CERIAS Tech Report 2005-44

CUPIDSENHANCES STUPIDS: EXPLORING A CO-PROCESSING PARADIGM SHIFT IN
INFORMATION SYSTEM

by Paul D. Williams, Eugene H. Spafford
Center for Education and Research in

Information Assurance and Security,
Purdue University, West Lafayette, IN 47907-2086

T1B2 1555

Proceedings of the 2005 IEEE
Workshop on Information Assurance and Security
United States Military Academy, West Point, NY, 15-17 June 2005

CuPIDS enhances StUPIDS:
Exploring a Co-processing Paradigm Shift in Information System Security

Paul D. Williams Eugene H. Spafford

Abstract— The CuPIDS project is an exploration of in-
creasing information system security by dedicating compu-
tational resources to system security tasks in a shared re-
source, multi-processor (MP) architecture. Our research ex-
plores ways in which this architecture offers improvements
over the traditional uni-processor (UP) model of security.
There are a number of areas to explore, one of which has a
protected application running on one processor in a symmet-
ric multiprocessing (SMP) system while a shadow process
specific to that application runs on a different processor,
monitoring its activity, ready to respond immediately if the
application veers off course. This paper describes initial
work into defining such an architecture and the prototype
work done to validate our ideas.

I. INTRODUCTION AND PHILOSOPHY

This paper describes initial research into the Co-
Processing Intrusion Detection System (CuPIDS). We start
with the philosophy that security is more important than
performance—particularly with regards to mission critical
applications and servers. This assumption—that we can
afford to trade some performance for increased security—
affords us opportunities to be creative with how system re-
sources are allocated. Most past and present Intrusion De-
tection System (IDS) architectures assume a uni-processor
environment, or do not explicitly make use of multiple pro-
cessors when they exist. Yet, especially in the server world,
multiple processor machines are commonplace, and with
the advent of multi-core technologies from mainstream pro-
cessor makers such as Sun, Intel and AMD, commodity
computers are likely to have multiple processors. We be-
lieve we can improve the effectiveness of the security system
and therefore the overall robustness of the entire comput-
ing system by taking advantage of the parallel processing
capability now commonly available. We do so by divid-
ing the system into production and security components,
embedding explicit knowledge of how the production com-
ponents are intended to operate into specialized security
monitors and ensuring the appropriate security component
is running on a processor whenever a particular production
component is running on a different processor. The overall
architecture places all user tasks and most of the operat-
ing system (O/S) into the production component and all

P. D. Williams, CERIAS, Purdue University, West Lafayette, IN.
E. H. Spafford, CERIAS, Purdue University, West Lafayette, IN.

ISBN 0-7803-9814-9/$10.00 (©2002 IEEE

parts of the O/S that pertain to the enforcement of secu-
rity policy security, including the security monitoring and
validating tasks, into the security component.

This initial paper describes research into performing fine-
grained, real-time monitoring of specific production tasks.
We discuss the new capabilities made possible by switching
to a MP paradigm, describe the architecture in general
terms and report the results of initial experimentation into
building a CuPIDS system. We believe this architecture
will allow IDS to use higher fidelity monitoring models,
particularly with regard to the timeliness of detection, and
will also increase system robustness in the face of some
types of attacks.

We believe that under some circumstances CuPIDS can
be more effective than Standard Uni-processor-based Intru-
sion Detection/Intrusion Prevention Systems (StUPIDS)!.

For our purposes more effective is shown by demonstrat-
ing that:

1. Running concurrently with attack code affords CuPIDS
opportunities to detect and respond to attacks that are not
available to StUPIDS.

2. Because the opportunity exists to detect attacks while
they occur without waiting for a context-switching event
(either between user processes or between user and kernel
mode) CuPIDS may be able to respond more quickly and
attacks may be detected with higher fidelity.

These are advantages that are difficult or impossible to
achieve on a uni-processor system—no matter how power-
ful!

The initial impetus for this project was a realization that
we may be able to embed information about what a pro-
cess is and is not allowed to do in a monitoring process.
This monitor, given full access to the resources used by the
production process and running simultaneously with it in a
SMP computer, can act as a “tilt-sensor,” detecting and re-
sponding to operational deviations very quickly. Sources of
information about the “normal,” or allowed behavior of an
application, may include directives and assertions defined
by the production process programmer, automatically gen-
erated “shadow” output from a compiler, system security
specifications and training data derived from monitoring

!The name StUPIDS is in tribute to the work done in Purdue’s
Coast Laboratory on the IDIOT intrusion detection system/[1].

30

the execution of processes on a system. It is not our in-
tent to monitor production process execution instruction-
by-instruction; we focus instead on protecting key data
structures and monitoring operations in critical regions of
code.

While this paper focuses on IDS, the techniques de-
scribed are likely to be valuable in other domains such as
software debugging, fault tolerance, and computer foren-
sics.

II. BACKGROUND

Information system security is a widely studied field.
Here we discuss the threat model we are addressing, the
area in security in which we are focusing and briefly refer-
ence research related to ours.

A. Threat Model

A major premise of this research is that the applications
in use today and in the reasonably foreseeable future will
contain vulnerabilities. Through faults or active exploita-
tion the existence of these vulnerabilities may lead to the
application’s compromise. If the application is privileged
the compromise can effect the operation of the entire sys-
tem. This research attempts to contain the effects of such
a compromise and prevent the compromise of key system
components such as the security system even in the face of
a successful root-level attack.

We are concerned with a very general threat model that
assumes:

o Processes running at any privilege level in the production
parts of the system may be compromised at any time after
boot is complete.

o Attacks may come from local or external users or a com-
bination of both.

o Attacks may succeed without ever causing a context
switching event.

Previous work typically assumed a more constrained
threat model.

B. Time Domain

To clarify what time domain we are working in we draw
from a recent categorization of computer security systems.
Kuperman’s Ph.D. dissertation [2] describes four major
timeliness categories in which detection can be accom-
plished: real-time, near real-time, periodic and retrospec-
tive. It is in the category of real-time and near real-time
that CuPIDS offers significant gains over StUPIDS.

To specify what we mean by real-time and near real-
time we borrow Kuperman’s notation. We represent the
set of events taking place in a computer system by the set
E. This set contains suspect events B such that B C F
and there exist events a, b, and ¢ such that a,b,c € E and
b € B The notation ¢, represents the time of occurrence of

ISBN 0-7803-9814-9/$10.00 (©2002 IEEE

event z. Finally, we need a detection function D(z) that
determines the truth of the statement = € B.

Real-time: Detection of a bad event b takes place while the
system is operating and is further restricted to mean that
detection of b occurs before an event, ¢, dependant upon
b takes place. Given F, real-time detection requires the
ordering

tg < tD(b) <t

Near real-time: Detection of a bad event b occurs within
some, typically small, finite time § of the occurrence of b.
This requires the ordering

[ty —tpwy| <96

While no complete detection function D(z) exists, there
are a great number of bad events, Bp = {bg,b1,...,bn} €
B for which we do have effective detection functions. As-
suming the existence of identical CuPIDS and StUPIDS de-
tection functions, Doy prps(Bp) and Dgiyprps(Bp) Cu-
PIDS offers improvements in guaranteed detection time.
On a uni-processor system in which the StUPIDS runs as a
normal task the soonest it can possibly detect a bad event,
bi, is when a context switching event occurs after ¢, but
before t., and the scheduler chooses the StUPIDS to run.
In the best case b; involves the execution of a system call
or some other blocking event, the scheduler picks the ap-
propriate StUPIDS process to run next, and b; is detected
before ¢; can occur. In the worst case the system is compro-
mised before the StUPIDS has an opportunity to run and
detect b;. Other complications include the relative prior-
ity of StUPIDS processes to other processes in the system,
and even if a StUPIDS process is chosen to run, its por-
tion of Dgiyprps(Bp) may not include b;. Therefore even
though the StUPIDS is capable of detecting b; it may not
do so before the production process is made active again
and t., occurs. This means that even though Ds:yprps(b;)
exists a StUPIDS can at best claim near-realtime detection
with § = CPUQuantum. In the case of a StUPIDS run-
ning on a MP machine, the appropriate monitoring pro-
cess may be executing at the right time; however, there is
no guarantee that this is the case. CuPIDS reduces the
uncertainties described above by ensuring, whenever pos-
sible, the appropriate monitor is executing, thus offering
real-time detection capability.

C. Detection Domain

Among the factors that make intrusion detection in gen-
eralized computing environments difficult is the wide range
of capabilities that must be protected. By forcing the se-
curity system designer to cover a wider range of resources,
the defensive assets are, in a sense, “stretched thinner”
than they will be in the highly focused CuPIDS environ-
ment. CuPIDS’ ability to concentrate the right defenses
at the right time on critical tasks coupled with the ability
to use well defined security boundaries as defined by the

31

program designer and system security policy allows the ex-
ploration of highly effective intrusion detection functions.
These functions are both efficient in terms of resource us-
age, and are more robust because the possible legitimate
activities of the system are well defined, with aberrations
or anomalies easier to detect.

D. Prior Research

There exists an enormous body of work into techniques
for detecting and preventing violations of security policy
(The body of literature here is huge, Axelsson’s in-depth,
thorough taxonomy and survey of the field of intrusion de-
tection in 2000 is a good starting point for those unfamil-
iar with the field [3]). We draw from those techniques and
augment them in ways that make use of the MP paradigm.
Many of the specific intrusion detection techniques a Cu-
PIDS will use differ from their SSUPIDS counterparts only
in the real-time, simultaneous monitoring nature of their
use. Of particular interest to us are those efforts that sepa-
rate runtime error checking from runtime execution, those
modeling the state of the production process externally,
and those making use of coprocessors or virtual machine
architectures in performing monitoring tasks.

D.1 Debugging

An example from the separate runtime error checking
body of research is that done by Patil and Fischer [4] on de-
tecting runtime errors in array and pointer accesses. They
point out that including runtime error checking may slow
applications by as much as 1000%, which is an enormous
price to pay given that most runs of a well-tested program
are error free. Therefore once debugging and testing is com-
plete, runtime error checks are disabled before the code is
placed into production use. While this makes sense from
a performance perspective, it is dangerous because errors
that may have been caught by those runtime checks go
undetected, potentially causing severe damage. The au-
thors responded by creating guard programs that model
the execution of the production program, but only at the
pointer and array access level. The guards include all run-
time checks on pointer and array bounds and were capa-
ble of detecting many runtime errors that evaded the soft-
ware testers during development. These guards were run
as batch processes using trace information stored by the
production process. The paper also discussed having the
guard run on a separate processor or as a normal process,
interleaving execution with the production process. The
runtime penalty perceived by the user was typically less
than 10%. We use the idea of exporting runtime checks to
a shadow process; however, our work differs from theirs in
that we focus on real-time monitoring of the actual mem-
ory locations in use by the production process as well as a
much larger set of monitoring capabilities.

ISBN 0-7803-9814-9/$10.00 (©2002 IEEE

D.2 External Modeling

Research into performing intrusion detection via exter-
nal modeling of application behavior is very active right
now. The recent work done by Haizhi Xu et al. in using
context-sensitive monitoring of process control flows to de-
tect errors is a good example of external modeling [5]. They
define a series of “waypoints” as points along a normal flow
of execution that a process must take. They focused their
efforts on the system call interface and demonstrated good
results in detecting attempts to access system resources by
a subverted process. CuPIDS makes use of a similar idea to
their waypoints in its checkpoints, those points in both the
interactive and passive systems where CuPIDS is notified
of events in which it is interested; however, CuPIDS check-
points are much finer-grained and are generated within the
production process as well as its interaction with the ex-
ternal environment. As an example, CuPIDS uses function
call entry and exit information to perform rough granu-
larity program counter tracking and validation as well as
model a program stack for use in detecting illegitimate con-
trol flows within a process code segment. Related work by
Feng et al. [6] describes novel work in extracting return
addresses from the call stack and using abstract execu-
tion path checking between pairs of points to detect at-
tacks. Finally, Gopalakrishna et al. [7] present good results
in performing online flow- and context-sensitive modeling
of program behavior. Gopalakrishna’s Inlined Automa-
ton Model (IAM) addresses inefficiencies in earlier context-
sensitive models [8], [9] by using inlined function call nodes
to dramatically reduce the non-determinism in their model
while applying clever compaction techniques to reduce the
model’s memory usage. Using an event stream generated
by library call interpositioning IAM is shown to be efficient
and scalable even in a StUPIDS architecture. The tech-
niques used by IAM fit very naturally into the CuPIDS
architecture. The model simulation can be run as a CSP,
getting its inputs from the CuPIDS event streams.

D.3 Virtualization and Co-processors

ID has been performed using both machine virtualiza-
tion and the use of dedicated co-processors [10], [11], [12],
[13], [14], [15]. An example of the latter category includes
the work done by Zhang, et al. in describing how a crypto
co-processor is used to perform some host-based intrusion
detection tasks[13]. In their research they examine the pos-
sible effectiveness of using hardware designed for securely
booting the system to run an intrusion detection system.
The benefits from doing so include protecting the IDS pro-
cessor from the production processor, and offloading IDS
work from the main processor onto one dedicated for that
task. Strengths of this approach include high attack resis-
tance for code running in the co-processor system. Draw-
backs of the approach include the lack of ready visibility
into the actions of the main processor and operating sys-

32

tem.

These strengths and drawbacks also exist in the use of
virtual machine architectures. Garfinkel and Rosenblum
discuss a novel approach to protecting IDS components
[15]. They pull the IDS out of the host and place it in the
virtual machine monitor (VMM) with the primary goal of
enhancing attack resistance. This approach has the ben-
efit of largely isolating the IDS from code running in the
virtual host. The VMM approach has much in common
with the reference monitor work discussed by Anderson
[16] and Lipton [17] in that it provides a means by which
the IDS can mediate access between software running in
the virtual host and the hardware. It can also interpose
at the architecture interface, which yields a better view
into the system operation by providing visibility into both
software and hardware events. A traditional software-only
IDS does not have this advantage. Of course, the IDS run-
ning in the VMM has visibility only into hardware-level
state. This means that the IDS can see physical pages and
hardware registers, but must be able to determine what
meaning the host O/S is placing on those hardware items.
By running as part of the host O/S, CuPIDS maintains
complete visibility into the software state of the entire sys-
tem, but currently lacks the protection afforded VMs and
secure co-processor architectures. Future work on CuPIDS
will use hardware protection mechanisms such as those in
the Intel TA32 [18] processor line to provide protection of
security specific components as well as critical operating
system components.

III. CuPIDS ARCHITECTURE

CuPIDS is intended to operate using the facilities and ca-
pabilities afforded by a general purpose symmetrical multi-
processing (SMP) computer architecture. In such an archi-
tecture there are some number, typically even, of central
processing units (CPUs), all of which share a set of re-
sources such as memory and hardware devices via a com-
mon system bus. Generally the CPUs are all capable of
running the same sets of tasks.

Common operating systems such as Windows, Linux,
and FreeBSD running on SMP architectures use the CPUs
symmetrically, attempting to allocate tasks equally across
the CPUs based upon system loading [19]. CuPIDS differs
from these architectures in that at any point in time one or
more of the CPUs in a system are used primarily or exclu-
sively for security related tasks. This asymmetrical use of
processors in a SMP architecture is a significant departure
from normal computing models, and represents a shift in
priority from performance, where as many CPU cycles as
possible are used for production tasks, to security where
a significant portion of the CPU cycles available in a sys-
tem are dedicated solely to protective work. One possible
CuPIDS software architecture is depicted in Figure 1. The
dark components represent production tasks and services

ISBN 0-7803-9814-9/$10.00 (©2002 IEEE

and run on one CPU while the light components represent
the CuPIDS monitors and run on a separate CPU. The
regions of overlap depict CuPIDS ability to monitor the
resource usage of production components..

Scheduler

Process/
Thread
Support

Fig. 1.

‘ CUPIDS System Call Wrapper

Basic software architecture

The operating system as well as user processes are di-
vided into components that are intended to run on separate
CPUs. The intent behind this separation is twofold: per-
formance and protection. We are concerned with two per-
formance measures: speed and completeness of detection,
and the runtime penalty imposed by the security system
on the production processes. By ensuring the processes re-
sponsible for detecting bad events are actively monitoring
the system during periods in which bad events can occur,
we hope to provide a real-time detection capability (using
Kuperman'’s notation as defined in Section II-B). The sys-
tem protection derives in part from the ability to detect
bad events as they occur but before the results of these
events can cause a system compromise. Additional protec-
tion will come from the separation of security monitoring
code and data segments from the memory segments used
by the operating system and user programs.

A program intended to operate in CuPIDS is divided into
two components, a CuPIDS monitored production process
(CPP) and a shadowing CuPIDS process (CSP) as depicted
in Figure 2.

As the figure shows, CuPIDS processes differ from the
traditional process paradigm in the asymmetric sharing of
memory between the CSP and CPP. The CPP is a normal
process and contains the code and data structures that are
used to accomplish the tasks for which the program is de-
signed. It may also contain code and data structures with
which information about the state of the running process
is communicated to the security component. In addition to
the normal process code and data structures, the CSP’s vir-
tual memory is modified to contain portions of the CPP’s
virtual memory space (depicted in the figure as Shadow
Memory). This allows the CSP to directly monitor the ac-
tivities of the production component as it executes. The
monitoring performed by CuPIDS is both interactive and
passive. In an example of interactive monitoring, the CPP

33

Machine State

CuPIDS Shadow Process
o e i
e B ma
T T T T T I
Shadow Memory T T T T T T 1.1
o e
T T T T T T T T T 11 T T T T T T T 1T
L LT CT T T T N S
B B o e e '
Runtime e e e e e B
e, S o
j:‘:‘i—‘ T T T T T [T TI
||||||||||L:_
T T | I
T T T T T T T T 11
T T T I I

Fig. 2. CSP and CPP details

informs the CSP when it is about to enter a critical re-
gion or access protected variables. The CSP then tests the
state of the CPP against invariants about what the CPP
state should be. Passive monitoring takes place without
the active involvement of the monitored process; an ex-
ample of this may be frequently taking snapshots of the
process state and verifying the code being executed is le-
gitimately part of the process. Other passive monitoring
capability include fine-granularity execution environment
introspection, in which a process specification is created
that describes what library and system calls are used, from
where in the process’ text region each call is made from,
and possibly normal parameters and return values. This
information is used by CuPIDS processes running on a co-
processor, and does not interfere with or delay the process-
ing of library or syscalls unless the security system detects
a problem.

The flowchart in Figure 3 depicts how CuPIDS performs
interactive monitoring of a protected variable. Here the
protective process is notified of the production process’
entry into a region in which a watched variable may be
modified. This notification may come from instrumenta-
tion embedded in the production process, or it may result
from the protective process setting a tripwire in the instruc-
tion stream of the production process or on the variable’s
memory location. The pseudo code illustrated in Figure 4
shows examples of the variable protection instrumentation
embedded in the CPP (the CuPIDS wvar... calls invoke
the CSP notification mechanism), while Figure 5 depicts
the actions taken by the CSP upon notification that vari-
able access is complete.

Ideally, the programmer creating and using the variable
knows what values the variable can legitimately take on;
these values are used by CuPIDS as pre- and post-condition
invariant tests used to validate the changes or attempted
changes to a variable. Other inputs are possible. For ex-
ample, the size of a buffer is known when it is created, and

ISBN 0-7803-9814-9/$10.00 (©2002 IEEE

Start

Y
CuPIDS receives
notification of program
entry into monitored
region for var x

Map memory region
containing x into

Isx mapped No
into CuPIDS ™| CupIDS memory
memory? Space
Yes |- |
Y
Monitor changesto
var X.
Halt process and
Was x No capture forensics
changed toa ——| information about
legitimate process state that

aue?

Yes

led to error condition

Y

Raise alert about error

Y

Finished

Fig. 3. Variable protection flowchart

CuPIDS_var_create(varID=0,

var_address = &protected_var);

int protected_var = 42;
CuPIDS_var_access_begin(varID=0,

var_address = &protected_var);

std::cin >> protected_var;
CuPIDS_var_access_end(varID=0,

var_address = &protected_var);

CuPIDS_var_delete(varID=0);

Fig. 4. CPP Variable Protection Code

34

bool CheckVarOPostCondition(void *var){
if(xvar > 42 || *var < 21)
return false
else
return true

}

//Msg access end handler
if (varID = 0)
if (!CheckVarOPostCondition(var_address))
RaiseAlarm();

Fig. 5. CSP Variable Protection Code

this information can be used by the protective process to
determine if data placed into a buffer overruns the ends of
the buffer. If the changes to the variable were legitimate,
the production process is allowed to continue execution. If
not, the protective process will take some action ranging
from annotating the problem in a log to halting the produc-
tion process or potentially the entire system. In any case,
it will likely capture forensics information about the state
of the production system leading to the erroneous value
being entered into the variable and the changes that took
place.

The CuPIDS architecture requires that when a CuPIDS
production process is executing (actually running on a pro-
duction CPU), that its associated protective process is ex-
ecuting on a CuPIDS CPU.

The process by which a CuPIDS protected process is
loaded is illustrated in Figure 6.

Here the operating system is instructed to execute a pro-
tected program. It first validates the integrity of both the
production and protective programs using a pre-computed
cryptographic signature or some other mechanism. If both
programs are valid, the O/S first loads the security process
into memory, then the production process, and starts the
security process executing on a security CPU. The security
process establishes any hooks it needs into the production
process’ memory space and operating environment (wrap-
pers around library and system calls, etc.). When the secu-
rity process is ready the O/S starts the production process
running on a production CPU. As the production process is
switched onto and off of the production CPUs the operat-
ing system ensures the protective security process is always
running whenever the production process is running.

IV. IMPLEMENTATION

We are testing our research hypothesis by implement-
ing a prototype CuPIDS. This section briefly describes the
current state of that prototype. Our experimentation uses
FreeBSD, currently 5.3-RELEASE [20]. We have added to
the operating system API a set of CuPIDS specific system

ISBN 0-7803-9814-9/$10.00 (©2002 IEEE

Start
Y
Notify operator of
L error

Operating system

instructed to execute

CuPIDS protected

program Y

CuPIDS process
Y establishes required
Validate integrity of hooks into production

CuPIDS shadow process
program and
production program Y
Operating system
i starts production

process running on
production CPU and
ensures CuPIDS
processis running
whenever production
processis running

Both
programs
vaid?

Load CuPIDS shadow
into memory

Y
Load production
program into memory

Y

Finished

Y

Start CuPIDS process
running on security

CPU.

Fig. 6. Protected process loading flowchart

calls that give CuPIDS processes visibility into and control
over the execution of a CPP. Examples of the new func-
tionality include the ability to map an arbitrary portion of
the PP’s address space into the address space of a CSP, a
means by which signals destined for the CPP are routed to
the monitoring CSP, etc. The operating system kernel has
been modified to perform the simultaneous task switching
of CPPs and CSPs, a CSP protected loading capability as
discussed above in section III, and hooks into various kernel
data structures have been added to allow the CSP better
visibility into CPP operation and for runtime history data
gathering.

Our initial experimentation focuses on interactive moni-
toring in which the CPP programmer defines invariants for

35

key variables, explicitly lists which system resources are
used by the CPP, and then exports this information in a
form that is usable by the CSP—essentially exporting run-
time error checks to the CSP. As the CPP runs it sends
messages to the CSP notifying it about operational activ-
ities such as protected variable lifetime events (creation,
accesses and deletion) as well as control flow events (cur-
rently all function call entry and exits, to include library
and syscall invocations) are passed to the CSP as well. The
CSP receives these messages and uses them to ensure the
CPP is operating correctly. In the case of variables the
CSP performs pre- and post-condition invariant checking,
and in the case of flow control, it verifies that all function
calls are to and from legitimate locations within the CPP
text segment. It also maintains a model of the CPP call
stack and verifies all function returns are to the correct
locations, etc.

We have used this prototype to verify basic CuPIDS
functionality. The system is able to correctly load and exe-
cute CPP and CSP components, the CSP is able to detect
invariant and security policy violations as well as illegiti-
mate control flow changes. Upon detecting an error, the
CSP is able to halt the PP, raise an alarm and capture the
state of the CPP’s memory. We have not yet performed
any timing-related testing.

V. ASSESSMENT OF CUPIDS’ SECURITY PROPERTIES

A significant research contribution is an evaluation of
how CuPIDS increases security compared to StUPIDS ar-
chitectures. To answer “why” and “how much,” work is
underway to define measurable contributions and benefits
of CuPIDS’ architecture. The experiments described above
demonstrate that it is possible for one process to perform
realtime runtime error checking on variables in another
process as well as perform simple flow control validation.
To demonstrate the validity of our research hypothesis we
must show that CuPIDS can detect certain attacks faster
than can a StUPIDS equipped with a comparable detector
set.

VI. FUTURE WORK

The architecture described is the initial work to achieve
the broad goals of CuPIDS. The prototype is designed to
serve as a platform for future research and development in
areas of intrusion detection, forensics, and other security
related tasks. In addition to completing an implementa-
tion of the CuPIDS architecture described in this paper
and testing our research hypothesis there are a number of
related avenues we intend to explore. These include over-
all self-protection and healing to enhance fault tolerance as
well as support for computer forensics.

ISBN 0-7803-9814-9/$10.00 (©2002 IEEE

A. Self-protection

The growing body of work into mandatory access control
(MAC) models such as Biba’s integrity-based model [21],
and Bell and LaPadula’s multi-level security [22] models is
used to provide a first-line defense against user application
compromise. While MAC protection systems are not novel,
the CuPIDS architecture uses hardware protection mecha-
nisms in commodity CPUs to define and protect the MAC
mechanism and CuPIDS themselves against direct attacks
that attempt to bypass its controls. To reduce the vul-
nerability of the IDS to an attack on the production pro-
cesses, the system components required by the IDS (e.g.
the scheduler, critical kernel data structures, etc.) must
be protected from modification by an attacker. It may be
possible to design an architecture such that the vital com-
ponents used by the security system are physically separate
from the components accessible by production processors;
however, this research focuses on logically separating the
IDS components in the kernel and using the mandatory ac-
cess control (MAC) protections available in some modern
operating systems to harden those components against at-
tack. It also attempts to ensure that the IDS is given an
opportunity to verify the validity of attempts to access or
modify those systems components or data structures vital
to the IDS.

B. Self-healing

The low-level memory monitoring capabilities provided
by CuPIDS may offer interesting self-healing capabilities.
For example, the CSP may mark as copy on write (COW)
the CPP’s links to virtual memory pages the CSP is moni-
toring. This gives the CSP a capability for recovering from
a buffer overflow. When the CPP writes into the COW
memory it does so into a new page while the original is
preserved by CuPIDS. The CSP can detect the overflow,
pause the CPP and replace the corrupted page(s) with its
copy of the original data, perhaps filling the buffer with
the input but truncated to the correct length. The pro-
duction application’s behavior in this case is as if a safe
input methodology were used. Because CuPIDS caught
the overflow it can also alarm as well as take preventa-
tive actions like modifying the application to protect that
buffer, build attack signatures from the data in the over-
flowed buffer, and pass those signatures out to a supporting
infrastructure such as organizational firewalls.

C. Computer Forensics

The purpose of computer forensics is the collection,
preservation, analysis and presentation of computer-related
evidence. This evidence is used to determine exactly what
happened to cause, and who was responsible for, an event
in such a way that the results are useful in a legal pro-
ceeding. Aspects of the CuPIDS architecture may improve
the efficacy of forensics data gathering as well as allow the

36

system to make use of this data to recover from errors and
possibly prevent their reoccurrence. The COW capability
discussed above may be useful in the aftermath of a com-
puter security incident by providing a record of what the
CPP’s memory contents (and therefore state) were prior to
a damaging attack.

D. Formal Modeling

The majority of modern day systems are far too com-
plex to formally model and verify that specific confiden-
tiality and integrity policies are met. The segmented Cu-
PIDS architecture, however, provides us with a framework
to investigate the applicability of existing models, such as
the Bell-LaPadula confidentiality model [22], and integrity
models such as Lipner’s Integrity Matrix [23] and Clark-
Wilson [24], to the environment. Benefits of formally mod-
eling the CuPIDS architecture include providing a basis
for what security mechanisms should be in place to en-
force policies and satisfy design requirements. Using the
Bell-LaPadula model, the CuPIDS specific or critical data
structures and code can be classified at a higher security
level or placed in a separate category than the rest of the
system, even those parts of the system running with root
privileges. There are many possibilities that can be ex-
plored by modeling each component of the underlying ar-
chitecture. Further research can be done in this area to
investigate the possibility of proving the system’s security,
and in further refining existing models.

VII. CONCLUSION

We have proposed a paradigm shift in computer secu-
rity, one that challenges conventional wisdom by trading
performance for security. Our approach is based upon run-
ning dedicated monitoring functions parallel with the code
they monitor on a MP system. We believe the CuPIDS
architecture to be more effective than StUPIDS architec-
tures in terms of real-time detection of bad events as well
as offering some novel detection techniques based upon the
low-level and parallel nature of the monitoring. By dedicat-
ing computational resources explicitly to security tasks we
are trading performance for security; however, by offload-
ing some security tasks from the production process into
the security process and running them in parallel we are
decreasing the workload of the system production compo-
nents. We have constructed a prototype of this architecture
and used it to verify CuPIDS basic functionality.

REFERENCES

[1] e. a. Mark Crosbie, “Idiot users guide,” Tech. Rep. COAST TR
96-04, Department of Computer Sciences, 1996. CSD-TR-96-
050.

[2] B. A. Kuperman, A Categorization of Computer Security Mon-
itoring Systems and the Impact on the Design of Audit Sources.
PhD thesis, Purdue University, West Lafayette, IN, 08 2004.
CERIAS TR 2004-26.

[3] S. Axelsson, “Intrusion detection systems: A survey and taxon-
omy,” Tech. Rep. 99-15, Chalmers Univ., Mar. 2000.

ISBN 0-7803-9814-9/$10.00 (©2002 IEEE

(4]

(6]

[7]

(8]

(9]

(10]

11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]
[20]
(21]
(22]

(23]

[24]

H. Patil and C. Fischer, “Low-cost, concurrent checking of
pointer and array accesses in ¢ programs,” Softw. Pract. Exper.,
vol. 27, no. 1, pp. 87-110, 1997.

H. Xu, W. Du, and S. J. Chapin, “Context Sensitive Anomaly
Monitoring of Process Control Flow to Detect Mimicry Attacks
and Impossible Paths,” in ”7”, 2004. In Proceedings of the Sev-
enth International Symposium on Recent Advances in Intrusion
Detection.

H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and W. Gong,
“Anomaly detection using call stack information,” in SP ’03:
Proceedings of the 2008 IEEE Symposium on Security and Pri-
vacy, p. 62, IEEE Computer Society, 2003.

R. Gopalakrishna, E. H. Spafford, and J. Vitek, “Efficient in-
trusion detection using automaton inlining,” in To appear in SP
’05: Proceedings of the 2005 IEEE Symposium on Security and
Privacy, IEEE Computer Society, 2005.

D. Wagner and D. Dean, “Intrusion detection via static analy-
sis,” in SP ’01: Proceedings of the IEEE Symposium on Security
and Privacy, p. 156, IEEE Computer Society, 2001.

H. H. Feng, J. T. Giffin, Y. Huang, S. Jha, W. Lee, and B. P.
Miller, “Formalizing sensitivity in static analysis for intrusion de-
tection.,” in IEEE Symposium on Security and Privacy, pp. 194—
, 2004.

J. D. Tygar and B. Yee, “Dyad: A system for using physically
secure coprocessors,” in IP Workshop Proceedings, 1994.

W. Arbaugh, D. Farber, and J. Smith, “A secure and reliable
bootstrap architecture,” 1997.

O. S. Saydjari, “LOCK: An Historical Perspective,” in Proceed-
ings of the 18th Annual Computer Security Applications Con-
ference, 2000, (www.acsac.org), pp. Online, www.acsac.org, AC-
SAC, 2000.

X. Zhang, L. van Doom, T. Jaeger, R. Perez, and R. Sailer, “Se-
cure coprocessor-based intrusion detection,” in ACM European
SIGOPS 2002, 2002.

J. Molina and W. A. Arbaugh, “Using independent auditors as
intrusion detection systems,” in Proceedings of the Fourth Inter-
national Conference on Information and Communications Se-
curity (S. Qing, F. Bao, and J. Zhou, eds.), vol. 2513 of LNCS,
pp. 291-302, 2002.

T. Garfinkel and M. Rosenblum, “A virtual machine introspec-
tion based architecture for intrusion detection,” in Proc. Net-
work and Distributed Systems Security Symposium, February
2003.

J. P. Anderson, “Computer security technology planning study,”
Tech. Rep. ESD-TR-73-51, Vol. II, HQ Electronic Systems Di-
vision (AFSC), Hanscom Field, Bedford, MA, 01730, 1972.

R. Lipton, S. Rajagopalan, and D. Serpanos, “Spy: A method
to secure clients for network services,” in Proceedings of the
22nd International Conference on Distributed Computing Sys-
tems Workshops, 2002.

I. Tm-I, “Ia-32 intel architecture software developers manual vol-
ume 1: Basic architecture.”

A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System
Concepts. John Wiley & Sons, Inc., 2001.

TrustedBSD, “TrustedBSD.” www.freebsd.org.

K. Biba, “Integrity considerations for secure computer systems,”
Tech. Rep. TR-3153, Mitre, Bedford, MA, Apr. 1977.

D. E. Bell and L. J. LaPadula, “Secure computer systems: Math-
ematical foundations and model,” Tech. Rep. M74-244, The
MITRE Corp., Bedford MA, May 1973.

S. Lipner, “Non-discretionary controls for commercial applica-
tions,” in Proceedings of IEEE Symposium on Security and Pri-
vacy, (Oakland, CA), pp. 2-10, April 1982.

D. Clark and D. Wilson, “A comparison of commercial and mil-
itary computer security policies,” in Proceedings of IEEE Sym-
posium on Security and Privacy, pp. 184-194, IEEE Computer
Society Press, 1987.

37

