
CERIAS Tech Report 2005-41

CLASSIFICATION AND DETECTION OF COMPUTER
INTRUSIONS

by Sandeep Kumar

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

CLASSIFICATION AND DETECTION OF COMPUTER INTRUSIONSA ThesisSubmitted to the FacultyofPurdue UniversitybySandeep KumarIn Partial Ful�llment of theRequirements for the DegreeofDoctor of PhilosophyAugust 1995

ii
This thesis is dedicated to my parents, and to Bharati.

iiiACKNOWLEDGMENTSI would like to sincerely thank two people who have been instrumental in my ob-taining a Ph.D. My wife Bharati, who got me started when the inertia and apprehen-sion of a long-term commitment seemed insurmountable, and my advisor Dr. EugeneSpa�ord, for his encouragement and sagesse on several occasions when the temptationto throw it all away seemed too strong.The COAST laboratory in which I worked provided a stimulating, benign andencouraging environment for the discussion of semi-baked ideas. There I �rmly un-derstood that mutual cooperation can serve as a catalyst to high-quality work andthat the time demands thus placed on individuals are well worth it. Thanks to allits members, former and current: Taimur Aslam, Mark Crosbie, Bryn Dole, Ivan Kr-sul, Steve Lodin, Christoph Schuba, and Frank Wang. Special thanks to Christophfor proofreading most of my writing and giving very valuable technical and stylisticconsistency feedback.Discussions and guidance frommy committeemembers Dr. John Korb, Dr. SamuelWagsta� and Dr. Michal Young were very valuable. They continually steered me tothe cause of \science" when I seemed hopelessly lost in the \engineering" aspect ofthings. Dr. Mikhail Atallah was extremely helpful in proof-reading one of my earlierreports and for pointing out that one of my theoretical observations had already beenpublished elsewhere.The Computer Science department of the University of California, Davis was veryhelpful in providing me with a facility to generate stable audit trails, without which itwould have been di�cult to conduct my experiments. Many thanks go to Dr. MatthewBishop and to Christopher Wee, who championed my cause with their administrativesta�.

ivThe facilities sta� at the Computer Sciences department at Purdue deserve specialmention. In addition to the fundamental sustenance they provide to the departmentby keeping the hardware and software \well tuned," \well oiled," and up-to-date, theyhave been extremely prompt and cheerful while su�ering through the innumerablequeries that I have put to them in the course of my half decade of stay in WestLafayette.This work was supported, in part, by: Department of Defense contract MDA904-93-C-4081; by gifts from Sun Microsystems, Bell Northern Research, and HughesResearch Laboratories; equipment loaned to the COAST group by the U.S. Air Force;and a contract with Trident Data Systems. This support is gratefully acknowledged.

DISCARD THIS PAGE

vTABLE OF CONTENTS PageLIST OF FIGURES : viiiLIST OF TABLES : xABSTRACT : xi1. INTRODUCTION : 11.1 Computer Security and its Role : 11.2 What is Intrusion Detection? : 51.2.1 Premise and Limitations of Intrusion Detection : : : : : : : : 71.3 Terminology : 91.4 A Note on the Use of Examples : 121.5 Thesis Statement and Outline : 131.6 Summary : 142. RELATED WORK IN INTRUSION DETECTION : : : : : : : : : : : : : 152.1 Introduction : 152.2 Anomaly Intrusion Detection : 162.2.1 Statistical Approaches : 162.2.2 Feature Selection : 182.2.3 Combining Individual AnomalyMeasures to Get a Single Measure 192.2.4 Predictive Pattern Generation : : : : : : : : : : : : : : : : : : 222.2.5 Neural Networks : 232.2.6 Bayesian Classi�cation : 252.3 Misuse Intrusion Detection : 262.3.1 Using Conditional Probability to Predict Misuse Intrusions : : 262.3.2 Production/Expert Systems in Intrusion Detection : : : : : : 272.3.3 State Transition Analysis : 292.3.4 Keystroke Monitoring : 292.3.5 Model-Based Intrusion Detection : : : : : : : : : : : : : : : : 29

viPage2.4 A Generic Intrusion Detection Model : : : : : : : : : : : : : : : : : : 312.5 Shortcomings of Current Intrusion Detection Systems : : : : : : : : : 332.6 Summary of Intrusion Detection Techniques : : : : : : : : : : : : : : 363. A SCHEME FOR CLASSIFYING INTRUSION SIGNATURES : : : : : : 383.1 A Hierarchy of Intrusion Signatures : : : : : : : : : : : : : : : : : : : 393.1.1 Classify Vulnerabilities or Signatures? : : : : : : : : : : : : : : 403.1.2 Our Classi�cation : 413.1.3 Relevance of this Classi�cation : : : : : : : : : : : : : : : : : 493.2 Intrusion Detection as Pattern Matching : : : : : : : : : : : : : : : : 493.2.1 Intrusion Signatures as Patterns to be Matched : : : : : : : : 503.2.2 The Nature of Intrusion Signatures : : : : : : : : : : : : : : : 523.2.3 System and Other Considerations : : : : : : : : : : : : : : : : 573.2.4 Further Advantages of a Pattern Matching Approach : : : : : 583.2.5 Disadvantages of a Pattern Matching Approach : : : : : : : : 603.3 Summary : 614. A MODEL INSTANTIATION : 634.1 The Model : 634.2 An Example Simulation : 684.2.1 The Semantics of Invariants : : : : : : : : : : : : : : : : : : : 704.2.2 CPA Variable Semantics : 714.2.3 Partial Order or AND Matching Semantics : : : : : : : : : : : 714.3 Formal De�nition of a CPA : 714.4 Realizing the Intrusion Classi�cation in this Model : : : : : : : : : : 754.5 Comparison with Other Models of Matching : : : : : : : : : : : : : : 794.6 Summary : 815. THEORETICAL PROPERTIES OF THE MATCHING MODEL : : : : : 825.1 Complexity of Matching : 825.2 Some Engineering Solutions that Improve Matching : : : : : : : : : : 855.3 Common Subexpression Elimination in Guards : : : : : : : : : : : : : 885.3.1 Compilation of 1a : 905.3.2 Compilation of 2a : 925.4 Summary : 996. IMPLEMENTATION ARCHITECTURE OF THE MODEL AND SIMU-LATION RESULTS : 1016.1 Introduction : 101

viiPage6.2 Approach : 1036.3 Overall Architecture : 1046.3.1 Application Structure : 1056.3.2 Event Structure : 1096.3.3 Server Structure : 1106.3.4 Summary : 1116.4 Building the Server : 1126.4.1 Server::parse() : 1126.4.2 Pseudo-code for the Generated PatProc : : : : : : : : : : : : 1136.5 Design Choices : 1146.6 Performance : 1166.6.1 Timing Results : 1166.6.2 Space Requirements : 1206.7 Summary : 1227. SUMMARY, CONCLUSIONS AND FUTURE WORK : : : : : : : : : : : 1237.1 Experiences : 1247.1.1 Using Pattern Matching for Intrusion Detection : : : : : : : : 1247.1.2 Writing Intrusion Patterns : 1257.1.3 Using Audit Trails : 1267.2 Future Work : 1267.2.1 Optimize the Current Implementation. : : : : : : : : : : : : : 1267.2.2 Add Other Features To The Implementation. : : : : : : : : : : 1287.2.3 Apply the Pattern Matching Approach to Other Problems. : : 1287.3 Conclusions : 129BIBLIOGRAPHY : 131APPENDIX SOME EXAMPLE INTRUSION PATTERNS : : : : : : : : : 139VITA : 165

viiiLIST OF FIGURESFigure Page2.1 A Trivial Bayesian Network Modeling Intrusive Activity : : : : : : : : : 212.2 A Conceptual Use of Neural Nets in Intrusion Detection : : : : : : : : : 242.3 A Generic Intrusion Detection Model : 333.1 A Race Condition Attack Represented as a Sequence Pattern : : : : : : 453.2 The Abstract Signature Classi�cation Hierarchy : : : : : : : : : : : : : : 483.3 Monitoring Clarke-Wilson Triples as a Pattern Match : : : : : : : : : : 533.4 Three Failed Login Attempts as a Signature : : : : : : : : : : : : : : : : 534.1 Representing Synchronization of Events : : : : : : : : : : : : : : : : : : 654.2 Simulation of a Pattern That Does Not Use Guard Expressions or TokenLocal Variables : 684.3 A Sequence Pattern of Read Followed by Write : : : : : : : : : : : : : : 764.4 A Simli�ed Pattern to Detect Unauthorized Transitions to Root : : : : : 785.1 A Pattern with Monotonic Guard Expressions : : : : : : : : : : : : : : : 865.2 A General Pattern with Monotonic Guard Expressions : : : : : : : : : : 875.3 A Timing Attack Involving Setid Shell Scripts : : : : : : : : : : : : : : : 895.4 Exploiting Setid Shell Scripts : 896.1 Matching a TCP Connection : 1056.2 An Example Application : 1076.3 Server Structure : 110

ixFigure Page6.4 Interrelationship Among the Various Classes in the Detector : : : : : : : 1116.5 Pseudo-code of a Sample PatProc : 1146.6 Time for Matching Each Pattern for a 400K Audit File : : : : : : : : : : 1176.7 Time for Matching Multiple Patterns for a 400K Audit File : : : : : : : 1186.8 The size in KB of Each Compiled Pattern : : : : : : : : : : : : : : : : : 121

xLIST OF TABLESTable Page4.1 Non-deterministic Matching of a CPA : : : : : : : : : : : : : : : : : : : 694.2 Deterministic Matching of a CPA : 706.1 Extrapolating Timing Results to Match 100 Patterns : : : : : : : : : : : 119

xiABSTRACTKumar, Sandeep. Ph.D., Purdue University, August 1995. Classi�cation and Detec-tion of Computer Intrusions. Major Professor: Eugene H. Spa�ord.Some computer security breaches cannot be prevented using access and informa-tion ow control techniques. These breaches may be a consequence of system softwarebugs, hardware or software failures, incorrect system administration procedures, orfailure of the system authentication module. Intrusion detection techniques can havea signi�cant role in the detection of computer abuse in such cases.This dissertation describes a pattern matching approach to representing and de-tecting intrusions, a hitherto untried approach in this �eld. We have classi�ed intru-sions on the basis of structural interrelationships among observable system events.The classi�cation formalizes detection of speci�c exploitations by examining theirmanifestations in the system event trace. Thus, we can talk about intrusion signa-tures belonging to particular categories in the classi�cation, instead of vulnerabilitiesthat result in intrusions.The classi�cation developed in this dissertation can also be used for developingcomputational models to detect intrusions in each category by exploiting the commonstructural interrelationships of events comprising the signatures in that category. Wecan then look at signatures of interest that can be matched e�ciently, instead ofattempting to devise a comprehensive set of techniques to detect any violation ofthe security policy. We de�ne and justify a computational model in which intrusionsfrom our classi�cation can be represented and matched. We also present experimentalresults based on an implementation of the model tested against real-world intrusions.

11. INTRODUCTIONIn this chapter we motivate the need for securing computer systems and discussthe role of intrusion detection in their security. We give a broad overview of the�eld of intrusion detection as it is presented in the literature. In the next chapter wesurvey approaches that have been taken in other systems for detecting intrusions.1.1 Computer Security and its RoleOne broad de�nition of a secure computer system is given by Gar�nkel and Spaf-ford [GS91] as one that can be depended upon to behave as it is expected to. Thedependence on the expected behavior being the same as exhibited behavior is re-ferred to as trust in the security of the computer system. The level of trust indicatesthe con�dence in the expected behavior of the computer system. The expected be-havior is formalized into the security policy of the computer system and governs thegoals that the system must meet. This policy may include functionality requirementsif they are necessary for the e�ective functioning of the computer system.A narrower de�nition of computer security is based on the realization of con�-dentiality, integrity, and availability in a computer system [RS91]. Con�dentialityrequires that information be accessible only to those authorized for it, integrity re-quires that information remain unaltered by accidents or malicious attempts, andavailability means that the computer system remains working without degradation ofaccess and provides resources to authorized users when they need it. By this de�ni-tion, an unreliable computer system is unsecure if availability is part of its securityrequirements.A secure computer system protects its data and resources from unauthorized ac-cess, tampering, and denial of use. Con�dentiality of data may be important to the

2commercial success or survival of a corporation, data integrity may be important toa hospital that maintains medical histories of patients and uses it to make life criticaldecisions, and data availability may be necessary for real-time tra�c control.There is a close relationship between the functional correctness of a computer sys-tem and its security. Functional correctness implies that a computer system meets itsspeci�cations. If the functionality speci�cation includes security policy requirements,then functional correctness implies security of the computer system. However, thereverse is not true, i.e., functional error may not result in violations of the security pol-icy, especially as it relates to con�dentiality, integrity, and availability. For example,an operating system service call may not process all valid arguments to it correctly,yet it may not be possible to violate the security policy by taking advantage of thisfact. As another example, consider a visual (WYSIWYG) word processing programthat fails to highlight user selections on the display. The program is likely not func-tionally correct, but this behavior may not cause a violation of the system securitypolicy.Threats to SecurityAs a society we are becoming increasingly dependent on the rapid access andprocessing of information. As this demand has increased, more information is beingstored on computers. The increased use of computers has made rapid tabulation ofdata from di�erent sources possible. Correlation of information from di�erent sourceshas allowed additional information to be inferred that may be di�cult to obtaindirectly. The proliferation of inexpensive computers and of computer networks hasexacerbated the problem of unauthorized access and tampering with data. Increasedconnectivity not only provides access to larger and varied resources of data morequickly than ever before, it also provides an access path to the data from virtuallyanywhere on the network [Pow95]. In many cases, such as the Internet worm attackof 1988 [Spa89], network intruders have easily overcome the password authenticationmechanisms designed to protect systems.

3With an increased understanding of how systems work, intruders have becomeskilled at determining weaknesses in systems and exploiting them to obtain suchincreased privileges that they can do anything on the system. Intruders also usepatterns of intrusion that are di�cult to trace and identify. They frequently useseveral levels of indirection before breaking into target systems and rarely indulge insudden bursts of suspicious or anomalous activity. They also cover their tracks sothat their activity on the penetrated system is not easily discovered1.Threats such as viruses [Coh87] and worms [SH82] do not need human super-vision and are capable of replicating and traveling to connected computer systems.Unleashed at one computer, by the time they are discovered it may be impossible totrace their origin or the extent of infection. Then there may be threats from trojanhorses which do not replicate but are programmed to unleash destructive activity ona precondition compiled into the program [Tho87].Detecting these ThreatsMost computer systems provide an access control mechanism as their �rst lineof defense [Lam69, Lam71]. However, this only limits whether access to an objectin the system is permitted but does not model or restrict what a subject may dowith the object itself if it has the access to manipulate it [Den82]. Access controltherefore does not model and cannot prevent unauthorized information ow throughthe system because such ow can take place with authorized accesses to the objects.Moreover, in systems where access controls are discretionary, the responsibility ofprotecting data rests on the end user. This often requires that users understand theprotection mechanisms o�ered by the systems and how to achieve the desired securityusing these mechanisms.Information ow can be controlled to enhance security by applying models suchas the Bell and LaPadula model [BL73] to provide secrecy, or the Biba model [Bib77]1For an account of a real intrusion that originated in Europe and targeted several military com-puters in the U.S. see the book by Cli� Stoll [Sto88].

4to provide integrity. However, security comes at the expense of convenience. Bothmodels are conservative and restrict read and write operations to ensure that con�-dentiality and integrity of data in the system cannot be compromised. If both modelsare jointly used, the resulting model only permits accesses to objects at the samesecurity classi�cation level as the subject. Thus, a completely secure system may notbe very useful.Access controls and protection models are not helpful against insider threats orcompromise of the authentication module. If a password is weak and is compromised,access control measures cannot prevent the loss or corruption of information that thecompromised user was authorized to access. In general, static methods of assuringsecurity properties in a system may simply be insu�cient, or make the system overlyrestrictive to its users. For example, static techniques may not be able to preventviolation of security policy that results from browsing of data �les; and mandatoryaccess controls [oDS85] that only permit users access to data for which they haveappropriate clearance make the system cumbersome to use. A dynamic method, suchas behavior tracking, is therefore needed to detect and perhaps prevent breaches insecurity.The di�culties in engineering complex, bug-free software are unlikely to be re-solved in the near future. Faults in system software are often manifested as securityweaknesses. Moreover, software life cycle times are being continually shortened be-cause of increased market competitiveness. This often results in poor designs orinadequate testing, further aggravating the problem.Computer systems are therefore likely to remain unsecure for some time to come.We must have measures in place to detect security breaches, i.e., identify intrudersand intrusions. Intrusion detection systems �ll this role and usually form the last lineof defense in the overall protection scheme of a computer system. They are usefulnot only in detecting successful breaches of security, but also in monitoring attemptsto breach security, which provides important information for timely countermeasures.Thus, intrusion detection systems are useful even when strong preventive steps taken

5to protect computer systems place a high degree of con�dence in their security. Fur-thermore, preventive steps such as repairs of system software faults may not alwaysbe preferable to detection of their exploitation from a practical cost-bene�t consid-eration. Fixing bugs may not be possible without the software source and requisiteexpertise, and large scale deployment of patches may require more cumbersome in-stallation procedures than updating the intrusion detection database, especially whensoftware is customized for local use at individual sites. In the case of large, complexprograms, such as sendmail, it may not be possible to \�x" all its possible awseven when its source code is available. Monitoring generic methods of exploitingvulnerabilities can be very useful in such cases.1.2 What is Intrusion Detection?An intrusion is de�ned by Heady et al. [HLMS90] asany set of actions that attempt to compromise the integrity, con�dential-ity, or availability of a resource.An earlier study done by Anderson [And80] uses the term \threat" in this same senseand de�nes it to bethe potential possibility of a deliberate unauthorized attempt toaccess information,manipulate information, orrender a system unreliable or unusable.An intrusion is a violation of the security policy of the system. The de�nitions aboveare general enough to encompass all the threats mentioned in the previous section.Any de�nition of intrusion is, of necessity, imprecise, as security policy requirementsdo not always translate into a well-de�ned set of actions. Whereas policy de�nesthe goals that must be satis�ed in a system, detecting breaches of policy requiresknowledge of steps or actions that may result in its violation.

6Detecting intrusions can be divided into two categories: anomaly intrusion detec-tion and misuse intrusion detection. The �rst refers to intrusions that can be detectedbased on anomalous behavior and use of computer resources. For example, if user Xonly uses the computer from his o�ce between 9 AM and 5 PM, an activity on hisaccount late in the night is anomalous and hence, might be an intrusion. Another userY might always login outside working hours through the company terminal server. Alate night remote login session from another host to his account might be consideredunusual. Anomaly detection attempts to quantify the usual or acceptable behaviorand ags other irregular behavior as potentially intrusive.One of the earliest reports that outlines how intrusions may be detected by iden-tifying \abnormal" behavior is the work by Anderson [And80]. In his inuentialreport, Anderson presents a threat model that classi�es threats as external penetra-tions, internal penetrations, and misfeasance and uses this classi�cation to developa security monitoring surveillance system based on detecting anomalies in user be-havior. External penetrations are de�ned as intrusions that are carried out by unau-thorized computer system users; internal penetrations are those that are carried outby authorized users of computer systems who are not authorized for the data thatis compromised; and misfeasance is de�ned as misuse of authorized data and otherresources by otherwise authorized users.In contrast, misuse intrusion detection refers to intrusions that follow well-de�nedpatterns of attack that exploit weaknesses in system and application software. Suchpatterns can be precisely written in advance. For example, exploitation of thefingerd and sendmail bugs used in the Internet Worm attack [Spa89] would comeunder this category. This technique represents knowledge about bad or unacceptablebehavior [Sma92] and seeks to detect it directly, as opposed to anomaly intrusiondetection, which seeks to detect the complement of normal behavior.The above mentioned schemes of classifying intrusions are based on their methodof detection. Another classi�cation scheme, based on intrusion types, presented bySmaha [Sma88] classi�es intrusions into the following six types:

7Attempted break-in: often detected by atypical behavior pro�les or violations of se-curity constraints.Masquerade attack: often detected by atypical behavior pro�les or violations of secu-rity constraints.Penetration of the security control system: usually detected by monitoring for spe-ci�c patterns of activity.Leakage: often detected by atypical usage of I/O resources.Denial of Service: often detected by atypical usage of system resources.Malicious use: often detected by atypical behavior pro�les, violations of security con-straints, or use of special privileges.This classi�cation provides a grouping of intrusions based on the end e�ect and themethod of carrying out the intrusions. Irrespective of how intrusions are classi�ed,the main techniques for detecting them are the same: the statistical approach ofanomaly detection, and the precise monitoring of well-known attacks in the misusedetection approach. Both approaches make implicit assumptions about the nature ofintrusions that can be detected by them.1.2.1 Premise and Limitations of Intrusion DetectionAnomaly DetectionThe central premise of anomaly intrusion detection is that intrusive activity isa subset of anomalous activity. This might seem reasonable, considering that if anoutsider breaks into a computer account with no notion of the compromised user'spattern of resource usage, there is a good chance that his behavior will be anomalous.Often, however, intrusive activity can be carried out as a sum of individual ac-tivities, none of which is independently anomalous. Ideally, the set of anomalous

8activities is the same as the set of intrusive activities. Then, agging all anoma-lous activities exactly ags all intrusive activities, resulting in no false positives orfalse negatives. However, intrusive activity does not always coincide with anomalousactivity. There are four possibilities, each with a non-zero probability:1. Intrusive but not anomalous. These are false negatives or type I errors. Thatis, the activity is intrusive but because it is not anomalous we fail to detect it.These are called false negatives because the intrusion detection system falselyreports absence of intrusions.2. Not intrusive but anomalous. These are false positives or type II errors. Thatis, the activity is not intrusive, but because it is anomalous, we report it asintrusive. These are called false positives because the intrusion detection systemfalsely reports intrusions.3. Not intrusive and not anomalous. These are true negatives: the activity is notintrusive and is not reported as intrusive.4. Intrusive and anomalous. These are true positives: activity is intrusive and isreported as such because it is also anomalous.When false negatives are not desirable, thresholds that de�ne an anomaly are setlow. This results in many false positives and detracts from the e�cacy of automatedmechanisms for intrusion detection. It creates additional burdens for the securityo�cer as well, who must investigate each incident and discard many.Anomaly detectors also tend to be computationally expensive because severalmetrics are often maintained that need to be updated against every system activity.Misuse DetectionThe main assumption of misuse intrusion detection is that there are attacks thatcan be precisely encoded in a manner that captures rearrangements and variations ofactivities that exploit the same vulnerability. In practice not all theoretically possible

9ways of e�ecting a particular intrusion can be captured e�ciently in an encoding. Theprimary limitation of this approach is that it looks only for known weaknesses, andmay not be of much use in detecting unknown future intrusions.Other limitations of this approach have to do with practical considerations of whatis audited. For example, current auditing practices do not record changes to programor process variables because of the potential overall system performance impact andthe space requirements for storing the audited information. If an intrusion can onlybe deduced from conditions on the values of program variables, one approach is topredict the condition value based on the activity of the program leading up to thecondition. The general problem of deducing the value of program expressions byexamining an activity trace may require intrusive instrumentation of the programand unbounded storage. Best estimates of such patterns are inherently inaccurateand result in false positives, false negatives, or both.Current auditing mechanisms also do not reveal the input or output data of a pro-gram. These mechanisms work in modern system designs by monitoring and loggingsystem services requested by application programs. This often means that user-levelcalls to read and write functions do not always appear in a one-to-one correspondencein the audit trail because of bu�ered I/O. Furthermore, passive methods of securitybreaches like wire-tapping cannot be detected directly because they do not producea detectable signature.This approach also assumes the integrity of the event data. Thus, attacks thatinvolve spoo�ng, which produce the same events but from a di�erent source, cannotbe reliably detected.1.3 TerminologyThis section explains several terms used throughout the dissertation. Some of theterms have well-accepted de�nitions among security professionals, while others havebeen used in a speci�c way in this dissertation. For consistency, all cited de�nitionshave been taken from the Dictionary of Data and Computer Security [LS87]. When

10explaining a term, references to other terms that are de�ned in this section have beenitalicized.Audit record/Event. An audit record is each individual entry of an audit trail. It isalso referred to in this dissertation as an \event." The number of distinct eventtypes is �nite and known a priori. Events are tagged with data. There is atype �eld with every event that distinguishes among events in the event stream.Events can have any number (though usually a small number) of tag �elds.The exact number and nature of the �elds may be dependent on the type of theevent. The layout of each event is �xed, although each event type can have adi�erent layout. Abstractly, each event is a tuple with a �eld that indicates itstype.Audit trail/Event stream. An audit trail is de�ned in [LS87] as a chronological recordof system activities that is su�cient to enable the reconstruction, review andexamination of the sequence of environments and activities surrounding or lead-ing to each event in the path of a transaction from its inception to output of�nal results.The term \event stream," against which signatures are matched, is used in thedissertation in the same sense as an audit trail. In practice, audit trails recordservice requests that applications make of the operating system, and events arewhen applications make system calls. Using system service requests to recordapplication activity provides a trustworthy, application independent monitoringtechnique that works for all applications, without requiring intrusive instrumen-tation of the applications. Some important applications, such as login have,however, been retro�tted to generate their own speci�c events which overlapwith other events in the audit trail.C2 security rating of computer systems. ADepartment of Defense security evaluatio-n criteria class requiring auditing and protection of encrypted passwords, amongothers, as described in the Orange Book [oDS85]. The primary motivation

11behind the Orange Book was the need to quantify security and trust, becausedi�erent organizations and di�erent types of information require di�erent typesof security [RS91]. Briey, the Orange Book de�nes four categories of securityprotection: D { minimal security, C { discretionary protection, B { mandatoryprotection, and A { veri�ed protection. Each class requires a speci�c set ofcriteria to be met by computer systems in that category.Exploitation. An exploitation is a set of actions that result in a violation of thesecurity policy of a computer system. Intruders exploit system vulnerabilitiesor aws to gain unauthorized access to the system. These exploitations canoften be encoded as signatures that can be matched against the audit trail todetect them.Flaw. A aw is de�ned in [LS87] as an error of commission, omission or oversight ina system that allows protection mechanisms to be bypassed. We use vulnera-bilities and aws synonymously.Matching model. This refers to the computational framework in which signatures areencoded and matched against the audit trail. In this dissertation, when we referto \our matching model," we are referring to the computational frameworkpresented in Chapter 4.Security policy. A security policy is de�ned in [LS87] as the set of laws, rules, andpractices that regulate how an organization manages, protects and distributessensitive information .Signature. In the context of misuse intrusion detection, a signature is the speci�cationof features, conditions, arrangements and interrelationships among events thatsignify a break-in or other misuse, or their attempt. \Patterns" and \intrusionpatterns" are used in the same sense as a signature.Vulnerability. A vulnerability is de�ned in [LS87] as a weakness in automated systemsecurity procedures, administrative controls, internal controls etc. that could be

12exploited by a threat to gain unauthorized access to information or to disruptcritical processing. Anderson [And80] de�nes a vulnerability in a less abstractway as a known or suspected aw in the hardware or software design or operationof a system that exposes it to penetration of its information.1.4 A Note on the Use of ExamplesThe basic goal of all operating systems is to provide a convenient and e�cientinterface to computer system resources [SG94]. In so doing, they partition the setof services exported to the user in similar ways, even though the details may di�er.Generic studies of operating system aws, such as those done by Linde [Lin75] andLandwehr et al. [LBMC93] have shown striking similarities among operating systemvulnerabilities. In each categorization of their study, examples have been drawnfrom several operating systems. If operating systems have similar vulnerabilities, ando�er similar user visible resource abstractions, then the methods of exploiting thesevulnerabilities are also likely to be similar.In this dissertation we use examples of vulnerabilities and descriptions of operatingenvironments derived from the UNIX operating system. This is done with the beliefthat detection techniques and principles applicable to UNIX are largely applicable toother operating systems as well, even though the details of such detection may di�er.Our choice of using UNIX as a vehicle to illustrate how security vulnerabilities can beclassi�ed, represented, and detected is incidental. It is because we are most familiarwith UNIX, and because most publicly discussed vulnerabilities such as those in thebugtraq mailing list [Bug], the 8lgm advisories [8lg], and the CERT advisories [CER]have historically dealt predominantly with UNIX vulnerabilities. It is therefore easyto use these examples to illustrate our ideas because details of these vulnerabilitiesare public.Other operating systems, such as VAX/VMS and VM/CMS are proprietary andtheir source code has not been available for wide-spread scrutiny. Thus, details of

13security vulnerabilites in these systems are largely private and do not provide a goodexample set of vulnerabilities from which to illustrate our ideas.1.5 Thesis Statement and OutlineThis dissertation provides an answer to the question: Can we usefully and e�ec-tively detect computer intrusions by applying pattern matching techniques? A morecomplete statement of the thesis is:It is possible to classify a large subset of currently known computer securityexploitations in a simple classi�cation scheme based on the time complexityof detecting the vulnerabilities. A single computational model can be usedto represent and monitor exploitations in all the categories using patternmatching techniques.This dissertation applies pattern matching to intrusion detection. It o�ers a viewof computer security breaches not from their origin or intended e�ect, but from theirmanifestation in the system activity trace. Previous researchers2 have looked atcomputer vulnerabilities from the viewpoint of cataloging and classifying them sothat the classi�cation can provide a useful feedback to software engineers. By beingaware of the nature and statistics of aws at di�erent stages of the software life cycle,engineers can take e�orts to minimize their occurrence. Work has also been done touse pattern directed approaches to detect vulnerabilities in source code, for example,in the RISOS project [A+76].Whereas published literature contains analyses of vulnerabilities in terms of theirorigin and their possible prevention, we have focused on the runtime exploitation ofvulnerabilities. Thus, we use the term signature, or intrusion instead of vulnerabili-ties to denote entities populating our classi�cation scheme. Using this scheme, newintrusions can be understood and characterized in terms of the structure of eventsneeded to detect them. This classi�cation scheme is presented in Section 3.1.2A good description of their work can be found in the study by Aslam [Asl95].

14To represent and detect computer intrusions e�ciently we have devised a model.This model uses the classi�cation scheme of Section 3.1 to group intrusions and in-stantiates the generic requirements that we propose and defend in this thesis. Thesegeneric requirements must be addressed by all computer intrusion detectors that usea pattern matching approach. Our model, presented in Chapter 4, answers two keyquestions of the intrusion detection problem: (1) How do we e�ectively representcomputer intrusions in a generic fashion? and (2) How do we monitor for their occur-rence? The model is based on Colored Petri Nets and uses a modi�ed net to representintrusion scenarios. Detection of intrusions is posed as an acceptance problem in themodel.We show the e�ectiveness of the pattern matching approach by building a proto-type of our model in C++ that detects intrusions on a system where the security audittrail is generated. The prototype is structured as a library that can be embedded inapplication programs. We have designed a simple syntax to represent intrusions and acompiler that translates these descriptions into C++ code that realizes the matchingbehavior of the patterns. The software architecture of the prototype and simulationresults are presented in Chapter 6.1.6 SummaryIntrusion detection is an important component of the security controls and mech-anisms provided in a system. It usually forms the last line of defense against securitythreats. These mechanisms are intended to detect breaches of policy that cannotbe easily detected using other methods. Intrusion detection is usually based on oneof two models: the anomaly and the misuse model. Both models make assumptionsabout the nature of intrusive activity that can be detected. This dissertation proposesa classi�cation scheme of intrusions based on their manifestation in system events andapplies pattern matching techniques to represent and detect them.

152. RELATED WORK IN INTRUSION DETECTIONThis chapter describes the architecture of several prior intrusion detection systems.None of them uses pattern matching directly to represent and detect intrusions. Wealso describe the generic model of intrusion detection proposed by Dorothy Denning[Den87], which is still accurate as an abstract model of most intrusion detectionsystems.In Section 3.2 we present the requirements of a pattern matching solution to anyintrusion detector that uses pattern matching to detect intrusions.2.1 IntroductionMany intrusion detection systems employ techniques for both anomaly and misuseintrusion detection. The techniques used in these systems to detect anomalies are var-ied. Some are based on techniques of predicting future patterns of behavior utilizingpatterns seen thus far, while others rely mainly on statistical approaches to determineanomalous behavior. In both cases, observed behavior that does not match expectedbehavior is agged because an intrusion might be indicated. The main techniquesused for misuse detection comprise expert systems, model-based reasoning systems,state transition analysis, and keystroke monitoring.Some techniques, such as the statistical approach, have resulted in systems thathave been used and tested extensively. Others, such as the model-based approach,are still in the research stage.

162.2 Anomaly Intrusion DetectionIn this section we discuss systems and techniques that base their decision on thevariance of predicted or expected behavior from observed behavior. These techniquesdo not base their decision on the occurrence of speci�c �xed activities.2.2.1 Statistical ApproachesThe following, based on NIDES [LTG+92], serves to illustrate the generic processof anomaly detection, which is primarily statistical in nature. The anomaly detectorobserves the activity of subjects and generates pro�les for them that represent theirbehavior. These pro�les are designed to use little memory to store their internal state,and to be e�cient to update because every pro�le may potentially be updated forevery audit record.As audit records are processed, the system periodically generates a value that is ameasure of the abnormality of the pro�le. This value is a function of the abnormalityvalues of all the measures comprising the pro�le. Thus, if S1; S2; : : : ; Sn represent theabnormality values of the pro�le measures M1;M2; : : : ;Mn respectively, and a highervalue of Si indicates greater abnormality, a combining function of the individual Svalues may be a weighted sum of its squares, as ina1S21 + a2S22 + � � � + anS2n; ai > 0where ai reects the relative weight of the metric Mi. In general, the measures M1,M2; : : : ;Mn may not be mutually independent, and may require a more complex func-tion for combining them. Anomaly measures are just numbers without a well-de�nedtheoretical basis for combining them. For example, using multiplication of indepen-dent anomaly measures as a basis of combination is theoretically sound in likelihoodcomputations, but the relationship between anomaly measures and Bayesian likeli-hood numbers is not clear.There are several types of measures comprising a pro�le, which include:

171. Activity Intensity Measures | These measure the rate at which activity is pro-gressing. They are generally used to detect abnormalities in bursts of behaviorthat might not be detected over longer term averages. An example is the numberof audit records processed for a user in one minute.2. Audit Record Distribution Measures | These measure the distribution of allactivity types in recent audit records. An example is the relative distribution of�le accesses and I/O activity over the entire system usage for a particular user.3. Categorical Measures | These measure the distribution of a particular activ-ity over categories, such as the relative frequency of logins from each physicallocation, the relative usage of each mailer, compiler, shell and editor in thesystem.4. Ordinal Measures | These measure activity whose outcome is a numeric value,such as the amount of CPU and I/O used by a particular user. While categoricalmeasures count the `number' of times an activity occurred, ordinal measurescompute statistics on the numerical value of the activity outcome.The current behavior of each user is maintained in a pro�le. At regular inter-vals the current pro�le is merged with the stored pro�le1. Anomalous behavior isdetermined by comparing the current pro�le with the stored pro�le.2.2.1.1 Pros and Cons of Statistical Intrusion DetectionThe advantage of anomaly intrusion detection is that well-studied techniques instatistics can often be applied. For example, data points that lie beyond a multipleof the standard deviation on either side of the mean might be considered anomalous.The integral of the absolute di�erence of two functions over time might also be usedas an indicator of the deviation of one function with respect to the other.Statistical intrusion detection systems also have several disadvantages:1This is true of NIDES [LTG+92], but in some systems the pro�les do not change once determined.

18Statistical measures are insensitive to the order of occurrence of events. Thatis, a purely statistical intrusion detection system may miss intrusions that areindicated by sequential interrelationships among events.Purely statistical intrusion detection systems can be trained gradually to apoint where behavior, once regarded abnormal, is considered normal. Intruderswho know that they are being monitored by anomaly detectors can train suchsystems. Thus, most existing intrusion detection schemes combine both a sta-tistical part to measure aberration of behavior, and a misuse part that monitorsthe occurrence of speci�c patterns of events.It is di�cult to determine thresholds above which an anomaly should be consid-ered intrusive. Setting a threshold too low results in false positives and settingit too high results in false negatives.There is a limit to the types of behaviors that can be modeled using purelystatistical methods. Application of statistical techniques to the formulationof anomalies requires the assumption that the underlying data comes from aquasi-stationary process, an assumption that may not always hold. More ac-curate models such as generalized Markov chains are more complex and time-consuming to build.2.2.2 Feature SelectionA di�cult problem in anomaly intrusion detection is determining the correspon-dence between anomalous activity and intrusive activity. Given a set of heuristicallychosen measures that can have a bearing on detecting intrusions, the subset that ac-curately predicts or classi�es intrusions has to be determined. This is called featureselection. Determining the right measures is complicated because the appropriatesubset of measures depends on the types of intrusions being detected. One set ofmeasures will not likely be adequate for all types of intrusions. Prede�ned notions ofthe relevance of particular measures to detect intrusions might miss intrusions unique

19to a particular environment. The set of optimal measures for detecting intrusionsmust be determined dynamically for best results.Consider an initial list of n measures as potentially relevant to predicting intru-sions. The number of possible subsets of these n measures, which is the power set ofthese measures, is 2n. Because the search space is exponentially related to the numberof measures, an exhaustive search for the optimal subset of measures is not e�cient.Maccabe et al. present a genetic approach to searching through this space for theright subset of metrics [HLMS90]. Using a learning classi�er scheme they generate aninitial set of measures which is re�ned in the rule evaluation mode using genetic oper-ators of crossover and mutation. Subsets of the measures under consideration havinglow predictability of intrusions are weeded out and replaced by applying genetic oper-ators to yield stronger measure subsets. The method assumes that combining higherpredictability measure subsets allows searching the space of metrics more e�cientlythan other heuristic techniques.For a survey of other feature selection techniques see Doak [Doa92].2.2.3 Combining Individual Anomaly Measures to Get a Single MeasureIf we assume that the right set of anomaly metrics can somehow be determined,how do we then combine the anomaly values of all the metrics to get a single number?One method is to use Bayesian statistics, applied either from �rst principles or throughbelief networks. Another approach, used in NIDES [LTG+92], is to combine themusing covariant matrices.2.2.3.1 Bayesian StatisticsLet A1; A2; : : : ; An be n measures used to determine if an intrusion is occurring ona system at any given moment. Each Ai measures a di�erent aspect of the system,such as the amount of disk I/O activity, or the number of page faults in the system.Let each measure Ai have two values, 1 implying that the measure is anomalous,and 0 otherwise. Let I be the hypothesis that the system is currently undergoing

20an intrusive attack. The reliability and sensitivity of each anomaly measure Ai isdetermined by the numbers P (Ai = 1jI) and P (Ai = 1j:I). The combined belief inI given the values of each Ai, is given by Bayes' theorem as:P (IjA1; A2; : : : ; An) = P (A1; A2; : : : ; AnjI) P (I)P (A1; A2; : : : ; An)This would require the joint probability distribution of the set of measures conditionedon I and :I. The number of joint probabilities required is exponential in the numberof metrics. To simplify calculation at the expense of accuracy, we might assume thateach measure Ai depends only on I and is conditionally independent of the othermeasures Aj; j 6= i. That would yieldP (A1; A2; : : : ; AnjI) = �ni=1P (AijI)and P (A1; A2; : : : ; Anj:I) = �ni=1P (Aij:I)which leads to P (IjA1; A2; : : : ; An)P (:IjA1; A2; : : : ; An) = P (I)P (:I) �ni=1P (AijI)�ni=1P (Aij:I)That is, we can determine the odds2 of an intrusion given the values of variousanomaly measures, from the prior odds of the intrusion and the likelihood of eachmeasure being anomalous when an intrusion is occurring, i.e., the terms P (AijI)P (Ai j:I).To derive a more realistic estimate of P (IjA1; A2; : : : ; An), however, we must takethe interdependence of the various measures Ai into account.2.2.3.2 Covariance MatricesNIDES [LTG+92] uses covariance matrices to account for the interrelationshipsamong measures. If the measures A1; : : : ; An are represented by the vector A, thenthe compound anomaly measure is determined byATC�1A2 odds(A) = P (A)P (:A) .

21where C is the covariance matrix representing the dependence between each pair ofanomaly measures Ai and Aj.2.2.3.3 Belief NetworksFuture systems might use Bayesian or other belief networks to combine anomalymeasures. Bayesian networks [Pea88] allow the representation of causal dependen-cies between random variables in graphical form and permit the calculation of thejoint probability distribution of the random variables by specifying only a small set ofprobabilities that relate only to neighboring nodes. This set consists of the prior prob-abilities of all the root nodes (nodes without parents) and the conditional probabilitiesof all the non-root nodes given all possible combinations of their direct predecessors.Bayesian networks, which are DAGs with arcs representing causal dependence be-tween the parent and the child, permit absorption of evidence when the values ofsome random variables become known, and provide a computational framework fordetermining the conditional values of the remaining random variables, given this ev-idence.As an example, consider the trivial Bayesian network model of an intrusion shownin Figure 2.1.
DISK I/O CPU NET I/O

INTRUSION

Fragmentation Newly Available
Program on the
Net

Thrashing

Too Many
 Users

Too Many
Disk Intensive
Jobs

Too Many
CPU Intensive
JobsFigure 2.1 A Trivial Bayesian Network Modeling Intrusive Activity

22Each box represents a binary random variable with values representing eitherits normal or abnormal condition. If we can observe the values of some of thesevariables, we can use Bayesian network calculus to determine P (IntrusionjEvidence).However, in general it is not trivial to determine the a priori probability values ofthe root nodes and the link matrices for each directed arc. For a good introductionto Bayesian Networks see the article by Charniak [Cha91].2.2.4 Predictive Pattern GenerationPredictive pattern generation is a technique of anomaly detection that is basedon the hypothesis that sequences of events are not random but follow a discerniblepattern. This results in better intrusion detection because it takes into account theinterrelationship and ordering among events.The approach of time-based inductive generalization described by Teng and Chen[Che88, TCL90] uses time-based rules that characterize the normal behavior patternsof users. The rules, generated inductively, are modi�ed dynamically during the learn-ing phase and only \good" rules, i.e., rules with a high accuracy of prediction and ahigh level of con�dence remain in the system. A rule has high accuracy of predictionif it is correct most of the time, and it has a high level of con�dence if it can besuccessfully applied many times in observed data. An example of a rule generated byTIM [TCL90] may be E1!E2!E3) (E4 = 95%, E5 = 5%)where E1|E5 are security events. This rule, which is based on previously observeddata, says that for the pattern of observed events E1 followed by E2 followed by E3,the probability of seeing E4 is 95% and that of E5 is 5%. TIM can generate moregeneral rules that incorporate temporal relationships among events.A set of rules generated inductively by observing user behavior comprises thepro�le of the user. A deviation is detected if the observed sequence of events matches

23the left hand side of a rule but the following events deviate signi�cantly from thosepredicted by the rule.A primary weakness of this approach is that unrecognized patterns of behaviormay not be recognized as anomalous because they may not match the left hand sideof any rule.The strengths claimed for this approach are:1. Better handling of users with wide variances of behavior but strong sequentialpatterns.2. Ability to focus on a few relevant security events rather than the entire loginsession that has been labeled suspicious.3. Better sensitivity to detection of violations. Cheaters who attempt to train thesystem during its learning phase can be discerned more easily because of thesemantics built into the rules.2.2.5 Neural NetworksThe basic approach here is to train the neural net on a sequence of informationunits [FHRS90] (from here on referred to as commands), each of which may be at amore abstract level than an audit record. The input to the net consists of the currentcommand and the past w commands; where w is the size of the window of pastcommands that the neural net takes into account in predicting the next command.Once the neural net is trained on a set of representative command sequences of a user,the net constitutes the pro�le of the user, and the fraction of incorrectly predictednext events then measures, in some sense, the variance of the user behavior from hispro�le. A conceptual diagram depicting the use of neural nets is shown in Figure 2.2.The arrows directed at the input layer form the sequence of the last w commandsissued by the user. Every input in this idealized representation encodes several valuesor levels, each of which uniquely identi�es a command. Thus the values of the inputsat the input layer correspond exactly to the sequence of the last w commands. The

24output layer conceptually consists of a single multi-level output that predicts the nextcommand to be issued by the user.
Input Layer Output Layer

Next Predicted Command

ls

chmod

pwd

vi

...Figure 2.2 A Conceptual Use of Neural Nets in Intrusion DetectionFor a good introduction to neural networks and learning in neural nets by backpropagation see the book by Winston [Win92].Some of the drawbacks of this approach are:1. The topology of the net and the weights assigned to each element of the net aredetermined only after considerable trial and error.2. The size of the window w is yet another independent variable in the neural netdesign. If w is set too low, the net will do poorly, if it is set too high, the netwill su�er from irrelevant data.Some advantages of this approach are:1. The success of this approach does not depend on any statistical assumptionsabout the nature of the underlying data.2. Neural nets cope well with noisy data.3. Neural nets can automatically account for correlations between the various mea-sures that a�ect the output.

252.2.6 Bayesian Classi�cationBayesian classi�cation, described by Cheeseman [CHS91], is a technique of un-supervised classi�cation of data. Its implementation, Autoclass [CKS+88], searchesfor classes in the given data using Bayesian statistical techniques. This techniqueattempts to determine the most likely processes that generate the data. It does notpartition the given data into classes but de�nes a probabilistic membership function ofeach datum in the most likely determined classes. Some advantages of this approachare:1. Autoclass automatically determines the most probable number of classes, giventhe data.2. No ad hoc similaritymeasures, stopping rules, or clustering criteria are required.3. Continuous and discrete attributes may be freely mixed.In statistical intrusion detection we are concerned with a classi�cation of observedbehavior. Techniques used till now have concentrated on supervised classi�cation inwhich user pro�les are created based on each user's observed behavior. The Bayesianclassi�cation method would permit the determination of the optimal number of classes(probablistically computed), grouping users with similar pro�les, and thus yielding anatural classi�cation of a set of users.This approach is new and has not yet been implemented and tested in an intrusiondetection system. It is not obvious how well Autoclass handles inherently sequentialdata such as an audit trail, and how well the statistical distributions built into Auto-class will handle user-generated audit trails. It is also unclear if this technique lendsitself to online data, i.e., whether Autoclass can do its classi�cation incrementally asnew data becomes available, or whether it requires all the input data at once. Beingstatistical in nature, it also su�ers from some of the same generic failings of statisticalsystems, namely the di�culty in determining the right anomaly thresholds and theuser ability to gradually inuence class distributions.

262.3 Misuse Intrusion DetectionMisuse intrusion detection refers to the detection of intrusions by precisely de�ningthem ahead of time and watching for their occurrence. There is a misuse component inmost intrusion detection systems because statistical techniques alone are not adequateto detect all types of intrusions. The limitations of statistical anomaly detectors areoutlined in Section 2.2.1.1.Intrusion signatures specify the features, conditions, arrangements and interrela-tionships among events that lead to a break-in or other misuse. Signatures are notonly useful to detect intrusions but also attempted intrusions. A partial satisfactionof a signature may indicate an intrusion attempt.A misuse intrusion detector that simply ags intrusions based on the pattern ofinput events assumes that the state transition of the system (computer) leads to acompromised state when exercised with the intrusion pattern, regardless of the initialstate of the system. Therefore, simply specifying an intrusion signature without thebeginning state speci�cation is sometimes insu�cient to capture an intrusion scenariofully. For a security model de�nition of an intrusion and a pattern oriented approachto its detection, see also Gligor and Shieh [SG91].In the following sections we describe the various approaches to misuse detection.2.3.1 Using Conditional Probability to Predict Misuse IntrusionsThis method of predicting intrusions is similar to the one outlined in Section 2.2.3.1except that the \evidence" is now a sequence of external events rather than values ofanomaly measures. For misuse intrusion detection we are interested in determiningthe conditional probability P (IntrusionjEvent Pattern)Applying Bayes law, as before, to the above equation, we getP (IntrusionjEvent Pattern) = P (Event PatternjIntrusion) P (Intrusion)P (Event Pattern) (2.1)

27Consider the campus network of an university as the domain within which theconditional probability of intrusion is to be predicted. A security expert associ-ated with the campus wide network might be able to quantify the prior probabilityof occurrence of an intrusion on the campus system, or P (Intrusion), based on hisexperience. Further, if the intrusion reports from all of the campus systems are tab-ulated, one can determine, for each type of event sequence comprising an intrusion,its P (Event SequencejIntrusion). The relative frequency of occurrence of the eventsequence in the entire intrusion set gives this probability. Similarly, given a set ofintrusion-free audit trails, one can determine, by inspection and tabulation, the prob-ability P (Event Sequencej:Intrusion). Given the two conditional probabilities, onecan easily determine the left hand side of Equation 2.1 above from simple Bayesianarithmetic because the prior probability of an event sequence isP (Event Sequence) = (P (ESjI)� P (ESj:I)) � P (I) + P (ESj:I)where ES stands for event sequence and I stands for intrusion.2.3.2 Production/Expert Systems in Intrusion DetectionThe salient feature of using production systems is the separation of control rea-soning from the formulation of the problem solution.An example of the use of such systems in intrusion detection is described bySnapp and Smaha [SS92]. This system encodes knowledge about attacks as if-thenimplication rules in CLIPS [Gia92] and asserts facts corresponding to audit trailevents. Rules are encoded to specify the conditions requisite for an attack in their ifpart. When all the conditions on the left side of a rule are satis�ed, the actions onthe right side are performed.Practical problems in the e�ective application of production systems in intrusiondetection are the large amount of data to be handled and the inherent ordering ofthe audit trail. The chief goals of production systems in intrusion detection can beclassi�ed into the following types:

281. to deduce symbolically the occurrence of an intrusion based on the given data.The chief problems in this use of production/expert systems are:(a) No inbuilt or natural handling of sequential order of data. That is, theworking memory elements (fact base) that match the left sides of produc-tions to determine eligible rules for �ring are not recognized by the systemto be sequential. Furthermore, the left side of a production rule speci-�es that its elements are connected with the AND relation. To match anatural ordering of facts within this framework, the Rete match procedure[For82] tests the ordering constraints for every eligible pair after the sets ofworking elements conforming to the left side of the production have beengenerated.(b) The expertise incorporated in the production/expert system is only as goodas that of the security o�cer whose skills are modeled, which may not becomprehensive [Lun93]. This is a practical consideration, and is probablya concern at the lack of a concerted e�ort on the part of security expertsto attempt to distill their knowledge into a comprehensive security ruleset. However, if rule sets need to be tailored and optimized for individualenvironments, then it might not be possible to circumvent this limitation.(c) This technique can only detect known vulnerabilities.(d) There are software engineering concerns in the maintenance of the knowl-edge base [Lun93]. That is, additions and deletions of rules in the rule setmust take the interactions of the changes with the rest of the rule set intoconsideration.2. to combine various intrusion measures and construct a cohesive picture of in-trusions { do uncertainty reasoning. The limitations of production systems thatuse uncertainty reasoning are well-known. See the book by Judea Pearl [Pea88]for a good description. Also see Section 2.3.5 for a list of these limitations.

292.3.3 State Transition AnalysisIn this approach, taken in STAT [PK92] and implemented for UNIX in USTAT[Ilg92], attacks are represented as a sequence of state transitions of the monitoredsystem. States in the attack pattern correspond to system states and have booleanassertions associated with them that must be satis�ed to transit to that state. Suc-cessive states are connected by arcs that represent the events required for changingstate. The types of allowable events are built into the model and need not correspondone-to-one with audit records. Attack patterns can only specify a sequence of eventsso more complex ways of specifying events are not permitted. Furthermore, there isno general purpose mechanism to prune partial matches of attacks other than throughassertion primitives built into the model.2.3.4 Keystroke MonitoringThis technique utilizes user keystrokes to determine the occurrence of an attack.The primary means is to pattern match for speci�c keystroke sequences that indicatean attack. The disadvantages of this approach are the lack of reliable mechanismsfor user keystroke capture without operating system support, and the myriad waysof expressing the same attack at the keystroke level. Furthermore, without a seman-tic analysis of the keystrokes, aliases provided in user shells such as the Korn shell[BK89] can easily defeat this technique. User login shells often provide the facilityof associating parameterized shorthand names for command sequences. These arecalled aliases and are similar to macro de�nitions. Because this technique only ana-lyzes keystrokes, automated attacks that are a result of malicious program executionscannot be detected.2.3.5 Model-Based Intrusion DetectionThis approach was proposed by Garvey and Lunt [GL91] and is a variation onmisuse intrusion detection that combines models of misuse with evidential reasoning

30to support conclusions about the occurrence of a misuse. There is a database ofattack scenarios, each of which comprises a sequence of behaviors making up theattack. At any given moment, a subset of these attack scenarios are considered as thelikely ones by which the systemmight currently be under attack. An attempt is madeto verify these scenarios by seeking information in the audit trail to substantiate orrefute them (this process is termed in [GL91] as the anticipator.) The anticipatorgenerates the next set of behaviors to be veri�ed in the audit trail, based on thecurrent active models, and passes these sets to the planner. The planner determineshow the hypothesized behavior is reected in the audit data and translates it into asystem dependent audit trail match. This mapping from behavior to activity mustbe such as to be easily recognized in the audit trail, and must have a high likelihoodof appearing in the behavior. That is to sayP (ActivityjBehavior)P (Activityj: Behavior)must be large.As evidence for some scenarios accumulates, while for others the evidence drops,the list of active models is updated. The evidential reasoning calculus built into thesystem permits one to update the likelihood of occurrence of the attack scenarios inthe active models list.The advantages of model-based intrusion detection are:1. It is based on a mathematically sound theory of reasoning in the presence ofuncertainty. This is in contrast to expert system approaches of dealing withuncertainty where retraction of intermediate conclusions is not easy as evidenceto the contrary accumulates. Expert systems also have di�culty in explainingaway conclusions that are contradicted by later asserted facts. These problemscan be avoided in the evidential reasoning approach.2. It can potentially reduce substantial amounts of processing required per auditrecord by monitoring for coarser-grained events in the passive mode and thenactively monitoring for �ner-grained events as coarser events are detected.

313. The planner provides independence of representation from the underlying audittrail representation.The disadvantages of model-based intrusion detection are:1. This approach places additional burden on the person creating the intrusiondetection model to assign meaningful and accurate evidence numbers to variousparts of the graph representing the model.2. The runtime e�ciency of this approach has not been demonstrated by buildinga prototype. It is not clear from the model description how behaviors can becompiled e�ciently in the planner and the e�ect this will have on the runtimebehavior of the detector.Model-based intrusion detection does not replace the statistical anomaly portionof intrusion detection systems, but complements it. For a thorough treatment ofreasoning in the presence of uncertainty see the book by Judea Pearl [Pea88].2.4 A Generic Intrusion Detection ModelDorothy Denning, in 1987, established a model of intrusion detection independentof the system, type of input, and the speci�c intrusions to be monitored [Den87].A brief description of the generic model is helpful in relating speci�c examples ofintrusion detection systems presented in earlier sections to the model and viewinghow these systems �t into or enhance it. The model is still accurate in describing thearchitecture of many current systems.Figure 2.3 depicts the architecture of the generic intrusion detection model. Theevent generator is generic, the actual events may be audit records, network packets,or any other observable activity. These events serve as the basis for the detectionof abnormality in the system. The Activity Pro�le is the global state of the intru-sion detector. It contains variables that calculate the behavior of the system usingprede�ned statistical measures. These variables are smart variables, i.e., each vari-able is associated with a pattern speci�cation that serves to �lter event records. The

32matched records provide data to update their value. For example, there may be avariable NumErrs representing the statistical measure sum which calculates the totalnumber of errors committed by the subject in a single login session. Each variable isassociated with one of the statistical measures built into the system, and is respon-sible for updating its state based on the information contained in the matched eventrecords.The Activity Pro�le can also generate new pro�les dynamically for newly createdsubjects and objects based on pattern templates. If new users are added to thesystem, or new �les created, these templates instantiate new pro�les for them. TheActivity Pro�le can also generate anomaly records when some statistical variabletakes on an anomalous value, for example when NumErrs takes on an inordinatelyhigh value. The Rule Set represents a generic inferencing mechanism and uses eventrecords, anomaly records, and time expirations, among others, to control the activityof the other components and to update their state. Denning [Den87], however, usesrule-based systems to explain the inferencing mechanism and the nature of interactionwith the other components.Comparison with Other SystemsThe primary di�erences between the generic model described above and actualsystems described in previous sections are:How the rules comprising the Rule Set are determined.Whether the rule set is coded a priori or if it can adapt and modify itselfdepending on the type of intrusions.The nature of interaction between the Rule Set and the Activity Pro�le.The basic theme, however, of formulating statistical metrics good for identifyingintrusions, computing their value, and recognizing anomalies in their values appearsin most of the systems built to-date. Conceptually, the ActivityPro�le module detectsanomalies, while the Rule Set module performs misuse detection. Di�erent techniques

33and methods can be substituted for these modules without altering the conceptualview substantially.However, some newer techniques of anomaly detection do not map well into theinternal details of the Activity Pro�le. For example, the neural net approach ofanomaly detection does not easily �t the framework of smart variables and the cal-culation of a number for an anomaly value. Learning and adaptation of rule sets andpro�les is not modeled well. It is also not clear in which module TIM [TCL90] wouldbe placed. TIM detects behavioral anomalies and therefore might be a candidatefor being placed in the Activity Pro�le, but it does so by generating rules and �ringthem when conditions in the if part of the rules is satis�ed, which also makes it acandidate for being part of the Rule Set. Very recent approaches like model-basedapproaches are too di�erent to �t this framework directly.
Event Generator

Activity Profile Rule Set

CLOCK

Generate New Profiles Dynamically

Audit Trail/Network Packets/Application Trails

Update Profile

Assert New Rules
Modify Existing Rules

Generate Anomaly
RecordsFigure 2.3 A Generic Intrusion Detection Model2.5 Shortcomings of Current Intrusion Detection SystemsThe following is a commentary on the weaknesses of intrusion detection systemstaken as a whole. Di�erent implementations rate di�erently along these axes ofcomparison. Our approach o�ers a new approach to building misuse detectors that is

34e�cient and easy to maintain. Performance results for our prototype implementationare described in Chapter 6 and coverage results are presented in Chapter 7.No Generic Building Methodology. In general, the cost of building an intrusion de-tection system from scratch is substantial. This is because of the lack of astructured methodolgy for building these systems. No such structuring insightshave emerged from the �eld itself. This may partly be a result of a lack ofcommon agreement on the techniques for detecting intrusions and partly be-cause intrusion detection is a young �eld of study, initiated by Anderson in1980 [And80].E�ciency. Systems have often attempted to detect every conceivable intrusion andhave not done well in practice. Anomaly detection, for example, is computa-tionally expensive because all pro�les maintained by the system may need tobe updated for every event. Misuse detection has usually been implemented us-ing expert system shells that encode and match signatures. These shells ofteninterpret their rule set and thus have a high runtime overhead. Furthermore,rule sets permit only an indirect speci�cation of the sequential interrelationshipsbetween events.Portability. Intrusion detection systems have thus far been written for single envi-ronments and have proved di�cult to use in other environments that may havesimilar policies and concerns. For example, moving the detection machineryfrom a system that provides a single level discretionary access control to amulti-level secure system is nontrivial even though the same concerns may ap-ply to both. This is because much of the system has tended to be speci�c tothe environment being monitored. Each system is, in some sense, ad-hoc andcustom-designed for its target. Reuse and retargetting are di�cult unless thesystem is designed in such a generic manner that it may be ine�cient or oflimited power.

35Upgradability. It is di�cult to retro�t existing systems with newer and better tech-niques of detection as they become available. For example, incorporating aBayesian belief network to predict intrusions into an existing system would bedi�cult because of a lack of clear understanding of how this functionality mustinteract with the rest of the system.Maintenance. The maintenance of intrusion detection systems often requires skillssubstantially more varied than a knowledge of security. Upgrading rule sets,for example, often requires specialized knowledge about the expert system rulelanguage and an understanding of how the system manipulates the rules. Thishelps avoid undesirable interactions between the rules already present in thesystem and those being added. Similar considerations apply to the addition ofstatistical metrics to the statistical component of the detector.Performance and Coverage Benchmarks. No data has been published to date thatquanti�es the performance of intrusion detection systems for a realistic set ofvulnerability data and operating environment. Furthermore, there is no pub-lished coverage data on any system, commercial or research. Coverage datawould indicate the percentage of intrusions that the system would detect ina real environment. Vendors often treat coverage qualitatively. This is partlybecause it is di�cult to accurately ascertain the kinds of intrusions and their fre-quency of occurrence in large environments, particularly the Internet. Nonethe-less, there is no published coverage data even on publicly available vulnerabili-ties.No Good Way to Test. There is no easy way to test intrusion detection systems. Po-tential attack scenarios are di�cult to simulate and known attacks di�cult toduplicate. The lack of a common audit trail format between systems also ham-pers experimentation and comparison of the e�ectiveness of existing systemsagainst common attack scenarios.

362.6 Summary of Intrusion Detection TechniquesSeveral intrusion detection systems have been proposed and implemented. Mostof them derive from the statistical intrusion detection model of Dorothy Denning[Den87]. Some of them, for example NIDX [BK88], Haystack [Sma88], IDES [LJL+89],MIDAS [SSHW88], Wisdom and Sense [LV89] and CMDS [Pro94] use the audit trailgenerated by a C2 or higher rated computer, for input. Others, for example NICE[MMA, HLMS90] and NSM [HLM91] try to analyze intrusions by analyzing networkconnections and the ow of information in a network. Others still, such as DIDS[SBD+91] have expanded the scope of detection by distributing anomaly detectionacross a heterogeneous network and centrally analyzing partial results of these dis-tributed sources to detect potential intrusions that may be missed by the individualanalysis of each source.Among non-statistical approaches to intrusion detection is the work by Teng[TCL90] that analyzes individual user audit trails and attempts to infer the sequentialrelationships between events; and the neural net modeling of behavior by Simonianet al. [FHRS90].Approaches to misuse intrusion detection include language-based approaches torepresent and detect intrusions such as ASAX [HCMM92], developing an ApplicationProgramming Interface, i.e., a set of library function calls employed for represent-ing and detecting intrusions, such as in STALKER [Sma95], expert systems such asMIDAS [SSHW88] and NIDX [BK88], and high level state machines to encode andmatch signatures such as STAT [PK92] and USTAT [Ilg92].A promising approach for future intrusion detection systems might involve Bayes-ia-n classi�cation, currently implemented in Autoclass [CKS+88, CHS91]. Audit trailreduction and browsing is described by Wetmore [Wet93] and Moitra [Moi], whilea non-parametric pattern recognition technique is discussed by Lankewicz [Lan92].Audit trail reduction techniques permit the compression of audit data into coarser,more abstract events, that may be queried later by the security o�cer to retrieve

37information rapidly and e�ciently. Non-parametric techniques for anomaly detectionhave the advantage that they make no assumptions about the statistical distributionof the underlying data, and are useful when such assumptions do not hold.

383. A SCHEME FOR CLASSIFYING INTRUSION SIGNATURESThe goal of intrusion detection by examining the audit trail is to determine whena computer system has entered, or is likely to enter, a faulty or intruded state. Thischapter focuses on \examination" of the audit trail in the context of misuse intrusiondetection by showing how common features of the examination process can be usedto categorize intrusion signatures.In the �rst part of this chapter we introduce an abstract hierarchy for classifyingintrusion signatures based on the structural interrelationships among the events thatcompose the signature. These structural interrelationships are de�ned over high-level events or activities, which are themselves de�ned in terms of low level audittrail events. The abstract hierarchy can be instantiated into a concrete hierarchyby precisely de�ning a high-level event in terms of low level audit trail events. Aninstantiated hierarchy permits the determination of precise theoretical complexitybounds of matching signatures in each level of the hierarchy.The abstract hierarchy presented here does not classify security vulnerabilities.Instead, it classi�es signatures that are used to detect the exploitation of vulnerabil-ities. In the latter part of the chapter we describe how pattern matching can be usedto \examine" the audit trail for the occurrence of these signatures. We show how tra-ditional pattern matching is inadequate to represent and match intrusion signaturesby presenting the requirements that a framework of pattern matching solution mustprovide to represent intrusion signatures.We instantiate the abstract hierarchy by de�ning a \high-level event" as a DAGand combining it with the pattern matching requirements, into a model of matching.This model, presented in Chapter 4, can represent signatures in each level of thehierarchy. A prototype implementation of the model is presented in Chapter 6.

393.1 A Hierarchy of Intrusion SignaturesWe de�ne the hierarchy of intrusion signatures, which is partitioned on the struc-tural interrelationships among the elements of the signatures, in terms of high-levelevents. The bene�ts of this hierarchy are:� It permits a classi�cation of signatures based on common characteristics thatare abstracted from any particular way of specifying and matching them. Such aclassi�cation provides conceptual bene�ts of understanding intrusion signatures.By specifying that a signature belongs to a particular class, it conveys thestructural interrelationships of high-level events that comprise the signature.Thus, instead of referring to an exploitation as a race condition attack involvingthe exec system call, one might refer to it as a sequence pattern. This abstractsdetails of the exploitation by removing mention of exec, the temporal natureof the attack, or other system dependent properties.As a consequence of partitioning based on the structural interrelationship amonghigh-level events, seemingly intuitive partitions based on temporal characteris-tics of attacks are subsumed under categories in this hierarchy. Our partitiondoes not treat any attribute of events specially and temporal characteristics aretreated as properties of a particular \time" attribute.� It o�ers another way to partition intrusions based on what can be preciselymonitored as opposed to how it is monitored. The traditional way intrusionshave been partitioned has been to group them based on a technique for detec-tion. This has resulted in the generic approaches of \anomaly" and \misuse"detection. By treating intrusion detection as signature matching, intrusions canbe classi�ed based on the manifestations of their exploitation in the audit trail.Many intrusions that are detected as anomalies, such as an unusual number offailed logins, can be represented and matched as signatures.

40� If the patterns that we are interested in modeling for intrusion detection possesscommon characteristics, exploiting these characteristics might result in moree�cient matching solutions.3.1.1 Classify Vulnerabilities or Signatures?As mentioned earlier, our hierarchy classi�es signatures rather than vulnerabilities.In this section we justify why this is more meaningful from the viewpoint of detection.Cataloging of software bugs has been of keen interest to software engineers. Therationale for this interest is summarized by Bezier [Bez83] as:It is important to establish categories for bugs if you take the goal ofbug prevention seriously. If a particular kind of bug recurs or seems todominate the kinds of bugs you have, then it is possible through education,training, new controls, revised controls, documentation, inspection, and avariety of other methods to reduce the incidence of that kind of bug. If youhave no statistics on the frequency of bugs, you cannot have a rationalperspective on where and how to allocate your limited bug preventionresources.The predominant view taken here is that of prevention. By studying the point of originand the nature of signi�cant aws in software systems, one can devise techniquesto reduce them. Studies that have focused on security vulnerabilities in operatingsystems, such as the one done by Landwehr et al. [LBMC93], have also taken theview of prevention. The intent is to learn from mistakes so that future systems mightavoid repeating mistakes.No study to date has been reported that classi�es aws based on the di�cultyof the runtime detection of aw exploitations. A classi�cation scheme intended toprovide feedback to build secure software may be quite di�erent from a classi�cationscheme based on the technique for detecting exploitations of aws in system software.For example, function parameter validation as a category in the former classi�cation

41scheme is useful because it corresponds directly to preventive steps that can be takento avoid aws resulting from such problems. However, when viewed from the per-spective of runtime detection, we are primarily concerned with the manifestation ofthe exploitation of the aw in the running system. Two faults that are a result of im-proper or incomplete parameter checking may result in very di�erent manifestationsand thus should be classi�ed in di�erent categories.Studies that have focused on penetration analysis, for example the RISOS projectstudy [A+76] and the study by Landwehr et al. [LBMC93] have attempted to developa syntax-directed approach to the detection of security aws. The aim of these studiesis to develop patterns indicative of aws that can be matched in system source code.We are proposing a dynamic characterization of aws based on their manifestation ina running system because that is what intrusion detection attempts to do.3.1.2 Our Classi�cationOur abstract classi�cation hierarchy has four categories in which a category at ahigher level subsumes the category below it in terms of the signatures that can berepresented in the category. Precise bounds on matching in each category can be madeby instantiating this abstract category. Instantiation requires a precise de�nition ofthe structure of a high-level event in terms of low-level audit trail events. For example,a simple instantiation of the hierarchy can be made by de�ning a high-level event to bethe same as an audit trail event. This results in a particular distribution of intrusionsignatures in the various categories of the hierarchy. By de�ning a high-level eventstructure in more complex ways, this distribution can be shifted to move signaturesfrom higher levels to lower levels. The \best" choice of such a de�nition dependsin part on the nature of the audit trail. A high-level event serves to encapsulatedi�erences in audit trails so that intrusion signatures remain relatively unchangedwhen written using high-level events. As a useful example, we have instantiated thisabstract hierarchy for the Sun BSM [Sun93b] audit trail by de�ning a high-level eventas a DAG of audit trail events. This choice is based on the Sun implementation of

42recording read and write system calls in the audit trail as separate events for each agspeci�ed as an argument to these calls. This instantiation is presented in Chapter 4.In the discussion below, we use the term \thing" for a \high-level event." Ourclassi�cation scheme, in increasing order of representability of signatures, is:1. Existence. The fact that something existed is su�cient to detect the intrusion at-tempt. Existence patterns can be thought of as system state predicates thatcan be evaluated by inspecting the state of the system at a �xed time, ratherthan predicates on events. Examples include searching for speci�c permissionson special �les, looking for the presence of certain �les, or ensuring that �le con-tents follow a speci�c format, both syntactic and semantic. Existence patternslook for evidence that may have been left behind by an intruder. Existence pat-terns are needed, for example, when all security-relevant activity is not reectedin the audit trail, or when the integrity of the audit trail is questionable. Thiscan happen when �le systems are remotely mounted, or when the audit trail isdestroyed by the intruder. Existence patterns may then be devised to scan the�le system for the presence of unauthorized setid1 �les, unsafe permissions ondevices, etc.Although the focus of our classi�cation is to categorize signatures, not vulnera-bilities, an extension of existence patterns can also be used to detect vulnerabil-ities in systems. A study conducted by Bishop on UNIX vulnerabilities [Bis95]revealed that as many as 95% of all vulnerabilities in his study originated fromcon�guration problems. These can be modeled and detected using existencepatterns. Checks performed by static analysis tools such as COPS [FS90] andTIGER [SSH93] can also be modeled by existence patterns. Example vulnera-bilities:� Cert Advisory 93:03 [CER]. The default permissions on a number of �lesand directories in SunOS 4.1 were being set incorrectly. Because UNIX1Both setuid and setgid.

43models devices as �les, incorrect permissions may permit kernel memoryto be read for passwords or devices read from or written to.� Cert Advisory 93:15 [CER]. The device /dev/audio was world readableso any user with an account on the system could listen to any conversationthat was within audible range of the built-in microphone.An existence signature to detect these vulnerabilities checks to see if the per-missions on the relevant �les are set incorrectly.The time required to match patterns of this type is constant per event and isindependent of the history of events leading up to the current event.2. Sequence. The fact that several \things" happened in strict sequence is su�cientto specify the intrusion. The time to process an event for sequence patternsdepends on the events in the event stream that occurred before the event. Ifpatterns can specify constraints that hold on the data �elds associated withevents, then matching sequences is computationally at least as di�cult as solv-ing NP Complete problems, i.e., it is NP Hard. Simple constraints involvingonly equality tests between \things" comprising a sequence pattern can rep-resent NP Complete problems. For example, to determine the Hamiltonianpath of an arbitrary graph with n vertices, a sequence pattern can be devisedthat selects n distinct vertices (speci�ed using equality constraints) such thatconsecutive vertices in the selection are valid edges in the graph.Two special cases of this category relevant to intrusion detection are:1. Interval. \Things" happened an interval x apart within a speci�ed accuracy�. This is speci�ed by the condition that an event occur no earlier thanx�� and no later than x+� units of time after another event.

442. Duration. This requires that \things" existed or happened for not more thannor less than a certain interval of time. Duration of complex events canoften be speci�ed as interval constraints between simpler ones.Both types of requirements can be handled within the framework of sequencepatterns by using appropriate context expressions, or constraints. As an exam-ple of a sequence pattern, consider the representation of a race condition attackthat involves switching a link to a setuid shell script �le. This scenario exploitsthe #!mechanismof determining the executable �le to run in the exec() systemcall. In some older UNIX kernels exec reads the �rst two bytes of the program�le it is trying to execute to determine if it is a shell �le. If the �rst two bytesare #!, it reads the next several bytes to determine the name of the interpreterto run and gives the name of the current �le (the one containing the #!) as anargument to it. The attack works by making a link to a setuid shell �le andinvoking the program through the link. The link is then quickly pointed to amalicious script. If the race condition succeeds, the malicious script is executedbecause it is passed as the argument to the interpreter. Furthermore, the ma-licious script is executed with the same user id as the owner of the original �le(the �le with the #!) because exec uses the permissions on that �le to determinethe user id of the interpreter that is invoked when the �le is setuid. The timingnumbers below are purely illustrative. T.b is the time when command b is doneand so on.a. ln setuid_shell_script FOOb. FOO &c. rm FOO (200ms<=T.c-T.b<=1s) #unlink FOO between 200ms#and 1s of invoking FOOd. ln any_shell_script FOO (T.d-T.b<=1s) #relink it within 1s

45A pictorial representation of this pattern might look as shown in Figure 3.1,which is a sequence of three actions: creation of an alias, execution, change ofthe alias.create an aliasto a file execute a setidshell script by in-voking itthrough an alias change the aliasto point to an-other scriptContext: The aliases in box1, box2, and box3 are the same and the timerequirements are satis�ed.Figure 3.1 A Race Condition Attack Represented as a Sequence PatternOther, similar examples of sequence patterns include:� Race condition attacks in which a process running with elevated privi-leges accesses an object. The process �rst checks (usually with the accesssystem call in UNIX) whether it is permitted access to the object withoutelevated privileges and, if so, accesses the object. Because these two opera-tions are not atomic when taken together, there is a window of opportunityin which the process's notion of the object can be made to change. Thiscan result in unauthorized accesses to arbitrary objects in the system. Anexample of this attack is the lpr attack2 discussed on the bugtraq [Bug]mailing list by Jeremy Epstein on 10/21/94:For example, if lpr checks whether you have access to a �le beingqueued (using the access() system call), but lpd fails to verify that the�le is still what it was before (i.e., if its a symbolic link it hasn't been2A window of opportunity still remains between the time lpd makes its check, and accesses the�le, but that is a replay of the same race condition at a lower level as the race condition betweenthe access check by lpr and printing by lpd.

46changed, if it was a �le when spooled it hasn't become a symbolic link),then you could get printouts of �les you have no rights to...� Cert Advisory 93:18 [CER] which address a vulnerability in /usr/etc/m-odload and $OPENWINHOME/bin/loadmodule in some Sun Microsystems,Inc. architectures. In these architectures loadmodule runs as setuid rootwithout resetting IFS3. It calls a program with the absolute name startingwith /bin and does it using a call to system(). Because system() usesthe shell to parse its arguments, a program called bin can be invoked bysetting IFS and PATH4 appropriately. If a program called bin is in thecaller's path, it is executed as user root.A simple signature for this vulnerability is to test every process whenit begins execution to ensure that the program the process corresponds toresides in a trusted area if the process is executing with elevated privileges.3. RE Patterns. These are extended regular expressions involving events and permitthe direct speci�cation of AND as a primitive to construct patterns. Synchro-nization between subpatterns can be represented through the AND primitive.Representability of regular expressions also provides the use of non-determinism,repetition, and the use of alternation in pattern speci�cations.Examples of these patterns include intrusion signatures that often specify sev-eral activities to be done jointly, but in any order. Such signatures can bewritten using the AND primitive. For example, attack scenario number fourdescribed by Bishop [Bis83] provides a root shell by exploiting /bin/mail./bin/mail is the local mail delivery program that worked in earlier versionsof UNIX by changing the user id of the mail �le to that of the recipient's uid,3IFS, or the internal �eld separator, is a user assignable variable in some user shells, such as theKorn shell [BK89], that determines how an input line is separated into command words.4PATH is a user assignable variable provided in most user shells that de�nes the search path tolook for commands to be executed.

47but failed to clear the setuid bit on the �le. One attack script for exploitingthis scenario is the following, described by Koral Ilgun [Ilg92]:cp /bin/sh /usr/spool/mail/rootchmod 4755 /usr/spool/mail/roottouch xmail root < xAND pattern features are required to represent this signature when translatedliterally. touch is not related to cp and chmod, but must precede mail. Thepattern might be represented as(touch AND (cp; chmod)); mailwhere ; indicates sequence. This example is explained further in Section 4.1.This category is a superset of sequence patterns.4. Other Patterns. This category contains all other intrusion signatures that can-not be represented directly in one of the earlier categories. Examples of thesepatterns include:� Patterns that require embedded negation. Matching negation patterns in-volves searching through the entire search space for absence of match. Forexample, it is not possible to directly specify in our hierarchy that a pat-tern successfully match when a read followed by a write is not followedby a close within �ve seconds.Our interpretation of negation is \not followed by," instead of the greedymatch \anything but." Thus, in our interpretation, the regular expressionpattern abcd:� speci�es a not followed by bcd, followed by anything. Thispattern fails to match the input abcde in our interpretation. With a greedyinterpretation of matching, the pattern matches the input because in thatinterpretation, the pattern speci�es a followed by anything except bcd,

48followed by anything. This is easily realized in the input as ajbjcde, whereb matches bcd and cde matches :�.Matching negation patterns requires an exhaustive search because NP-Complete problems and their negation counterparts can be represented assignatures. For example, the problem: does an arbitrary graph not havea Hamiltonian cycle? If such signatures required less than an exhaustivesearch for matching, we could derive clues to the problem NP = co-NP.That, in turn, would provide clues to P = NP. Both are unsolved openproblems.� Patterns that involve generalized selection. For example, to specify a suc-cessful match if any x�3 out of x conditions are satis�ed, all possible waysof selecting x�3 conditions out of x have to be represented in the pattern.The relationship between the categories is shown graphically in Figure 3.2. Thecategories from top to the bottom represent increasing representibility of intrusionsignatures. That isExistence � Sequence � RE patterns � Other patternsInterval and Duration are subsets of the category Sequence.
Existence

Sequence

RE Patterns

Other Patterns

DurationInterval

Figure 3.2 The Abstract Signature Classi�cation Hierarchy

493.1.3 Relevance of this Classi�cationThis classi�cation yields a categorization of intrusion signatures that is indepen-dent of any underlying computational framework of matching. The classi�cation alsoserves as the basis for instantiating any such computational framework. We have pop-ulated this hierarchy with intrusion signatures [KS] and the majority of the intrusionswe studied were contained in the �rst three categories.Using this classi�cation as the basis for a computational framework can be ap-proached in two ways. Each category in the classi�cation can be treated independentlyand a computational procedure devised that matches signatures in that category. Thisyields disparate solutions to the matching problem in each category. Alternatively,a uni�ed procedure can be devised in which all categories can be represented andmatched in one model. The approach taken in this dissertation is that of a uni�edmodel of matching, which is presented in Chapter 4.While our focus in deriving this classi�cation has been to study exploitationsof vulnerabilities in the UNIX operating system, we contend that the hierarchy isalso valid for other operating systems. This point was presented in Section 1.4. Ifoperating systems have similar methods of exploitation, then the manifestations ofthese exploitations in the audit trail are also similar. For example, race conditionattacks, which are present in many operating systems, are often of the same generictype and may be modeled for detection as sequence patterns.3.2 Intrusion Detection as Pattern MatchingIn this section we show how pattern matching can be used to examine or monitorfor signatures in the audit trail. Our approach encodes signatures as a formal, struc-tured representation of low-level system events that constitute the exploitation ofthe attack. We show how this approach can be used with any underlying abstractedevent stream. We discuss the bene�ts of using pattern matching for detecting in-trusions. We also discuss generic requirements that any intrusion detector using a

50pattern matching approach must satisfy when run in the current paradigm of audittrail generation.3.2.1 Intrusion Signatures as Patterns to be MatchedTo show the likeness of intrusion signatures and patterns in the sense of classicalpattern matching, consider the monitoring of Clarke-Wilson [CW89] integrity triplesin a computer system using the system generated audit trail. Clarke-Wilson triplesare devised to ensure the integrity of important data and specify that only authorizedprograms running as speci�c user ids are permitted to write to �les whose integritymust be preserved. This is similar to the maintenance of the integrity of the password�le on UNIX systems by allowing only some programs, like chfn5 to alter it. Onepattern that might be used for this purpose associates and matches a sub-signaturefor creating a process with another that writes to �les. By appropriately specifyingthat the created process is the same as the one that writes, and retrieving the user id,the program name and the �le name from the context of the match, one can monitorClarke-Wilson integrity triples by pattern matching. See Figure 3.3 for a pictorialrepresentation of the signature.The approach of viewing intrusion signatures as patterns to be detected by match-ing them against the audit trail has the following bene�ts:Event Layout Independence. The pattern speci�cations do not include a descriptionof the layout of events. Instead, they import an event interface. A patternonly needs to use what data an event can provide, regardless of how the eventprovides it. This insulates the pattern speci�cation from layout variations inthe event stream. Because pattern speci�cations are declarative, a standardizedrepresentation of patterns enables them to be exchanged between users runningvariants of the same operating system, with varying audit trail formats. Foreach such system the translation mechanism of converting the pattern to itsunderlying matching automaton, and the encapsulation of the audit data within5chfn is used to change informationabout users which is stored in a well-known �le, /etc/passwd.

51the event interface is ported. Once this is done, signatures can be reused amongsystems.Declarative Speci�cation. Patterns representing intrusion signatures can be speci�edby de�ning what needs to be matched, not how it is matched. That is, thepattern is not encoded by the signature writer as code that explicity performsthe matching. This permits sequencing and partial order constraints on eventsto be represented in a direct declarative manner. The bene�t is the cleanseparation of the matching from the speci�cation of what needs to be matched.Dynamic Pattern Creation. Patterns representing attacks can be dynamically createdat the time of need. This facilitates complex matching requirements to bespeci�ed as a hierarchy of pattern matches. A pattern matched at a lower levelin this conceptual hierarchy can create and trigger the matching of a patternat a higher level thus permitting a layered structure of representing complexmatches. Furthermore, patterns tailored on conditions only known at runtimecan be created.Event Source Independence. As the pattern matching process only makes use of theevent interface visible to it, events that correspond directly to underlying sys-tem events or those that are arti�cially generated can be used the same way.Synthetic events can be generated and used by augmenting the event interfacewith a description of these events. The interpretation of these synthetic eventscan be made completely application dependent, being done by the particularpatterns that make use of them.Multiple Event Streams. Multiple event streams can be used together to match a-gainst patterns for each stream without the need for combining the two intoone stream. For example, IP datagrams and C2 audit events can be handledtogether to corroborate evidence of intrusion. As no assumptions are madeabout the nature of these event streams, this mechanism can be naturally used

52to process multiple sources of the same event type, for example in distributedintrusion detection.Portability. Intrusion signatures can be moved across sites without rewriting them toaccommodate �ne di�erences in each vendor's implementation of the audit trail.Because pattern speci�cations are declarative, a standardized representation ofpatterns enables them to be exchanged between users running variants of thesame avor of operating system, with varying audit trail formats.3.2.2 The Nature of Intrusion SignaturesIn this section we outline the general, abstract requirements that pattern speci�ca-tions must incorporate to represent the full range and generality of intrusion scenarios.These requirements were derived from a study of computer security vulnerabilities de-scribed in Bishop [Bis83], CERT advisories [CER], and the COPS security tool [FS90].The examples are illustrated using UNIX vulnerabilities and a C2 audit trail. This isonly because of our familiarity with them and should not be construed as a limitationof this approach.Context Representation. The patterns must be able to represent the context essentialto accurately specify an intrusion. The more accurately one can specify an intru-sion, the more one can limit false positives and unwanted matches. The contextincludes the pre-condition(s) that may need to be satis�ed before matching theevent group speci�ed by the pattern. The pre-condition veri�es that the systemis in a state from which the set of actions carried out as speci�ed in the patternresult in an intrusion. Some signatures may not require a pre-condition.The other type of context involves expressions on the values of event �elds.These values may be taken from more than one event. For example, whenencoding Clarke-Wilson triples as patterns, one needs to remember the userid and the program name associated with every process spawned to match itagainst every write (or open for write) to ensure that only those writes to �les

53that are permitted by certain programs executing on behalf of certain usersoccur. Figure 3.3 shows this pictorially.A PROGRAM STARTS UP A PROCESS WRITES TO A FILEPR = this program's name F = this �le's namePID = this process's pid PID0 = this process's pidUID = this process's uidContext: PID = PID0 ^ Clarke-Wilson access triples do not permitPR running as user id UID to write to �le F.Figure 3.3 Monitoring Clarke-Wilson Triples as a Pattern MatchAs another example of the use of signature contexts, consider the representationof the signature: Raise the audit level of any user for whom there are threeor more failed login attempts within two minutes. The block diagram of thesignature might look as shown in Figure 3.4. The sequence of failed logins asdepicted implies that t3 � t2 � t1.FAILED LOGIN FAILED LOGIN FAILED LOGINuser = U user = U 0 user = U 00time = t1 time = t2 time = t3Context: if(U == U 0 == U 00 ^ t3 � t1 < 2m)raise audit level(U);Figure 3.4 Three Failed Login Attempts as a Signature

54Matching in the presence of context is more di�cult than matching where onlythe order of occurrence of events is speci�ed, as in regular expression matching[AHU74]. If the evaluation of the context is linear in its size (of representation)then matching is NP-Complete [KS94]. This means that in general there areno known deterministic algorithms that perform signi�cantly better than tryingall possible ways of matching the pattern.Follows Semantics. The patterns must intrinsically specify the following special caseof discrete approximate pattern matching: if the event sequence e1;e2;: : : ; enmatches the pattern, then so does e1;[x11; x12; : : : ; x1l];e2;[x21; x22; : : : ; x2m];: : : ;en,where xij are arbitrary events. That is, the insertion of an arbitrary numberand type of events between any successive events of a matching event sequencecontinues to render the pattern matched. We refer to this specialization asmatching with the follows semantics. If this problem is framed in terms of theedit distance of converting the input to the pattern, with deletion costs = 0,insertion costs = mismatch costs = 1, it is to determine if the minimum cost ofconverting the input to the pattern is 0. This requirement is justi�ed when oneconsiders how event streams (e.g., audit trails) are generated in modern com-puter systems. Multiple sources of events, for example from several processes,overlap in the �nal event trail. Because event trail managers (a process) usuallycollect and write events in the order in which they are received, a single logicalthread of events, for example one associated with a process, is interspersed withevents belonging to other active entities in the system.Discrete approximate matching has been extensively studied by Wagner andFischer [WF74], Myers and Miller [MM89], Yates and Gonnet [BYG89], Man-ber and Wu [WM91] and Knight [Kni93]. Matching with the follows semantics

55without context representation has the same complexity as matching regular ex-pressions. This has a linear time solution in the deterministic case (ignoring pre-processing) and polynomial time solution when simulating the non-deterministicpattern. These results can be found in the book by Aho et al. [ASU86].Speci�cation of Actions. The patterns should be able to specify the execution of ar-bitrary code fragments, both within the pattern's context and when the patternis matched. For example, it might be desirable to increase the amount of dataaudited for a user when a suspicious pattern is matched. Some generic mecha-nism for specifying such actions must be provided without needing to enumeratea priori all the special functions that might be needed for this purpose. Fix-ing the set of functions that can be used within a pattern when the model ofmatching is designed is di�cult. It is also too restrictive to the pattern writerto work with a �xed set of functions in writing patterns. A general mechanism,for example one based on a virtual machine model that allows complex, userspeci�able functions to be constructed from a small, simpler set of instructions,is more desirable. Such a mechanismmight also be used to query the system forstate information, changing the event trail manager, or to e�ect state changesin the system itself.Consider the Clarke-Wilson example of Figure 3.3. The mechanism of storingthe CW-triples and checking them against the pattern context can be speci�edusing a function that takes the program name, the user id, and the �le nameas arguments and determines if it is an allowed triple. The function declarationfor such a function might look like://return 1 if triple not permitted, 0 otherwiseint disallowed(String prog, int uid, String file)Representation of Invariants. The following special types of patterns must be easy torepresent: p1 ^ p2 ^ p3 ^ : : : In other words, the pattern is considered matched

56if a sequence of events e1; : : : ; en satis�es p1 but does not satisfy p2; p3; : : : Thisoften allows operational details of matching (like garbage collection of partiallymatched signatures that will never completely match) to be speci�ed by thepattern writer without needing to build such mechanisms into the matchingsolution. This provides exibility and control to the pattern writer in caseswhen built-in behavior is ine�cient or simply does not provide the mechanismto express the special cases for a particular pattern in which partial matchescan never be fully matched.For example, in the example of Clarke-Wilson triples, one would like to specifythat if a process fails to write to a �le (or open a �le), then the partial matchthat matches the spawned process but awaits the write should be destroyedbecause the match will never complete once the process has exited. Rather thanbind such detailed behavior into the matching solution we �nd it conceptuallysimpler for the pattern writer to encode it as part of the pattern itself. Thepattern speci�cation would then look like: match the spawning of a process andits subsequent writing to a �le so long as the process has not exited.We are not particularly concerned here with the theoretical completeness ofthis approach of specifying all conceivable situations in which partial matchescan be fruitfully deleted. Based on an empirical study of intrusion signatureswe view this mechanism to be su�cient. Our inclination between e�ciencyand generality is towards e�ciency. We have attempted to devise constraintsfor a model that can represent and e�ciently match a large proportion of thecommon cases (which is inextricably tied to empiricism), and not to devise ageneral-purpose solution in which every possible condition can be representedand matched.

573.2.3 System and Other ConsiderationsIn addition to the model requirements presented in the previous section, we havefound it useful to place additional constraints on a particular instantiation of themodel [KS95]. These can be viewed as system constraints on the �nal packagedmisuse detector. These constraints attempt to answer the question: if we coulddevise a model of matching that met the requirements of Section 3.2.2, how would westructure a system around it? What would be desirable characteristics of the modeland the system? We believe the following to be some of those desirable characteristics.Dynamic addition and removal of patterns. This is the ability to add and remove pat-terns to be matched as the matching proceeds. This ability serves several usefulpurposes. For example, it enables the short-lived instantiation of specially tai-lored patterns to con�rm or deny evidence in model-based intrusion detection[Section 2.3.5]. Or, it might allow coarse patterns to generate successively morere�ned patterns to con�rm or deny intrusive activity once they are matched.This ability also provides more control to a security o�cer in charge of securingthe system. He can weed out unnecessary or unuseful patterns and add new onesto the system without bringing down the system and re-starting it. There areadded bene�ts of easier testability and the signi�cant capability of embeddingmechanisms for the automated generation of newer, better signatures by one ofseveral techniques including genetic algorithms [Koz92].Incremental Matching. By this we mean that the events in the event stream are madeavailable one at a time and the matcher must indicate all successful matchesafter each given event. In other words, all the events are not available a priorifor preprocessing. This requirement often makes the matching solution compu-tationally di�cult. In addition to incremental matching we have found it usefulfor the matching to be online, i.e. matching is done concurrently with the gener-ation of events. This is because signature context often requires the availabilityof system state information which is usually meaningless in an o�-line solution.

58Prioritization of Patterns. In the case of several patterns it must be possible to givematching preference to some patterns over others. This requirement is one ofproper distribution of limited computing resources. If the matching of eventsagainst patterns proceeds at a rate faster than the event generation rate, pri-oritization may not be necessary. But, in a setting in which the monitoredmachine and the event processing machine are the same, it might be desirableto temporarily disable some patterns so that matching proceeds more rapidlyfor the remaining patterns.All Matches. The matching solution must provide for all matches of all patterns inthe system. From a security perspective, it is often more desirable to know allthe speci�c violations rather than knowing that a violation has occurred, orknowing the �rst violation as soon as it occurs.From the enumeration above we have ignored performance requirements such as ef-�ciency or real-time behavior, low resource overhead, and scalability of the solutionwith respect to the number of patterns to be matched simultaneously. These areimportant requirements but good values of these measures cannot be quanti�ed in-dependent of the speci�cs of the environment in which the detector will run.3.2.4 Further Advantages of a Pattern Matching ApproachThere are several added bene�ts of viewing misuse detection as a pattern matchingsolution. By considering intrusion signatures as patterns, the audit trail as an ab-stracted event stream, and the detector as a pattern matcher, we can cleanly separatethe major components of a generic misuse detector. This enables di�erent solutions tobe substituted for each component without changing the overall engineering structureof the system considerably. The event stream encapsulates the syntactic and datarepresentation di�erences present in various audit trails. Semantic di�erences may bemore di�cult to subsume without changing the signature. Because matching is doneon the information contained in the events, of which the matcher has no information,

59any abstracted event stream will do, for example network packets. This makes thesystem more portable. Furthermore, if the pattern representation is standardized,patterns can be distributed to other sites which may run a di�erent version of a sim-ilar operating system and a di�erent version of the audit trail. Each site need onlywrite a structural description of the audit trail once for all its patterns.A simpli�edmisuse detector can then be an application program that uses a mech-anism to dispatch incoming events to patterns and uses calls to a pattern matchinglibrary to do the matching of those patterns. This means that building misuse detec-tors no longer requires learning specialized tools, techniques, and theories before usingthem as building blocks for a misuse detector. It can be as simple as understandingand using a matching library.Pattern matching has been extensively studied as a discipline. It is amenable toseveral optimizations that can make a system built around it practical and e�cient.For example, the evaluation of context is amenable to compiler optimization tech-niques. It might also be possible to combine several patterns together into a jointpattern with better matching characteristics. The use of pattern invariants allows thepattern writer to encode patterns that do not need to rely on primitives built intothe matching procedure to manage the matching. One example is the ability to cleanup partial matches once it is determined that they will never match. This frees thematching subsystem from having to provide a complete set of such primitives and,in the process, coupling the semantics of pattern matching with the semantics of theprimitives.Conceptually, patterns representing vulnerabilities in our model subsume staticmethods of intrusion detection such as those incorporated in tools such as COPS[FS90] and TIGER [SSH93]. By specifying that a pattern does not match events butinstead satis�es a context when created, all the checks that these tools make can beveri�ed. Thus, we can encode tests that not only verify that the system is initiallyclean but also continues to remain so as the system continues to function.

60This approach is, then, limited only by the expressive power of the patterns andthe computational intractability of matching imposed by their generality. Within theframework of the outlined model, patterns can be designed to perform tasks beyondthe traditionally de�ned domain of misuse detection. We believe that with a welldesigned model for representing patterns, simple anomalies can also be representedand detected in this framework.3.2.5 Disadvantages of a Pattern Matching ApproachGiven a well constructed pattern that represents an intrusion scenario it might notbe too di�cult to match it against the event stream. A di�cult problem, however,is the identi�cation and extraction of the core crucial elements from exploitationdescriptions, such as those described in the bugtraq [Bug] and 8lgm [8lg] mailing lists,and turning them into general descriptions for detecting variations and permutationsof the vulnerabilities. Currently it requires human expertise to do the translationand there is no easy way to automate the process. Abstracting high quality patternsfrom attack scenarios is much like extracting virus signatures from infected �les. Thepatterns should not conict with each other, be general enough to capture variations ofthe same basic attack yet accurately represent the intrusion to reduce false positivesand false negatives, and be simple enough to keep the matching computationallytractable.While this technique only works for vulnerabilities that are known and for whichpatterns have been devised, it is the case that newer vulnerabilities are often di�erentways of exploiting well-known problems in system software. This approach examinesthe trace of a running system for `behaviors' in an attempt to monitor suspicious be-havior. A well written signature can reduce the e�ects of aliasing so that it is possibleto represent the crux of an intrusion that is unchanged by minor rearrangements ofthe exploitation scenario and is insensitive to the path taken to e�ect the intrusion.Signature analysis assumes the integrity of event data. Thus, attacks that involvespoo�ng, which produce the same events (but from an untrusted source) cannot be

61reliably detected. Furthermore, passive methods of security breaches such as wire-tapping cannot be detected at the time of the breach because they do not produce adetectable signature.3.3 SummaryIn this chapter we presented a scheme to represent intrusion patterns based onthe complexity of matching. Because representation of context is fundamental tothe representation of intrusion signatures, our classi�cation assumes it at each levelof categorization. Most of the intrusions we studied can be represented in the �rstthree categories of our classi�cation. These categories serve to group signatures, notvulnerabilities. Di�erent encodings of the same security vulnerability can be madebased on the desired accuracy of detection, resulting in a corresponding tradeo� inthe complexity of detection. We believe this categorization is also applicable to otheroperating systems.We also outlined requirements that must be satis�ed by a pattern matching solu-tion if the monitoring of intrusion signatures is to be done using pattern matching.Di�erent intrusion detection systems may make di�erent tradeo�s among these re-quirements but all systems will have to address all the requirements to some degree.These requirements were empirically derived from a study of commonly occurring in-trusions described by Bishop [Bis83], made public via advisories such as those put outby CERT [CER], and embedded in tools like COPS [FS90]. We also outlined somesystem considerations that might be useful when implementing these requirements ina practical system.The pattern matching approach should be viewed as a technique speci�cally tai-lored for intrusion detection. Thus, the pattern requirements are not intended toprovide a general-purpose audit trail analysis because we are not primarily concernedwith the speci�cation and matching of every conceivable interrelationship amongevents. Instead, we want to provide a mechanism that is simple and e�cient, andpermits the speci�cation of a large percentage of intrusions.

62For e�ective misuse detection, a pattern matching approach sometimes requiresthe use of facilities that are not currently provided by protection mechanisms andaudit trails available on computer systems. Our technique assumes the availabilityof these facilities. For example, we implicitly assume that for proper detection ofintrusions, complex programs with a history of bugs generate a high-level audit trailthat can be used for this purpose.

634. A MODEL INSTANTIATIONIn Section 3.1 we presented a classi�cation hierarchy to categorize intrusion sig-natures based on the structural interrelationship among events used to represent thesignatures. In Section 3.2 we presented the requirements that patterns in all cate-gories of the classi�cation must meet to represent the full range of commonly occurringintrusions. These requirements included the speci�cation of context, actions, and in-variants in intrusion patterns. In this chapter we present a model of matching thatwe have devised for misuse intrusion detection that is a synthesis of the classi�cationhierarchy and the generic pattern requirements. Signatures devised using this modelcan use context, actions, and invariants and span all classes of the hierarchy.The model is based on Colored Petri Nets, described by Jensen [Jen92]. Eachintrusion signature is represented as a Colored Petri net. The notion of one or morestart states and exactly one �nal state in the net are used to de�ne matching in themodel. Context is saved as the colors of a token. Matching by de�nition speci�esthe \follows" semantics. Conditions are speci�ed using guard expressions and actionsare represented using state actions. The theoretical properties of this model arestudied in Chapter 5. We have built a prototype of the model in C++ and tested itwith intrusion signatures derived from real vulnerability data. The structure of theprototype and the simulation results are presented in Chapter 6.4.1 The ModelIn this section we introduce the model informally with an example. In Section 4.3we de�ne the model more rigorously. We have translated the example exploitationused in this section into a pattern literally, but that is only to highlight the various

64features of the model using the fewest examples. Examples of some intrusion signa-tures that we used to test the prototype are given in the appendix. Consider therepresentation of the following attack scenario that was briey explained in Section3.1.2.cp /bin/sh /usr/spool/mail/rootchmod 4755 /usr/spool/mail/roottouch xmail root < xThis attack exploits the vulnerability in early versions of /bin/mail and theweakness in the structure of the mail delivery subsystem. /bin/mail is a local maildelivery program that delivers mail to local mailboxes. It worked in early versions ofUNIX by changing the user id (owner) of the recipient's mailbox �le to the recipient'suser id, but failed to clear any other permission bits on the �le. An attacker couldexploit this behavior by waiting for user root's mailbox to be empty and then copying/bin/sh to root's mailbox �le. This was possible because the system wide maildirectory /usr/spool/mail was writable by everyone. Because the newly createdmailbox �le was owned by the attacker, he could set its setuid bit. In the �nal stepof the exploitation, he would simply mail an empty message to root that /bin/mailwould append to the mailbox �le and change the �le ownership to root. Because/bin/mail does not check or reset any other bits on the mailbox �le the attackerthen had a setuid root shell.A literal representation of this attack is represented graphically in Figure 4.1. Thehorizontal chain of circles (states) and vertical bars (transitions) encode the activitycp /bin/sh /usr/spool/mail/rootchmod 4755 /usr/spool/mail/rootwhile the diagonal chain encodes the activitytouch xThe transition labeled t7 represents a synchronization point at which both chainsmust have matched for the pattern to be matched further. In describing the pattern

65graph we refer to it as a Colored Petri Automaton, or CPA. When referring to circlesin a CPA, we use the notation of \state" over \place" because that is closer to themore familiar �nite state automata terminology.
write

this[PID] != 0 &&
this[OBJ] =

"/usr/spool/mail/root" &&
FILE = this[OBJ]

chmod exec

this[OBJ] = FILE true_name(this[PROG]) =~ ".*mail" &&

 this[ARGS] =~ "\broot\b"

cp /bin/sh /usr/spool/mail/root
chmod 4755
/usr/spool/mail/root
touch x
mail root < x
/usr/spool/mail/root

s1 t1 t2s2 s3

sta
t

utime

s4

t4

s5

t5

s6

t7 s7

F
 = tru

e_n
a
m

e(th
is[O

B
J])

Figure 4.1 Representing Synchronization of EventsThe circles in Figure 4.1 represent system states and the thick bars the transitions.s1 and s4 are the initial states of the CPA, and s7 is its �nal state. A CPA requiresthe speci�cation of � 1 initial states and exactly one �nal state. A start state musthave no arcs incident on it, and a �nal state must have no arcs emanating from it.At the start of a match, a token is placed in each initial state.A CPA may have a set of variables associated with it. Assignment to thesevariables is equivalent to their uni�cation. This means that variables can be assigneda unique value only once. Attempting to assign di�erent values to a variable causes theassignment to fail. It also means that variable assignment need not only be speci�edas var = val, but may also be speci�ed as val = var. Assignment and testing forequality between variables or between variables and values is the same operation.This particular semantics of CPA variables is useful in optimizing the evaluation of

66guard expressions [Section 5.3]. It also permits precomputing the values of variablesat certain nodes of the CPA because of their assignment at earlier occurring nodes ofthe CPA.Each token maintains its own local copy of these variables because each token canmake its own variable \bindings" as it ows from a start state to the �nal state. InCP-Net terminology, each token is colored, and its color can be thought of as an n-tuple of strings, where the pattern has n variables. In Figure 4.1, variables FILE andF are CPA variables. We use CPA variables synonymously with token local variablesbecause the model uses token colors to represent CPA variables.A CPA also contains a set of directed arcs that connect states to transitions andvice-versa. Each transition is associated with an event type, called its label, whichmust occur in the input event stream before the transition will �re. In Figure 4.1,transition t1 is labeled with the eventwrite, t4 is labeled with the event stat and so on.The labels correspond directly to the event types against which the CPA is matched.The model provides for a special label CLK that corresponds to timer events. Timerevents are useful in specifying time bounds for matching or for specifying periodicallyoccurring activity. Transitions may also be labeled with � to indicate that tokens mayow across the transition without being triggered by an event. An � transition cannotchange the variable binding of tokens that cross it. Nondeterminism can be speci�edby labeling more than one outgoing transition of a state with the same label, or with� events. An event can �re multiple transitions labeled with that event. This permitsmatching patterns with the AND semantics. Precluding this concurrent behavior wouldspecify pattern matching with partial order semantics. This is discussed further inSection 4.2.3. A transition is said to be enabled if each of its input states contain atleast one token.Optional expressions or guards can be placed at transitions. These expressionspermit assignment to the token local variables that ow past the transition. Examplesof these expressions include assignment of event data �elds to token local variables;evaluation of conditions involving =, <, or >; and calling built-in and user de�ned

67functions. Guards are boolean expressions that evaluate to true or false. this isa special operator that is instantiated to the most recent event. Event data canbe accessed through the this operator. Expressions involving this use the arrayindexing operator [] to refer to data from the current event. In Figure 4.1, transitiont2, which is labeled by the event chmod, accesses the OBJ �eld of the CHMOD event,which returns the pathname of the object being chmoded. Guards are evaluated inthe context of the event which matches the transition label and the set of consistenttokens that enable the transition. Tokens are consistent when their variable bindingsunify. The set of tokens are uni�ed before being used in the guard expression forevaluation.For example, for transition t7 to �re, there must be at least one token in each ofstates s3 and s6; the enabling pair of tokens (one from s3, the other from s6) musthave consistently bound (uni�able) variables; and the uni�ed token and the event oftype exec together must evaluate the guard at t7 to true. A transition �res if itis enabled and an event of the same type as its label occurs that satis�es the guardat the transition. When a transition �res, the set of consistent tokens are uni�edto one token, and copies of this uni�ed token are placed in each output state of thetransition. A state s is an output state of transition t if there is a directed arc fromt to s. For example, in Figure 4.1, the only output state of t2 is s3.The process of uni�cation resolves conicts in bindings (i.e., ensures that tokenbindings, if present, are identical) between tokens to be uni�ed and stores a completedescription of the path that each token traversed in getting to the transition. Thus,a token not only represents binding, but also the composite path that it encounteredon its path to the current state.The event sequence matched by a CPA is the sequence of events (or other ordering)encountered at each transition by the token that has reached the �nal state.The states of a CPA can also be associated with actions. These actions areperformed for each token that reaches the state. Actions allow the speci�cation ofactivity to be made before the entire pattern is matched. This allows the encoding of

68countermeasures when a partial signature is recognized. Actions can also be used toinvoke built-in primitives, for example the recursive invocation of the same pattern,or resetting the pattern.Invariants, or conjuncted negative speci�cations, are speci�ed using their owngraphs. These graphs are similar to pattern graphs and are matched in the sameway. For each token that reaches the successor state of the CPA start state, its copyis placed in the start state of the invariant graph. A match of the invariant graphnulli�es the pattern match. This is elaborated further in Section 4.2.1.The model has a built-in operation RESTART. When executed, it removes all tokensfrom the CPA and its invariants and reinitializes the CPA by placing new tokens inits start states. This operation is useful when a pattern match collects data for aperiod of time, at the end of which matching is reinitiated.4.2 An Example SimulationAs another example, consider the pattern shown in Figure 4.2.
a b c

s1 t1 t2s2 s3 t7 s7

s4

t4

s5

a

Figure 4.2 Simulation of a Pattern That Does Not Use Guard Expressions orToken Local Variables

69Assume that we want to match the pattern against the event sequence abac.The steps in the non-deterministic match of the CPA against the event sequence aredescribed in Table 4.1. Non-deterministic matching is used in the sense of computingusing an oracle, similar to that used in matching non-deterministic �nite automataas described by Aho, Hopcroft and Ullman [AHU74].Step Input Token Con�guration Comment1: :abac fs1; s4g2: a:bac fs2; s4g The CPA non-deterministically choosesto move token s1.3: ab:ac fs3; s4g4: aba:c fs3; s5g5: abac: fs7g The two tokens are merged to one.From the token in s7 we can recon-struct the path of each individual tokenfrom the initial marking.Table 4.1 Non-deterministic Matching of a CPAMerging of tokens s3 and s5 occurs in step four and this requires conict resolu-tion. Because tokens associated with this pattern do not have variables, tokens unifytrivially. This example illustrates how the CPA non-deterministically matches thepattern. In non-deterministic matching, tokens are removed from one or more statesand placed in others, and the matching procedure always makes the right choice inthe selection of tokens and transitions to exercise.In a deterministic, exhaustive search on the other hand, tokens are never movedfrom one state to another, they are instead duplicated and copies moved to otherstates. Because tokens are colored, i.e., they have data bindings associated with them,each token is in a sense unique. Therefore, tokens residing in the same state cannot bemerged. Furthermore, it is not permissible to lose the binding of a token by moving itacross a transition, instead the previous binding must be preserved for a later match,

70and a duplicate created and placed in the output state of the transition. A determin-istic simulation of the same pattern is shown in Table deterministic-matching-of-cpa.The superscripts associated with states denote the number of tokens in the state. Thesimulation procedure is described in Section 6.4.2.Step Input Consumed Token Con�guration1: :abac fs1; s4g2: a:bac fs1; s2; s4; s5g3: ab:ac fs1; s2; s3; s4; s5g4: aba:c fs1; s22; s3; s4; s52g5: abac: fs1; s22; s3; s4; s52; s7gTable 4.2 Deterministic Matching of a CPA4.2.1 The Semantics of InvariantsAn invariant graph is similar to an ordinary pattern graph. If P denotes thepattern and I its invariant, then a negative invariant graph represents the conditionP ^ I. That is, if P is matched by a sequence of events e1; : : : ; en (with the followssemantics), then e1; : : : ; en does not match the invariant graph. Negative invariantsare usually used to specify when it is no longer useful to continue searching for amatch. This way tokens can be destroyed to prevent build up of unnecessary tokensin a pattern graph. The rule for token destruction is:When any token in I reaches the �nal state, it is destroyed along with thetokens in the pattern and the invariant that have the same root token.

71Two tokens have the same root token if both are the result of duplicating tokens thatthemselves have the same root token. A token is its own root token. See the appendixfor implementation details on how this is done.4.2.2 CPA Variable SemanticsAs mentioned earlier, token local variables cannot change values once initialized.Global variables that need to be shared across CPAs must be provided by the externalenvironment. These variables can be manipulated by either guard expressions orpattern actions. Concurrency control of accessing shared variables must be handledexternal to the model.4.2.3 Partial Order or AND Matching SemanticsIn choosing partial order semantics for matching a CPA against an event sequence,any event is restricted to exercise at most one transition. In choosing to match withthe AND semantics, all transitions labeled with that event must be exercised.When a CPA has at most one transition labeled with any given event, matchingwith either semantics yields the same matches. In our experience, intrusion patternscan either be naturally represented as AND patterns, or can be judiciously encodedin this manner. The simulation procedure for matching with the AND semantics isa straightforward extension of the simulation procedure for non-deterministic �nitestate machines. Thus, our choice of matching semantics for the CPA is that of ANDsemantics.The basic CPA model of matching can be extended to match with partial ordersemantics if that is needed for intrusion signatures.4.3 Formal De�nition of a CPAThis section presents a formal description of Colored Petri automata that wasinformally introduced in the previous section. We de�ne its operational semantics

72in terms of updates to its internal state as it performs the match against the eventstream.Let � be the �nite set of event types over which matching is performed. Theevent stream consists of a sequence of zero or more events. Each event type � 2 �has a �xed set of attributes associated with it [cf. Section 1.3]. Let these be labeleda�1 : : : a�l where l depends on �. The set of attributes may be di�erent for each � 2 �.Each instance of an event of type � in the event stream may have di�erent values forits attributes. By �� we denote a sequence of zero or more events. If e denotes anevent, then by Label(e) we denote the type of e.A Colored Petri automaton M that matches over an event sequence in �� is the11-tuple (S; T; V;B;E;G; I;O; Si; F;N) where:� S is the set of states of M .� T is the set of transitions of M . The set of states and transitions are disjoint,i.e., S \ T = �.� V is the set of CPA variables, also referred to as token local variables. Thesevariables de�ne the color of tokens associated with M .� B is the global state that can be manipulated by M . The global state is a setof (variable, value) pair bindings.� E is the labeling function E : T ! �[f�g[fCLKg that labels each transitionwith an event type.� G is the labeling function G : T ! X�;V that maps each transition to a guardexpression. X�;V is the set of valid boolean expressions that only use the dataattributes associated with the event �, the CPA variables of M , and the globalstate B.� I is the set of directed edges that connect states to transitions, i.e., I : S ! 2T .2T denotes the power set of T , i.e., the set of all subsets of T .

73� O is the set of directed edges that connect transitions to states, i.e.,O : T ! 2S .2S denotes the power set of S, i.e., the set of all subsets of S.� Si 2 S is the set of start states of M . No start state has an incoming edge, i.e.,8s 2 Si; I(s) = �.� F 2 S is the �nal state ofM . The �nal state has no outgoing arc, i.e.,O(F) = �.� N is the invariant associated with M . N is a CPA graph similar to M exceptthat (1) N does not have an invariant associated with it (2) there is exactly onestart state in N and (3) all transitions in N have exactly one input state i.e.,synchronization (direct speci�cation of AND) is not permitted in invariants. Nis represented by the 10-tuple (SN , TN , V , B, EN , GN , IN , ON , SNs, FN).N shares the same variable space V and the global state B as M .A token k associated with M (and N) is de�ned as the bindings over the set of CPAvariables V of M . For each variable v 2 V associated with a token, v either has avalue, or is uninstantiated, denoted here by the value �. The vth variable binding oftoken k is denoted as kv. Two or more tokens k1; : : : ; kn are said to unify i�8v 2 V; �8np=1 �8nq=1 �(kp)v = (kq)v���A token variable value � is equal to any value. The bindings of the uni�ed token,denoted here as Unify(k1; : : : ; kn) that is the result of unifying the tokens k1; : : : ; knis Unify(k1; : : : ; kn)v = 8><>: lv if 9 a token l j lv 6= �� otherwise ; v 2 VWe denote by TE the bag (multiset) of all possible token values associated with M .That is, each element of TE is a token with an arbitrary binding for its variable setV .A marking � is the function � : S [SN ! TE that assigns tokens to the states ofthe CPA M and its invariant N . The initial marking of M consists of exactly one

74token with no bindings, i.e., 8v 2 V; kv = �, in each of its start states s 2 Si and notokens in any other state.By the function In(t); t 2 T [TN , we denote the set of states s 2 S [SN j 9 adirected arc from s to t. Similarly, we use the function Out(t); t 2 T [TN to denotethe set of states s 2 S [SN j 9 a directed arc from t to s. The function NonZero(s)is true i� the state s 2 S [SN has no tokens resident in it. The function Zero(s)is the complement of the function NonZero. The function State(k) returns the states 2 S [SN in which the token k is resident.The transition function � : (�; e) ! �0 takes a marking and an input event, andreturns a new marking that represents the new state of M after it has been exercisedwith e. � may �re a transition t 2 T [TN if:� E(t) = Label(e), and� t is enabled, i.e., there is at least one token in every input state of t, i.e.,8s 2 In(t); NonZero(s), and� If x = jIn(t)j, then 9 a set of tokens k1 : : : kx j(State(k1) 6= � � � 6= State(kx)) ^ �8xp=1State(kp) 2 In(t)� ^ k1 : : : kx unifyLet k = Unify(k1; : : : ; kn).� The uni�ed token k satis�es the guard at t i.e.,G(t) evaluates true in the contextof e, B, and k. By this we mean that all the CPA variable references in G(t)are found in k, the event data are found in e and all the other references arefound in B.Note that use of the term \may �re" implies non-determinism. That is, the satisfac-tion of the conditions listed above are necessary, but not su�cient. The de�nitionalso implies concurrency, i.e., any subset of transitions that satisfy these conditionsmay �re, or that a transition may �re more than once.Upon �ring t, the tokens k1 : : : kx are removed from their respective states andthe uni�ed token k is placed in all the output states of t, i.e., 8s 2 Out(t) (when an

75invariant transition �res, tokens do not unify because In(t) = 1 8t 2 TN .) Thesetokens may further transit non-deterministically across � labeled transitions. For thespecial case when any input state of t 2 T is a start state ofM , i.e., 9p 2 In(t) j p 2 Si,k is duplicated and its copy is placed in the start state of the invariant, i.e., in SNs.The transition function � is de�ned for a sequence of events as the successivecompositions of �. That is,�(�; e1 : : : en) = �(�0; e2 : : : en); �0 = �(�; e1)A sequence of events � = e1; : : : ; en is recognized by M i� NonZero(F) in themarking �(�) but Zero(NF) in all possible �(�). This realizes the conjuncted nega-tion semantics of invariants.4.4 Realizing the Intrusion Classi�cation in this ModelThis section describes how the abstract classi�cation scheme presented in Section3.1 �ts the model of matching presented in this chapter. The category of RE patternsin the classi�cation can be split further in our matching model. Other categoriesmore or less directly correspond to particular structures in the CPA model. Becausethe CPA model permits side-e�ect operations through actions, the catch-all categoryof \other" patterns can easily be simulated through manipulations of global state viaactions. The precise de�nition of a high-level event that was unspeci�ed in Section3.1 is de�ned here.1. Existence. This is de�ned in our model by specifying a guard expression to beevaluated when the pattern is instantiated. Instantiating a pattern is imple-mentation-dependent. Our implementation technique is presented in Chapter6.2. Sequence. The de�nition of a \thing" [cf. Section 3.1.2] is modeled in graphicalterms as a DAG with two dominating states, one with no input arcs (referredto as the input dominating state) and one without any output arcs (referred to

76as the output dominating state). Furthermore, the maximum number of inputand output states of any transition in the \thing," including � transitions, isconstrained to one.A sequence then is a concatenation of \things" where the input dominating stateof all high-level events except the �rst is the same as the output dominatingstate of the previous high-level event.For example, to specify the high-level action of writing to a �le, one can lookfor all possible ways of opening a �le with the write ag speci�ed to the opensystem call. The example in the sequence pattern of Figure 4.3 speci�es theconcatenation of two \things," a read followed by a write.
R

W

WT

WC

WTC

R

W

WT

WC

WTC

+ =Figure 4.3 A Sequence Pattern of Read Followed by WriteA sequence is a concatenation of \things" with the output dominating state ofone thing being the input dominating state of the next thing.Because the amount of duplication of tokens in the pattern on exercising eachevent is at most two, the maximum number of tokens in the pattern after mevents is 2m. The number of tokens in the pattern is a measure of the upperbound time complexity of exercising the pattern with an event. Thus, the totaltime to exercise the pattern with m events is1 + 21 + 22 + � � � + 2m�1 = O(2m)

77RE Patterns. This category can be split further in our matching model into boundedand unbounded output nets.Bounded Output Nets. These are general nets (need not be DAGS) withoutAND synchronization in which the maximum number of output states ofany transition, including � transitions, is bounded by a constant c, and thenumber of input states of all transitions is one. With these restrictions,the amount of duplication of tokens in the pattern is bounded by c for anyevent. Thus the maximum number of tokens in the pattern with n statesafter observing m events is cm and the total time to exercise a boundedoutput net with m events is O(cm).An example of this pattern is the result of trying to represent unauthorizedtransitions to root. This detects cases in which the user id of a processchanges without an intervening authorized method (for example, in UNIX,a call to setuid) of changing the user id. The kernel long divide emulationcode in some Sun operating systems that failed to check the address of theremainder may be detected using such a signature [CER, CA-92:15]. Asimplied signature to handle this case is shown in Figure 4.4. When aprocess is started (the transition labeled with exec), its user id is stored inthe pattern local variable UID. The signature remains unmatched as longas the process does not change its user id (the output state of the transitionlabeled exec). If the process changes its user id without calling setuid,setgid, or exec, the pattern is matched. If the process calls an authorizedway of changing its user id, the invariant triggers the destruction of thepartial matches.

78
exec
[uid]

!(setid|exec)
[userid != uid]

!(setid|exec) [userid = uid]

setid

PATTERN

INVARIANTFigure 4.4 A Simli�ed Pattern to Detect Unauthorized Transitions to RootUnbounded Output Nets. These are general nets without any constant boundson the number of input or output states of a transition. Thus, the numberof output states of a transition can be as large as n, the number of states inthe pattern. The maximumnumber of tokens in the pattern after observingm events is no longer independent of n. Matching is with AND semantics,i.e. concurrency of exercising more than one transition labeled with thesame event type is permitted.Another category similar to unbounded output nets is that of partial orderpatterns. In these nets, matching is de�ned with partial order semantics. Partialorder patterns overlap with AND patterns without subsuming them. ANDpatterns and partial order patterns are the same if no two transitions in a patternare labeled with the same event. It is because of this direct correspondence thatthis category is mentioned here.Other Patterns. The CPA model of representing and matching patterns can be usedto model the moves of a Turing machine. A Turing machine has a �nite controland an in�nite tape on which symbols can be erased and written. A CPA caneasily model the �nite state of a Turing machine using its own graph, while

79the CPA global state that can be manipulated through actions can serve thefunction of the in�nite tape. Each move of the Turing machine corresponds tothe processing of an input event by the CPA. Thus, the CPA models a Turingmachine by matching an event sequence of in�nite length while the tape contents(both initial and intermediate) are manipulated through global state changes.By the Church-Turing hypothesis [HU79], the CPA model can compute anycomputable function.4.5 Comparison with Other Models of MatchingIn comparing our model with other models of matching such as regular expres-sions, context-free grammars, and attribute grammars, we assume that these modelsare meant to be used as intuitively and directly as possible in representing intru-sion signatures. For example, while attribute grammars are powerful, using them torecognize a set of sentences whose underlying structure does not lend itself to beingrepresented as a context free grammar is not very intuitive and, therefore, not veryuseful to the human responsible for writing the intrusion signatures.Regular Expressions. Traditional matching with regular expressions is fast and wellunderstood. Approximate pattern matching involving regular expressions ispolynomial in the size of its input. However, regular expressions can only rep-resent extremely simple attack scenarios not involving context and that is theirbiggest limitation.Deterministic Context-Free Grammars. By themselves they are of limited use be-cause they cannot handle context. There is no easy way to extend them tomatch with the \follows" semantics. Deterministic grammars such as LR andLALR are subsumed under their corresponding extensions that provide gram-mar attributes. The discussion and comparison of the CPA model of matchingwith attribute grammars, which is discussed below, also applies to deterministiccontext-free grammars.

80Attribute Grammars provide a powerful representation mechanism but, to be usefulto humans writing intrusion signatures, the underlying signature speci�cationneeds to be context-free. As with context-free grammars, there is no easy wayto extend them to match with the \follows" semantics.Other technical di�culties in directly providing our notion of \context" to at-tribute grammars are:� It has not been shown in the literature how partial matches can be ef-�ciently abandoned if the context cannot be satis�ed in the traditionalmodel of computing provided in attribute grammars. That is, even thoughit may be possible to represent a pattern to be matched as a correspondingattribute grammar with a special attribute whose value indicates a success-ful match, it is not clear how to discard partial matches when the valueof the special attribute indicates that a successful match is not possible.The straightforward technique of advancing the input by one and retryingthe match is too ine�cient because of the maintenance of a stack to matchcontext-free grammars.� It may not be possible to easily evaluate \context" expressions while gen-erating the parse tree for the grammar. For example, suppose thatA! BCD; P ! QRS;are two productions in the grammar. Let B have an attribute x and Qhave an attribute y. Assume that the context that must be satis�ed forvalid sentential forms speci�es that x = y. Assume further, for simplicity,that P is reduced before A in all valid sentences and that all valid sentencesrequire both P and A.When the pushdown automaton that corresponds to the grammar reducesB, it should verify that x = y. If x 6= y, the automaton should discardthe match. But the location of P or Q as an o�set from the top of the

81stack is variable at the time that B is reduced. Furthermore, P might havebeen reduced further and may require that y be propagated upwards in theparse tree. Building the entire parse tree and then verifying the contextualexpressions is contrary to the goal of discarding partial matches as soon asit is discovered that they will not lead to successful matches.Thus, using attribute grammars to represent and match intrusion sig-natures complicates the matching procedure considerably. Fixing theseproblems would change the traditional model of computing with attributegrammars substantially.4.6 SummaryThis chapter introduced our model of matching which is based on Colored Petrinets. Our model is simple and provides for a direct graphical representation of pat-terns. Externally, a language can be designed to represent signatures in a moreprogrammer-natural framework, and programs in the language compiled to this in-ternal representation for matching. The model is designed to be as limited in itsexpressive power as possible while still satisfying the requirements presented in Sec-tion 3.2 and representing the intrusion classi�cation of Section 3.1. For example,embedded negation of the form p1p2p3 is not directly representable in the model butwe have not needed to use this feature to represent intrusion patterns that we havestudied.

825. THEORETICAL PROPERTIES OF THE MATCHING MODELIn this chapter we present some important theoretical properties of the modelshown in the previous chapter. Establishing theoretical bounds on matching in thismodel is important because it lends credence to the procedure of simulating nondeter-ministic CPAs, which is one of exhaustive search. Section 5.1 highlights this result byshowing that the time complexity of matching in which event data can be remembered(for example, in token local variables) for later matching is NP Hard. This meansthat new algorithms that will reduce the matching time for this problem are unlikelyto be found. Section 5.3 shows how some compiler optimization techniques can beapplied to improve pattern matching in our model.5.1 Complexity of MatchingBy uni�cation we mean that patterns can specify variables that can match anysingle event and remember the event they match. These variables, once instantiated,can be used later in the pattern to force a match against events occurring in theinput stream. For example, one can specify the pattern abXcdX which means eventa, followed by event b, followed by any event, which is stored and made availablethrough the variable X, followed by c, d and the same event that matched the �rstX.Property 1: Pattern Matching with Uni�cation is NP Complete.We show that the problem is NP Complete by reducing the problem of vertex-cover in arbitrary graphs to the problem of pattern matching with uni�cation. Thisproof is a recast of the proof presented by Aho in [Aho90, Section 6].

83The vertex-cover problem for an arbitrary graph G and an integer k is to determineif there is a subset of vertices in G of cardinality at most k such that every edge in Gis incident on at least one vertex in the selected subset.We will construct an event stream E and a pattern P from G in polynomial timesuch that P matches E i� G has a vertex cover of size � k. Let # be a distinct markersymbol. The event stream E is a concatenation of two parts (1) A listing of all thevertices in G and (2) A listing of all the edges in G. The purpose of (1) is to forcethe pattern to initially make a choice of the nodes that comprise the vertex-cover.The purpose of (2) is to verify that the vertices indeed form a vertex-cover. If thevertices of G are labeled n1 : : : nf , i.e., the number of vertices in G is f , then (1) isthe string n1 : : : nf# repeated k times. The pattern V1# : : : Vk#, where V1; : : : ; Vk arevariables that are instantiated to the events they match against, will select k nodesin G, perhaps not all distinct when matched against this event streamTo verify that the set of vertices selected in (1) constitute a vertex-cover, we takeeach edge in G and list it as a pair of vertices, separated by #, in no particular order.For all edge descriptions ninj#, at least one of ni; nj must be 2 fVi : : : Vkg. For anyparticular edge, this can be written as the pattern (Vij : : : jVk#). To verify that eachedge in G has at least one endpoint in the vertex-cover, the pattern is simply repeatedm times, where m is the number of edges in G.Concatenation of (1) and (2) makes the pattern P , of sizeO(km), to be V1# : : : Vk#(Vij : : : jVk#)m while the event stream E, of size O(kf + m), against which P ismatched is (n1 : : : nf#)k(8fi=18fj=1ni nj#), ni nj is an edge in G. The correspondencebetween the pattern and the event stream is shown below. The # symbols in thepattern and the event stream match one-to-one.1 � � � k 1 � � � mPattern V1# � � � Vk# (Vij : : : jVk#) � � � (Vij : : : jVk#)Events n1 : : : nf# � � � n1 : : : nf# ninj# � � � ninj#Because the vertex-cover problem can be represented as a CPA pattern, it is unlikelythat any CPA matching algorithm can solve it in less than exponential time. This

84establishes a lower bound for any matching algorithm for CPAs. This means thatthe worst case performance of any matching algorithm is no better than that of thebrute force search of trying to match a CPA against every subsequence (possiblynon-contiguous) of input.Property 2: Remembering event associated data is as at least as di�cult as remem-bering event types. That is, pattern matching with context evaluation is NP Hard.We show this result by reducing the problem of matching with uni�cation (prop-erty 1, denoted here by MU) to the problem of matching with context evaluation(denoted here by MC) in polynomial time. If the pattern in MU is matched over theinput event set e1; : : : ; en, its corresponding pattern in MC is matched over the singleinput event emc. The event emc has one data element, d, whose value ranges over theset of integers I. An event ex in MU corresponds to the event emc in MC with thedata value d = x.For all uses of an ununi�ed variableX in MU that matches the event ex, rememberthe data value associated with emc in MC. Let the remembered value be denoted byd0. This data value associated with emc should be x. For all bound uses of X, usethe data value associated with emc to force the exact match in MC. That is, matchemc j emc:d = d0. This transformation establishes a direct correspondence betweena problem in MU and a problem in MC. A pattern in MU can be transformed to apattern in MC in time linear in the size of the pattern. Because MU is NP Complete,MC is NP Hard.A consequence of these results is that there are unlikely to exist algorithms thatwill solve the general problem of matching with uni�cation or context evaluation fasterthan exponential time in the worst case, which is the time required to exhaustivelytry to match the pattern in every possible way against the input. In some specialcases of the structure of the patterns and the guard expressions matching can beimproved. We now investigate these constraints.

855.2 Some Engineering Solutions that Improve MatchingObservation: An exhaustive search may be avoided when matching, if some or all theguards in the pattern are monotone.Let x1 be a variable that takes on values over the lattice (L1;�L1). Let thevariables x2; : : : ; xn be similarly de�ned over the lattices L2; : : : ; Ln respectively. Lete(x1; : : : ; xn) be a function of the n variables x1; : : : ; xn whose values range over thelattice L. e is monotonic if e is either non-decreasing or non-increasing with respectto �L as the values of any one or more xi is monotonically increased or decreasedwith respect to �Li. We refer to a data �eld as being monotonic if its observed valueis non-decreasing or non-increasing with respect to to its domain lattice. Logicalexpressions in a programming language sense that evaluate to true or false arede�ned to be monotonic over the lattice false � true but that choice is arbitrary.As an example that illustrates this observation, consider Figure 5.1. Withoutcontext, the pattern represents the condition (a ^ ce)fbd. The transition � synchro-nizes the subpatterns a and ce which must both occur before the pattern is matchedfurther. Consider the following guards placed at the following pattern transitions:At �: T1 = this[time]The successful evaluation of this guard stores the time at which � occurred in thepattern variable T1.At �: T2 = this[time] && T2� T1 � 5The successful evaluation of this guard stores the time at which � occurred in thepattern variable T2 and speci�es that � should occur within 5 units of time of theoccurrence of �.In the �gure, states are numbered, while edges are labeled with alphabets.

86
8

5

6

1

7

10

11

init states=> other states=>

final state

α

β

γ

t3

t2

T1 = this[TIME]

T2 = this[TIME] && T2 - T1 ≤ 5

t1

a

e

c

d

b

fFigure 5.1 A Pattern with Monotonic Guard ExpressionsDuring matching of this graph, consider that there is a token t1 in state 10,duplicated to t2 in state 8 and awaiting merging with t3 in state 1 before transitingto state 7. Assume that the transition � can never �re for the combination of tokensft2; t3g because the guard T2�T1 � 5 cannot be satis�ed for this pair. This indicatesthat t1 need not be duplicated any further, because any further duplication will onlyresult in a larger value of T2, resulting in the continued failure of the guard T2 �T1 � 5. Finding a match of the pattern does not require exhaustive search becauseduplication of t1 can be avoided. This conclusion can be made because the timestamps of successive events are non-decreasing and the boolean expression e(x) =a+x � b is monotonic in the sense that if e(x) is false for any x = l then e(x) is false8x � l. This observation is not applicable for non monotonic data �elds.This observation can be generalized as property 3:Property 3: During matching, whenever a monotonic data �eld d is de�ned at states for token t, t may be destroyed if there is a node p dominating the �nal state f onany path from s to f such that the monotonic expression involving d at p cannot besatis�ed.

87For example, consider the pattern shown graphically in Figure 5.2
p

s

f

i1

i2
i3

i4

path of tFigure 5.2 A General Pattern with Monotonic Guard Expressionsin which i1; i2; i3; i4 are initial states, f is the �nal state, p dominates f and thedarkened path is the path of token t as it ows to f . The monotonic data �eld d (ofthe audit record) is bound to a pattern variable at state s. Because p dominates s,token t must pass through p before it reaches f . However, before reaching p, t mightmerge with other tokens at intermediate transitions. At each step of the movementof t towards p, copies of token t (and copies of copies etc.) are being moved to furtherstates rather than t itself. If the monotonic condition involving d cannot be satis�edfor the copy of t �rst reaching p, then the condition cannot be satis�ed for any of itscopies that occupy states in the path between s and p, including t itself (at state s)because of the monotonicity of the expression involving d. Future combinations ofthe set of tokens that resulted in t may be prohibited, because they will yield a non-increasing or non-decreasing value of d, and depending on the type of monotonicityof the expression at p, may continue to result in its failure.This observation can be easily generalized to multiple monotonic �elds and mono-tonic expressions involving only these �elds.

88Property 4: When any match of the pattern against the input will su�ce, tokens canbe moved instead of duplicated from a state s if:� The only out transition of s is t and� The only in state of t is s and� t does not involve uni�cation or make additional bindings to token variables.Because of these conditions, no pattern variable associated with a token changeswhen it ows past t. Therefore, duplications do not alter its bindings. The resultof expressions evaluated at later transitions are also not a�ected. Thus, becauseduplicated tokens traverse the same path, no new solutions are discovered.It is not permissible to move tokens from states that have more than one outgoingtransition because moving them involves making a choice of the transition over whichthey will ow. Thus, if the token is moved across the wrong transition it will beunavailable to match further events from its original state and one of them may bethe correct choice.5.3 Common Subexpression Elimination in GuardsIn this section we describe how we can improve the evaluation of guard expres-sions by exploiting the commonality in guard subexpressions across all transitionslabeled with a particular type. The approach is to evaluate constant subexpressionsinvolving event data only once and using these values when they are referenced again.However, because guard expressions can involve short-circuited expressions that can-not be compiled into a basic block [ASU86] we have modi�ed the traditional notionof common subexpression elimination to work across basic blocks by using a virtualmachine that understands the semantics of operations used in guard expressions. Inparticular, the virtual machine understands which operations cause side e�ects andwhich do not.

89Consider, as an example, the following attack scenarios (see Figures 5.3 and 5.4)which can be encoded as two separate patterns to be matched simultaneously:
link1

symlink1

exec unlink

symlink2

link2

CREATE AN ALIAS FOR A
FILE

EXECUTE A
SETUID SHELL
SCRIPT BY
INVOKING THE
ALIAS

CHANGE THE ALIAS TO POINT
TO ANOTHER FILEFigure 5.3 A Timing Attack Involving Setid Shell Scripts1. a. ln setuid_shell_script -ib. -i2. a. ln setuid_shell_script FOOb. FOO &c. rm FOO (200ms <= T.c - T.b <= 1s)d. ln your_favorite_shell_script FOO (T.d - T.b <= 1s)

link

symlink

exec

MAKING AN INDIRECT
REFERENCE TO A SETUID
SHELL SCRIPT THAT MAY
APPEAR TO IT AS A VALID
ARGUMENT

INVOKING THE
PROGRAM
THROUGH THE
ARGUMENTFigure 5.4 Exploiting Setid Shell Scripts

90There is considerable similarity between the sub-signatures 1a and 2a. For anyevent of type LINK, once one of them is evaluated, the other may not need to beevaluated completely from the beginning. Consider the following decomposition of1a and 2a.5.3.1 Compilation of 1aThe LINK event provides information about the pathname of the existing �le towhich the link is being formed as well as the pathname of the newly created link. Theguard at 1a ensures that the pathname of the newly created link (stored in FILE2)begins with the character `-' and that the existing �le to which the link is made (storedin FILE1) is a setuid shell script �le, i.e. the �le has its setuid bit set, is executableby group or other and the �rst two characters of the �le start with \#!". The guardalso tests if the link is being formed to a �le that is not owned by the process formingthe link. Otherwise there is little advantage in exploiting this vulnerability. This ischecked by testing U (stores the EUID of the process issuing the link command) andT4 (stores the owner of the �le to which the link is being formed) for inequality. Theguard expression being compiled is:FILE1 = this[SRC FILE] && FILE2 = this[DEST FILE] &&SHELL SCRIPT(FILE1) = 1 && OWNER(FILE1) != this[EUID] &&basename(FILE2) = "-*" &&(FPERM(FILE1) & XGRP = 1 || FPERM(FILE1) & XOTH = 1)

911. THIS LINK All references to the current event are madevia THIS.2. TRANSITION 4 This transition is numbered 4 among all thetransitions.3. T11 THIS[SRC FILE]1 Indexing may be considered a primitive,polymorphic operation.4. FILE11 T11 Global variables are assigned only throughtemporaries. FILE1 and FILE2 are variablesglobal to the pattern.5. T22 THIS[DEST FILE]26. FILE22 T22 All temporary variables are namedT<number>.7. T33 THIS[EUID]38. U3 T33 U is also global to the pattern.9. T44 OWNER(FILE11)4 Owner may be considered a built-in functionthat returns the owner of a �le.10. IFEQ T4, U, EXIT If T4 matches with U, jump to stmt labeledEXIT.11. T55 BASENAME(FILE21)5 Basename may be considered as a built-infunction that gives the �lename portion of afull path name.12. IFM T5, "-*", EXIT If T5 matches \-*" then jump to stmt la-beled EXIT. The regular expression used hereis just illustrative.13. T66 SHELL SCRIPT(FILE11)6 May be regarded as a built-in function totest if a �le is a shell script.14. IFEQ T6, 0, EXIT If T6 is 0, jump to stmt labeled EXIT.15. T77 FPERM(FILE11)7 Built in function giving the permissions of a�le.16. T88 AND T77, XGRP XGRP is a constant used to determine if a�le is group executable.17. IFEQ T88, 0, L118. RES 1 Signals a successful evaluation of the guard.19. RETURN Return from this guard.20. L1:21. T99 AND T77, XOTH XOTH is a constant used to determine if a�le is executable by others.22. IFEQ T99, 0, L223. RES 124. RETURN25. EXIT: L2:26. RES 0 Signals an unsuccessful evaluation of theguard.27. RETURN

92The functions owner(), name(), shell script() may be considered mathemat-ical functions in the sense that they return the same value for the same arguments.This assumption is made to illustrate better the common subexpression mechanism.owner(), for example, may not strictly be constant in that sense.5.3.2 Compilation of 2aThe guard to be compiled is:FILE1 = this[SRC FILE] && FILE2 = this[DEST FILE] &&SHELL SCRIPT(FILE1) = 1 &&(FPERM(FILE1) & XGRP = 1 || FPERM(FILE1) & XOTH = 1)28. THIS LINK29. TRANSITION 7 This transition is numbered 7 among allthe transitions.30. T1010 THIS[SRC FILE]10 Temporary variable numbers are notreset.31. FILE110 T101032. T1111 THIS[DEST FILE]1133. FILE211 T111134. T1212 SHELL SCRIPT(FILE110)1235. IFEQ T1212, 0, EXIT36. T1313 FPERM(FILE110)1337. T1414 AND T1313, XGRP38. IFEQ T1414, 0, L339. RES 140. RETURN41. L3:42. T1515 AND T1313, XOTH43. IFFALSE T1515, L444. RES 145. RETURN46. EXIT: L4:47. RES 048. RETURNThe superscripted numbers in the instructions above correspond to their valuenumbers as outlined in Cocke and Schwartz [CS70]. Associating a number with each

93expression, called its value number, allows the e�cient determination of commonsubexpressions within an expression or in the three address code that correspondsto a basic block. These are compile-time optimizations. For example, to computeb � b + b � b we can avoid computing b � b twice by assigning a value number to b � bwhen it is �rst encountered. When b � b is seen again, we know that its value hasalready been evaluated because it has a value number associated with it. We cantherefore use the precomputed value of b � b instead of reevaluating it.The expression THIS[SRC FILE] is given a single value number because index-ing may be regarded as a primitive operation in the virtual machine. Each guardexpression begins with an instruction of the formTHIS htype of audit recordiThe variable THIS is a placeholder name for the audit record currently under analysisfor a possible match. This instruction also serves to limit the types of audit recordsthat are tried for a possible match with this instruction sequence. Only an auditrecord of type LINK can possibly evaluate the expressions associated with 1a and2a successfully. We have used two special variables in the compilation: RES, whosevalue determines whether the guard has been evaluated successfully, and TRANSITION,which refers to the particular guard transition currently being compiled. TRANSITIONmay be used to index into a vector of transitions in which each element denoteswhether the corresponding transition �res.Doing Common Subexpression Elimination Across Basic BlocksCombining the set of compiled instructions from all transitions labeled with thesame event type is nontrivial. Each guard expression may involve &&s and ||s, result-ing in conditional jumps in the compiled code. This complicates static subexpressionelimination across jumps, both within and across guards. Common subexpressionelimination within a basic block is not useful here as the size of basic blocks is likelyto be small, with little redundancy. The approach we are proposing is to always

94evaluate every basic block so that we can statically precompute all the availablesubexpressions regardless of the ow of execution of any particular run.Another important decision is the method of combining the guard expressions.Guards can be combined in a chain with common subexpression elimination performedon the composite sequence, or it may be possible to organize them as a network(similar to Rete networks [For82]) to improve the running time of evaluating themby taking dynamic evaluation into account. When organizing a network, a goodcon�guration needs to be determined as does the duplication and rearrangement ofguards, perhaps based on runtime statistics of their evaluation outcome. This issimilar to optimizations that use branch prediction to shorten the running time ofprograms. See Hennessy and Patterson [HP90] for a discussion of branch predictiontechniques.The approach we have taken is to combine the guards in a chain in an arbitraryorder and do elimination across basic blocks and guards by introducing the notion ofactive and inactive basic blocks. We do this in a manner similar to how SIMD archi-tectures [Fly66] control which of their processors are active and execute instructions,and which ignore them. SIMD machines broadcast instructions to all execution units,each of which can be disabled during a SIMD instruction [HP90]. In relation to thevirtual machine de�nition, some instructions are treated di�erently depending on thetype of basic block being executed. An active basic block (for a particular evaluationof the guard expression) is one that needs to be executed to determine the value ofthe guard expression. The virtual machine is said to be enabled when executing anactive basic block. Active basic blocks cannot be determined statically because theevaluation of conditional expressions inuences its boundaries. Expressions evaluatedin an inactive basic block are termed inactive.Evaluating Inactive Basic BlocksLack of loops and gotos in the guard expressions enable its translation to haveforward jumps only. The virtual machine executing the composite code can then

95treat jumps specially. Instead of jumping to the speci�ed label, it stores the labeladdress and disables itself. When the virtual machine is disabled, certain types ofinstructions are not evaluated by it. Because all jumps are forward, the machine canbe enabled correctly when the jump address is reached, at which point it can resumeits normal operation and evaluate every instruction it encounters.This arti�ce ensures that all expressions are always evaluated, and therefore, areavailable to expressions evaluated later. This happens whether expressions are ac-tive or inactive. All assignments to pattern variables (associated with each token)occur through temporaries and assignment to non temporary variables is disabledin an inactive region. This prevents undesired side e�ects while ensuring that allsubexpressions are evaluated and reside in their appropriate temporary variables.Following the procedure of common subexpression elimination outlined in Cockeand Schwartz [CS70], the code for both the guard expressions is as shown here:1. THIS LINK2. TRANSITION 420. if(!ENABLED TRANSITIONS[TRANSITION])fset processor state disabledJUMP 28 This has no e�ect as the proces-sor state is disabled, but serves tostore the label at which the pro-cessor will be enabled.g3. T11 THIS[SRC FILE]14. FILE11 T1 1 Assignment to global variableshas no e�ect when the processoris disabled.5. T22 THIS[DEST FILE]26. FILE22 T227. T33 THIS[EUID]38. U3 T339. T44 OWNER(T11)4

9610. IFEQ T4, U, EXIT Conditional jumps have no e�ectwhen the processor state is dis-abled.11. T55 BASENAME(T21)512. IFM T5, "-*", EXIT If T5 matches \-*" then jump toEXIT.13. T66 SHELL SCRIPT(T11)614. IFEQ T6, 0, EXIT15. T77 FPERM(T11)716. T88 AND T77, XGRP17. IFEQ T88, 0, L118. FIRABLE TRANSITIONS[TRANSITION] 1 This assignment has no e�ectwhen the processor is disabled.19. JUMP 28 Instead of RETURN. If the pro-cessor is enabled, disable it andcontinue. A JUMP has no e�ectotherwise.20. L1:21. T99 AND T77, XOTH22. IFEQ T99, 0, L223. FIRABLE TRANSITIONS[TRANSITION] 124. JUMP 28 Instead of RETURN.25. EXIT: L2:26. FIRABLE TRANSITIONS[TRANSITION] 027. JUMP 28 Instead of RETURN.28. THIS LINK Compiled away.29. TRANSITION 7 This transition is numbered 7among all the transitions.290. if(!ENABLED TRANSITIONS[TRANSITION])fset processor state disabledJUMP beginning of next patterng30. T1010 THIS[SRC FILE]10 Compiled away because of valuepropagation. Same as T1.31. FILE110 T1010 Not compiled away because itrefers to a pattern variable.

9732. T1111 THIS[DEST FILE]11 Compiled away. Same value asT2.33. FILE211 T1111 Not compiled away.34. T1212 SHELL SCRIPT(T1010)12 Compiled away. Same value asT6.35. IFEQ T1212, 0, EXIT T6 value propagated to T12.36. T1313 FPERM(T1010)13 Compiled away. Same value asT7.37. T1414 AND T1313, XGRP Compiled away. Same value asT8.38. IFEQ T1414, 0, L3 T8 value propagated to T14.39. FIRABLE TRANSITIONS[TRANSITION] 140. JUMP next pattern Instead of RETURN.41. L3:42. T1515 AND T1313, XOTH Compiled away. Same value asT9.43. IFFALSE T1515, L4 T9 value propagated to T15.44. FIRABLE TRANSITIONS[TRANSITION] 145. JUMP next pattern Instead of RETURN.46. EXIT: L4:47. FIRABLE TRANSITIONS[TRANSITION] 048. JUMP next pattern Instead of RETURN.ENABLED TRANSITIONS is a vector, each element of which indicates if a particulartransition is enabled. FIRABLE TRANSITIONS is also a vector whose elements indicateif the corresponding transition is �rable. The percentage reduction in the number ofinstructions is � 10%. Out of 48 instructions, 7 were compiled away while 2 wereadded (20 and 290). This is the case with two guards. Note that all the instructionscompiled away are from the second expression. In the asymptotic case, the �rst fewexpressions will result in most other subexpression eliminations, and for our example,may asymptotically result in a reduction of 6 statements out of 21, which tends to� 28%. The compilation of the second guard results in 21 instructions (28 : : : 48),out of which 7 are compiled away (28; 30; 32; 34; 36; 37; 42) and one added (290). The�gures for the reduction in the number of instructions do not imply a correspondingdecrease in the execution time of the code, for that depends on the runtime behavior

98of the conditionals. But, to simplify analysis, an assumption of uniform eliminationin every basic block implies a corresponding decrease in the evaluation time of theguards.Thus, to determine whether the tokens in the initial states of �gures 5.3 and 5.4need to be duplicated and moved across to the succeeding state, we need to evaluatethe code for every audit record of type LINK.Is Evaluating Every Basic Block of Every Guard Worthwhile?This leads to the question of the e�ciency of this approach. It is possible that onlyone guard is true, but this approach would require every expression in every guard tobe evaluated. This approach might seem worse than that of evaluating every guardindividually because in that case short circuiting might result in fewer expressionsbeing evaluated. We believe that savings can be made with this approach, but theamount is dependent on the type of guard expressions and the commonality amongthem.Because of the nature of the matching process, transitions, enabled once, usuallycontinue to remain enabled1. Thus, if a guard is evaluated once for an event, it islikely to be evaluated from then on for all events of that type. The approach presentedhere provides a mechanism to improve matching that can be pro�tably used given theappropriate set of signatures. A system might incorporate both types of approaches,with and without subexpression elimination and, based on heuristics and runtimestatistics, use one approach over the other.In summary, the following properties are used to ensure the semantic consistencyof the expressions or simplify the CSE on the generated code. For a treatment ofthese and other compiler optimization issues, see the book by Aho et al. [ASU86] orthe book by Fischer and LeBlanc [FL88].1Some states may be speci�ed nodup [Section 6.3.1], but such states are rare.

991. Token variable values referenced in a guard expression but set outside it are notvalue-propagated across guards, but re-evaluated from the token the �rst timethey are referenced in the guard.2. All jumps in the compiled code are forward. This can always be arranged bythe compiler as there are no loops in the guard expressions. This implies thatthe structure of a guard expression is a DAG with only forward edges. A bene�tof this structure is that dead variables can be detected by simply examining therest of the code.In this dissertation we have not precisely speci�ed a virtual machine and the setof primitives that it understands. Such an attempt was made in [KS]. We haveinstead shown that the use of a virtual machine can simplify the evaluation of guardexpressions in the context of detecting computer intrusions. The practical utilityof common subexpression elimination can only be determined by an implementationthat measures the overhead imposed by the virtual machine and the interpretationof the virtual machine instruction set.5.4 SummaryIn this chapter we studied the theoretical limitations of matching patterns of thetype required for intrusion detection. Traditional pattern matching that does notinvolve the speci�cation of context is not applicable to intrusion detection. The prob-lem of matching with context, which is a basic requirement to represent intrusionpatterns, is NP Hard. This means that an exhaustive search for the solution in thesolution space may be required in the worst case. While the theoretical bounds onmatching for intrusion detection are exponential, engineering optimizations are possi-ble that may make an implementation more e�cient in the usual case. In the contextof the model in which patterns may be represented (described in Chapter 4) we de-scribed some of these heuristics. These heuristics exploit particular structures of the

100graphical representation of patterns, the non-decreasing value of time stamps associ-ated with event sequences and the nature of the desired match. We also presented anarti�ce for doing common subexpression elimination when evaluating guard expres-sions. This exploits the peculiar nature of the problem domain that evaluates everyexpression associated with every link with a given label for every occurrence of thatevent.

1016. IMPLEMENTATION ARCHITECTURE OF THE MODEL ANDSIMULATION RESULTSIn this chapter we describe the architecture of the prototype we built based onthe model described in Chapter 4. The model, together with the prototype presentedhere, are designed to provide the bene�ts listed in Section 3.2.1 and meet the systemconsiderations listed in Section 3.2.3. The prototype serves as a proof of conceptimplementation of the model.6.1 IntroductionWe have used C++ [Str91] as the programming language for the implementation ofthe prototype. The prototype runs under the Solaris 2.3 operating system and uses theSun BSM [Sun93b] audit trail as its input. The programming techniques and languagefeatures we have used for the implementation are applicable to other programminglanguages as well. The implementation is directed at providing a set of integratedclasses that can be used in an application program to build a generic misuse intrusiondetector. The implementation also suggests a possible way of structuring classesencapsulating generic functionality and the interrelationships between the classes todesign any misuse detector. This chapter also describes that structure. Measurementsof the time and space requirements of the implementation are also presented.The choice of the language was dictated by the following reasons, not all of whichare unique to C++:� The free availability of quality implementations of the language. Not only isthis helpful for developing software, it is important for wide-spread acceptanceif the implementation is distributed in source form for others to modify and

102adapt to their environments. We have used the SunPro1 C++ compiler for ourprototype.� Our familiarity with C++ and its development environment. In the interestof building a working prototype quickly, we capitalized on our knowledge ofthe language and the development environment provided by the SPARCworks2workbench.� The availability of a large collection of ready-to-use libraries. Because thisis a prototype implementation, we were not unduly concerned with writinghighly optimized code speci�cally tailored for intrusion detection. To performcommon tasks including string manipulation, hash table generation, or binary�le I/O, we preferred to use ready-made libraries unless these tasks proved to bea performance bottleneck. The availability of quality implementations of suchlibraries are very useful for rapid prototyping. We have used the Rogue Waveclass library Tools.h++ [Sun93a] for our implementation.� The linguistic support provided by C++ to write modular programs. C++provides for data encapsulation and abstraction in the form of classes and over-loaded functions, genericity in the form of templates, object orientation in theform of inheritance and virtual member functions. All of these features havebeen used extensively in our implementation.� Availability of support tools in the form of grammar recognizer generators likeyacc++ and lex++. Because our prototype parses descriptions of patterns intocode that realizes the pattern, it was desirable to have parsing tools in the sameprogramming language as the one in which the prototype was written. While itis possible to use a parsing mechanism in any language as a �lter that is calledas a subprocess, direct sharing of data and functions between the prototype andthe parser enabled simpli�cations.1Trademark of Sun Microsystems, Inc.2Trademark of Sun Microsystems, Inc.

103� Because it is easy to add new event streams to the prototype, we have also built arudimentary matcher for IP datagrams. As a further step, we intended to buildthe entire matcher as a streams module that interfaces with the networkingsubsystem. If the prototype is built in a language close to C, the e�ort ofconverting it to a streams module [Rag93] would be less.The set of integrated classes we have developed for misuse intrusion detection canbe programmed in many other programming languages as well because no propertiesspeci�c to C++ have been assumed or used. We only exploit the language's dataencapsulation, data abstraction and object-oriented features to simplify the softwareengineering concerns of our implementation. We use the word class in a generic senseand the corresponding notion from many other languages can be substituted here.6.2 ApproachThe implementation of this model can be decomposed into the following sub-problems:1. The external representation of patterns: how the pattern writer encodes pat-terns for use in matching.2. The interface to the event source. In our example it would be the interface toIP datagrams.3. Dispatching the events to the patterns and the matching algorithms used formatching.These issues are discussed in the next sections. In addition to solving these require-ments, our implementation is designed to simplify the incorporation of the following:The ability to create patterns and to destroy them dynamically, as matchingproceeds.The ability to partition and distribute patterns across di�erent machines forimproving performance.The ability to prioritize matching of some patterns over others.

104The ability to handle multiple event streams within the same detector withoutthe need to coalesce the event streams into a single event stream.We describe our design in the next section and show how the library classesembody the design. We have included a description of the application interface tothe library and the description of patterns because they are important to formulatea comprehensive view of the library.6.3 Overall ArchitectureThe library consists of several classes, each encapsulating a logically di�erentfunctionality. An application program that uses the library includes appropriateheader �les and links in the library.The external representation of patterns (sub-problem 1) is done using a straight-forward representation syntax that directly reects the structure of their graphs.These speci�cations can be stored in a �le or maintained as program strings. Whena pattern is needed to be matched in an application, a library-provided routine (aServer class member function) is called that compiles the pattern description to gen-erate code that embodies the pattern. This code is then dynamically linked to theapplication program and the pattern matching for that pattern is initiated. Thisstructure is explained using an example in Section 6.3.1.The application also instantiates a server for each type of event stream used formatching. Events are totally encapsulated inside the server object (sub-problem 2)and are only used inside pattern descriptions. A pattern may only refer to eventsfrom one event stream. When a pattern description is compiled, it is added to theserver queue that handles events of that type. The server accesses and dispatchesevents to the patterns on its queue in some policy speci�able order (sub-problem 3).The application structure is explained below. Section 6.3.2 describes the structureof events. Section 6.3.3 explains the structure of the server itself in detail and itsrelationship to the patterns that are instantiated by the application.

1056.3.1 Application StructureAs an example application structure, consider matching the pattern described inFigure 6.1. The pattern monitors rlogin connections and may be used to detectsuch connections on a fast gateway by examining each packet that passes through it.The example is chosen from a di�erent event domain to illustrate that the model isindependent of the nature of the underlying events.A TCP connection (an rlogin connection is a TCP connection to a speci�c port)setup between the initiator S and the recipient D involves a three-way handshake[Com91]. The �rst segment of the handshake involves sending an IP datagram fromS to D with the SYN bit set in the code �eld. In response to this SYN packet D sendsa datagram that acknowledges the SYN packet and sets the SYN bit to continue thehandshake. The �nal message is the acknowledgement of the second SYN and is sentfrom S to D.Thus, to detect simpli�ed TCP connections not involving retransmissions we canmonitor for the sequence:1. A SYN packet, from a source S to a destination D.2. A SYN+ACK, from D back to S.3. An ACK, from S to D.Pictorially this is:
S D D S S D

SYN SYN + ACK ACK

Initial State

token

Final State

TCP TCP TCP1 2 3

(start) (after_ack)(after_syn_ack)(after_syn)

Figure 6.1 Matching a TCP Connection

106To monitor rlogin connections, we match this pattern for destination ports equalto the rlogin port, which is 513. The application program makes use of an IP_Serverobject. The server object has built into it the layout of events and the event types thatcan be used in a pattern de�nition. IP_Server also has member functions to accessevents, in this case from the machine's network interface, and to dispatch them to thepatterns that are registered with it. The server is also responsible for parsing patterndescriptions and can type-check the pattern speci�cation because the data format ofevents are built into the server. The call to the server member function parse_filereads, compiles and registers a new pattern with the server object. When the serverobject is started with a call to S.run(), it starts accessing events and dispatchingthem. An example application code is shown in the boxed text in Figure 6.2.This consumes one thread of control, as S.run() never returns. The server isresponsible for implementing concurrency control methods to ensure that calls to itspublic member functions do not corrupt its internal state when there is an activethread in run(). Our implementation uses monitors as described by Hoare [Hoa74]to ensure this. The pattern description contained in �le patterns-ip is://file patterns-ip1 extern int RLOGIN_PORT_CLIENT, RLOGIN_PORT_SERV,2 print_tcp_conn(int, int);34 pattern TCP_Conn_Mon "Monitor rlogin connections" priority 105 int FROM_PORT, FROM_HOST;6 int TO_PORT, TO_HOST;The variable declarations de�ne the color of the tokens in the pattern. Each to-ken has four integers that can be accessed through the syntax this[FROM_PORT],this[FROM_HOST] and so on.7 state start;8 nodup state after_syn, after_syn_ack;9 state after_ack;These are the states of the pattern. after_syn signi�es the state after the initialSYN is observed, after_syn_ack signi�es the observation of the initial SYN followed

107//file application.C#include "IP_Server.h"int RLOGIN_PORT = 513;int print_tcp_conn(int from_HOST, int to_HOST) //callback function{ cerr << "A TCP connection has been established between "<< ((from_HOST >>24) &0xFF) << "." << ((from_HOST>>16) &0xFF)<< "."<< ((from_HOST >>8) &0xFF) << "." << (from_HOST &0xFF)<< " and "<< ((to_HOST >>24) &0xFF) << "." << ((to_HOST>>16) &0xFF)<< "."<< ((to_HOST >>8) &0xFF) << "." << (to_HOST &0xFF)<< endl;return 1;}int main(){ IP_Server S;//read pattern description from file "patterns-ip"IP_Pattern *p1 = S.parse_file("patterns-ip");/* dup thread of control if necessary. run() doesn't return */S.run();return(1);} Figure 6.2 An Example Applicationby a response SYN. nodup indicates that tokens in this state will not be duplicatedto other states, rather they will be moved to other states when the transition �res.10 post_action { print_tcp_conn(FROM_HOST, TO_HOST); }print_tcp_conn is called with token values corresponding to the token in the �nalstate of the pattern.

10811 neg invariant first_inv12 state inv_start, inv_final;1314 trans rst(TCP)15 <- inv_start;16 -> inv_final;17 |_ { this[RST] = 1 && TO_HOST = this[FROM_HOST] &&18 this[TO_HOST] = FROM_HOST;19 }20 end rst;21 end first_invThe invariant speci�es that no reset should be received during connection formation.An invariant speci�cation can itself be a graph. Whenever a token is moved from thestart state of the pattern, its copy is placed in the start state of the invariant. Thistoken can have part of its color de�ned because the �ring of a transition may changea token color.22 trans tcp_1(TCP) /* TCP is the event type of the transition */23 <- start;24 -> after_syn;25 |_ { this[SYN] = 1 && this[ACK] = 0 &&26 FROM_PORT = this[FROM_PORT] &&27 this[TO_PORT] = RLOGIN_PORT_SERV &&28 FROM_HOST = this[FROM_HOST] && TO_HOST = this[TO_HOST];29 }30 end tcp_1;If this packet is a SYN packet destined to the RLOGIN port, store its source anddestination host and source port in the token.31 trans tcp_2(TCP)32 <- after_syn;33 -> after_syn_ack;34 |_ { this[SYN] = 1 && this[ACK] = 1 &&35 (this[FROM_PORT] = RLOGIN_PORT_SERV) &&36 (this[TO_PORT] = FROM_PORT) &&37 (this[FROM_HOST] = TO_HOST) && (this[TO_HOST] = FROM_HOST);38 }39 end tcp_2;

109If this packet is a SYN packet from the RLOGIN port of a host whose name matchesthat stored in the token, destined to the host and port corresponding to this token'svariables FROM HOST and FROM PORT then �re the transition.40 trans tcp_3(TCP)41 <- after_syn_ack;42 -> after_ack;43 |_ { this[SYN] = 0 && this[ACK] = 1 &&44 (this[FROM_PORT] = FROM_PORT) &&45 (this[TO_PORT] = RLOGIN_PORT_SERV) &&46 (this[FROM_HOST] = FROM_HOST) &&47 (this[TO_HOST] = TO_HOST);48 }49 end tcp_3;Any non SYN packet ows from (FROM HOST, FROM PORT) to (TO HOST,TO PORT). This de�nes the structure of the pattern graph.50 end TCP_Conn_Mon;Listing 1: A Sample Pattern DescriptionSimilarly, if an application needed to match patterns against a C2 audit trail it mighthave used a C2_Server instead of IP_Server or concurrently with it within the sameapplication program.6.3.2 Event StructureEach event in the event stream is converted to an instance of an event class.For IP datagrams this class might be named IP_event. This class encapsulates allthe attributes common to IP datagrams. Derived classes of IP_event may be usedfor specifying more specialized types of IP datagrams. For example, TCP_event andUDP_eventmay be derived to represent TCP and UDP datagrams. Each event objectcan identify its type through its type() member function. This is used by the serverto dispatch the event to the appropriate patterns. All the data belonging to the eventis made available through its member functions. This mechanism encapsulates theorganization of data in the event, which may be system dependent in general. The

110description of all the event classes is what constitutes the back end of the system andis one of the few system dependent layers.6.3.3 Server StructureFor each event, the server looks at its type and consults a dynamically-maintainedtable of patterns that have requested events of that type. It then calls the Patprocprocedure of each such pattern. Patproc is a procedure associated with every pattern(its member function) that processes events for it. This approach to processing eventsis similar to the approach taken in Microsoft Windows [Pet92]. Events of interest arerequested by patterns when they are instantiated by the server.Events can be dispatched to patterns based on their priority. Patterns can beplaced in queues at the appropriate priority level, and patterns serviced in each queuein a round-robin fashion. This ordering of patterns by priority assumes that on theaverage, an event can be dispatched to all the patterns requesting it in a time less thanthe average time of generation of an event. If this requirement is not met, patternsup to a certain level in priority may be perpetually starved. A mechanism can beadded to age patterns that have not been exercised by any event for a long time byincreasing their priority. Pictorially this is as shown in Figure 6.3.
events

C
o
n
s
t
r
u
c
t

O
b
j
e
c
t
s Audit T

rail

Clock

Network Packets

Application Trails

Highest Priority Patterns

Lowest Priority Patterns

ROUND ROBIN

ROUND ROBIN Figure 6.3 Server Structure

111The prototype does not implement the priority structure of dispatching events topatterns. It treats every pattern to be of the same priority.6.3.4 SummaryThe use of an event stream requires the creation of two classes. An event classthat is the root class of all events provided in the event stream and a server classthat parses pattern descriptions, instantiates them, and manages them on its datastructures. The server class interacts with the event class by converting raw eventsinto objects of this class and dispatching them. The interrelationship between thevarious classes is shown in Figure 6.4. Class names bounded by dotted boxes areabstract classes. The functions identi�ed within these boxes are the pure virtualfunctions of these classes.
SERVER

IP_SERVER C2_SERVER

EVENT

IP_EVENTS C2_EVENTS

Event_TCP Event_UDP C2event_EXEC C2event_CHMOD

IP_PATTERN C2_PATTERNIP
_P

A
T

T
E

R
N

C
2_

P
A

T
T

E
R

N

int type()

PATTERN
void PatProc(Event *)Figure 6.4 Interrelationship Among the Various Classes in the DetectorUse of writable application global variables that can be manipulated by patternactions or guard expressions obviates parallelism in exercising several tokens simulta-neously when several multi-processor threads are available. Several available threads

112can, however, simultaneously exercise tokens in di�erent patterns. The order in whichan event is dispatched by the server to the patterns is unde�ned. Application globalvariables should ideally be read-only so that concurrency of access to these variablesis possible.6.4 Building the ServerThis section describes how a server class (e.g., IP Server) is implemented in ourlibrary. The event class associated with the server class is completely encapsulated inthe server class and is not visible to the application. The heart of the server class isthe member function that translates a pattern description into C++ code that imple-ments the pattern [Section 6.4.1]. Because our language for describing patterns is astraightforward representation of the pattern structure, translation into an automa-ton is direct. Syntactic structures introduced in the language often translate directlyinto functions that are invoked to perform the operation. Section 6.4.2 describes whatthe translated automaton looks like, particularly the procedure that accepts incomingevents from the server and exercises the automaton with it.6.4.1 Server::parse()The server class associated with each event stream is responsible for translatingpatterns speci�c to the event stream. For each pattern (each pattern name is unique),the translation performs the following actions:1. It generates a C++ class representing the pattern (IP TCP Conn Mon in ourexample) with all the pattern global variables as static data members of theclass (none in our example).2. It generates a token class (IP_TCP_Conn_Mon_Tok) that represents tokens as-sociated with that pattern). The token class has private data members corre-sponding to each pattern local variable and corresponding public functions to

113access them. In our example these are FROM_PORT, FROM_HOST, TO_PORT andTO_HOST. These were declared in lines 5 and 6 of listing 1.3. Each guard expression associated with a transition is re-written with severalsyntactic changes:Pattern local variable references are substituted by calls to token memberfunctions.Certain operations are syntactically changed to library calls. For exam-ple, the pattern matching operator =~ is changed to a call to a regularexpression matching routine.Calls of the form this[...] are changed to member function calls to theappropriate event object. See for example line 24 of listing 1.4. A PatProc procedure is generated for the pattern to handle events for thepattern, in our example its signature would be IP TCP Conn Mon::PatProc(I-P Event *).6.4.2 Pseudo-code for the Generated PatProcThe heart of a pattern is its PatProc, which exercises its automaton on eachevent that the pattern has requested. Figure 6.5 shows the pseudo-code of a samplePatProc. For each incoming event, all transitions labeled with that type are tested tosee if they �re. This requires testing whether the event and the uni�ed token formedby unifying tokens drawn from each input state of the transition satisfy the guard atthe transition. All tokens residing in nodup states that comprise the uni�ed tokenare marked for later deletion. Tokens that are added to output states of a transitionas a result of its successful �ring wait to be added to the states until all transitionshave been tried. Then the tokens are added into all the states. When an invariant issatis�ed, i.e., a token reaches the �nal state of the invariant, all the tokens related tothe token are destroyed.

114IP TCP Conn Mon::PatProc(Event *e)f for(all transitions in pattern and invariants of type e->type())f for(all token sets formed by taking one token from eachinput of this transition)f if(the token set does not unify)continue;if(the token set fails the guard)continue;mark all tokens in this set belonging to nodup statesfor deletion;put a copy of this token in each successor of this transition;if(one of the input states of this transition is a patternstart state)put a copy of this token in the start state of each invariant;ggclock the states to merge tokens waiting at its inputwith tokens already in the state;eval post actions for all tokens in the final state and free them;delete all marked tokens from all nodup states;process all invariant final states;g Figure 6.5 Pseudo-code of a Sample PatProc6.5 Design ChoicesBy far the most signi�cant consideration guiding the design was the runtime e�-ciency of the detector. For misuse detection using a C2 generated audit trail one mightreasonably expect to process events (audit records) at the rate of 50K-500K/user/day[Sma95]. Furthermore, any computer resource required for matching patterns reducesthe availability of these resources for general use. We therefore decided not to inter-pret the pattern automata by using table lookups to determine the pattern structure

115but instead, to compile the pattern description into an automaton. This also has thebene�t of compile-time optimizations of guard expressions present in the pattern.We tried to make the generated code realizing the automaton e�cient by usingfunctions as little as possible to avoid function call overhead in cases where functionscould not be inlined. This often meant that data structures manipulated by the var-ious pieces of the generated automaton were not encapsulated and were manipulateddirectly by these pieces. This has not resulted in code that is complex and di�cultto understand. The routines that generate this \program" are structured and thegenerated program logic can be deciphered by following the structure and logic of thegenerating routine.The overriding constraint of e�ciency combined with the requirement to dynam-ically create and destroy patterns meant that automaton descriptions be compiledand dynamically linked for matching. An additional bene�t of the dynamic creationof patterns is that new patterns can be created within an executing program based onits logic and execution ow. For example, it might be desirable to instantiate speci�cpatterns for matching based on the type and degree of suspicious activity observed.Such patterns may depend on the particular user and other speci�cs of the suspiciousactivity.Our design, which is based on the model of dispatching events to patterns lendsitself naturally for distribution. In a distributed design, the event sources (audit trails)may be generated on di�erent machines and their processing on another machine.That is, the patterns, the server and the event sources may all reside on physicallydi�erent machines. The server can then retrieve events by using any of several well-known techniques such as remote procedure calls [BN84] or distributed objects [Par90]and dispatch them to patterns. Although our current implementation is single hostbased, a distributed implementation should be straightforward.Our current implementation requires that patterns be exercised sequentially onevents. It does not permit more than one event to be exercised concurrently within apattern. We do not consider that to be a signi�cant limitation because concurrency

116can be exploited by exercising more than one pattern on the same event. In a systemwhere the expected number of patterns are of the order of a hundred, this does notseem to be a stringent limitation.A limitation of the current design is that patterns cannot directly use more thanone event source. To use more than one event source, the disparate sources need tobe canonicalized to one event stream and used in the patterns. Many modern audittrails, for example the Sun BSM mechanism [Sun93b], allow the creation of userde�ned event types and applications can generate their own speci�c audit recordsthrough an API.6.6 PerformanceThe experiments described below were done on a Sun SPARCstation 5 with 32MBof memory running Solaris 2.3 under light load. The audit �le was generated sepa-rately by enabling auditing and simulating exploitations manually and under programcontrol. Auditing was enabled with the default con�guration, which logs all success-ful as well as failed events. The pattern descriptions were translated into C++ codeand compiled separately. The running times mentioned below represent the readingof the audit �le, conversion of each audit record into an object, and dispatching theevent to all the patterns that request that event. It does not include the time for thematcher to load and begin execution, nor does it include the time to dynamically linkthe patterns.The following graphs show performance �gures when the patterns are exercisedin the system.6.6.1 Timing ResultsFigure 6.6 shows how much time it took to match each pattern against an audit�le of approximate size 400KB3. Each sample point in the �gure is the mean value3KB in this section means 1000 octets.

117of 200 runs. The circle at the end of each vertical bar serves to highlight the end ofthe bar. This is the value of the point being plotted. The little horizontal lines oneither side of this point represent the standard deviation of the value over 200 runs.The audit �le contained 2514 events. The sample point (0; 5:17) in the �gurerepresents that the application took 5:17 seconds to create all the event objects anddestroy them. The mean time for the creation and deletion of an audit trail event isthen 5:17=2514 = 2:1 milliseconds. This is the �xed cost per event for the system.The point (1; 5:45) means that pattern numbered one (numbered arbitrarily) took5:45 seconds when exercised by the 2514 events. Some patterns take little time,slightly more than what it took to run with no patterns. The reason for this is thatthe type of events used in the pattern occurred so infrequently in the event streamthat the cost of exercising the pattern on those events was negligible.
55.25.45.65.86
0 5 10 15 20Time(usr+sys)in secs

Figure 6.6 Time for Matching Each Pattern for a 400K Audit FileFigure 6.7 shows the simulation time when more than one pattern was matchedsimultaneously in the detector. The event stream and the pattern numbers are the

118same as in the previous simulation. In the �gure, the data point (3; 5:74) shows thatit took 5:74s to exercise the three patterns 1; 2; 3 together in the system.The simulation to determine the cost/event/pattern of running multiple patternstogether in the detector are shown in Figure 6.7. The �xed overhead cost of readingthe audit �le and converting each audit record into an object is the same as above,the varying cost that takes the multiplicity of patterns into account is:variable cost/event/pattern = (5:91� 5:17)=(2514 � 19) = 15�sThis uses the data point (19; 5:91) which indicates that the detector took 5:91s toexercise 19 patterns together against an audit trail that consisted of 2514 events.
55.25.45.65.86
0 5 10 15 20Time(usr+sys)in secs

Figure 6.7 Time for Matching Multiple Patterns for a 400K Audit FileConsider the extrapolation of these results to estimate the performance of thedetector in a real setting. When running a set of programs in sequence that saturatedthe CPU, the Sun auditing subsystem generated about 1MB every 10 minutes on asingle-user workstation. This extrapolates to 6MB per hour, or 2514 � 6=:4 � 38K

119events per hour. Consider that there are 100 patterns in the detector. Then, for onehour of intense CPU activity, the detector might require the following time to processthe generated audit data:Fixed overhead = 5:17=2514 � 38000s = 78:15sVariable overhead = 15�s � 100 � 38000 = 57sTotal time = = 135:15sTable 6.1 Extrapolating Timing Results to Match 100 PatternsThus, for every hour of intense activity, the detector requires � 135s to match100 patterns. This fraction is 135=3600 � 100 = 3:75% � 4% of the hourly activity.These results correspond to an unoptimized version of the detector.6.6.1.1 AnalysisTo derive an approximate but useful comparison with other systems consider howthe following characteristics of other systems a�ect these results.A Uniformly Faster System. If these experiments were run on a system that com-puted uniformly faster (i.e. for every mix of jobs) then the number of eventsbeing generated per unit time will increase proportionately. However, we wouldexpect the time to process each event to decrease by approximately the sameproportion. Thus, with in�nite disk logging capacity we would ideally expectthe same performance.Faster Disk Logging. Assume that the amount of audit trail being generated waslimited by the disk logging capacity of the system and not by the CPU. Then,on a machine with the same CPU speed but better disk logging the numberof audit events logged per unit time will increase because the CPU will not

120be suspended from applications until the audit subsystem has written auditrecords to disk. However, the rate at which the trail is processed will remainthe same. Thus, the system will experience a greater performance degradationin this case.For our experiments this is not a factor because 1MB every 10 minutes is �2KB/s. However, this e�ect can be taken into consideration in cases where it istrue.Better Tuned Auditing. The experiments reported in the previous section were doneusing an audit trail that logged all events. If the audit events are selected sothat only events referenced in the patterns are logged, then it is conceivable thatthe average time to exercise each event against all the patterns will increase. If,in the untuned case, the disk logging capacity was being saturated, then it isconceivable that the rate of audit data logging remains the same with a more�nely tuned auditing. This implies a performance degradation in going fromthe untuned to the tuned case. However, this also means that the system isbeing better utilized.6.6.2 Space RequirementsThe space requirement of each pattern is depicted in Figure 6.8. The mean sizeof the patterns is 17KB.There are several factors involved in this mean pattern size. The most signi�cantreason is that the pattern structure is not saved in memory to be used by a commonpattern simulation routine. Instead, the pattern is compiled into its structural de-scription, which makes each transition responsible for evaluating its guard and movingtokens from its input states to output states. This results in substantial duplicationof code, once for each transition.The other reason is that support structure for the implementation of each pat-tern included dynamically expanding tables and linked lists. Because each pattern

121
051015202530
35404550

0 5 10 15 20KB
Figure 6.8 The size in KB of Each Compiled Patternis logically di�erent, with a di�erent de�nition of a \token," these structures werereplicated in each pattern de�nition.These problems are purely a manifestation of our non-optimized implementation,and not a limitation of the model. To reduce the space required per pattern, all thecommon support code comprising tables, singly and doubly-linked intrusive and non-intrusive lists can be collected in abstract base classes and speci�c classes derived foreach pattern dynamically at runtime. This provides type safety because of derivation,while reusing the common code across all derivations. The same strategy can beapplied to reduce the amount of code needed to exercise transitions. Instead ofcompiling the evaluation of each transition and its guard separately, transitions canstore their input and output states in their member data. Then, a common proceduremay be used to exercise any transition the same way. Thus, signi�cant space bene�tscan result from \simulating" the pattern.

1226.7 SummaryThis chapter described a possible architecture for structuring a misuse intrusiondetector based on pattern matching. The structure is client-server4 based in whichthe server obtains events and dispatches them to clients (patterns) that implementthe matching procedure speci�c to their structure. Implementing this structure as alibrary permits embedding this type of matching within application programs. Theprototype allows the dynamic creation of patterns. These patterns are translated froma description language into C++ code that realizes the pattern and dynamically linksthat code into the application.

4We use this term in a slightly di�erent way than is used in networking. In networking, it usuallydenotes a lock-step query/response in which the client makes queries to a server and the serverresponds with a reply. In our structure, the client (pattern) makes an initial request to the serverto notify it of the event types that it needs to exercise the pattern, and then receives those eventsinde�nitely from the server.

1237. SUMMARY, CONCLUSIONS AND FUTURE WORKThis dissertation presents a solution to the problem of representing and detectingcomputer intrusions. The representation problem is one of encoding intrusions ina generic, alias-free manner. The basic goal of our work has been to adequatelyrepresent and e�ciently detect the majority of intrusions commonly reported ratherthan attempt to represent and detect every conceivable intrusion scenario.We have been successful in achieving these goals. We have been able to represent� 88% of the intrusions described in [Bis83, CER, FS90] that have occurred in UNIXsystems. We could not detect � 12% of those vulnerabilities but we argue thatsignature detection is not a good choice for such vulnerabilities. Some require moresophisticated anomaly detection while others, such as passive wiretapping, do notexhibit a detectable signature [cf. Section 1.2.1].Based on a prototype implementation of our approach, we derived performanceresults that indicate that our approach of using pattern matching to represent anddetect computer intrusions is practical. Intrusion detection systems have not gainedwidespread acceptance predominantly because of their space requirements and theperformance impact that is incurred while running them with regular system activ-ity. We have shown that it is practical to run an intrusion detection system basedon pattern matching, concurrently with other user activity on single-user machines,without undue degradation in performance. Extrapolation of our experimental resultsshow that the overhead of matching a signi�cant number of patterns simultaneouslyagainst an audit trail that is generated under heavy load on a typical workstationshould be under 5% of the system CPU performance.Furthermore, using pattern matching libraries to monitor intrusion signaturesprovides a simple, embeddable, and elegant mechanism for intrusion detection. It

124provides a more natural interface to the representation of signatures than other tech-niques that need knowledge of specialized tools such as expert system shells. Becauseof the low overhead imposed by our approach, it is practical to debug patterns ina real environment by adding them to the detector while it is running. the abilityto incrementally add patterns also helps in the maintenace of the intrusion detector.Maintenance of signatures is also easier because they can be maintained in text �lesand as programming language strings. This allows them to be manipulated usingfamiliar tools such as text editors.7.1 ExperiencesWe learned several lessons from this e�ort, which are summarized under threecategories below:7.1.1 Using Pattern Matching for Intrusion DetectionExtended1 regular expressions augmented to provide context matching and follows se-mantics are adequate to detect a majority of commonly occurring intrusions.This is a surprisingly simple yet powerful result. However, because the problemof matching with context is NP Hard, there are no known solutions that solve thegeneral version of the problem e�ciently. In practice, however, an exhaustive searchworks well for the patterns that are needed to detect intrusions.Pattern matching may be inappropriate for representing ill-de�ned intrusions.Pattern matching provides an e�cient mechanism for the detection of well-de�nedpatterns. To deduce abstractions indicative of intrusions from uncertain information,other mechanisms such as expert systems may be more appropriate. For example, ifan intrusion is indicated only when activities occurring at various locations and timesare correlated, it may not be easy to specify all the correlations in a compact wayusing pattern matching alone.1Those that permit the use of AND directly.

1257.1.2 Writing Intrusion PatternsDistilling an incident report into a pattern is involved.It is nontrivial to translate advisories, for example CERT advisories [CER], intopatterns that can reliably detect those and similar incidents. The process requires agood understanding of the key essentials of the exploitation to enable the problem tobe abstracted and represented in a generic, alias-free manner.Writing e�cient signatures may require knowledge of the underlying matching model.Once a vulnerability is clearly understood it must be written as a pattern descrip-tion. Often, there are several ways of writing the same pattern that can result indi�erent matching e�ciencies. The most important fact to bear in mind is the cor-rect use of invariants [Section 3.2.2] that can delete unneeded tokens from the patterngraph. The presence of unneeded tokens can degrade runtime performance becausethe matching procedure is one of exhaustive search.Temporally ordered event sequences may make pattern representation much simpler.Consider as an example the audit trail generated by older versions of SunOS with-out the BSM patch. The EXECVE record that indicated the start of a new process couldbe recorded in this trail after the new process began executing and had generatedpart of its own log. Thus, if a pattern was intended to monitor a speci�c activityof a certain program running with particular privileges there was no e�cient way toascertain if the monitoring conditions had been satis�ed, without looking ahead toretrieve the EXECVE record and its associated data. Patterns were written to alwaysmatch for the desired conditions and then ascertain based on the EXECVE record ifthe match was to be kept or discarded.In contrast, if the log was temporally sequenced, a pattern to monitor the condi-tions could be much simpler. Pre-processing the audit trail can be done to make ittemporally ordered, but this requires extra overhead and may not be feasible to doat current audit generation rates without an impact on the real-time performance.

1267.1.3 Using Audit TrailsApplication-level auditing is important.Because audit logs only provide the events that are executed by programs and notthe information manipulated as a result of performing those events, it is not alwayspossible to deduce the actions of a program. Furthermore, it is extremely di�cultto invert a low level audit log into higher level program abstractions which are oftenapplication dependent. Because intrusions are de�ned with respect to policies that aretied closely to application-provided abstractions, it is extremely di�cult to determineif the policy is violated unless application abstractions can be deduced and used tobase these decisions.Even if the inversion was possible, it is likely to be computationally expensiveand perhaps needless. Because applications often provide features that corresponddirectly to user-level abstractions, they are usually the best place to generate theaudit events.Auditing must provide a reliable means of detecting higher level events.For example, in some audit trails it may not be possible to reliably detect whena process has exited. This may result in many \garbage" tokens in the matcher thatmay remain uncollected. This can result in poorer runtime performance.7.2 Future WorkOur work can be pursued further in one or more of the following directions:7.2.1 Optimize the Current Implementation.Interpret patterns. Our prototype implementation described in Chapter 4 compiles aCPA directly into C++ code that realizes the automaton. The implementationdoes not store the pattern graphical structure in memory to use for patternmatching. Instead, the pattern is compiled into its structural description, whichmakes each transition responsible for evaluating its guard and moving tokens

127from its input states to output states. This results in considerable duplicationof code, once for each transition because each transition has a di�erent guardexpression and a di�erent set of input and output states.It might be interesting to store the structure of the patterns in memory andinterpret the guard expressions to simulate the behavior of the compiled CPA.This would permit a single common simulation procedure to simulate all pat-terns resulting in a much smaller code size of CPAs and the matching subsystem.It would be interesting to investigate this time/space tradeo�.Determine Good Order of Combination of Guards. When the guards correspondingto all transitions with the same event label need to be evaluated, it is not clearwhat is the best order in which to enumerate, and thus evaluate them. Thereare no semantics to the expressions forming each guard in our model. Theo-retically, all the expressions in all the guards need to be combined in a speci�corder to achieve maximum overlap between the expressions. This overlap isdependent on the probability of occurrence of each expression. Runtime statis-tics based on the history of evaluations can be maintained to estimate theseprobabilities. Rete network generation may have applicability to this problemand can perhaps be used to compile the guards in a particular order to achievebetter performance.Investigate a Token Replacement Policy. The Colored Petri net model of matchingdescribed in Chapter 4 uses states and transitions to describe the match. In thismodel, states may have an arbitrary number of tokens resident within them.It may not always be possible to permit this in practice because of memorylimitations. It might be possible that matching is not adversely a�ected if thecapacity of states to hold tokens is restricted and some replacement schemeput into e�ect that determines and discards tokens when adding a new one. Itmight be that common intrusions of interest follow a locality of attack rule withrespect to the tokens, thus resulting in more e�cient match procedures.

128Determine Practical Bene�ts of Optimizations. It might be worthwhile investigatingthrough experimentation if the engineering shortcuts presented in Chapter 5have a signi�cant bene�t on the performance of a system structured aroundthem. It may be that these shortcuts yield good performance bene�ts for thekinds of patterns that are currently needed to detect intrusions.7.2.2 Add Other Features To The Implementation.Investigate Feasibility of Kernel matching. It might be possible to embed a highlyoptimized matcher inside the kernel. This means that system call invocationsno longer need to write audit data to disk. Instead, the detector can be exercisedin the kernel at the point of the call. This results in an intrusion detector thatcan be truly real-time because kernel matching removes the latency betweenthe occurrence of an event and its noti�cation to the detector.Provide a Friendly Interface to Help Develop Patterns. It has been our experiencethat encoding patterns into our description language requires expertise andexperience. It would be bene�cial to provide a GUI interface to assist users inspecifying and editing patterns.7.2.3 Apply the Pattern Matching Approach to Other Problems.Investigate Applicability to Distributed Intrusion Detection. How applicable is the p-attern matching approach to detecting intrusions that can only be detected bycorrelating and analyzing information from several sources? For example, ourapproach does not bind any semantic meaning to events or the data associatedwith events. If event data is augmented to provide a host name and other ma-chine related information �elds, can patterns be devised that only treat them assyntactic entities yet work well and e�ciently? Can the fundamental problemof tracking changed identities across rlogin/rsh/telnet be done using pat-terns without operating system support? How can heterogeneity be handled

129using patterns? Does clock skew across machines complicate the description ofpatterns hopelessly?All these questions and more need to be addressed before the viability of thepattern matching approach to the distributed case can be established.Investigate Applicability to Specifying Application Level Security Policies. Many secu-rity experts believe that low level read-write based access control policies onsystem objects are inadequate to meet complex application security policy re-quirements. That is, applications cannot always specify correct subject-objectaccess behavior using permissible read and write requiremenets on system ob-jects. Before applications can specify policies that may be monitored on theirbehalf by the kernel, there must be a framework to specify these policies in ageneric way. It may be possible to use the framework of pattern speci�cationdeveloped in this dissertation for that purpose.7.3 ConclusionsWe believe that this dissertation has advanced current knowledge in intrusiondetection by providing insights into the representation and detection issues of a so-lution using pattern matching. Some of these insights form the crux of Section 3.2that presents key requirements for any pattern matching solution. The other majorcontribution of the thesis is the hierarchy of intrusion signatures presented in Section3.1. This hierarchy is new in that researchers have thus far focused on the classi�ca-tion of vulnerabilities rather than the characteristics of observable events that providedetection capability of these vulnerability exploitations. With this hierarchy one canrefer to intrusion signatures as belonging to a particular class in the hierarchy, whichsuggests the runtime detection characteristics of the signature. The hierarchy alsoo�ers a di�erent way of viewing intrusion detection, namely in terms of the types ofpatterns that can be used to detect intrusions, instead of the generic \anomaly" and\misuse" approaches.

130Pattern matching has yielded an e�cient mechanism for the detection of intrusionsof common interest as evidenced by our experimental results in Chapter 6. Ourimplementation also suggests a new way of structuring intrusion detection systems,namely as libraries that can be embedded in applications and that use a call-backmechanism to invoke application functions. We believe that this thesis has provideda new approach to intrusion detection and hope that it will spur further work in thisdirection.

BIBLIOGRAPHY

131BIBLIOGRAPHY[8lg] 8lgm electronic mailing list. Can be retrieved from fileserv@bagpuss.de-mon.co.uk.[A+76] R. P. Abbott et al. Security Analysis and Enhancements of ComputerOperating Systems. Technical Report NBSIR 76-1041, Institute for Com-puter Science and Technology, National Bureau of Standards, 1976.[Aho90] Alfred V. Aho. Algorithms for Finding Patterns in Strings. In J. vanLeeuwen, editor, Handbook of Theoretical Computer Science { VOL A,Chapter 5, pages 256{300. Elsevier Science Publishers, 1990.[AHU74] Alfred V. Aho, John E. Hopcroft, and Je�rey D. Ullman. The Designand Analysis of Computer Algorithms. Addison-Wesley, Reading, Mas-sachusetts, 1974.[And80] J. P. Anderson. Computer Security Threat Monitoring and Surveillance.Technical report, James P Anderson Co., Fort Washington, Pennsylvania,April 1980.[Asl95] Taimur Aslam. A Taxonomy of Security Faults in the Unix OperatingSystem. Master's Thesis, Purdue University, Department of ComputerSciences, August 1995.[ASU86] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: Principles,Techniques, and Tools. Addison-Wesley, Reading, Massachusetts, 1986.[Bez83] Boris Bezier. Software Testing Techniques. Electrical Engineering/Com-puter Science and Engineering Series. Van Nostrand Reinhold, 1983.[Bib77] K. J. Biba. Integrity Constraints for Secure Computer Systems. Techni-cal Report ESD-TR-76-372, USAF Electronic Systems Division, Bedford,Massachussetts, April 1977.[Bis83] Matthew Bishop. Security Problems with the UNIX Operating System.Con�dential Technical Memo, Department of Computer Sciences, PurdueUniversity, January 1983.

132[Bis95] Mathew Bishop. UNIX Security: Threats and Solutions. Invited talkgiven at the 1995 System Administration, Networking, and Security Con-ference, April 24{29, 1995.[BK88] David S. Bauer and Michael E. Koblentz. NIDX { An Expert System forReal-Time Network Intrusion Detection. In Proceedings of the ComputerNetworking Symposium, pages 98{106. IEEE, New York, New York, April1988.[BK89] Morris I. Bolsky and David G. Korn. The KornShell Command andProgramming Language. Prentice Hall, Englewood Cli�s, New Jersey,1989.[BL73] D. E. Bell and L. J. LaPadula. Secure Computer Systems: Mathemat-ical Foundations and Model. Technical Report M74-244, The MITRECorporation, Bedford, Massachussetts, May 1973.[BN84] Andrew D. Birrell and Bruce Jay Nelson. Implementing Remote Proce-dure Calls. ACM Transactions on Computer Systems, 2(1):39{59, Febru-ary 1984.[Bug] Bugtraq electronic mailing list. Issued electronically from bugtraq@cri-melab.com.[BYG89] R. A. Baeza-Yates and G. H. Gonnet. A New Approach to Text Search-ing. In Proceedings of the 12th Annual ACM-SIGIR Conference on Infor-mation Retrieval, pages 168{175, Cambridge, Massachusetts, June 1989.[CER] CERT Advisories. Available by anonymous ftp from cert.sei.cmu.edu:/p-ub/cert advisories.[Cha91] Eugene Charniak. Bayesian Networks Without Tears. AI Magazine,pages 50{63, Winter 1991.[Che88] K. Chen. An Inductive Engine for the Acquisition of Temporal Knowl-edge. Ph.D. Thesis, Department of Computer Science, University of Illi-nois at Urbana-Champaign, 1988.[CHS91] Peter Cheeseman, Robin Hanson, and John Stutz. Bayesian Classi�-cation with Correlation and Inheritance. In 12th International JointConference on Arti�cial Intelligence, August 1991.[CKS+88] Peter Cheeseman, James Kelly, Matthew Self, John Stutz, Will Taylor,and Don Freeman. Autoclass: A Bayesian Classi�cation System. InProceedings of the Fifth International Conference on Machine Learning,pages 54{64. Morgan Kaufmann, June 1988.

133[Coh87] Fred Cohen. Computer Viruses { Theory and Experiments. Computers& Security, 6:22{35, 1987.[Com91] Douglas E. Comer. Internetworking with TCP/IP, Volume I. PrenticeHall, Englewood Cli�s, New Jersey, Second edition, 1991.[CS70] J. Cocke and J. T. Schwartz. Programming Languages and Their Com-pilers: Preliminary Notes, Second Revised Version. Courant Institute ofMathematical Sciences, New York, 1970.[CW89] David D. Clark and David A. Wilson. Evolution of a Model for Com-puter Integrity. Report of the Invitational Workshop on Data Integrity,September 1989.[Den82] Dorothy E. Denning. Cryptography and Data Security. Addison-Wesley,Reading, Massachusetts, 1982.[Den87] Dorothy E. Denning. An Intrusion-Detection Model. In IEEE Transac-tions on Software Engineering, Number 2, page 222, February 1987.[Doa92] Justin Doak. Intrusion Detection: The Application of Feature Selection{ A Comparison of Algorithms, and the Application of a Wide AreaNetwork Analyzer. Master's Thesis, Department of Computer Science,University of California, Davis, 1992.[FHRS90] Kevin L. Fox, Ronda R. Henning, Jonathan H. Reed, and Richard Si-monian. A Neural Network Approach Towards Intrusion Detection. InProceedings of the 13th National Computer Security Conference, pages125{134, Washington, DC, October 1990.[FL88] Charles N. Fischer and Richard J. LeBlanc. Crafting a Compiler. Benj-amin/Cummings, Menlo Park, California, 1988.[Fly66] M. J. Flynn. Very High-Speed Computing Systems. Proceedings of theIEEE, 54(12), December 1966.[For82] Charles L. Forgy. RETE: A Fast Algorithm for the Many Pattern/ManyObject Pattern Match Problem. In Arti�cial Intelligence, Volume 19.1982.[FS90] Daniel Farmer and Eugene H. Spa�ord. The COPS Security CheckerSystem. In Proceedings of the Summer Usenix Conference, pages 165{170, June 1990.[Gia92] Joseph C. Giarratano. Clips Version 5.1 User's Guide. NASA, Lyn-don B. Johnson Space Center, Information Systems Directorate, SoftwareTechnology Branch, March 1992.

134[GL91] T. D. Garvey and T. F. Lunt. Model based Intrusion Detection. InProceedings of the 14th National Computer Security Conference, pages372{385, October 1991.[GS91] Simson Gar�nkel and Gene Spa�ord. Practical Unix Security. O'Reillyand Associates, Sebastopol, California, 1991.[HCMM92] Naji Habra, B. Le Charlier, A. Mounji, and I. Mathieu. ASAX: Soft-ware Architecture and Rule-based Language for Universal Audit TrailAnalysis. In Proceedings of ESORICS 92, Toulouse, France, November1992.[HLM91] L. T. Heberlein, K. N. Levitt, and B. Mukherjee. A Method To DetectIntrusive Activity in a Networked Environment. In Proceedings of the14th National Computer Security Conference, pages 362{371, October1991.[HLMS90] R. Heady, G. Luger, A. Maccabe, and M. Servilla. The Architecture ofa Network Level Intrusion Detection System. Technical report, Depart-ment of Computer Science, University of New Mexico, August 1990.[Hoa74] C. A. R. Hoare. Monitors: An Operating System Structuring Concept.Communications of the ACM, 17(10):549{557, 1974.[HP90] John L. Hennessy and David Patterson. Computer Architecture { AQuantitative Approach. Morgan Kaufman Publishers, Inc., San Mateo,California, 1990.[HU79] John E. Hopcroft and Je�rey D. Ullman. Introduction to AutomataTheory, Languages, and Computation. Addison Wesley, Reading, Mas-sachusetts, 1979.[Ilg92] Koral Ilgun. USTAT: A Real-Time Intrusion Detection System for UNIX.Master's Thesis, Computer Science Department, University of California,Santa Barbara, July 1992.[Jen92] Kurt Jensen. Coloured Petri Nets { Basic Concepts I. Springer Verlag,New York, 1992.[Kni93] James Robert Knight. Discrete Pattern Matching Over Sequences andInterval Sets. Ph.D. Thesis, Department of Computer Science, Universityof Arizona, August 1993.[Koz92] John Koza. Genetic Programming: On the Programming of Computersby means of Natural Selection. MIT Press, Cambridge, Massachusetts,1992.

135[KS] Sandeep Kumar and Eugene Spa�ord. A Taxonomy of Common Com-puter Security Vulnerabilities Based on their Method of Detection. (inpreparation).[KS94] Sandeep Kumar and Eugene Spa�ord. An Application of Pattern Match-ing in Intrusion Detection. Technical Report 94-013, Department of Com-puter Sciences, Purdue University, March 1994.[KS95] Sandeep Kumar and Eugene H. Spa�ord. A Software Architecture toSupport Misuse Intrusion Detection. Technical Report CSD{TR{95{009,Department of Computer Sciences, Purdue University, March 1995.[Lam69] B. W. Lampson. Dynamic Protection Structures. In Proceedings of theAFIPS Fall Joint Computer Conference, pages 27{38, 1969.[Lam71] B. W. Lampson. Protection. In Proceedings of the Fifth Annual Prince-ton Conference on Information Science Systems, pages 437{443, 1971.Reprinted in Operating System Review, Volume 8, Number 1 (January1974), pages 18{24.[Lan92] Linda Lankewicz. A Non-Parametric Pattern Recognition to AnomalyDetection. Ph.D. Thesis, Tulane University, Department of ComputerScience, 1992.[LBMC93] Carl E. Landwehr, Alan R. Bull, John P. McDermott, and William S.Choi. A Taxonomy of Computer Program Security Flaws, with Exam-ples. Technical Report NRL/FR/5542{93{9591, Naval Research Labora-tory, Washington, DC 20375{5320, November 1993.[Lin75] Richard R. Linde. Operating System Penetration. In National ComputerConference, pages 361{368, 1975.[LJL+89] Teresa F. Lunt, R. Jagannathan, Rosanna Lee, Alan Whitehurst, andSherry Listgarten. Knowledge based Intrusion Detection. In Proceedingsof the Annual AI Systems in Government Conference, Washington, DC,March 1989.[LS87] Dennis Longley and Michael Shain. Data and Computer Security: Dic-tionary of Standards, Concepts, and Terms. Stockton Press, New York,New York, 1987.[LTG+92] T. F. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, P. G. Neumann,H. S. Javitz, A. Valdes, and T. D. Garvey. A Real-Time Intrusion Detec-tion Expert System (IDES) { Final Technical Report. Computer ScienceLaboratory, SRI International, Menlo Park, California, February 1992.[Lun93] Teresa F Lunt. A Survey of Intrusion Detection Techniques. Computers& Security, 12(4):405{418, June 1993.

136[LV89] G. E. Liepins and H. S. Vaccaro. Anomaly Detection: Purpose andFramework. In Proceedings of the 12th National Computer Security Con-ference, pages 495{504, October 1989.[MM89] Eugene W. Myers and Webb Miller. Approximate Matching of RegularExpressions. In Bulletin of Mathematical Biology, Volume 51, pages 5{37,1989.[MMA] Arthur B. Maccabe, Ruth McDonald, and Vinay Anand. Learning Howto Characterize Normal Behavior in Local Area Networks.[Moi] Abha Moitra. Real-Time Audit Log Viewer And Analyzer.[oDS85] Department of Defense Standard. Department of Defense Trusted Com-puter System Evaluation Criteria. Number DOD 5200.28-STD. U.S. Gov-ernment Printing O�ce, December 1985.[Par90] Graham D. Parrington. Reliable Distributed Programming in C++: TheArjuna Approach. In USENIX 1990 C++ Conference Proceedings, pages37{50, 1990.[Pea88] Judea Pearl. Probabilistic Reasoning in Expert Systems. Morgan Kauf-man, San Mateo, California, 1988.[Pet92] Charles Petzold. Programming Windows 3.1. Microsoft Press, Redmond,Washington, 1992.[PK92] Phillip A. Porras and Richard A. Kemmerer. Penetration State Transi-tion Analysis { A Rule-Based Intrusion Detection Approach. In EighthAnnual Computer Security Applications Conference, pages 220{229.IEEE Computer Society press, IEEE Computer Society press, Novem-ber 30 { December 4, 1992.[Pow95] Richard Power. Current and Future Danger. Computer Security Insti-tute, San Francisco, California, 1995.[Pro94] Paul Proctor. Audit Reduction and Computer Misuse Detection. Talkgiven at the Sixth Annual Computer Security Incident Handling Work-shop, 1994.[Rag93] Stephen A. Rago. UNIX System V Network Programming. Addison-Wesley, Reading, Massachusetts, 1993.[RS91] Deborah Russell and G. T. Gangemi Sr. Computer Security Basics.O'Reilly & Associates, Inc., Sebastopol, California, December 1991.

137[SBD+91] S. R. Snapp, J. Brentano, G. V. Dias, T. L. Goan, L. T. Heberlein,C. Ho, K. N. Levitt, B. Mukherjee, S. E. Smaha, T. Grance, D. M.Teal, and D. Mansur. DIDS (Distributed Intrusion Detection System) -Motivation, Architecture, and an Early Prototype. In Proceedings of the14th National Computer Security Conference, pages 167{176, October1991.[SG91] Shiuhpyng Winston Shieh and Virgil D. Gligor. A Pattern OrientedIntrusion Model and its Applications. In Proceedings of the 1991 IEEEComputer Society Symposium on Research in Security and Privacy, pages327{342, May 1991.[SG94] Abraham Silberschatz and Peter B. Galvin. Operating System Concepts.Addison-Wesley, Reading, Massachusetts, Fourth edition, 1994.[SH82] John F. Schoch and Jon A. Hupp. The \Worm" Programs | EarlyExperience with a Distributed Computation. Communications of theACM, 25(3):172{180, March 1982.[Sma88] Stephen E. Smaha. Haystack: An Intrusion Detection System. In FourthAerospace Computer Security Applications Conference, pages 37{44, Tra-cor Applied Science Inc., Austin, Texas, December 1988.[Sma92] Steve Smaha. Questions about CMAD. In Proceedings of the Workshopon Future Directions in Computer Misuse and Anomaly Detection, pages17{21, Davis, California, March 1992.[Sma95] Steve Smaha. Talk given at the third Computer Misuse and AnomalyDetection Workshop (CMAD III) in Sonoma, California, January 1995.[Spa89] Eugene Spa�ord. Crisis and Aftermath. Communications of the ACM,32(6):678{687, June 1989.[SS92] Steven R. Snapp and Stephen E. Smaha. Signature Analysis Model Def-inition and Formalism. In Proceedings of the Fourth Workshop on Com-puter Security Incident Handling, Denver, Colorado, August 1992.[SSH93] David R. Sa�ord, Douglas L. Schales, and David K. Hess. The TAMUSecurity Package: An Outgoing Response to Internet Intruders in anAcademic Environment. In Proceedings of the Fourth USENIX SecuritySymposium, pages 91{118, Santa Clara, California, 1993.[SSHW88] M. Sebring, E. Shellhouse, M. Hanna, and R. Whitehurst. Expert Sys-tems in Intrusion Detection: A Case Study. In Proceedings of the 11thNational Computer Security Conference, October 1988.[Sto88] Cli�ord Stoll. Stalking the Wily Hacker. Communications of the ACM,31(5):484{497, May 1988.

138[Str91] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley,Reading, Massachusetts, Second edition, 1991.[Sun93a] SunPro, Mountain View, California. SPARCompiler C++ 4.0 Tools.h++Class Library, December 1993. Part No: 801-4317-10.[Sun93b] SunSoft, Mountain View, California. Solaris SHIELD Basic SecurityModule Revision A, October 1993. Part No: 801-5285-10.[TCL90] Henry S. Teng, Kaihu Chen, and Stephen C Lu. Security Audit TrailAnalysis Using Inductively Generated Predictive Rules. In Proceedingsof the Sixth Conference on Arti�cial Intelligence Applications, pages 24{29, Piscataway, New Jersey, March 1990. IEEE.[Tho87] Ken Thompson. Reections on Trusting Trust. Communications of theACM, 1(3):21{31, July 1987.[Wet93] Bradford R. Wetmore. Paradigms for the Reduction of Audit Trails.Master's Thesis, University of California, Davis, 1993.[WF74] Robert A. Wagner and Michael J. Fischer. The String-to-String Cor-rection Problem. In Journal of the ACM, Volume 21, pages 168{178,January 1974.[Win92] Patrick HenryWinston. Arti�cial Intelligence. AddisonWesley, Reading,Massachusetts, Third edition, 1992.[WM91] Sun Wu and Udi Manber. Fast Text Searching With Errors. Techni-cal Report TR 91-11, Department of Computer Science, University ofArizona, 1991.

APPENDIX

139APPENDIXSOME EXAMPLE INTRUSION PATTERNSHere we describe some signature patterns that we used while deriving performanceresults for the prototype implementation. These signatures are translated into C++code that do the matching. We have included the translated C++ code for the �rstpattern. The translation of other patterns is similar and is omitted for brevity.1. Representing Clarke Wilson monitoring triples [CW89]. The purpose of thesetriples is described in Section 3.2.1. Figure 3.3 is a pictorial representation ofthe signature.1 pattern CW "Clarke Wilson Monitoring Triples" priority 102 int PID, EUID; /* pattern local vars, may be initialized. */3 str PROG, FILE;PROG is a token local variable that stores the program name corresponding tothe process id PID, FILE stores the �le name that PROG opens for writing. EUIDstores the e�ective user id of PROG.4 state start, after_exec, violation;5 post_action {6 printf("CWilson violated for file %s, PID %d, EUID %d\n",7 FILE, PID, EUID);8 }The post action is code that is executed when the pattern is successfully matched.9 neg invariant first_inv10 state start_inv, final;1112 trans exit(EXIT)13 <- start_inv;

14014 -> final;15 |_ { PID = this[PID]; }16 end exit;17 end first_inv;The invariant speci�es the garbage collection of partial matches once the processhas exited. What follows is the pattern description. The pattern matches allEXECVE records to monitor the creation of all processes in the system. Oncea process is created, the pattern attempts to match all possible ways that theprocess could modify a �le. These could be:� Open a �le to read and create it if it doesn't exist. This is handled intransition mod1.� Open a �le to read and truncate if it exists. Create the �le if it doesn'texist. This is handled in transition mod2.�and so on for all the other valid audit record types involving an openthat might change the �le.� Delete a �le. This is handled in transition mod12.18 trans exec(EXECVE) /* EXECVE is the event type */19 <- start;20 -> after_exec;21 |_ { this[ERR] = 0 && PID = this[PID] && PROG = this[PROG] &&22 EUID = this[EUID]; }23 end exec;2425 trans mod1(OPEN_RC)26 <- after_exec;27 -> violation;28 |_ { this[ERR] = 0 && PID = this[PID] && FILE = this[OBJ] &&29 disallowed(EUID, PROG, FILE); }30 end mod1;3132 trans mod2(OPEN_RTC)33 <- after_exec;34 -> violation;35 |_ { this[ERR] = 0 && PID = this[PID] && FILE = this[OBJ] &&36 disallowed(EUID, PROG, FILE); }

14137 end mod2;3839 trans mod3(OPEN_RT)40 <- after_exec;41 -> violation;42 |_ { this[ERR] = 0 && PID = this[PID] && FILE = this[OBJ] &&43 disallowed(EUID, PROG, FILE); }44 end mod3;4546 trans mod4(OPEN_RW)47 <- after_exec;48 -> violation;49 |_ { this[ERR] = 0 && PID = this[PID] && FILE = this[OBJ] &&50 disallowed(EUID, PROG, FILE); }51 end mod4;5253 trans mod5(OPEN_RWC)54 <- after_exec;55 -> violation;56 |_ { this[ERR] = 0 && PID = this[PID] && FILE = this[OBJ] &&57 disallowed(EUID, PROG, FILE); }58 end mod5;5960 trans mod6(OPEN_RWTC)61 <- after_exec;62 -> violation;63 |_ { this[ERR] = 0 && PID = this[PID] && FILE = this[OBJ] &&64 disallowed(EUID, PROG, FILE); }65 end mod6;6667 trans mod7(OPEN_RWT)68 <- after_exec;69 -> violation;70 |_ { this[ERR] = 0 && PID = this[PID] && FILE = this[OBJ] &&71 disallowed(EUID, PROG, FILE); }72 end mod7;7374 trans mod8(OPEN_W)75 <- after_exec;76 -> violation;77 |_ { this[ERR] = 0 && PID = this[PID] && FILE = this[OBJ] &&78 disallowed(EUID, PROG, FILE); }79 end mod8;8081 trans mod9(OPEN_WC)82 <- after_exec;

14283 -> violation;84 |_ { this[ERR] = 0 && PID = this[PID] && FILE = this[OBJ] &&85 disallowed(EUID, PROG, FILE); }86 end mod9;8788 trans mod10(OPEN_WTC)89 <- after_exec;90 -> violation;91 |_ { this[ERR] = 0 && PID = this[PID] && FILE = this[OBJ] &&92 disallowed(EUID, PROG, FILE); }93 end mod10;9495 trans mod11(OPEN_WT)96 <- after_exec;97 -> violation;98 |_ { this[ERR] = 0 && PID = this[PID] && FILE = this[OBJ] &&99 disallowed(EUID, PROG, FILE); }100 end mod11;101102 trans mod12(UNLINK)103 <- after_exec;104 -> violation;105 |_ { this[ERR] = 0 && PID = this[PID] && FILE = this[OBJ] &&106 disallowed(EUID, PROG, FILE); }107 end mod12;108 end CW;The translation of the signature into C++ code by the prototype results in thefollowing:1 #include <stream.h> // -*- Mode: c++; truncate-lines: t; -*-23 #include <assert.h>4 #include <fstream.h>5 #include <stdlib.h>6 #include "utils.h"7 #include "C2_Server.h"8 #include <stdarg.h> // va_list, va_start...The token local variables of the pattern become private data members of theclass C2 CW Token. The class name C2 CW Token is a concatenation of threeterms, C2, which signi�es that the pattern matches against a C2 audit trail, CW,

143for the name of the pattern, and Token as a mnemonic. An application can useseveral instantiations of the library simultaneously such as an instantiation forIP datagrams and an instantiation for C2 audit trails. The naming scheme wehave used allows the pattern name space to be local to the event stream thepattern is matched against. This allows the speci�cation of the same patternname for a pattern that matches against di�erent event streams.The enum field_names allows token local variables to be referred to symboli-cally.9 class C2_CW_Token10 {11 int PID;12 int EUID;13 Str PROG;14 Str FILE;15 enum field_names16 { /* enum values must start at 1 (?) */17 field_PID = 1,18 field_EUID = 2,19 field_PROG = 3,20 field_FILE = 421 };Because the semantics of token local variables distinguish between uninstan-tiated and instantiated variable states, a bit vector is maintained that storesthis value for each token local variable. A value of 1 for the bit indicates thatthe variable is instantiated. The following mapping between field num and thearray index in instantiated field helps to understand the expression usedto index it. As field num varies from 1..32,33..64 the index into the arrayinstantiated field varies as 0..0,1..1. This suggests the indexing expres-sion (x%32 == 0) ? (x=32 � 1) : (x=32). The corresponding bit within theindex is then field num� 1%32.22 unsigned int instantiated[1]; // array size to store 4 fields23 int instantiated_field(int field_num)24 {

14425 assert(field_num <= 4);26 return instantiated[field_num % (sizeof(int) * 8) == 0 ?27 field_num / (sizeof(int) * 8) - 1 :28 field_num / (sizeof(int) * 8)] &29 (1 << (field_num - 1) % (sizeof(int) * 8));30 }3132 void set_instantiated_field(int field_num)33 {34 assert(field_num <= 4);35 return instantiated[field_num % (sizeof(int) * 8) == 0 ?36 field_num / (sizeof(int) * 8) - 1 :37 field_num / (sizeof(int) * 8)] |=38 (1 << (field_num - 1) % (sizeof(int) * 8));39 }40 public:Each token in the pattern is linked on two doubly-linked lists. One list groupsall the tokens resident in a pattern state. This corresponds to the member data�elds next_state and prev_state. The other links all the tokens derived fromthe root token that was duplicated from the start state. When the invariantis satis�ed, all these tokens are destroyed. This is called the sibling list andcorresponds to the member data �elds next_sib and prev_sib. Both the listsare intrusive [Str91, Chapter 8].41 C2_CW_Token *next_sib, *prev_sib;4243 /* doubly linked list of tokens resident in a state */44 C2_CW_Token *next_state, *prev_state;4546 static C2_CW_Token *unify_toks(int num_toks,C2_CW_Token*...);4748 C2_CW_Token()49 {50 int i;51 for (i = 0; i < 1; i++)52 instantiated[i] = 0;53 next_sib = prev_sib = NULL;54 next_state = prev_state = NULL;55 }

145Assignment to token local variables involves determining if the variable hasalready been instantiated. If the variable has not already been instantiated,assignment is normal. If the variable has been instantiated, assignment is thesame as equality. Assignment in our model is implemented as uni�cation.56 int assign_PID(int val)57 {58 return instantiated_field(field_PID) ? (PID == val) :59 (PID = val, set_instantiated_field(field_PID), 1);60 }6162 int get_PID()63 {64 return PID;65 }6667 int assign_EUID(int val)68 {69 return instantiated_field(field_EUID) ?70 (EUID == val) :71 (EUID = val, set_instantiated_field(field_EUID), 1);72 }7374 int get_EUID()75 {76 return EUID;77 }7879 int assign_PROG(Str val)80 {81 return instantiated_field(field_PROG) ?82 (strcmp(PROG, val) == 0) :83 (PROG = crcp(val),84 set_instantiated_field(field_PROG), 1);85 }8687 Str get_PROG()88 {89 return PROG;90 }9192 int assign_FILE(Str val)93 {94 return instantiated_field(field_FILE) ?95 (strcmp(FILE, val) == 0) :

14696 (FILE = crcp(val),97 set_instantiated_field(field_FILE), 1);98 }99100 Str get_FILE()101 {102 return FILE;103 }When a token is duplicated, it is not placed in any list by default. That is, itis placed neither in any state, nor is it associated with any root token.104 C2_CW_Token *dup()105 {106 C2_CW_Token *t = new C2_CW_Token;107 assert(t != NULL);108 *t = *this;109 t->next_sib = t->prev_sib = NULL;110 t->next_state = t->prev_state = NULL;111 return t;112 }This function duplicates a token tok and puts the duplicate in the same siblingqueue as tok.113 C2_CW_Token *dup_n_link_after(C2_CW_Token * tok)114 {115 C2_CW_Token *t = dup();116 t->next_sib = tok->next_sib;117 t->prev_sib = tok;118 tok->next_sib = t;119 t->next_state = t->prev_state = NULL;120 if (t->next_sib != NULL)121 t->next_sib->prev_sib = t;122 return t;123 }124125 ~C2_CW_Token()126 {127 }This function deletes a token from its state list. Each token knows which stateit belongs to (not strictly true) and can therefore delete itself from that list.

147128 int delete_from_state_list()129 {130 /* there's always a dummy element in the list, therefore131 there's always an element before this one in the132 linked list */133 prev_state->next_state = next_state;134 if (next_state != NULL)135 next_state->prev_state = prev_state;136137 return 1;138 }This deletes a token from its sibling list.139 int delete_from_sibling_list()140 {141 /* this is a pure doubly linked list, therefore there's not142 always an element before or after this one in the143 linked list */144 if (prev_sib != NULL)145 prev_sib->next_sib = next_sib;146 if (next_sib != NULL)147 next_sib->prev_sib = prev_sib;148149 return 1;150 }151152 int del()153 {154 delete_from_state_list();155 delete_from_sibling_list();156 delete this;157158 return 1;159 }160161 int delete_all_siblings()162 {163 /* as above + walk down the sibling chain & delete every164 token. These tokens might also be in state lists from165 which they must be removed before being deleted */166 C2_CW_Token *curr, *prev;167168 /* go to one end of the linked list */169 for (prev = this; prev->next_sib != NULL;170 prev = prev->next_sib);

148171 for (curr = prev->prev_sib; curr != NULL;172 prev = curr, curr = curr->prev_sib)173 {174 prev->delete_from_state_list();175 delete prev;176 }177178 prev->delete_from_state_list();179 delete prev;180181 return 1;182 }183184 int dbg()185 {186 cerr << "PID = ";187 if (instantiated_field(field_PID))188 cerr << PID;189 else190 cerr << "(unknown)";191 cerr << ".";192193 cerr << "EUID = ";194 if (instantiated_field(field_EUID))195 cerr << EUID;196 else197 cerr << "(unknown)";198 cerr << ".";199200 cerr << "PROG = ";201 if (instantiated_field(field_PROG))202 cerr << PROG;203 else204 cerr << "(unknown)";205 cerr << ".";206207 cerr << "FILE = ";208 if (instantiated_field(field_FILE))209 cerr << FILE;210 else211 cerr << "(unknown)";212 cerr << ".";213214 cerr << endl;215 return 1;216 }

149217218 };A state contains two linked lists, one to store the tokens currently present in it(toktab), the other, (incoming toks), to store the tokens that will enter thestate when the pattern is clocked. The simulation of the pattern takes placein discrete steps. At each step, all the enabled transitions are tested againstthe incoming event to determine if some tokens satisfy the transition guard andneed to be duplicated and moved to successor states of the transition. Then allsuch successful tokens across all the transitions are moved into successor statestogether. This moving is done by function clock() for each state.219 class C2_CW_State : public State220 {221 public:222 PDL_Ilist <C2_CW_Token> toktab; /* incorporate token replace-223 ment policy here */224 PDL_Ilist <C2_CW_Token> incoming_toks;225 ~C2_CW_State()226 {227 }228229 int clock()230 {231 if (incoming_toks.empty())232 return 1;233234 /* Move all the tokens in incoming_toks to toktab235 in one fell swoop */236 toktab.push_chain(incoming_toks.chain());237 incoming_toks.reset();238 return 1;239 }240241 int dbg()242 {243 C2_CW_Token *t;244 cerr << "Tokens in state are:\n";245 for(t = toktab.first(); t != NULL; t = t->next_state)246 t->dbg();247 cerr << "\nTokens awaiting entry into the state are:\n";248 for (t = incoming_toks.first(); t != NULL;

150249 t = t->next_state) t->dbg();250 return 1;251 }252253 };This class implements the structure of the pattern. The pattern has �ve states,including invariant states: start, after_exec, violation, start_inv andfinal. The data member serv points to the server which dispatches events toit. When the pattern is created, it requests the server to queue it on each eventqueue that is the label of some transition in the pattern. This tells the server todispatch those events to the pattern. The linking on the server queues is doneby means of intrusive lists, i.e. the links are provided by the pattern. Thispattern requests for the events EXECVE, OPEN_RC, OPEN_RTC, OPEN_RT, OPEN_RW,OPEN_RWC, OPEN_RWTC,OPEN_RWT,OPEN_W, OPEN_WC,OPEN_WTC, OPEN_WT, UNLINK,EXIT.254 class C2_CW : public C2_Pattern255 {256 C2_CW_State start+, after_exec, violation, start_inv, final;257258 C2_Pattern *next_EXECVE, *next_OPEN_RC, *next_OPEN_RTC,259 *next_OPEN_RT, *next_OPEN_RW, *next_OPEN_RWC,260 *next_OPEN_RWTC, *next_OPEN_RWT, *next_OPEN_W,261 *next_OPEN_WC, *next_OPEN_WTC, *next_OPEN_WT,262 *next_UNLINK, *next_EXIT;263 C2_Server *serv;264265 public:266 void print_dbg()267 {268 cerr << "I am in pattern C2_CW" << endl;269 cerr << "State start:" << endl;270 start.dbg();271 cerr << "State after_exec:" << endl;272 after_exec.dbg();273 cerr << "State violation:" << endl;274 violation.dbg();275 cerr << "State start_inv:" << endl;276 start_inv.dbg();

151277 cerr << "State final:" << endl;278 final.dbg();279280 }281282 void PatProc(Event * e);283 void restart(void);284 int num_toks();285 char *name()286 {287 return "CW";288 }289290 C2_CW(C2_Server * S)291 {292 serv = S;293 start.toktab.push(new C2_CW_Token);294 S->thread_on_events(this, 14, C2event_EXECVE,295 C2event_OPEN_RC, C2event_OPEN_RTC, C2event_OPEN_RT,296 C2event_OPEN_RW, C2event_OPEN_RWC, C2event_OPEN_RWTC,297 C2event_OPEN_RWT, C2event_OPEN_W, C2event_OPEN_WC,298 C2event_OPEN_WTC, C2event_OPEN_WT, C2event_UNLINK,299 C2event_EXIT);300 }301 };This function takes an arbitrary number of tokens and uni�es them to get anew \uni�ed" token. Let the token have m variables v1 : : : vm. By uni�cation(denoted here by \) of tokens t1 : : : tn we mean that 8vi, if any vi has beeninstantiated to a value, then all tis must have the same value for vi. The uni�edtoken has that value for vi.302 C2_CW_Token *C2_CW_Token::unify_toks(int num_toks,303 C2_CW_Token *tok1...)304 {305 typedef C2_CW_Token *C2_CW_TokenP;306 static C2_CW_Token **tokarr = new C2_CW_TokenP[9];307 static int tokarr_sz = 9;308 int i, j;309310 if (num_toks > tokarr_sz)311 {312 /* resize the static array */

152313 C2_CW_Token **t = new C2_CW_TokenP[num_toks];314 tokarr_sz = num_toks;315 delete[] tokarr;316 tokarr = t;317 }318319 // extract the varargs into tokarr320 va_list ap;321 va_start(ap, tok1);322 for (i = 0; i < num_toks; i++)323 {324 if (i == 0)325 tokarr[i] = tok1;326 else327 tokarr[i] = va_arg(ap, C2_CW_TokenP);328 }329 va_end(ap);330331 C2_CW_Token *newtok = new C2_CW_Token;332 // try to unify the token local var symtab[i]->symname()333 for (i = 0; i < num_toks; i++)334 {335 /*336 * find the first token with the instantiated local var337 * symtab[i]->symname()338 */339 if (tokarr[i]->instantiated_field(field_PID))340 break;341 }342 if (i < num_toks)343 {344 for (j = i + 1; j < num_toks; j++)345 if (tokarr[j]->instantiated_field(field_PID) &&346 tokarr[i]->PID != tokarr[j]->PID)347 {348 delete newtok;349 return 0;350 }351 }352 else353 {354 /* this field is already marked uninstantiated by the355 class constructor. It unifies successfully across all356 tokens */357 }358

153359 // try to unify the token local var symtab[i]->symname()360 for (i = 0; i < num_toks; i++)361 {362 /*363 * find the first token with the instantiated local var364 * symtab[i]->symname()365 */366 if (tokarr[i]->instantiated_field(field_EUID))367 break;368 }369 if (i < num_toks)370 {371 for (j = i + 1; j < num_toks; j++)372 if (tokarr[j]->instantiated_field(field_EUID) &&373 tokarr[i]->EUID != tokarr[j]->EUID)374 {375 delete newtok;376 return 0;377 }378 }379 else380 {381 /* this field is already marked uninstantiated by the382 class constructor. It unifies successfully across all383 tokens */384 }385386 // try to unify the token local var symtab[i]->symname()387 for (i = 0; i < num_toks; i++)388 {389 /*390 * find the first token with the instantiated local var391 * symtab[i]->symname()392 */393 if (tokarr[i]->instantiated_field(field_PROG))394 break;395 }396 if (i < num_toks)397 {398 for (j = i + 1; j < num_toks; j++)399 if (tokarr[j]->instantiated_field(field_PROG) &&400 tokarr[i]->PROG != tokarr[j]->PROG)401 {402 delete newtok;403 return 0;404 }

154405 }406 else407 {408 /* this field is already marked uninstantiated by the409 class constructor. It unifies successfully across all410 tokens */411 }412413 // try to unify the token local var symtab[i]->symname()414 for (i = 0; i < num_toks; i++)415 {416 /*417 * find the first token with the instantiated local var418 * symtab[i]->symname()419 */420 if (tokarr[i]->instantiated_field(field_FILE))421 break;422 }423 if (i < num_toks)424 {425 for (j = i + 1; j < num_toks; j++)426 if (tokarr[j]->instantiated_field(field_FILE) &&427 tokarr[i]->FILE != tokarr[j]->FILE)428 {429 delete newtok;430 return 0;431 }432 }433 else434 {435 /* this field is already marked uninstantiated by the436 class constructor. It unifies successfully across all437 tokens */438 }439440 return newtok;441 }442443 void C2_CW::PatProc(Event * e)444 {445 int i, j, succ;446447 C2_CW_Token *unified_tok, *unified_evaled_tok, *tok;

155This table contains pointers to all the tokens that reside in nodup states and thatsuccessfully participated in a transition �ring. These tokens must be destroyedbefore exiting the function.448 static PTable <C2_CW_Token *> toks_in_nodup_states;449 C2_CW_Token *i0, *i1, *i2, *i3, *i4, *i5, *i6, *i7,450 *i8, *i9, *i10;451 switch (e->type())452 {All the transitions in the pattern of type EXECVE will be exercised in this switchcase. The pattern has only one such transition, named exec. There's a pointerdowncast from e, of type Event, to eve of type C2event EXECVE.453 case C2event_EXECVE:454 {455 C2Event_EXECVE *eve = (C2Event_EXECVE *) e;456The input state of transition exec is start. The transition has only one inputstate.457 // Transition exec458 for(i0 = start.toktab.first(); i0 != NULL;459 i0 = i0->next_state)460 {461 unified_tok = i0->dup();462463 /* eval this guard for this token and event */464 succ = ((((eve->ERR() == 0) &&465 unified_tok->assign_PID(eve->PID())) &&466 unified_tok->assign_PROG(eve->PROG())) &&467 unified_tok->assign_EUID(eve->EUID()));468469 if (!succ)470 {471 delete unified_tok;472 continue;473 }474 else475 unified_evaled_tok = unified_tok;476

156477 /* put a copy of a succ token in every out state of478 this transition */479 after_exec.incoming_toks.push(480 unified_evaled_tok->dup_n_link_after(481 unified_evaled_tok));Because this transition indicates the beginning of a match, duplicates of itssuccessful token are also placed in the start state of each invariant.482 /* this transition has one of its inputs from a483 start state */484 start_inv.incoming_toks.push(485 unified_evaled_tok->dup_n_link_after(486 unified_evaled_tok));487 unified_evaled_tok->delete_from_sibling_list();488 delete unified_evaled_tok;489490 }491492 toks_in_nodup_states.del_objs_uniquely();493 after_exec.clock();494 start_inv.clock();495 while ((i0 = final.toktab.first()) != NULL)496 {497 i0->delete_all_siblings();498 }499 }500 break;Similarly for all transitions labeled with the event OPEN RC.501 case C2event_OPEN_RC:502 {503 C2Event_OPEN_RC *eve = (C2Event_OPEN_RC *) e;504505 // Transition mod1506 for (i0 = after_exec.toktab.first(); i0 != NULL;507 i0 = i0->next_state)508 {509 unified_tok = i0->dup();510511 /* eval this guard for this token and event */512 succ = ((((eve->ERR() == 0) &&513 unified_tok->assign_PID(eve->PID())) &&

157514 unified_tok->assign_FILE(eve->OBJ())) &&515 disallowed(unified_tok->get_EUID(),516 unified_tok->get_PROG(),517 unified_tok->get_FILE()));518519 if (!succ)520 {521 delete unified_tok;522 continue;523 }524 else525 unified_evaled_tok = unified_tok;526527 /* put a copy of a succ token in every out state528 of this transition */529 violation.incoming_toks.push(530 unified_evaled_tok->dup_n_link_after(i0));531532 delete unified_evaled_tok;533 }534535 toks_in_nodup_states.del_objs_uniquely();536 violation.clock();537 while ((i0 = final.toktab.first()) != NULL)538 {539 i0->delete_all_siblings();540 }541 }542 break;And so on for the other transitions. We skip them for brevity.543 case C2event_OPEN_RTC:544 {545 <similarly>546 }547 break;548549 case C2event_OPEN_RT:550 {551 <similarly>552 }553 break;554555 case C2event_OPEN_RW:556 {

158557 <similarly>558 }559 break;560561 case C2event_OPEN_RWC:562 {563 <similarly>564 }565 break;566567 case C2event_OPEN_RWTC:568 {569 <similarly>570 }571 break;572573 case C2event_OPEN_RWT:574 {575 <similarly>576 }577 break;578579 case C2event_OPEN_W:580 {581 <similarly>582 }583 break;584585 case C2event_OPEN_WC:586 {587 <similarly>588 }589 break;590591 case C2event_OPEN_WTC:592 {593 <similarly>594 }595 break;596597 case C2event_OPEN_WT:598 {599 <similarly>600 }601 break;602

159603 case C2event_UNLINK:604 {605 <similarly>606 }607 break;This transition is part of the pattern invariant. Its code is similar to that of theother transitions except that tokens that are placed in the output place of thistransition end up in the invariant �nal state. A token reaching the invariant�nal state signi�es the successful matching of the invariant. This means thatfor that particular token, all its \siblings" must be destroyed. The siblings ofthis token is the equivalence class of all the tokens that descended (result ofduplicating a token, duplicating its duplicate and so on) from the root token.608 case C2event_EXIT:609 {610 C2Event_EXIT *eve = (C2Event_EXIT *) e;611612 // Transition exit613 for (i0 = start_inv.toktab.first(); i0 != NULL;614 i0 = i0->next_state)615 {616 unified_tok = i0->dup();617618 /* eval this guard for this token and event */619 succ = unified_tok->assign_PID(eve->PID());620621 if (!succ)622 {623 delete unified_tok;624 continue;625 }626 else627 unified_evaled_tok = unified_tok;628629 /* put a copy of a succ token in every out state630 of this transition */631 final.incoming_toks.push(632 unified_evaled_tok->dup_n_link_after(i0));633634 delete unified_evaled_tok;635 }

160636637 toks_in_nodup_states.del_objs_uniquely();638 final.clock();The while loop implements what was described in the previous paragraph.639 while ((i0 = final.toktab.first()) != NULL)640 {641 i0->delete_all_siblings();642 }643 }644 break;645646 } /* end switch */This is the post action. At the end of every simulation step, the �nal state ischecked for tokens. This signals a pattern match. For each such token, the postaction is executed.647 // Post Action648 for (i0 = violation.toktab.first(); i0 != NULL;649 i0 = i0->next_state)650 {651 unified_tok = i0;652 printf("CWilson violated for file %s, PID %d, EUID %d\n",653 unified_tok->get_FILE(), unified_tok->get_PID(),654 unified_tok->get_EUID());655656 // destroy the token and rm from lists657 i0->del();658 }659 }We de�ne the routine create_pattern to be of external C linkage. This pro-vides a �xed function name to call to create a pattern. When a pattern needsto be created from the application program, the the event server, for example,C2_Server, is given a �le name that contains the pattern description. The serverthen parses the pattern description into C++ code (all this code), compiles theC++ code, and dynamically links it into the application. At this point the servercreates a pattern object by looking for the function symbol create_pattern in

161the shared library just linked, and calls it. If create_pattern was not de�nedto be of external C linkage, its name would be mangled and it would be moretedious to create a new pattern object.660 extern "C"661 {662 C2_CW *create_pattern(C2_Server * S);663 }664665 C2_CW *create_pattern(C2_Server * S)666 {667 cerr << "Inside create pattern." << endl;668 return new C2_CW(S);669 }2. Privileged programs may not be permitted to follow symbolic links on opening�les for reading/writing. This signature may indirectly detect the followingexploitations:� lpr is made to dump a privileged �le to the printer through a symlink.� /bin/mail and other programs are fooled into writing to arbitrary placesbecause the name of the temporary �le they create for internal use can beguessed. A link with this temporary name can be created that points tostrange places.This pattern is very similar in structure to the previous one. The functionislink tests to see if a pathname is a link. In this de�nition, a pathname is alink if it is a symbolic link or if it is a regular �le and the link count of that �leinode is > 1.1 pattern Dont_Follow_Symlinks "" priority 72 state start, after_open;3 int PID;4 str FILE;5 post_action6 {7 printf("Privileged process %d opened link %s.\n", PID, FILE);8 }

162For any process with an e�ective uid of 0, ag all successful opens to path-names that are links. A successful operation is denoted by the conditionthis[ERR] = 0. Each of the transitions below is a di�erent way of openinga �le. The di�erence between them is the set of arguments passed to the opensystem call.9 trans open5(OPEN_R)10 <- start;11 -> after_open;12 |_ { this[ERR] = 0 && this[EUID] = 0 && islink(this[OBJ]) &&13 FILE = this[OBJ] && PID = this[PID]; }14 end open5;1516 trans open1(OPEN_RC)17 <- start;18 -> after_open;19 |_ { this[ERR] = 0 && this[EUID] = 0 && islink(this[OBJ]) &&20 FILE = this[OBJ] && PID = this[PID]; }21 end open1;2223 trans open3(OPEN_RT)24 <- start;25 -> after_open;26 |_ { this[ERR] = 0 && this[EUID] = 0 && islink(this[OBJ]) &&27 FILE = this[OBJ] && PID = this[PID]; }28 end open3;2930 trans open2(OPEN_RTC)31 <- start;32 -> after_open;33 |_ { this[ERR] = 0 && this[EUID] = 0 && islink(this[OBJ]) &&34 FILE = this[OBJ] && PID = this[PID]; }35 end open2;3637 trans open4(OPEN_RW)38 <- start;39 -> after_open;40 |_ { this[ERR] = 0 && this[EUID] = 0 && islink(this[OBJ]) &&41 FILE = this[OBJ] && PID = this[PID]; }42 end open4;4344 trans open6(OPEN_RWC)45 <- start;46 -> after_open;

16347 |_ { this[ERR] = 0 && this[EUID] = 0 && islink(this[OBJ]) &&48 FILE = this[OBJ] && PID = this[PID]; }49 end open6;5051 trans open7(OPEN_RWT)52 <- start;53 -> after_open;54 |_ { this[ERR] = 0 && this[EUID] = 0 && islink(this[OBJ]) &&55 FILE = this[OBJ] && PID = this[PID]; }56 end open7;5758 trans open8(OPEN_RWTC)59 <- start;60 -> after_open;61 |_ { this[ERR] = 0 && this[EUID] = 0 && islink(this[OBJ]) &&62 FILE = this[OBJ] && PID = this[PID]; }63 end open8;6465 trans open9(OPEN_W)66 <- start;67 -> after_open;68 |_ { this[ERR] = 0 && this[EUID] = 0 && islink(this[OBJ]) &&69 FILE = this[OBJ] && PID = this[PID]; }70 end open9;7172 trans open10(OPEN_WC)73 <- start;74 -> after_open;75 |_ { this[ERR] = 0 && this[EUID] = 0 && islink(this[OBJ]) &&76 FILE = this[OBJ] && PID = this[PID]; }77 end open10;7879 trans open11(OPEN_WT)80 <- start;81 -> after_open;82 |_ { this[ERR] = 0 && this[EUID] = 0 && islink(this[OBJ]) &&83 FILE = this[OBJ] && PID = this[PID]; }84 end open11;8586 trans open12(OPEN_WTC)87 <- start;88 -> after_open;89 |_ { this[ERR] = 0 && this[EUID] = 0 && islink(this[OBJ]) &&90 FILE = this[OBJ] && PID = this[PID]; }91 end open12;92

16493 end Dont_Follow_Symlinks;3. Executing a link to a setuid shell script through a link that appears to the shellas an argument.Basename is an external function de�ned in the application that returns the �lepart of a pathname.1 extern str Basename(str);2 pattern Shell_Script_Attack "ln setid_script -x; -x" priority 73 state start, after_exec;4 int RUID;5 str PROG;67 post_action {8 printf("User id %d has executed a wierd shell script(%s).\n",9 RUID, PROG);10 }The signature monitors all successful (this[ERR] = 0) execs of a pathname(PROG) whose name begins with a `-' (i.e. it matches the regular expression ^-.This is the condition Basename(this[PROG]) =~ "^-".) and which is a link toa shell script (the �rst two characters of the �le are #! and the �le is executableby one of user, group or other).11 trans exec(EXECVE)12 <- start;13 -> after_exec;14 |_ {15 this[ERR] = 0 && RUID = this[RUID] && PROG = this[PROG]16 && islink(this[PROG]) && shell_script(this[PROG]) &&17 (Basename(this[PROG]) =~ "^-");18 }19 end exec;20 end Shell_Script_Attack;

VITA

165VITASandeep Kumar was born in India in 1963. He completed his Bachelor of Technologyin electrical engineering from the Indian Institute of Technology, New Delhi in 1985.In the fall of 1985, he entered the University of Tennessee, Knoxville and received anM.S. in computer science in 1987. Before attending Purdue in 1990, he worked as aconsultant in New Jersey. His research interests include computer security, intrusiondetection, operating systems, and networking.

