first case, of remote comparison

at the server end). Many other papers (e.g., [112–114], to mention a few) build on

the wallet with observer paradigm introduced in Chaum et al. [115] and much-used

in the digital cash literature; it implies that there is a tamper-proof device avail-

able at the client’s end where the comparison is made. The “approximate equality”

in biometric comparisons is a challenge faced by any biometric scheme, and many

ways have been proposed for overcoming that difficulty while preserving the required

security properties. These include the use of error-correcting codes [111, 116–118],

fuzzy commitments and fuzzy vaults [117, 119, 120] (for encrypting the private key

on the smartcard using fingerprint information), fuzzy extractors [121], and the use

of secure multi-party computation protocols [122]. Some carry out the comparisons

“in the clear” (after decryption), whereas others manage to avoid it. They all rely,

in varying degrees, to one (or more) of the following assumptions: That the portable

device is tamper-resistant (“wallet with observer” based papers), that the portable

device is powerful enough to carry out relatively expensive cryptographic computa-

114

tions (public-key encryption, homomorphic encryption), and sequences of these for

carrying out complex multi-step protocols. See [123,124] for a review and a general

discussion of the pitfalls and perils of biometric authentication and identification

(and how to avoid them), and [125] for a rather skeptical view of biometrics.

In spite of some drawbacks and practicality issues, these schemes have shown

the theoretical (and, for some, practical) existence of secure and private biometric

authentication.

7.1.2 Motivation for Our Approach

Just like the tiny (and weak) embedded microprocessors that are now pervasive

in cars, machinery, and manufacturing plants, so will biometrically-enabled electro-

mechanical devices follow a similar path to pervasiveness (this is already starting to

happen due to security concerns). Not only inexpensive smartcards, but also small

battery-operated sensors, embedded processors, and all kinds of other computation-

ally weak and memory-limited devices may be called upon to carry out biometric

authentication. Our work is based on the premise that biometric authentication will

eventually be used in a such a pervasive manner, that it will be done on weak clients

and servers, ones that can compute cryptographic hashes but not the more expen-

sive cryptographic primitives and protocols; in a battery-powered device, this may

be more for energy-consumption reasons than because the processor is slow. This

paper explores the use of such inexpensive primitives, and shows that much can be

achieved with them.

Our solutions have other desirable characteristics, such as not relying on physical

tamper-resistance alone. We believe that relying entirely on tamper-resistance is a

case of “putting too many eggs in one basket”, just as would be a complete reliance

on the assumed security of a remote online server – in either case there is a “single

point of failure”. See [126,127] on the hazards of putting too much faith in tamper-

115

resistance. It is desirable that a system’s failure requires the compromise of both the

client and remote server.

7.1.3 Lightweight Biometric Authentication

As stated above, we explore the use of lightweight computational primitives and

simple protocols for carrying out secure biometric authentication. As in the previous

schemes mentioned above, our security requirement is that an attacker should not

learn the cleartext biometric data and should not be able to impersonate users by

replaying encrypted (or otherwise disguised) data. Indeed, we would like a scheme

to be resilient against insider attacks; that is, a (dishonest) insider should be unable

to use data stored at the server to impersonate a user (even to the server). We also

want our solutions to be simple and practical enough to be easily deployed on weak

computational devices, especially at the client, which could be a small smartcard

biometric reader. Even so, we don’t want to rely on tamper-resistant hardware to

store the reference vector at the client. Ideally, we desire solutions that make it

infeasible for an attacker to impersonate a user even if the attacker steals the user’s

client device (e.g., a smartcard) and completely compromises its contents.

Even though the main rationale for this kind of investigation is that it makes

possible the use of inexpensive portable units that are computationally weak (due

to a slow processor, limited battery life, or both), it is always useful to provide such

faster schemes even when powerful units are involved.

7.1.4 Our Contributions

The framework of our work is one where biometric measurement and feature ex-

traction are done in a unit we henceforth refer to as the reader, which we sometimes

refer to informally as the “smartcard,” although this physical implementation of the

reader is just one of many possibilities. It is assumed that the client has physical

possession of the reader and, of course, the biometric itself. The alignment and

116

comparison of the resulting measured feature information to the reference feature

information is carried out at the comparison unit. Both the reference feature infor-

mation and the comparison unit are assumed to be located at the server (at which

authentication of the client is desired). Since authentication for financial transac-

tions is a common application of biometric identification, we sometimes refer to the

server informally as the “bank.”

We present schemes for biometric authentication that can resist several possible

attacks. In particular, we allow for the possibility of an attacker gaining access to

the communication channel between reader and comparison unit, and/or somehow

learning the reference information stored at the comparison unit (reference data

is write-protected but could be read by insiders, spyware, etc.). We also allow

for the possibility of an attacker stealing the reader from the client and learning

the data stored on the reader. Such an attack will, of course, deny authentication

service to the client, but it will not allow the attacker to impersonate the user,

unless the attacker also obtains a cleartext biometric measurement from the user

or the stored reference information at the server. To further resist even these two

latter coordinated multiple attacks, the reader could have its data protected with

tamper-resistant hardware, but we feel such coordinated multiple attacks (e.g., of

simultaneously compromising the reader and the server) should be rare. Even so,

tamper-resistant hardware protecting the memory at the reader could allow us to

resist even such coordinated attacks.

Given such a rich mix of attacks that we wish to resist, it is desirable that the

authentication protocol between reader and comparator not compromise the security

or privacy of biometric information. We also require that compromise of the reference

data in the comparator does not enable impersonation of the user. These security

and privacy requirements pose a challenging problem because biometrics present

the peculiar difficulty that the comparisons are necessarily inexact; they are for

approximate equality. We give solutions that satisfy the following properties:

117

1. The protocols use cryptographic hash computations but not encryption. All

the other operations used are inexpensive (no multiplication).

2. Information obtained by an eavesdropper during one round of authentication

is useless for the next round, i.e., no replay attacks are possible.

3. User information obtained from the comparison unit by an adversary (e.g.,

through a corrupt insider or spyware) cannot be used to impersonate that user

with that server or in any other context.

4. If a card is stolen and all its contents compromised, then the thief cannot

impersonate the user.

Our solutions are based on a decoupling of information between the physical

biometric, the reader, and the server, so that their communication and storage are

protected and private, but the three of them can nevertheless perform robust bio-

metric authentication. Moreover, each authentication in our scheme automatically

sets up the parameters for the next authentication to also be performed securely and

privately. Our scheme has the property that one smartcard is needed for each bank;

this can be viewed as a drawback or as a feature, depending on the application at

hand – a real bank is unlikely to trust a universal smartcard and will insist on its

own, probably as an added security feature for its existing ATM card infrastructure.

On the other hand, a universal card design for our framework of weak computational

clients and servers (i.e., a card that works with many banks, as many of the above-

mentioned earlier papers achieve) would be interesting and a worthwhile subject of

further research. For now, our scheme should be viewed as a biometric supplement

to, say, an ATM card’s PIN; the PIN problem is trivial because the authentication

test is of exact equality – our goal is to handle biometric data with the same effi-

ciency and results as if a PIN had been used. Our scheme is not a competitor for

the powerful PKI-like designs in the previous literature, but rather another point on

a tradeoff between cost and performance.

118

We are not aware of any previous work that meets the above-mentioned security

requirements using only lightweight primitives and protocols. The alignment stage,

which precedes the comparison stage of biometric matching, need not involve any

cryptographic computations even when security is a concern (cf. [122], which imple-

mented a secure version of [128]). It is carrying out the (Hamming or more general)

distance-computation in a secure manner that involves the expensive cryptographic

primitives (in [122], homomorphic encryption). It is therefore on this “bottleneck”

of the distance comparison that we henceforth focus, except that we do not restrict

ourselves to Hamming distance and also consider other metrics.

7.2 Security Definition for Biometric Authentication

7.2.1 Adversary Model

An adversary is defined by the resources that it has. We now list these resources,

and we also consider adversaries that have any combination of these resources:

1. Smartcard (SCU and SCC): An adversary may obtain an uncracked version

of the client’s smartcard (SCU) or a cracked version of the smartcard (SCC).

An adversary with SCU does not see the values on the smartcard, but can

probe with various fingerprints. An adversary with SCC is also able to obtain

all information on the smartcard. We consider an adversary that cracks the

smartcard, modifies it, and then gives it back to the user to be outside of our

adversary model.

2. Fingerprint (FP): An adversary may obtain someone’s fingerprint, by dusting

for the print or by some more extreme measure.

3. Eavesdrop (ESD, ECC, and ECU): An adversary can eavesdrop on various

components of the system. These include: i) The server’s database (ESD)

which contains all information that the server stores about the client, ii) the

communication channel (ECC) which has all information sent between the

119

client and server, and iii) the comparison unit (ECU) which has all information

from ESD, ECC, and the result of the comparison.

4. Malicious (MCC): A stronger adversary would not only be able to eavesdrop

on the communication channel, but could also modify values. We consider

adversaries that can change the comparison unit or the server’s database to be

outside of our attack model.

7.2.2 Security Definitions

We look at the confidentiality, integrity, and availability of the system. The

confidentiality requirements of the system are that an adversary should not be able

to learn information about the fingerprint. The integrity of the system requires that

an adversary cannot impersonate a client. The availability of the system requires

that an adversary cannot make a client unable to login (i.e., “denial of service”). We

now formally define the security requirements for the notions above.

Confidentiality:

We present three oracles that we consider acceptable (from a security standpoint),

and we prove confidentiality by showing an adversary is equivalent to one of these

oracles. In other words if given black-box access to such an oracle an adversary could

emulate the real adversary’s information, then the real adversary is “equivalent” to

the oracle. We assume that the oracle has a copy of the “ideal” fingerprint f̄ .

1. Suppose the adversary has an oracle A : {0, 1}|f̄ | → {0, 1}, where A(f) is

true iff f̄ and f are close. In other words, the adversary can try an arbitrary

number of fingerprints and learn whether or not they are close to each other.

We consider a protocol that allows such adversaries to be strongly secure.

2. Suppose the adversary has an oracle B : ∅ → {0, 1}log |f |, where B() returns the

distance between several readings of a fingerprint (the actual fingerprints are

unknown to the adversary). In other words, the adversary sees the distance

120

between several readings of a fingerprint. We consider a protocol that allows

such adversaries to be strongly secure.

3. Suppose the adversary has an oracle C : {0, 1}|f | → {0, 1}log |f̄ |, where C(f)

returns the distance between f̄ and f . In other words, the adversary can

try many fingerprints and will learn the distance from the ideal fingerprint.

Clearly, this adversary is stronger than the above mentioned adversaries. A

protocol with such an adversary has acceptable security only in cases where

the attack is detectable by the client; thus we call this weakly secure.

Integrity:

To ensure integrity we show that there is a check in place (either by the server

or by the client) that an adversary with the specific resources cannot pass without

having to invert a one-way function or guess a fingerprint. Of course if the adver-

sary can weakly guess the fingerprint, then we say that the adversary can weakly

impersonate the client.

Availability:

The types of denial of service attacks that we consider are those where the ad-

versary can prevent the parties from communicating or can make the parties have

inconsistent information which would make them unable to successfully authenticate.

7.2.3 Summary of Scheme’s Security

Before we define the security of our system, we discuss the security (in the terms

outlined above) of an “ideal” implementation. Such a system would require that the

client use his fingerprint along with the smartcard and that all communication with

the oracle take place through a secure communication channel. The user would be

successfully authenticated to the server if and only if both the fingerprint and the

smartcard were present. Clearly, we cannot do better than such an implementation.

Table 7.1 is a summary of an adversary’s power with various resources (in our

protocol); there are three categories of security: Strong, Weak, and No. The first

121

two categories is defined in the previous Section, and “No” means that the system

does not protect this resource against this type of adversary. Furthermore, we high-

light the entries that are different from an “ideal” system. To avoid cluttering this

exposition we do not enumerate all values in the table below, but rather for entries

not in the table the adversary has capabilities equal to the maximum over all entries

that it dominates.

Table 7.1
Security Properties for Biometric Scheme

Resources Confidentiality Integrity Availability
FP No Strong Strong

SCC and ESD No No No
SCU and FP No No No

MCC and ESD Strong No No
SCU and ESD and MCC No No No

MCC Strong Strong No
SCU Strong Strong No

SCU and ECU Weak Weak No

Observe from the above table that the smartcard is the lynchpin of the system.

While it is desirable to have a protocol that requires both the biometric and the

smartcard, having the smartcard be the lynchpin is preferable to having the biometric

be the lynchpin. The reason for this is that a biometric can be stolen without the

theft being detected, however there is a physical trace when a smartcard is stolen

(i.e., it is not there). The only exception to this is when the adversary has malicious

control of the communication channel and can eavesdrop on the server’s database,

and in this case it can impersonate the client (but cannot learn the fingerprint).

7.3 Some False Starts

In this Section, we outline some preliminary protocols for biometric authentica-

tion that should be viewed as “warmups” for the better solutions given later in the

paper. The purpose of giving preliminary protocols first is twofold: (i) to demon-

122

strate the difficulty of this problem, and (ii) to provide insight into the protocol

given later.

Initially, we give preliminary solutions for binary vectors and for the Hamming

distance, however these preliminary solutions are extended to arbitrary vectors and

other distance functions. The primary question that needs to be addressed is:

“How does the bank compute the Hamming distance between two binary

vectors without learning information about the vectors themselves?”

We assume that the server stores some information about some binary vector f0 (the

reference vector), and that the client sends the server some information about some

other vector f1 (the recently measured biometric vector). Furthermore, the server

authenticates the client if dist(f0, f1), the Hamming distance between f0 and f1, is

below some threshold, ǫ. In addition to our security goal of being able to tolerate a

number of possible attacks, there are two requirements for such a protocol:

• Correctness: the server should correctly compute dist(f0, f1).

• Privacy: the protocol should reveal nothing about f0 and f1 other than the

Hamming distance between the two vectors.

We now give various example protocols that attempt to achieve these goals, but

nevertheless fail at some point:

1. Suppose the server stores f0 and the client sends f1 in the clear or encrypted for

the server. This amounts to the naive (but common) solution mentioned above

in the introduction. Clearly, this protocol satisfies the correctness property,

but it does not satisfy the privacy requirement. In our architecture, this is

vulnerable to insider attacks at the server and it reveals actual biometric data

to the server.

2. Suppose, instead of storing f0, the server stores h(f0||r), the result of a cryp-

tographic one-way hash of f0 and a random nonce, r. The client would then

123

need to compute f1||r and apply h to this string, sending the result, h(f1||r),
to the server. This solution improves upon the previous protocol in that it pro-

tects the client’s privacy. Indeed, the one-way property of the hash function,

h, makes it computationally infeasible for the server to reconstruct f0 given

only h(f0||r). Unfortunately, this solution does not preserve the correctness

of biometric authentication, since cryptographic hashing does not preserve the

distance between objects. This scheme will work only for the case when f0 = f1,

which is unlikely given the noise that is inherent in biometric measurements.

3. Suppose, then, that the server instead stores f0⊕ r and the client sends f1⊕ r,

for some random vector r known only to the client (where ⊕ is the component-

wise XOR of the two vectors). This solution satisfies the correctness property

for biometric authentication, because dist(f0 ⊕ r, f1 ⊕ r) = dist(f0, f1) for the

Hamming distance metric. This solution might at first seem to satisfy the

privacy requirement, because it hides the number of 0’s and 1’s in the vectors

f0 and f1. However, the server learns the positions where there is a difference

between these vectors, which leaks information to the server with each authen-

tication. This leakage is problematic, for after several authentication attempts

the server will know statistics about the locations that differ frequently. De-

pending on the means of how feature vectors are extracted from the biometric,

this leakage could reveal identifying characteristics of the client’s biometric

information. Thus, although it seems to be secure, this solution nonetheless

violates the privacy constraint.

4. Suppose, therefore, that the scheme uses a more sophisticated obfuscating tech-

nique, requiring the server to store Π(f0 ⊕ r), for some random vector r and

some fixed random permutation (over the indices of the vector), Π, known only

to the client. The client can authenticate in this case by sending Π(f1⊕r). This

solution satisfies the correctness property, because dist(Π(f0⊕ r), Π(f1⊕ r)) =

dist(f0, f1), for the Hamming distance metric. Moreover, by using a random

124

permutation, the server does not learn the places in f0 and f1 where differences

occur (just the places where the permuted vectors differ). Thus, for a single

authentication round the server learns only the Hamming distance between f0

and f1. Unfortunately, this scheme nevertheless still leaks information with

each authentication, since the server learns the places in the permuted vectors

where they differ. Over time, because the same Π is used each time, this could

allow the server to determine identifying information of the biometric.

This final scheme is clearly the most promising of the above false starts, in that

it satisfies the correctness and privacy goals for a single authentication round. Our

scheme for secure biometric authentication, in fact, is based on taking this final false

start as a starting point for our actual protocol. The main challenge in making this

scheme secure even for an arbitrarily long sequence of authentications is that we

need a secure way of getting the server and client to agree on future permutations

and random nonces (without violating the correctness and privacy constraints).

We now briefly discuss a variation of our final preliminary protocol for arbitrary

vectors and other distance functions. Suppose that the reference vector (f0) and

the biometric vector (f1) consist of elements chosen from ZΣ and that the proximity

decision is based on a distance function that depends on |f1− f0|. The server stores

Π(f0 + r) (addition modulo Σ) for some random vector r (with elements chosen

from ZΣ) and some random permutation, Π, known only to the client. The client

authenticates by sending Π(f1 + r). Clearly, this scheme suffers from the same

drawbacks as the scheme for Hamming distance.

7.4 Our Schemes for Secure Biometric Authentication

In this Section, we give our protocols for secure biometric authentication. We

begin with a protocol for the case of Boolean vectors where the relevant distance

between two such vectors is the Hamming distance. We later extend this to vectors

of arbitrary numbers and distance metrics that depend on differences between the

125

corresponding components (this is a broad class that contains the Euclidean distance

L2, as well as L1). We use H(·) to denote a keyed hash, where the key is a secret

known to the client and server but not to others. An additional challenge in using

such a function is that we now must prevent someone who accidentally (or mali-

ciously) learns the client information at the server’s end from using that information

to impersonate the client to the server. Likewise, we must maintain the property

that someone who learns the client’s information on the reader should not be able to

use this information (and possibly previously eavesdropped sessions) to impersonate

the client.

7.4.1 Boolean Biometric Vectors

The server (in the database and the comparison unit) and the client (in the

smartcard) store a small collection of values, which are recomputed after each round.

Also, there are q copies of this information at the server and on the card, where q is

the number of fingerprint mismatches before a person must manually re-register with

the server. In what follows, fi and fi+1 are Boolean vectors derived from biometric

readings at the client’s end, Πi and Πi+1 denote random permutations generated

by and known to the client but not the server, and ri, ri+1, si, si+1, si+2 are random

Boolean vectors generated by the client, some of which may end up being revealed

to the server.

Before a round, the server and client store the following values:

• The server has: si ⊕ Πi(fi ⊕ ri), H(si), H(si, H(si+1)).

• The client has: Πi, ri, si, si+1.

A round of authentication must not only convince the server that the client has

a vector fi+1 that is “close” (in the Hamming distance sense) to fi, but must also

refresh the above information. Figure 7.1 shows what a round of the protocol consists

of:

126

1. The client uses the smartcard to read a new biometric fi+1 and to generate
random Boolean vectors ri+1 and si+2 and a random permutation Πi+1.

2. The smartcard connects to the terminal and sends to the server the following
values: Πi(fi+1 ⊕ ri), si, and “transaction information” T that consists of
a nonce as well as some other information related to this particular access
request (e.g., date and time, etc).

3. The server computes the hash of the just-received si and checks that it is
equal to the previously-stored H(si). If this check does not match it aborts
the protocol. If it does match, then the server computes the XOR of si with
the previously-stored si⊕Πi(fi⊕ri) and obtains Πi(fi⊕ri). Then the server
computes the Hamming distance between the just-computed Πi(fi⊕ri) and
the received Πi(fi+1 ⊕ ri).

• If the outcome is a match, then the server sends H(T) to the client.

• If it is not a match, then the server aborts but throws away this set
of information in order to prevent replay attacks; if the server does
not have any more authentication parts, then it locks the account and
requires the client to re-register.

4. The smartcard checks that the value sent back from the server matches
H(T) (recall that H is a keyed hash). If the message does not match, the
smartcard sends an error to the server. Otherwise, the smartcard sends the
server the following information: si+1⊕Πi+1(fi+1⊕ ri+1), H(si+1, H(si+2)),
and H(si+1). It also wipes from its memory the reading of fingerprint fi+1

and of previous random values ri and si, so it is left with Πi+1, ri+1, si+1,
si+2.

5. When the server receives this message it verifies that H(si, H(si+1)) matches
the previous value that it has for this quantity and then updates its stored
values to: si+1 ⊕ Πi+1(fi+1 ⊕ ri+1), H(si+1, H(si+2)), and H(si+1).

Figure 7.1. Protocol for Biometric Authentication

7.4.2 Arbitrary Biometric Vectors

Suppose the biometric vectors fi and fi+1 now contain arbitrary (rather than

binary) values, and the proximity decision is based on a distance function that de-

pends on |fi − fi+1|. To extend our protocol to such distances, all that needs to be

done is to modify the description of the Boolean protocol as follows:

• Each of ri, ri+1 is now a vector of arbitrary numerical values rather than

Boolean values (but si, si+1, si+2 are still Boolean).

127

• Every fj ⊕ x gets replaced in the protocol’s description by fj + x, e.g., fi ⊕ ri

becomes fi + ri. (The length of si must of course now be the same as the

number of bits in the binary representation of fi + ri, but we refrain from

belaboring this straightforward issue.)

The above requires communication O((log |Σ|)n), where Σ is the size of the al-

phabet and n is the number of items. This reveals slightly more than the distance,

in that it reveals the component-wise differences. This information leakage is min-

imal especially since the values are permuted, but clearly a protocol that does not

leak such information is preferred. In the case where the function is
n
∑

i=1

|fi − fi+1|,
then by using a unary encoding for each value this reduces to a Hamming distance

computation, for which the protocols of the previous Section can be used. This does

not reveal the component-wise differences, but it requires O(|Σ|n) communication.

7.5 Security of the Protocols

In this Section, we prove that Table 7.1 in Section 7.2.3 is accurate. First, we de-

fine the information and abilities of the adversaries, and the prove the confidentiality,

integrity and availability constraints.

7.5.1 Adversary Resources

Table 7.2 summarizes the information available to various adversaries. Generally,

an adversary with multiple resources gets all of the information of each resource.

There are cases where this is not the case, e.g., consider an adversary with SCU

and ECC; the adversary can’t see readings of the client’s fingerprint, because the

client no longer has the smartcard and thus is not able to attempt an authentication

protocol.

128

Table 7.2
Resources for Various Adversaries

Adversary Information
FP f

SCU Ability to probe small number of fingerprints
SCC SCU and ri, si, Πi, k
ESD k and several sets of H(si), H(si, H(si+1)), si ⊕ Πi(f ⊕ ri)
ECC Several sets of si, Πi(f ⊕ ri), H(si+1), H(si+2)
ECU ESD and ECC and distances of several readings
MCC ECC and can change values

7.5.2 Proof of Confidentiality

Before we prove the confidentiality requirements we need the following lemma:

Lemma 5 The pair of values (Π(f ⊕ r)) and (Π(f ′⊕ r)) reveals nothing other than

the distance between each pair of vectors f and f ′.

Proof: Suppose we are given a specific distance d (which is the output of the

protocol). We must show that for any pair of vectors (x, x′) with distance d that

there are equally many (Π̄, r̄) pairs such that Π̄(x⊕ r̄) = (Π(f ⊕ r)) and Π̄(x′⊕ r̄) =

(Π(f ′ ⊕ r)). By showing this, we will have shown that the values reveal nothing

other than what can be simulated from their distance (in an information theoretic

sense). Since the distance is d in both cases there will be exactly d locations where

the vectors x and x′ differ. Any permutation Π̄ that maps the positions that x and

x′ differ to the positions that f and f ′ differ will create two vectors that disagree at

the same positions as f and f ′, and there are an equal number of such permutations.

For each such permutation there is a unique vector r̄ such that the values match,

and thus the number of such (Π̄, r̄) pairs is the same regardless of the vectors (x, x′).

�

Theorem 7.5.1 The only cases where an adversary learns the fingerprint are in: i)

FP, ii) SCC and ESD, iii) SCU and ESD and MCC, and iv) any superset of these

cases. In the case of SCU and ECU the adversary weakly learns the fingerprint.

129

Proof: First when the adversary has the fingerprint the theorem is clearly true.

Suppose that the adversary has ECU and MCC, the adversary sees several pairs of

Π(f⊕r) and Π(f ′⊕r) and by Lemma 1, this only reveals a set of distances, which is

equivalent to oracle B and thus is secure. Thus any attack must involve an adversary

with the smartcard in some form. Clearly, any adversary with the smartcard cannot

eavesdrop on communication when the client is logging into the system.

Suppose that the adversary has SCC and MCC. The adversary has no infor-

mation about the fingerprint in any of its information, and since nothing is on the

smartcard and a client cannot login without the smartcard, the fingerprint is pro-

tected. However, if the adversary has SCC and ESD, they can trivially learn the

fingerprint from knowing Πi, ri, si, si ⊕ Πi(f ⊕ ri).

Any adversary with SCU can only probe various fingerprints, as no other in-

formation is given. Suppose that the adversary has SCU and ECU. In this case

the adversary can probe various fingerprints and can learn the distance, which is

equivalent to oracle C and thus is weakly secure. Consider an adversary with SCU

and ESD. In this case it can probe using the SCU, but this is just oracle A. If the

adversary has SCU and MCC, then it can learn s, Π, and r values by stopping the

communication and trying various fingerprints, however the adversary cannot use

this to glean the fingerprint as the client cannot login once the smartcard is stolen.

Finally, if the adversary has SCU and MCC and ESD, then it can learn the values

s, Π, and r and then use the information from ESD to learn the fingerprint. �

7.5.3 Proof of Integrity

Theorem 7.5.2 The only cases where an adversary can impersonate a client are in:

i) SCU+FP, ii) SCC and ESD, iii) MCC and ESD, and iv) any superset of these

cases. In the case of SCU and ECU the adversary weakly impersonate the client.

Proof: We first show that the above mentioned adversaries can impersonate

the client. Clearly an adversary with SCU and FP can trivially impersonate the

130

client. An adversary with SCC and ESD can learn the fingerprint, and again it can

trivially impersonate the client. An adversary with MCC and ESD could perform a

man in the middle attack, since it knows k it can impersonate the server and then

perform a replay attack with the actual server. SCU and ECU can weakly learn the

fingerprint and thus can trivially weakly impersonate the client. It is limited to only

weak impersonation, because if not this would imply that the adversary could learn

the fingerprint, which contradicts Theorem 7.5.1.

Now we must show that any weaker adversary cannot impersonate the client, we

do this by showing that adversaries with i) MCC and FP, ii) ECU and ECC and FP,

iii) SCC and MCC, and iv) SCU and ESD and ECC cannot impersonate the client.

We now enumerate these cases:

1. MCC and FP: Any attack is prevented, because on Step 4 of the protocol

where the smartcard checks if the transaction was hashed with k correctly.

This adversary does not know k and thus cannot generate such a message. If

the protocol has made it this far, then the protocol will not reuse the same

value of s again.

2. ECU and ECC and FP: Since this adversary is passive it cannot disrupt the

flow of any transaction, and thus once a value of s is used it is never used again.

This adversary cannot guess the next value of s without inverting a one-way

function.

3. SCC and MCC: The malicious component does little here, since the client

cannot attempt to login when the adversary has the smartcard. And since the

smartcard contains no information about f this adversary cannot guess the

fingerprint.

4. SCU and ESD and ECC: The adversary cannot listen in on an active trans-

action as it has the smartcard. Also, since it is passive it cannot disrupt the

flow of the login process. The information the adversary has does not allow it

to gain the fingerprint, and thus it cannot impersonate the client.

�

131

7.5.4 Proof of Availability

Theorem 7.5.3 The only cases where an adversary can attack the availability of

the client are in: i) SCU, ii) MCC, and any superset of these cases.

Clearly any adversary with the smartcard in any form can stop availability, as

the client no longer has the smartcard. Furthermore, any adversary that can mali-

ciously control the communication channel can easily prevent the user from sending

the authentication information. To show that no other adversary can mount such an

attack, we consider an adversary with FP and ECU (which is the most powerful ad-

versary that does not have the smartcard or malicious control of the communication

channel). The only way to make the smartcard and the server’s information out of

sync is to know the value si, but this is as hard as inverting a one-way function. �

7.6 Storage-Computation Tradeoff

In this Section, we introduce a protocol that allows q fingerprint mismatches

before requiring the client to re-register with the server, with only O(1) storage, but

that requires O(q) hashes to authenticate. This utilizes similar ideas as SKEY [7];

in what follows Hj(x) denotes the value of x hashed j times. We do not prove the

security of this system as it is a natural extension to the previous protocol. After

the setup the following is the state of the system:

• Server has:
⊕q−1

j=0 Hj(si)⊕ Πi(fi ⊕ ri), Hq(si), and H(Hq(si), H
q(si+1)).

• Client has: Πi, ri, si, and si+1.

After t fingerprint mismatches the server has:
⊕q−t−1

j=0 Hj(si)⊕Πi(fi⊕ri), Hq−t(si),

and H(Hq(si), H
q(si+1)).

The authentication and information-updating round is as follows for the tth at-

tempt to authenticate the client is described in Figure 7.2.

132

1. The client uses the smartcard to read a new biometric fi+1 and to generate
random Boolean vectors ri+1 and si+2 and a random permutation Πi+1.

2. The smartcard connects to the terminal and sends to the server the following
values:

⊕q−t−1
j=0 Hj(si)⊕ Πi(fi+1 ⊕ ri) and Hq−t(si).

3. The server computes the hash of the just-received Hq−t(si) and checks that
it is equal to the previously-stored Hq−t+1(si). If this check does not match
it aborts the protocol. If it does match, then the server computes the
XOR of Hq−t(si) with the previously-stored

⊕q−t
j=0 Hj(si)⊕Πi(fi ⊕ ri) and

obtains
⊕q−t−1

j=0 Hj(si)⊕Πi(fi⊕ri). It then computes the Hamming distance

between the just-computed
⊕q−t−1

j=0 Hj(si) ⊕ Πi(fi ⊕ ri) and the received
⊕q−t−1

j=0 Hj(si)⊕ Πi(fi+1 ⊕ ri).
• If the outcome is a match, then the server sends H(T) (recall that H

is a keyed hash) to the client.
• If it is not a match, then the server updates its values to the following:

⊕q−t−1
j=0 Hj(si) ⊕ Πi(fi ⊕ ri), Hq−t(si), and H(Hq(si), H

q(si+1)). If
t = q, then the server locks the account and requires the client to
re-register.

4. The smartcard checks that the value sent back from the
server matches H(T), and if it is a match then the
smartcard sends the server the following information:
⊕q−1

j=0 Hj(si+1) ⊕ Πi+1(fi+1 ⊕ ri+1), as well as Hq(si+1), and also
H(Hq(si+1), H

q(si+2)). If it does not match, then it sends an error to the
server and aborts. In either case, it wipes from its memory the reading
of fingerprint fi+1 and those previously stored values that are no longer
relevant.

5. When the server receives this message it verifies that H(Hq(si), H
q(si+1))

matches the previous value that it has for this quantity and then up-
dates its stored values to:

⊕q−1
j=0 Hj(si+1) ⊕ Πi+1(fi+1 ⊕ ri+1), Hq(si+1),

and H(Hq(si+1), H
q(si+2)).

Figure 7.2. Storage-Computation Tradeoff for Biometric Authentication

7.7 Conclusions and Future Work

In this Chapter, a lightweight scheme was introduced for biometric authentica-

tion that could be used by weak computational devices. Unlike other protocols for

this problem, our solution does not require complex cryptographic primitives, but

instead relies on cryptographic hashes. Our protocols are secure in that the client’s

fingerprint is protected, i.e., it is “hard” to impersonate a client to the comparison

133

unit, and adversaries with malicious access to the communication channel cannot

steal a client’s identity (i.e., be able to impersonate the client to the comparison unit

after the transaction). To be more precise, an adversary would need the smartcard

and either the fingerprint or the server’s database to impersonate the client.

134

8 SUMMARY

In this thesis we have introduced privacy and confidentiality preserving protocols for

problems in a number of domains. These protocols are more efficient and simple than

the protocols implied by the earlier general constructions. The domains explored by

this thesis include: trust negotiation, credit checking, services for location-aware

devices, contract negotiation, and secure biometric authentication. While these do-

mains may appear to be unrelated other than the privacy-preserving framework, the

significance and applicability of this work is not limited to these specific domains,

as these domains are each a “prototype” for a class of similar applications. The rest

of this Chapter is organized as follows. In Section 8.1 we describe the main results

of this thesis in more detail, and in Section 8.2 we describe future work.

8.1 Summary of Main Results

In this Section we outline the major contributions of this thesis:

1. Comparing Modularly split values and Base Reduction (Sections 3.7.1 and

3.7.2): Previously, when values were split amongst two entities and needed

to be compared, the values were additively split without using modular arith-

metic. The problem with this is that this probabilistically leaks information

when the randomness is chosen near a boundary (i.e., if a non-negative value

x is hidden by adding a random value r in the range [0, R] and the value x + r

is 0, then one can deduce that x is 0). And while the probability of a leak

can be made arbitrary small, it is better to avoid this problem. We showed

that it is possible to compare modular additively split values (which do not

have the above-mentioned problem) under certain reasonable constraints with

similar costs to a standard secure comparison. Furthermore, we introduced

135

base reduction which allows modularly split values to shrink to the minimum

required size (rather than the size of a security parameter).

2. Hidden Credentials and Hidden Access Policies (Section 4.4): We introduced

protocols that allow a client to access materials without revealing his creden-

tials and without learning the server’s access policies. Part of this is achieved

by using secure oblivious circuit evaluation, but another component is verify-

ing that the client actually has credentials. This is complicated by the fact

that the verification authority cannot be an active part of the process. We

introduced techniques that achieve this verification based upon Identity Based

Encryption, Set Intersection, and Scrambled Circuit Evaluation.

3. Credit Checking: (Section 4.5): We investigated a new approach to credit

checking that allows the borrower to protect his credit report yet assures the

lender that the report is accurate. This is done with a three party protocol

between the borrower, the lender, and the credit report agency. The commu-

nication architecture is almost identical to the current system of non-private

credit checking, and thus the CRA’s only task in the protocol is to send the

credit report in a garbled form to the lender. The borrower and the lender

then engage in a protocol to determine loan qualification. Furthermore, this is

achieved without requiring expensive cryptographic operations (nothing more

than symmetric key cryptography).

4. Services for Location-Aware Devices (Chapter 5): We introduced several pro-

tocols for computing various distance functions. The applications for these

techniques include: finding the nearest point of interest to a route, determin-

ing if a route is “safe” or “desirable”, and determining if two routes are too

close. We also investigated efficient techniques based upon data perturbation.

Many of these techniques do not require the server to run a special protocol;

thus these techniques could be used even if the server does not agree to run

a special protocol, but rather just answers nearest neighbor queries in a non-

136

private fashion. Some of these techniques have an accuracy-privacy tradeoff,

and others have a communication-privacy tradeoff, but they are substantially

more efficient than the perfectly secure protocols for these same problems.

5. Contract Negotiation (Chapter 6): We introduced a framework for two-party

contract negotiation. In this framework the users first securely determine if

an agreement is possible: If not then the negotiators will not engage in other

protocols with their current constraints, but if they learn that a valid contract

exists then they securely compute a valid, fair (i.e., one where neither party

controls the outcome) and efficient (i.e., one where no clause is replaceable by

another that is better for both parties) contract. We introduced protocols for

achieving the above that are more efficient than the solutions implied by the

general results of SMC.

6. Biometrics (Chapter 7): We introduced a simple biometric comparison proto-

col that uses only lightweight cryptography. One of the problems with using

biometrics for authentication is that once a biometric is compromised, it is dif-

ficult to change the biometric (it is not desirable to use compromised biomet-

rics). Thus a simple authentication protocol that reveals the actual biometrics

(or features in them) during the authentication is highly risky. Furthermore,

techniques for protecting passwords (such as hashing) do not work with bio-

metrics, as they are inherently noisy. Thus the goal is to have a biometric

authentication system where the server knows that two biometrics are close

without having to know the actual biometrics. We gave lightweight protocols

for achieving the above task.

In summary, we have introduced many new techniques for secure protocols and

have applied them to a number of application domains that cover a broad range of

online interactions. We expect that many of these techniques will be useful in other

domains.

137

8.2 Future Work

In this Section we introduce future work for secure and private online collabora-

tion. In Section 8.2.1 we introduce many interesting problems for specific domains,

and in Section 8.2.2 we describe larger challenges in this area.

8.2.1 Domain Specific Future Work

In this Section we outline specific future work for the domains studied in this

thesis.

Trust Negotiation

While our scheme does not require that the policy be monotonic (i.e., it can

require the absence of a credential), this feature would not be used for practical

reasons (as it is hard to enforce a requirement for the absence of a credential). A

variation on such a scheme is to allow the CA to issue groups of credentials where

the client can use them in an “all or none” fashion. This is similar to a driver’s

license where you cannot use it to give your height without revealing your age.

The advantage of such a scheme is that the client would have to use all of his/her

credentials to use any of them, which could give the client an incentive to use negative

credentials. Thereby, enabling a need to support non-monotonic policies.

Another issue in privacy-preserving trust negotiation is: While our protocols do

not leak information to the server about whether or not a client successfully obtained

access to a message, there are cases where this information is leaked (regardless of

which of out protocols is used). As an example, suppose that the server grants

access to services rather than messages. For some types of services the server cannot

grant access without learning if the client should obtain access to the service. As

another example, suppose that message requests are dependent on the outcome of

previous requests, e.g., suppose that a client requests message M1, which contains

138

a hyperlink to message M2, and then that same client requests M2 a few minutes

later. In this case, the server does not learn for certain that the client successfully

obtained M1, but inferences can be made. Thus, in our scheme for hiding credentials

and policies there is potential for information leakage; that is the server can probe

the client’s credential sets (at least probabilistically). This is particularly damaging

when the gain from learning when a client has a specific credential is more than the

cost of giving a message or service to a non-deserving client, because the server can

then set the policy to be a single credential. This is bad because the client will not

even be able to detect that such probing behavior has occurred. In summary, our

scheme does not adequately protect the client’s credentials against probing by the

server; we call this problem the Sensitive CredentiAl Leakage Problem (SCALP). We

reiterate that SCALP is not due to any specific weaknesses in our protocols, but

rather exists in any system where the server can link transactions to the same client

and has arbitrary freedom about creating the access policy. Since such leakages

are unavoidable in this system, the client may have legitimate concerns about using

credentials that he deems sensitive. Thus when the client is told to protect certain

credentials (e.g., a “top secret clearance” credential), then the client should not use

this credential in our scheme. Clearly, this is problematic for any negotiation system.

A strategy to partially resolve SCALP would be to allow the client and the server to

input access policies for their credentials; thus they could control the situations in

which their credentials may be leaked. Another approach would be to require some

third party off-line verification of the access policy (perhaps by a policy authority),

which would make probing attacks more difficult.

Services for Location-Aware Devices

One direction for future work is computing other distance functions such as dis-

tance between parametric lines with acceleration. Another direction is creating pro-

tocols for a route planner. For example, given a set of points with threshold distances

139

and a start and end point, compute a route from the start point to the end point

without violating the distance thresholds.

There are also many future directions for perturbation-based techniques. For

example, creating perturbation-based techniques and analyzing their error in situ-

ations where the computation is not limited to functions on points (for example a

scheme that perturbs routes). Another direction is to investigate the applicability of

perturbation techniques for determining whether two objects are too close.

Contract Negotiation

Possible future work includes: i) protocols for dependent clauses that are more

efficient than the generic equivalents, ii) protocols for specific terms that are more

efficient than the generic protocols presented in this paper, iii) extending the frame-

work to more than two parties, iv) extending the protocols to a model of adversary

besides semi-honest, and v) extending the framework to allow multiple negotiations

with inter-contract dependencies.

Biometrics

One problem with our protocol is that, for every successful authentication, the

database must update its entry to a new value (to prevent replay attacks), and thus

we pose the following open problem: is it possible for the server to have a static

database and have a secure authentication mechanism requiring only cryptographic

hash functions?

Other Domains

A natural avenue for future research is simultaneously handling all of the facets of

online collaboration that have been studied in this thesis (certified inputs, multiple

outcomes, etc). Furthermore, another area of future work is identifying meaningful

140

new application domains where secure protocols are useful, and to develop protocols

for these domains.

8.2.2 Greater Challenges

In this Section we describe larger challenges in the domain of secure protocols.

1. Implementation: Implementation of many secure protocol techniques would

be very useful. While the general results about secure protocols are quite

voluminous, there is little in the form of implementations. Thus, in order to

understand what is tractable, and to learn where improvements must be made,

an implementation of many such protocols would be a springboard to many

new research problems.

2. Adversary models: Another challenge is in defining new adversary models.

Specifically, developing models that are stronger than the semi-honest model

but not as strong as the malicious model. The malicious model is a very strong

notion in that it allows the adversaries to be arbitrary PPT algorithms. There

may be many cases where the full malicious model is not needed, perhaps due

to the incentives of the players. An example of such a adversary model is: It

is possible for the adversary to achieve some effect that is not achievable in

the ideal model, but the adversary is no better off then if he engaged in the

protocol truthfully. This would be particularly interesting if the protocol for

the weaker model is more efficient than the protocol for the malicious model.

3. Weaker Notions of Privacy: Another problem with secure protocols is the

notion that nothing can be leaked. This is clearly a desirable goal, but we there

may be many cases where this is too restrictive. This would be particularly

interesting if by allowing some information to be leaked that one could create

a protocol that is more efficient than a non-leaky protocol. The difficulty with

141

this approach is defining what “acceptable” losses are, and then creating a

security model that captures this notion.

4. Weaker notion of Robustness: Most of the multi-party protocols require ro-

bustness against Byzantine adversaries. Furthermore, resilience against these

adversaries has been achieved by the general results in an optimal sense, how-

ever this full degree of resilience may not be necessary. It would be interesting

to explore weaker notions of robustness to allow the development of more effi-

cient protocols.

LIST OF REFERENCES

142

LIST OF REFERENCES

[1] O. Goldreich. Cryptography and cryptographic protocols. Journal of Dis-
tributed Computing, 16(2-3):177–199, 2003.

[2] O. Goldreich. Foundations of Cryptography: Volume II Basic Application.
Cambridge University Press, 2004.

[3] S. Goldwasser. Multi-party computations: Past and present. In Proceedings of
the Sixteenth Annual ACM Symposium on Principles of Distributed Computing,
pages 1–6. ACM Press, 1997.

[4] S. Micali and P. Rogaway. Secure computation (abstract). Advances of Cryp-
tology (CRYPTO 1991), LNCS 576:392–404, 1992.

[5] D. Beaver. Foundations of secure interactive computing. Advances in Cryptol-
ogy (CRYPTO 1991), LNCS 576:377–391, 1992.

[6] P. Feldman and S. Micali. Optimal algorithms for byzantine agreement. In Pro-
ceedings of the Twentieth Annual ACM Symposium on Theory of Computing,
pages 148–161. ACM Press, 1988.

[7] B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in
C. John Wiley & Sons, Inc., 2nd edition, 1995.

[8] O. Goldreich. Foundations of Cryptography: Volume I Basic Tools. Cambridge
University Press, 2001.

[9] A.C Yao. Protocols for secure computation. In Proceedings of the 23rd Annual
IEEE Symposium on Foundations of Computer Science, pages 160–164, 1982.

[10] A.C Yao. How to generate and exchange secrets. In Proceedings of the 27th
Annual IEEE Symposium on Foundations of Computer Science, pages 162–167,
1986.

[11] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay – A secure two-party
computation system. In Proceedings of Usenix Security, 2004.

[12] C. Cachin, J. Camenisch, J. Kilian, and J. Müller. One-round secure compu-
tation and secure autonomous mobile agents. Proceedings of Twenty-seventh
International Colloquium on Automata, Languages and Programming, LNCS
1853, 2000.

[13] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In
Proceedings of the Nineteenth Annual ACM Symposium on Theory of Comput-
ing, pages 218–229. ACM Press, 1987.

143

[14] Y. Lindell. Parallel coin-tossing and constant-round secure two-party compu-
tation. Advances in Cryptology (CRYPTO 2001), LNCS 2139:171–189, 2001.

[15] J. Katz and R. Ostrovsky. Round optimal secure two-party computation.
Advances in Cryptology (CRYPTO 2004), LNCS 3152, 2004.

[16] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In Proceedings of
the Twentieth Annual ACM Symposium on Theory of Computing, pages 1–10.
ACM Press, 1988.

[17] D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure
protocols. In Proceedings of the Twentieth Annual ACM Symposium on Theory
of Computing, pages 11–19. ACM Press, 1988.

[18] J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant computing in
constant number of rounds of interaction. In Proceedings of the Eighth An-
nual ACM Symposium on Principles of Distributed Computing, pages 201–209.
ACM Press, 1989.

[19] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure proto-
cols. In Proceedings of the Twenty-second Annual ACM Symposium on Theory
of Computing, pages 503–513. ACM Press, 1990.

[20] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols
with honest majority. In Proceedings of the Twenty-first Annual ACM Sympo-
sium on Theory of Computing, pages 73–85. ACM Press, 1989.

[21] D. Beaver. Multiparty protocols tolerating half faulty processors. Advances in
Cryptology (CRYPTO 1989), LNCS 435:560–572, 1990.

[22] R. Gennaro, M.O. Rabin, and T. Rabin. Simplified vss and fast-track multi-
party computations with applications to threshold cryptography. In Proceed-
ings of the Seventeenth Annual ACM Symposium on Principles of Distributed
Computing, pages 101–111. ACM Press, 1998.

[23] R. Gennaro, Y. Ishai, E. Kushilevitz, and T. Rabin. The round complexity
of verifiable secret sharing and secure multicast. In Proceedings of the Thirty-
third Annual ACM Symposium on Theory of Computing, pages 580–589. ACM
Press, 2001.

[24] R. Cramer and I. Damg̊ard. Secure distributed linear algebra in a constant
number of rounds. Advances in Cryptology (CRYPTO 2001), LNCS 2139:119–
136, 2001.

[25] R. Cramer, I. Damg̊ard, and J. Nielsen. Multiparty computation from thresh-
old homomorphic encryption. Advances in Cryptology (EUROCRYPT 2001),
LNCS 2045:280–300, 2001.

[26] M. Jakobsson and A. Juels. Secure function evaluation via ciphertexts. Ad-
vances in Cryptology (ASIACRYPT 2000), LNCS 1976:162–173, 2000.

[27] Y. Ishai and E. Kushilevitz. Randomizing polynomials: A new representa-
tion with applications to round-efficient secure computation. In 41st Annual
Symposium on Foundations of Computer Science, 2000, pages 294–304. IEEE,
2000.

144

[28] R. Cramer, S. Fehr, Y. Ishai, and E. Kushilevitz. Efficient multi-party com-
putation over rings. Advances in Cryptology (EUROCRYPT 2003), LNCS
2656:596–613, 2003.

[29] J. Katz, R. Ostrovsky, and A. Smith. Round efficiency of multi-party com-
putation with a dishonest majority. Advances in Cryptology (EUROCRYPT
2003), LNCS 2656:578–595, 2003.

[30] M. Ben-Or, R. Canetti, and O. Goldreich. Asynchronous secure computation.
In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of
Computing, pages 52–61. ACM Press, 1993.

[31] M. Ben-Or, B. Kelmer, and T. Rabin. Asynchronous secure computations
with optimal resilience (extended abstract). In Proceedings of the Thirteenth
Annual ACM Symposium on Principles of Distributed Computing, pages 183–
192. ACM Press, 1994.

[32] R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively secure multi-party
computation. In Proceedings of the Twenty-eighth Annual ACM Symposium
on Theory of Computing, pages 639–648. ACM Press, 1996.

[33] R. Cramer, I. Damg̊ard, S. Dziembowski, M. Hirt, and T. Rabin. Efficient
multiparty computations secure against an adaptive adversary. Advances in
Cryptology (EUROCRYPT 1999), LNCS 1592:311–326, 1999.

[34] M. Hirt and U. Maurer. Complete characterization of adversaries tolerable
in secure multi-party computation (extended abstract). In Proceedings of the
Sixteenth Annual ACM Symposium on Principles of Distributed Computing,
pages 25–34. ACM Press, 1997.

[35] C. Crépeau, D. Gottesman, and A. Smith. Secure multi-party quantum com-
putation. In Proceedings of the Thirty-fourth Annual ACM Symposium on
Theory of Computing, pages 643–652, New York, NY, USA, 2002. ACM Press.

[36] U. Feige, J. Killian, and M. Naor. A minimal model for secure computation
(extended abstract). In Proceedings of the Twenty-sixth Annual ACM Sympo-
sium on Theory of Computing, pages 554–563. ACM Press, 1994.

[37] D. Beaver. Commodity-based cryptography (extended abstract). In Proceed-
ings of the Twenty-ninth Annual ACM Symposium on Theory of Computing,
pages 446–455. ACM Press, 1997.

[38] T. Sander, A. Young, and Moti Yung. Non-interactive cryptocomputing for
NC1. In Proceedings of 40th Annual IEEE Symposium on Foundations of
Computer Science, pages 554–566, 1999.

[39] D. Beaver. Minimal-latency secure function evaluation. Advances of Cryptol-
ogy(EUROCRYPT 2000), LNCS 1807:335–350, 2000.

[40] M. Naor and K. Nissim. Communication preserving protocols for secure func-
tion evaluation. In Proceedings of the Thirty-third Annual ACM Symposium
on Theory of Computing, pages 590–599. ACM Press, 2001.

[41] R. Canetti. Security and composition of multiparty cryptographic protocols.
Journal of Cryptology, 13(1):143–202, 2000.

145

[42] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In Proceedings of the First ACM Conference on
Computer and Communications Security, pages 62–73. ACM Press, 1993.

[43] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology,
revisited (preliminary version). In Proceedings of the Thirtieth Annual ACM
Symposium on Theory of Computing, pages 209–218. ACM Press, 1998.

[44] M. Rabin. How to exchange secrets by oblivious transfer. In Technical Report,
TR-81, Aiken Computation Laboratory, 1981.

[45] J. Halpern and M. Rabin. A logic to reason about likelihood. In Proceedings of
the Fifteenth Annual ACM Symposium on Theory of Computing, pages 310–
319. ACM Press, 1983.

[46] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing
contracts. Communications of the ACM, 28(6):637–647, 1985.

[47] G. Brassard, C. Crépeau, and J.M. Robert. All-or-nothing disclosure of secrets.
Advances in Cryptology (CRYPTO 1986), LNCS 263:234–238, 1987.

[48] G. Brassard, C. Crépeau, and J.M. Robert. Information theoretic reductions
among disclosure problems. In Proceedings of Twenty-seventh Annual IEEE
Symposium on Foundations of Computer Science, pages 168–173. IEEE, 1986.

[49] C. Crépeau. Equivalence between two flavours of oblivious transfers. Advances
in Cryptology (CRYPT0 1987), LNCS 293:350–354, 1988.

[50] R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way
permutations. In Proceedings of the Twenty-first Annual ACM Symposium on
Theory of Computing, pages 44–61. ACM Press, 1989.

[51] M. Bellare and S. Micali. Non-interactive oblivious transfer and applications.
Advances in Cryptology (CRYPTO 1989), LNCS 435:547–557, 1990.

[52] M. Naor and B. Pinkas. Oblivious transfer and polynomial evaluation. In Pro-
ceedings of the Thirty-first Annual ACM Symposium on Theory of Computing,
pages 245–254. ACM Press, 1999.

[53] M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In Proceedings
of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
448–457. Society for Industrial and Applied Mathematics, 2001.

[54] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information
retrieval. In Proceedings of the 36th Annual IEEE Symposium on Foundations
of Computer Science, pages 41–50. IEEE, 1995.

[55] B. Chor and N. Gilboa. Computationally private information retrieval (ex-
tended abstract). In Proceedings of the Twenty-Ninth Annual ACM Symposium
on Theory of Computing, pages 304–313. ACM Press, 1997.

[56] E. Kushilevitz and R. Ostrovsky. Replication is not needed: single database,
computationally-private information retrieval. In Proceedings of the 38th An-
nual Symposium on Foundations of Computer Science, pages 364–373. IEEE
Computer Society, 1997.

146

[57] C. Cachin, S. Micali, and M. Stadler. Computationally private information
retrieval with polylogarithmic communication. Advances in Cryptology (EU-
ROCRYPT 1999), LNCS 1592:402–414, 1999.

[58] Y. Gertner, Y.Ishai, E.Kushilevitz, and T.Malkin. Protecting data privacy in
private information retrieval schemes. In Proceedings of the Thirtieth Annual
ACM Symposium on Theory of Computing, pages 151–160. ACM Press, 1998.

[59] B. Huberman, M. Franklin, and T.Hogg. Enhancing privacy and trust in elec-
tronic communities. In Proceedings of the First ACM Conference on Electronic
Commerce, pages 78–86. ACM Press, 1999.

[60] J. Vaidya and C. Clifton. Secure set intersection cardinality with application to
association rule mining. Accepted for Publication in the Journal of Computer
Security, IOS Press.

[61] J. Vaidya and C. Clifton. Leveraging the ”multi” in secure multi-party com-
putation. In Proceedings of the ACM Workshop on Privacy in the Electronic
Society, pages 53–59. ACM Press, 2003.

[62] M. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set
intersection. Advances in Cryptology (EUROCRYPT 2004), 2004.

[63] G. Aggarwal, N. Mishra, and B. Pinkas. Secure computation of the kth-ranked
element. In Advances in Cryptology (EUROCRYPT 2004), 2004.

[64] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge Univer-
sity Press, 1997.

[65] C. Cachin. Efficient private bidding and auctions with an oblivious third party.
In Proceedings of the Sixth ACM Conference on Computer and Communica-
tions Security, pages 120–127. ACM Press, 1999.

[66] M. Fischlin. A cost-effective pay-per-multiplication comparison method for
millionaires. In CT-RSA, pages 457–472, 2001.

[67] M. Franklin and M. Reiter. The Design and Implementation of a Secure Auc-
tion Service. In Proc. IEEE Symposium on Security and Privacy, pages 2–14,
Oakland, Ca, 1995. IEEE Computer Society Press.

[68] M. Harkavy, J.D. Tygar, and H. Kikuchi. Electronic auctions with private bids.
In 3rd USENIX Workshop on Electronic Commerce, pages 61–74, September
1998.

[69] H. Kikuchi. (m+1)st-price auction protocol. In Financial Cryptography – Fifth
International Conference, LNCS 2339, pages 351–363, 2001.

[70] F. Brandt. Fully private auctions in a constant number of rounds. In Financial
Cryptography – Seventh International Conference, to appear, 2003.

[71] F. Brandt. A verifiable, bidder-resolved auction protocol. In Fifth International
Workshop on Deception, Fraud and Trust in Agent Socities, pages 18–25, 2002.

[72] F. Brandt and T. Sandholm. Efficient privacy-preserving protocols for multi-
unit auctions. In Financial Cryptography – Ninth International Conference,
pages 296–310, 2005.

147

[73] O. Baudron and J. Stern. Non-interactive private auctions. In Financial Cryp-
tography – Fifth International Conference, LNCS 2339, pages 364–378, 2001.

[74] H. Lipmaa, N. Asokan, and V. Niemi. Secure vickrey auctions without thresh-
old trust. In Financial Cryptography – Sixth International Conference, 2003.

[75] M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and mecha-
nism design. In Proceedings of the First ACM Conference on Electronic Com-
merce, pages 129–139. ACM Press, 1999.

[76] I. Damg̊ard and M. Jurik. A generalisation, a simplification and some ap-
plications of paillier’s probabilistic public-key system. In 4th International
Workshop on Practice and Theory in Public Key Cryptosystems, PKC 2001,
LNCS 1992, pages 119–136, 2001.

[77] P. Paillier. Public-key cryptosystems based on composite degree residuosity
classes. Advances in Cryptology (EUROCRYPT 1999), LNCS 1592:223–238,
1999.

[78] T. Okamoto, S. Uchiyama, and E. Fujisaki. Epoc: Efficient probabilistic public-
key encryption, 1998.

[79] A. Shamir. Identity-based cryptosystems and signature schemes. Advances in
Cryptology (CRYPTO 1984), LNCS 196:47–53, 1984.

[80] D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing.
Advances in Cryptology (CRYPTO 2001), LNCS 2139:213–229, 2001.

[81] C. Cocks. An identity based encryption scheme based on quadratic residues. In
8th IMA International Conference on Cryptography and Coding, volume 2260,
pages 360–363. Springer, December 2001.

[82] W. Du. A Study of Several Specific Secure Two-party Computation Problems.
PhD thesis, Purdue University, West Lafayette, Indiana, USA, 2001.

[83] W. Du and M. J. Atallah. Privacy-preserving statistical analysis. In Proceedings
of the Seventeenth Annual Computer Security Applications Conference, pages
102–110, December 10-14 2001.

[84] J. Vaidya and C. Clifton. Privacy preserving association rule mining in verti-
cally partitioned data. In KDD ’02: Proceedings of the Eighth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages
639–644. ACM Press, 2002.

[85] B. Goethals, S. Laur, H. Lipmaa, and T. Mielikainen. On private scalar product
computation for privacy-prerving data mining. In The Seventh Annual Inter-
national Conference on Information Security and Cryptology (ICISC 2004),
2004.

[86] J. Holt, R. Bradshaw, K. Seamons, and H. Orman. Hidden credentials. In
Proceedings of the Second ACM Workshop on Privacy in the Electronic Society,
October 2003.

[87] P. Bonatti and P. Samarati. Regulating service access and information release
on the web. In Proceedings of the Seventh ACM Conference on Computer and
Communications Security, pages 134–143. ACM Press, November 2000.

148

[88] K. Seamons, M. Winslett, and T. Yu. Limiting the disclosure of access control
policies during automated trust negotiation. In Proceedings of the Symposium
on Network and Distributed System Security, February 2001.

[89] K. Seamons, M. Winslett, T. Yu, L. Yu, and R. Jarvis. Protecting privacy
during on-line trust negotiation. In Second Workshop on Privacy Enhancing
Technologies. Springer-Verlag, April 2002.

[90] W. Winsborough and N. Li. Protecting sensitive attributes in automated trust
negotiation. In Proceedings of the ACM Workshop on Privacy in the Electronic
Society, pages 41–51. ACM Press, November 2002.

[91] W. Winsborough and N. Li. Towards practical automated trust negotiation.
In Proceedings of the Third International Workshop on Policies for Distributed
Systems and Networks, pages 92–103. IEEE Computer Society Press, June
2002.

[92] W. Winsborough and N. Li. Safety in automated trust negotiation. In Pro-
ceedings of IEEE Symposium on Security and Privacy. IEEE Computer Society
Press, May 2004.

[93] W. Winsborough, K. Seamons, and V. Jones. Automated trust negotiation. In
DARPA Information Survivability Conference and Exposition, volume I, pages
88–102. IEEE Press, January 2000.

[94] M. Winslett, T. Yu, K. Seamons, A. Hess, Jared Jacobson, Ryan Jarvis, Bryan
Smith, and Lina Yu. Negotiating trust on the web. IEEE Internet Computing,
6(6):30–37, November/December 2002.

[95] T. Yu, X. Ma, and M. Winslett. Prunes: An efficient and complete strategy
for trust negotiation over the internet. In Proceedings of the Seventh ACM
Conference on Computer and Communications Security, pages 210–219. ACM
Press, November 2000.

[96] T. Yu and M. Winslett. A unified scheme for resource protection in automated
trust negotiation. In Proceedings of IEEE Symposium on Security and Privacy,
pages 110–122. IEEE Computer Society Press, May 2003.

[97] T. Yu, M. Winslett, and K. Seamons. Interoperable strategies in automated
trust negotiation. In Proceedings of the Eighth ACM Conference on Computer
and Communications Security, pages 146–155. ACM Press, November 2001.

[98] N. Li, W. Du, and D. Boneh. Oblivious signature-based envelope. In Proceed-
ings of the 22nd ACM Symposium on Principles of Distributed Computing.
ACM Press, July 2003.

[99] R. Bradshaw, J. Holt, and K. Seamons. Concealing complex policies with
hidden credentials. In Proceedings of Eleventh ACM Conference on Computer
and Communications Security, October 2004.

[100] Equifax. URL http://www.equifax.com.

[101] Experian. URL http://www.experian.com.

[102] Transunion. URL http://www.transunion.com.

149

[103] L. Valiant. Universal circuits (preliminary report). In Proceedings of the Eighth
Annual ACM Symposium on Theory of Computing, pages 196–203, New York,
NY, USA, 1976. ACM Press.

[104] E. Kushilevtiz. Privacy and communication complexity. In Proceedings of
the Thirtieth Annual IEEE Symposium on Foundations of Computer Science,
pages 416–421, 1989.

[105] M. Atallah and W. Du. Secure multi-party computational geometry. Lecture
Notes in Computer Science, 2125:165–179, 2000.

[106] D. Robbins. Average distance between two points in a box. American Mathe-
matical Monthly, 85, 278, 1978.

[107] D. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84–90, 1981.

[108] B. Grosof, Y. Labrou, and H. Chan. A declarative approach to business rules
in contracts: courteous logic programs in xml. In Proceedings of the First ACM
Conference on Electronic Commerce, pages 68–77, New York, NY, USA, 1999.
ACM Press.

[109] G. Governatori, A. ter Hofstede, and P. Oaks. Defeasible logic for automated
negotiation. In P. Swatman and P.M. Swatman, editors, Proceedings of Col-
lECTeR. Deakin University, 2000. Published on CD.

[110] R. Smith and J. Shao. Preserving privacy when preference searching in e-
commerce. In Proceeding of the ACM workshop on Privacy in the Electronic
Society, pages 101–110. ACM Press, 2003.

[111] G. Davida, Y. Frankel, and B. Matt. On enabling secure applications through
off-line biometric identification. In Proceedings of 1998 IEEE Symposium on
Security and Privacy, pages 148–157, May 1998.

[112] G. Bleumer. Offine personal credentials. Technical Report TR 98.4.1, AT&T,
1998.

[113] G. Bleumer. Biometric yet privacy protecting person authentication. In
Proceedings of 1998 Information Hiding Workshop, pages 101–112. Springer-
Verlag, 1998.

[114] R. Impagliazzo and S. More. Anonymous credentials with biometrically-
enforced non-transferability. In Proceedings of the Second ACM Workshop
on Privacy in the Electronic Society (WPES ’03), pages 60–71, October 2003.

[115] D. Chaum and T. Pedersen. Wallet databases with observers. Advances in
Cryptology (Crypto 1992), 740:89–105, 1993.

[116] G. Davida, Y. Frankel, and B. Matt. On the relation of error correction and
cryptography to an off-line biometric based identification scheme. In Proceed-
ings of WCC99, Workshop on Coding and Cryptography, 1999.

[117] A. Juels and M. Wattenberg. A fuzzy commitment scheme. In Proceedings of
the Sixth ACM Conference on Computer and Communications Security, pages
28–36. ACM Press, 1999.

150

[118] G. Davida and Frankel Y. Perfectly secure authorization and passive iden-
tification for an error tolerant biometric system. In Proceedings of Seventh
Conference on Cryptography and Coding, LNCS 1746, pages 104–113, 1999.

[119] A. Juels and M. Sudan. A fuzzy vault scheme. In Proceedings of the 2002
IEEE International Symposium on Information Theory, pages 408–413, 2002.

[120] T. Clancy, N. Kiyavashr, and D. Lin. Secure smartcard-based fingerprint au-
thentication. In Proceedings of the 2003 ACM Workshop on Biometrics Meth-
ods and Applications, pages 45–52, 2003.

[121] Y. Dodis, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate strong
keys from biometrics and other noisy data. Advances in Cryptology (EURO-
CRYPT 2004), pages 523–540, 2004.

[122] F. Kerschbaum, M. Atallah, D. Mraihi, and J. Rice. Private fingerprint veri-
fication without local storage. In International Conference on Biometric Au-
thentication (ICBA), July 2004.

[123] G. Hachez, F. Koeune, and J. Quisquater. Biometrics, access control, smart
cards: A not so simple combination. In Proceedings of the Fourth Working
Conference on Smart Card Research and Advanced Applications, pages 273–
288. Kluwer Academic Publishers, September 2000.

[124] R. Bolle, J. Connell, and N. Ratha. Biometric perils and patches. Pattern
Recognition, 35(12):2727–2738, 2002.

[125] B. Schneier. Biometrics: Truths and fictions. URL ttp://www.
scneier.com/crypto-gram-9808.html#biometrics.

[126] R. Anderson and M. Kuhn. Tamper resistance - A cautionary note. In Pro-
ceedings of the 2nd USENIX Workshop on Electronic Commerce, pages 1–11,
1996.

[127] R. Anderson and M. Kuhn. Low cost attacks on tamper resistant devices. In
International Workshop on Security Protocols, pages 125–136, 1997.

[128] A.K. Jain, L. Hong, and R. Bolle. On-line fingerprint verification. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19(4):302–314,
1997.

VITA

151

VITA

Keith Frikken was born in 1979. In May 2000, he graduated from Winona State

University with a bachelor’s degree in computer science and mathematics. He spent

the following summer as an intern at IBM. In August 2000, he started his graduate

education at Purdue University. In August 2005, he received the degree of Doctor of

Philosophy under the supervision of Mikhail Atallah. His research interests include

information security and databases.

