CERIAS Tech Report 2005-34

ON CONNECTING RED AND BLUE RECTANGLESWITH NONINTERSECTING MONOTONE
RECTILINEAR PATHS

by Mikhail J. Atalah, Danny Z. Chen
Center for Education and Research in

Information Assurance and Security,
Purdue University, West Lafayette, IN 47907-2086



International Journal of Computational Geometry & Applications
© World Scientific Publishing Company

On Connecting Red and Blue Rectilinear Polygonal Obstacles with
Nonintersecting Monotone Rectilinear Paths*!

Mikhail J. Atallah
Department of Computer Sciences, Purdue University,
West Lafayette, Indiana 47907, USA
mja@cs.purdue.edu

Danny Z. Chen
Department of Computer Science and Engineering, University of Notre Dame,
Notre Dame, Indiana 46556, USA
chen@cse.nd.edu

ABSTRACT

We present efficient algorithms for the problems of matching red and blue disjoint
geometric obstacles in the plane and connecting the matched obstacle pairs with mutually
nonintersecting paths that have useful geometric properties. We first consider matching
n red and n blue disjoint rectilinear rectangles and connecting the n matched rectangle
pairs with nonintersecting monotone rectilinear paths; each such path consists of O(n)
segments and is not allowed to touch any rectangle other than the matched pair that it
is linking. Based on a numbering scheme for certain geometric objects and on several
useful geometric observations, we develop an O(nlogn) time, O(n) space algorithm that
produces a desired matching for rectilinear rectangles. If an explicit printing of all the n
paths is required, then our algorithm takes O(nlog n+\) time and O(n) space, where X is
the total size of the desired output. We then extend these matching algorithms to other
classes of red/blue polygonal obstacles. The numbering scheme also finds applications
to other problems.

Keywords: Rectilinear paths, red/blue matching, numbering scheme, staircase sepa-
rators.
1. Introduction

The problem of computing paths that avoid obstacles and have certain useful
properties is fundamental in computational geometry and has many applications.

*This work was carried out in part at the Center for Applied Science and Engineering and Insti-
tute of Information Science, Academia Sinica, Nankang, Taiwan, during its 1996 Summer Institute
on Computational Geometry and Applications. A preliminary version of the work appeared in
Proc. of the Tth Annual International Symposium on Algorithms and Computation (ISAAC’96),
Osaka, Japan, 1996.

TThe research of the first author was supported in part by Grants DCR-9202807 and EIA-
9903545 from the National Science Foundation, and by sponsors of the Center for Education and
Research in Information Assurance and Security at Purdue University. The research of the second
author was supported in part by the National Science Foundation under Grants CCR-9623585 and
CCR-9988468.



,,,,,,,,

Figure 1: Example of a matching of red and blue rectangles with monotone paths.

It has been studied in both the sequential and parallel settings and using vari-
ous metrics. The rectilinear version of the problem, which assumes that each of a
path’s constituent segments is parallel to a coordinate axis, is motivated by appli-
cations in areas such as VLSI wire layout, circuit design, plant and facility layout,
urban transportation, and robot motion. There are many efficient sequential algo-
rithms that compute various shortest rectilinear paths avoiding different classes of

obstacles,!1+12:13,14,15,17,18,19,21,24,25,27,28,29,38,39,40,41

and some parallel algorithms
as well.4

In this paper, we present efficient algorithms for the problems of matching red
and blue disjoint geometric obstacles in the plane and connecting the matched ob-
stacle pairs with mutually nonintersecting paths that have certain useful geometric
properties. The first problem we consider has the following input: n of the given
2n pairwise disjoint rectilinear rectangles are colored red (think of them as sources
of something, e.g., electric power in a VLSI circuit), and the other n are colored
blue (think of them as consumers of power). By rectilinear objects, we mean that
each edge of such an object is parallel to a coordinate axis. We are interested in
matching each red rectangle with one and only one blue rectangle, and vice versa.
Specifically, we would like to find such a matching and connect each matched pair
of red/blue rectangles with a planar rectilinear path in such a way that (i) each
path is monotone with respect to a coordinate axis, (ii) each path does not touch
any rectangle other than the matched pair that it is supposed to connect, (iii) no
two such paths intersect each other, and (iv) each path consists of O(n) segments.
Figure 1 shows an example of such a matching.

Several geometric algorithms have been developed for solving various problems
of finding obstacle-avoiding pairwise disjoint paths that connect certain geometric
objects,?6:32:36 hecause of their relevance to VLSI layout applications'®26:35 (e.g.,
VLSI single-layer routing). Lee et al.?® designed an O((k*!)nlogn) time algorithm
for computing k shortest non-crossing rectilinear paths in a plane region. Taka-
hashi, Suzuki, and Nishizeki®¢ studied the problem of finding shortest non-crossing
rectilinear paths in a plane region that is bounded by an outer box and an inner
box and that contains a set of disjoint rectilinear rectangle obstacles, giving an
O(nlogn) time algorithm for computing k& such paths whose endpoints are all on
the two bounding boxes (with k < n). Papadopoulou®? obtained an O(n + k) time
algorithm for computing k shortest non-crossing paths in a simple polygon whose



endpoints are all on the polygon boundary. However, these problems are different
from the one we study here since they often assume that a specification on which ob-
ject matches with which other object is already given (hence, these problems require
only to compute a set of non-crossing paths that realize the specified matching).

We develop an O(nlogn) time, O(n) space algorithm that produces a desired
matching for red/blue rectilinear rectangles. If an explicit printing of all the n paths
for such a matching is required, then our algorithm takes O(nlogn + A) time and
O(n) space, where X is the total size of the desired output.

We then extend these matching algorithms to a more general geometric setting
which consists of disjoint red/blue polygonal obstacles that are all monotone with
respect to a coordinate axis (say, the y-axis). The matching paths that we com-
pute for this more general setting have similar structures to those for rectilinear
rectangles, except that in this case their monotonicity has to be weaker: Each such
matching path can be partitioned into at most two subpaths, each of which is mono-
tone to the y-axis. Our matching algorithms for y-monotone polygonal obstacles
have the same complexity bounds as those for rectilinear rectangles.

We also prove that all the matching problems studied in this paper have an
Q(nlogn) lower bound in the algebraic computation tree model.® Our matching
algorithms are based on a numbering scheme for certain geometric objects and on
several useful geometric observations. This numbering scheme also finds applica-
tions to other problems.”

Our algorithms can also be viewed as proofs that such matchings always exist,
a fact that, to the best of our knowledge, was not previously established. We
should point out that without the requirement that all matching paths must satisfy
a monotonicity constraint, the existence of nonintersecting paths for any red/blue
disjoint polygonal obstacle matching is trivial to prove: For every matched pair of
geometric objects in turn, draw a direct rectilinear path P between them, ignoring
all previously drawn paths and obstacles; at each place where path P intersects
a previously drawn path or an obstacle, “deform” P so that P goes around that
previously drawn path or the obstacle.

Section 2 gives some preliminary definitions, Section 3 presents one of the in-
gredients needed by the matching algorithms for rectilinear rectangles, Section 4
describes the data structures that our matching algorithms will use, Section 5 gives
the algorithm for computing a desired matching for rectilinear rectangles, Section
6 extends this algorithm to also producing the n actual monotone paths that link
the matched rectangle pairs, Section 7 generalizes these algorithms to matching
y-monotone polygonal obstacles, Section 8 proves Q(nlogn) lower bounds for the
matching problems we consider, and Section 9 makes further remarks on several
consequences and possible extensions of this work.

2. Preliminaries

A geometric object in the plane is rectilinear if each of its constituent boundary
segments is parallel to either the z-axis or the y-axis. Without loss of generality
(WLOG), we assume that no two boundary edges of the input obstacles are collinear.



We use R = {Ry, R, ..., Ra,} to denote the set of 2n input rectilinear rectangles.

Uunless otherwise specified, all geometric objects in the rest of this paper (e.g.,
paths, rays, lines, polygons, obstacles, etc) are assumed to be rectilinear in the
plane.

A path is a contiguous sequence of line segments such that every two consecutive
segments in the sequence are connected at a common endpoint. The number of line
segments (e.g., edges) in a path P is called the size of P, denoted by |P|, and the
length of P is the sum of the distances of its edges in a certain metric. A path is
said to be monotone with respect to the z-axis (resp., y-axis) if its intersection with
every vertical (resp., horizontal) line is either empty or a contiguous portion of that
line. A path is said to be monotone if it is monotone to the z-axis or to the y-axis.
A rectilinear path is zy-monotone or convez if it is monotone to both the z-axis
and the y-axis. In general, an zy-monotone (rectilinear) path has the shape of a
staircase, and in fact we shall henceforth use the word “staircase” as a shorthand for
“zy-monotone path”. Staircases can be either increasing or decreasing, depending
on whether they go up or down as we move along them from left to right. A staircase
is unbounded if it starts and ends with a semi-infinite segment, i.e., a segment that
extends to infinity on one end. A staircase is said to be clear if it does not intersect
the interior of any input obstacle.

A polygon G is said to be monotone to the z-axis (resp., y-axis) if its intersection
with any vertical (resp., horizontal) line L is either empty or a contiguous segment
on L; the boundary of such a monotone polygon G can be partitioned into two
paths each of which is monotone to the z-axis (resp., y-axis). In fact, the notion
of monotonicity of a polygon or a path is in general with respect to an arbitrary
line.?* Note that it is possible to find out in linear time whether there is a line (in an
arbitrary direction) to which all polygons in a polygon set are monotone, by using
Preparata and Supowit’s monotonicity test algorithm.?*

A point p in the plane is specified by its z-coordinate z(p) and y-coordinate
y(p). A point p is strictly below (resp., to the left of) a point ¢ if z(p) = x(¢) and
y(p) < y(q) (resp., y(p) = y(¢) and z(p) < z(q)); we can equivalently say that ¢ is
strictly above (resp., to the right of) p. A rectangle r is below (resp., to the left of)
an unbounded staircase S if no point of r is strictly above (resp., to the right of) a
point of S; we can equivalently say that S is above (resp., to the right of) r.

Let Z be a set of points in the plane. We say that a point p € Z is north-east
dominated by another point ¢ € Z if p # q, z(p) < z(q), and y(p) < y(g). A point
p € 7 is a north-east mazximal element of Z if there is no other point ¢ € Z such that
p is north-east dominated by g. (See Ref. [33] for more discussions on the domination
relations and maximal elements of a point set.) We denote the set of all north-east
maximal elements of Z by Mang(Z) (see Figure 2). Suppose that the points
in Mary i (Z) are {p1,p2,...,p,}, ordered by their z-coordinates increasingly. We
define the north-east domination chain DC g (Z) of Z as follows: Shoot a leftwards
horizontal ray and a downwards vertical ray from every point p; € Marng(Z);
DC ng(Z) is obtained by going left-to-right, starting at the leftwards ray of pi, to
the downwards ray of p;, until meeting the intersection between the downwards ray



Figure 2: The north-east maximal elements (the unfilled circles) and domination
chain DC'ng(Z) of a point set Z.

of p; and the leftwards ray of p,, then continuing on the leftwards ray of po, ...,
and finally ending at the downwards ray of p, (see Figure 2). The sets of north-
west, south-east, and south-west maximal elements of Z, Maryw (Z), Marsg(Z), and
Marsw (Z), and their domination chains, DC'nw(Z), DCsg(Z), and DCsw(Z), are
defined in a similar way, respectively.

Observe that for any set X of rectilinear geometric objects, the maximal elements
of X of each of the four types are all at the vertices of the objects in X.

We need some concepts related to the rectilinear convex hull of rectilinear ge-
ometric objects in the plane. The reader is referred to Ref. [30] for a study of
rectilinear convex hulls of planar geometric objects. Recall that the rectilinear con-
vex hull of a set of rectilinear objects in the plane, if it exists, is the smallest-area
rectilinear zy-monotone (i.e., convex) polygon that contains all objects in the set.3°
However, it is possible that such a convex hull (i.e., a single polygon) does not exist
for certain collections of rectilinear geometric objects because the objects may be
contained in multiple pairwise disjoint smallest-area rectilinear convex polygons (in
this case, they form either an “increasing” sequence or a “decreasing” sequence of
such convex polygons that are pairwise separable by a vertical line and also by a hor-
izontal line). Note that although such smallest-area rectilinear convex polygons are
not connected with each other, as a collection they still satisfy the zy-monotonicity
condition: The intersection of any vertical (resp., horizontal) line L with all convex
polygons in the collection is either empty or a contiguous portion on L. See Figure
3(a) for an example.

We define a useful structure which can be viewed as a generalization of the
rectilinear convex hull. For a set X of rectilinear geometric objects in the plane, we
define the connected smallest-area convex enclosing region of X, denoted by CR(X)
(for convex region for short), as follows. CR(X) is a connected convex region that
contains X and has the smallest possible area. If the rectilinear convex hull CH(X)
of X exists, then CR(X) = CH(X). Otherwise, let (P;, P», ..., Py) be the (say)
left-to-right increasing sequence of pairwise disjoint smallest-area rectilinear convex
polygons that together contain all objects of X; we form CR(X) by connecting the
convex polygons Py, P, ..., Py, by two increasing staircase chains, which we define
carefully in the next paragraph.

Counsider the two domination chains DCyw (X) and DCsg(X) of X. (Recall



I

DCy(X) DGulX)
box
AN
u B \Pz R \Pz
" F—DCe(X) — —DC¥(X)
(a (b)

Figure 3: (a) The two chains DCnyw(X) and DCsg(X), and (b) the connected
smallest-area convex enclosing region CRy p(X) of an object set X.

that (Py, Py, ..., Py,) is assumed to be a left-to-right increasing sequence; for the
case when the sequence (P, Py, ..., P,) is decreasing, we will instead use the
other two domination chains DCng(X) and DCsw (X) of X.) First, cut away from
DCnw(X) and DCsg(X) each of their starting and ending semi-infinite segments
at a vertex of X. Note that the two modified domination chains of X thus obtained
intersect each other at exactly 2m — 2 points (see Figure 3(a)). Consider the re-
gion Reg(X) that is enclosed together by the following four staircase chains: those
two modified domination chains of X, DCsw (P;), and DCng(P,,). Observe that
Reg(X) is a connected convex region containing X, and every two polygons P; and
Pii1,i=1,2, ..., m — 1, are connected by a box bozx; that is enclosed by two
subchains of DCyw (X) and DCgg(X) and their intersections (see Figure 3(a) for
examples). However, the area of Reg(X), area(Reg(X)), is not as small as possible
since area(box;) > 0 and box; N X = ¢. To minimize the area of Reg(X) while
maintaining its connectivity, convexity, and containment of X, we remove every boz;
and connect P; and P;41 by an increasing staircase chain which goes from the lower-
left vertex of box; to the upper-right vertex of boz;. (One may view that the two
modified domination chains DC nw (X) and DCgg(X) of X are further modified by
shrinking every bozx; into such a staircase chain, on which the resulted DC nw (X)
and DCgg(X) overlap with each other.) There are of course infinitely many such
staircase chains for each box;, but we are often particularly interested in two such
staircase chains: one along the left and upper edges of bozx; (denoted by UP(boz;)),
and the other along the lower and right edges of boz; (denoted by LO(box;)). More
precisely, we often choose to further modify DC yw (X) and DCsg(X) by replacing
all boz;’s by UP(box;)’s (or all by LO(box;)’s), and denote the resulted chains by
DOYY, (X)) and DOYE(X) (or DOKS, (X) and DOLD(X)). Note that DOYY, (X)
(resp., DCYF (X)) is the “leftmost” staircase chain that bounds X from above (resp.,
below) in the sense that no staircase chain that bounds X from above (resp., below)
can contain a point that is strictly to the left of DCSY, (X) (resp., DO%L (X)).

In general, we let CR(X) be the connected convex region that contains X and



is enclosed together by four staircase chains; these four staircase chains include
the two domination chains DCnw(X) and DCsg(X) of X further modified by
shrinking every boz; into a certain staircase chain, and include DCgy (Py) and
DC ng(Py). Such a region CR(X) is clearly of the smallest possible area (due to
the convexity of the two modified chains DC'nw (X) and DCgg(X)). In particular,
the region enclosed by the following four staircase chains, DOY, (X) and DCY% 4 (X)
(resp., DCYSy (X) and DCED(X)), as well as DCsw (P,) and DOy (Py,), is such a
connected convex enclosing region of X, denoted by CRyp(X) (resp., CRo(X)).
See Figure 3(b) for an example.

Observe that as for any rectilinear convex polygon, the boundary of every region
CR(X) can be partitioned into at most four staircase chains (two increasing chains
and two decreasing chains). Further, every such staircase chain consists of O(K)
segments, where K is the number of vertices of the objects in X.

3. Partitioning Rectilinear Rectangles with a Staircase

Given aset R = {Ry, Ra, ..., Ron} of 2n pairwise disjoint rectilinear rectangles
in the plane and an integer k£ with 1 < k& < 2n, we present in this section an
algorithm for partitioning the set R into two subsets of respective sizes k and 2n—k,
such that the two resulted subsets are separated by an increasing staircase. This
algorithm runs in O(nlogn) time, or in O(min{k,2n — k}) time if R is given in a
suitably preprocessed form. The algorithm can also be implemented optimally in
parallel (see Section 9 on this). A key idea of this partition algorithm is a useful
numbering scheme for certain geometric objects, which also finds applications to
other problems.”

Not only is the result of this section needed as a key ingredient to the algorithms
for matching rectilinear rectangles given later, but it also implies simpler algorithms
for a number of unrelated divide-and-conquer sequential and parallel algorithms for
various rectilinear shortest path problems among disjoint rectangles, in which such
a staircase is needed for bipartitioning the problem before recursively solving the

two subproblems defined by the staircase.*>11:29

3.1. The Preprocessing

We begin by describing our O(nlogn) time preprocessing. The first step of the
preprocessing algorithm computes a horizontal trapezoidal decomposition of R,
in O(nlogn) time. Such a horizontal decomposition consists of extending leftwards
all horizontal edges of the rectangles in R, stopping each extension whenever it hits
another rectangular obstacle of R. This gives, among other things, the following
Parent information (actually, it gives more than what follows, but we only need
what follows): For each rectangle R; of R, Parent(i) is the first rectangle R; of
R encountered by shooting a leftwards-moving horizontal ray from the bottom-left
corner of R; (see Figure 4). If no such rectangle R; of R exists for R;, then the
ray goes leftwards to infinity, a fact that we denote by saying that Parent(i) is
empty. Note that the rectangles in R and their Parent information together de-



R Me. ...
S me D<.:

3 Bl
L Ry
| Re

Figure 4: Illustrating the tree T' of the rectangles in R.

fine a forest of these rectangles. The trapezoidal decomposition algorithm?? also
produces a sorted list of each subset of rectangles having the same Parent (includ-
ing the “empty” parent). Every rectangle R; maintains an adjacency list of all
the rectangles whose Parent is R;, sorted by the decreasing y-coordinates of their
leftwards-moving horizontal rays. For example, the sorted adjacency list of R4 in
Figure 4 is {R5, Rg }.

The second step of the preprocessing algorithm is now given. To simplify the
presentation, we assume that we have added to the given collection R of input
rectangles an extra “dummy” rectangle Ry which is to the left of all other rectangles
in R such that the horizontal projection of Ry on the y-axis properly contains the
horizontal projections of all other rectangles of R (see Figure 4). This amounts to
replacing every empty Parent(i) by Ry, effectively making Ry the root of a tree
each of whose nodes corresponds to exactly one rectangle in R. We use T to denote
this tree. Figure 4 shows an example of such a tree T'. The preprocessing algorithm
then computes the preorder numbers of the nodes of T'in O(n) time,' and re-labels
the rectangles of R (which are the nodes of T') so that rectangle R; now denotes
the one whose preorder number in 7' is i. The preorder numbers of T start from
0. Hence the dummy rectangle, the root, retains the name Ry. This completes the
description of the preprocessing.

This preprocessing algorithm clearly takes altogether O(nlogn) time and O(n)
space. In the rest of this section, we assume that the rectangles of R have been
re-labeled as explained above.

3.2. The Staircase Separator Theorem

For every point p in the plane that is to the right of the root rectangle Ry and is
not in the interior of any obstacle, we define a path Q(p) from p to Ry, as follows:

Q(p) starts at p and follows the leftwards-moving horizontal ray r(p)
from p; if the ray r(p) first hits a rectangle R; # Ro, then Q(p) goes
downwards along the boundary of R; to its bottom-right vertex and then
leftwards to its bottom-left vertex, from which Q(p) continues as it did
at p, until it reaches Ry.

Note that for every such point p, the path Q(p) is uniquely defined, and in fact is



Figure 5: An example of the paths Q(p) and Q(q).

always an increasing obstacle-avoiding staircase chain. Also, note that every vertical
segment of Q)(p) is completely on the right edge of a rectangle and the lower vertex
of such a vertical segment is at the bottom-right vertex of that rectangle. Hence, it
is not possible for any obstacle-avoiding path to cross Q(p) at an interior point of
a vertical segment of Q)(p). Figure 5 gives an example of such paths.

The following lemmas are useful to proving the theorem on staircase separators.
Lemma 1 Let p and q be two points in the plane such that they both are to the
right of Ry, and x(p) < x(q). If p is below (resp., above) some point of Q(q), then
no point of Q(p) is strictly above (resp., below) any point of Q(q) (Figure 5).
Proof. Because z(p) < z(q) and because both @Q(p) and Q(g) are planar paths
that are increasing obstacle-avoiding staircases, assuming that p is below @(¢g) and a
point of Q(p) is strictly above Q(q) implies that Q(p) and Q(q) must cross each other
at a certain place. Further, such a crossing can occur only when a horizontal segment
sy, (say, from Q(p)) and a vertical segment s, (say, from @Q(q)) cross each other. But
if the horizontal segment sj, crosses the vertical segment s,, then because s, cannot
intersect the interior of the rectangle whose right edge contains s,, Q(g) must join
into @(p) starting from the intersection of s and s,. Hence the intersection of s,
and s, would not be a real crossing between Q(p) and Q(q), a contradiction. The
case in which p is above @(g) is proved similarly. O
Lemma 2 Let p and q be two points in the plane such that they both are to the
right of Ro and that x(p) < x(q). Let u (resp., v) be the bottom-left vertex of a

rectangle R, (resp., Ry), such that u (resp., v) is on Q(p) (resp., Q(q)) but not on
Q(q) (resp., Q(p)). If p is strictly below (resp., above) some point of Q(q), then
the preorder number of R, in the tree T of rectangles is larger (resp., smaller) than
that of Ry, i.e., a > b (resp., a < b).
Proof. This follows from Lemma 1 and from the definition of the tree 7. An
example illustrating the lemma is given in Figure 5. O
Recall that for any set R’ of disjoint rectilinear rectangles in the plane, we use
CR(R') to denote a connected smallest-area convex region that contains R', and
CR(R') = CH(R') whenever the convex hull CH (R') of R’ exists. Further, when R’
is contained by (say) an increasing sequence (P;, Ps, ..., P,,) of multiple pairwise
disjoint smallest-area rectilinear convex polygons, CRyp(R') (resp., CRpo(R')) is



the convex region defined by the four staircase chains DOR, (R'), DCSE (R') (resp.,
DOXSy ('), DCL(RY), DCsw (Py), and DCxp(P).

We are now ready to present the staircase separator theorem.
Theorem 1 (Staircase Separator Theorem) Given a preprocessed set R of 2n
disjoint rectilinear rectangles, the subsets {R1, Ra, ..., Ry} and {Rg+1, Riy2, - .-,
Ry}, for any integer k with 1 < k < 2n, form a partition of the set R that has
the desired property, that is, there exists a rectangle-avoiding increasing staircase of
size O(n) that separates these two subsets. Furthermore, such a staircase separator
can be computed in O(min{k,2n — k}) time.
Proof. Let R(a,b) denote the subset {R,, Rot1, ..., Ry} of R. WLOG, we assume
that any set R(a,b) which we consider in this proof is contained by an increasing
sequence of one or more pairwise disjoint smallest-area rectilinear convex polygons
(the case involving decreasing sequences of such convex polygons is symmetric).

For the existence of such a staircase separator, we first show that for any two
integers 7 and j with 1 < i < j < n, the following holds: (1) CRyp(R(1,i)) does
not intersect R;, and (2) CRro(R(j,2n)) does not intersect R;. We only give the
proof for (1), that for (2) being similar. We prove (1) by contradiction: Suppose to
the contrary that for some j > i, R; intersects CRyp(R(1,i)). We consider the two
possible cases below.

1. CRyp(R(1,i)) = CH(R(1,4)). This case consists of two subcases. That is,
one of the following two possibilities must hold:

(l.a) CH(R(1,i)) contains some point p on the bottom edge of R; (it is
possible that CH(R(1,i)) contains R; completely). Note that there can
be no rectangles R and R; of R such that s <14 < [ and the leftwards-
moving horizontal ray from the bottom-left vertex of R, first hits R;
(otherwise, this would make R; the parent of R, contradicting the fact
that R; has a larger preorder number than Ry in the tree T'). Since the
point p of R; is inside CH(R(1,4)), there must be a rectangle R, such
that s < i < 7 and the bottom edge of R, contains a point ¢ that satisfies
both z(p) < x(q) and y(p) > y(q) (see Figure 6(a)). But then the path
Q(p) (resp., Q(g)) contains the bottom-left vertex of R; (resp., Rs) and
by Lemma 2, the preorder number of R; in T" is smaller than that of R,,
a contradiction.

(1.b) CH(R(1,i)) contains some point of R; but the bottom edge of R; is
completely outside CH (R(1,7)). Then R; must intersect the lower hull
of CH(R(1,i)) (see Figure 6(b)). Again there can be no rectangles R,
and R; of R such that s < i < [ and the leftwards-moving horizontal
ray from the bottom-left vertex of R, first hits R;. But then, there
must be a point g on the bottom edge of a certain rectangle Ry of R
such that s < ¢ < j and for some point p on the bottom edge of R;,
z(p) < z(q) and y(p) > y(q) both hold (Figure 6(b)). Again by Lemma
2, this implies that the preorder number of R; in T' is smaller than that
of R,, a contradiction.



CH(R(Li))} CHR(Li)!
LR o
- e = :
- W R
f----- E :_____' q "';D': Rs:_____'
(@ b

Figure 6: Illustrating the proof of the staircase separator theorem.

2. CRyp(R(1,i)) # CH(R(1,i)). This case also consists of several subcases.
Let (Py, P2, ..., Pp) be the increasing sequence of m > 1 pairwise disjoint
smallest-area rectilinear convex polygons that together contain R(1,4). If R;
intersects any convex polygon P in the sequence, then the proof is similar
to Subcases (1.a) and (1.b), a contradiction. Suppose that R; intersects a
vertical (resp., horizontal) segment e on the boundary of CRyp(R(1,i)) but
e is not on the boundary of any polygon Pp. Then the situation is similar to
the one in Figure 6(a) (resp., Figure 6(b)), and it implies that the preorder
number of R; in T is smaller than that of a certain rectangle R, of R with

s <1 < j, a contradiction.

We can now let such a desired staircase separator S for the subsets R(1, k) and
R(k + 1,2n) consist of (say) the portion of the boundary of CRyp(R(1,k)) from
its rightmost edge clockwise to its lowest edge (i.e., DC%5 (R(1,k))), augmented
by two semi-infinite segments, one extended leftwards horizontally from its lowest
edge and the other extended upwards vertically from its rightmost edge. By using
the same arguments as above, we can show that for every j with k < j < n, the
staircase separator S is above or to the left of R;. Hence S so constructed is an
obstacle-avoiding increasing staircase and consists of O(k) segments.

Perhaps we should point out that in general, the staircase separator S that we
obtained above is not equal to any path @(p) or its relatives. Although they are
both staircase chains, it is usually not possible to obtain S from a single path Q(p)
or a variation of Q(p) (see Figure 2(b) for an example).

WLOG, assume k = min{k,2n — k}. We now show how to compute such a
staircase separator S in O(k) time. In fact, we will compute CRy p(R(1,k)), which
is a little more than the above staircase S, in O(k) time. Note that the boundary
of CRyp(R(1,k)) can be obtained from four staircase paths, each of which can be
easily constructed from an ordered sequence of the maximal elements of one of the
four types (as defined in Section 2) for the 4k rectangle vertices of R(1,k). WLOG,
we only show the procedure for computing one such sequence of maximal elements.

Our procedure is based on a simple divide-and-conquer strategy. First, partition
the set R(1,k) into two subsets R(1,k/2) and R(k/2,k) (WLOG, assume k is an
even integer greater than 1). Then, recursively compute the sequence of maximal
elements for each such subset, represented by a balanced search tree, such as a



2-3 tree.! Finally, compute the sequence of maximal elements for the vertices of
R(1,k) from the two sequences for the two subsets. By the above discussion, these
two sequences are respectively contiguous portions of the boundaries of two disjoint
connected convex enclosing regions. Hence by performing a constant number of
standard 2-3 tree operations, the sequence of maximal elements for R(1,k) can
be obtained, also maintained by a 2-3 tree. The recurrence relation for the time
complexity of this divide-and-conquer procedure is

T(k) =2T(k/2)+ O(logk), for k > 1

T(1) = 0(1)
Thus it follows that T'(k) = O(k). After the above divide-and-conquer procedure
terminates, it is easy to obtain the ordered sequence of maximal elements for R(1, k)
from its 2-3 tree again in O(k) time. The space used for computing CRy p(R(1, k))
is clearly O(k).

This completes the proof of the staircase separator theorem. O

4. Data Structures

In this section, we describe the data structures that the algorithm in the next
section will use. Since that algorithm from time to time will delete some rectangles
from the collection R = {R;, Ra, ..., Ron}, we use Ly to denote the current list
of rectangles sorted by their preorder numbers in 7. The list L, is initially {R,
Ry, ..., Ro,}, but will change as the algorithm proceeds. However, the following
invariants must hold by L,:

1. The list L4 must contain as many red as blue rectangles.

2. There is a connected smallest-area convex enclosing region CR(L) that does
not intersect any of the rectangles in R — L, . This invariant ensures that
we can solve the problem on L, without having to worry about interfering
with the solution for R — L, so long as our solution paths for L (resp.,
R — L) do not wander outside (resp., inside) of CR(Ly). Note that if the
algorithm decides to match a pair of rectangles R' and R" in Ly and thus
delete R’ and R" from L., then this invariant requires that the resulted new
list Ly —{R', R"} should also satisfy the invariant, i.e., that CR(L; —{R', R"})
must intersect neither R’ nor R".

Remark: To avoid cluttering the exposition of our algorithm with too many
tedious details, in the rest of the paper we assume that CR(L') = CH(L') for any
rectangle list L' that satisfies both of the above invariants (thus we henceforth use
only CH(L') instead of CR(L') in our discussions). The algorithm for the general
situation is similar with only minor differences.

We define another list L_ which contains exactly the same set of rectangles as
L, but is ordered differently from L (as explained next). L_ initially contains all
the input rectangles of R, but they are sorted according to their preorder numbers
in a tree 7" rather than T, where T" is defined just like T except for the following
differences:



Figure 7: Illustrating the definition of the tree T".

e Instead of the “leftwards-shooting horizontal ray emanating from the bottom-
left corner of each rectangle” that we used in the definition of 7', in T’ we
use the “downwards-shooting vertical ray emanating from the bottom-right
corner of each rectangle” (see Figure 7).

e Instead of sorting the adjacency lists by the decreasing y-coordinates of the
horizontal shooting rays, in T' the adjacency lists are sorted by the increasing
z-coordinates of the vertical shooting rays.

e The “dummy” rectangle corresponding to the root of 7" is below all the input
rectangles (whereas for T' it was to their left).

Figure 7 illustrates the tree 7' in which the rectangles are named B;’s (for boxes)
instead of R;’s.

Note that the L_ list is not explicitly maintained by our algorithm. But, the
order in which the elements of L, would appear in this hypothetical list L_ is
conceptually important, and will be exploited by our algorithm. We henceforth use
the shorthand “T” preorder” to refer to this order.

Because L (hence L_) satisfies Invariant 2 above, the proofs of the following
lemmas are very similar to the proof of Theorem 1 and hence are omitted. (Note
how the proof falls apart without Invariant 2, specifically at the places where we
deduce that R; must be the parent of R, — this need not hold if Invariant 2 is
violated, and indeed we cannot even claim that R, is an ancestor of Ry.)

Lemma 3 Let P, be a prefiz of the list Ly, and Sy be the remaining suffiz of L,
i.e., Sy = Ly — Py. Then the increasing staircase defined by the South-Fast por-
tion DCsg(CH (Py)) of the boundary of CH(Py.) is (geometrically) above all of the
rectangles in S4. FEquivalently, the increasing staircase defined by the North- West
portion DC nw (CH(S4)) of the boundary of CH(SL) is below all of the rectangles
in Py.
Figure 8 illustrates Lemma 3.

Lemma 4 Let P_ be a prefiz of the list L_, and S_ be the remaining suffiz of
L_, de, S = L_ — P_. Then the decreasing staircase defined by the North-
East portion DC g (CH(P-)) of the boundary of CH(P_) is (geometrically) below



Figure 8: An example for Lemma 3, with Py = {R;, Ry, ..., Rs} and Sy =
{R6:R77R8}-

DCue(CH(R))

] Bg

_DB7

Bs

B —- B,

1 I R P =

By D: |

— . DCsw(CH(S)
5
B4
Figure 9: An example for Lemma 4, with P_ = {By, By, ..., Bs} and S_ =

{B6:B77B8}-

all of the rectangles in S_. FEquivalently, the decreasing staircase defined by the
South-West portion DC sw (CH(S-)) of the boundary of CH(S_) is above all of the
rectangles in P_.

Figure 9 illustrates Lemma 4.

Our algorithm in the next section always operates on the kind of rectangle list
L, that satisfies both Invariants 1 and 2. It achieves this by handling two cases: (i)
Partition the list L, into two consecutive sublists L' and L" that also satisfy both
Invariants 1 and 2, and recurse on L' and L" respectively; (ii) identify a red/blue
pair of rectangles R, and Rj from L, such that L, — {R,, Ry} still satisfies both
Invariants 1 and 2, match R, and Ry, and recurse on L, — {R,, Ry}. Observe that
it is possible that Case (i) does not hold for some rectangle lists that satisfy both
Invariants 1 and 2 (e.g., when the first n rectangles of L, are all red and the second
n rectangles are all blue). Hence we also need to match red/blue rectangle pair in
Ly (Case (ii)). By Lemma 3, it would be ideal to match the first and last rectangles
R, and Ry in the list L (if they are of different colors), by using a monotone path
along the boundary of CH (L4 — {R,, Ry}). But, such a monotone path between
R, and R, does not always exist (see Figure 10(a)). To resolve this difficulty, we
pick the first rectangle R, from the list L_, and match R. with either R, or R} (if
their colors are right). Note that by Lemmas 3 and 4, a monotone path along the
boundary of (say) CH(Ly —{R,, R.}) connecting the matched pair (R,, R.) always



(a) (b)

Figure 10: (a) No monotone path exists between R; and Rg along CH (R—{ Ry, Rs});
(b) there are monotone paths between By = R; and Bg = Ry along CH(R — {R;,
R5}), and between By = R5 and Bs = Rg along CH(R — {R5, Rs}).

exists (see Figure 10(b)).

By Lemma 3, one may also choose to match the first (or last) two rectangles in
the list Ly if they happen to have different colors. Although this strategy may pro-
duce a somewhat more practically desirable solution, it nevertheless is of a heuristic
nature (see more discussion on this in Section 9).

When the algorithm to be described in the next section is solving a problem
on the rectangles in L, it is given as input not just the list L, but rather a tree
structure S(Ly) built “on top” of L,. Specifically, S(L,) is a 2-3 tree! each of
whose leaves, from left to right, contains exactly one rectangle in Ly, in the same
order as in L, ; these leaves are doubly linked together. Each internal node v of
S(L4+) contains a label equal to the smallest 7' preorder number (i.e., according
to the L_ ordering) of the rectangles stored in the subtree of S(L;) rooted at wv.
In addition, there are cross-links between every internal node v of S(L4) and the
leaf in the subtree of S(Ly) rooted at v corresponding to the label of v. We will
need to perform only the deletion and split operations on S(L.. ), both of which can
be done in logarithmic time using standard techniques.! The deletions take place
after we have matched a pair of rectangles  we then delete them from S(L;) and
recurse on the resulted S(L4). The split operations take place when we process L
by solving recursively two pieces of L, : A prefix L' of L and the remaining suffix
L" =Ly — L' (of course, L' and L" must satisty the required invariants mentioned
earlier). Splitting S(Ly) allows us to create S(L') and S(L") in logarithmic time.

5. The Matching Algorithm for Rectangles

The goal of this procedure is to compute a desired matching for the rectangles
in R without worrying about describing the actual paths that join the matched
pairs of red/blue rectangles (the next section explains how this procedure can be
modified to also produce the actual paths connecting the matched pairs).

The procedure is recursive, and takes as input the 2-3 tree data structure S(L)



described in the previous section.

Procedure MATCH(L, )

Input: S(L;), where Ly = (R}, RS, ..., R.,).

Output: A matching of the red and blue rectangles in L.

1. If m = 2, then the only two rectangles in L surely have different colors (by
Invariant 1). Match these two rectangles and return. If m > 2, then proceed
to the next step.

Comment: The path that will join the pair just matched will be along the
boundary of CH(L.).

2. Find the first leaf (R}) and the last leaf (R],) of S(L4), in O(logm) time. If
R} and R!, have different colors, then proceed to the next step. Otherwise,
R} and R}, have the same color (say, it is red). For each integer s =1, 2, ...,
m, let f(s) be the number of red elements minus the number of blue elements
in the prefix subset { R}, R}, ..., R.} of L. Observe that |f(s+1)— f(s)] =1
and that in this case f(1) = 1 whereas f(m — 1) = —1. This implies, by a
simple “continuity” argument, that there is some integer £, 1 < £ < m — 1,
for which f(¢) = 0. (A somewhat similar continuity argument was used in
the context of matching points.?) Next, we will search for such an £ in time
O(min{¢, m — £}) rather than in time O(m), as follows. We linearly search for
it along the leaf sequence of S(Ly), by two interleaved searches: one starting
from the beginning of L, from R up, and the other starting from the end of
Ly, from R, ; down, where we alternate between the two searches until one
of them first hits a desired value £ which we know must exist. Hence, we find
an £ value for which f(£) =0 in O(min{¢,m — £}) time, rather than in O(m)
time. This defines two subproblems L' and L": L' = {R}, R}, ..., R;} and
L" ={R} ,, Ry y, ---, R, }. In O(logm) time, we split S(L) into S(L')
and S(L"). Then we recursively call MATCH(L') and MATCH(L").

Analysis: This step has a cumulative total cost of O(nlogn) time rather than
O(n?) even though the two subproblems so generated and solved recursively
can be very “unbalanced”, e.g., |L'| could be O(1). The analysis is as fol-
lows: We spend only O(logm + min{¢, m — £}) time in generating the two
subproblems; we can “charge” the log m term of this cost to the recursive call
itself (i.e., to the node for that recursive call in the recursion tree), and the
min{/,m — £} term to the rectangles of the smaller subproblem (O(1) time
per rectangle). A rectangle that is so “charged” ends up in a subproblem of
no more than half the size of its previous subproblem, and hence cannot be
charged more than logn times, for a total (over all the 2n rectangles of R)
of O(nlogn). The total number of nodes in the recursion tree is O(n), and
hence the overall cost of the charges to the nodes of that recursion tree (logm
per node) is O(nlogm) = O(nlogn).

3. R} and R/, have different colors. Obtain, from the label at the root of S(L),
the smallest rectangle in Ly according to the L_ ordering. Let R" be this



rectangle. Rectangle R"” must have the same color as one of {R}, R;,}, so
suppose WLOG that R" has the same color as R}. Then we (i) match R}, and
R", (ii) delete R;, and R" from S(L.) in O(logm) time, and (iii) recursively
solve the problem on the resulted L.

Comment: The path that will join the pair just matched will be along the
boundary of CH(Ly — {R],,R"}). The justification for the monotonicity of
this path follows from Lemmas 3 and 4, which ensure that the path from R},
to R" along the boundary of CH(Ly — {R.,,R"}) consists of at most two
subpaths: An increasing staircase followed by a decreasing staircase. This
step also has a cumulative total cost of O(nlogn) time, because each of the
n matched pairs is charged a cost of O(logn) time by the step.

As analyzed above, algorithm MATCH correctly computes n matched pairs of
red/blue rectangles of R in O(nlogn) time and O(n) space.

6. Reporting the Actual Paths

This section shows how to output the actual monotone paths between all the n
matched red/blue rectangle pairs in O(nlogn+ ) time, where A is the total number
of segments that make up these n paths.

Recall the comments we made after a rectangle pair was matched by the algo-
rithm of the previous section (specifically, following Steps 1 and 3). These comments
described the desired path between the pair just matched in terms of a rectilinear
convex hull CH (v) of a subproblem associated with a particular place (i.e., a node)
v in the recursion tree of algorithm MATCH at which this subproblem occurred.
We postponed the actual computation of these CH (v) convex hulls, because once
we have the overall structure of the recursion tree, we can traverse it and compute
these CH (v) hulls bottom up, with insertion operations only (since the subproblem
of a child node in the recursion tree is that of its parent node minus some rect-
angles). Thus, this enables us to use the fact that maintaining rectilinear convex
hulls, in the face of insertions only, is possible in logarithmic time per insertion.3!

Hence, the idea is to run the matching algorithm of Section 5 and make sure that,
after that algorithm has executed, it leaves behind the skeleton of its recursion tree,
which we call RecTree, together with certain information describing how a path
between a matched rectangle pair is related to CH (v) (i.e., the description in the
“comments” of algorithm MATCH). This description information uses O(1) space
per matched pair. This skeleton just gives the overall structure of RecT'ree. It does
not store directly the rectangles of the subproblem associated with each node v of
RecTree (that would be too expensive in terms of the space complexity), but rather
how the rectangles of v are related to those of v’s children:

1. If v has only one child in RecT'ree, then its associated rectangles are those of
its only child plus two rectangles that are matched by algorithm MATCH at
v: It is these two rectangles that are explicitly stored at v in RecTree.

2. If v has two children in RecTree, then its associated rectangles are the union
of the rectangles of both its children.



Figure 11: A path with two y-monotone subpaths among rectilinear zy-monotone
obstacles.

In either case, we store O(1) information at each node v, so that RecTree uses
altogether O(n) space. The problem of computing the actual monotone path (if
any) associated with each node v in RecT'ree clearly reduces to computing CH (v)
in turn and using it to print that path. The computation of the CH (v)’s associated
with all the nodes v of RecT'ree is done by a simple traversal of RecT'ree during
which the CH (v)’s are computed according to the postorder numbers' of the nodes v
in RecTree. Of course, at a node v of RecT'ree that has two children (say, u and w),
we do not create CH (v) by individually inserting the vertices of CH (u) into CH (w),
but rather we obtain CH (v) by “merging” CH (u) and CH (w) in logarithmic time.3!
After CH (v) is computed, the actual path between the matched rectangle pair of
node v is computed by walking along CH (v), in time proportional to the size of the
path plus a logarithmic additive term. We assume that if two such matching paths
share some common portions on certain convex hulls so computed, then the two
paths are apart by at least a positive distance that can be made arbitrarily small.
The overall time of this algorithm is therefore O(nlogn) plus the time needed to
print all the output paths, i.e., O()).

7. Extensions to Monotone Polygonal Obstacles

In this section, we extend our techniques for matching red/blue rectilinear rect-
angle obstacles to matching red/blue polygonal obstacles in the plane that are all
monotone with respect to a coordinate axis (say, the y-axis). Let W be a set of r
red and r blue disjoint polygonal obstacles in the plane, with a total of n vertices.
We assume that all the polygonal obstacles in W are monotone to the y-axis, and
call them y-monotone polygons. We show that it is possible to match all the red and
blue polygons in W, by connecting the r matched red/blue polygon pairs with r mu-
tually disjoint paths. The properties of the matching paths are similar to those for
rectilinear rectangles, except for the monotonicity: In this case, a path can be used
for the matching if it can be partitioned into at most two subpaths, each of which
is monotone to the y-axis. Our algorithms for computing such a matching have the
same complexity bounds as the matching algorithms for rectilinear rectangles in the
previous sections.

One consequence of considering y-monotone polygonal obstacles (whose struc-
tures are less nice than those of rectilinear rectangles) is that we must use a weaker



3y

(a) (

Figure 12: There is no staircase separator for rectilinear and non-rectilinear convex
obstacles.

monotonicity constraint on the matching paths. This is because even with a geo-
metric setting consisting of disjoint convez polygonal obstacles in the plane, there is
in general no obstacle-avoiding path between two arbitrary points that is monotone
to the z-axis or to the y-axis. But in such a setting, a path consisting of at most
two y-monotone subpaths always exists between any two points (see Figure 11 for
an example). Another consequence of considering y-monotone polygonal obstacles
is that there is in general no staircase separator for partitioning such geometric
object sets. In the two examples of Figure 12, there exists no staircase (even with
respect to any two orthogonal lines) that partitions each convez obstacle set into
two subsets, such that every subset contains more than one obstacle. However, as
we will show, there exist y-monotone paths that partition y-monotone polygons.
Note that a key difference between staircases and y-monotone paths is that stair-
cases are monotone to both the z-axis and y-axis, while y-monotone paths need not
be monotone to the x-axis.

It turns out that the matching algorithms based on the geometric structures of
y-monotone polygonal obstacles are similar to and in fact simpler than the matching
algorithms for rectilinear rectangles. Also, although we have chosen in this section
to focus our discussion on rectilinear geometric objects (obstacles, paths, etc), it
is actually not difficult to modify our algorithms so that they will work with non-
rectilinear objects under the y-monotonicity constraint.

Let the obstacle set W = {Wy, W1y, ..., Wa,}, where Wy is the extra “dummy”
rectangle Rg to the left of all the other obstacles in W (as introduced in Section 3).
We first preprocess W as in Section 3. From the left vertex of the lowest edge of
every W;, shoot a leftwards-moving horizontal ray r;; let Parent(i) be W;, where W;
is the first obstacle in W hit by the ray r;. Maintain for every W; an adjacency list
of all the obstacles in W whose Parent is W, sorted by the decreasing y-coordinates
of their leftwards-moving horizontal rays. This gives a tree structure whose nodes
are the obstacles in W (as the tree T in Section 3) and which we again denote by 7.
Label the nodes of T by their preorder numbers in 7', and re-label the obstacles in
W by their corresponding preorder numbers in 7'. This preprocessing can be done
by a horizontal trapezoidal decomposition®® of W and a preorder traversal of T',! in
altogether O(nlogn) time and O(n) space. WLOG, let i be the label of W; in the



Figure 13: An example of the y-monotone hull of a set of obstacles.

preprocessed form. In addition, we also construct, as part of the preprocessing, the
planar subdivision®? that is defined by the horizontal trapezoidal decomposition of
W. The construction of this planar subdivision also takes O(nlogn) time and O(n)
space.

For any consecutive subset W' = {W;, W1, ..., W;} of W, where i > 0, we
define the y-monotone hull of W', denoted by CH,(W'), to be the region with
the smallest area that contains all the obstacles in W' and that is y-monotone
(see Figure 13 for an example). Note that the region CH,(WW') so defined may be
disconnected. If this is the case, we assume that we link the connected components
of CH,(W') together with some paths of zero width, so that CH,(WW') becomes
connected and is still y-monotone.

Note that the boundary of every y-monotone polygon can be easily partitioned
into two y-monotone paths, which we call the left boundary and right boundary of
such a polygon. For every point p in the plane that is to the right of the root
obstacle Wy of T and is not in the interior of any obstacle, we define the path
Q(p) from p to Wy as in Section 3, with one small exception: When @)(p) follows a
leftwards-moving horizontal ray and hits an obstacle W; # Wy, Q(p) goes to the left
vertex of the lowest edge of W; along a downwards y-monotone path on the right
boundary of W;. Q(p) so defined is clearly a unique y-monotone path, although it
need not be z-monotone simultaneously.

The following observations are analogous to those of Lemmas 1 and 2 and The-
orem 1. The differences in these observations and their proof arguments stem from
the structural differences between the convex hulls of rectilinear rectangles and the
y-monotone hulls of y-monotone polygons in our matching problems.

Lemma 5 For an obstacle W; in W — {Wy}, let p and g be two points such that p
is on the left boundary of W; and q is on the right boundary of W;. Then no point
of Q(p) is strictly below any point of Q(q).

Proof. A crucial fact to the proof is that both Q(p) and )(g) are planar y-monotone
paths. The proof argument is similar to that of Lemma 1. O
Lemma 6 Let p and q be two points in the plane such that p is on the left boundary
of an obstacle W; and q is on the right boundary of W;, with i > 0. Let u (resp.,
v) be the left vertex of the lowest edge of an obstacle W, (resp., W), such that u



(resp., v) is on Q(p) (resp., Q(q)) but not on Q(q) (resp., Q(p)). Then the preorder
number of W, in the tree T of obstacles is smaller than that of Wy, i.e., a < b.
Proof. This follows from Lemma 5 and from the definition of the tree 7. a
Theorem 2 Given a preprocessed set W of 2r disjoint y-monotone polygonal ob-
stacles with n vertices in total, the subsets {Wq, Wa, ..., Wi} and {Wiy1, Wita,
.oy War}, for any integer k with 1 < k < 2r, form a partition of the set W that
has the desired property, that is, there exists an obstacle-avoiding y-monotone path
of size O(n) that separates these two subsets. Furthermore, such a y-monotone path
can be computed in O(n) time.

Proof. Let W (a,b) denote the subset {W,, Wyy1, ..., W, } of W. For the existence
of such a y-monotone path, we first show that for any i < j, the following holds:
(1) CH,(W(1,i)) does not intersect W;, and (2) CH, (W (j,2r)) does not intersect
W;. We give the proof only for (1), that for (2) being similar.

We prove (1) by contradiction: Suppose to the contrary that for some j > i, W;
intersects CH, (W (1,i)). Then for a point w € CH,(W(1,i)) N W;, there must be
a point z of a Wy, s < i < j, such that y(w) = y(z) and z(w) < z(z), (i.e., z is
strictly to the right of w). (If such a point z did not exist, then w would have not
belonged to CH, (W (1,4)) by the definition of y-monotone hulls, a contradiction.)
WLOG, let z € W, be the leftmost such point. Then z must be on the left boundary
of W, and the leftwards-moving horizontal ray from the left vertex of the lowest
edge of Wy cannot first hit W; (otherwise, we would have a contradiction). Let 2’
be a point on the right boundary of Wy such that y(z) > y(z'). Then by Lemma 6,
the preorder number of W; in T is smaller than that of W, a contradiction.

We can compute a desired y-monotone path by letting the path first go along the
right boundary of CH, (W (1, k)) as much as possible, then along the left boundary
of CHy(W(k + 1,2r)) (if necessary), and finally extend vertically upwards and
downwards to infinity. The y-monotone path so obtained clearly has a size of O(n).
Given the planar subdivision based on the horizontal trapezoidal decomposition of
the obstacle set W (this subdivision is part of the preprocessing result), it is possible
to obtain such a y-monotone path in O(n) time. This is done by examining the O(n)
cells of the planar subdivision to identify those cells that separate the two subsets
W(1,k) and W(k + 1,2r), i.e., the cells whose left (resp., right) boundaries are on
the right (resp., left) boundaries of the polygons in W (1, k) (resp., W(k + 1,2r)).

O

Note that in a fashion similar to Theorem 2, we can also partition the prepro-
cessed set W into two subsets based on the total sizes of the polygons in the resulted
subsets. That is, for an integer j with 1 < j < n, we can partition the preprocessed
obstacle set W into two subsets W (1, k) and W (k + 1, 2r) with a y-monotone path,
such that the total number of polygon vertices of W (1, k) is no bigger than j but
the total number of polygon vertices of W(1,k + 1) is strictly larger than j. This
partitioning can also be done in O(n) time.

Theorem 2 enables us to obtain efficient algorithms for computing a desired
matching for y-monotone polygons, as did Theorem 1 for rectilinear rectangles. In
fact, the matching algorithms for y-monotone polygons are similar to and actually



simpler than the ones for rectilinear rectangles.

Like the matching algorithms for rectilinear rectangles, the algorithms here also
maintain the list L. However, unlike the algorithms for rectilinear rectangles, L
here is always a consecutive sublist of the original list W (1, 2r) and is maintained
only as a doubly linked list. Further, the algorithms here do not need to use the
tree T' and hence the list L_, and do not use the 2-3 tree S(Ly). We only sketch
below the computation of these algorithms, since they are very similar to those of
Sections 5 and 6.

To specify the matching pairs of the red/blue polygons in a list Ly = (W],
Wy, ..., W, ) (without computing the actual paths), the algorithm simply does the
following;:

It W{ and W/, are of different colors, then match W and W), (by letting
the W{-to-W;, path go along first the left boundary of CH,(L4) and
then the right boundary of CH,(L.)), and recursively solve the problem
on Ly —{W{, W/ }if Ly — {W{, W]/ }is non-empty; otherwise, partition
L into two consecutive sublists (as in Step 2 of algorithm MATCH)
and recursively solve the two subproblems.

A matching path so specified consists of at most two y-monotone subpaths because
it follows first the left boundary and then the right boundary of a y-monotone hull.
As analyzed in Section 5 for algorithm M ATCH, the matching algorithm here takes
O(rlogr) time after the ordered list W(1,2r) is made available by the O(nlogn)
time preprocessing.

The algorithm for computing the r actual paths of a matching here is simi-
lar to the one for rectilinear rectangles in Section 6: It maintains the recursion
tree RecT'ree of the above matching algorithm, and computes the y-monotone hull
CH,(v) for the subproblem on every node v of RecT'ree. Each of the left and right
boundaries of CHy(v) can be maintained by a 2-3 tree. The geometric structures
of the y-monotone hulls of the input polygons in RecT'ree can be exploited by our
computation in the following way: When we need to “merge” two y-monotone hulls
CHy(u) and CHy(w) to obtain CHy(v) (with v and w being the left and right
children of v, respectively), we replace the corresponding portions of the (say) left
boundary of CH,(w) by the left boundary of each connected component of CH,(u)
(it CHy(u) indeed consists of more than one connected component). This can be
done by using O(1) split and concatenation operations of 2-3 trees for each compo-
nent of CH,(u), in logarithmic time. Since we can charge the time for “merging”
each such connected component to a horizontal line segment of the horizontal trape-
zoidal decomposition and since there are O(n) such line segments in the trapezoidal
decomposition, the total time for our algorithm to output all the r actual paths
between the matched red/blue polygon pairs is O(nlogn + A), where A is the total
number of segments that make up these r paths. The space bounds of the matching
algorithms in this section are O(n).

8. Lower Bounds for the Matching Problems



Figure 14: Illustrating the reduction of the lower bound proofs.

In this section, we prove Q(nlogn) lower bounds in the algebraic computation
tree model® for the matching problems studied in this paper.

First, we show that the problem of matching 2n disjoint red/blue rectilinear
rectangles with nonintersecting monotone rectilinear paths in the plane requires
Q(nlogn) time in the worst case. Actually, we will show an (nlogn) lower bound
for the following (simpler) problem P: Giving n red and n blue disjoint rectilinear
rectangles in the plane, find a monotone rectilinear obstacle-avoiding path from
a specified red rectangle (say, Ry1) to some (unspecified) blue rectangle V;. The
reason for considering problem P is that this problem can be easily reduced to our
matching problem since any solution to the matching problem definitely contains
such a monotone path between the red rectangle R; and some blue rectangle V.
The key to our proof is a reduction from the problem of sorting O(n) pairwise
distinct positive integers (in an arbitrary range) to problem P. Note that based
on Yao’s Q(nlogn) lower bound result for the element uniqueness problem on n
arbitrary integers,? Chen, Das, and Smid!? showed that sorting O(n) pairwise
distinct positive integers in the worst case requires Q(nlogn) time in the algebraic
computation tree model.

The reduction goes as follows. Consider a set K of n pairwise distinct positive
integers I, I>, ..., I,. Let I, (resp., I) be the smallest (resp., largest) integer in
the set K (it is easy to find I, and I, in O(n) time). WLOG, assume that I, > 2.
For every integer I; € K, map I; to a set U; of four red rectilinear rectangles le,
RJ, R}, and R/, in the plane, as follows (see Figure 14): The shorter edges of all the
four red rectangles in U; have the same length of 0.5 units; the right (resp., left)
edge of RI (resp., Rl]) has the point (I;,0) (resp., (—I;,0)) as its middle point and
has a length of 27;, while the top (resp., bottom) edge of R/, (resp., Ri) has the
point (0, I;) (resp., (0,—1I;)) as its middle point and has a length of 2I; — 1 — 2, for
a very small fixed € > 0. Let R; be a red rectilinear unit box whose center is at the
origin of the coordinate system. We then have 4n+1 red rectangles. We next create
4n+ 1 rectilinear blue rectangles V;’s in the following way: These blue rectangles are
all rectilinear unit boxes whose centers are all on the z-axis; every two consecutive
blue boxes are one unit distance apart, and the leftmost blue box is at least one



unit distance to the right of Uy (see Figure 14). It is clear that the O(n) red/blue
rectilinear rectangles so obtained are pairwise disjoint (since the input integers are
pairwise distinct), and that the construction of this rectangle set takes O(n) time.

Now, it is an easy matter to observe that (1) an R;-to-V; path in this setting can
be monotone only to the z-axis (but not to the y-axis), and (2) any such monotone
R;-to-V; path must get around every red rectangle set U; in the sorted order of the
corresponding I; values of the U;’s (Figure 14). Let H be a monotone rectilinear
R1-to-V; path computed by any algorithm for problem P, with |[H| = O(n). We
assume that when the path H is getting around a particular rectangle set Uj, it
picks up the index j and associates j with the horizontal edge of H that contains
the z-coordinate of the rightmost edge of U;. Then given such a path H, we can
output the sorted sequence of the input integers in K by tracing H and picking
up the indices of the integers I; from their associated horizontal edges of H along
the path order of H. Such a tracing of H can be easily done in O(n) time. This
completes the lower bound proof for problem P.

Our lower bound proof for the matching problem on y-monotone polygons uses
the same reduction construction as for that on rectilinear rectangles, except that we
now compute a path which consists of at most two y-monotone subpaths instead of
one monotone path. That is, we use any algorithm for computing such an R;-to-V;
path among y-monotone polygons to build a geometric sorting device for integer
input; the reduction is the same as the one illustrated in Figure 14 and takes O(n)
time. This reduction works because any R;-to-V; obstacle-avoiding rectilinear path
H' that consists of at most two y-monotone subpaths in the setting of Figure 14
must get around every red rectangle set U; in the sorted order of the corresponding
I; values of the U;’s. Therefore, such a path H' can be used to report the sorted
sequence of the input integers in O(n) time, implying an Q(n logn) lower bound for
the matching problem on y-monotone polygons.

9. Further Remarks

As mentioned earlier, Theorem 1 implies an efficient parallel bound for equipar-
titioning a set of disjoint rectilinear rectangles. This fact is potentially useful in
the parallel algorithmics of other, not necessarily red/blue, rectangle problems (as
is clear from several known algorithms,*® where tremendous simplifications follow
from the next theorem). Therefore, this useful side-effect of Theorem 1 is summa-
rized below.

Theorem 3 Let R be a set of 2m disjoint rectilinear rectangles (not given in any
particular order). Then an m-processor CREW PRAM can compute, in O(logm)
time, an increasing staircase S that does mot intersect the interior of any rectangle
in R and partitions R into two equal parts, with |S| = O(m).

Proof. This follows from Theorem 1 and the fact that a trapezoidal decomposition®

as well as the preorder numbers in a tree?” can all be computed in parallel within

these bounds. O
In fact, the preprocessed form of R required by Theorem 1 can be obtained as



a by-product of Theorem 3, in O(logm) time using m CREW PRAM processors.
Once this form is available, we can do a little more than Theorem 3: We can
partition the set R = {R1, R, ..., Ra,,} into two subsets {R1, R, ..., Ry} and
{Rk+1, Ri+y2, ..., Rop}, for any integer k with 1 < k < 2m, in O(logt) time
using t/ logt processors in the CREW PRAM or even the EREW PRAM model,??
where ¢ = min{k, 2m —k}. This is done by using, instead of the two-way divide-and-
conquer algorithm given in the proof of Theorem 1, a many-way divide-and-conquer
approach.?20 The details of this parallel algorithm are very similar to (and in fact
even simpler than) those in Refs. [9,20], and hence are omitted.

The following partition result may also be useful to designing parallel algorithms
for certain geometric problems.

Theorem 4 Let W be a set of 2r disjoint y-monotone polygons (not given in any
particular order) with a total of m vertices. Then an m-processor CREW PRAM
can compute, in O(logm) time, a y-monotone path P that does not intersect the
interior of any polygon in W and partitions W into two subsets of r polygons each,
with |P| = O(m).

Proof. This follows from Theorem 2 and the fact that a trapezoidal decomposition
and the planar subdivision® based on it as well as the preorder numbers in a tree®’
can all be computed in parallel within these bounds. |

Again, we can also preprocess W in O(logm) time using m CREW PRAM
processors. After that, such a y-monotone path P, as defined in Theorem 4, can
be obtained in O(logm) time using m/logm CREW PRAM processors. This is
done by first examining the cells of the planar subdivision (to identify those cells
that separate the two subsets of the polygons in W) and then using parallel list
ranking?? to find the path P. Note that it is also possible to modify Theorem 4 to
partition W into two subsets based on the total sizes of the polygons in the resulted
subsets.

We conclude with an implementation note about our algorithms. If we are to
program the matching algorithms for rectilinear rectangles, we would modify them
by creating (in Step 2) S(L') and S(L") only as a last resort, by inserting before
Step 2 a Step 1’ in which we check whether R} and R) are of different colors — if
so we match them, delete them, etc, and if not we check whether R/, , and R/,
are of different colors — if so we match them, delete them, etc, and if not we go to
Step 2. Thus, we go to Step 2 only if we are unable to match the pair { R}, R}} and
the pair {R!,_,, R.,}. Performing such a Step 1’ before Step 2 gives preference to
short paths over long ones, since an R}-to-R!, path is likely to be longer than an
Ri-to-R), (or R!, _,-to-R. ) path. For y-monotone polygons, an efficient heuristic
that may produce short paths for a matching we desire is to use a modification of
the so called red/blue matching approach??2? for matching red/blue elements in an
ordered list (in our situation, the ordered list is W (1,2r)). Of course, this assumes
that short paths are practically better than long ones.

The above discussion suggests the obvious open problems of finding matchings
that satisfy some additional length criteria, such as:

e Minimum sum of lengths of all n paths, or



e Minimum maximum length of all n paths, or

e Versions of the above two where “length” means number of links rather than

the usual L; length (hence this version of the sum-of-lengths problem amounts
to minimizing what we earlier called \).

Acknowledgements

The authors would like to thank the two referees for their comments that helped
improve the presentation of the paper.

References

1.

10.

11.

12.

13.

A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, Mass., 1974.

M. G. Andrews, M. J. Atallah, D. Z. Chen, and D. T. Lee, “Parallel algorithms
for maximum matching in complements of interval graphs and related problems,”
Algorithmica, 26 (2) (2000), pp. 263 289.

M. J. Atallah, “A matching problem in the plane,” J. of Computer and Systems
Sciences, 31 (1985), pp. 63-70.

M. J. Atallah and D. Z. Chen, “Parallel rectilinear shortest paths with rectangular
obstacles,” Computational Geometry: Theory and Applications, 1 (1991), pp. 79

113.

M. J. Atallah and D. Z. Chen, “On parallel rectilinear obstacle-avoiding paths,”
Computational Geometry: Theory and Applications, 3 (1993), pp. 307 313.

M. J. Atallah, R. Cole, and M. T. Goodrich, “Cascading divide-and-conquer: A tech-
nique for designing parallel algorithms,” SIAM J. Computing, 18 (1989), pp. 499—
532.

M. J. Atallah, S. E. Hambrusch, and L. E. TeWinkel, “Parallel topological sorting
of features in a binary image,” Algorithmica, 6 (1991), pp. 762-769.

M. Ben-Or, “Lower bounds for algebraic computation trees,” Proc. 15th Annual
ACM Symp. on Theory of Computing, 1983, pp. 80 86.

D. Z. Chen, “Efficient geometric algorithms on the EREW PRAM,” IEEE Trans. on
Parallel and Distributed Systems, 6 (1) (1995), pp. 41-47.

D. Z. Chen, G. Das, and M. Smid, “Lower bounds for computing geometric span-
ners and approximate shortest paths,” Proc. 8th Canadian Conf. on Computational

Geometry, 1996, pp. 1565-160. To appear in Discrete Applied Mathematics.

D. Z. Chen and K. S. Klenk, “Rectilinear short path queries among rectangular
obstacles,” Information Processing Letters, 57 (6) (1996), pp. 313 319.

D. Z. Chen, K. S. Klenk, and H.-Y. T. Tu, “Shortest path queries among weighted
obstacles in the rectilinear plane,” SIAM Journal on Computing, 29 (4) (2000),
pp. 1223 1246.

J. Choi and C.-K. Yap, “Rectilinear geodesics in 3-space,” Proc. 11th Annual ACM
Symp. Computational Geometry, 1995, pp. 380-389.



14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

K. L. Clarkson, S. Kapoor, and P. M. Vaidya, “Rectilinear shortest paths through
polygonal obstacles in O(n(logn)?) time,” Proc. 3rd Annual ACM Symp. Computa-
tional Geometry, 1987, pp. 251 257.

K. L. Clarkson, S. Kapoor, and P. M. Vaidya, “Rectilinear shortest paths through
polygonal obstacles in O(nlog?’/2 n) time,” manuscript.

W. Dai, T. Asano, and E. S. Kuh, “Routing region definition and ordering scheme
for building-block layout,” IEEE Trans. on Computer-Aided Design, CAD-4 (3)
(1985), pp. 189-197.

M. de Berg, M. van Kreveld, and B. J. Nilsson, “Shortest path queries in rectangular
worlds of higher dimension,” Proc. 7th Annual Symp. Computational Geometry,
1991, pp. 51-59.

P. J. de Rezende, D. T. Lee, and Y. F. Wu, “Rectilinear shortest paths in the pres-
ence of rectangles barriers,” Discrete & Computational Geometry, 4 (1989), pp. 41
53.

H. ElGindy and P. Mitra, “Orthogonal shortest route queries among axes parallel
rectangular obstacles,” International J. of Computational Geometry and Applica-
tions, 4 (1) (1994), pp. 3-24.

M. T. Goodrich, “Finding the convex hull of a sorted point set in parallel,” Infor-
mation Processing Letters, 26 (1987/88), pp. 173-179.

M. Iwai, H. Suzuki, and T. Nishizeki, “Shortest path algorithm in the plane with
rectilinear polygonal obstacles” (in Japanese), Proc. of SIGAL Workshop, July 1994.

J. J&J4, An Introduction to Parallel Algorithms, Addison-Wesley, Reading, MA,
1992.

S. K. Kim, “Optimal parallel algorithms on sorted intervals,” Proc. 27th Annual
Allerton Conf. Communication, Control, and Computing, 1989, pp. 766 775.

R. C. Larson and V. O. Li, “Finding minimum rectilinear distance paths in the
presence of barriers,” Networks, 11 (1981), pp. 285-304.

D. T. Lee, T. H. Chen, and C. D. Yang, “Shortest rectilinear paths among weighted
obstacles,” International J. of Computational Geometry and Applications, 1 (2)
(1991), pp. 109-124.

D. T. Lee, C. F. Shen, C. D. Yang, and C. K. Wong, “Non-crossing paths problems,”
manuscript, Dept. of EECS, Northwestern University, 1991.

J. S. B. Mitchell, “An optimal algorithm for shortest rectilinear path among obsta-
cles,” First Canadian Conf. on Computational Geometry, 1989.

J. S. B. Mitchell, “L; shortest paths among polygonal obstacles in the plane,” Al-
gorithmica, 8 (1992), pp. 55 88.

P. Mitra and B. Bhattacharya, “Efficient approximation shortest-path queries among
isothetic rectangular obstacles,” Proc. 3rd Workshop on Algorithms and Data Struc-
tures, 1993, pp. 518 529.

T. M. Nicholl, D. T. Lee, Y. Z. Liao, and C. K. Wong, “On the X-Y convex hull of
a set of X-Y polygons,” BIT, 23 (4) (1983), pp. 456-471.



31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

M. H. Overmars and J. van Leeuwen, “Maintenance of configurations in the plane,”
J. of Computer and Systems Sciences, 23 (1981), pp. 166—204.

E. Papadopoulou, “k-Pairs non-crossing shortest paths in a simple polygon,”
Proc. 7th Annual International Symp. on Algorithms and Computation, 1996,
pp- 305-314.

F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction,
Springer-Verlag, New York, 1985.

F. P. Preparata and K. J. Supowit, “Testing a simple polygon for monotonicity,”
Information Processing Letters, 12 (1981), pp. 161-164.

J. Takahashi, H. Suzuki, and T. Nishizeki, “Algorithms for finding non-crossing
paths with minimum total length in plane graphs,” Proc. 3rd Annual International
Symp. on Algorithms and Computation, 1992, pp. 400 409.

J. Takahashi, H. Suzuki, and T. Nishizeki, “Finding shortest non-crossing rectilinear
paths in plane regions,” Proc. 4th Annual International Symp. on Algorithms and

Computation, 1993, pp. 98 107.

R. E. Tarjan and U. Vishkin, “Finding biconnected components and computing tree
functions in logarithmic parallel time,” STAM J. Computing, 14 (1985), pp. 862—874.
P. Widmayer, Y. F. Wu, and C. K. Wong, “On some distance problems in fixed
orientations,” SIAM J. Computing, 16 (4) (1987), pp. 728 746.

Y. F. Wu, P. Widmayer, M. D. F. Schlag, and C. K. Wong, “Rectilinear shortest
paths and minimum spanning trees in the presence of rectilinear obstacles,” IEEE
Trans. on Computers, C-36 (1987), pp. 321 331.

C. D. Yang, T. H. Chen, and D. T. Lee, ” Shortest rectilinear paths among weighted
rectangles,” Journal of Information Processing, 13 (4) (1990), pp. 456—462.

C. D. Yang, D. T. Lee, and C. K. Wong, “Rectilinear path problems among recti-
linear obstacles revisited,” SIAM J. Computing, 24 (3) (1995), pp. 457 472.

A. C.-C. Yao, “Lower bounds for algebraic computation trees with integer inputs,”
SIAM J. Computing, 20 (1991), pp. 655—668.



