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ient algorithms for the problems of mat
hing red and blue disjointgeometri
 obsta
les in the plane and 
onne
ting the mat
hed obsta
le pairs with mutuallynoninterse
ting paths that have useful geometri
 properties. We �rst 
onsider mat
hingn red and n blue disjoint re
tilinear re
tangles and 
onne
ting the n mat
hed re
tanglepairs with noninterse
ting monotone re
tilinear paths; ea
h su
h path 
onsists of O(n)segments and is not allowed to tou
h any re
tangle other than the mat
hed pair that itis linking. Based on a numbering s
heme for 
ertain geometri
 obje
ts and on severaluseful geometri
 observations, we develop an O(n log n) time, O(n) spa
e algorithm thatprodu
es a desired mat
hing for re
tilinear re
tangles. If an expli
it printing of all the npaths is required, then our algorithm takes O(n log n+�) time and O(n) spa
e, where � isthe total size of the desired output. We then extend these mat
hing algorithms to other
lasses of red/blue polygonal obsta
les. The numbering s
heme also �nds appli
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red

blueFigure 1: Example of a mat
hing of red and blue re
tangles with monotone paths.It has been studied in both the sequential and parallel settings and using vari-ous metri
s. The re
tilinear version of the problem, whi
h assumes that ea
h of apath's 
onstituent segments is parallel to a 
oordinate axis, is motivated by appli-
ations in areas su
h as VLSI wire layout, 
ir
uit design, plant and fa
ility layout,urban transportation, and robot motion. There are many eÆ
ient sequential algo-rithms that 
ompute various shortest re
tilinear paths avoiding di�erent 
lasses ofobsta
les,11;12;13;14;15;17;18;19;21;24;25;27;28;29;38;39;40;41 and some parallel algorithmsas well.4;5In this paper, we present eÆ
ient algorithms for the problems of mat
hing redand blue disjoint geometri
 obsta
les in the plane and 
onne
ting the mat
hed ob-sta
le pairs with mutually noninterse
ting paths that have 
ertain useful geometri
properties. The �rst problem we 
onsider has the following input: n of the given2n pairwise disjoint re
tilinear re
tangles are 
olored red (think of them as sour
esof something, e.g., ele
tri
 power in a VLSI 
ir
uit), and the other n are 
oloredblue (think of them as 
onsumers of power). By re
tilinear obje
ts, we mean thatea
h edge of su
h an obje
t is parallel to a 
oordinate axis. We are interested inmat
hing ea
h red re
tangle with one and only one blue re
tangle, and vi
e versa.Spe
i�
ally, we would like to �nd su
h a mat
hing and 
onne
t ea
h mat
hed pairof red/blue re
tangles with a planar re
tilinear path in su
h a way that (i) ea
hpath is monotone with respe
t to a 
oordinate axis, (ii) ea
h path does not tou
hany re
tangle other than the mat
hed pair that it is supposed to 
onne
t, (iii) notwo su
h paths interse
t ea
h other, and (iv) ea
h path 
onsists of O(n) segments.Figure 1 shows an example of su
h a mat
hing.Several geometri
 algorithms have been developed for solving various problemsof �nding obsta
le-avoiding pairwise disjoint paths that 
onne
t 
ertain geometri
obje
ts,26;32;36 be
ause of their relevan
e to VLSI layout appli
ations16;26;35 (e.g.,VLSI single-layer routing). Lee et al.26 designed an O((k2!)n logn) time algorithmfor 
omputing k shortest non-
rossing re
tilinear paths in a plane region. Taka-hashi, Suzuki, and Nishizeki36 studied the problem of �nding shortest non-
rossingre
tilinear paths in a plane region that is bounded by an outer box and an innerbox and that 
ontains a set of disjoint re
tilinear re
tangle obsta
les, giving anO(n logn) time algorithm for 
omputing k su
h paths whose endpoints are all onthe two bounding boxes (with k � n). Papadopoulou32 obtained an O(n+ k) timealgorithm for 
omputing k shortest non-
rossing paths in a simple polygon whose



endpoints are all on the polygon boundary. However, these problems are di�erentfrom the one we study here sin
e they often assume that a spe
i�
ation on whi
h ob-je
t mat
hes with whi
h other obje
t is already given (hen
e, these problems requireonly to 
ompute a set of non-
rossing paths that realize the spe
i�ed mat
hing).We develop an O(n logn) time, O(n) spa
e algorithm that produ
es a desiredmat
hing for red/blue re
tilinear re
tangles. If an expli
it printing of all the n pathsfor su
h a mat
hing is required, then our algorithm takes O(n logn+ �) time andO(n) spa
e, where � is the total size of the desired output.We then extend these mat
hing algorithms to a more general geometri
 settingwhi
h 
onsists of disjoint red/blue polygonal obsta
les that are all monotone withrespe
t to a 
oordinate axis (say, the y-axis). The mat
hing paths that we 
om-pute for this more general setting have similar stru
tures to those for re
tilinearre
tangles, ex
ept that in this 
ase their monotoni
ity has to be weaker: Ea
h su
hmat
hing path 
an be partitioned into at most two subpaths, ea
h of whi
h is mono-tone to the y-axis. Our mat
hing algorithms for y-monotone polygonal obsta
leshave the same 
omplexity bounds as those for re
tilinear re
tangles.We also prove that all the mat
hing problems studied in this paper have an
(n logn) lower bound in the algebrai
 
omputation tree model.8 Our mat
hingalgorithms are based on a numbering s
heme for 
ertain geometri
 obje
ts and onseveral useful geometri
 observations. This numbering s
heme also �nds appli
a-tions to other problems.7Our algorithms 
an also be viewed as proofs that su
h mat
hings always exist,a fa
t that, to the best of our knowledge, was not previously established. Weshould point out that without the requirement that all mat
hing paths must satisfya monotoni
ity 
onstraint, the existen
e of noninterse
ting paths for any red/bluedisjoint polygonal obsta
le mat
hing is trivial to prove: For every mat
hed pair ofgeometri
 obje
ts in turn, draw a dire
t re
tilinear path P between them, ignoringall previously drawn paths and obsta
les; at ea
h pla
e where path P interse
tsa previously drawn path or an obsta
le, \deform" P so that P goes around thatpreviously drawn path or the obsta
le.Se
tion 2 gives some preliminary de�nitions, Se
tion 3 presents one of the in-gredients needed by the mat
hing algorithms for re
tilinear re
tangles, Se
tion 4des
ribes the data stru
tures that our mat
hing algorithms will use, Se
tion 5 givesthe algorithm for 
omputing a desired mat
hing for re
tilinear re
tangles, Se
tion6 extends this algorithm to also produ
ing the n a
tual monotone paths that linkthe mat
hed re
tangle pairs, Se
tion 7 generalizes these algorithms to mat
hingy-monotone polygonal obsta
les, Se
tion 8 proves 
(n logn) lower bounds for themat
hing problems we 
onsider, and Se
tion 9 makes further remarks on several
onsequen
es and possible extensions of this work.2. PreliminariesA geometri
 obje
t in the plane is re
tilinear if ea
h of its 
onstituent boundarysegments is parallel to either the x-axis or the y-axis. Without loss of generality(WLOG), we assume that no two boundary edges of the input obsta
les are 
ollinear.



We use R = fR1, R2, : : : ; R2ng to denote the set of 2n input re
tilinear re
tangles.Unless otherwise spe
i�ed, all geometri
 obje
ts in the rest of this paper (e.g.,paths, rays, lines, polygons, obsta
les, et
) are assumed to be re
tilinear in theplane.A path is a 
ontiguous sequen
e of line segments su
h that every two 
onse
utivesegments in the sequen
e are 
onne
ted at a 
ommon endpoint. The number of linesegments (e.g., edges) in a path P is 
alled the size of P , denoted by jP j, and thelength of P is the sum of the distan
es of its edges in a 
ertain metri
. A path issaid to be monotone with respe
t to the x-axis (resp., y-axis) if its interse
tion withevery verti
al (resp., horizontal) line is either empty or a 
ontiguous portion of thatline. A path is said to be monotone if it is monotone to the x-axis or to the y-axis.A re
tilinear path is xy-monotone or 
onvex if it is monotone to both the x-axisand the y-axis. In general, an xy-monotone (re
tilinear) path has the shape of astair
ase, and in fa
t we shall hen
eforth use the word \stair
ase" as a shorthand for\xy-monotone path". Stair
ases 
an be either in
reasing or de
reasing, dependingon whether they go up or down as we move along them from left to right. A stair
aseis unbounded if it starts and ends with a semi-in�nite segment, i.e., a segment thatextends to in�nity on one end. A stair
ase is said to be 
lear if it does not interse
tthe interior of any input obsta
le.A polygon G is said to be monotone to the x-axis (resp., y-axis) if its interse
tionwith any verti
al (resp., horizontal) line L is either empty or a 
ontiguous segmenton L; the boundary of su
h a monotone polygon G 
an be partitioned into twopaths ea
h of whi
h is monotone to the x-axis (resp., y-axis). In fa
t, the notionof monotoni
ity of a polygon or a path is in general with respe
t to an arbitraryline.34 Note that it is possible to �nd out in linear time whether there is a line (in anarbitrary dire
tion) to whi
h all polygons in a polygon set are monotone, by usingPreparata and Supowit's monotoni
ity test algorithm.34A point p in the plane is spe
i�ed by its x-
oordinate x(p) and y-
oordinatey(p). A point p is stri
tly below (resp., to the left of) a point q if x(p) = x(q) andy(p) < y(q) (resp., y(p) = y(q) and x(p) < x(q)); we 
an equivalently say that q isstri
tly above (resp., to the right of) p. A re
tangle r is below (resp., to the left of)an unbounded stair
ase S if no point of r is stri
tly above (resp., to the right of) apoint of S; we 
an equivalently say that S is above (resp., to the right of) r.Let Z be a set of points in the plane. We say that a point p 2 Z is north-eastdominated by another point q 2 Z if p 6= q, x(p) � x(q), and y(p) � y(q). A pointp 2 Z is a north-east maximal element of Z if there is no other point q 2 Z su
h thatp is north-east dominated by q. (See Ref. [33℄ for more dis
ussions on the dominationrelations and maximal elements of a point set.) We denote the set of all north-eastmaximal elements of Z by MaxNE(Z) (see Figure 2). Suppose that the pointsin MaxNE(Z) are fp1; p2; : : : ; prg, ordered by their x-
oordinates in
reasingly. Wede�ne the north-east domination 
hain DCNE(Z) of Z as follows: Shoot a leftwardshorizontal ray and a downwards verti
al ray from every point pi 2 MaxNE(Z);DCNE(Z) is obtained by going left-to-right, starting at the leftwards ray of p1, tothe downwards ray of p1, until meeting the interse
tion between the downwards ray



Z
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Figure 2: The north-east maximal elements (the un�lled 
ir
les) and domination
hain DCNE(Z) of a point set Z.of p1 and the leftwards ray of p2, then 
ontinuing on the leftwards ray of p2, : : :,and �nally ending at the downwards ray of pr (see Figure 2). The sets of north-west, south-east, and south-westmaximal elements of Z,MaxNW (Z),MaxSE(Z), andMaxSW (Z), and their domination 
hains, DCNW (Z), DCSE(Z), and DCSW (Z), arede�ned in a similar way, respe
tively.Observe that for any setX of re
tilinear geometri
 obje
ts, the maximal elementsof X of ea
h of the four types are all at the verti
es of the obje
ts in X .We need some 
on
epts related to the re
tilinear 
onvex hull of re
tilinear ge-ometri
 obje
ts in the plane. The reader is referred to Ref. [30℄ for a study ofre
tilinear 
onvex hulls of planar geometri
 obje
ts. Re
all that the re
tilinear 
on-vex hull of a set of re
tilinear obje
ts in the plane, if it exists, is the smallest-areare
tilinear xy-monotone (i.e., 
onvex) polygon that 
ontains all obje
ts in the set.30However, it is possible that su
h a 
onvex hull (i.e., a single polygon) does not existfor 
ertain 
olle
tions of re
tilinear geometri
 obje
ts be
ause the obje
ts may be
ontained in multiple pairwise disjoint smallest-area re
tilinear 
onvex polygons (inthis 
ase, they form either an \in
reasing" sequen
e or a \de
reasing" sequen
e ofsu
h 
onvex polygons that are pairwise separable by a verti
al line and also by a hor-izontal line). Note that although su
h smallest-area re
tilinear 
onvex polygons arenot 
onne
ted with ea
h other, as a 
olle
tion they still satisfy the xy-monotoni
ity
ondition: The interse
tion of any verti
al (resp., horizontal) line L with all 
onvexpolygons in the 
olle
tion is either empty or a 
ontiguous portion on L. See Figure3(a) for an example.We de�ne a useful stru
ture whi
h 
an be viewed as a generalization of there
tilinear 
onvex hull. For a set X of re
tilinear geometri
 obje
ts in the plane, wede�ne the 
onne
ted smallest-area 
onvex en
losing region of X , denoted by CR(X)(for 
onvex region for short), as follows. CR(X) is a 
onne
ted 
onvex region that
ontains X and has the smallest possible area. If the re
tilinear 
onvex hull CH(X)of X exists, then CR(X) = CH(X). Otherwise, let (P1, P2, : : : ; Pm) be the (say)left-to-right in
reasing sequen
e of pairwise disjoint smallest-area re
tilinear 
onvexpolygons that together 
ontain all obje
ts of X ; we form CR(X) by 
onne
ting the
onvex polygons P1, P2, : : : ; Pm by two in
reasing stair
ase 
hains, whi
h we de�ne
arefully in the next paragraph.Consider the two domination 
hains DCNW (X) and DCSE(X) of X . (Re
all
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hains DCNW (X) and DCSE(X), and (b) the 
onne
tedsmallest-area 
onvex en
losing region CRUP (X) of an obje
t set X .that (P1, P2, : : : ; Pm) is assumed to be a left-to-right in
reasing sequen
e; for the
ase when the sequen
e (P1, P2, : : : ; Pm) is de
reasing, we will instead use theother two domination 
hains DCNE(X) and DCSW (X) of X .) First, 
ut away fromDCNW (X) and DCSE(X) ea
h of their starting and ending semi-in�nite segmentsat a vertex of X . Note that the two modi�ed domination 
hains of X thus obtainedinterse
t ea
h other at exa
tly 2m � 2 points (see Figure 3(a)). Consider the re-gion Reg(X) that is en
losed together by the following four stair
ase 
hains: thosetwo modi�ed domination 
hains of X , DCSW (P1), and DCNE(Pm). Observe thatReg(X) is a 
onne
ted 
onvex region 
ontaining X , and every two polygons Pi andPi+1, i = 1, 2, : : :, m � 1, are 
onne
ted by a box boxi that is en
losed by twosub
hains of DCNW (X) and DCSE(X) and their interse
tions (see Figure 3(a) forexamples). However, the area of Reg(X), area(Reg(X)), is not as small as possiblesin
e area(boxi) > 0 and boxi \ X = �. To minimize the area of Reg(X) whilemaintaining its 
onne
tivity, 
onvexity, and 
ontainment ofX , we remove every boxiand 
onne
t Pi and Pi+1 by an in
reasing stair
ase 
hain whi
h goes from the lower-left vertex of boxi to the upper-right vertex of boxi. (One may view that the twomodi�ed domination 
hains DCNW (X) and DCSE(X) of X are further modi�ed byshrinking every boxi into su
h a stair
ase 
hain, on whi
h the resulted DCNW (X)and DCSE(X) overlap with ea
h other.) There are of 
ourse in�nitely many su
hstair
ase 
hains for ea
h boxi, but we are often parti
ularly interested in two su
hstair
ase 
hains: one along the left and upper edges of boxi (denoted by UP (boxi)),and the other along the lower and right edges of boxi (denoted by LO(boxi)). Morepre
isely, we often 
hoose to further modify DCNW (X) and DCSE(X) by repla
ingall boxi's by UP (boxi)'s (or all by LO(boxi)'s), and denote the resulted 
hains byDCUPNW (X) and DCUPSE (X) (or DCLONW (X) and DCLOSE(X)). Note that DCUPNW (X)(resp., DCUPSE (X)) is the \leftmost" stair
ase 
hain that boundsX from above (resp.,below) in the sense that no stair
ase 
hain that bounds X from above (resp., below)
an 
ontain a point that is stri
tly to the left of DCUPNW (X) (resp., DCUPSE (X)).In general, we let CR(X) be the 
onne
ted 
onvex region that 
ontains X and



is en
losed together by four stair
ase 
hains; these four stair
ase 
hains in
ludethe two domination 
hains DCNW (X) and DCSE(X) of X further modi�ed byshrinking every boxi into a 
ertain stair
ase 
hain, and in
lude DCSW (P1) andDCNE(Pm). Su
h a region CR(X) is 
learly of the smallest possible area (due tothe 
onvexity of the two modi�ed 
hains DCNW (X) and DCSE(X)). In parti
ular,the region en
losed by the following four stair
ase 
hains, DCUPNW (X) and DCUPSE (X)(resp., DCLONW (X) and DCLOSE(X)), as well as DCSW (P1) and DCNE(Pm), is su
h a
onne
ted 
onvex en
losing region of X , denoted by CRUP (X) (resp., CRLO(X)).See Figure 3(b) for an example.Observe that as for any re
tilinear 
onvex polygon, the boundary of every regionCR(X) 
an be partitioned into at most four stair
ase 
hains (two in
reasing 
hainsand two de
reasing 
hains). Further, every su
h stair
ase 
hain 
onsists of O(K)segments, where K is the number of verti
es of the obje
ts in X .3. Partitioning Re
tilinear Re
tangles with a Stair
aseGiven a set R = fR1, R2, : : : ; R2ng of 2n pairwise disjoint re
tilinear re
tanglesin the plane and an integer k with 1 � k < 2n, we present in this se
tion analgorithm for partitioning the set R into two subsets of respe
tive sizes k and 2n�k,su
h that the two resulted subsets are separated by an in
reasing stair
ase. Thisalgorithm runs in O(n logn) time, or in O(minfk; 2n� kg) time if R is given in asuitably prepro
essed form. The algorithm 
an also be implemented optimally inparallel (see Se
tion 9 on this). A key idea of this partition algorithm is a usefulnumbering s
heme for 
ertain geometri
 obje
ts, whi
h also �nds appli
ations toother problems.7Not only is the result of this se
tion needed as a key ingredient to the algorithmsfor mat
hing re
tilinear re
tangles given later, but it also implies simpler algorithmsfor a number of unrelated divide-and-
onquer sequential and parallel algorithms forvarious re
tilinear shortest path problems among disjoint re
tangles, in whi
h su
ha stair
ase is needed for bipartitioning the problem before re
ursively solving thetwo subproblems de�ned by the stair
ase.4;5;11;293.1. The Prepro
essingWe begin by des
ribing our O(n logn) time prepro
essing. The �rst step of theprepro
essing algorithm 
omputes a horizontal trapezoidal de
omposition of R,33in O(n logn) time. Su
h a horizontal de
omposition 
onsists of extending leftwardsall horizontal edges of the re
tangles in R, stopping ea
h extension whenever it hitsanother re
tangular obsta
le of R. This gives, among other things, the followingParent information (a
tually, it gives more than what follows, but we only needwhat follows): For ea
h re
tangle Ri of R, Parent(i) is the �rst re
tangle Rj ofR en
ountered by shooting a leftwards-moving horizontal ray from the bottom-left
orner of Ri (see Figure 4). If no su
h re
tangle Rj of R exists for Ri, then theray goes leftwards to in�nity, a fa
t that we denote by saying that Parent(i) isempty. Note that the re
tangles in R and their Parent information together de-
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Figure 4: Illustrating the tree T of the re
tangles in R.�ne a forest of these re
tangles. The trapezoidal de
omposition algorithm33 alsoprodu
es a sorted list of ea
h subset of re
tangles having the same Parent (in
lud-ing the \empty" parent). Every re
tangle Rj maintains an adja
en
y list of allthe re
tangles whose Parent is Rj , sorted by the de
reasing y-
oordinates of theirleftwards-moving horizontal rays. For example, the sorted adja
en
y list of R4 inFigure 4 is fR5; R6g.The se
ond step of the prepro
essing algorithm is now given. To simplify thepresentation, we assume that we have added to the given 
olle
tion R of inputre
tangles an extra \dummy" re
tangle R0 whi
h is to the left of all other re
tanglesin R su
h that the horizontal proje
tion of R0 on the y-axis properly 
ontains thehorizontal proje
tions of all other re
tangles of R (see Figure 4). This amounts torepla
ing every empty Parent(i) by R0, e�e
tively making R0 the root of a treeea
h of whose nodes 
orresponds to exa
tly one re
tangle in R. We use T to denotethis tree. Figure 4 shows an example of su
h a tree T . The prepro
essing algorithmthen 
omputes the preorder numbers of the nodes of T in O(n) time,1 and re-labelsthe re
tangles of R (whi
h are the nodes of T ) so that re
tangle Ri now denotesthe one whose preorder number in T is i. The preorder numbers of T start from0. Hen
e the dummy re
tangle, the root, retains the name R0. This 
ompletes thedes
ription of the prepro
essing.This prepro
essing algorithm 
learly takes altogether O(n logn) time and O(n)spa
e. In the rest of this se
tion, we assume that the re
tangles of R have beenre-labeled as explained above.3.2. The Stair
ase Separator TheoremFor every point p in the plane that is to the right of the root re
tangle R0 and isnot in the interior of any obsta
le, we de�ne a path Q(p) from p to R0, as follows:Q(p) starts at p and follows the leftwards-moving horizontal ray r(p)from p; if the ray r(p) �rst hits a re
tangle Ri 6= R0, then Q(p) goesdownwards along the boundary of Ri to its bottom-right vertex and thenleftwards to its bottom-left vertex, from whi
h Q(p) 
ontinues as it didat p, until it rea
hes R0.Note that for every su
h point p, the path Q(p) is uniquely de�ned, and in fa
t is
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R0Figure 5: An example of the paths Q(p) and Q(q).always an in
reasing obsta
le-avoiding stair
ase 
hain. Also, note that every verti
alsegment of Q(p) is 
ompletely on the right edge of a re
tangle and the lower vertexof su
h a verti
al segment is at the bottom-right vertex of that re
tangle. Hen
e, itis not possible for any obsta
le-avoiding path to 
ross Q(p) at an interior point ofa verti
al segment of Q(p). Figure 5 gives an example of su
h paths.The following lemmas are useful to proving the theorem on stair
ase separators.Lemma 1 Let p and q be two points in the plane su
h that they both are to theright of R0, and x(p) � x(q). If p is below (resp., above) some point of Q(q), thenno point of Q(p) is stri
tly above (resp., below) any point of Q(q) (Figure 5).Proof. Be
ause x(p) � x(q) and be
ause both Q(p) and Q(q) are planar pathsthat are in
reasing obsta
le-avoiding stair
ases, assuming that p is below Q(q) and apoint of Q(p) is stri
tly aboveQ(q) implies that Q(p) andQ(q) must 
ross ea
h otherat a 
ertain pla
e. Further, su
h a 
rossing 
an o

ur only when a horizontal segmentsh (say, from Q(p)) and a verti
al segment sv (say, from Q(q)) 
ross ea
h other. Butif the horizontal segment sh 
rosses the verti
al segment sv , then be
ause sh 
annotinterse
t the interior of the re
tangle whose right edge 
ontains sv, Q(q) must joininto Q(p) starting from the interse
tion of sh and sv. Hen
e the interse
tion of shand sv would not be a real 
rossing between Q(p) and Q(q), a 
ontradi
tion. The
ase in whi
h p is above Q(q) is proved similarly. 2Lemma 2 Let p and q be two points in the plane su
h that they both are to theright of R0 and that x(p) � x(q). Let u (resp., v) be the bottom-left vertex of are
tangle Ra (resp., Rb), su
h that u (resp., v) is on Q(p) (resp., Q(q)) but not onQ(q) (resp., Q(p)). If p is stri
tly below (resp., above) some point of Q(q), thenthe preorder number of Ra in the tree T of re
tangles is larger (resp., smaller) thanthat of Rb, i.e., a > b (resp., a < b).Proof. This follows from Lemma 1 and from the de�nition of the tree T . Anexample illustrating the lemma is given in Figure 5. 2Re
all that for any set R0 of disjoint re
tilinear re
tangles in the plane, we useCR(R0) to denote a 
onne
ted smallest-area 
onvex region that 
ontains R0, andCR(R0) = CH(R0) whenever the 
onvex hull CH(R0) of R0 exists. Further, when R0is 
ontained by (say) an in
reasing sequen
e (P1, P2, : : : ; Pm) of multiple pairwisedisjoint smallest-area re
tilinear 
onvex polygons, CRUP (R0) (resp., CRLO(R0)) is



the 
onvex region de�ned by the four stair
ase 
hains DCUPNW (R0), DCUPSE (R0) (resp.,DCLONW (R0), DCLOSE(R0)), DCSW (P1), and DCNE(Pm).We are now ready to present the stair
ase separator theorem.Theorem 1 (Stair
ase Separator Theorem) Given a prepro
essed set R of 2ndisjoint re
tilinear re
tangles, the subsets fR1, R2, : : : ; Rkg and fRk+1, Rk+2, : : : ;R2ng, for any integer k with 1 � k < 2n, form a partition of the set R that hasthe desired property, that is, there exists a re
tangle-avoiding in
reasing stair
ase ofsize O(n) that separates these two subsets. Furthermore, su
h a stair
ase separator
an be 
omputed in O(minfk; 2n� kg) time.Proof. Let R(a; b) denote the subset fRa, Ra+1, : : : ; Rbg of R. WLOG, we assumethat any set R(a; b) whi
h we 
onsider in this proof is 
ontained by an in
reasingsequen
e of one or more pairwise disjoint smallest-area re
tilinear 
onvex polygons(the 
ase involving de
reasing sequen
es of su
h 
onvex polygons is symmetri
).For the existen
e of su
h a stair
ase separator, we �rst show that for any twointegers i and j with 1 � i < j � n, the following holds: (1) CRUP (R(1; i)) doesnot interse
t Rj , and (2) CRLO(R(j; 2n)) does not interse
t Ri. We only give theproof for (1), that for (2) being similar. We prove (1) by 
ontradi
tion: Suppose tothe 
ontrary that for some j > i, Rj interse
ts CRUP (R(1; i)). We 
onsider the twopossible 
ases below.1. CRUP (R(1; i)) = CH(R(1; i)). This 
ase 
onsists of two sub
ases. That is,one of the following two possibilities must hold:(1.a) CH(R(1; i)) 
ontains some point p on the bottom edge of Rj (it ispossible that CH(R(1; i)) 
ontains Rj 
ompletely). Note that there 
anbe no re
tangles Rs and Rl of R su
h that s � i < l and the leftwards-moving horizontal ray from the bottom-left vertex of Rs �rst hits Rl(otherwise, this would make Rl the parent of Rs, 
ontradi
ting the fa
tthat Rl has a larger preorder number than Rs in the tree T ). Sin
e thepoint p of Rj is inside CH(R(1; i)), there must be a re
tangle Rs su
hthat s � i < j and the bottom edge of Rs 
ontains a point q that satis�esboth x(p) � x(q) and y(p) > y(q) (see Figure 6(a)). But then the pathQ(p) (resp., Q(q)) 
ontains the bottom-left vertex of Rj (resp., Rs) andby Lemma 2, the preorder number of Rj in T is smaller than that of Rs,a 
ontradi
tion.(1.b) CH(R(1; i)) 
ontains some point of Rj but the bottom edge of Rj is
ompletely outside CH(R(1; i)). Then Rj must interse
t the lower hullof CH(R(1; i)) (see Figure 6(b)). Again there 
an be no re
tangles Rsand Rl of R su
h that s � i < l and the leftwards-moving horizontalray from the bottom-left vertex of Rs �rst hits Rl. But then, theremust be a point q on the bottom edge of a 
ertain re
tangle Rs of Rsu
h that s � i < j and for some point p on the bottom edge of Rj ,x(p) � x(q) and y(p) > y(q) both hold (Figure 6(b)). Again by Lemma2, this implies that the preorder number of Rj in T is smaller than thatof Rs, a 
ontradi
tion.
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Figure 6: Illustrating the proof of the stair
ase separator theorem.2. CRUP (R(1; i)) 6= CH(R(1; i)). This 
ase also 
onsists of several sub
ases.Let (P1, P2, : : : ; Pm) be the in
reasing sequen
e of m > 1 pairwise disjointsmallest-area re
tilinear 
onvex polygons that together 
ontain R(1; i). If Rjinterse
ts any 
onvex polygon Ph in the sequen
e, then the proof is similarto Sub
ases (1.a) and (1.b), a 
ontradi
tion. Suppose that Rj interse
ts averti
al (resp., horizontal) segment e on the boundary of CRUP (R(1; i)) bute is not on the boundary of any polygon Ph. Then the situation is similar tothe one in Figure 6(a) (resp., Figure 6(b)), and it implies that the preordernumber of Rj in T is smaller than that of a 
ertain re
tangle Rs of R withs � i < j, a 
ontradi
tion.We 
an now let su
h a desired stair
ase separator S for the subsets R(1; k) andR(k + 1; 2n) 
onsist of (say) the portion of the boundary of CRUP (R(1; k)) fromits rightmost edge 
lo
kwise to its lowest edge (i.e., DCUPSE (R(1; k))), augmentedby two semi-in�nite segments, one extended leftwards horizontally from its lowestedge and the other extended upwards verti
ally from its rightmost edge. By usingthe same arguments as above, we 
an show that for every j with k < j � n, thestair
ase separator S is above or to the left of Rj . Hen
e S so 
onstru
ted is anobsta
le-avoiding in
reasing stair
ase and 
onsists of O(k) segments.Perhaps we should point out that in general, the stair
ase separator S that weobtained above is not equal to any path Q(p) or its relatives. Although they areboth stair
ase 
hains, it is usually not possible to obtain S from a single path Q(p)or a variation of Q(p) (see Figure 2(b) for an example).WLOG, assume k = minfk; 2n � kg. We now show how to 
ompute su
h astair
ase separator S in O(k) time. In fa
t, we will 
ompute CRUP (R(1; k)), whi
his a little more than the above stair
ase S, in O(k) time. Note that the boundaryof CRUP (R(1; k)) 
an be obtained from four stair
ase paths, ea
h of whi
h 
an beeasily 
onstru
ted from an ordered sequen
e of the maximal elements of one of thefour types (as de�ned in Se
tion 2) for the 4k re
tangle verti
es of R(1; k). WLOG,we only show the pro
edure for 
omputing one su
h sequen
e of maximal elements.Our pro
edure is based on a simple divide-and-
onquer strategy. First, partitionthe set R(1; k) into two subsets R(1; k=2) and R(k=2; k) (WLOG, assume k is aneven integer greater than 1). Then, re
ursively 
ompute the sequen
e of maximalelements for ea
h su
h subset, represented by a balan
ed sear
h tree, su
h as a



2-3 tree.1 Finally, 
ompute the sequen
e of maximal elements for the verti
es ofR(1; k) from the two sequen
es for the two subsets. By the above dis
ussion, thesetwo sequen
es are respe
tively 
ontiguous portions of the boundaries of two disjoint
onne
ted 
onvex en
losing regions. Hen
e by performing a 
onstant number ofstandard 2-3 tree operations, the sequen
e of maximal elements for R(1; k) 
anbe obtained, also maintained by a 2-3 tree. The re
urren
e relation for the time
omplexity of this divide-and-
onquer pro
edure isT (k) = 2T (k=2) +O(log k), for k > 1T (1) = O(1)Thus it follows that T (k) = O(k). After the above divide-and-
onquer pro
edureterminates, it is easy to obtain the ordered sequen
e of maximal elements for R(1; k)from its 2-3 tree again in O(k) time. The spa
e used for 
omputing CRUP (R(1; k))is 
learly O(k).This 
ompletes the proof of the stair
ase separator theorem. 24. Data Stru
turesIn this se
tion, we des
ribe the data stru
tures that the algorithm in the nextse
tion will use. Sin
e that algorithm from time to time will delete some re
tanglesfrom the 
olle
tion R = fR1, R2, : : : ; R2ng, we use L+ to denote the 
urrent listof re
tangles sorted by their preorder numbers in T . The list L+ is initially fR1,R2, : : :, R2ng, but will 
hange as the algorithm pro
eeds. However, the followinginvariants must hold by L+:1. The list L+ must 
ontain as many red as blue re
tangles.2. There is a 
onne
ted smallest-area 
onvex en
losing region CR(L+) that doesnot interse
t any of the re
tangles in R � L+. This invariant ensures thatwe 
an solve the problem on L+ without having to worry about interferingwith the solution for R � L+, so long as our solution paths for L+ (resp.,R � L+) do not wander outside (resp., inside) of CR(L+). Note that if thealgorithm de
ides to mat
h a pair of re
tangles R0 and R00 in L+ and thusdelete R0 and R00 from L+, then this invariant requires that the resulted newlist L+�fR0; R00g should also satisfy the invariant, i.e., that CR(L+�fR0; R00g)must interse
t neither R0 nor R00.Remark: To avoid 
luttering the exposition of our algorithm with too manytedious details, in the rest of the paper we assume that CR(L0) = CH(L0) for anyre
tangle list L0 that satis�es both of the above invariants (thus we hen
eforth useonly CH(L0) instead of CR(L0) in our dis
ussions). The algorithm for the generalsituation is similar with only minor di�eren
es.We de�ne another list L� whi
h 
ontains exa
tly the same set of re
tangles asL+ but is ordered di�erently from L+ (as explained next). L� initially 
ontains allthe input re
tangles of R, but they are sorted a

ording to their preorder numbersin a tree T 0 rather than T , where T 0 is de�ned just like T ex
ept for the followingdi�eren
es:
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Figure 7: Illustrating the de�nition of the tree T 0.� Instead of the \leftwards-shooting horizontal ray emanating from the bottom-left 
orner of ea
h re
tangle" that we used in the de�nition of T , in T 0 weuse the \downwards-shooting verti
al ray emanating from the bottom-right
orner of ea
h re
tangle" (see Figure 7).� Instead of sorting the adja
en
y lists by the de
reasing y-
oordinates of thehorizontal shooting rays, in T 0 the adja
en
y lists are sorted by the in
reasingx-
oordinates of the verti
al shooting rays.� The \dummy" re
tangle 
orresponding to the root of T 0 is below all the inputre
tangles (whereas for T it was to their left).Figure 7 illustrates the tree T 0 in whi
h the re
tangles are named Bi's (for boxes)instead of Ri's.Note that the L� list is not expli
itly maintained by our algorithm. But, theorder in whi
h the elements of L+ would appear in this hypotheti
al list L� is
on
eptually important, and will be exploited by our algorithm. We hen
eforth usethe shorthand \T 0 preorder" to refer to this order.Be
ause L+ (hen
e L�) satis�es Invariant 2 above, the proofs of the followinglemmas are very similar to the proof of Theorem 1 and hen
e are omitted. (Notehow the proof falls apart without Invariant 2, spe
i�
ally at the pla
es where wededu
e that Rl must be the parent of Rs | this need not hold if Invariant 2 isviolated, and indeed we 
annot even 
laim that Rl is an an
estor of Rs.)Lemma 3 Let P+ be a pre�x of the list L+, and S+ be the remaining suÆx of L+,i.e., S+ = L+ � P+. Then the in
reasing stair
ase de�ned by the South-East por-tion DCSE(CH(P+)) of the boundary of CH(P+) is (geometri
ally) above all of there
tangles in S+. Equivalently, the in
reasing stair
ase de�ned by the North-Westportion DCNW (CH(S+)) of the boundary of CH(S+) is below all of the re
tanglesin P+.Figure 8 illustrates Lemma 3.Lemma 4 Let P� be a pre�x of the list L�, and S� be the remaining suÆx ofL�, i.e., S� = L� � P�. Then the de
reasing stair
ase de�ned by the North-East portion DCNE(CH(P�)) of the boundary of CH(P�) is (geometri
ally) below
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Figure 8: An example for Lemma 3, with P+ = fR1; R2, : : : ; R5g and S+ =fR6; R7; R8g.
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Figure 9: An example for Lemma 4, with P� = fB1; B2, : : : ; B5g and S� =fB6; B7; B8g.all of the re
tangles in S�. Equivalently, the de
reasing stair
ase de�ned by theSouth-West portion DCSW (CH(S�)) of the boundary of CH(S�) is above all of there
tangles in P�.Figure 9 illustrates Lemma 4.Our algorithm in the next se
tion always operates on the kind of re
tangle listL+ that satis�es both Invariants 1 and 2. It a
hieves this by handling two 
ases: (i)Partition the list L+ into two 
onse
utive sublists L0 and L00 that also satisfy bothInvariants 1 and 2, and re
urse on L0 and L00 respe
tively; (ii) identify a red/bluepair of re
tangles Ra and Rb from L+ su
h that L+ � fRa; Rbg still satis�es bothInvariants 1 and 2, mat
h Ra and Rb, and re
urse on L+�fRa; Rbg. Observe thatit is possible that Case (i) does not hold for some re
tangle lists that satisfy bothInvariants 1 and 2 (e.g., when the �rst n re
tangles of L+ are all red and the se
ondn re
tangles are all blue). Hen
e we also need to mat
h red/blue re
tangle pair inL+ (Case (ii)). By Lemma 3, it would be ideal to mat
h the �rst and last re
tanglesRa and Rb in the list L+ (if they are of di�erent 
olors), by using a monotone pathalong the boundary of CH(L+ � fRa; Rbg). But, su
h a monotone path betweenRa and Rb does not always exist (see Figure 10(a)). To resolve this diÆ
ulty, wepi
k the �rst re
tangle R
 from the list L�, and mat
h R
 with either Ra or Rb (iftheir 
olors are right). Note that by Lemmas 3 and 4, a monotone path along theboundary of (say) CH(L+�fRa; R
g) 
onne
ting the mat
hed pair (Ra; R
) always
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(b)(a)Figure 10: (a) No monotone path exists betweenR1 andR8 alongCH(R�fR1, R8g);(b) there are monotone paths between B1 = R5 and B6 = R1 along CH(R � fR1,R5g), and between B1 = R5 and B3 = R8 along CH(R� fR5, R8g).exists (see Figure 10(b)).By Lemma 3, one may also 
hoose to mat
h the �rst (or last) two re
tangles inthe list L+ if they happen to have di�erent 
olors. Although this strategy may pro-du
e a somewhat more pra
ti
ally desirable solution, it nevertheless is of a heuristi
nature (see more dis
ussion on this in Se
tion 9).When the algorithm to be des
ribed in the next se
tion is solving a problemon the re
tangles in L+, it is given as input not just the list L+ but rather a treestru
ture S(L+) built \on top" of L+. Spe
i�
ally, S(L+) is a 2-3 tree1 ea
h ofwhose leaves, from left to right, 
ontains exa
tly one re
tangle in L+, in the sameorder as in L+; these leaves are doubly linked together. Ea
h internal node v ofS(L+) 
ontains a label equal to the smallest T 0 preorder number (i.e., a

ordingto the L� ordering) of the re
tangles stored in the subtree of S(L+) rooted at v.In addition, there are 
ross-links between every internal node v of S(L+) and theleaf in the subtree of S(L+) rooted at v 
orresponding to the label of v. We willneed to perform only the deletion and split operations on S(L+), both of whi
h 
anbe done in logarithmi
 time using standard te
hniques.1 The deletions take pla
eafter we have mat
hed a pair of re
tangles | we then delete them from S(L+) andre
urse on the resulted S(L+). The split operations take pla
e when we pro
ess L+by solving re
ursively two pie
es of L+: A pre�x L0 of L+ and the remaining suÆxL00 = L+ � L0 (of 
ourse, L0 and L00 must satisfy the required invariants mentionedearlier). Splitting S(L+) allows us to 
reate S(L0) and S(L00) in logarithmi
 time.5. The Mat
hing Algorithm for Re
tanglesThe goal of this pro
edure is to 
ompute a desired mat
hing for the re
tanglesin R without worrying about des
ribing the a
tual paths that join the mat
hedpairs of red/blue re
tangles (the next se
tion explains how this pro
edure 
an bemodi�ed to also produ
e the a
tual paths 
onne
ting the mat
hed pairs).The pro
edure is re
ursive, and takes as input the 2-3 tree data stru
ture S(L+)



des
ribed in the previous se
tion.Pro
edure MATCH(L+)Input: S(L+), where L+ = (R01, R02, : : : ; R0m).Output: A mat
hing of the red and blue re
tangles in L+.1. If m = 2, then the only two re
tangles in L+ surely have di�erent 
olors (byInvariant 1). Mat
h these two re
tangles and return. If m > 2, then pro
eedto the next step.Comment: The path that will join the pair just mat
hed will be along theboundary of CH(L+).2. Find the �rst leaf (R01) and the last leaf (R0m) of S(L+), in O(logm) time. IfR01 and R0m have di�erent 
olors, then pro
eed to the next step. Otherwise,R01 and R0m have the same 
olor (say, it is red). For ea
h integer s = 1, 2, : : : ;m, let f(s) be the number of red elements minus the number of blue elementsin the pre�x subset fR01, R02, : : : ; R0sg of L+. Observe that jf(s+1)�f(s)j = 1and that in this 
ase f(1) = 1 whereas f(m � 1) = �1. This implies, by asimple \
ontinuity" argument, that there is some integer `, 1 < ` < m � 1,for whi
h f(`) = 0. (A somewhat similar 
ontinuity argument was used inthe 
ontext of mat
hing points.3) Next, we will sear
h for su
h an ` in timeO(minf`;m� `g) rather than in time O(m), as follows. We linearly sear
h forit along the leaf sequen
e of S(L+), by two interleaved sear
hes: one startingfrom the beginning of L+, from R01 up, and the other starting from the end ofL+, from R0m�1 down, where we alternate between the two sear
hes until oneof them �rst hits a desired value ` whi
h we know must exist. Hen
e, we �ndan ` value for whi
h f(`) = 0 in O(minf`;m� `g) time, rather than in O(m)time. This de�nes two subproblems L0 and L00: L0 = fR01, R02, : : : ; R0̀g andL00 = fR0̀+1, R0̀+2, : : : ; R0mg. In O(logm) time, we split S(L+) into S(L0)and S(L00). Then we re
ursively 
all MATCH(L0) and MATCH(L00).Analysis: This step has a 
umulative total 
ost of O(n logn) time rather thanO(n2) even though the two subproblems so generated and solved re
ursively
an be very \unbalan
ed", e.g., jL0j 
ould be O(1). The analysis is as fol-lows: We spend only O(logm + minf`;m � `g) time in generating the twosubproblems; we 
an \
harge" the logm term of this 
ost to the re
ursive 
allitself (i.e., to the node for that re
ursive 
all in the re
ursion tree), and theminf`;m � `g term to the re
tangles of the smaller subproblem (O(1) timeper re
tangle). A re
tangle that is so \
harged" ends up in a subproblem ofno more than half the size of its previous subproblem, and hen
e 
annot be
harged more than logn times, for a total (over all the 2n re
tangles of R)of O(n logn). The total number of nodes in the re
ursion tree is O(n), andhen
e the overall 
ost of the 
harges to the nodes of that re
ursion tree (logmper node) is O(n logm) = O(n logn).3. R01 and R0m have di�erent 
olors. Obtain, from the label at the root of S(L+),the smallest re
tangle in L+ a

ording to the L� ordering. Let R00 be this



re
tangle. Re
tangle R00 must have the same 
olor as one of fR01; R0mg, sosuppose WLOG that R00 has the same 
olor as R01. Then we (i) mat
h R0m andR00, (ii) delete R0m and R00 from S(L+) in O(logm) time, and (iii) re
ursivelysolve the problem on the resulted L+.Comment: The path that will join the pair just mat
hed will be along theboundary of CH(L+ � fR0m; R00g). The justi�
ation for the monotoni
ity ofthis path follows from Lemmas 3 and 4, whi
h ensure that the path from R0mto R00 along the boundary of CH(L+ � fR0m; R00g) 
onsists of at most twosubpaths: An in
reasing stair
ase followed by a de
reasing stair
ase. Thisstep also has a 
umulative total 
ost of O(n logn) time, be
ause ea
h of then mat
hed pairs is 
harged a 
ost of O(logn) time by the step.As analyzed above, algorithm MATCH 
orre
tly 
omputes n mat
hed pairs ofred/blue re
tangles of R in O(n logn) time and O(n) spa
e.6. Reporting the A
tual PathsThis se
tion shows how to output the a
tual monotone paths between all the nmat
hed red/blue re
tangle pairs in O(n logn+�) time, where � is the total numberof segments that make up these n paths.Re
all the 
omments we made after a re
tangle pair was mat
hed by the algo-rithm of the previous se
tion (spe
i�
ally, following Steps 1 and 3). These 
ommentsdes
ribed the desired path between the pair just mat
hed in terms of a re
tilinear
onvex hull CH(v) of a subproblem asso
iated with a parti
ular pla
e (i.e., a node)v in the re
ursion tree of algorithm MATCH at whi
h this subproblem o

urred.We postponed the a
tual 
omputation of these CH(v) 
onvex hulls, be
ause on
ewe have the overall stru
ture of the re
ursion tree, we 
an traverse it and 
omputethese CH(v) hulls bottom up, with insertion operations only (sin
e the subproblemof a 
hild node in the re
ursion tree is that of its parent node minus some re
t-angles). Thus, this enables us to use the fa
t that maintaining re
tilinear 
onvexhulls, in the fa
e of insertions only, is possible in logarithmi
 time per insertion.31Hen
e, the idea is to run the mat
hing algorithm of Se
tion 5 and make sure that,after that algorithm has exe
uted, it leaves behind the skeleton of its re
ursion tree,whi
h we 
all Re
Tree, together with 
ertain information des
ribing how a pathbetween a mat
hed re
tangle pair is related to CH(v) (i.e., the des
ription in the\
omments" of algorithmMATCH). This des
ription information uses O(1) spa
eper mat
hed pair. This skeleton just gives the overall stru
ture of Re
Tree. It doesnot store dire
tly the re
tangles of the subproblem asso
iated with ea
h node v ofRe
Tree (that would be too expensive in terms of the spa
e 
omplexity), but ratherhow the re
tangles of v are related to those of v's 
hildren:1. If v has only one 
hild in Re
Tree, then its asso
iated re
tangles are those ofits only 
hild plus two re
tangles that are mat
hed by algorithmMATCH atv: It is these two re
tangles that are expli
itly stored at v in Re
Tree.2. If v has two 
hildren in Re
Tree, then its asso
iated re
tangles are the unionof the re
tangles of both its 
hildren.



R"

R’Figure 11: A path with two y-monotone subpaths among re
tilinear xy-monotoneobsta
les.In either 
ase, we store O(1) information at ea
h node v, so that Re
Tree usesaltogether O(n) spa
e. The problem of 
omputing the a
tual monotone path (ifany) asso
iated with ea
h node v in Re
Tree 
learly redu
es to 
omputing CH(v)in turn and using it to print that path. The 
omputation of the CH(v)'s asso
iatedwith all the nodes v of Re
Tree is done by a simple traversal of Re
Tree duringwhi
h the CH(v)'s are 
omputed a

ording to the postorder numbers1 of the nodes vin Re
Tree. Of 
ourse, at a node v of Re
Tree that has two 
hildren (say, u and w),we do not 
reate CH(v) by individually inserting the verti
es of CH(u) into CH(w),but rather we obtain CH(v) by \merging" CH(u) and CH(w) in logarithmi
 time.31After CH(v) is 
omputed, the a
tual path between the mat
hed re
tangle pair ofnode v is 
omputed by walking along CH(v), in time proportional to the size of thepath plus a logarithmi
 additive term. We assume that if two su
h mat
hing pathsshare some 
ommon portions on 
ertain 
onvex hulls so 
omputed, then the twopaths are apart by at least a positive distan
e that 
an be made arbitrarily small.The overall time of this algorithm is therefore O(n logn) plus the time needed toprint all the output paths, i.e., O(�).7. Extensions to Monotone Polygonal Obsta
lesIn this se
tion, we extend our te
hniques for mat
hing red/blue re
tilinear re
t-angle obsta
les to mat
hing red/blue polygonal obsta
les in the plane that are allmonotone with respe
t to a 
oordinate axis (say, the y-axis). Let W be a set of rred and r blue disjoint polygonal obsta
les in the plane, with a total of n verti
es.We assume that all the polygonal obsta
les in W are monotone to the y-axis, and
all them y-monotone polygons. We show that it is possible to mat
h all the red andblue polygons inW , by 
onne
ting the r mat
hed red/blue polygon pairs with r mu-tually disjoint paths. The properties of the mat
hing paths are similar to those forre
tilinear re
tangles, ex
ept for the monotoni
ity: In this 
ase, a path 
an be usedfor the mat
hing if it 
an be partitioned into at most two subpaths, ea
h of whi
his monotone to the y-axis. Our algorithms for 
omputing su
h a mat
hing have thesame 
omplexity bounds as the mat
hing algorithms for re
tilinear re
tangles in theprevious se
tions.One 
onsequen
e of 
onsidering y-monotone polygonal obsta
les (whose stru
-tures are less ni
e than those of re
tilinear re
tangles) is that we must use a weaker



(b)(a)Figure 12: There is no stair
ase separator for re
tilinear and non-re
tilinear 
onvexobsta
les.monotoni
ity 
onstraint on the mat
hing paths. This is be
ause even with a geo-metri
 setting 
onsisting of disjoint 
onvex polygonal obsta
les in the plane, there isin general no obsta
le-avoiding path between two arbitrary points that is monotoneto the x-axis or to the y-axis. But in su
h a setting, a path 
onsisting of at mosttwo y-monotone subpaths always exists between any two points (see Figure 11 foran example). Another 
onsequen
e of 
onsidering y-monotone polygonal obsta
lesis that there is in general no stair
ase separator for partitioning su
h geometri
obje
t sets. In the two examples of Figure 12, there exists no stair
ase (even withrespe
t to any two orthogonal lines) that partitions ea
h 
onvex obsta
le set intotwo subsets, su
h that every subset 
ontains more than one obsta
le. However, aswe will show, there exist y-monotone paths that partition y-monotone polygons.Note that a key di�eren
e between stair
ases and y-monotone paths is that stair-
ases are monotone to both the x-axis and y-axis, while y-monotone paths need notbe monotone to the x-axis.It turns out that the mat
hing algorithms based on the geometri
 stru
tures ofy-monotone polygonal obsta
les are similar to and in fa
t simpler than the mat
hingalgorithms for re
tilinear re
tangles. Also, although we have 
hosen in this se
tionto fo
us our dis
ussion on re
tilinear geometri
 obje
ts (obsta
les, paths, et
), itis a
tually not diÆ
ult to modify our algorithms so that they will work with non-re
tilinear obje
ts under the y-monotoni
ity 
onstraint.Let the obsta
le set W = fW0;W1, : : : ; W2rg, where W0 is the extra \dummy"re
tangle R0 to the left of all the other obsta
les in W (as introdu
ed in Se
tion 3).We �rst prepro
ess W as in Se
tion 3. From the left vertex of the lowest edge ofeveryWi, shoot a leftwards-moving horizontal ray ri; let Parent(i) beWj , whereWjis the �rst obsta
le in W hit by the ray ri. Maintain for every Wj an adja
en
y listof all the obsta
les inW whose Parent isWj , sorted by the de
reasing y-
oordinatesof their leftwards-moving horizontal rays. This gives a tree stru
ture whose nodesare the obsta
les in W (as the tree T in Se
tion 3) and whi
h we again denote by T .Label the nodes of T by their preorder numbers in T , and re-label the obsta
les inW by their 
orresponding preorder numbers in T . This prepro
essing 
an be doneby a horizontal trapezoidal de
omposition33 of W and a preorder traversal of T ,1 inaltogether O(n logn) time and O(n) spa
e. WLOG, let i be the label of Wi in the



y−monotone hull

Figure 13: An example of the y-monotone hull of a set of obsta
les.prepro
essed form. In addition, we also 
onstru
t, as part of the prepro
essing, theplanar subdivision33 that is de�ned by the horizontal trapezoidal de
omposition ofW . The 
onstru
tion of this planar subdivision also takes O(n logn) time and O(n)spa
e.For any 
onse
utive subset W 0 = fWi, Wi+1, : : : ; Wjg of W , where i > 0, wede�ne the y-monotone hull of W 0, denoted by CHy(W 0), to be the region withthe smallest area that 
ontains all the obsta
les in W 0 and that is y-monotone(see Figure 13 for an example). Note that the region CHy(W 0) so de�ned may bedis
onne
ted. If this is the 
ase, we assume that we link the 
onne
ted 
omponentsof CHy(W 0) together with some paths of zero width, so that CHy(W 0) be
omes
onne
ted and is still y-monotone.Note that the boundary of every y-monotone polygon 
an be easily partitionedinto two y-monotone paths, whi
h we 
all the left boundary and right boundary ofsu
h a polygon. For every point p in the plane that is to the right of the rootobsta
le W0 of T and is not in the interior of any obsta
le, we de�ne the pathQ(p) from p to W0 as in Se
tion 3, with one small ex
eption: When Q(p) follows aleftwards-moving horizontal ray and hits an obsta
leWi 6=W0, Q(p) goes to the leftvertex of the lowest edge of Wi along a downwards y-monotone path on the rightboundary of Wi. Q(p) so de�ned is 
learly a unique y-monotone path, although itneed not be x-monotone simultaneously.The following observations are analogous to those of Lemmas 1 and 2 and The-orem 1. The di�eren
es in these observations and their proof arguments stem fromthe stru
tural di�eren
es between the 
onvex hulls of re
tilinear re
tangles and they-monotone hulls of y-monotone polygons in our mat
hing problems.Lemma 5 For an obsta
le Wi in W � fW0g, let p and q be two points su
h that pis on the left boundary of Wi and q is on the right boundary of Wi. Then no pointof Q(p) is stri
tly below any point of Q(q).Proof. A 
ru
ial fa
t to the proof is that both Q(p) andQ(q) are planar y-monotonepaths. The proof argument is similar to that of Lemma 1. 2Lemma 6 Let p and q be two points in the plane su
h that p is on the left boundaryof an obsta
le Wi and q is on the right boundary of Wi, with i > 0. Let u (resp.,v) be the left vertex of the lowest edge of an obsta
le Wa (resp., Wb), su
h that u



(resp., v) is on Q(p) (resp., Q(q)) but not on Q(q) (resp., Q(p)). Then the preordernumber of Wa in the tree T of obsta
les is smaller than that of Wb, i.e., a < b.Proof. This follows from Lemma 5 and from the de�nition of the tree T . 2Theorem 2 Given a prepro
essed set W of 2r disjoint y-monotone polygonal ob-sta
les with n verti
es in total, the subsets fW1, W2, : : : ; Wkg and fWk+1, Wk+2,: : : ; W2rg, for any integer k with 1 � k < 2r, form a partition of the set W thathas the desired property, that is, there exists an obsta
le-avoiding y-monotone pathof size O(n) that separates these two subsets. Furthermore, su
h a y-monotone path
an be 
omputed in O(n) time.Proof. LetW (a; b) denote the subset fWa, Wa+1, : : : ; Wbg ofW . For the existen
eof su
h a y-monotone path, we �rst show that for any i < j, the following holds:(1) CHy(W (1; i)) does not interse
t Wj , and (2) CHy(W (j; 2r)) does not interse
tWi. We give the proof only for (1), that for (2) being similar.We prove (1) by 
ontradi
tion: Suppose to the 
ontrary that for some j > i, Wjinterse
ts CHy(W (1; i)). Then for a point w 2 CHy(W (1; i)) \ Wj , there must bea point z of a Ws, s � i < j, su
h that y(w) = y(z) and x(w) < x(z), (i.e., z isstri
tly to the right of w). (If su
h a point z did not exist, then w would have notbelonged to CHy(W (1; i)) by the de�nition of y-monotone hulls, a 
ontradi
tion.)WLOG, let z 2Ws be the leftmost su
h point. Then z must be on the left boundaryof Ws and the leftwards-moving horizontal ray from the left vertex of the lowestedge of Ws 
annot �rst hit Wj (otherwise, we would have a 
ontradi
tion). Let z0be a point on the right boundary of Ws su
h that y(z) > y(z0). Then by Lemma 6,the preorder number of Wj in T is smaller than that of Ws, a 
ontradi
tion.We 
an 
ompute a desired y-monotone path by letting the path �rst go along theright boundary of CHy(W (1; k)) as mu
h as possible, then along the left boundaryof CHy(W (k + 1; 2r)) (if ne
essary), and �nally extend verti
ally upwards anddownwards to in�nity. The y-monotone path so obtained 
learly has a size of O(n).Given the planar subdivision based on the horizontal trapezoidal de
omposition ofthe obsta
le setW (this subdivision is part of the prepro
essing result), it is possibleto obtain su
h a y-monotone path in O(n) time. This is done by examining the O(n)
ells of the planar subdivision to identify those 
ells that separate the two subsetsW (1; k) and W (k + 1; 2r), i.e., the 
ells whose left (resp., right) boundaries are onthe right (resp., left) boundaries of the polygons in W (1; k) (resp., W (k + 1; 2r)).2Note that in a fashion similar to Theorem 2, we 
an also partition the prepro-
essed setW into two subsets based on the total sizes of the polygons in the resultedsubsets. That is, for an integer j with 1 � j < n, we 
an partition the prepro
essedobsta
le set W into two subsets W (1; k) and W (k+1; 2r) with a y-monotone path,su
h that the total number of polygon verti
es of W (1; k) is no bigger than j butthe total number of polygon verti
es of W (1; k + 1) is stri
tly larger than j. Thispartitioning 
an also be done in O(n) time.Theorem 2 enables us to obtain eÆ
ient algorithms for 
omputing a desiredmat
hing for y-monotone polygons, as did Theorem 1 for re
tilinear re
tangles. Infa
t, the mat
hing algorithms for y-monotone polygons are similar to and a
tually



simpler than the ones for re
tilinear re
tangles.Like the mat
hing algorithms for re
tilinear re
tangles, the algorithms here alsomaintain the list L+. However, unlike the algorithms for re
tilinear re
tangles, L+here is always a 
onse
utive sublist of the original list W (1; 2r) and is maintainedonly as a doubly linked list. Further, the algorithms here do not need to use thetree T 0 and hen
e the list L�, and do not use the 2-3 tree S(L+). We only sket
hbelow the 
omputation of these algorithms, sin
e they are very similar to those ofSe
tions 5 and 6.To spe
ify the mat
hing pairs of the red/blue polygons in a list L+ = (W 01,W 02, : : : ; W 0m) (without 
omputing the a
tual paths), the algorithm simply does thefollowing:IfW 01 andW 0m are of di�erent 
olors, then mat
hW 01 andW 0m (by lettingthe W 01-to-W 0m path go along �rst the left boundary of CHy(L+) andthen the right boundary of CHy(L+)), and re
ursively solve the problemon L+�fW 01;W 0mg if L+ � fW 01;W 0mg is non-empty; otherwise, partitionL+ into two 
onse
utive sublists (as in Step 2 of algorithm MATCH)and re
ursively solve the two subproblems.A mat
hing path so spe
i�ed 
onsists of at most two y-monotone subpaths be
auseit follows �rst the left boundary and then the right boundary of a y-monotone hull.As analyzed in Se
tion 5 for algorithmMATCH, the mat
hing algorithm here takesO(r log r) time after the ordered list W (1; 2r) is made available by the O(n logn)time prepro
essing.The algorithm for 
omputing the r a
tual paths of a mat
hing here is simi-lar to the one for re
tilinear re
tangles in Se
tion 6: It maintains the re
ursiontree Re
Tree of the above mat
hing algorithm, and 
omputes the y-monotone hullCHy(v) for the subproblem on every node v of Re
Tree. Ea
h of the left and rightboundaries of CHy(v) 
an be maintained by a 2-3 tree. The geometri
 stru
turesof the y-monotone hulls of the input polygons in Re
Tree 
an be exploited by our
omputation in the following way: When we need to \merge" two y-monotone hullsCHy(u) and CHy(w) to obtain CHy(v) (with u and w being the left and right
hildren of v, respe
tively), we repla
e the 
orresponding portions of the (say) leftboundary of CHy(w) by the left boundary of ea
h 
onne
ted 
omponent of CHy(u)(if CHy(u) indeed 
onsists of more than one 
onne
ted 
omponent). This 
an bedone by using O(1) split and 
on
atenation operations of 2-3 trees for ea
h 
ompo-nent of CHy(u), in logarithmi
 time. Sin
e we 
an 
harge the time for \merging"ea
h su
h 
onne
ted 
omponent to a horizontal line segment of the horizontal trape-zoidal de
omposition and sin
e there are O(n) su
h line segments in the trapezoidalde
omposition, the total time for our algorithm to output all the r a
tual pathsbetween the mat
hed red/blue polygon pairs is O(n logn+ �), where � is the totalnumber of segments that make up these r paths. The spa
e bounds of the mat
hingalgorithms in this se
tion are O(n).8. Lower Bounds for the Mat
hing Problems
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Figure 14: Illustrating the redu
tion of the lower bound proofs.In this se
tion, we prove 
(n logn) lower bounds in the algebrai
 
omputationtree model8 for the mat
hing problems studied in this paper.First, we show that the problem of mat
hing 2n disjoint red/blue re
tilinearre
tangles with noninterse
ting monotone re
tilinear paths in the plane requires
(n logn) time in the worst 
ase. A
tually, we will show an 
(n logn) lower boundfor the following (simpler) problem P: Giving n red and n blue disjoint re
tilinearre
tangles in the plane, �nd a monotone re
tilinear obsta
le-avoiding path froma spe
i�ed red re
tangle (say, R1) to some (unspe
i�ed) blue re
tangle Vi. Thereason for 
onsidering problem P is that this problem 
an be easily redu
ed to ourmat
hing problem sin
e any solution to the mat
hing problem de�nitely 
ontainssu
h a monotone path between the red re
tangle R1 and some blue re
tangle Vi.The key to our proof is a redu
tion from the problem of sorting O(n) pairwisedistin
t positive integers (in an arbitrary range) to problem P. Note that basedon Yao's 
(n logn) lower bound result for the element uniqueness problem on narbitrary integers,42 Chen, Das, and Smid10 showed that sorting O(n) pairwisedistin
t positive integers in the worst 
ase requires 
(n logn) time in the algebrai

omputation tree model.The redu
tion goes as follows. Consider a set K of n pairwise distin
t positiveintegers I1, I2, : : : ; In. Let Ia (resp., Ib) be the smallest (resp., largest) integer inthe set K (it is easy to �nd Ia and Ib in O(n) time). WLOG, assume that Ia > 2.For every integer Ij 2 K, map Ij to a set Uj of four red re
tilinear re
tangles Rjl ,Rjr, Rju, and Rjd in the plane, as follows (see Figure 14): The shorter edges of all thefour red re
tangles in Uj have the same length of 0:5 units; the right (resp., left)edge of Rjr (resp., Rjl ) has the point (Ij ; 0) (resp., (�Ij ; 0)) as its middle point andhas a length of 2Ij , while the top (resp., bottom) edge of Rju (resp., Rjd) has thepoint (0; Ij) (resp., (0;�Ij)) as its middle point and has a length of 2Ij �1�2�, fora very small �xed � > 0. Let R1 be a red re
tilinear unit box whose 
enter is at theorigin of the 
oordinate system. We then have 4n+1 red re
tangles. We next 
reate4n+1 re
tilinear blue re
tangles Vl's in the following way: These blue re
tangles areall re
tilinear unit boxes whose 
enters are all on the x-axis; every two 
onse
utiveblue boxes are one unit distan
e apart, and the leftmost blue box is at least one



unit distan
e to the right of Ub (see Figure 14). It is 
lear that the O(n) red/bluere
tilinear re
tangles so obtained are pairwise disjoint (sin
e the input integers arepairwise distin
t), and that the 
onstru
tion of this re
tangle set takes O(n) time.Now, it is an easy matter to observe that (1) an R1-to-Vi path in this setting 
anbe monotone only to the x-axis (but not to the y-axis), and (2) any su
h monotoneR1-to-Vi path must get around every red re
tangle set Uj in the sorted order of the
orresponding Ij values of the Uj 's (Figure 14). Let H be a monotone re
tilinearR1-to-Vi path 
omputed by any algorithm for problem P, with jH j = O(n). Weassume that when the path H is getting around a parti
ular re
tangle set Uj , itpi
ks up the index j and asso
iates j with the horizontal edge of H that 
ontainsthe x-
oordinate of the rightmost edge of Uj . Then given su
h a path H , we 
anoutput the sorted sequen
e of the input integers in K by tra
ing H and pi
kingup the indi
es of the integers Ij from their asso
iated horizontal edges of H alongthe path order of H . Su
h a tra
ing of H 
an be easily done in O(n) time. This
ompletes the lower bound proof for problem P.Our lower bound proof for the mat
hing problem on y-monotone polygons usesthe same redu
tion 
onstru
tion as for that on re
tilinear re
tangles, ex
ept that wenow 
ompute a path whi
h 
onsists of at most two y-monotone subpaths instead ofone monotone path. That is, we use any algorithm for 
omputing su
h an R1-to-Vipath among y-monotone polygons to build a geometri
 sorting devi
e for integerinput; the redu
tion is the same as the one illustrated in Figure 14 and takes O(n)time. This redu
tion works be
ause any R1-to-Vi obsta
le-avoiding re
tilinear pathH 0 that 
onsists of at most two y-monotone subpaths in the setting of Figure 14must get around every red re
tangle set Uj in the sorted order of the 
orrespondingIj values of the Uj 's. Therefore, su
h a path H 0 
an be used to report the sortedsequen
e of the input integers in O(n) time, implying an 
(n logn) lower bound forthe mat
hing problem on y-monotone polygons.9. Further RemarksAs mentioned earlier, Theorem 1 implies an eÆ
ient parallel bound for equipar-titioning a set of disjoint re
tilinear re
tangles. This fa
t is potentially useful inthe parallel algorithmi
s of other, not ne
essarily red/blue, re
tangle problems (asis 
lear from several known algorithms,4;5 where tremendous simpli�
ations followfrom the next theorem). Therefore, this useful side-e�e
t of Theorem 1 is summa-rized below.Theorem 3 Let R be a set of 2m disjoint re
tilinear re
tangles (not given in anyparti
ular order). Then an m-pro
essor CREW PRAM 
an 
ompute, in O(logm)time, an in
reasing stair
ase S that does not interse
t the interior of any re
tanglein R and partitions R into two equal parts, with jSj = O(m).Proof. This follows from Theorem 1 and the fa
t that a trapezoidal de
omposition6as well as the preorder numbers in a tree37 
an all be 
omputed in parallel withinthese bounds. 2In fa
t, the prepro
essed form of R required by Theorem 1 
an be obtained as



a by-produ
t of Theorem 3, in O(logm) time using m CREW PRAM pro
essors.On
e this form is available, we 
an do a little more than Theorem 3: We 
anpartition the set R = fR1, R2, : : : ; R2mg into two subsets fR1, R2, : : : ; Rkg andfRk+1, Rk+2, : : : ; R2mg, for any integer k with 1 � k < 2m, in O(log t) timeusing t= log t pro
essors in the CREW PRAM or even the EREW PRAM model,22where t = minfk; 2m�kg. This is done by using, instead of the two-way divide-and-
onquer algorithm given in the proof of Theorem 1, a many-way divide-and-
onquerapproa
h.9;20 The details of this parallel algorithm are very similar to (and in fa
teven simpler than) those in Refs. [9,20℄, and hen
e are omitted.The following partition result may also be useful to designing parallel algorithmsfor 
ertain geometri
 problems.Theorem 4 Let W be a set of 2r disjoint y-monotone polygons (not given in anyparti
ular order) with a total of m verti
es. Then an m-pro
essor CREW PRAM
an 
ompute, in O(logm) time, a y-monotone path P that does not interse
t theinterior of any polygon in W and partitions W into two subsets of r polygons ea
h,with jP j = O(m).Proof. This follows from Theorem 2 and the fa
t that a trapezoidal de
ompositionand the planar subdivision6 based on it as well as the preorder numbers in a tree37
an all be 
omputed in parallel within these bounds. 2Again, we 
an also prepro
ess W in O(logm) time using m CREW PRAMpro
essors. After that, su
h a y-monotone path P , as de�ned in Theorem 4, 
anbe obtained in O(logm) time using m= logm CREW PRAM pro
essors. This isdone by �rst examining the 
ells of the planar subdivision (to identify those 
ellsthat separate the two subsets of the polygons in W ) and then using parallel listranking22 to �nd the path P . Note that it is also possible to modify Theorem 4 topartitionW into two subsets based on the total sizes of the polygons in the resultedsubsets.We 
on
lude with an implementation note about our algorithms. If we are toprogram the mat
hing algorithms for re
tilinear re
tangles, we would modify themby 
reating (in Step 2) S(L0) and S(L00) only as a last resort, by inserting beforeStep 2 a Step 1' in whi
h we 
he
k whether R01 and R02 are of di�erent 
olors | ifso we mat
h them, delete them, et
, and if not we 
he
k whether R0m�1 and R0mare of di�erent 
olors | if so we mat
h them, delete them, et
, and if not we go toStep 2. Thus, we go to Step 2 only if we are unable to mat
h the pair fR01; R02g andthe pair fR0m�1; R0mg. Performing su
h a Step 1' before Step 2 gives preferen
e toshort paths over long ones, sin
e an R01-to-R0m path is likely to be longer than anR01-to-R02 (or R0m�1-to-R0m) path. For y-monotone polygons, an eÆ
ient heuristi
that may produ
e short paths for a mat
hing we desire is to use a modi�
ation ofthe so 
alled red/blue mat
hing approa
h2;23 for mat
hing red/blue elements in anordered list (in our situation, the ordered list is W (1; 2r)). Of 
ourse, this assumesthat short paths are pra
ti
ally better than long ones.The above dis
ussion suggests the obvious open problems of �nding mat
hingsthat satisfy some additional length 
riteria, su
h as:� Minimum sum of lengths of all n paths, or



� Minimum maximum length of all n paths, or� Versions of the above two where \length" means number of links rather thanthe usual L1 length (hen
e this version of the sum-of-lengths problem amountsto minimizing what we earlier 
alled �).A
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