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ABSTRACT

Cărbunar, Bogdan. Ph.D., Purdue University, May, 2005. Coverage Problems in Wireless
Sensor and RFID Systems. Major Professors: Jan Vitek and Ananth Grama and Cristina
Niţă-Rotaru.

The rapid self-configuration, ease of deployment and small cost of components, cou-

pled with the tremendous potential in areas of environmentaland structural monitoring,

supply chain automation, identification of products at check-out points, access control and

security, motivate the popularity of wireless sensor networks, the recent interest generated

by wireless Radio Frequency Identification (RFID) systems andtheir envisioned integra-

tion. While the autonomous operation and random deploymentof components are the

principal causes of the low set up cost of these systems, theyalso become the source of fun-

damental problems. This thesis studies the problem of extending the network lifetime in

the context of sensor and RFID systems by defining and detecting redundant components

whose simultaneous deactivation maintains the initial network coverage. For wireless sen-

sor networks, we reduce the problem to the computation of Voronoi diagrams. Moreover,

we examine the impact of redundancy elimination on the related problem of coverage-

boundary detection. We present efficient distributed algorithms for computing and main-

taining solutions for the redundant sensor elimination problem and coverage boundary

problem in cases of sensor failures or insertion of new sensors. We prove the safety and

liveness properties of our algorithms, and characterize their time complexity and traffic

generated. Using detailed simulations, we also quantify the impact of system parameters

such as sensor density, transmission range and failure rates on network traffic.

In the context of wireless RFID systems, we provide an efficientsolution to a funda-

mental problem generated by reader collisions occurring attags. We prove that an optimal

solution for the redundant-reader problem is NP-hard and propose a randomized approx-



x

imation algorithm. We conduct elaborate experiments on realistic topologies in order to

evaluate the accuracy, message overhead and efficacy of the protocols. Our simulations

show that by repeating each querylogm times and using2 logm time units for each query,

wherem is the total number of RFID readers, each reader can discovermore than 99% of

the covered RFID tags. Moreover, even without the existence of a centralized entity, we

discover consistently more than half of the redundant readers of a greedy algorithm using

centralized information.
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1. INTRODUCTION

Due to technological advances and the emergence of new application areas, radio networks

have considerably evolved in the past decade. Instances of radio networks include wireless

sensor networks, Radio Frequency Identification (RFID) systems, mobile ad-hoc networks

and cellular networks. Wireless sensor networks and RFID systems owe their popularity

to the small size coupled with the modest price of components,making them extremely

appealing for random, mass deployment.

While wired sensor networks have been for years part of technological processes the

recent need for monitoring of remote or inaccessible areas,along with the integration of

sensed information into a variety of physical processes provide overarching motivations

for random deployment of wireless sensor networks. Example of applications include

ecological, agricultural and military monitoring.

RFID systems consist of uniquely identified RFID transponders (tags) and RFID

transceivers (readers), capable of identifying RFID tags placed in their vicinity. Applica-

tions of RFID systems include supply chain management, coldchain management, iden-

tification of products at check-out points, access control and security. The miniaturization

of RFID readers, coupled with wireless capabilities, expandsthe applicability of RFID

systems. Similar to wireless sensor networks, such systems can be dynamically deployed

instead of being statically installed.

Unlike sensor networks, wireless RFID systems have the ability to decouple sensing

from communication. RFID tags interfaced with external sensors, such as temperature

and shock sensors [1], allow wireless RFID systems to be extended with new sensing ca-

pabilities. Moreover, the existing compatibility between recent RFID readers (SkyeRead

M1-Mini [2]) and MICA2DOT motes makes the integration of wireless sensor networks

and wireless RFID systems possible. Such a hybrid wireless sensor and RFID infrastruc-
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Fig. 1.1. Example of sensor network coverage – disks represent the cover-
age of the sensors situated at their center. Lightly shaded disks represent the
coverage area of sensors situated on the boundary of the network. The dark
areas belong to sensors that are not on the coverage boundary(e.g., sensor
A). SensorR is an example of a redundant sensor, since its coverage area is
completely subsumed by other sensors.

ture can combine the ease of deployment with affordable identification and monitoring of

objects.

The emphasis on low-cost, wireless sensing devices comes with significant constraints.

Mica Motes have a lifetime of a few weeks when operating at full power, or years when

operating at 2% duty cycle. SkyeRead M1-Mini [2] has an active life of a couple of

weeks. Extending the lifetime of the sensor or reader networkis a matter of paramount

importance. At the same time, the relatively small sensing and interrogation zones of

these devices requires dense deployment if reliable sensing of target areas and accurate

detection of RFID tags is to be achieved .

Thesis Contributions The thesis is divided into two parts. The first part focuses on

computing the coverage of wireless sensor networks, as it is an essential step in devising

efficient battery-saving techniques. We look at two important coverage problems. The

first problem consists of computing the boundary of the coverage of a sensor network. As

illustrated in Fig. 1.1, we define thecoverage-boundaryof a network to include not only
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Fig. 1.2. Example of redundant sensors. SensorsS1 andS2 are both redun-
dant. However, their simultaneous deactivation leaves a blind spot, shown in
dashed curves.

the sensors situated on the outer periphery of the network, but also the ones that define

“holes” in the coverage (sensorsB, C, · · · , H). More precisely, a sensor is on the coverage-

boundary of the network, if the perimeter of its sensing diskis not entirely covered by other

sensors in the network. Determining the coverage-boundary is important for identifying

gaps in coverage and for optimizing sensor placement (by deploying new sensors).

The second problem consists of eliminating redundant sensors without affecting net-

work coverage. This is called the coverage-preserving, energy-efficient redundancy elimi-

nation problem. We say that a sensor is redundant, if its sensing disk iscompletelycovered

by the sensing disks of other sensors in the network. Fig. 1.2 shows an example of redun-

dant sensors,S1 andS2. Once all the redundant sensors are detected, we must choose

a subset of redundant sensors, whose simultaneous deactivation will not leave holes in

coverage (blind spots [3]). For example, in Fig. 1.2, the simultaneous deactivation of

both redundant sensors will leave a blind spot. Note that the notion of coverage-boundary

and redundancy are related, since the removal of a redundantsensor will not impact the

coverage boundary of the network.

The difficulty of both problems stems from the inability of a centralized entity of gath-

ering location information from all the sensors and notifying the sensors of the result. RF

communications between sensors require much more energy than local computations and
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Fig. 1.3. Redundant reader example: readersR1,R2,R3 andR4 are redundant
since the tags covered by each is covered by at least one otherreader. This
redundancy information would not be detected by a sensor redundancy detec-
tion algorithm, since none of the coverage areas the readersare subsumed by
the others.

are the main cause of battery consumption. Thus, even if a spanning tree of the sensor

network has already been built, the number of messages, everincreasing in size as they

approach the root, make centralized approaches prohibitively expensive. Moreover, any

solution has to be adaptive to topological changes, due to sensor failures and deployment

of new sensors. A centralized approach would require that even a local change affecting

only a few sensors be propagated towards the collection point.

A distributed algorithm can take advantage of the locality of the solution. A sensor

can detect its presence on the coverage-boundary or its redundancy, using only location of

sensors whose sensing disks intersect its own. However, in the worst case, such sensors

can be farther apart than their transmission range, requiring intermediate sensors to relay

this information.

For both the coverage-boundary detection problem and the coverage-preserving, energy-

efficient redundancy elimination problem, we propose a solution based on the Voronoi di-

agram of the sensor network. We prove an equivalence relationship between the coverage

of the perimeter of the sensing disk of a sensor by other sensor and the coverage of the

sensor’s Voronoi cell by its own sensing disk. We also prove anequivalence relationship
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between the redundancy of a sensor and the coverage of the Voronoi structure generated by

the Voronoi neighbors of the sensor. Thus, both solutions can be locally computed using

only the geographic location of Voronoi neighbors of sensors . We provide a distributed

solution, that adapts to failures and deployment of new sensors. We also propose a simple

distributed algorithm for maintaining the local Voronoi information when sensors move.

Moreover, we use the idea of locally maintaining the Voronoi cells of devices, to provide

a simple distributed hash table implementation in general purpose ad-hoc networks.

The later part of the thesis studies related problems in RFIDsystems. An essential

problem consists in the accurate detection of tags by readers, in the presence of inter-

ference. There are two main types of interference in RFID systems. The first type, tag

collision, occurs at readers that receive simultaneous replies from multiple tags, prevent-

ing readers from correctly decoding the messages. Two solutions have been proposed to

overcome this problem, one randomized, where tags are required to delay their answers to

reader queries a random time interval and one based on a sequential traversal of the name

space of tags (see [4] for more details). The second type of interference, reader collision,

occurs when two RFID readers whose interrogation zones intersect at a tag, attempt to

read the tag simultaneously. Fig. 1.4 shows an example of two RFID readersR1 andR2

simultaneously querying their corresponding tags. A querycontaining string “0” ofR1

occurring concurrently with any query ofR2 will interfere atT1, hiding its presence from

R1. Note that simultaneous “1” queries ofR1 andR2 will not interfere, allowing the correct

reception of answers fromT2 andT3.

Furthermore, we study the redundancy detection problem in the context of RFID sys-

tems. Unlike redundant sensors, whose circular sensing areasare completely subsumed

by the coverage of other sensors, we define RFID readers to be redundant if their covered

RFID tags are also covered by other RFID readers. Thus, redundant readers are defined

in terms of discrete sets of points instead of contiguous areas. Fig. 1.3 shows an example

where all RFID readers are redundant. Similar to the redundancy elimination problem

presented above, detecting redundant readers is not enough, since the simple deactivation

of all redundant readers may leave tags uncovered. Thus, an algorithm for finding the
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T1=01101
T2=10110
T3=11100

R2
T1

T2

T3
R1

Fig. 1.4. Example of reader collision problem. Concurrent operation of RFID
readersR1 andR2 may prevent the correct identification of RFID tagT1. The
identifiers of tags are shown on the right side of the figure.

maximum number of redundant readers that can be safely turned off simultaneously needs

to be devised.

Both avoiding reader collisions and determining the subsetof redundant readers that

can be simultaneously deactivated, are complicated by the lack of collision detection

mechanisms, the potential inability of RFID readers to relay packets generated by other

readers and the severe resource constraints of RFID tags. Inthe traditional ad-hoc net-

works, collisions occurring at remote devices due to simultaneous wireless transmissions

of devices that are not in each other’s range, are known as thehidden terminal problem.

The classic virtual carrier sensing solution cannot be easily adapted to RFID systems

since Request-To-Send (RTS) messages have a single destination whose identity is known,

whereas RFID readers have to avoid collisions at multiple tags and also to detect the iden-

tities of those tags. Moreover, existing solutions based ona central coordinator, allocating

different time slots or frequencies to interfering RFID readers, considerably reduce the

applicability and flexibility of the RFID system.

Since the main functionality of RFID readers is to detect RFID tags placed in their

vicinity, they may not be able to relay packets issued by other readers and form an ad-hoc

reader network. Thus, the solutions for both problems need to be not only distributed but

also localized. RFID readers have to accurately detect tags, discover their redundancy

and safely become inactive, using only information obtained from the tags placed in their

vicinity.
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For the reader collision avoidance problem we present a randomized, distributed and

localized algorithm, RCA. In this algorithm readers repeat their queries at random in-

tervals in order to avoid, with high probability, collisionswith other simultaneously trans-

mitting readers. For the redundant-reader problem, we provethat determining the smallest

subset of RFID readers required to cover all the RFID tags is an NP-hard problem. We

propose a distributed and localized approximation algorithm for this problem. This algo-

rithm is targeted for writable RFID tags, that is, tags able tostore information when issued

a write command from RFID readers in their vicinity. Our algorithm, RRE, uses as input

the output of RCA. Moreover, its subsequent steps borrow fromRCA the idea of repeating

commands at random intervals to avoid collisions with high probability.

Thesis Structure. Chapter 2 details the coverage-boundary and the coverage-preserving,

energy-efficient redundancy elimination problems and presents our distributed solution.

Chapter 3 looks at the reader collision problem and proposesa randomized, distributed

and localized solution. Chapter 4 introduces the redundant-reader elimination problem

and describes a randomized, distributed and localized approximation algorithm. Finally,

Chapter 5 presents our conclusions.
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2. COVERAGE AND REDUNDANCY DETECTION IN SENSOR

NETWORKS

With the proliferation of wireless ad-hoc networks, increasing emphasis is being placed

on algorithmic and software infrastructure for providing services to sensors. At the core

of this algorithmic infrastructure lie a number of complex problems such as determining

thecoverage, boundary, andtriangulationarea, placement and location of services, etc.

Two constraints that contribute to the complexity of these problems are: (i) devices must

solve these problems in a distributed, efficient, and scalable manner; and (ii) solutions to

these problems must be adaptive in nature,i.e., after movement of sensors a the new

solution may be rapidly recomputed Moreover, any proposed algorithm must work in

concert with ad-hoc routing techniques. In this chapter we study two problems – the

coverage-boundaryproblem and service placement and location in ad-hoc networks using

distributed hash tables.

The coverage of a wireless sensor may be approximated by a diskof a prescribed ra-

dius, called the sensing range, which may be different from the transmission range of the

sensor. We call this disk the coverage or sensing disk, and the boundary of the disk as

the coverage or sensing circumcircle. The coverage of a network is the region covered

by at least one sensor in the network. Coverage can be computed by taking the union

of individual coverage areas of all sensors in the network. The coverage-boundary prob-

lem corresponds to the identification of all boundary nodes in a network. In this chapter

we prove that sensors whose perimeter of the sensing disk is completely covered by the

sensing disks of other sensors in the network, are not on the coverage-boundary of the

network.

Several applications can benefit from the knowledge of the coverage-boundary. In

a disaster recovery scenario, the coverage-boundary not only specifies the limits of the
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network, but since the coverage of a network is ultimately determined by the location of

boundary nodes, these nodes can be suitably re-located to optimize coverage. For sensor

networks, usually deployed for monitoring purposes in applications ranging from agricul-

tural crop monitoring to military surveillance, coverage-boundary information provides a

measure for the quality of monitoring and can be used to determine the best position for

newly deployed sensors.

In a services infrastructure built on an ad-hoc network, it is often necessary to make

specific services and data available to boundary nodes. Suchdata may include maps and

traffic information for emergency personnel, logistic information for command and con-

trol, and control vectors in distributed control. The time-criticality of most of these ap-

plications coupled with the potentially large number of nodes in the network requires a

scalable and efficient solution to the coverage-boundary problem.

This chapter also addresses the problem of detecting and eliminating redundant sen-

sors without affecting network coverage. We refer to this as the coverage-preserving,

energy-efficient redundancy eliminationproblem. The difficulty of this problem lies in the

correct and efficient detection of redundant sensors, and the selection of the maximum

number of redundant sensors that can be safely turned off simultaneously.

The last problem studied in this chapter consists of the implementation of distributed

hash tables in ad hoc networks. Distributed hash tables provide a simple solution to the

problem of locating services. While these have been frequently used in peer-to-peer net-

works, they can also be efficiently applied to ad-hoc wirelessnetworks. In CAN [5],

Chord [6], Pastry [7], and Tapestry [8], a key is associated with every object. Each peer

stores a certain range of keys (and possibly, references to actual locations of objects). In

the context of a wireless ad-hoc network each object can be mapped to a geographic lo-

cation and the node closest to this location is responsible for storing the key [9]. A node

requesting an object generates a query that is hashed (routed) to the node closest to the

corresponding geographic location. Supporting this routing primitive is the key to solving

the problem.
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Our solutions to the above problems are based on the distributed and adaptive con-

struction of Voronoi diagrams. For the coverage-boundary problem we prove a tight rela-

tionship between the presence of a sensor on the boundary of the network and the coverage

of its own Voronoi cell. For the coverage-preserving energy-efficient elimination redun-

dancy elimination problem, we prove an equivalence relationship between a redundant

sensor and the coverage of the Voronoi structure of generated by its Voronoi neighbors.

For the distributed hash table problem we map services or objects to geographic locations

and store the object on the sensor whose Voronoi cell containsthat point.

Prior work [10, 11] on the distributed computation of Voronoi diagrams or its dual

– Delaunay triangulation, offers mostly approximate solutions. More precisely, a sensor

computes the Voronoi or Delaunay information only using sensors that are not farther than

a given range. These approximate solutions are not adequatefor selected applications,

(see Section 2.7), since they can provide erroneous answers inthe case where the range

considered is smaller than twice the sensing range of sensors.

The challenge of computing Voronoi tessellations lies in developing distributed and

adaptive formulations that are both stable,i.e., that converge to the actual solution in a

dynamic environment, and efficient in the context of ad-hoc networks. We assume, here,

that device mobility can be bounded and in cases of fast moving devices it is possible

to increase the frequency of updates. Moreover, solutions to these problems must be

adaptive to sensor failures and deployment of new sensors. The new solution must be

rapidly computed from the previous solution. Finally, since RF interfaces have a limited

transmission range, protocols must account for overheads of multi-hop routing. Since

communication consumes more energy than computation, the protocols themselves need

to be energy efficient.

Chapter Organization In Section 2.2, we derive necessary and sufficient conditions for

a sensor to be redundant and present an efficient distributedalgorithm for the coverage-

preserving, energy-efficient redundancy elimination problem. In Section 2.3, we present

necessary and sufficient conditions for a sensor to be on the coverage boundary and show
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Fig. 2.1. Voronoi diagram of the sensors in Fig. 1.1. The circles represent
the coverage disks of the labeled sensors. Note that only forA andR their
coverage area completely covers their Voronoi cell. In the next section we
will show that this is not a coincidence.

a lower bound ofΩ(n log n) for any (serial) algorithm for the problem. We present a

distributed algorithm for computing the coverage-boundary, whose serial counterpart has

Ω(n log n) complexity. Both algorithms are based on the distributed and adaptive construc-

tion of Voronoi diagrams. In Section 2.4 we show an interestingapplication of Voronoi

diagrams to the distributed hash table problem. In Section 2.5, we present efficient and

scalable distributed algorithms for recomputing local Voronoi information in the pres-

ence of sensor failures and deployment of new sensors. We show that our algorithms

are efficient and prove their correctness and stability. In Section 2.6, we experimentally

characterize the performance of our algorithms. Conclusions are drawn in Section 2.8.

2.1 Overview of Voronoi Tessellations

Given a setS of n sitess1, s2, .., sn in a plane, their Voronoi diagram is defined as the

subdivision of the plane inton cells, one for each site, with the property that any point in

the cell corresponding to a site is closer to that site than toany other site. Formally, the

Voronoi cell corresponding to sitesi is defined as

cellvd(si) =

n⋂

j=1,j6=i

{x|dist(si, x) ≤ dist(sj, x)}
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We use the notationdist(p, q) to denote the Euclidean distance between two pointsp and

q. Two Voronoi cells meet along aVoronoi edge, and three Voronoi cells meet at aVoronoi

vertex. We call a site ageneratoror neighborof another site if the Voronoi cells of the

two sites share an edge. We use these two terms interchangeably. Fig. 2.1 illustrates the

Voronoi diagram of the network in Fig. 1.1.

A Delaunay triangulation of a setS of sites is defined as the unique triangulation ofS

such that no point inS is inside the circumcircle of any triangle of the triangulation. The

Delaunay triangulation is the dual of the Voronoi diagram ofS, in the sense that two sites

are vertices of the same Delaunay triangle iff they are Voronoi neighbors. We formally

define the Delaunay distance as follows:

Definition 2.1.1 The Delaunay distance between two sites is the minimum number of hops

between the two sites in the Delaunay triangulation.

For example, in Fig. 2.1, sensorsA andR are at Delaunay distance 4.

Multiplicative Weighted Voronoi Diagrams

An MWVD is defined in a manner similar to a Voronoi diagram, with the addition of

weights at each of then sites. In the definition of the classical Voronoi diagram, the sites

have equal weights. The MWVD replaces the Euclidean distance used by the Voronoi

diagram with a new distancedmv defined by

dmv(si, x) =
dist(si, x)

wi
(2.1)

In this definition,si corresponds to one of then sites in the plane,wi is a weight

associated with it,dist is the Euclidean distance function, andx corresponds to any point

in the plane. The MWVD cell of each site is formally defined as:

cellmwvd(si) =
n⋂

j=1,j6=i

{x|dmv(si, x) ≤ dmv(sj, x)}
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Fig. 2.2. Multiplicative weighted Voronoi diagram (MWVD) of 11 sensors.
Each sensor is represented by a point, a weight and a light graycircle denoting
the boundary of its sensing area.

This definition changes the bisectors of the Voronoi diagraminto arcs (or circles). By

making each sensor be a site and by replacing the weightwi of a site with the sensing range,

ri, of the corresponding sensor, equation 2.1 becomes:dmv(si, x) = dist(si, x)/ri Fig. 2.2

shows an example of a MWVD. The dark gray arcs form the MWVD cells. Note that the

sensor with weight 25 is not on the boundary since its sensing circumcircle is completely

covered by the sensing circles of neighboring sensors. Also,its sensing disk completely

covers its MWVD cell. The sensor with weight 43 is on the boundarysince its sensing

circumcircle is not completely covered by the other sensingdisks. Also, its MWVD cell

is not completely covered by its sensing disk.

2.2 Energy-Efficient Coverage

In this section we formalize the coverage-preserving energyefficient redundancy elim-

ination problem, and provide a solution based on Voronoi tessellations. Throughout this
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chapter, we assume that all the sensors in the network have thesame sensing range. Ex-

tensions of these schemes to non-identical sensing ranges are possible usingmultiplicative

weighted Voronoi diagrams.

We also make the assumption that each sensor knows its location. This is reason-

able since, in the absence of this information, the coverage-boundary and the redundancy

information cannot be uniquely or correctly determined (i.e., from topological informa-

tion alone). Moreover, several algorithms have been proposed for locating devices in

ad-hoc networks [12–14]. Examples of applications using location information include

geographic routing [15–18] and management of location information [19,20].

Definition 2.2.1 Thecoverage of a sensors with planar coordinates(x, y) and sensing

ranger is a disk with center(x, y) and radiusr. We call this disk the coverage or sensing

disk, and call its border the coverage or sensing circumcircle, denoted byC(s). We say

that a pointp is covered by a sensors if dist(s, p) ≤ r.

The coverage of a network is the union of the coverage disks ofall the sensors in the

network. Formally,

Definition 2.2.2 Thecoverage of a networkis the areaA with the property that for any

pointp ∈ A, there exists at least one sensors in the network such thatp is covered by the

coverage disk ofs.

The definition of a redundant sensor follows naturally:

Definition 2.2.3 A sensor is said to be redundant if its sensing area iscompletelycovered

by other sensors.

We define the 2-Voronoi diagram of a sensor in the following manner:

Definition 2.2.4 The 2-Voronoi diagram of a sensors is the Voronoi diagram of the

Voronoi generators ofs, whens is excluded. The 2-Voronoi Vertices (2-VV) of a sen-

sor s are the Voronoi vertices of the 2-Voronoi diagram ofs. A 2-Voronoi Intersection
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s4
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2−V1

2−VIP1

2−VIP3

2−VIP4

2−VIP2

2−V2

Fig. 2.3. Example redundant sensor,s1. Points2−V1 and2−V2 are 2-VVs of
s1, and2−V IP1..4 are 2-Voronoi Intersection Points ofs1. Note that2−V1,2

and2−V IP1..4 are all covered by at least two of the Voronoi neighbors ofs1.

Point (2-VIP) ofs is the intersection between an edge of the 2-Voronoi diagramand the

coverage circumcircle ofs. A 2-Voronoi edge (2-VE) ofs is either a Voronoi edge between

2-VVs ofs, or a Voronoi edge between a 2-VV and a 2-VIP ofs.

Fig. 2.3 illustrates an example of a redundant sensor. In the example, sensors1 has five

2-VEs, one between two 2-VVs,2− V1 and2− V2, and the rest between a 2-VV and a

2-VIP of s1. The following theorem, the main result of this section, translates the problem

of finding a redundant sensor to a local examination of the sensor’s Voronoi neighbors.

Theorem 2.2.1 A sensors is redundant if and only if all the 2-VVs and 2-VIPs ofs are

covered by the Voronoi generators ofs.

In order to prove the theorem, we prove first the following lemma.

Lemma 2.2.1 The Voronoi generators of a sensors, Gs, are the ones closest to it. There-

fore, there is no other sensor that covers part ofs’s coverage disk that is not already

covered by the sensors inGs.
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Fig. 2.4. Proof of Lemma 3.3.1. If sensorss1, s2 ands3 are mutual Voronoi
generators, another sensor can only be placed in the hashed area. Otherwise,
that sensor would be a Voronoi generator ofs1.

Proof Let us consider the case in which sensors1 has generatorss2, and s3 whose

coverage areas intersect each other and also the coverage area ofs1 (Fig 2.4). We as-

sume that all the sensors have the same coverage range,r (recall that this assumption

can be relaxed with the use of MWVDs as opposed to Voronoi diagrams). Let v be

the Voronoi vertex generated by the three sensors. Fig. 2.4 also shows the circumcir-

cle of sensorss1, s2 and s3, centered atv, containing no other sensor. Lete be the

intersection point between this circle and the Voronoi edge generated bys2 ands3. The

only area where another sensor, that is not a Voronoi generator of s1, can be placed,

is the hashed area. Observe thatdist(b, e) = dist(b, v) + dist(v, e). Therefore, due

to triangle inequality,dist(b, e) = dist(b, v) + dist(s3, v) > dist(s3, b) = r. Also,

dist(s2, a) = dist(s2, b) = r. It is easy to prove then that the distance between any

point on the arĉab and a point on the arĉs2e is greater than or equal tor. The arcs are

emphasized in Fig. 2.4. Similarly, the distance between any point on the arĉbc and any

point on the arĉs3e is greater than or equal tor. Hence, any sensor placed in the hashed
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area covers less ofs1’s coverage area thans2 ands3. The cases where the coverage areas

of s2 ands3 do not intersect, or do not intersect the coverage area ofs1 can be similarly

proved.

We can now prove Theorem 2.2.1.

Proof If a sensors is redundant, then all its 2-VVs and 2-VIPs are covered by the Voronoi

generators ofs. This is illustrated in Fig. 2.3, which shows an example of a redundant

sensor,s1. Since the coverage area ofs1 is completely covered by other sensors, using

Lemma 2.2.1, we infer that it is completely covered by the Voronoi generators ofs1.

Furthermore, since the coverage area of a sensor is a circle,any three generators ofs1 that

are mutual generators whens1 is excluded, will cover a common area. Fig. 2.3 shows the

common areas of generatorss2, s4, ands5, ands2, s3, ands4, respectively, as the hashed

areas. The common area of such three-generators contains the Voronoi vertex generated

by them. This Voronoi vertex is a 2-VV ofs1, and is therefore covered by three Voronoi

generators ofs1. In a similar fashion it can be proved that each 2-VIP ofs1 is covered by

at least two of the Voronoi generators ofs1.

Only if all the 2-VVs and 2-VIPs of a sensor are covered by the sensor’s Voronoi

generators, the sensor is redundant. Fig. 2.3 illustrates the proof. The 2-VVs, 2-VEs,

and 2-VIPs ofs1 define a partition of the coverage area of sensors1, consisting of four

regions. Each region of the partition is associated with a Voronoi generator ofs1. Since

the 2-VVs and 2-VIPs ofs1 are covered by the Voronoi generators ofs1, following the

definition of Voronoi diagrams (Section 2.1), each Voronoi generator ofs1 covers the 2-

Voronoi vertices, 2-VIPs, and 2-VEs that it generates. Thus, the region of the partition

associated with a Voronoi generator ofs1 is completely covered by that generator, making

s1 redundant.

2.2.1 Distributed Detection of Redundant Sensors

If each sensor knows the position of its Voronoi generators, it can easily detect its

redundancy. Under specific assumptions on the network (bounded degree nodes), the
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Fig. 2.5. (a) Example of a sensor network with blind points. Sensorsa, .., g
are all redundant. However, if all of them are turned off simultaneously, the
areas colored white are left uncovered. (b) Redundant graph of the network
in (a) – the numbers associated with the nodes represent theirdegree in the
redundant graph. The circled nodes represent winners in the first round, and
the crossed nodes represent their direct neighbors, losers. Sensorc is not a
loser in the first round since none of its neighbors is a winner,but it is a
winner in the second round.

expected number of Voronoi generators is constant, and the computation of the associated

2-Voronoi diagram takes constant time. The sensor then checks in constant time if each

of its 2-VVs and 2-VIPs is covered by all the Voronoi neighbors that generated it. This

verification takes constant time since the number of 2-VVs and 2-VIPs of a sensor is on

the order of the number of Voronoi neighbors of the sensor.

2.2.2 Blind Points

If two redundant sensors that are also Voronoi neighbors, decide to turn off simultane-

ously, an area between them may be left uncovered. Such an areais called a blind point [3].

Fig. 2.5(a) shows an example of blind points created whenall the redundant sensors si-

multaneously turn off. We need to find the maximum number of redundant sensors that

can be turned off without generating blind points.
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One solution to this problem, proposed by Tian and Georganas [3], uses a random

back-off scheme. We propose an alternate solution, based ona slight modification of

a distributed approximation of the maximal independent set(MIS) problem [21]. Let

GR = (VR, ER) be the redundancy graph of the network, whereVR is the set of redundant

sensors. There is an edgee ∈ ER between two redundant sensors if and only if they are

Voronoi neighbors. Then, the blind point problem is equivalent to one of finding the

maximum independent set of the redundancy graph,GR.

Our selection algorithm, similar to the one proposed by Luby [21], proceeds in rounds.

In each round, a redundant sensor sends to its redundant Voronoi generators, a message

containing its identity and the number of its redundant Voronoi generators. When a redun-

dant sensor receives such a message from all its redundant Voronoi generators, it compares

its value with the values received. A sensor that has the smallest value is a winner. A win-

ner sends to all its redundant Voronoi generators, a messagestating that it is a winner. A

redundant sensor that receives such a message from one of itsredundant Voronoi genera-

tors becomes a loser. At the end of each round, the winners are turned off, and together

with the losers, do not participate in the following round. Luby [21] proves that a variant

of this algorithm terminates and the expected number of rounds isO(log n).

Fig. 2.5(b) shows the redundancy graph of the sensor network from Fig. 2.5(a), and

shows a trace of the selection algorithm. After the first round,sensorsa, e, andg are

winners and are turned off, and sensorsb, d, andf are losers. In the second round,c is the

unique participant, and a winner.

2.2.3 Management of Redundant Sensors

A winner in the above protocol can be safely turned off, since none of its redundant

Voronoi neighbors are turned off. This is a special case of a sensor failure, and in Sec-

tion 2.5.3 we provide an algorithm for correctly updating the local Voronoi information of

sensors affected by sensor failures. The algorithm can be easily adapted to this situation,
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the only difference being that the affected sensors can be notified of the “failure”, and do

not have to discover it themselves.

A sensor that has been turned off, periodically wakes up in order to check the presence

of its Voronoi generators. If one (or more) of them fail, the reawakened sensor recomputes

its redundancy information. This is a special case of a new sensor joining the network,

and the protocol is similar to the one described in Section 2.9.

2.3 Planar Coverage Boundary

A problem closely related to the coverage-preserving, energy-efficient redundancy

elimination problem is one of finding planar coverage boundary. It is easy to see that

a sensor is redundant iff its removal does not alter the boundary of the network. In this

section we formally define the coverage-boundary problem andprovide an efficient dis-

tributed solution. Using Definition 2.2.3, we say that a sensor is on the boundary of the

coverage of the network iff the circumcircle of its sensing disk is not entirely covered by

the coverage disks of all the other sensors in the network.

Definition 2.3.1 A sensors is said to beon the boundaryof the coverage of a network if

there exists a pointp onC(s) such thatp is not covered by the coverage disk of any other

sensor in the network. However, if two sensors have the same position, we do not consider

that any point on the circumcircle of one of the sensors is covered by the disk of the other

sensor.

With these definitions in place, we formally describe thecoverage-boundaryproblem:

The Coverage-Boundary Problem Given a set ofn sensors in the plane, each with a

sensing ranger, find all the sensors that are on the boundary of the coverage.

The following theorem establishes a lower bound for any solution of the coverage-

boundary problem.
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Fig. 2.6. Example for the proof of the lower bound for the coverage-boundary
problem. We show the transformation from two setsS1 = {8, 3} and
S2 = {3, 12} to an instance of the coverage-boundary problem in the Carte-
sian plane. The lowest horizontal line shows the coordinates on the x axis
of the main circles. The main circles are represented using thicker arcs. Note
that the circumcircle of the main circle corresponding to value 3 is completely
covered by the secondary circles onL1, L2 andL3, whereas the circumcircles
of the main circles for 8 and 12 are not completely covered by the secondary
circles.

Theorem 2.3.1 The coverage-boundary problem has aΩ(n log n) lower bound.

Proof The proof is based on a linear-time transformation from the set equality problem

to the coverage boundary problem. The set equality problem is stated as follows: Given

two setsS1 andS2 of real numbers, both of sizen, determine if the two sets are equal. The

problem is known to have aΩ(n log n) lower bound.

The transformation works in the following manner. Consider three horizontal lines in

the Cartesian plane. The first line,L1, is the x axis,L2 andL3 are lines parallel toL1 going

through the points(0,
√
2) and (0,−

√
2), respectively (Figure 2.6). For each element

e1 from the setS1, insert three circles with their centers situated onL1, in the following

manner. The main circle has the center at(e1, 0) and radius1, and the two secondary

circles have centers at(e1 −
√
2, 0) and(e1 +

√
2, 0), respectively, both with a radius of
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1. Similarly, for each elemente2 from the setS2 add three circles in the plane. The main

circle is again onL1, centered at(e2, 0) and radius one. The secondary circles have their

centers onL2 andL3, (e2,
√
2) and(e2,−

√
2), respectively, both with radius1.

If two elements in the setsS1 andS2 are equal, the circumcircle of the main circles

generated by the elements is completely covered by the disksof the secondary circles.

Note that the two main circles generated by these elements do not cover each other, as

stated in Definition 2.3.1. It is easy to see that the two setsS1 andS2 are equal if and only

if the circumcircles of the main circles generated in the Cartesian plane are completely

covered by the disks of the secondary circles. That is,S1 andS2 are equal iff the result

of solving the coverage-boundary problem findsall the main circles as not being on the

coverage-boundary. The transformation takes timeO(n) since for every element in the two

sets, a constant number of circles (three) are added in the Cartesian plane. This proves

that the coverage-boundary problem has aΩ(n log n) lower bound.

Our solution for the coverage-boundary problem is based on the following theorem.

Theorem 2.3.2 A sensors is on the boundary of the network if and only if the Voronoi

cell ofs is not completely covered by its sensing range.

Proof If sensorsi is on the boundary, the coverage disk ofsi does not entirely cover the

Voronoi cell ofsi. We only consider the case wheresi’s Voronoi cell is bounded, since

otherwise its cell is clearly not covered. Following Definition2.3.1, let us take a pointx

on si’s coverage circumcircle, such thatx is not covered by the disk of any other sensor

(Fig. 2.7(b)). Sincesi’s cell is bounded,dix intersects one of the Voronoi edges ofsi’s

Voronoi cell. Let that Voronoi edge bev1v2, generated bysi andsj, and the intersection

point bey. Pointy cannot be insidesi’s coverage disk, sincex would be covered by the

coverage disk of sensorsj, contradicting Definition 2.3.1 (Fig. 2.7(a)). Pointy is then

outsidesi’s coverage disk. Sincey belongs tosi’s Voronoi cell, there exists a point in

si’s Voronoi cell not covered bysi’s coverage disk.
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Fig. 2.7. Proof of Theorem 3.4.2. (a) Example of the case where line six
intersectsv1v2 insidesi’s coverage disk. (b) The intersection point is outside
si’s coverage disk.

Only if the coverage disk of sensorsi does not entirely cover its Voronoi cell, then

si is on the boundary of the network. To prove this, let us consider a pointy situated

on a Voronoi edge belonging tosi’s cell, such thaty is not covered bysi’s sensing disk

(Fig. 2.7(b)). Letx be the intersection ofdiy andC(si). Since the Voronoi cell of sensor

si is convex,x is insidesi’s Voronoi cell. Thenr = dist(si, x) < dist(sj, x), ∀j 6= i,

hencex is not covered by any other sensor. According to Definition 2.3.1,si is on the

boundary.

The coverage-boundary sensors enjoy a special relationship with the redundant sen-

sors. More precisely, a redundant sensor isnot a boundary sensor, since by Defini-

tion 2.3.1, its circumcircle is also completely covered by other sensors. The following

theorem describes another important property of redundantsensors.

Theorem 2.3.3 The temporary inactivation of a redundant sensor will not switch the

boundary state of a sensor from non coverage-boundary to coverage-boundary.

Proof The sensors that are affected by the inactivation of a redundant sensor,r, are those

whose coverage area intersects the coverage area ofr. According to Definition 2.3.1, a
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sensor is not on the coverage-boundary of the network if the circumcircle of its coverage

area is completely covered by other sensors. Let us say that sensors is affected by the

inactivation of sensorr, ands is not on the coverage-boundary of the network beforer

is turned off. The coverage circumcircle ofs is then divided into two arcs: one that is

covered byr and one that is not. The one that is not covered byr is clearly covered by

other sensors. Sincer is redundant and the coverage areas of sensors are circles (convex

regions) the arc ofs’s coverage circumcircle that is covered byr is also covered by other

sensors.

2.3.1 Coverage-Boundary for Heterogeneous Sensor Networks

Since wireless sensor networks may contain sensors with different sensing ranges, we

investigate an extension of our results in such cases. To seewhy Theorem 2.3.2 still holds

for the MWVD cells, consider the case in which the sensing rangeof sensorsi does not

entirely cover its MWVD cell, and the cell is bounded. If thereis a Voronoi arc that is

not covered, take a pointy on the uncovered part of the arc. Letx be the intersection

betweensiy andC(si). Sincesi’s Voronoi cell is convex,x is insidesi’s Voronoi cell.

Then, by the definition of the Voronoi cell,dist(di, x)/ri < dist(dj, x)/rj, ∀j 6= i.

dist(di, x) = ri, hencedist(dj, x) > rj, andx is not covered by the disk of any other

sensor.

2.3.2 Local Computation of Boundary Sensors

Based only on the position information of its Voronoi neighbors and of itself, any

sensor can decide its presence on the network coverage-boundary in the following manner:

generate the Voronoi diagram of a set of sites consisting only of itself and its Voronoi

neighbors; this step takes constant time, since the expected number of Voronoi generators

is constant. Then, check if its distance to each of the Voronoi vertices generated is less

than the sensing range. This step takes constant time, sincethe number of Voronoi vertices

generated is on the order of the number of generating sites.
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Fig. 2.8. (a) Example of GHT: nodesn1 andn2 look for the same key, whose
associated object is located on nodenf1. Even though nodesn1 andn2 are
connected, they find different home nodes and correspondingperimeter rings
when looking for the same key. Noden1 finds home nodenf1 and home
perimeternf1, p1, n1, whereas noden2 finds home nodenf2 with correspond-
ing home perimeternf2, p2, n2. (b) The network in (a), augmented with a
Voronoi overlay. Devicesn1 andn2 both search the same key whoseposkey

belongs tonf1’s cell. Devicen1 clearly findsnf1. Devicenf2, upon receiving
the request fromn2, forwards it towardnf1, through nodesn2, 1..4, andn1.
This is because inn1’s local view nodenf1 is the closest toposkey.

2.4 Application of Voronoi Overlays to Distributed Hash Tables

In this section we address the use of Voronoi overlays to the problem of resource shar-

ing in ad-hoc networks. The problem of distributed resourcesharing, introduced originally

in the context of peer-to-peer networks, stores shared resources (or references to these re-

sources) in the network to facilitate fast access. An elegantadaptation of this problem

to ad-hoc networks is provided in [9]. GHT [9] uses the notion oflocation to implement

a distributed hash table on ad-hoc networks. Each object hasan associated key that is

mapped to geographic coordinates. We denote the corresponding coordinates asposkey.

The node that is closest to this location is the one that stores the object (or a reference

to it). GHT uses GPSR [17] to find the closest node called thehome node. Since GPSR
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performs perimeter routing, when the message carrying the key reaches the home node,

it enters perimeter mode. This happens because no other nodeis closer to the key. The

packet traverses the perimeter around the home node, calledthe home perimeter, and

replicates the object on all the nodes on the perimeter. One ofthe drawbacks of this tech-

nique is that two nodes trying to retrieve an object, given the same key, may find two

different home nodes and associated home perimeters, due torestricted connectivity. This

is illustrated in Fig. 2.8(a).

We provide an alternate solution for the distributed hash table problem, based also

on mapping keys to geographic locations, but using the Voronoi overlay of the network’s

nodes. Specifically, we place an key/object binding on the node whose Voronoi cell con-

tains the positionposkey corresponding to the key. We can uniquely map each key/object

binding to a single node, since every node has a unique Voronoi cell associated with it,

and every point inside the cell of a node has the property of being physically closer to that

node than to any other node in the network.

Whenever a node needs to install or retrieve a key/object binding, it converts the key

into a geographic positionposkey. If poskey is inside its Voronoi cell, the node stores

the key/object binding. Ifposkey is outside its Voronoi cell, the key/object binding must

be appropriately routed to its destination node. Several forwarding methods can be used,

the simplest being to greedily forward the request to the Voronoi generator that is clos-

est toposkey. Another method is to forward the request to the Voronoi generator whose

cell is intersected by the line segment having the initiatorof the request andposkey as end-

points. Bose and Morin [22] have proved that both methods reach the intended destination.

Fig. 2.8(b) illustrates an example of our approach.

Discussion. Note that the coverage-boundary nodes have larger Voronoi cells than the

other nodes, a direct consequence of Theorem 2.3.2. A uniform distribution of the keys

leads to load imbalance, with nodes on the coverage-boundarystoring more information

than internal nodes. A simple solution to this problem is to use Multiplicative Weighted

Voronoi Diagrams. A coverage-boundary node will participatewith a smaller weight,

effectively generating a smaller Voronoi cell. We can extend this idea to provide better load
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balancing, by making the weight of each node a function of its resources, i.e. available

storage capacity and battery power. A resource rich node will have a larger Voronoi cell

(Figure 2.2), and will store more information.

2.5 Distributed Computation and Maintenance of Voronoi Cells

The resource and scalability constraints of a sensor network make the existence of a

centralized entity, that would compute the global Voronoi overlay, an unreasonable as-

sumption. Instead, every sensor must keep enough data to allow for the local computation

of the desired information. Our goal is to permit each sensor to correctly determine its

Voronoi cell and the identity of its Voronoi neighbors. Thisinformation is sufficient to

autonomously decide its own presence on the boundary, according to Theorem 2.3.2, or

its redundancy, according to Theorem 2.2.1.

2.5.1 Initial Distributed Computation of Voronoi Generators

Initially, each sensor knows only its own location, and storesit in a local repository.

Each step of the algorithm requires every sensor to send a message containing the infor-

mation kept in its repository to all its network neighbors, i.e., sensors that lie within its

transmission range. Upon receiving this message from a neighbor, a sensor adds the infor-

mation received about new sensors to its local repository. It then recomputes its Voronoi

cell with the information contained in the repository. At the end of every step, each sensor

checks to see if the updates received brought it new information. The algorithm continues

for a sensor until no new information is received from all itsnetwork neighbors. Upon

termination, each sensor discards all the information fromthe local repository, with the

exception of its Voronoi generators and its network neighborhood information.

After k steps, wherek is the diameter of the network, every sensor learns of every

other sensor in the network. Therefore the algorithm terminates inO(k) time. At each step,

every sensor broadcasts exactly one message, hence the total number of messages isO(kn),

wheren is the number of sensors in the network. The number of steps inthe distributed
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algorithm is optimal. This is because two Voronoi neighborsmay be separated in the

network neighbor graph byk links. The construction for this is simply a set of sensors

organized in a ring in which each sensor only sees two other sensors in the network. In

this case, the diameterk is n/2 and two sensors that are Voronoi neighbors may ben/2

hops away.

2.5.2 Deployment of New Sensors

The deployment of new sensors has the potential to change theset of redundant sensors

and the coverage-boundary of the network. In both cases, this problem can be reduced to

updating the local Voronoi information of the affected sensors. Fig. 2.9 illustrates an

example in which a new sensorns joins an existing network. Only sensors whose Voronoi

cell is affected by the presence of the new sensor have to be notified about the new sensor.

It is well known that the circumcircle of a Delaunay triangle contains no other sensor. We

call such a circle a Delaunay circle. Hence, only sensors that generate a Delaunay triangle

whose Delaunay circumcircle contains the new sensor, must be notified. We say that such

a triangle isin conflictwith the new sensor, and the sensors that generate the triangle are

callednotifiables. All the sensors in Fig. 2.9 are notifiable with regard tons.

Before proceeding with the description of the join algorithm, we present two useful

lemmas, direct consequences of Lemmas 4.3 and 4.4 from [23].

Lemma 2.5.1 Given a randomly deployed sensor network of sizen, the expected number

of sensors affected by the random deployment of a new sensor isO(log n).

Lemma 2.5.2 The expected number of Voronoi neighbors of a sensor in a randomly de-

ployed sensor network is constant.

Join Algorithm. Whenever a new sensor is deployed, it sends a beacon message and a

sensor that receives this beacon is said todetectthe new sensor. Thus, the new sensor can

be detected by another sensor only if the radio transmissionranges of the two sensors ex-

ceeds the distance between them. A sensor that detects the presence of a new sensor needs
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Fig. 2.9. Example of new sensor deployment: the gray circle,nd, represents
the new sensor. (a) The Voronoi diagram of the old sensors. The circles
denote circumcircles of Delaunay triangles. (b) The Delaunaytriangulation
of the old sensors.

to notify other sensors affected by its presence. Since morethan one sensor can detect the

new sensor, multiple, redundant notifications might be sentin the network. To avoid this,

we choose only one sensor, calledintroducer(S), to perform the notification. We choose

S to be the sensor whose Voronoi cell contains the position of the newly deployed sensor.

In Fig. 2.9(a), the introducer ofns is s1. If the new sensor is connected to the network,

according to the definition of a Voronoi cell (Section 2.1), our choice guarantees that the

introducer will detect the new sensor.

The introducer initiates the notification process, and during the process, each notified

sensor uses only local information to determine its behavior. Each sensor has a list of

incident Delaunay triangles, and the introducer,S, traverses its list of Delaunay triangles,

identifies the ones in conflict with the new sensor, and isolates the notifiables among its

Voronoi neighbors. Then, sensorS sorts its notifiables based on its Euclidean distance

to them. Each sensor uses three colors to differentiate the notifiables in its local view.

Initially, all the notifiable Voronoi neighbors arewhite. Upon completion of the coloring

algorithm, they will be eithergray or black, and the sensor, in this caseS, will only contact
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the black ones. A gray colored notifiable denotes a sensor that can be easier notified by

one of the black notifiables, thus its notification should be postponed.

The coloring algorithm proceeds as follows. First,S takes its closest white notifi-

able, marks it black, and removes it from the white list. Then,it traverses the white

list in clockwise order starting from the newly removed notifiable. If a white notifi-

able,W, is part of a local Delaunay triangle that has a gray or black vertex, G, such that

dist(S, W) > dist(G, W), it marksW gray and removes it from the white list. SinceW is

closer toG than toS, it can be easier notified byG than byS. If, at the end of the traversal,

a notifiable has been marked gray, the traversal is repeated,until no more white notifi-

ables are marked gray. Then, if the white list is not empty, theclosest white notifiable is

again removed and marked black and the above process is repeated. In the example from

Fig. 2.9, sensors1 first colors sensors2 black and in the subsequent traversal colors sensor

s3 gray. It then colors sensors8 black, and in the first traversal colors sensors7 gray. A

second traversal colors sensors6 gray.

On completion of the coloring phase,S sends a notification to each black notifiable.

For such a notifiableB, the message contains the identity and position of the new sensor,

the identity of the notifier, in this caseS, and the identities of all the gray notifiables in the

local view ofS, thatB needs to notify. A sensorN that receives a new sensor notification,

ignores the notification if it has already received it from another Voronoi neighbor. Oth-

erwise,N creates its own white list of notifiable Voronoi neighbors.N removes from this

list all the gray sensors contained in the notification, and marks them black, since it has to

notify them. It also removes from the white list the notifier (the sensor from whom it has

received this notification) and marks it gray, since it should not notify it. N then repeats

the coloring phase described above, and sends to each black notifiable a notification with

the same structure as the one that itself has received.

Example. Figure 2.9 illustrates an example of the notification process. Here,ns is a newly

deployed sensor. As explained above, sensors1 sends a message only to sensorss2 and

s8. When sensors3 receives the notification from sensors2, it first constructs its list of

notifiables, consisting of sensorss2, s4, s5, s6, ands1. It then colors sensors2 gray, since
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sensors2 is the one that sent it the notification. It then traverses thelist of notifiables. In

the first traversal it colors sensors1 gray. We note that this is natural, since we already

know that sensors2 is closer to sensors1 than sensors3. In the next traversal, sensors3

colors sensors6 gray, sincedist(s3, s6) > dist(s1, s6). The next traversal colors sensor

s5 gray, and the last colors sensors4 gray. When sensors6 receives the notification from

sensors7, that has received it from sensors8, it constructs its list of notifiables,s7, s1, s3,

s5. It marks sensors7 gray and propagates the gray color to sensorss1 ands3. It then

marks sensors5 black and notifies it. The notification similarly reaches sensors4.

The local coloring and propagation of gray is meant to reducethe number of redundant

messages. Sensors3 will not notify sensorss6, s5 ands4, since sensors8 will notify

sensors7, which in turn will notify sensors6, and so on. This method will not eliminate

all redundant notifications, but by locally reducing the distance between a notifier and a

notifiable, this method has the advantage of reducing the number of actual messages that

need to be sent for a notification. This is because the chance of two Voronoi neighbors

of being in each other’s radio transmission range increaseswhen their Euclidean distance

decreases.

Whenever a new sensor joins the network, not only the sensorsaffected by its presence

need to be notified, but also the new sensor has to be notified about the presence of the

sensors that form its Voronoi neighborhood. This task is performed by the sensors affected

by the new sensor, since they know its identity and location.

We now present several properties of the join algorithm.

Correctness. Upon completion of the algorithm, all the notifiable sensors have been

notified.

Proof By induction on the Delaunay distance between a notifiable and the introducer.

Fig. 2.10 illustrates the proof, wherens represents the new sensor. The basis is simple,

since all notifiables at distance 1 from the introducer are clearly notified. For the induction

step, we assume that all notifiables at distancel− 1 are notified. Lets1 be a notifiable

at Delaunay distancel from the introducer. Being a notifiable,s1 has at least a triangle
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Fig. 2.10. Illustration of the correctness proof for the joinalgorithm.

in conflict with the new sensor,ns. Since in terms of the Euclidean distances2 ands3

ares1’s closest Voronoi neighbors tons, the triangle∆s1s2s3 is such a conflict triangle.

Sensors1 is at Delaunay distancel from the introducer,si, therefore it has at least one

Voronoi neighbor at Delaunay distancel− 1 from si. Sincesi is the closest sensor tons,

no other Voronoi neighbor ofs1 is at a smaller Delaunay distance fromsi thans2 ands3.

Hence, at least one ofs2 or s3 are at Delaunay distancel− 1 from si. If both are, since

both are notifiable, they will both be notified. At least the one closer tos1 will then notify

it, since both will detect the triangle∆s1s2s3 to be in conflict withns. If only one ofs2 or

s3 is at distancel− 1, then that one will notifys1.

Termination. The algorithm will terminate, i.e., notifications will not be sent indefi-

nitely.

Proof Each notifiable sensor can receive notifications only from its Voronoi neighbors

that are also notifiable. Only notifiable sensors receive notifications. A notifiable sensor

propagates a notification only to notifiable Voronoi neighbors, and only when receiving

for the first time a notification concerning a new sensor. Since the number of expected
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notifiables is bounded (Lemma 2.5.1), and each propagates a notification only once, the

algorithm will terminate.

Complexity. The expected number of notifications for a join isO(log n), wheren is the

number of sensors already in the network.

Proof For a new sensor, the expected total number of notifiables isO(log n) (Lemma 2.5.1),

and each notifiable receives notifications only from its Voronoi neighbors that are also

notifiables. Since the expected number of Voronoi neighborsof a sensor is constant

(Lemma 2.5.2), the expected number of notifications isO(log n).

2.5.3 Sensor Failures

Sensor failures, like the deployment of new sensors, also require the modification of

local Voronoi neighbors of affected sensors. The following lemma identifies the sen-

sors affected by a single failure, and limits the size of their set of candidate replacement

Voronoi generators.

Lemma 2.5.3 A single sensor failure affects the local Voronoi information belonging only

to the Voronoi neighbors of the failed sensor. Furthermore, the set of candidates for the

position of new Voronoi neighbors of each affected sensor consists solely of the Voronoi

neighbors of the failed sensor.

Proof The direct Voronoi neighbors of the failing sensor are clearly affected, since one

of their Voronoi neighbors disappears. To see why other sensors are not affected, consider

the following: letf2 be a failed sensor ands6 be a sensor that is not a Voronoi neighbor of

f2 (Fig. 2.11). Sincef2 is not a Voronoi neighbor of sensors6, by the definition of Voronoi

diagrams, there are no sensors in the interior of any of the Delaunay circles generated by

sensors6. Hence sensors6 will not acquire new Voronoi neighbors. The same argument

can be used to prove that the affected sensors will have to consider as candidates for new

Voronoi neighbors, only the set of affected sensors. For example, sensorf3 must only
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Fig. 2.11. Example of network where sensorsf1, f2 andf3 fail simultane-
ously. The round arrows show the local decisions made by intermediate sen-
sors, and the straight arrows show the trajectory of the DISC messages.

consider sensorss1, s4, s5, f1, s8 to replace the position left byf2. It need not consider

sensors6, sinces6’s Voronoi neighbors are not changed byf2’s failure.

Departure Algorithm. We now present the actions taken when one or more sensors

fail, possibly simultaneously. Each sensorS periodically sends a beacon to its Voronoi

generators. For each Voronoi generator,S has a timeout value that is set whenever a

beacon is received from the respective neighbor. The timeout value is an upper bound

on the period of the beacon plus the round-trip time for that generator. If the timeout

of a generatorF expires before the respective beacon is received,S declaresF failed and

initiates a protocol to discover its new generators. For this, it creates a message of type

DISC, containing the identity ofS, a sequence number maintained byS and two lists. The

sequence number is incremented each time a failure is detected byS. The first list, called

the failed list, contains identities of sensors that are assumed to have failed, and initially

contains onlyF. The second one, called theaffected list, is empty, but eventually collects

the identities of the sensors affected by the failure of the sensors in the failed list. Sensor

S sends theDISC message to its first Voronoi neighbor in counterclockwise order fromF.

A sensorN that receives aDISC message, is a Voronoi neighbor ofF. Consequently, it

adds its identifier to the affected list of the receivedDISC message. SensorN then looks

at the last item in the failed list, sayG. SensorN finds its first counterclockwise Voronoi

generator starting fromG, sayH. If sensorH is locally considered by sensorN to be failed,
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and is not already in the failed list of the receivedDISC message, sensorN addsH to

the failed list and repeats this process for the next counterclockwise Voronoi neighbor

starting fromH. The modifiedDISC message is forwarded to the first generator ofN, in

counterclockwise order fromG, that has not failed.

This procedure, similar to walking in a labyrinth with the left hand touching the wall,

finds the smallest perimeter enclosing a cluster of simultaneously failed sensors, and

reachesall the sensors affected by the cluster’s failure. When the initiator S receives

the DISC message that it has initiated, it recomputes its Voronoi diagram and Delaunay

triangulation using its local information and the information in the affected list received

with theDISC message.

Example. Fig. 2.11 shows an example of a network in which three sensors,f1, f2, f3, fail

simultaneously. Let us say thats7 detects thatf1 has failed.s7 creates aDISC message

containingf1 in the failed list, and sends it tos8. Before sending tof2, s8 detects thatf2

has also failed, and addsf2 to the failed list.s8 then forwards theDISC message tos1.

Similarly, s1 addsf3 to the failed list and forwards the message tos2. Whens4 receives

this DISC message, it detects thatf2 andf3 are already in the failed list, so it forwards

the message only tos5. All the intermediate sensors add their identities and positions to

the affected list, so whens7 receives theDISC message that it has initiated, it is able to

correctly recompute its Voronoi generators and incident Delaunay triangles.

Note. Each generator of a failed sensor must detect the absence of the failed sensor

and generate aDISC message. The total number of messages sent is therefore on the order

of the square of the number of Voronoi neighbors of the failedsensors. The number of

messages could be linear, if the ring of affected sensors would have a leader. The leader

could be chosen by each sensor, during its lifetime, to be itsclosest Voronoi generator.

This sensor, called monitor, would then watch over its target’s presence. In case of failure

detection, the monitor would send two circularDISC messages, the first one collecting

the information of all the affected sensors, and the second one propagating this list to all
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of them. However, the simultaneous failure of a sensor and its monitor would break the

protocol, since not all the affected sensors would be notified.

We now prove several properties of the departure algorithm.Let GF = (VF, EF) be the

failure graph, whereVF is the set of failed sensors, ande ∈ EF is an edge between two

sensorsf1 andf2 in VF if f1 andf2 are Voronoi neighbors. For every connected component

C in GF, let AC be the set of Voronoi neighbors of the sensors inC, that are not themselves

in C. That is,AC is the set of sensors affected by the failure of the sensors inthe connected

componentC. In Fig 2.11,f1, f2 andf3 form a connected componentC of the failure

graph, andAC = {s1, .., s8}. With these definitions, a generalization of Lemma 2.5.3 can

be easily proved.

Lemma 2.5.4 A connected component of the failure graph,C, affects only the Voronoi

diagram of its Voronoi neighbors,AC. Moreover, the set of candidates for the new Voronoi

generators for each affected sensor inAC is contained inAC.

Then, the following properties can be proved.

Correctness. On completion of the departure algorithm, the sensors affected by the fail-

ures will correctly compute their new Voronoi neighbors.

Proof A sensorS that is affected by the failure of a sensorF, part of a connected com-

ponentC of the failure graphGF, will send aDISC message that will traverse all the sen-

sors inAC. The message will collect information about all the traversed sensors. Using

Lemma 2.5.4, we conclude that whenS receives theDISC message that it initiated, it will

have all the information necessary for computing the new Voronoi neighbors.

Termination. The departure algorithm terminates.

Proof The number of sensors that sendDISC messages is equal to the number of sensors

affected by the sensor failures. EachDISC message will traverse only sensors that are

affected by failures.
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Complexity. The total number of messages necessary to recompute the Voronoi neigh-

bors of the sensors in the network, due to|VF | failures isO(|VF |2).

Proof The number of messages is upper bounded by the square of the number of sensors

affected by the failures. The number of sensors affected by|VF | failures isO(|VF |), using

Lemma 2.5.2.

2.5.4 Maintenance of Voronoi Generators for Dynamic Sensor Networks

While our main assumption, of sensor networks being static,is valid for most scenar-

ios, certain cases arise where sensors are placed on moving objects. For example, in mil-

itary applications, sensors can be associated with soldiersor vehicles. The main strength

of such scenarios, namely the mobility of sensors, translates into the necessity of correctly

updating the information stored by each sensor. In additionto old links breaking and

new ones forming, the topology and shapes of the Voronoi cells change as sensors move.

Fig. 2.12 illustrates a simple configuration of four sensors,their Voronoi diagram, and the

circumcircleC(O1) of sensors 0, 1, and 2, andC(O2) of sensors 1, 2, and 3, respectively.

As shown by Albers, Guibas, Mitchell and Roos [24], in this case, if sensor 0 moves, a

topological event occurs when sensor 0 crosses circleC(O2). Similarly, if sensor 3 moves,

an event occurs when sensor 3 crossesC(O1). Fig. 2.12(b) shows the result of sensors

0 and 3 moving simultaneously, as indicated by the arrows in Fig. 2.12(a). Even though

none of the individual movements generates a global event, their orchestrated movement

does, as sensors 0 and 3 become weak Voronoi neighbors. Two sensors are called weak

Voronoi neighbors if their Voronoi cells share a Voronoi vertex, and not a Voronoi edge.

This example illustrates that an independent movement of sensors can change the Voronoi

topology, and information stored locally is not enough to detect these changes. This is

true because a sensor is only aware of its new position, but not of the new position of

other sensors. It also shows that the threshold above which a sensor must move in order

to advertise its new position does not depend on changes in its local topology. The sensor

mustcontact its generators every time it moves.
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Fig. 2.12. Example of host movements and associated topological events.

We introduce an algorithm –DMV (Dynamic Maintenance of Voronoi), which main-

tains, in a distributed and efficient manner, the Voronoi cells of sensors as they move within

specified, and arguably reasonable, bounds (Fig. 2.13). We remind that each sensor stores

only information concerning its Voronoi neighbors. Any sensor that moves must send its

new position to all of its old generators (its generators before the move) since their cells

are directly affected by this move. This is performed in themoveTo method in Fig. 2.13,

which is invoked every time a sensor moves. Since a sensor may move continuously and

moveTo can be invoked only at discrete times, we choose to use a timer and callmoveTo

every time the timer expires. The arguments ofmoveTo represent the newx andy co-

ordinates. New sensor information along with information regarding the old generators is

created and sent to the old generators using the methodsendToNode.

When a sensor receives an update concerning a generator, it recomputes the Voronoi

diagram using its local data augmented with the information received. A sensors needs

to take further action upon detecting a change in the structure of its Voronoi neighbors.
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1.Object implementation Node;
2. myX, myY : integer; #node position

3. old state, state, generators, updates : array[integer]ofNode;
4. Operation moveTo(x : integer, y : integer)
5. myX := x; myY := y;
6. setOldGens();
7. for i in 1..size(generators) do
8. Nodegen := generators[i];
9. sendToNode(CHANGE, gen, self);
10. od
11. end
12.
13. Operation run()
14. guard inQ.first.type = CHANGE do
15. node = inQ.first.node;
16. old state := state;
17. update(state, node);
18. generators := Voronoi.build(state);
19. remUselessInfo(state, generators);
21. updates := diff(old state, state);
21. for i in 0..size(updates) do
22. Updateup = updates[i];
23. sendToNode(up.getV1(), up.getV2());
24. sendToNode(up.getV2(), up.getV1());
25. od
26. od
27. end

Fig. 2.13. DMV: the dynamic and distributed algorithm for maintaining the
Voronoi generators of individual sensors.

That is,s performs an action concerning two sensorsv1 andv2 if the following conditions

are met: (i)v1 andv2 are boths’s generatorsbefore and afterthe update, (ii)v1 and

v2 are notVoronoi neighbors in the Voronoi diagram ofs before the update, and (iii)v1

andv2 are Voronoi neighbors in the Voronoi diagram ofs after processing the update.

The action taken bys is then to propagate an update tov1, notifying it of the possibility

of v2 becoming its Voronoi neighbor, and a similar update tov2, notifying it aboutv1.

Fig. 2.12(c) and (d) shows the Voronoi cell of sensor 2 in the local view of sensor 2,

before and after the movement. As can be seen in sensor 2’s view, sensors 1 and 3 become
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each other’s generators, therefore sensor 2 notifies sensor1 of the possibility of sensor 3

becoming its Voronoi neighbor. Similarly sensor 2 notifies sensor 3 about sensor 1.

In Algorithm 2.13 this step is performed in the methodprocessInfo executed on

behalf of the notified sensor. The method takes the identifierof the advertised service

as an argument. In lines 16-18 the old generators of the receiver are saved, the local

knowledge is updated with the received information, and the new Voronoi generators are

recomputed. Since some of the old generators of the receivermight no longer be among

the new ones, because of the information received, in line 19we discard them using the

methodremUselessInfo. Line 20 generates all the differences between the structure

of the old and new Voronoi generators, and in lines 21-25, allthe detected changes are

forwarded to the corresponding generators.

In order to reduce the number of update messages, we use the following optimizations.

As can be seen in Line 6, a sensor packs information about its old generators along with

its new position, before notifying its Voronoi neighbors ofits movement. In this manner,

if one sensor detects in its local view that a sensorv1 is a new generator of sensorv2,

but v2 is already in the list of old generators ofv1, then there is no need to notifyv1

of v2, becausev1 already has this information. Moreover, every time a sensorreceives an

update, it recomputes its Voronoi generators and discards the old ones that are now isolated

(Line 19), thereby sending updates only to sensors that are among its new generators. In

addition, a sensor will not propagate an update about itself and one of its generators, since

that generator can symmetrically detect this change.

2.5.5 Routing to Voronoi Generators

We have assumed, until now, that the notification of the sensors affected by failures

or new sensor deployments is done using direct messages between Voronoi neighbors. In

other words, we have assumed that routing is done along the edges of the Delaunay trian-

gulation. However, two Voronoi neighbors may not be within eachother’s transmission

range, requiring a routing protocol. LAR [16], DREAM [18], and GPSR [17] are exam-
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Fig. 2.14. Proof of Theorem 3.6.1 – divide the area inr/3 × r/3 bins. Each
bin contains at least one sensor. The hashed bin contains sensorA.

ples of location based routing protocols that can be used forrouting between non-adjacent

Voronoi neighbors. However, in the following theorem, based on[25], we provide a lower

bound on the radio transmission range of sensors, that ensures that sensors that are Voronoi

neighbors are likely to be within each other’s transmission range.

Theorem 2.5.1 Let n be the number of sensors randomly placed in a square of areaS,

each sensor having a radio transmission ranger. Then there exists a constantc > 9 such

that ifr ≥
√

cS log n

n
, then any two sensorss1 ands2 that are Voronoi generators are almost

surely within each other’s transmission range (i.e.,

Pr(dist(s1, s2) ≤ r) → 1 when n → ∞).

Proof We divide the square of areaS into square bins of sizer/3. There are9S
r2

bins.

Similar to [25], the probability that a bin is empty after throwing n balls(sensors) in the

initial square is(1− r2/9S)n ≤ e−nr2/9S ≤ e−c log n/9 = n−c/9. The expected number of

empty bins is then9S
r2
n−cS2/9 = 9

c log n
n1−c/9 ≤ n1−c/9. This tends to 0 ifc ≥ 9.

If every bin contains at least one sensor, it is easy to see that each sensor will be in the

transmission range of all the sensors in the adjacent bins (the largest distance between two

sensors in adjacent bins isr
√
5/3 ≤ r) . To see how far two Voronoi neighbors can be,

Fig. 2.14 shows the Delaunay circle with the largest diameter that a sensor can form with

the sensors in two adjacent bins. The circle “bites” into thebins of sensorsD andE. In
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order forD or E to be Voronoi generators ofA, they need at least to be inside the Delaunay

circle of A, B, andC, which has a diameter of5r/6 < r. Thus,D andE are covered by

A. This proves that a sensor tends asymptotically to be in the transmission range of all its

Voronoi generators.

Given the transmission range of the sensors, this theorem canbe easily used to find

the number of sensors that need to be randomly deployed in a given square area, in order

to provide, with high probability, direct connectivity between Voronoi neighbors. For

example, if 2000 sensors with a transmission range of 25m are randomly deployed in

a square of size100× 100m2, it is highly probable that any two Voronoi neighbors can

communicate directly. This implies a sensor per4m2.

2.6 Simulation Results

In this section, we support our analytical results with a detailed simulation study for

quantifying the overhead and correctness of our algorithms. Section 2.6.1 presents the

experimental results for static sensor networks and Section 2.6.2 evaluates DMV in the

case of dynamic sensor networks.
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Fig. 2.15. Plots showing the evolution of the number of boundary sensors,
redundant sensors and sensors that can be turned off.
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2.6.1 Static Sensor Networks

All the experiments for static networks are performed by randomly placing identical

sensors in a region of size1000× 1000m2. In Section 2.6.1 we investigate the depen-

dencies between the number of redundant and coverage-boundary sensors, and the total

number of sensors deployed and their sensing range. In Section 2.6.1 we measure the

communication traffic generated by join and leave operations.

Detecting Coverage-Boundary and Redundant Sensors

We investigate the evolution of three metrics: the number ofcoverage-boundary sen-

sors, the total number of locally detected redundant sensors, and the total number of sen-

sors that can be simultaneously turned off. For all the experiments in this section, we ran-

domly generate 10 different sensor network configurations,and present only the average

results. In the first experiment we assume that all the sensorshave the samesensing range

of 50m. We measure the dependency between the three metrics and the number of sensors,

by increasing the number of sensors deployed from 150 to 700.

Each time a new sensorns joins the network, new paths need to be generated between

the new sensor and its new Voronoi generators. If the new sensor is not in the transmission

range of one of its Voronoi generators,s1, the path fromns to s1 is chosen to be the

concatenation of the path betweenns and the sensor closest to it, with the path between its

closest neighbor ands1, since these paths already exist. Even though this is not necessarily

the shortest path betweenns ands1, our measurements showed that the communication

overhead introduced by using this path is very small. Our experiments measure not only

the number of messages required to notify all the sensors affected by the new sensor, but

also the number of messages necessary for the affected sensors to contact the new sensor.

Fig. 2.15(a) shows the results of this experiment. Initially,all the 150 sensors are on

the boundary. If the number of coverage-boundary sensors experiences an initial increase,

it quickly saturates, and then steadily decreases to 140 boundary sensors out of a total of

700 sensors. This is because as the sensor density increases, the number of internal sensors
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also increases, but initially slower than the total number ofdeployed sensors. On the other

hand, as expected, the total number of redundant sensors is always larger than the number

of possible simultaneous turn-offs, as detected by Luby’s [21] algorithm. However, the

algorithm is scalable, since the number of possible simultaneous turn-offs grows linearly

with the number of sensors.

The second experiment measures the evolution of the same metrics for sensor networks

of 500 sensors, when the sensing range is increased from 5 to 100. Fig. 2.15(b) shows the

results. When the range is smaller than 20, all the metrics have extreme values. However,

for larger values, the number of boundary sensors decreasesdrastically to almost 10%

of the total number of sensors. The number of simultaneous turn-offs however, saturates

quickly at 20%, when the sensing range is around 50. Consequently, a relatively small

sensing range is enough to detect most of the possible simultaneous sensor turn-offs.

Network Load

We investigate the traffic generated in the network by insertions of new sensors and

failure of existing ones. The messages generated are necessary to recompute the local

Voronoi diagrams, and with it, the coverage-boundary and theredundant sensor informa-

 10

 15

 20

 25

 30

 35

 40

 45

 50

 100  200  300  400  500  600  700  800

nu
m

be
r 

of
 m

es
sa

ge
s

number of sensors

number of messages per new sensor

Join
Leave

 10

 15

 20

 25

 30

 35

 60  80  100  120  140  160  180  200

nu
m

be
r 

of
 m

es
sa

ge
s

transmission range (units)

number of messages per new sensor

Join
Leave

(a) (b)

Fig. 2.16. Plots showing the total number of messages requiredfor the de-
ployment of new sensors.
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tion. As before, we assume that all the sensors have similar capabilities, which for these

experiments consist of identical radio transmission ranges. Note that the experiments in

Section 2.6.1 only consider the sensing range.

In the first experiment, we initially place between 150 and 800 sensors in a region of

size1000× 1000m2. All the sensors have the same radio transmission range, of 115m. To

investigate the performance of the join algorithm, for eachvalue of the number of sensors

initially deployed, we generate 10 random network configurations, and for each configu-

ration we insert a new sensor at 150 random positions. Similarly, for sensor failures, for

each of the 10 random networks we randomly select 150 sensors to fail. We present only

the average values over 1500 measurements.

Fig. 2.16(a) shows the results of this experiment. The averagenumber of messages

transmitted for each join/leave operation, decreases abruptly with the increase in sensor

density, and saturates at around 400 sensors. Even though a higher sensor density implies

a larger number of Voronoi generators per sensor, increasing the number of sensors that

need to be notified, it also implies shorter distances betweenVoronoi neighbors, thus fewer

routing messages. Therefore, denser networks simplify thetask of locally updating the

Voronoi and coverage information.

In the second experiment, we place 500 sensors in the same square and increase the

transmission range from 50 to 200. Similar to the previous experiment, the values reported

are averaged over 1500 measurements. Fig. 2.16(b) presents the results. The average

number of messages required per update decreases quickly and saturates at a transmission

range of around 120. Energy-wise, there exists a tradeoff between the transmission range

employed and the total number of messages required per update. Since the energy required

per transmission increases super-linearly with the distance, shorter transmission ranges are

preferred.
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Fig. 2.17. DMV vs. flooding algorithm: evolution of 20, 30, and 40 sensors
moving with a speed of 3 units/s in a square of size 200.

2.6.2 Dynamic Sensor Networks

In this section we experiment with moving sensor networks. Thesimulations are per-

formed in a square area of size200 × 200 units, where each sensor has a sensing range

of 50 units and a transmission range of 40 units. Initially, the sensors are randomly dis-

tributed inside the square. We use a mobility model similar to the random waypoint model

to simulate the movements of sensors. That is, each sensor chooses a random destination

point, and starts moving towards it with the maximum velocitychosen for that experiment.

After reaching the destination, the sensor chooses a new destination point and repeats the
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Fig. 2.18. Performance of DMV: evolution of 30 sensors at speeds of 1, 5, and
10 units/s.

process. All simulations are performed with 10 different random seeds, each simulation

taking 90s.

In the first set of experiments we compare DMV against a baselineflooding algorithm,

where each sensor floods the network with its new position information, every time it

moves. For this set of measurements, we keep the speed of the sensors at a constant 3

units/s.

The experiments show the dependency between the total numberof messages gener-

ated by DMV and the flooding algorithm and the total number of Voronoi cell changes

(total NVCC), for 20, 30, and 40 sensors. For a sensor, NVCC represents the number of
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Voronoi neighbors that have changed after the network has evolved into a different con-

figuration as a result of sensor movements. The total NVCC for a network is the sum

of the NVCCs for all sensors. Intuitively, DMV should require the number of messages

exchanged to be proportional with the total NVCC, since the larger the number of cell

changes, the larger the number of sensors that have to be notified about changes in their

set of Voronoi neighbors.

Fig. 2.17 shows the results of our experiments. DMV not only performs better, but as

the number of sensors increases, the difference in performance increases considerably. If

for 20 sensors DMV is twice more efficient than the flooding basedalgorithm in terms of

the total number of messages, for 40 sensors DMV is 8 times moreefficient. Moreover,

the plots show that every time the sensors move, around 20 messages are being sent by

each sensor in order to be able to recompute its local Voronoiinformation and stabilize.

In the second set of experiments we measure the performance ofDMV for networks

of 30 sensors, moving at constant speeds of 1, 5 and 10 units/s. As Fig. 2.18 shows, the

graphs for the different speeds overlap. This is normal, since we expect that the same

NVCC will generate a similar number of messages irrespective ofhow fast the sensors

move. In addition, the range of NVCC increases as the speed increases, since higher

speeds imply a larger moving distance. For a speed of 10 units/s, the number of Voronoi

cell changes can be greater than 100. However, the total numberof messages required by

DMV to stabilize grows almost linearly with the NVCC.

The variations noticed in the plots are due to two factors: (i) a smaller number of

Voronoi changes can generate more updates, since updates are propagated by intermediate

sensors, and (ii) even though a movement generates only few cell changes, many simple

paths may be broken, increasing the number of messages necessary for routing to Voronoi

generators.
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2.7 Related Work

The problem of coverage of a set of entities has been studied in a variety of contexts.

Among the early formulations of this problem is the “Art Galleryproblem”, which requires

the placement of minimum number of observers so that every piece of artwork is visible

to some observer [26]. Lieska, Laitinen and Lahteenmaki [27] present algorithms for

optimal sensor placement with a view to optimizing specified service criteria. Haas [28]

presents algorithms for optimizing coverage under constraints on message path length. In

contrast, we focus on defining the coverage of a sensor networkin an attempt to preserve

the maximum coverage of the network while extending its lifetime.

2.7.1 Coverage-Boundary

The problem of network coverage is related to the problem of frequency assignment in

cellular networks [29], whose purpose is to assign a frequency for every base station in a

centralized manner, such that no two base stations with the same frequency cover the same

device. Our goal is quite different from the work mentioned above, namely to discover

the coverage-boundary and to extend the lifetime of the network by eliminating redundant

sensors. Moreover, we do not assume global knowledge of the network topology.

The problem of sensor coverage has also received considerable attention in robotics

(see [30] for a survey). Given a bounded domain the problem requires a robot equipped

with a sensor to build a complete map of the environment withoutany initial knowledge.

This requires the robot to pass through specified points of the unknown region. The notion

of a hierarchical generalized Voronoi graphis used to incrementally construct the map

using only line of sight data.

In other related approaches, some topology control algorithms [31] use Gabriel and

RNG graphs to minimize the energy required to maintain network connectivity. Two de-

vicesA andB are said to be Gabriel neighbors if their diametric circle, i.e., the circle

havingAB as its diameter, does not contain any other devices. Two devicesA andB

are RNG neighbors if there does not exist any device closer to bothA andB. One could
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surmise that a device would check if its sensing circumference is completely covered by

other devices by simply intersecting its disk with the disks of its Gabriel or RNG neigh-

bors. However, as illustrated in Fig. 2.19, such simple constructions do not work correctly.

Fig. 2.19 shows that deviceB is not a Gabriel neighbor of deviceA since the circle with

diameterAB has deviceC inside it. Note that deviceA is not on the coverage boundary

since devicesB..G completely coverA’s circumcircle of coverage. If deviceA would

query only its Gabriel neighbors, it would discover that the arc xy on its circumcircle is

not covered by any of them, and wrongly infer that it belongs tothe coverage boundary.

In Fig. 2.19(b) deviceB is notA’s RNG neighbor since deviceC is closer to bothA and

B. Similarly, deviceF is closer to bothA andG thanA is toG. It is clear that by asking

only its RNG neighbors consisting of deviceC,A will inaccurately decide that it is on the

coverage boundary.A is not on the coverage boundary since the devicesB..G completely

cover the circumcircle ofA’s coverage.
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Fig. 2.19. Counter-example to the use of a simple Gabriel-graph or RNG-
graph based algorithms: points represent devices, large circles centered
around points represent devices’ coverage areas. The dotted circle represents
A’s coverage circumcircle. The direct links show deviceA’s Gabriel and RNG
neighbors respectively.
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Also, as shown in Section 2.3, the centralized coverage boundary problem has aΩ(n log n)

lower bound. Since the construction of the Voronoi diagram, which is the basis of our so-

lution for the centralized coverage-boundary problem, takes O(n log n), our solution is

optimal.

2.7.2 Coverage-Preserving Redundancy Elimination

Tian and Georganas [3] present an algorithm for detecting sensors whose coverage

area is completely covered by other sensors. A sensor turns itself off only when each

sector of its coverage disk is covered by another sensor. Therefore, unlike our solution,

this mechanism discovers only a subset of all the redundant sensors.

Zhang and Hou [32] provide a distributed algorithm for extending the network life-

time by turning off “redundant” sensors. Their mechanism for determining if a sensor is

redundant requires a sensor to divide its coverage area intosmall grids and then to use a

bitmap to indicate whether the center of each square of the grid is covered by some other

sensor. For small values this method becomes expensive, andfor large values it may be

overly conservative. Since only the neighboring sensors are probed for grid coverage, they

only find a subset of all the redundant sensors. However, we present a precise and efficient

solution to this problem.

Ye et. al [33] present an algorithm that extends the network lifetime by maintaining a

necessary set of working sensors and turning off redundant ones. A sensor is alternately

sleeping or active. When a sensor wakes up, if it has an activesensor inside its transmis-

sion range, it turns off again. Hence, unlike our solution, their algorithm has no claim

towards maintaining the coverage of the network.

Several other solutions have been proposed for related coverage problems. Slijepcevic

and Potkonjak [34] introduce a centralized algorithm for finding the maximum number

of disjoint subsets of sensors, where each subset completelycovers the same area as the

entire set of sensors. [35] define the coverage using the bestcovered and least covered

paths between two sensors in the network as metrics. Fang et. al [36] present an algorithm
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for routing around connectivity holes in a sensor network. Cardei and Wu [37] present an

extensive survey of coverage problems in sensor networks. Shakkottai et. al [38] study the

coverage of a unit square by a given number of sensors, under the assumption that sensor

failures will affect the coverage. However, our work focuses ona different definition and

purpose of coverage of wireless sensor networks.

2.8 Conclusions

In this chapter we have studied the problem of coverage-preserving, energy-efficient

redundancy elimination for extending a network’s lifetime, and the related coverage-

boundary problem. We have reduced both problems to the computation of Voronoi di-

agrams and showed how to solve them using only local information. We have provided

distributed and localized algorithms that allow sensors toupdate their view of the solution

in cases of sensor failures and new sensor deployments. We have proved the correctness

and termination properties of these algorithms. Our simulations show that the algorithms

are efficient and scale well with the number of sensors. Our redundant sensor elimina-

tion algorithm turns off simultaneously more than half of the total number of redundant

sensors, approximately 20% of the total number of sensors deployed. The number of mes-

sages required to update the Voronoi neighborhood of sensors, due to events such as sensor

failures or new sensor deployments, shows a significant decrease with the increase in sen-

sor density. This is due to better chances of directly sending messages between Voronoi

neighbors.
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3. READER COLLISION AVOIDANCE IN RFID SYSTEMS

Radio Frequency Identification (RFID) systems consist of twotypes of components: RFID

tags, comprising a small integrated circuit for storing information and an antenna used for

communication and RFID readers capable of reading the information stored on non line-

of-sight RFID tags placed in its vicinity and communicate itthrough a wired or wireless

interface to a central database.

The investment of major retailers such as Wal-Mart and Tesco, mandating their man-

ufacturers to place tags on cases and pallets is a serious motivation for the large scale

deployment of RFID systems. This investment is based on recent technological advances

that have made the mass production of very cheap tags, indeedpossible , their cost being

envisioned to drop below the 5 cents/tag threshold [39]. Themain advantages of RFID

systems are price efficiency (envisioned billions of dollars in savings for Wal-Mart [40])

and accuracy of stock management (GAP documented an increase of accuracy from 85%

to 99.9% when using RFID technology [41]).

The miniaturization of readers (SkyeRead M1-Mini [2]), coupled with their enhance-

ment with Wi-Fi or cellular capabilities (SmartCode [42]), broadens the range of appli-

cations for RFID systems. Wireless RFID systems, similar tosensor networks, can be

deployed on-line instead of being statically pre-installed. Unlike sensor networks, Wire-

less RFID systems have the ability to decouple the sensing and communication functions.

Since tags interfaced with external sensors, such as temperature and shock sensors or

tamper indicators, have already been produced [1], wirelessRFID systems can be eas-

ily extended with new sensing capabilities by deploying corresponding RFID tag types.

Moreover, the existing compatibility between recent readers (SkyeRead M1-Mini [2]) and

MICA2DOT motes makes possible the integration of wireless sensor networks and wire-
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less RFID systems. A hybrid wireless sensor and RFID infrastructure combines the ease

of deployment with affordable identification and monitoringof objects.

RFID readers identify tags placed in their vicinity by broadcasting queries. Tags re-

ceiving such queries reveal their identity using the energyof the received signal. During

this detection phase, several tags may respond simultaneously to the query of an RFID

reader, generating atag collision. A tree walking algorithm [4] is used to solve this prob-

lem. The reader sends out prefixes of variable length, ranging from one to the maximum

length of the tag identifier. For every prefix that is received, a tag will respond with an

acknowledgment, if the prefix of its identifier matches with theprefix sent by the reader.

A reader on listening to an acknowledgment will explore that part of the sub-tree rooted

at the prefix. This procedure is performed until the maximum length of the prefix is equal

to that of the tag identifier. In the absence of interference,an RFID reader can detect all

the tags placed in its vicinity.

However, the tree walking algorithm will not solve the followingproblem, similar to

the hidden terminal problem of ad-hoc networks. During the tag detection phase, readers

that cannot communicate directly may simultaneously send prefix queries. Tags situated

in the vicinity of two or more readers may then be unable to correctly decode the queries,

leading to scenarios where readers erroneously conclude theabsence of tags, matching

their current queries, in their vicinity.

Previous solutions to the reader collision problem have relied on time or frequency di-

vision mechanisms [43]. However such solutions are difficult to implement in the absence

of a centralized coordinator. Applying medium access control mechanisms from wired

or wireless networks to RFID systems may prove to be equally difficult. Carrier sensing

multiple access with collision detection (CSMA/CD), used in standard Ethernet, uses col-

lision detection mechanisms and exponential back-offs to successfully transmit messages.

However, such mechanisms cannot be used in RFID systems due to the inability of RFID

readers of detecting reader collisions at tags. CSMA/CA usesready-to-send (RTS) and

clear-to-send (CTS) message exchanges between sending and receiving nodes in order to

avoid collisions. In RFID systems, readers are not aware of the identities of tags in their
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vicinity, making impossible the exchange of RTS/CTS messages between pairs of readers

and tags. Moreover, CTS messages sent by multiple tags as a reply to a RTS broadcast of

a reader may collide at readers, making their decoding impossible. Finally, the resource

constraints of tags greatly reduce their ability of assisting readers in this process.

In this chapter we present a distributed and localized solution to the reader collision

problem. Our Reader Collision Avoidance (RCA) algorithm, is based on foundational

techniques in randomized algorithms. In RCA, a reader retransmits each query period-

ically at random intervals. This is done by dividing time into disjoint epochs and each

epoch into multiple disjoint time frames, and having each reader pick a frame uniformly

at random and send its current query during that frame. As proved in Section 3.3, the

number of retransmissions per query, in the worst case, isO(logψ), whereψ is the max-

imum number of readers in the system. This ensures with high probability that all tags

within the vicinity of the reader are detected correctly. In Section 3.4, we experimentally

demonstrate that in realistic scenarios, involving randomdeployment of readers and tags,

much fewer retransmissions per query suffice to allow correctdetection of tags.

Chapter Organization In Section 3.1 we describe in detail the reader collision issue. In

Section 3.2, we describe our randomized algorithm (RCA) for thereader collision prob-

lem. We experimentally evaluate RCA in Section 3.4. We present our conclusions in

Section 3.6.

3.1 The Reader Collision Problem

The area around a reader where tags can receive the reader’s signal and their replies

can be correctly decoded by the reader, is called theinterrogation zoneof the reader. The

main functionality of readers it to detect the unique identifiers of all the tags placed in its

interrogation zone.

When two readers are placed close enough for their interrogation zones to overlap but

far enough to prevent their direct communication, tags placed within the intersection area

of the interrogation zones may receive queries from both readers simultaneously. Such
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queries, potentially part of the TWA protocol, will then interfere, preventing the concerned

tags from correctly decoding the queries. Such tags may thenbecome hidden, escaping

detection by any reader in the system.

Previous solutions to this problem include time and frequency division mechanisms

[43]. However such solutions are difficult to implement in the absence of a centralized

controller, since readers may be oblivious to overlappingsin their interrogation zones.

Since readers can communicate with tags but are unable to route packets, reader-to-reader

communications are local and can only occur through neighboring tags. Moreover, the

considerable storage and processing constraints of tags further restrict the volume of such

communications. The lack of collision detection mechanisms in RFID systems further

complicate the problem. Tags affected by collisions may erroneously lead readers to con-

clude the absence of any tags matching the currently employed prefix.

3.2 Reader Collision Avoidance (RCA) Algorithm

We propose a randomized, distributed and localized solution to the reader collision

problem. Our algorithm is presented in the context of a tree walking procedure. However,

a similar approach can be extended to any scenario where a reader needs to communicate

with a tag. Similar to TWA, in RCA a reader sends a broadcast query containing a certain

prefix expected to match the identifiers of tags in its interrogation zone. However, unlike

TWA, where the lack of an answer is considered to denote absence of matching tags, RCA

backs-off for a random number of time frames and repeats the query. The purpose of the

random back-off and query repetition is to ensure w.h.p. the choice of a time frame not

picked by another reader, thus avoiding reader collisions.

The current design of the algorithm is made under the following conservative assump-

tions, thus, any relaxation of the conditions will only improve the performance of our

approach.

• Our algorithm is applicable to any number of readers and tags.

• We make no assumptions on the underlying reader or tag topology.
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• We do not assume the presence of a centralized entity capableof collecting the

topology of the reader network or controlling the behavior of individual readers.

• We assume the presence of passive tags only, as opposed to active tags (the latter are

more powerful and expensive). Therefore, tags are only able to answer readers by

using the energy of their queries. Also, a tag has limited, read-only memory, used to

store its corresponding unique identifier. The tag is howevercapable of doing prefix

matching and in case of a match send back a message.

• Readers are able to detect tag collisions, occurring when multiple tags reply to the

same query

The premise of the algorithm is as follows. A reader divides time into disjoint epochs

and each epoch is further divided into multiple disjoint time frames. The above details can

be made standard by programming them into each reader. In each epoch, a reader picks a

frame uniformly at random and sends its query in that frame. If no tag answer is received,

the reader repeats the query in a randomly chosen time frame of the next epoch. If a reader

collision at matching tags has occurred during the query, the query duplication correlated

with the random back-off decreases the chances of repeated reader collisions. Section 3.3

proves that if a query is not answeredO(log ψ) times, w.h.p. there are no tags matching

the query in the interrogation zone of the reader. If, however, an answer is received, either

as a clear tag response or by detecting a tag collision, the reader recursively moves to the

next query, as proposed in the TWA algorithm.

The choice of repeating a query up toO(log ψ) times is made under the conservative

assumption that all readers interfere with each other at all tags. Hence, the bound that we

provide is the worst case bound. However, this is not always thecase. In our experiments

(see Section 3.4), we show that in realistic scenarios of random deployment of readers and

tags, much fewer repetitions are needed in order to allow readers to accurately detect tags.

The algorithm in Fig. 3.1 presents the pseudocode for RCA using an Orca [44] like

syntax. Orca is a parallel programming language for distributed systems, that provides
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1.Object implementation RFIDTag;
2. Tid : integer; #tag identifier

3. inQ : queue; #queue of incoming packets

4. Operation run()
5. guard prefixMatch(inQ.first, Tid) do
6. bCast(new packet(TAG));
7. od
8. end

9. Object implementation RFIDReader;
10. count, nEpochs : integer; #epochs per bit read

11. frame, n : integer; #time frames in each epoch

12. T, Tout : integer; #time out value

13. inQ : queue; #queue of incoming packets

14. Operation treeWalk(prefix : integer)
15. count := 0;
16. while count+ + < nEpochs do
17. frame := getRandom(0, n);
18. sleep(frame);
19. T = getTime();
20. bCast(new packet(prefix));
21. guard inQ.first.type = TAG COL || TAG do
22. treeWalk(prefix+ ”0”);
23. treeWalk(prefix+ ”1”);
24. od
25. guard getTime()− T ≥ Tout do
26. sleep(n− frame− 1);
27. od
28. od
29. end

Fig. 3.1. The generic reader and tag behavior.getRandom(v1, v2) returns a
random integer value betweenv1 andv2 andbCast(packet) is used to broad-
castpacket.

elegant constructions for expressing reactive behavior, such asguards. Operations can

consist of one or more guards with syntax

guard expression do statementSeq od,
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whereexpression is a boolean expression andstatementSeq is a sequence of state-

ments. The operation containing guards blocks until one or more guards are true. Then

one of the satisfied guards is randomly chosen and its statements are executed atomically.

The operation of a tag is shown in Fig. 3.1, lines 1-8. A tag will reply only to queries

containing strings whose prefixes match its own identifier (lines 5-7).inQ.first is used

to denote the packet currently received by the tag. The operation of a reader is shown in

Algorith 3.1, lines 9-29. We divide time into epochs, where eachepoch contains a fixed

number,n, of time frames. The duration of a time interval is equal to the time necessary

for a query to propagate from a reader to a tag. For each prefix queried, the reader waits for

a maximum ofnEpochs epochs (line 16) and in each epoch sends exactly one broadcast

message containing the prefix. During each epoch, the broadcast message is sent in a

randomly chosen time frame (lines 17-20).

The lack of a reply can denote either the absence of a tag in theinterrogation zone,

matching the queried prefix, or the occurrence of reader collisions at such tags. Then, if

less thannEpochs queries with the current prefix have been sent, the reader waits until the

beginning of the next epoch to repeat the above process (line22). If no reply or collision is

detected afternEpochs rounds, the reader ignores the subtree rooted at the queriedprefix.

However, the receipt of an individual reply or the detection ofa tag collision stops this

process, since the reader can now safely recurse on the two children of the employed

prefix (lines 21-24).

Incorrect Tag Detection. Note that readers cannot interpret replies of covered tags,

queried by other readers, as answers to their own queries. As an example, consider

Fig. 1.4, where the tags areT1 = 11101, T2 = 10110 andT3 = 01100. If R1 sends a ”0”

query whileR2 sends a ”1” query,T1’s reply for R2 will not be incorrectly interpreted by

R1 as the presence of a tag with ”0” as prefix, in its interrogationzone. This is because

either (i) the simultaneous transmissions ofR1 andR2 will interfere atT1 and no reply will

be generated byT1 or (ii) if the query ofR2 occurs later than the query ofR1, the answer

of T1 will not be interpreted byR1 as an answer to its query.
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3.3 Analysis

We present an analysis of RCA based on two fundamental abstractions in randomized

algorithms,viz. the coupon collector abstraction and a balls and bins paradigm. For

the sake of completeness, we define the coupon collector problem as in Motwani and

Raghavan [45].

Coupon-Collector Given a set of coupons containingn unique coupon types, the num-

ber of samples required to obtain w.h.p. a coupon of each type, is nHn, whereHn is

O(log n).

Letψ be the total number of readers andγ the total number of RFID tags in the system,

τ be the number of time frames per epoch andβ be the bit size of RFID tag identifiers.

Our first goal is to evaluate the number of epochs per query,x, required to ensure the

success of the query. To establish an upper bound, we assume a star topology in which

interrogation zones of allψ RFID readers share allτ RFID tags. Note that this is a worst

case assumption. Each frame is considered to be a bin and a query of an RFID reader is

modeled as a ball. We first prove the following lemma.

Lemma 3.3.1 In each epoch of the RCA process, the expected number of readers that

send a message without a collision isψe−
ψ

τ .

Proof Whenψ readers send a message uniformly at random in any one of theτ frames

of an epoch, the distribution of the messages in each frame follows a Poisson distribu-

tion [45]. Therefore, ifXi is a random variable that is equal to the number of messages

sent by different readers in framei, the probability of exactly one message being sent in

framei is given by

P (Xi = 1) =
ψ

τ
e−

ψ

τ

Since there areτ frames, the average number of frames where exactly one message is sent

isψe−
ψ

τ .

Using the coupon collector paradigm we can prove the following lemma.
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Lemma 3.3.2 The RCA process is dominated by the coupon collector process.

Proof In RCA, an RFID reader sends a query until the upper bound,x, is reached. The

approach can be modeled as a coupon collector process, where each reader is a coupon

type. A coupon type is chosen if the query sent by the corresponding reader during its

chosen time frame of the current epoch is the only query sent by a reader during the

same time frame. From Lemma 3.3.1, on averageψe−
ψ
τ coupon types are selected during

each frame. This is similar to choosingψe−
ψ

τ coupons (of the coupon collector process)

and then placing back the chosen coupons into the set, instead of choosing a single coupon

and replacing it immediately. This increases the rate at which the coupon types are chosen.

Thus, the number of epochs needed for each RFID reader to sendthe only query during a

time frame is at most the number of samplings in the actual coupon collector process.

We can now prove the following theorem, providing an upper bound on the number of

query repetitions in RCA.

Theorem 3.3.1 Setting the number of time frames per epoch,τ , to be the total number of

readers,ψ, in RCA, requires onlyO(logψ) query repetitions to ensure w.h.p. the receipt

of a reader’s query by the target RFID tags in its interrogation zone.

Proof If x is the number of query repetitions, using Lemma 3.3.1 and Lemma3.3.2, we

get

x ψ e−
ψ

τ ≤ cψ logψ.

Whenτ = ψ, x = O(logψ).

We can now provide the worst case time complexity of RCA.

Complexity of RCA The time complexity of RCA,TRCA is O(γ log β logψ) time epochs.

Proof Since each reader coversγ tags of bit sizeβ, the number of query types isO(γ log β).

Theorem 3.3.1 completes the proof.
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Fig. 3.2. Performance of RCA when the number of epochs per querygrows
from 1 to2 log ψ, for a total of 500 readers and 4000 tags. The number of
time frames per epoch is2 log ψ.

3.4 Simulation and Results

In this section we experimentally analyze the accuracy and message overhead intro-

duced by our randomized solution to the reader collision problem. We compare the per-

formance of RCA with the simple tree walk algorithm [4] and witha version of RCA, that

we call RCAv.1. In RCAv.1, a reader sends each query the maximum number of times,

irrespective of the result of the query. Note that in RCA, a reader will not repeat a query if

the result is a success, that is, it receives an answer from a tag or it detects a tag collision.

All our experiments are performed by randomly (uniformly) deploying tags and readers

in a1000 × 1000m2 square.

We first evaluate the performance of RCA as a function of the number of time epochs

used per query. For this, we randomly place 4000 tags and 500 readers having an interro-

gation radius of 50m in the1000×1000m2 square area and increase the number of epochs

per query from 1 to2 log ψ. Fig. 3.2(a) shows the average number of tags detected by a

reader, compared with the average number of tags actually placed in the interrogation zone

of the reader. The number of tags discovered by a reader quickly converges to the number

of tags placed in its interrogation zone. For 9 epochs (log ψ) per query our randomized
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Fig. 3.3. The performance of our solution when the number of time frames
per epoch increases from 1 to 38, for a total of 500 readers and4000 tags. The
number of time epochs per query islog ψ.

algorithm allows any reader to discoverall the tags placed in its interrogation zone. This

explains the usage oflog ψ epochs per query in the following experiments.

Fig. 3.2(b) shows the number of messages generated by RCA compared with the num-

ber of messages generated by RCAv.1. The number of messages ofour protocol increases

linearly with the number of queries. However, for 9 epochs per query, RCA sends less

than half of the messages of RCAv.1.

In the following experiment, we evaluate the performance of RCA when the number

of time frames per epoch increases from 1 to 38. The total number of tags is 4000 and

the number of readers is 500 with an interrogation radius of 50m. We perform the exper-

iments usinglog ψ epochs per query. Fig. 3.3(a) depicts our observations. As expected,

the number of tags detected by a reader increases with the increase on the number of

frames per epoch, quickly converging to the actual number oftags physically located in

the interrogation zone of the reader. This is because a larger number of frames per epochs

decreases the chances of reader collisions. For 9 (log ψ) frames per epoch, our algorithm

allows readers to detect on average 0.2 less tags than the ones physically located inside the

reader’s interrogation zone. However,all the tags are detected when the number of frames

per epoch is 18 (2 log ψ). This can be explained as the result of uniformly distributing the
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Fig. 3.4. Testing the scalability of our solution when the number of tags in-
creases from 1000 to 8000, while the number of readers is 1000.

tags and the readers in the square. It is well known that whenb balls are thrown uniformly

at random inb bins, the maximum number of balls in any bin isO(log b) [45].

Fig. 3.3(b) shows the average number of messages per reader generated for this sce-

nario. In order to read all the tags situated in its interrogation zone, whose identifiers have

12 bits, a reader sends on average 429 query types, or up to 2000 messages, This implies

sending each query on average 5 times, when our algorithm places a bound of 9 (log ψ)

consecutive epochs per query. Thus, by not repeating successful queries, our randomized

algorithm saves on average 4 messages per query.

Moreover, for small epoch sizes the increase in epoch size generates significant in-

creases in the number of messages generated. This is becausesmaller epochs increase the

chance of collisions, leaving large parts of the tag name trees untraversed. This is con-

firmed by Fig. 3.3(a), where for small epoch sizes the number of tags is also very small.

However, the number of messages generated by RCA reaches the maximum at 5 frames

per epoch. Subsequently, as the number of frames per epoch increases, the number of mes-

sages decreases. This behavior is expected, since larger epoch sizes imply lower chances

of reader collisions, hence faster detection of successfulqueries.

In the next simulation, we experiment with between 1000 and 8000randomly placed

tags, while maintaining the number of readers constant, 1000. The interrogation radius
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Fig. 3.5. Testing the scalability of our solution when the number of readers
increases from 10 to 500, for 4000 tags.

of readers is set to 50m. The number of time frames per epoch isset to2 log ψ both for

our randomized algorithm and for the tree walk algorithm. Fig. 4.4(a) shows the average

number of tags detected by a reader, when using RCA (log ψ epochs per query) and when

using TWA (one epoch per query), compared with the average number of tags placed

inside the interrogation zone of readers. While RCA is very accurate, with an average

difference of 0.02 tags/reader from the actual value, TWA discovers around 7 times less

tags per reader than it should.

Fig. 4.4(b) shows the corresponding number of messages per readers generated by

the two algorithms, on a logarithmic scale, compared with thetotal number of messages

per reader generated by RCAv.1. While RCA generates 10 time more messages than

TWA, this is simply due to the fact that the number of successful queries for the tree walk

algorithm is around 3 times less than in our case. This also explains why the tree walk

allows a reader to detect only a small fraction of the number oftags covered. However,

by stopping with a given query when the result is detected to be asuccess, our algorithm

reduces by half the number of messages generated by RCAv.1.

In the following, we measure the performance of RCA when we increase the number

of readers from 10 to 500 but keep the number of tags distributed at 4000. The interroga-

tion radius of readers is 50m and the number of time frames perepoch is set to2 log ψ
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both for our randomized algorithm and for the tree walk algorithm. Fig. 4.6(a) shows the

performance in terms of the number of tags discovered by RCA and by TWA. For a small

number of readers, the simple tree walk algorithm accurately detects the tags deployed in

the interrogation zone of readers. This is because the interrogation zones of readers barely

intersect, practically eliminating reader collisions. However, as the number of readers in-

creases, effectively increasing the overlapping areas of the interrogation zones of readers,

the accuracy of TWA quickly decreases. In contrast, RCA, by using log ψ epochs per

query is very accurate, consistently discoveringall the tags deployed.

Fig. 4.6(b) shows the average number of messages generated by readers when RCA,

TWA and RCAv.1 are run by readers in the scenario described in the previous paragraph.

The values are shown on a logarithmic scale. As before, the simple tree walking algorithm

generates few messages, since only few queries are successful, leaving most of the tag

name trees untraversed. Moreover, note that for TWA the number of messages per reader

decreases as the number of readers increases. Initially, when only 10 readers are deployed,

their interrogation zones barely overlap, allowing them to detect most of the tags covered

and generating almost half of the messages generated by our randomized algorithm. As the

number of readers deployed increases, so does the number of reader collisions, detecting

less tags and hence generating less messages. However, the number of messages generated

by RCA quickly saturates and is only half of the messages generated by RCAv.1.

The last experiment evaluates the performance of RCA when theinterrogation radius

of readers increases from 40m to 100m, while the number of readers randomly deployed

is 500 and the number of tags is 4000. The number of time framesper epoch is2 log ψ

for the entire experiment. Fig. 4.7(a) shows the accuracy of RCA compared with TWA.

Our algorithm discoversall the tags until the interrogation radius reaches 85m. However,

even for an interrogation radius of 100m, the readers running our algorithm detect on

average only 7 out of 115 tags less than they should. This is explained by the observation

that as the interrogation radius increases so does the size and number of intersections of

interrogation zones of readers. Since the number of epochs per query,log ψ and the

number of time frames per epoch is constant, more collisionsare generated, leading to a
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Fig. 3.6. Testing the performance of our solution when the interrogation zone
of the readers increases from 40m to 100m, for 500 readers and4000 tags.
We performed the experiments such that even when the interrogation zone is
40m the readers completely cover the tags.

decreased accuracy. However, the performance of TWA is considerably inferior. When

the interrogation radius of readers is 100m, readers running TWA discover only 5% of the

tags detected by readers running RCA.

Fig. 4.7(b) shows the number of messages generated by the same algorithms. It con-

firms the results shown in Fig. 4.4(b) and Fig. 4.6(b). TWA generates only a fraction of

the messages generated by RCA, since the number of queries correctly detected as suc-

cessful is very small. However, we consistently reduce the number of messages sent by

eliminating repetitions of successful queries.

3.5 Related Work

The reader-collision problem in systems was first documented in [43]. The solution

proposed, of allocating different frequencies to interfering readers, is centralized. A sim-

ple decentralized version, where readers listen for collisions and use randomized backoff

when detecting one, is discussed. In contrast, our work assigns different time slots for

transmitting readers. Moreover, our solution guarantees w.h.p. that each reader is able to

correctly read all the tags placed in its interrogation zone.
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Closest to our goal is the work of Waldrop et. al [46]. They propose Colorwave, a de-

centralized Medium Access Control (MAC) protocol for readernetworks whose purpose

is to allocate disjoint time slots for reader transmissions. The protocol is based on the

presence of an interference graph whose links denote interference between the end-points

corresponding to readers. Hence, an interesting extension to this work would be a descrip-

tion of the interference graph construction. As shown in Fig. 1.4, interference at certain

tags is difficult to detect, since even the presence of such tags may not be known.

Privacy-related issues of RFID systems have been extensively studied in [4, 47, 48].

A detailed description of computation and communication mechanisms and constraints of

RFID systems, together with several suggestions for RFID protection are presented in [4].

A solution for preserving the privacy of tags, using hash functions for locking tags, is

proposed in [47]. Locked tags are prevented from revealing their unique identifier until

unlocked with the corresponding inverse hash value. The workin [48] provides an in-

depth presentation of security and privacy challenges of RFID systems and proposes the

use of additional, ”blocker” tags in order to prevent unauthorized readers from accessing

protected tags.

Medium Access Control (MAC) protocols for wired and wireless networks share sev-

eral characteristics with our reader collision avoidance algorithm. ALOHA [49] was the

first MAC protocol for packet radio networks In ALOHA [49], when the transmission of

a node results in collision, the node has to wait for a random interval before retransmit-

ting. However, RFID systems do not have the mechanisms to detect collisions occurring

at tags, making ALOHA unsuitable for avoiding reader collisions. IEEE 802.11b [50] is

based on a multiple access with collision avoidance (MACA) [51] protocol that employs

a handshake to avoid hidden-node problems. The sender broadcasts an RTS message and

the receiver replies with a CTS message. All the nodes that hearthe RTS and CTS mes-

sages delay their transmissions. Such a protocol cannot be used in RFID systems, since

the purpose of a reader is to detectall the tags in its interrogation zone. Such a reader does

not know the identities of the tags and thus cannot send individual RTS messages. More-

over, the simultaneous reception of CTS messages initiatedby tags leads to tag collisions.
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Carrier sensing multiple access with collision detection (CSMA/CD) [52], employed in

the standard Ethernet is based on the ability of nodes to detect collisions. After detecting

a collision, a node waits a random interval before retransmitting. In case of subsequent

collisions, the node wait twice as much before attempting to retransmit, also known as ex-

ponential back-off. However, as noted before RFID systems lack the ability of detecting

collisions.

3.6 Conclusions

In this chapter we present a distributed, local, and randomized solution to the reader

collision problem in RFID systems. Current solutions to theproblem are dependent on a

coordinator and are based on time division or frequency division multiplexing. Our system

is scalable in the number of readers and tags and is not dependent on a central coordinator.

We give an analysis based on fundamental abstractions of thecoupon collector process and

the balls and bins paradigm. In our simulations RCA enables readers to accurately detect

the tags placed in their interrogation zones with a small number of message repetitions

(logψ) while requiring only2 logψ time frames for each message. Moreover, by stopping

the process as soon as a tag answer is received, RCA is able to reduce to half (on average)

the total number of messages required to achieve the desiredaccuracy.
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4. REDUNDANT-READER ELIMINATION IN WIRELESS RFID

SYSTEMS

The dense deployment of wireless RFID systems, due to the needof accurate monitoring

of areas of interest, coupled with the limited battery lifetime of wireless readers, raise sev-

eral important problems. In this paper, we address the problem of extending the lifetime of

wireless reader networks. We propose a solution based on the identification of redundant

readers, whose deactivation will not affect the tag coverage of the initial reader network.

We define redundant readers in terms of covered tags instead of continuous areas of cov-

erage. In Figure 4.1, all readers are redundant, however, onlya subset of the readers may

be simultaneously deactivated.

While the problem of determining coverage redundancy has been extensively studied

in wireless sensor networks [3,32,33,53], it differs from the redundant reader elimination

problem in several aspects. First, coverage is defined in terms of contiguous circular areas

associated with sensors, whereas in RFID systems coverage is defined in terms of discrete

points (RFID tags). Second, it relies on the existence of location information or at least

the ability to estimate distances between adjacent sensors.Due to the limited resources

of tags, we claim that in RFID systems such an assumption is notreasonable. Third, the

limited resources of tags coupled with the potential inability of readers of acting as routers,

considerably restrict the solution space of the redundant reader problem.

In this chapter we prove that even with centralized knowledge ofthe RFID system

topology, an optimal solution for the redundant reader elimination problem is NP-hard.

We present a randomized, decentralized and localized approximation algorithm for the

redundant-reader elimination problem, called RRE. For each reader, the first step of RRE

consists in detecting the set of tags placed in its vicinity.Similar to RCA, the difficulty of

RRE rests on the potential occurence of reader collisions attags. The absence of global
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T3
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Fig. 4.1. Redundant reader example: readersR1, R2, R3 andR4 are redun-
dant since the tags covered by each is covered by at least one other reader.
This redundancy information would not be detected by a sensor redundancy
detection algorithm, since the coverage areas of any of the readers are not
subsumed by the others. The optimal solution requires onlyR2 to be active,
while the other readers may be turned off.

topology information, where readers might not be aware of such events, makes the task of

accurate query scheduling difficult. During the first step of RRE, each reader attempts to

write its tag count (number of covered tags) on all its coveredtags. A tag placed in the

vicinity of several readers will overwrite the count stored onbehalf of a reader only if the

new value is larger. The reader that has issued the highest count for a tag, willlock the

tag. Then, in the last step of RRE, each reader sequentially queries all its covered tags

to discover the ones it has locked. A reader that has not locked any of its covered tags is

declared redundant.

Chapter Organization Section 4.1 describes the constraints of the RFID system con-

sidered in this work. Section 4.2 introduces the redundant-reader elimination problem and

proves its NP-hardness. Section 4.3 presents our distributedand localized solution, pro-

poses ways to avoid reader synchronization requirements and algorithms for adapting the

solution to topological changes and analyzes the complexity of the solution. Section 4.5

presents the efficiency of our solution and the simulation environment used for experi-

ments and Section 4.6 draws the conclusions.
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4.1 Network Model

The design of our algorithms is made under the following conservative assumptions,

thus, any relaxation of the conditions will only improve the performance of our approach.

Our algorithm is applicable to any number of readers and tags and we make no assump-

tions on the underlying reader or tag topology. We do not assume the presence of a cen-

tralized entity capable of collecting the topology of the reader network or controlling the

behavior of individual readers. Thus, our algorithm does not rely on the ability of readers

to communicate. Furthermore, we assume the presence of passive tags only, as opposed

to active tags (the latter are more powerful and expensive). Therefore, tags are only able

to answer readers by using the energy of their queries. Also, a tag has limited memory.

Part of it is read-only, used to store its corresponding unique identifier. However, tags also

have writable memory. Moreover, a tag is capable of doing prefix matching and send a

reply message in case of a match. readers are able to detect tag collisions, occurring when

multiple tags reply to the same query.

4.2 The Redundant-Reader Problem

In random deployment scenarios, due to the small interrogation zone of readers and

the requirement of coverage of tags, it is desirable to distribute large numbers of readers.

Consequently, many readers will be redundant, their absencenot affecting the coverage

of the reader network. A subset of all redundant readers can be safely turned off in order

to save their battery power. Deactivated readers can later be re-activated to replace failed

readers or to balance the battery usage of other redundant readers, effectively extending

the lifetime of the reader network.

In this section we study the reader redundancy problem and provide an efficient dis-

tributed algorithm for correctly detecting and deactivating redundant readers, without leav-

ing any of the originally covered tags uncovered. We first formally define redundant read-

ers.

Definition 4.2.1 A redundant reader covers a set of tags, also covered by otherreaders.
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Fig. 4.2. Set of points covered by a circle of radiusR, shown with an inter-
rupted perimeter. There is a circle of radiusR going through pointsA andB
and covering all the other points. Shrink this circle until it first touches one
more point. The resulting circle, has radius less than or equal toR.

According to this definition, all the readers in Fig. 4.1 are redundant. A simple solution

to detect the redundant readers is to have all readers simultaneously broadcast a query

containing the empty string. Since all the tags that receivesuch a query must answer, a

reader that receives no reply is redundant. This is either because the reader covers no tag,

or because interference occurred at all its covered tags. Such a solution has two important

drawbacks. First, it requires time synchronization between all readers. Second, turning off

all the redundant readers may leave blind spots [3]. We definea blind spot in this context as

a tag that was covered by at least two redundant sensors, but whose concurrent deactivation

leaves the tag uncovered. For example, in Fig. 4.1, the simultaneous deactivation ofR1 and

R2 leaves tagT1 uncovered.

In order to maximize the number of readers that can be deactivated, the minimum

number of readers that cover all tags need to be discovered. We define then the redundant

reader problem.

Redundant-Reader Problem Given a set of tags and a set of readers covering all the

tags, find the minimum number of readers that cover all the tags.
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For example, in Fig. 4.1,R2 is the only reader that needs to be active. In order to

prove that the redundant-reader problem is NP-hard, we first prove the following lemma,

illustrated in Figure 4.2.

Lemma 4.2.1 Given a set ofn points placed inside a circle of radiusR, there exist 3 out

of then points whose circumcircle, of radius less than or equal toR, covers all the points.

Proof If all n points are covered by a circle of radiusR, then a circle of radiusR going

through 2 of the points and covering all the other points exists (see Figure 4.2). If the circle

has a third of then points on its perimeter, then we have completed the proof. Otherwise,

shrink the circle until its perimeter touches a third point.The resulting circle has radius

less thanR, is the circumircle of three of then points and covers all the other points.

We can now prove the following important result.

Theorem 4.2.1 The redundant-reader problem is NP-hard.

Proof We prove the NP-hardness of the redundant-reader problem by reduction from the

geometric disk cover (DC) problem, known to be NP-hard [54]. Theinput for the DC

problem consists of a set of points and a valueR. The output consists in the minimum

number of disks of radiusR that cover all the points.

We use the following polynomial-time reduction from DC to the redundant-reader

problem. Add a disk of radiusR centered at each point in the input set of DC. Then, for

all combinations of 3 points of the input set of DC, add a disk ofradiusR, centered at

the mass center of the 3 points. It is clear that all the pointsare covered. Moreover, due

to Lemma 4.2.1, any disk in the solution for the DC problem is contained in the set of

disks introduced by our transform. The reduction hasO(m3) complexity, wherem is the

number of input points. Using an algorithm for the redundant-reader problem, we can find

the minimum number of disks needed to cover the points. This is the solution for the DC

problem, which implies that the redundant-reader problem isNP-hard.
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4.3 The Redundant Reader Elimination Algorithm

In this section we propose a randomized, distributed and localized approximation algo-

rithm for the redundant-reader problem. As specified in Section 4.1, we make no assump-

tion on the topology of the reader network, effectively claiming no direct communication

between readers. We assume however the existence of writable tags, able to store infor-

mation upon requests from in-range readers. We assume that RCA, where each reader

has previously collected information from all the tags placed in its interrogation zone (see

Chapter 3), has been executed by all readers.

RRE consists of two steps. In the first step, each reader attempts to write on all its

covered tags the number of covered tags. A tag only stores thehighest value seen, along

with the identity of the corresponding reader. For this, eachreader issues a write command

containing its reader identification number and the number of tags covered. Similar to

RCA, the write operation is performed exactly once during eachepoch, fore logψ time

epochs, whereψ is the number of readers. During each epoch, the time frame forthe write

operation is randomly chosen. At the completion ofe logψ epochs, each tag stores the

highest number of tags covered by a reader situated in its vicinity, along with the identity

of that reader, calledlockerof the tag.

During the second step, a reader queries each covered tag and reads the identity of the

tag’s locker. A reader that locked at least one tag is responsible for monitoring the tag and

will have to remain active. However, a reader that has not lockedany tag can be safely

turned off. This is because all the tags covered by the readerare already covered by other

readers that will stay active. The reading queries issued by areader for each of its tags is

similarly repeated during random time frames fore logψ time epochs, in order to avoid

reader collisions occurring at that tag.

The algorithm in Fig. 4.3 illustrates our solution, that assumes writable RFID tags.

The functionality of a writable tag is shown in operationrun of WritableRFIDTag (lines

4-13). The reader and tag objects inherit the correspondingvariables defined in Fig. 3.1

(see Chapter 3). When a writable tag receives a write command, containing the identifier
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1.Object implementation WritableRFIDTag;
2. Rid : integer; #identifier of locking reader

3. count = 0 : integer; #count of highest bidder

4. Operation run()
5. guard inQ.first.type = write do
6. if inQ.first.c > count then
7. Rid := inQ.first.rid;
8. count := inQ.first.c;
9. fi ;
10. guard inQ.first.type = read do
11. bCast(new packet(Tid, Rid, count));
12. od
13. end

14.Object implementation RFIDReader;
15. Rid : integer]; #reader identifier

16. tags : array[integer] of integer; #covered tags

17. redundant = true : boolean;
18. Operation isRedundant(prefix : integer)
19. while count+ + < nEpochs do
20. frame := getRandom(0, n);
21. sleep(frame);
22. bCast(new packet(write, Rid, tags.size));
23. sleep(n− frame− 1);
24. od
25. for i in 1..tags.size do
26. while count+ + < nEpochs do
27. T = getTime();
28. frame := getRandom(0, n);
29. sleep(frame);
30. bCast(new packet(read, tags[i]));
31. guard inQ.first.tid = tags[i] do
32. if inQ.rid ! = Rid then
33. redundant := false;
34. od
35. guard getTime()− T > n do od
36. od
37. od
38. if redundant = true do turnOff(); fi
39. end

Fig. 4.3. The generic RFID reader and writable tag behavior fordetecting
redundant readers.
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of the reader issuing the command and its number of covered tags, it copies the values

locally if the number of covered tags is larger than the valuecurrently stored. When the

command received is a read, the tag returns a packet containing its identifier followed by

the reader identifier and count value locally stored.

The detection of redundant readers is exhibited in operationisRedundant of RFIDReader

(lines 18-39). First, a reader selects a random time frame during each ofnEpochs con-

secutive epochs, and sends a broadcast write packet containing its identifier and tag count

(lines 19-24). Subsequently, it queries each of its coveredtags, using a read command, for

nEpochs consecutive time epochs, in order to find the tag’s locker (lines 25-37). Note that

after sending a read command, at the chosen time frame, the reader waits either to receive

a reply from the queried tag or for the epoch to end (lines 31-35).

4.3.1 Extensions

Synchronization We have assumed until now that all readers have already executed

RCA, detecting all the tags placed in their interrogation zone. This assumption ensures that

at the completion of the first step of RRE, tags placed in the vicinity of at least two readers

store the highest number of tags covered by the readers. For example, in Figure 4.1, the

count of tagT3 is 4, from readerR2. However, if we assume that initially readers are

not aware of the identity of adjacent tags and RCA needs to be run just before RRE, the

following scenario can occur (see Figure 4.1 for illustration). SinceR4 only covers two

tags, whereasR2 covers four,R4 will complete RCA beforeR2 and also the first step of

RRE. Then,R4, upon discovering itself to be the locker ofT3 andT4, will also decide to

stay active, even though it is redundant.

In order to solve this problem, we require active readers to maintain their list of locked

tags and to listen for tag answers to queries initiated by other readers. When a reader,R,

hears such a message, of formatRx, Ty, c (see Fig. 4.3 line 11), saying that the locker of tag

Ty is Rx with a tag countc, if c is larger than its own tag count, the readerR removes tagTy

from its list of locked tags. When the list is empty, the reader becomes redundant and can
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be safely turned off. Theorem 3.3.1 (see Section 3.3) proves that if such a scenario occurs,

a reply of contentRx, Ty, c will be received byR for all tagsTy covered by readers with a

larger tag count. Using the example in Figure 4.1, ifR4 hasT3 andT4 in its list of locked

tags at the completion of RRE, duringR2’s execution of the first step of RRE,R2 will find

at least one time frame during thenEpochs epochs, when no other reader is transmitting.

Thus,R4 will overhear the replies ofT3 andT4.

System Adaptivity The above description of RRE assumes a static system. However,in

a real system, tags and readers may fail while new ones may be randomly deployed. We

present a simple extension of RRE, that maintains the invariant of having at least one ac-

tive reader for each covered tag, when new tags are deployed, potentially in areas covered

only by redundant (inactive) readers and when active readersfail, leaving tags covered

only by redundant readers, uncovered. For this, we need to periodically re-activate redun-

dant readers and execute RRE on all the readers. Then, the following problem occurs,

illustrated using Figure 4.1. If the only active reader,R2, fails, whenR1, R3 andR4 become

re-activated, tagsT1, .., T4 have the associated count 4. Thus, the readers again discover

their supposed redundancy and become inactive.

We solve this problem by requiring each active reader to periodically, everyT time

units, execute RCA to detect all its covered tags, includingnewly deployed ones and set

to 0 the counter of each of its covered tags before executing RRE. A tag will agree to set

its counter to a smaller value, 0, since 0 is a control value (areader covering no tags will

not issue such a write command). Of course, this can lead to a situation whereR2 sets

the counter of its tags to 0 and then to 4, followed by the activation of R4, R4’s setting the

counter of its tags to 0 and then to 2. Then,R4 andR2 might both decide to stay active.

For this, we have two observations. First, such a scenario willnot leave blind points.

Second, a solution to this problem would be to set the periodT of a reader to be inversely

proportional to the number of covered tags. Then,R2 will execute this procedure more

often thanR4, makingR4 discover its redundancy.
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4.4 Analysis

Since the number of tags covered by a reader is not known beforerunning RCA, ac-

curately evaluating the time necessary for RCA to complete is difficult. Even though the

duration of the first step of RRE is fixed,logψ time epochs, the second step of RRE may

start at different times even for readers that have started RCA simultaneously. The ques-

tion is then if, due to the lack of synchronization among readers, RRE can leave uncovered

tags. We define the following safety property which should holdfor any distributed algo-

rithm for the redundant-reader elimination problem and prove that RRE satisfies it.

Safety.An algorithm for the redundant-reader elimination problem is said to be safe, if it

will not turn off readers that cover tags not covered by activereaders.

Theorem.RRE is safe.

Proof Let us assume that a tagT1 is situated inside the interrogation zones of two readers,

R1 andR2. Furthermore,R1 covers fewer tags thanR2. Then, it is likely forR1 to start the

second step of RRE beforeR2 has succeeded writing its tag count on its covered tags.

Then, bothR1 andR2 will believe to be the locker ofT1. However,T1 will not be left

uncovered, since bothR1 andR2 are required to stay active. This will only decrease the

number of redundant readers able to be simultaneously deactivated.

Complexity of RRE. TRRE = O(γ log β logψ).

Proof The complexity of RCA, isO(γ log β logψ) (see Section 3.3). The first step of

RRE, where each reader sends a write command to all its tags, takese logψ epochs. The

second step, where readers send queries to each of their tags,takesγe logψ epochs. Thus,

TRRE = O(γ log β logψ).

4.5 Simulation Results

All our experiments are performed by randomly (uniformly) deploying tags and read-

ers in a1000× 1000m2 square. We evaluate the efficiency of RRE in terms of the number
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Fig. 4.4. Number of redundant readers discovered by RRE and Greedy when
the number of tags randomly deployed increases from 1000 to 8000. The
number of readers is constant, 500, throughout this experiment.

of redundant readers detected. We measure the performance of our redundant-reader de-

tection algorithm and of a centralized greedy approximation algorithm of the redundant-

reader problem, in terms of the number of readers able to be turned off simultaneously.

The centralized greedy algorithm, GREEDY, sequentially selects the unvisited reader with

the highest density of covered, unvisited tags. It then marks the selected reader and its

covered tags as visited. GREEDY stops when there are no more unvisited tags. The set

of selected readers will be active, while the remaining ones can be safely deactivated.

GREEDY is correct, in the sense that deactivated readers will not leave tags uncovered.

In the first experiment we randomly place 500 readers and between 1000 and 8000 tags

in the deployment 1000× 1000m2 square. We measure the number of redundant readers

discovered by RRE and GREEDY. Figure 4.4 shows the results of this experiment. For
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Fig. 4.5. Difficulty of consistently breaking ties.
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total of 4000 tags.

smaller numbers of tags deployed, RRE is reasonably close toGREEDY, by discovering

83% of the redundant readers discovered by GREEDY. As the number of tags increases,

RRE discovers however only half of the redundant readers of GREEDY. Both GREEDY

and RRE discover less redundant readers as the number of deployed tags increases. Both

algorithms base their decision on the number of tags coveredby readers. By increasing

the tag density, the distribution of tags per reader becomesmore uniform, making it more

difficult to choose good, active readers. However, the decrease is more acute for RRE,
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since in scenarios where readers whose interrogation zones overlap cover equal numbers

of tags, consistently breaking ties becomes a difficult problem. We illustrate such a sce-

nario in Figure 4.5, where each of readersR2, R3 andR4 covers four tags. While the optimal

solution requires onlyR2 andR4 to be active, we can imagine a run of RRE whereR4 locks

T5, .., T7, R3 locksT3 andT4 andR2 locksT1 andT2, effectively requiring all three readers

to be active. The example can be easily extended, and one can see that in the worst case

RRE can require2r− 1 active readers, wherer would be sufficient.

The second experiment compares the performance of RRE and GREEDY when the

number of randomly deployed readers increases from 50 to 1000, when the total number

of tags is 4000. Figure 4.6 shows the results of this experiment. For scarce deployment

of readers, very few of the readers are redundant. As their density increases, however, so

does the number of redundant readers. For example, for 1000 readers, GREEDY discov-

ers almost 800 to be redundant. While initially RRE is very accurate, as the number of

readers increases, RRE discovers less redundant readers. From 500 to 1000 readers, RRE

consistently discovers 20% less redundant readers than GREEDY. This is again due to the

difficulty of breaking ties in RR. As the number of deployed readers increases, the number

of readers whose interrogation zones overlap, also increases, leading to more contentions.

The last experiment measures the dependency between the number of redundant read-

ers discovered by RRE and GREEDY and the interrogation zones of readers. We randomly

deploy 500 readers and 4000 tags, and increase the interrogation radius of readers from

40 to 100m. Figure 4.7 shows that as expected, with the increase in the interrogation

radius of readers, both RRE and GREEDY discover an increasingnumber of redundant

readers. This is because active readers cover larger areas,effectively necessitating fewer

active readers to cover all the tags. Note that while RRE discovers less redundant readers

than GREEDY, the difference is almost constant for smaller interrogation zones. Due to

an increase in the number of interrogation zone overlappings, leading to an increased dif-

ficulty of breaking ties, the difference between GREEDY and RREincreases slightly for

large interrogation zones.
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4.6 Conclusions

In this chapter we address the problem of detecting and temporarily turning off redun-

dant readers. We define redundancy in terms of discrete sets of points, tags, and prove

that the optimization version of the problem is NP-complete.We present a distributed and

localized approximation algorithm, RRE, for the redundantreader elimination problem,

based on a randomized querying technique. Our simulations show that our redundant-

reader elimination heuristic performs close to a centralized greedy approximation of the

optimum. We note that while our solution scales well with an increase in the number of

readers and with the increase in their interrogation radius,its efficiency degrades quicker

for increasing numbers of tags covered. This is due to the difficulty of consistently break-

ing ties at tags, when readers in their vicinity have the same tag count. Part of our future

work is to further explore this issue and improve the performance of RRE.
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5. CONCLUSIONS

In this thesis we have studied various facets of coverage of wireless sensor and RFID

systems. In the context of wireless sensor networks we have

• defined the coverage-boundary of wireless sensor networks and reduced the problem

to determining the Voronoi cell of each sensor

• reduced the detection of redundant sensors, whose deactivation will not reduce the

initial coverage of the sensor network, to the computation and maintenance of the

Voronoi neighbors of each sensor

• provided a distributed hash table for general purpose ad-hoc networks based on

Voronoi diagrams

• proposed distributed algorithms for maintaining the solution to the above problems

when topological changes occur

Moreover, we have extended the redundancy definition to wireless RFID reader net-

works and have provided a distributed and localized approximation for the optimization

problem proved to be NP-hard. Our algorithm also provides an efficient solution for an

important problem of RFID systems, namely the reader collision problem.

The solutions presented for sensor networks rely on the ability of distributively com-

puting and maintaining the Voronoi cell of each sensor. Since Voronoi neighbors may be

O(n) hops away, building the initial Voronoi cell requires the collection of global informa-

tion for each sensor. Thus, alternative solutions to this resource consuming operation need

to be devised. One possibility is to use the central collection point to compute the initial

solution and distribute to individual sensors their corresponding Voronoi cell. However,

even the overhead associated with this solution can be significant. Another way could be
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to construct an initially imprecise solution, using only local neighborhood information.

Later, information about locally discovered Voronoi neighbors can be propagated to the

affected sensors. It would be interesting to explore the accuracy of this solution and its

impact on the coverage-boundary computation and the redundancy elimination problem.

Clustering can be another approach for this problem. Using existing distributed algorithms

for clustering networks, certain sensors could be given a special role of cluster head, in

charge of all the sensors within its cluster. Cluster head sensors would be responsible with

computing the Voronoi diagram of their clusters and exchange this information with the

neighboring cluster heads.

Hybrid solutions, between the clustering and centralized scheme or between the clus-

tering and imprecise scheme might be interesting to explore. In the former, cluster heads

aggregate the information of their cluster by computing theVoronoi diagram of the con-

tained sensors. This information is then propagated to the central server, which in turn,

further aggregates into a global Voronoi diagram and signals inaccuracies to cluster heads.

In the latter hybrid scheme, cluster heads exchange Voronoiinformation only with their

neighboring cluster heads, or cluster heads within a boundednumber of hops. With the

additional information, cluster heads recompute the Voronoi diagram and signal newly

discovered Voronoi neighbors to the cluster heads in chargeof them. The advantage of

this schemes resides in the active participation of only a limited number of sensors, the

cluster heads.

Another problem consists in the efficient and correct distributed maintenance of the

Voronoi diagram for moving devices. Our solution is only an approximation and might

not correctly maintain the Voronoi cells for rapid device movements. While solutions for

this problem have been proposed, their centralization restricts their applicability.

Our randomized, distributed and localized approximation algorithm for the redundant

reader elimination optimization problem further opens several research issues. First, as

observed in Section 4.5, as the number of distributed tags increases, the number of redun-

dant sensors discovered by RRE decreases relative to the centralized Greedy algorithm.

Then, an interesting problem, deserving further attention, is to improve the performance



86

of RRE, assuming the existence of writable RFID tags. Another avenue for research is to

develop a distributed algorithm for the redundancy-elimination problem, assuming only

passive, read-only RFID tags. Due to price constraints, read-only tags will likely be more

widely accepted and deployed, making such algorithms necessary. Finally, an important

assumption behind RRE is that RFID readers are not able to directly communicate and

relay information. Removing this assumption, an algorithmsimilar to the one used in

safely turning off redundant sensors could be employed. It would be interesting to see if a

variant of Luby’s distributed MIS approximation algorithmcould improve the efficiency,

while using solely read-only tags.
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Bogdan Cărbunar was born on December 2nd 1975 in Oradea, Romania, of Mariana

and Octavian Cărbunar. He did his studies in Bucharest, where he received a B.S. in

computer science from ”Politehnica University” in 1999. Since then, he has been a Ph.D.

student at Purdue University.


