
CERIAS Tech Report 2005-42

A POLICY FRAMEWORK FOR ACCESS MANAGEMENT IN FEDERATED INFORMATION
SHARING

by Rafae Bhatti, Elisa Bertino, Arif Ghafoor

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

1/11

A Policy Framework for Access Management in Federated Information Shar ing

Rafae Bhatti, Elisa Bertino, Arif Ghafoor

Current mechanisms for distributed access
management are limited in their capabilities to provide
federated information sharing while ensuring adequate
levels of resource protection. This work presents a policy-
based framework designed to address these limitations for
access management in federated systems. In particular, it
supports: (i) decentralized administration while preserving
local autonomy, (ii) fine-grained access control while
avoiding rule-explosion in the policy,(iii) credential
federation through the use of interoperable protocols, (iv)
specification and enforcement of semantic and contextual
constraints, and (v) usage control in resource provisioning
through effective session management. The paper
highlights the significance of our policy-based approach in
comparison with related mechanisms. It also presents a
system architecture of our implementation prototype.

1. Introduction

Federated systems comprise of shared
resources belonging to distributed, potentially
mutually untrusted, administrative domains. A key
property of federated systems is that each
participating site retains local autonomy (i.e.
administrative control over its resources), which is a
main difference between federated and traditional
distributed system concepts. Many commercial and
government organizations are increasingly adopting
the federated approach to online information
management, be it for critical infrastructure
protection such as the DoD NetCentric Directive [1]
or wide dissemination of scholarly work such as the
Federated Digital Library initiative [2].

Access management in a federated system
includes specification and administration of access
control policies of protected information resources
belonging to participating sites, and secure federation
to allow seamless sharing of those resources. An
effective mechanism for access management in such
systems must take into consideration the access
control requirements as stated in the access control
policies of each participating site. However, several
challenges arise in developing and enforcing access
control policies in a federated paradigm.

The principle of local autonomy impacts the
ability of the federation to share and acquire
resources [3]. A major problem in this context is
policy administration. A centralized administration
approach may imply loss of autonomy for
participating sites [3], and is ruled out. On the other
hand, decentralizing administrative control requires
that participating sites specify authorization policies
for federated users [3]. This approach preserves local
autonomy, but is complicated by the fact that

federated systems typically involve a diverse, unseen
user pool requiring granular and differentiated access
to a diverse set of resources located anywhere across
the federation. It, therefore, precludes the use of
traditional approaches to distributed authorization
(such as X.509 based PKI) that assume knowledge of
user identities and resource locations. Even when
knowledge of identities is available, the requirement
of fine-grained access control would lead to rule-
explosion in the access control policy given the size
of federated population in open systems. To keep the
rule set from becoming prohibitively large calls for a
scalable approach.

While decentralizing administrative control
requires that participating sites specify authorization
policies for federated users in an appropriate format,
a related challenge is to transfer the credentials of the
federated users across administrative boundaries for
them to obtain federated resources according to the
applicable authorization policies. We refer to such a
mechanism as credential federation. No federated
system can achieve its access management goals
unless the requirement for credential federation is
satisfied. Doing so, however, requires interoperable
protocols that can allow participating sites to federate
user credentials. Multiple policies may be necessary
to evaluate the request of a federated user, and
requires the support for combining rules from
multiple policies to support composite policy
evaluation. A related requirement for credential
federation is that of achieving Single Sign On (SSO),
which enables persistent authorization support for
federated users within a single login session.

The “dual” of credential federation is
resource federation, i.e. availability of resources to
federated users according to the applicable
authorization policies. Resource federation can occur
in two modes, namely resource sharing and resource
provisioning. Provisioning may be considered an
advanced form of sharing where the resource is
actually acquired (rather than just accessed) by the
requestor for a specified period of time. It is assumed
that the resource will remain within the immediate
control of the owner during this time.

While credential federation is aimed at
securing the authorization information of federated
users, resource federation takes a more usage-
oriented view, and is aimed at ensuring effective
protection of accessed or acquired resources. For
instance, a digital document acquired in a read-only
mode by an authorized user for a specified period of
time must be protected against any (unauthorized)

2/11

modifications. In other words, the role of access
control should not end after the resource is initially
provided, but must persist for the duration of the
provisioning session. Traditional access control
models do not take a usage-oriented view, and hence
are inadequate to capture the protection requirements
associated with federated resource sharing.

Lastly, the collaborative nature of a
federated system requires the specification of
semantic and contextual constraints to ensure
adequate protection of federated resources. Semantic
constraints include high level integrity principles that
need to be captured in the access control policy, such
as separation of privileges [4]. For instance, it may be
required that no user may acquire the rights to access
two design documents from two competing firms.
Contextual constraints include temporal or other
environmental attributes surrounding an access
request that must be evaluated to decide on resource
provisioning. For instance, a resource access between
two domains may be time-constrained to occur only
during business hours. Conditions associated with
provisioning and de-provisioning of resources are
absolutely critical to the functioning of the
federation, especially when resources are provided
against some form of obligation (such as service level
agreements, etc.).

Supporting semantic and contextual
constraints in the access control policy requires
mechanisms for constraint specification, evaluation
and enforcement in a decentralized manner. While
constraints increase the expressiveness of the policy,
enforcing them requires maintaining state
information across all user accesses, and is much
more complex in a decentralized environment than in
a centralized architecture. Reducing the complexity
of policy administration, therefore, becomes an
immediate concern [19]. Moreover, the integrity
requirements and contractual obligations within a
federation might change on-demand, and an access
management mechanism must be flexible enough to
facilitate such adaptation.

All the above cited challenges are unique to
the federated paradigm and need to be addressed to
ensure effective access management. We believe that
a policy-based approach to access management
provides a viable solution since it is flexible and
adaptable enough to meet these requirements. A key
benefit of policies for systems management is that
policies are interpreted rather than compiled into
program code, so can be changed dynamically
without changes to application code [20]. To realize
this benefit, however, it is mandated that the policy
supports an interoperable and expressive
specification that can support these access
management needs of a federated system.

1.1 Contr ibutions and organization
The primary objective of this paper is to

study the impact of these outlined challenges on the
design and administration of an access control policy.
In response, we present the design and enforcement
architecture of a policy-based framework that
addresses them. Our design builds upon the well-
known Role Based Access Control (RBAC) model
which has been recognized for simplified
administration [5] particularly in the context of
federated access management [6], and augments it
with necessary extensions to support access
management in a federated system.

In particular, we support the following key
extensions to basic RBAC model:
(i) Delegated administration through the use of

trust relationships captured through role
hierarchies. Our approach provides scalable
decentralization support and preserves local
autonomy.

(ii) Credential specification for an unseen,
heterogeneous pool of users and resources
through a combination of rule-based role
assignment and role-based authorization.
Our approach allows fine-grained access
control while avoiding rule-explosion in the
policy.

(iii) Credential federation through the use of
interoperable protocols. We support
combing rules from multiple policies for
composite policy evaluation, and also
provide single sign on for federated users.

(iv) Usage control in resource provisioning by
employing usage-oriented resource
protection policies, and session management
mechanism.

(v) Specification and enforcement of semantic
and contextual constraints needed to support
integrity requirements and contractual
obligations in a federated system. Our
approach achieves scalability and flexibility
through modularized constraint specification
and maintains reduced complexity through
lazy rule instantiation.
The remaining of the paper is organized as

follows. Section 2 introduces design principles of our
policy-based approach for access management in
federated systems. Section 3 presents the details of
the policy framework. Section 4 presents the system
architecture of an implementation prototype of our
proposed framework. We apply our policy
framework in a federated digital library environment
(with read-only access), and illustrate design and
enforcement of access control policies for secure
federation of XML-based digital documents. Section
5 puts our work in perspective with related work, and

3/11

highlights the particular merits of our work with
respect to the outlined challenges. Section 6
concludes the paper.
2. Design Approach

Recently, there has been a growing
recognition of security problems in federated
environments, and several emerging specifications in
various stages of standardization have emerged [7-
10]. But standards alone won't solve the problem.
The answer lies in combining standards with policies
that govern how shared information can be used [11].
In this paper, we provide a policy-based solution
specific to access management in federated systems
with the motivation to address this crucial
requirement. Among our design goals is to provide an
interoperable specification for expressing access
control policies that is compatible with emerging
security standards for information federation.

All notable emerging standards for Web-
based federation are XML-based; we therefore use an
XML-based policy specification language. As a
consequence, our policy based framework facilitates
interoperability with complementary security
protocols for federated systems. In addition to
supporting high-level access control requirements,
our language can be used to encode various low-level
security policies (such as IPSec) through appropriate
XSLT tools, and allow them to be applied in a
federated system.

Another design goal is to allow modular
specification of authentication and authorization
credentials to provide support for pluggable
authentication standards to be incorporated. Being
neutral to the authentication mechanism, we do not
deal with the authentication system needed to
generate the authenticator. In other words, we assume
that the authentication information supplied to the
system is already verified, and use that to create an
authentication credential usable in our framework.

Our design is focused on specification of
policies, and therefore we do not consider certain
other auxiliary issues. For example, we do not deal
with credential provisioning issues, which include
deployment of credentials across multiple
applications, typically through the use of directory
services (such as LDAP). We also do not deal with
identity aggregation issues involving multiple LDAP
repositories for manipulating composite
authentication credentials. Additionally, we assume
that the channels used for network communication
are secured by appropriate mechanisms (such as
SSL/TLS).
3. X-GTRBAC Policy Framework
 This section describes the key features of X-
GTRBAC (XML-based Generalized Temporal Role
Based Access Control), our XML-based policy

specification framework. Our specification language
is an extension of the RBAC model suitable for
addressing the access management challenges in
federated systems discussed in this paper.
3. 1. Language Specification

X-GTRBAC language specification is
captured through a context-free grammar called X-
Grammar, which follows the same notion of
terminals and non-terminals as in BNF, but supports
the tagging notation of XML which also allows
expressing attributes within element tags. The use of
attributes helps maintain compatibility with XML
schema syntax, which serves as the type definition
model for our language. Since it follows BNF
convention, X-Grammar can be accepted by a well-
defined automaton to allow automatic translation into
XML schema documents. This allows automatic
creation of strongly typed policy schemas based on
the supplied grammar specification. We choose to
use X-Grammar syntax instead of directly working
with XML schemas for ease of analysis (since
existing compiler tools for BNF grammars can be
applied) and better readability and presentation.
Examples of X-Grammar policies are given in
following sections. The complete syntax of X-
GTRBAC language specification appears in
Appendix A.
3.2. Policy Components
 We now describe the main components of
our policy language. While doing so, we motivate our
design decision by evaluating existing approaches
against our stated requirements, and pointing out the
merits of our design with respect to our objectives.
3.2.1. Credentials

Credentials are a key component of an
access control language. A credential encodes the
authentication and authorization information for the
users. We have earlier motivated that a
heterogeneous and unfamiliar user and resource pool
in a federated system complicates credential
specification, since it precludes the use of traditional
approaches to distributed authorization (such as
X.509 based PKI) that assume knowledge of user
identities and resource locations.

[12, 13] are well-known examples of
distributed schemes that have used identity-based
X.509 certificates for user authentication. The
authentication information (i.e. public keys) is then
used to construct an authorization credential that
comprises of a set of resource-specific rules. The
credentials are bound to user identities and therefore
this approach to credential specification is not
scalable. Even when knowledge of identities is
available, the requirement of fine-grained access
control would lead to rule-explosion in the access
control policy given the size of federated population

4/11

in open systems. Additionally, this approach tightly
couples authentication with authorization, and is
therefore inflexible, and violates one of our design
principles.

Our policy framework addresses this
problem through the use of attribute-based (as
opposed to identity-based) credential specification.
We adopt a modular approach and allow independent
specification of authentication and authorization
credentials. The authentication credential comprises
of user attributes which are used by the access control
processor for role assignment. This idea is similar to
the one used in [14]. However, unlike in [14], we do
not require reliance on X.509 identity-based
certificates to encode user authentication information.
Instead, the user attributes may be supplied in any
mutually agreed format, such as an “authentication
assertion” in the emerging identity federation
standard SAML [7]. This supports the requirement
for credential federation (See Section 3.3.3).

An authorization credential comprises of
role attributes which are used by the access control
processor for permission assignment to roles.
Examples of role attributes are time of day, system
load, etc. [16].

The authentication and authorization
credentials in our framework are included in an XML
User Sheet (XUS) and an XML Role Sheet (XRS)
respectively. The top-level X-Grammar syntax of
XUS and XRS is shown in Figures 1 and 2.

<!-- XML User Sheet> ::=
<XUS [xus_id = (id)]>
 <CredType cred_type_id=(id) type_name= (name) >
 [<!—Header>]
 <!-- Credential Expression>
 </CredType>
</XUS>

Figure 1: Top-level X-Grammar for XML User Sheet:
Includes definition of authentication credential

<!-- XML Role Sheet> ::=
<XRS [xrs_id = (id)]>
 <Role role_id = (id) role_name = (role name)>

[<!—Header>]
<!-- Credential Expression>

 [<Junior> (name) </Junior>]
 [<Senior> (name) </Senior>]
 [<!—Delegation Constraint>]
 (<SSDRoleSetID> (id) </SSDRoleSetID>)*
 (<DSDRoleSetID> (id) </DSDRoleSetID>)1*
 </Role>
</XRS>

Figure 2: Top-level X-Gramamr for XML Role Sheet:
Includes definition of authorization credential

1 SSD and DSD refer to static and dynamic SoD respectively.

 The credential specification in our
framework facilitates a combination of rule-based
role assignment and role-based authorization (See
Section 3.2.3). Our approach allows fine-grained
access control while avoiding rule-explosion in the
policy since users are assigned to roles and access
rules are specified at per-role rather than per-user
level.
3.2. 2. Constraints

Constraints are essential to the
expressiveness of an access control language.
Specification of semantic and contextual constraints
is vital to support the enforcement of integrity
principles and resource provisioning contracts in a
federated system. As motivated earlier, enforcing
expressive constraints in a decentralized manner
involves maintaining prohibitive amounts of state
information and introduces significant complexity.
Additionally, adapting the constraints according to
on-demand changes in integrity requirements and
contractual obligations within a federation requires a
specification format that facilitates such adaptation.

Most well-known distributed authorization
schemes [12-15] do not cover the requirements of
constraint specification and enforcement as required
for access management in federated systems. As
mentioned before, [12, 13] tightly couple resource-
specific authorization constraints with the identity-
information. This method of constraint specification
is clearly inflexible to allow on-demand adaptation
of constraints; doing so would require issuance of a
new credential for the affected users since their
identity is bound to the authorization.

Additionally, constraints in [12, 13] are
inadequate to capture semantic integrity constraints,
such as SoD, in a federated system since doing so at
the user level would require prohibitive amount of
state information to be maintained. In comparison,
enforcing SoD at the granularity of role is more
manageable and one has to include in the constraint
definition only the roles, as opposed to all
permissions, that the user may have access to. The
support for contextual constraints based on temporal
or other environmental attributes is also limited in
[12, 13], since they do not have a formal temporal
model, and rely on underlying operating system
primitives to enforce temporal constraints. [14, 15]
are based on basic RBAC and do not support
specification of contextual constraints.

X-GTRBAC supports a variety of constraint
categories to adequately capture the access
management requirements in federated systems. The
constraint specification in X-GTRBAC framework is
primarily based on Generalized Temporal Role Based
Access Control (GTRBAC) model [17]. GTRBAC is
a generalized temporal mechanism to express a

5/11

diverse set of fine-grained temporal constraints in an
RBAC environment. The temporal constraint
categories supported by GTRBAC include
periodicity, interval, and duration constraints which
can be used to constrain the period, interval and
duration, respectively, of user-to-role and permission-
to-role assignments. Another category is that of
trigger-based constraints, which can be thought of as
condition-action rules. As the name implies, trigger-
based constraints are used to condition the occurrence
of an event on another. Moreover, GTRBAC also
elegantly captures the SoD constraint among roles to
capture integrity requirements. Both static and
dynamic SoD constraints are supported. Capturing
these constraints at the role level helps reduce state
information needed to enforce the constraints.

X-GTRBAC supports modular specification
of all the constraints in the GTRBAC model [18].
The modular approach allows independent
specification of SoD and temporal constraint
definitions which can then be imported into the
policy through the use of XML namespaces.
Specification of constraints separate from the policy
allows reusable constraint definitions that can be used
across multiple policies. Additionally, constraint
definitions may be changed at one place without
requiring change to all dependent policies, facilitating
flexible adaptation.

X-GTRBAC additionally supports the
specification of contextual constraints based on non-
temporal attributes, usually associated with a role
[16]. Contextual constraints on role attributes can be
used in addition to temporal constraints to support
finer granularity of control on user-to-role and
permission-to-role assignments.

Top-level X-Grammar syntax of SoD and
temporal constraint definitions is shown in Figures 3
and 4. The SoD constraints are included with the role
definition in XRS (Figure 2), whereas the temporal
constraints are included in assignment policies
(Figure 6). An example XML instance of a temporal
constraint definition appears in Appendix B.

<!-- Separation of Duty Definitions> ::=
 <XSoDDef [xsod_id = (id)]>
 <!—SoDRoleSets>
 </XSoDDef>

Figure 3: Top-level syntax of SoD constraint definition

<!-- Definitions of Temporal Constraints>::=
 <XTempConstDef [xtcd_id = (id)]>
 [<!—Interval Expression>]
 [<!-- Periodic Time Expression>]
 [<!-- Duration Expression>]
</XTempConstDef>

Figure 4: Top-level syntax of temporal constraint definition

Temporal constraints are of particular
relevance to federated resource provisioning because
it requires a set of fine-grained temporal constraints
to adequately ensure resource protection while also
ensuring its availability per the contractual
requirements. This set includes constraints that
control the periodicity, interval and duration of
resource accesses (i.e. permission assignments)
during and across provisioning sessions, in addition
to trigger-based constraints that allow provisioning
actions to be conditioned on related events. This
represents a collection of stateful rules that can be
configured in permission-to-role assignment policies.
Doing so allows specification of usage-oriented
resource protection policies to enforce usage control
of federated resources.
3.2.3. Assignment Rules
 An integral component of RBAC polices in
our framework is the specification of rules for user-
to-role and permission-to-role assignments. Rule-
based assignment in RBAC policies provides a
succinct declarative specification that is both scalable
and flexible. It avoids the problem of rule-explosion
since rules are specified at per-role (as opposed to
per-user or per-resource) level. It is flexible since a
declarative syntax allows rules to be modified
without changing application code.
 As noted earlier, the authentication
credential contains user attributes which are used by
the access control processor for role assignment to
users, whereas the authorization credential contains
role attributes which are used by the access control
processor for permission assignment to roles. In our
framework, a permission-to-role assignment policy
also includes rules on resource attributes to allow
specification of usage-oriented protection policy.
Resource attributes capture semantic information (or
meta-data) about resources, and avoid reliance on
resource identity or location. To represent attributes
of federated resources, we use application-specific
attribute definitions (i.e. ontologies) that can be
imported and referred to in the policy through the use
of XML namespaces. The resource attributes are
included in the object definition in an XML
Permission Sheet (XPS). The top-level X-Grammar
syntax of an XPS is shown in Figure 5.

<!-- XML Permission Sheet>::=
<XPS [xps_id = (id)]>
 <Permission perm_id = id [prop= (prop op)] >
 <Object type= (type name) id= (id)>
 [<!-- Attributes>]
 </Object>
 <Operation> (access op) </Operation>
 </Permission>
</XPS>

Figure 5: Top-level X-Gramamr for XML Permission Sheet

6/11

Our assignment policy schema specifies a
logical expression syntax for rule specification. It
does not, however, impose any restriction on the
attributes that may be used for composing these rules.
The existence and type checking of the queried
attribute shall be done in an application-specific
manner. For instance, user attributes can be verified
through appropriate attribute authorities stated in the
authentication credential.

The assignment policies are specified in our
framework in an XML User to Role Assignment
Sheet (XURAS) and XML Permission to Role
Assignment Sheet (XPRAS). The top-level X-
Grammar syntax of XURAS is shown in Figure 6
(XPRAS is analogous). Note that these policies
include references to temporal constraint definitions.
For example, pt_expr_id references a periodic time
expression. An example XML instance of a role
assignment policy appears in Appendix B.

<!-- XML User-Role Assignment Sheet>::=
<XURAS [xuras_id = (id)]>
 <URA ura_id=(id) role_name=(name)>
 <AssignUsers>
 <AssignUser user_id=(id)>
 <AssignConstraint[op =(AND|OR|NOT|XOR)]>
 // opcode defaults to AND if none specified
 <AssignCondition cred_type=(type name)
 [pt_expr_id=(id) | d_expr_id=(id)] >
 <LogicalExpr [op = (AND|OR|NOT)]>
 // opcode defaults to AND if none specified
 [<!-- Predicate>]+
 </LogicalExpr>
 </AssignCondition>
 </AssignConstraint>
 </AssignUser>
 </AssignUsers>
 </URA>
</XURAS>

Figure 6: Top-level syntax of user-to-role assignment policy

A key feature of our rule specification
format is the mechanism for combing rules from
multiple policy sources for composite policy
evaluation. Our logical expression syntax allows
multiple logical expressions to be combined together
in an appropriate rule combining mode. The modes
supported by the evaluation engine in our prototype
are AND (all rules must be true), OR (at least one
rule must be true), and NOT (no rule must be true).
Several levels of nesting are supported, each under a
distinct mode, to allow a fine granularity of rule
specification. We also note that the NOT mode
essentially allows one to encode negative rules in our
framework.
3.3. Salient Features
 In this subsection, we describe the salient
features of our policy framework that enables the
solution to access management challenges in

federated systems outlined in the paper. These
features build upon the policy components discussed
in the previous subsection.
3.3.1. Delegated Administration

The requirement for local autonomy, and
hence decentralization of administrative control, in
federated systems poses major challenges in
developing access control policies, as has been earlier
discussed. The mechanisms for credential and
constraint specification in our framework help
alleviate part of this problem. The other aspect is
related to the policy administration and enforcement
mechanism.

Decentralization of policy administration in
X-GTRBAC is achieved through the notion of
administrative domains. An administrative domain
(or domain for short) is a unit of administrative
authority. A federated system is then a multi-domain
environment where each domain is responsible for
managing the users and resources under its
administrative control [16].

Delegation of responsibilities is essential to
scalable decentralization. Delegation in federated
systems is captured through some form of trust
relationships [12]. In X-GTRBAC framework, the
notion of delegation is elegantly captured through the
use of role hierarchies: a senior role can set
delegation rights for its junior roles by specifying an
optional delegation rule (See Figure 2). This role-
based delegation serves as the basis of trust in
creating role mappings across multiple domains for
federated information sharing. For instance, a
Manager role in domain A might delegate his/her
privileges to an Employee role in domain B. (Roles in
other domains may be referenced in a delegation rule
using XML namespaces.) Therefore, the domain
administrator in domain A would allow an
“equivalent” Employee role from domain B to exercise
Manager-level privileges, without requiring explicit
knowledge of domain B’s access control policy.

Delegated administration requires access to
a local compliance checker that can compute this
“equivalence” with respect to the local domain
policies. The use of a compliance checker to ensure
compliance of federated requests with local policies
is a recognized mechanism for preserving local
autonomy in distributed systems [19]. In our X-
GTRBAC prototype, the compliance checker is
incorporated into an authorization engine residing in
each domain. It internally maintains a domain-
specific mapping from the foreign (i.e. federated)
roles to local roles according to the delegation
policies of the local domain.
3.3.2. Lazy Instantiation
 Domains, together with delegation, allow
scalable decentralization of policy administration.

7/11

However, the complexity of policy administration
remains a concern, since an expressive access control
policy would require the local authorization engine to
maintain prohibitive amount of state information.

The use of credential-based specification in
our policy framework helps mitigate this concern. A
credential-based approach allows state information to
be reduced since the requestor supplies the
credentials relevant to the access request, facilitating
lazy instantiation of policy rules. Therefore, the
policy does not need to be distributed synchronously
to all enforcement points [19]. In our X-GTRBAC
prototype, lazy instantiation helps in state-reduction
while enforcing the policy, since there is no need on
part of the authorization engine to maintain persistent
state information, i.e. store the assignment policies
for all users and resources.
3.3.3. Credential Federation

The credential specification in a federated
system must support federation requirement, as
outlined earlier. Many existing distributed
authorization schemes [12-15] do not address this
requirement due to inherent limitation of their
credential specification formats, as discussed in
Section 3.2.1.

The modular, attribute-based credential
specification in the X-GTRBAC framework allows
credential federation through the use of interoperable
protocols. In fact, the on-going work on our
prototype has assumed a SAML-compliant format for
authentication credentials. SAML standard [7] states
that authentication information may be available in
various forms, such as X.509 Attribute Certificates,
Kerberos tickets or passwords. We employ
appropriate translation mechanisms for them to be
used with our X-GTRBAC syntax. Since our rule
specification supports combing rules from multiple
policy sources, this allows use of our specification in
situations when multiple policies are necessary to
evaluate the request of a federated user.

In addition to credential federation, a related
requirement is that of providing single sign on (SSO).
SSO enables persistent authorization support for
federated users within a single login session. Our
policy language supports SSO through the inclusion
of XML Digital Signature in the credential header of
an authorization credential (See Figure 2). This
allows the authorization credential to be reused by a
federated user without getting re-authenticated,
subject to the acceptance and validity of the digital
signature.
3.3.4. Usage Control

Persistent protection of federated resources
requires effective usage control mechanisms.
Traditional access control models do not take this
usage-oriented view, and hence are inadequate to

capture the protection requirements associated with
federated resource sharing.

 X-GTRBAC framework allows the
specification of usage-oriented resource protection
policies as discussed in Section 3.2.2. However,
enforcement of these policies requires effective
session management mechanism. In our X-GTRBAC
prototype, this session management support is
provided through the implementation of periodicity,
interval and duration constraints associated with
resource provisioning and de-provisioning. In
addition, it also implements trigger-based constraints
that allow provisioning and de-provisioning actions
to be conditioned on related events. For example, the
provisioning of a resource may be automatically
discontinued when the associated duration constraint
expires. This set of constraints represents a collection
of stateful rules that are configured in permission-to-
role assignment policies, and enforced by the session
management mechanism. Stateful rules help keep the
complexity of maintaining the policy low.
3.4. Policy Composition

An overall X-GTRBAC policy is composed
from these individual policy components as follows:

<!-- Policy Definition> ::=
<Policy policy_id =(id)>

 <PolicyName> (name) </PolicyName>
 <!-- XML User Sheet>
 <!-- XML Role Sheet>
 <!-- XML Permission Sheet>
 <!-- XML User-Role Assignment Sheet>
 <!-- XML Permission-Role Assignment Sheet>

</Policy>

 The complete X-Grammar policy syntax is
provided in Appendix A.
4. System Architecture
 In this section, we present the system
architecture of our X-GTRBAC prototype designed
for access management in a federated environment.
In particular, we apply our policy framework in a
federated digital library environment (with read-only
access). The use of this prototype illustrates the
design and enforcement of access control policies for
secure federation of XML-based digital documents.
XML is increasingly being used as the preferred
digital format on the Web; therefore we work with
XML documents.
 The system architecture is shown in Figure
7. This architecture is implemented at each
participating site in the federation. We now highlight
the role of the key components of the prototype.
4.1. Policy specification

XML Document Composition Module
(XDCM) is used by each participating site to
compose policy documents. Each site first encodes its
X-Grammar policy definitions which are then

8/11

translated into XML schemas using a custom
translator and exported to XDCM. The policy
documents are then composed in XML inside the
XDCM, and verified against the imported schema
definitions.

XML Policy Base (XPB) contains all policy
related XML documents composed by XDCM. These
include XML User Sheet (XUS), XML Role Sheet
(XRS), XML Permission Sheet (XPS), XML User to
Role Assignment Sheet (XURAS), and XML
Permission to Role Assignment Sheet (XPRAS).
Also stored in XPB are the constraint definitions,
including XSoDDef (Figure 3) and XTempConstDef
(Figure 4).

XML Schemas and Instances contains actual
XML documents at a participating site to which the
users of the federated library will be requesting
access. Referenced Object Base constitutes the
physical objects present in the local system which are
referenced from within the XML documents. Note
that binary encoding allows objects to be embedded
within XML documents, and those objects may
themselves be protected resources.

As is the usual case, the default policy of the
federation is no authorization, i.e. no user is
authorized to access any document unless there exists
an explicit rule granting him/her an authorization.
4.2. Policy enforcement
 Upon receiving an access request, the
Access Control Module (ACM) extracts the policy
information from the policy base and works closely
with the XPB to enforce the authorization constraints
on the release of the request resource. The access
request may either be from a local or a federated user.

In the latter case, it is received as a SAML assertion.
If the requested resource is not available within the
system, the ACM simply returns (or appropriately
redirects) the request. Otherwise, it proceeds as
follows.

As a first step, the ACM forwards the access
request to the Credential Evaluator (CrE). CrE
evaluates the credential presented in the request
forwarded by the ACM. (If the request was received
as a SAML assertion, it is first translated to X-
GTRBAC format.) Based on the credential type (i.e.
authentication or authorization), CrE does the
following. If it is an authentication credential, CrE
assigns the user to an appropriate role within the
system according to the user-to-role assignment
policy after consulting the XPB. If it is an
authorization credential (meaning that it is an SSO
request), it already includes the role of the federated
user in his/her original domain. In this case, CrE
invokes the Role Mapper (RM) to map the user to a
local role according to the delegation policy of the
system. After this step, the user acquires the
privileges of the assigned or mapped role in the local
system.

After establishing the role of the user, the
next step is to determine the authorization of the user
to access the requested resource. In this step, ACM
forwards the access request together with currently
available contextual information to the Context
Evaluator (CoE). This contextual information may
include attributes such as time of day, system load, as
noted earlier. CoE first evaluates the contextual
information provided by the ACM. It uses this
information to then evaluate the authorization request

Figure 7: The system architecture for federated digital library prototype

X U S
X R S
X P S

X U R A S
X P R A ST e x tT e x t

X M L D o c u m e n t C o m p o s i t i o n M o d u l e

X M L d o c u m e n t
p r e s e n t a t i o n d e t a i l s ,

s t y l e s h e e t s , e t c .

X M L I n s t a n c e B a s e

X M L S c h e m a s a n d
I n s t a n c e s

T e x t

R e f e r e n c e d O b j e c t B a s e

Im a g e s

U s e r C r e d e n t ia l s

C o n t e x t
In f o r m a t io n

A c c e s s C o n t r o l M o d u l eA c c e s s C o n t r o l M o d u l e

R o l e M a p p e r

U s e r
R e q u e s t

D o c u m e n t
p r e s e n t a t i o n

1

X M L I n s t a n c e
G e n e r a t o r

2

3

4

5

C o n t e x t
E x t r a c t o r

C r e d e n t i a l
E v a lu a t o r

5 ’

1 ’

S e s s i o n
M a n a g e m e n t M o d u l e

X M L D o c u m e n t E d i t o r
(C r e a t e X M L d o c u m e n t s w i t h

a c c e s s c o n t r o l s p e c i f i c a t i o n)

X M L P o l i c y B a s e

XML
ACP

SAML

SAML

9/11

according to the permission-to-role assignment policy
after consulting the XPB. The result of the evaluation
is returned to ACM, together with any applicable
resource provisioning constraints retrieved from
XPB, as discussed in Section 3.2.2.

As a final step, the ACM forwards the
authorization information to the XIG. XIG retrieves
the access rights of the requesting user on the
requested XML document, and accordingly generates
XML views in response to the request. Such XML
views are cached in XML Instance Base (XIB).
Session Management Module (SMM) is responsible
for monitoring the provisioning and de-provisioning
constraints associated with the requested document,
as described in Section 3.3.4. The ACM, SMM, and
XIG together constitute the XML Access Control
Processor (ACP).
5. Related Work

While using policies for management of
systems is not an entirely novel concept, and has
been applied previously in the context of network
systems management [20], the policy-based approach
for access management in federated systems has not
been deeply investigated.

One notable example of policy-based
language for systems management is Ponder
[Ponder]. Ponder is a declarative policy language
with the ability to support authorization and
delegation policies, as well as obligation policies
(which are condition-action rules, much like trigger-
based constraints in our framework). However,
authorization policies in Ponder are primarily aimed
at allowing network users to manage network objects,
with known user groups and object locations, and are
therefore inadequate for a federated environment
where users and resources are not identified in
advance. It therefore does not support credential
specification and federation requirements for access
management in federated systems discussed in the
paper.

 Ponder supports specification of contextual
constraints, based on temporal and non-temporal
parameters. However, contextual constraint
specification is tied into the authorization policies,
which reduces their modularity, and hence flexibility.
Ponder also supports specification of SoD constraints
through the use of meta-policies. However, the
specification is at user-level, and is more complicated
to maintain in a federated environment as opposed to
a role-based SoD constraint. On the other hand,
Ponder is well suited to the task that it is designed
for, i.e. network services management. It has a well-
developed management toolkit that allows policy
specification, deployment, and dynamic adaptation
suitable for a network environment.

 The access control model for federated
systems presented in [3] is based on a tightly coupled
architecture. It concerns with defining principles for
designing access control policies in federated
systems, and does not deal with policy-based
management issues. It therefore does not address the
particular issues related to credential specification,
credential federation, usage control or session
management highlighted in this paper.

[22] presents an RBAC model for federated
information systems. This system supports credential
federation and SSO. However, it does not support all
of our design requirements, including specification of
semantic or contextual constraints, and usage-
oriented resource protection policies.

Various policy models have earlier been
used for access control in centralized and traditional
distributed systems, but not many approaches have
been designed to meet the requirements for policy-
based access management in federated systems as
described in this paper. Akenti [23] and Permis [24]
are access control systems which use policies
encoded in X.509 attribute certificates. Both assume
authenticated credentials to be used for issuance of
authorization certificates, much like our approach.
Akenti supports discretionary access control (i.e.
identity based), leading to rule explosion in policy
rule set. Permis uses role-based access control; it,
however, does not provide support for specification
and enforcement of user-to-role and role-to-
permission assignment policies. Both these schemes
also provide no support for specification of semantic
or contextual constraints, and usage-oriented resource
protection policies.

Shibboleth [25] and Liberty Alliance [26]
define protocols for attribute-based authentication in
support of SSO in Web-based environments. The
attributes in Shibboleth are always acquired from
his/her home site by the resource provider, whereas
those in Liberty Alliance protocol can be provided by
any identity provider on the Internet. Liberty Alliance
protocol therefore establishes a circle of trust
between identity provider and resource providers.
Both schemes provide particular emphasis on user
privacy, and the identity of the user is not known to
the resource provider. However, the role of these
schemes is limited to distributed authentication, and
providing attribute information for a user to be used
in authorization decisions. They do not include
mechanisms for specifying and enforcing
authorization policies.

With reference to our emphasis on usage
control, a relevant work appears in [27]. It presents a
usage control specification to extend the capabilities
of traditional access control models to support
resource protection policies. They provide a logic

10/11

defining states, authorizations, and actions relevant to
resource usage, and use the notion of mutable
attributes to allow state transitions and enforce usage
control. The significant contribution of the model is
that it provides logic-based semantics of usage
control. However, it does not provide an enforcement
mechanism.

SAML [7] and XACML [8] are emerging
specifications aimed at addressing different aspects
of distributed access management. As noted earlier,
SAML primarily provides a mechanism for credential
federation, but does not provide any policies for use
of those credentials. Also, SAML does not
incorporate a way to establish trust between business
partners exchanging credentials. XACML provides
support for policy specification for expressing access
control policies. It can be configured to support role-
based access control and usage-oriented resource
protection policies. It, however, primarily acts only
as a PDP (Policy Decision Point) and lacks the
temporal infrastructure to enforce the access control
policy, such as the session management mechanism
to enforce usage control in our framework. Our
framework can therefore provide the functionality of
both a PDP and a PEP (Policy Enforcement Point).
6. Conclusion

In this paper, we have presented the salient
features of our X-GTRBAC policy framework for
access management in federated systems. Our
framework has been designed to address the key
challenges for developing access control policies for
federated information sharing. In particular, it
supports: (i) decentralized administration while
preserving local autonomy through the use of trust
relationships captured through role-base delegation,
(ii) fine-grained access control while avoiding rule-
explosion in the policy through a succinct declarative
credential specification, (iii) credential federation
through the use of interoperable protocols, with
support for single sign on for federated users, (iv)
specification and enforcement of semantic and
contextual constraints to support integrity
requirements and contractual obligations, and (v)
usage control in resource provisioning through
effective session management.

The resource protection requirements in our
framework are related to the Digital Rights
Management (DRM) approach [28]. DRM, however,
is a much broad notion, and also includes
mechanisms for protection of resources while outside
the administrative control of the owner. This usually
requires self-protection mechanisms, i.e. the use of
embedded features (such as watermarks). We only
deal with policies for resource protection under
administrative control of the owner, and do not make
assumptions about physical protection of resources.

There are other aspects of access
management that need to be incorporated in our
policy framework. Our current approach for role
mapping abides by the local autonomy principle, and
hence no form of external access mediation is
necessitated. In a more general case, this may be
overly-restrictive, and mediation mechanisms may be
necessary to fairly regulate federated information
sharing while ensuring security of federated
resources. Composing an access mediation policy in
a federated system poses considerable challenge
since participating sites do not have a-priori
knowledge of each other’s access control polices.

Also, our framework currently supports only
read-only access to resources. An update access
mode is also desirable in many collaborative
situations. However, the session management
mechanisms need to be significantly enhanced to
guarantee consistency of updateable federated
resources during and across provisioning sessions.
These challenges are likely to be addressed as part of
future work.

References
[1] http://www.fas.org/irp/doddir/dod/d8320_2
 .pdf
[2] http://www.educause.edu/ir/library/pdf/erm
 0348.pdf
[3] S. D. C. di Vimercati, P. Samarati, “Access

control in federated systems”, In
proceedings of ACM New Security
Paradigm Workshop, pages 87-99, Lake
Arrowhead, CA, USA, 1996.

[4] D. D. Clark, D. R. Wilson, “A comparison
of commercial and military computer
security policies,” In IEEE Symposium on
Security and Privacy, pages 184-194,
Oakland, April 1987.

[5] R. S. Sandhu, E.J. Coyne, H.L. Feinstein,
C.E. Youman, "Role-Based Access Control
Models", IEEE Computer 29(2): 38-47,
IEEE Press, 1996.

[6] http://www.enterprisenetworksandservers.co
 m/monthly/art.php/1117
[7] http://xml.coverpages.org/saml.html
[8] http://www.oasis-

open.org/committees/tc_home.php?wg_abbr
ev=xacml

[9] http://www-
106.ibm.com/developerworks/webservices/li
brary/ws-secure/

[10] http://www-
128.ibm.com/developerworks/library/specifi
cation/ws-polfram/

[11] http://www.nwfusion.com/news/2002/0715s
 aml.html

11/11

[12] M. Blaze, J. Feigenbaum, and A. D.
Keromytis, “KeyNote: Trust management
for public-key infrastructures," in Security
Protocols International Workshop, Springer
LNCS, no. 1550, pp. 59-63, 1998.

[13] C. M. Ellison, “SPKI requirements," RFC
2692, Internet Engineering Task Force Draft
IETF, Sept. 1999. See
http://www.ietf.org/rfc/rfc2692.txt.

[14] A. Herzberg, Y. Mass, J. Mihaeli, D. Naor,
and Y. Ravid, “Access control meets public
key infrastructure, or: Assigning roles to
strangers”, In Proceedings of the 2000 IEEE
Symposium on Security and Privacy, pp. 2–
14, 2000. IEEE Press.

[15] N. Li, J. C. Mitchell, W. H. Winsborough,
“Design of a role-based trust management
framework”, In Proceedings of the 2002
IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, May 2002.

[16] R. Bhatti, J. B. D. Joshi, E. Bertino, A. Ghafoor,
“An Access Control Language for Multi-Domain
Environments”, IEEE Internet Computing,
vol. 8, no. 6, pp. 40-50,
November/December 2004.

[17] J. B. D. Joshi, E. Bertino, U. Latif, A. Ghafoor,
"Generalized Temporal Role Based Access
Control Model (GTRBAC) ", IEEE Transaction
on Knowledge and Data Engineering, vol. 17, no.
1, January 2005.

[18] R. Bhatti, "X-GTRBAC: An XML-based
Policy Specification Framework and
Architecture for Enterprise-Wide Access
Control”, Masters thesis, Purdue University,
May 2003. Available as CERIAS tech.
report 2003-27.

[19] A. Keromytis, S. Ioannidis, M. Greenwald, J.
Smith, “The STRONGMAN Architecture”, In
Proceedings of the Third DARPA Information
Survivability Conference and Exposition
(DISCEX III), Washington, D.C. April 22-24,
2003.

[20] L. Lymberopoulos, E. Lupu, M. Sloman,
“An Adaptive Policy Based Management
Framework for Network Services

Management”, In Special Issue on Policy
Based Management of Networks and
Services, Journal of Networks and Systems
Management, Vol. 11, No. 3, Sep. 2003.

[21] N. Damianou, N. Dulay, E. Lupu, M
Sloman, “The Ponder Specification
Language”, Workshop on Policies for
Distributed Systems and Networks
(Policy2001), HP Labs Bristol, 29-31 Jan
2001.

[22] K. Taylor, J. Murty, “Implementing role
based access control for federated
information systems on the web”,
Proceedings of the Australasian information
security workshop conference on ACSW
frontiers 2003, p.87-95, February 01, 2003,
Adelaide, Australia.

[23] M.Thompson, A. Essiari, S. Mudumbai,
“Certificate-based Authorization Policy in a
PKI Environment”, ACM Transactions on
Information and System Security, (TISSEC),
Volume 6, Issue 4 (November 2003) pp:
566-588.

[24] D.W. Chadwick, A. Otenko, “The PERMIS
X.509 role based privilege management
infrastructure”, In proceedings of the
seventh ACM Symposium on Access
Control Models and Technologies,
Monterey, California, USA.

[25] http://shibboleth.internet2.edu/docs/draft-
mace-shibboleth-arch-protocols-latest.pdf

[26] http://www.projectliberty.org/resources/spec
 ifications.php
[27] X. Zhang, J. Park, F. Parisi-Presicce, R.

Sandhu, “A Logical Specification for Usage
Control”, In proceedings of the ninth ACM
Symposium on Access Control Models and
Technologies, Monterey, California, USA .

[28] B. Rosenblatt, B. Trippe, S. Mooney,
“Digital Rights Management: Business and
Technology”, New York: Hungry
Minds/John Wiley and Sons, 2001.

APPENDIX A

X-GTRBAC Grammar
[Basic Definitions]
<!-- Policy Definition> ::=<Policy policy_id =(id)>
 <PolicyName> (name) </PolicyName>
 <!-- XML User Sheet>
 <!-- XML Role Sheet>
 <!-- XML Permission Sheet>
 <!-- XML User-Role Assignment Sheet>
 <!-- XML Permission-Role Assignment Sheet>
 [<!-- Local Policy Definitions>]
 [<!-- Policy Relationship Definitions>]
</Policy>
<!-- XML User Sheet> ::=<XUS [xus_id = (id)]>
 [<!-- Definitions of Credential Types>]
 <!-- User Definitions>
</XUS>
<!-- Definitions of Credential Types>
 ::= <XCredType [xctd_id = (id)] >
 [<!-- Credential Type Definition>]+
</XCredType>
<!-- Credential Type Definition>
::= <CredType cred_type_id = (id)
type_name= (type name) >
 <!-- Attribute List>
</CredType >
<!-- Attribute List> ::= <AttributeList>
 [<!-- Attribute Definition>]+
</AttributeList>
<!-- Attribute Definition> :: <Attribute>
 <AttributeName usage = “mand | opt”
 type = (type)> (name) </AttributeName >
</Attribute>
<!-- User Definitions > ::=<Users>
 [<!-- User Definition>]+
</Users>
<!-- User Definition> ::= <User user_id = (id)>
 <UserName>[(name)]</UserName>
 <!—CredType>
 <MaxRoles>(number)</MaxRoles>
 </User>
<!—CredType > ::= <CredType cred_type_id = (id)
 type_name= (type name) >
 [<!—Header>]
 <!-- Credential Expression>
</CredType>
<!-- Credential Expression > ::= <CredExpr mode=
(identity | capability | property)>
 <!-- AttributeValuePairs>
 <!-- DomainSet>
</CredExpr>
<!-- AttributeValuePairs> ::= [<(attribute name)> (attribute
value) </(attribute name)>] +
<!-- XML Role Sheet> ::=<XRS [xrs_id = (id)]>
 [<!-- Role Definition>]+
</XRS>
<!-- Role Definition> ::=<Role role_id = (id)
 role_name = (role name)>
 [<!—Header>]
 <!-- Credential Expression>
 [<!—(En|Dis)abling Constraint>]
 [<!—[De]Activation Constraint>]
 (<SSDRoleSetID> (id) </SSDRoleSetID>)*
 (<DSDRoleSetID> (id) </DSDRoleSetID>)*

 [<Junior> (name) </Junior>]
 [<Senior> (name) </Senior>]
 [<LinkedRole type=(delegator |
delegatee)>(name)</LinkedRole>]
 [<!—Delegation Constraint>]
 [<Cardinality> (number) </Cardinality>]
</Role>
<!-- Separation of Duty Definitions>
::= <XSoDDef [xsod_id = (id)]>
 <!—SoDRoleSets>
 </XSoDDef>
<!-- SoDRoleSets >::=
 [<!—SSDRoleSets>] [<!—DSDRoleSets>]
<!-- SSDRoleSets > ::= <SSDRoleSets>
 [<!—SSDRoleSet>]+
 </SSDRoleSets>
<!—SSDRoleSet> ::= <SSDRoleSet>
 [<SSDRole ssd_role_set_id =(id)
 ssd_cardinality = (number)>
 (role name)
 </SSDRole>]+
 </SSDRoleSet>
<!-- DomainSet> ::= <DomainSet>
 [<!—DomainID>]+
</DomainSet>
<!-- DomainID>::= <DomainID>(id)</DomainID>
<!-- DSDRoleSets > ::= <DSDRoleSets>
 [<!—DSDRoleSet>]+
 </DSDRoleSets>
<!—DSDRoleSet>::= <DSDRoleSet>
 [<DSDRole dsd_role_set_id =(id)
 dsd_cardinality = (number)>
 (role name)
 </DSDRole>]+
 </DSDRoleSet>
<!-- XML Permission Sheet>::=<XPS [xps_id = (id)]>
 [<!-- Permission Definition>]+
</XPS>
<!-- Permission Definition> ::=
<Permission perm_id = id [prop= (prop op)] >
<Object type= (type name) id= (id)>
 [<!-- Attributes>]
</Object>
<Operation> (access op) </Operation>
<!-- DomainSet>
</Permission>
<!-- XML User-Role Assignment Sheet>::=
<XURAS [xuras_id = (id)]>
 [<!-- User-role Assignment>]+
</XURAS>
<!-- User-role Assignment>::=
<URA ura_id=(id) role_name=(name)>
 <AssignUsers>
 [< !—Assign User>]+
 </AssignUsers>
</URA>
<!—[De]Assign User > ::=
 <[De]AssignUser user_id=(id)>
 <!—[De]Assign Constraint >
 </[De]AssignUser>
<!-- XML Permission-Role Assignment Sheet>::=

<XPRAS [xpras_id = (id)]>
 [<!-- Permission-Role Assignment>]+
</XPRAS>
<!-- Permission-Role Assignment>::=
 <PRA pra_id=(id) role_name=(name)>
 <AssignPermissions>
 [<!—Assign Permission>]+
</AssignPermissions>
</PRA>
< !—[De]Assign Permission> ::=
<[De]AssignPermission perm_id=(id)>
<!—[De]Assign Constraint >
</[De]AssignPermission>
<!—[De]Assign Constraint> ::=
 <[De]AssignConstraint[op =(AND|OR|NOT|XOR)]>
 // opcode defaults to AND if none specified
 [<!—[De] Assign Condition>]+
</[De]AssignConstraint>
<!—[De]Assign Condition> ::=
<[De]AssignCondition cred_type=(type name)
 [pt_expr_id=(id) | d_expr_id=(id)] >
 [<!-- Logical Expression>]
</[De]AssignCondition>
<!—(En|Dis)abling Constraint> ::=
 <(En|Dis)abConstraint[op = (AND|OR|NOT)]>
 // opcode defaults to AND if none specified
 [<!-- (En|Dis)abling Condition>]+
 </(En|Dis)abConstraint>
<!—(En|Dis)abling Condition> ::=
 <(En|Dis)abCondition [pt_expr_id=(id) |
 d_expr_id=(id)] >
 [<!-- Logical Expression>]
 </(En|Dis)abCondition>
<!—[De]Activation Constraint> ::=
 <[De] ActivConstraint[op = (AND|OR|NOT)]>
 // opcode defaults to AND if none specified
 [<!—[De]ActivationCondition>]+
 </[De]ActivConstraint>
<!—[De]Activation Condition> ::=
 <[De]ActivCondition [d_expr_id=(id)]>
 <!-- Logical Expression>]
 </[De]ActivCondition >
<!-- Logical Expression> ::=
<LogicalExpr [op = (AND|OR|NOT)]>
 // opcode defaults to AND if none specified
 [<!-- Predicate>]+
</LogicalExpr>
<!-- Predicate> ::= <Predicate>
 { <Operator> (gt|lt|eq|neq) </Operator>
 [<FuncName>(name)</FuncName>]
 [<ParamName>(name)</ParamName>]+
 <RetValue>(value)</RetValue> }
 | < !--LogicalExpression>
</Predicate>

[Temporal Definitions]

<!-- Definitions of Temporal Constraints>::=
 <XTempConstDef [xtcd_id = (id)]>
 [<!—Interval Expression>]
 [<!-- Periodic Time Expression>]
 [<!-- Duration Expression>]
</XTempConstDef>
<!-- Periodic Time Expression> ::=
 <PeriodicTimeExpr pt_expr_id = (id)

 <!-- Start Time Expression>
</PeriodicTimeExpr>
<!—Interval Expression> ::=
<IntervalExpr i_expr_id = (id)>
<begin> (date)</begin>
 <end>(date)</end>
</IntervalExpr>
<!-- Start Time Expression> ::= <StartTimeExpr
[pt_id_ref = (pt_id)]>
 [<Year>(all|odd|even) /<Year>]
 [<!--MonthSet>]
 [<!--WeekSet>]
 [<!--DaySet>]
</StartTimeExpr>
<!--MonthSet> ::=<MonthSet>
 (<Month>(1|..|12)</Month>)1-12
 (represents # of months from the start of current Year)
</MonthSet >
<!--WeekSet> ::= <WeekSet>
 (<Week>(1|..|4)</Week>)1-4

 (represents # of weeks from the start of current Month)
</WeekSet >
<!--DaySet> ::= <DaySet>
 (<Day>(1|..|7)</Day>)1-7

 (represents # of days from the start of current Week)
</DaySet >
<!-- Duration Expression> ::=
<DurationExpr d_expr_id = (id)>
 <cal>(Years|Months|Weeks|Days)</cal>
 <len> (number)</len>
</DurationExpr>

[TM Credential Definitions]

<!--Header> ::= <Header>
 <!-- Principal >
 <!-- Issuer >
 <!-- Validity>
 [<!-- Digital Signature >]
 </Header>
<!-- Issuer> ::= <Issuer>
 <!-- Principal>
 </Issuer>
<!-- Principal>::= <Principal short_name = (ID)>
 {<PublicKey>(Hash ID)</PublicKey> |
 <NameToken>(String)</NameToken>}
</Principal>
<!-- Validity> ::= <Validity>
 <IssueTime>(xs:dateTime)</IssueTime>
 [<NotBefore>(xs:dateTime)</NotBefore>]
 [<NotAfter>(xs:dateTime)</NotAfter>]
 </Validity>
<!-- Digital Signature > ::= <DSig>
 (ds:Signature) </DSig>
<!-- Hash ID > ::= xs:base64Binary
<!—Delegation Constraint> ::=
<DelegationConstraint [op = (AND|OR|NOT)]>
 // opcode defaults to AND if none specified
[<!-- Delegation Condition>]+
<!—Delegation Condition> ::=
 <DelegationCondition [pt_expr_id=(id) |
 d_expr_id=(id)] >
 [<!-- Logical Expression>]
</DelegationCondition>

APPENDIX B

XML Instances

[Temporal Constraint Definition and Assignment Policy]

<?xml version="1.0" encoding="UTF-8"?>

<XTempConstDef xtcd_id="IFIP_XTCD">
 <IntervalExpr i_expr_id="Year2005">
 <begin>1/1/2005</begin>
 <end>12/31/2005</end>
 </IntervalExpr>
 <DurationExpr d_expr_id="SixWeeks">
 <cal>Weeks</cal>
 <len>6</len>
 </DurationExpr>
 <DurationExpr d_expr_id="OneWeek">
 <cal>Weeks</cal>
 <len>1</len>
 </DurationExpr>
 <PeriodicTimeExpr
pt_expr_id="PTQuarterWeekSeven"
i_expr_id="Year2005" d_expr_id="SixWeeks">
 <StartTimeExpr>
 <Year>all</Year>
 <MonthSet>
 <Month>1</Month>
 <Month>4</Month>
 <Month>7</Month>
 <Month>10</Month>
 </MonthSet>
 <WeekSet>
 <Week>7</Week>
 </WeekSet>
 </StartTimeExpr>
 </PeriodicTimeExpr>
</XTempConstDef>

Figure B.1: This temporal constraint definition includes a periodic
time expression (PTE) which states that the access is allowed
beginning the seventh week of every quarter of year 2005, and is
allowed for a duration of six weeks. Note that duration expression
and interval expression are referenced inside a PTE.

<?xml version="1.0" encoding="UTF-8"?>

<XURAS xuras_id="IFIP_XURAS">
 <URA ura_id="uraBorrow" role_name="Borrower">
 <AssignUsers>
 <AssignUser user_id="any">
 <AssignConstraint>
 <AssignCondition cred_type="SAML"
pt_expr_id="PTQuarterWeekSeven">
 <LogicalExpr op="AND">
 <Predicate>
 <LogicalExpr op="OR">
 <Predicate>
 <Operator>eq</Operator>
 <FuncName>exists</FuncName>
 <ParamName>DLN</ParamName>
 <RetValue>true</RetValue>
 </Predicate>
 <Predicate>
 <Operator>eq</Operator>
 <FuncName>exists</FuncName>
 <ParamName>SSN</ParamName>
 <RetValue>true</RetValue>
 </Predicate>
 </LogicalExpr>
 </Predicate>
 <Predicate>
 <Operator>gt</Operator>
 <FuncName>hasValue</FuncName>
 <ParamName>valid_date</ParamName>
 <RetValue>DEC2005</RetValue>
 </Predicate>
 </LogicalExpr>
 </AssignCondition>
 </AssignConstraint>
 </AssignUser>
 </AssignUsers>
 </URA>
</XURAS>

Figure B.2: This is a role assignment policy for the Borrower role
in the federated digital library system. It states that any user (any is
a keyword) can be assigned to this role if he/she supplies a SAML
authentication credential supporting the following conditions: (i)
credential has an attribute asserting the existence of a DLN or SSN
for the user, and (ii) the credential is valid beyond DEC 2005.
Additionally, the PTE of Figure B.1 is referenced in the assignment
policy to constrain the applicable time period of the policy.

