
CERIAS Tech Report 2005-33

ENHANCED SMART-CARD BASED LICENSE MANAGEMENT

by Mikhail Atallah and Jiangtao Li

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

Enhanced Smart-card based License Management
�

Mikhail J. Atallah Jiangtao Li
CERIAS and Computer Science Dept., Purdue University, West Lafayette, IN 47907

Abstract

In many e-commerce situations, the owner of a digital
object wants to enforce policies on the object after the object
is in the customer’s hands. The object can be thought of as
being software, because data is often protected by forcing
access to it to take place through a particular authorized
software (e.g., a “reader” for an encrypted media file, in
which case a license to view the movie is, in some sense, a
“software license”). One of the ways that were proposed
for such policy enforcement is the use of smart cards.

This paper describes an enhanced solution to software li-
cense management based on tamper-resistant smart cards.
Our public-key protocols for binding software licenses to
smart cards improve on previous schemes in that they sup-
port flexible and partial transfers of licenses between cards.
The license is verified by checking the presence of the asso-
ciated card. The user can therefore have several software
licenses all of which are bound to one card, to avoid jug-
gling several cards in and out of the card reader.

1 Introduction

One of the main reasons media owners and distributors
have not more widely embraced the Internet as a distribution
medium, and still cling to inefficient and outmoded distribu-
tion mechanisms such as selling physical media in physical
stores, is because they do not want to make pirates’ task
any easier than it already is (and it already is easy enough).
To make e-commerce more widespread in such digital ob-
jects, it would help if the owner could still enforce policies
after the digital object has been delivered to the customer.
This is tied closely to the issue of software licensing, be-
cause whatever one can do for software licenses also ap-
plies for movie-viewing licenses, or other remote policy-
enforcement mechanisms. This is because access to media
can be forced to occur through a particular piece of “autho-�

Portions of this work were supported by Grants EIA-9903545 and ISS-
0219560 from the National Science Foundation, Contract N00014-02-1-
0364 from the Office of Naval Research, and by sponsors of the Center for
Education and Research in Information Assurance and Security.

rized” viewing software 1. So whenever, in what follow, this
paper talks about “software license”, one could just as well
view that as a statement about “movie license” or indeed
any kind of other media.

Aura and Gollmann recently proposed an elegant soft-
ware license management scheme with tamper-resistant
smart cards [2]. In their scheme, software licenses are
bound to smart cards, and software cannot be run without
the appropriate card being in the card reader. They de-
signed protocols for transferring licenses between cards, so
that customers only need one card to use all of their soft-
ware. Their scheme is fine in a home environment, but it
is not scalable and flexible enough for large company based
license management. One drawback of their scheme is that
once a smart card transfers its licenses to another card, the
original card is destroyed (“zero’ed out”) and licenses can-
not be transferred back. Another drawback is that their
scheme does not support partial transfers, that is, if card
A wants to transfer a license to card B but not the other li-
censes in it (or, if it contains a single kind of license but with
a multiplicity of

�
, it needs to stay alive for the remaining�����

licenses remaining in it).
In this paper, we build on the work of Aura and Goll-

mann and extend it to eliminate the above mentioned draw-
backs. In our model, each smart card can contain one or
many types of software licenses, each with a different mul-
tiplicity. A software verifies its license by checking the
presence of the smart card in the card reader. We design
protocols such that a software license can be flexibly trans-
ferred between any two cards. Since smart cards have a
limited amount of storage, it is not acceptable to explicitly
store in the card one entry for each software license bound
to it. We next describe three schemes for managing license
information with smart cards of �	� ��
 storage space, i.e.,
not dependent on the number � of software licenses bound
to the card.

Our paper is indirectly related to one-way accumula-

1Taking this idea to its logical extreme, any media (such as a large
movie) can be encrypted and combined with its custom-decrypting reader
as a single self-extracting unit (i.e., as software); the reason it may not
be too inefficient to include a special reader with every movie (a reader
for viewing only that particular movie) is because a movie is hundreds of
megabytes long whereas a reader is typically smaller than 1% of that.

tors [6], memory checking [7, 13], incremental cryptogra-
phy [4, 5], trusted database [18], and certificate revocation
[15, 21]. Our scheme uses a judicious combination of tech-
niques from these areas.

The rest of the paper is organized as follows. We begin
with a short introduction to copy protection with tamper-
resistant smart cards in Section 2. Then Section 3 intro-
duces our enhanced model for software license management
and Section 4 gives the protocol details. We propose three
schemes for managing license keys within smart cards in
Section 5. Section 6 concludes the paper.

2 Smart-card based copy protection

In token based software protection mechanisms, a li-
cense is embodied by a copy-resistant piece of hardware
[8, 19]. The software checks for the presence of such a to-
ken, and refuses to run unless the token is present. As smart
cards become popular and cheap, a smart card becomes a
natural choice for a token.

Unfortunately, the token based protection mechanisms
are unpopular with the users. As was pointed out at [2], a
major problem for smart-card based protection scheme is
that a single card must not be allowed to monopolize the
card reader. In order to prove the presence of a card for dif-
ferent software packages, one may have to repeatedly insert
different cards into the reader, an annoying practice some-
times referred as smart card juggling.

Aura and Gollmann describe a solution for binding soft-
ware licenses to smart cards and for transferring them from
card to card in such a way that juggling is eliminated [2].
Their transfer protocols are based on delegation. The smart
card having some licenses simply signs a certificate stating
its willingness to give its rights to the key of another card.
This kind of certificate with which one key delegates ac-
cess rights to another one is called a delegation certificate
[3, 12]. As we can notice from their scheme, if one card
transfers licenses to another, all the licenses are transferred
to the new card and the old card is destroyed, so it is an “all
or nothing” process.

3 License management model

In this section, we describe the model we use for soft-
ware license management. In order to have flexibility and
ease of use, our goal is to allow a single smart card to act
as a token for arbitrarily many software packages, and to al-
low licenses to be readily transferred between smart cards.
The reader already familiar with previous work in this area
can skip the discussion subsection and go directly to Sec-
tion 3.2. As commonly assumed in this literature, we as-
sume (i) that the smart card is tamper-resistant in the sense

that its stored data can be protected against unauthorized
access and modification, and (ii) that the license checking
procedure cannot be bypassed by an adversary who is at-
tempting to “crack” the software (preventing such cracking
is the subject of much investigation in a different kind of
literature c.f., [10, 11, 25]).

3.1 Informal discussion

A smart card in our model is used for two purposes: man-
aging license information and run-time license verification.
Smart cards are distributed along with the software package
at purchase time.

Each smart card has a unique public-private key pair.
The private key is known only to the card and never revealed
outside. The public-private key pair is used for proving to
the software the presence of the card in the reader. To prove
a card has the private key responding to the public key, the
card encrypts a challenge issued by the software (usually a
nonce) with its private key and sends it back. After the soft-
ware decrypts the message with the card’s public key and
verifies the nonce, the software believes the card is authen-
tic.

Now we introduce how to bind a software license to a
smart card. In Aura and Gollmann’s scheme, they use a
license certificate to tie the software license to a card key.
However, this is not suitable for our model, because our goal
is to let licenses readily “flow” to any cards, whereas the
software publisher initially has no way of knowing the tar-
get card key. In our model each license has a unique public-
private key pair and a license certificate. The license’s pub-
lic key may be obtained by everyone, whereas the license’s
private key is only known to one card. Indeed, initially a
license’s private key is encrypted by a card’s public key, so
that only that card knows it. The license certificate is signed
by the software publisher’s master key to tie the license’s
public key to a particular software package.

Each card keeps a list of license keys (referred to later
as license key list) that are currently bound to it. Although
this appears to be contradict the
	����� space limitation of
the smart card, in fact it does not because of the list will
be maintained implicitly (more on this later). A license is
bound to a card by two conditions. First, the license’s pri-
vate key is encrypted by the card key so that only the card
can decrypt it. Second, the license’s public key belongs to
the card’s license key list. In other words, the software be-
lieves a card has a license if the card can prove that it knows
the license’ private key. To avoid revealing the license’s
private key, the card proves to the software its knowledge
of license’s private key in same manner as card’s own pri-
vate key: it responds to a challenge from the software by
encrypting the challenge with the license’s private key.

3.2 Formal description of the model

In this subsection, we give a formal description of our
model, and explain how our model can be implemented
in practice. We use the notations from [9] to describe our
model and protocols.

The notations used in this paper are listed in Table
1. In our model, ���������������� and ���! "�#���$� �� are only
used for encryption and decryption, whereas �%�'&)(*�#� ���&)(� ,���!�+(,�#� ����-(� and �����-./��� �$��-. � are only used for verifica-
tion and signature. We assume there is a widely trusted 021
who is responsible for giving certificates to software pub-
lishers and card producers.

Principal Name Notation Key Pair
Workstation 3
Smart Card 0 ��� � ��� �$�� �

Software License 4 ��� �#� �$� �
Software Publisher 576 �%� &)(��� ���&)(�

Card Producer 026 �����+(8��� ����+(�
Certificate Authority 021 �%� �-. ��� ����+. �

Table 1. List of notations

Each software publisher has a certificate from the cer-
tificate authority 021 of the form 9�� &:(,;=<?>)@ACB . The nota-
tion 9=D ; < means that the message D is encrypted under
the public key � and 9ED ; < >)@ means that the message D
is encrypted under the private key � �$� . (In the case of
certifcates, 9ED ; < >)@ means the message D is signed with� �$� .) Note that we intentionally omit other miscellaneous
information (such as software publisher name, address, ID,
etc) in the certificate. The implementations should follow
accepted standards such as PKCS [16]. Similarly, each card
producer has a certificate from CA of the form 9�� �+(,;�<?>)@ACB .

In our model, the smart cards are issued by 026 , whereas
the software licenses are issued by 576 . We assume the soft-
ware or the operating system of the workstation has already
embedded � �-. in the code so that the software can verify
the certificates of � �+(and � &)(, and conclude that they
are authentic card producer’s key and software publisher’s
key. To simplify our explanation in the rest of our paper, we
also assume the software has embedded � �+(and � &:(in
its code. (Without such assumption, we need only one more
step of certificate verification).

In addition to the keys, each card stores a card certificate
signed by its card purducer 026 . Anyone knowing �'�-(can
verify the certificate on the card and conclude that the card
is an authentic card approved by 026 . A card certificate is
of the form

9����8� “is a valid card key.” ;=< >)@ACFHG
Each software license has a license certificate signed by

software publisher 576 . Anyone knowing the � &:(can ver-
ify the license certificate and conclude that the license key
is an authentic license key approved by 5I6 . A license cer-
tificate is of the form

9�� � “is a valid license key for” �KJMLONQPSRUT:VEW ;E< >)@XYF G
Beside the card key and the card certificate, each smart

card also maintains a license key list. This list contains all
the license keys that are bound to that card. It is not nec-
essary to keep the entire license key list inside the card; we
can store the list outside the card and only keep the integrity
check value of the list in the card. We will give solutions to
this problem in Section 5.

As in [2], the software license information is stored out-
side the smart card (i.e. user equipment). All the licenses
bound to a smart card are stored together in a table. Each
table entry has a license number, a license key pair, and a
license certificate. The license key pair is encrypted by the
card key. We also put the license’s public key in the clear
text so that it can be read by anyone. Usually if the card
does not store the license keys inside the card, in the license
information table, each entry also contains a proof that the
license key in that entry is a valid member of the card’s
license key list. Table 2 shows an example structure of li-
cense information table with three licenses for software 1
and one license for software Z .

License ID License Key Certificate
License 1 � @ , 9=� @ ���[�$� @ ; < A 9�� @ ��1 ;=< >)@XMF
License 2 �]\ , 9=� ^\ ��� �$� ^\ ; < A 9��]\ ��1 ;=<?>)@XMF
License 3 �!]_ , 9=�! ^_=���[�$� _ ; < A 9��!]_=��1 ; <?>)@XMF
License 4 �! ^` , 9=�! a`E���[�$� ` ; < A 9=�! a`E�#Z ;�< >)@XYF
Table 2. Example of license information table

4 License verification and transfer protocols

This section describes protocols for license verification
and license transfer. Some crucial issues and details will be
given in later sections. We begin with a brief summary of
the characteristics of our protocols.

4.1 Characteristics of our Protocols

The characteristics summarized below include a descrip-
tion of the communication patterns for the protocols (who
needs to participate, and who talks to whom), as well a “be-
fore” and “after” snapshot of what each participant gets (or
learns). In what follows, the card that contains the licenses
is the same one as the card that establishes at run-time the

existence of the licenses (i.e., there are not two separate
kinds of cards).
b Software verifies license from smart card: The partici-

pants are the software and the smart card. The software
publisher is not a party to the license verification pro-
tocol. Before the protocol begins it is assumed that the
software has the public keys of c2d and e7d . After the
protocol completes, the software believes that the li-
cense is bound to the card. The software has not learn
anything else about the smart card (e.g., the license’s
private key, the card’s private key).

b License card owner purchases online additional li-
censes from software publisher: The participants are
the smart card and the software publisher. Before the
protocol begins it is assumed that the smart card has
certificate from c2d whose public key is known to soft-
ware publisher and the software publisher has a certifi-
cate from c2f whose public key is known to the card.
After the protocol completes the smart card has (im-
plicitly) the kind and quantity of licenses purchased,
and the software publisher has not learned anything
else about the smart card (e.g., what other licenses
were in it, from other software vendors or from itself).
Note: Because of space limitations, we have not in-
cluded in the paper the online purchase protocol; it is
easily inferable from the protocol for transferring li-
censes between two distinct cards.

b Transfer of licenses between two cards: The partici-
pants are the two smart cards, i.e., the software pub-
lisher is not a party to the transfer protocol. Before the
protocol begins it is assumed that each card has a cer-
tificate from a c2d whose public key is known to the
other card (it may be a different c2d for each card).
The net effect of the transfer protocol is the effective
migration of a license between the two cards (no repli-
cation of licenses occurs). Neither card learns anything
about the other smart card (e.g., what other licenses
were in it).

4.2 Protocol for license verification

The verification consists of two certificate verifications
and one interaction with the smart card. The two certificate
verifications are done within the workstation. We assume
the software already has the public keys of e7d and c2d .
The software first picks up the corresponding license en-
try from the license information table (it is possible to have
several valid licenses for that software, and in that case, we
just randomly pick up one). Then the software verifies the
license certificate issued by e7d in that license table entry.
Since the license is associated with a card key g'h , the soft-
ware proceeds to verify the card certificate signed by c2d .

After the software succeeds in checking the two certificates,
it interacts with the smart card for two purposes: verifying
that the card can decrypt the license’s private key and ver-
ifying that the card is authentic. Protocol 1 shows how the
software verifies licenses in our model.

Protocol 1 (license verification)
1. Workstation ikj Card c :l g!m+n�g[o$pmrq�sut n�vxw
2. Card cyj Workstation i :l v	w q s?z){| n l vxw q s?z){t if g�m~} License Key List

In the first step of Protocol 1, the workstation sends the
card the encrypted license key pair and a nonce identifier.
The card first decrypts the license’s key pair ��g m n#g�o�pm�� ,
then verifies whether g m is in its license key list. (We will
describe how the card verifies the membership of a license
key in Section 5.) If g m does not belong to the license key
list, the card refuses to respond. Otherwise, the card sends
the nonce identifier back encrypted with g�o�pm and g[o$ph re-
spectively. Finally The software decrypts the response mes-
sage and compares with the original nonce identifier. When
the software sees the correct response, it believes that the
card has the corresponding license.

4.3 Protocol for license transfer (preliminary ver-
sion)

To avoid unnecessarily cluttering the exposition, we start
by ignoring (for the time being) issues of accidental inter-
ruption of the transfer protocol. If the workstation has two
card readers, then the two cards can directly communicate
with each other. If only one card reader exists, the user
might need to swap the cards in the reader several times
to finish the transfer protocol. Two cards can even transfer
licenses from different machines via network communica-
tion.

Suppose Card f wants to transfer a license to Card � ,
Card f first verifies that the license is bound to itself, i.e.,
verifies it can decrypt the license’s private key inside the
card and the license’s public key belongs to Card f ’s li-
cense key list. Then Card f deletes the license key from its
list and encrypts the license’s key pair with Card � ’s pub-
lic key. Finally Card � adds the license key into its license
key list. (We will describe how to update the license key
list in Section 5.) Figure 1 shows an example of license
transfer between two cards with only one license exists in
the system. The upper half of the figure shows the bind-
ing structure before the transfer, the lower half of the figure
is the binding structure after the transfer. Notice that after
Card f gives the license to Card � , the license is no longer
bound to Card f any more.

Protocol 2 is the protocol for transferring a license be-
tween two cards. In the protocol, f is the source card, � is

Protocol 2 (license transfer between cards)
1. Card ��� Card � :���,�Y���!�u���?�)��)�
2. Card ��� Card � :�������=�!�8� � �)��C�
3. Card ��� Card � :�=���/�����I� �,�
4. Card ��� Card � :�=�!���#� � �������

“Please transfer
�!�

to me”
� �u�

5. Card � :
Decrypt

�!�
,
�[�$��

Delete
�!�

from � � ’s License Key List
6. Card ��� Card � :�=� � �

“Please add
� �

to License Key List”
� �,��=�!�"��� �$�� � � �

7. Card � :
Add

�!�
into � � ’s License Key List

the destination card.
� �

and
���

are the card keys for �
and � respectively;

� �
and

���
are their nonce identifiers.

The first four steps of the protocol are used to exchange
secrets (nonces) between two cards and set up a secure
communication channel against eavesdropping or tamper-
ing. We use the approach from a fixed version of the Need-
ham and Schroeder’s public-key protocol [22] proposed by
Lowe [17]. In the first two steps of the protocol, Card �
and Card � obtain each other’s public keys and card certifi-
cates. Then in Step 3 and 4, Card � and Card � exchange
their nonce identifiers for further communication. Later, if
Card � receives a message

��� � �K��� �,�
, then card � be-

lieves the freshness of
�

, and may deduce that Card � sent�
.
Step 5 to 7 of the protocol are to transfer a software li-

cense after the secure channel is set up. In Step 5, Card� decrypts the license key pair inside the card and verifies
that the ‘to-be-transferred’ license is currently bound to it-
self. Then Card � deletes

� �
from its license key list. Card� sends the encrypted license key pair to Card � in Step 6

and informs Card � to continue. Finally Card � adds
� �

into its license key list in Step 7.

4.4 Extention of the transfer protocol

In the last subsection, we show how to transfer software
licenses via a secure communication channel. In practice, if
we plan to build a real license management system over our
model, it is crucial to make the transfer protocols atomic.

One problem is about the interruptions of the transfer
protocols. If during the transfer, the power is accidentally
cut off by a honest customer, or the card is intentionally
pulled out from the reader by a malicious user,the trans-
fer protocol should either complete or return to the original

{KL,KL
−1 }KA

{KL,KL
−1 }K

{KL,KL
−1 }KA

{KL,KL
−1 }K

Smart Card A
Card Key KA
Card Certificate

Smart Card B
Card Key KB
Card Certificate
License Key List = {K L}

A

KL is a valid License
key.

Smart Card B
Card Key KB
Card Certificate
License Key List = {}

License Transfer

L}

License Key List = {}

KL is a valid License
key.

Signed: SP

KL is a valid License
key.

Signed: SP

Signed: SP
Card Key K
Card Certificate
License Key List = {K

Smart Card A

B
{KL,KL

−1 }K{KL,KL
−1 }K

Figure 1. Example of license transfer

state before the transfer procedure. In either case, we want
to eliminate the possibility of license loss or license dupli-
cation that happened during the license’s transfer.

To solve the this problem, we need to make our trans-
fer protocols atomic. We can use some well known pro-
tocols such as three-phase commit protocol [24] to ensure
the atomic property. Indeed if we look at the license trans-
fer as a transaction, the transfer protocol in our model es-
sentially consists of two operations: (i) deleting from the
source card’s license key list and (ii) inserting into the des-
tination card’s license key list. We can extend the protocol
by updating the license key list in the cards’ RAM, and not
writing into the permanent storage of the cards until the two
cards commit the transfer transaction. If the license trans-
fer protocol is interrupted, it will fail to commit, thus both
cards will return to the original states.

Note: Fair exchange protocols do address the problem
of exchange of digital objects between two parties that do
not trust each other, and address the issues of atomicity, si-
multaneity, nonrepudiation. They do so using elegant tech-
niques and ideas, but at a rather large cost, at least in terms
of the limited space and speed of a smartcard (not to men-
tion the occasional requirement of a third party – trusted or
untrusted – that does not fit within our framework).

5 Managing license keys within the smart
card

Whereas the previous section focussed on protocols, this
section deals with the details of how a smart card managing
license information.

5.1 Introduction

As we already described early, the key issue for the li-
cense transfer is to maintain a list of license keys that are
bound to the smart card. Given that a smart card has �	�¡ �¢
storage capacity, we cannot store the entire license key list
inside the card. In this section, we describe three schemes
to store the license key list in untrusted user equipment in a
way that it cannot be tamperred by an adversary.

5.1.1 Problem definition

The problem of managing license keys involves two par-
ties: a trusted smart card and an untrusted workstation. In
our model, we assume the tamper-resistant smart card is a
trusted entity. The card is pre-programmed and would not
malfuction. The software publisher trusts the behavior of
the smart card, but it doesnot trust the workstation. The
smart card has a list of license keys that evolves over time
through insertions and deletions of keys. The workstation
maintains a data structure to store the list, whereas the smart
card keeps the integrity check value of the list. The smart
card does not need to know the complete list. Instead, the
card typically performs membership queries on the list of
the type “is license key £ in my license key list?”. The
workstation provides the card with a YES/NO answer to
the query. If the answer is YES, the workstation also needs
to provide an evidence so that the card can verify it. The
integrity check value in the card is used to verify the answer
from the workstation.

More formally, let ¤ be the workstation and ¥ be the
smart card. Let ¦¨§ª©E£C«=¬K£®­®¬Y¯°¯±¯°¬#£:²Q³ be the license key list
with ´ license keys. Let µ·¶ be a data structure represent-
ing ¦ in ¤ and ¸Y¶ be the integrity check value of the data
structure µ·¶ in ¥ . We have following four operations:

¹ A membership query is issued by ¥ of the form º%£^» .¤ responds the query with answer º%¼½¬#¾E» where ¼À¿© YES,NO ³ and ¾ is an evidence to the answer.

¹ A validation operation is associated with a member-
ship query. Given an answer º YES ¬#¾E» , ¥ verifies the
evidence ¾ .

¹ Insertion operation is to insert £ into ¦ , where £ÂÁ¿Ã¦ .¤ updates its data structure µ ¶^Ä to represents the new
list ¦,Å8§Æ¦[Ç[©=£Q³ , and ¥ updates the corresponding
integrity check value ¸ ¶ Ä .

¹ Deletion operation is to delete £ from ¦ , where £È¿É¦ .¤ updates its data structure µ·¶ Ä to represents the new
list ¦uÅ!§Ê¦/ËC©=£Q³ , and ¥ updates the corresponding
integrity check value ¸ ¶^Ä .

Note that ¥ only verifies the answer to the query when
the answer is YES. Our goal is to minimize the computa-
tional cost for the smart card.

One may worry about malicious users add unauthorized
licenses into the license key list by making use of the inser-
tion operation. In fact, the insertion operation in our model
is a subroutine that cannot be called directly from outside.
The insertation operation is executed only during the trans-
fer protocol. As we described in the previous section, the
atomic property of the transfer protocol guarantee no illegal
insertion of licenses possible.

5.1.2 Related work

The problem of storing and retrieving data from unreliable
workstations and keeping its integrity check value in the
smart card is related to memory checking [7, 13], incre-
mental cryptography [4, 5], trusted database [18], certificate
revocation [21], and authentication dictionaries [15].

Blum et al. [7] extended the notion of program check-
ing to include programs which alter their environment. In
their model, checker resides in a small amount of reliable
memory, whereas the data structure resides in a large but
unreliable memory. The checker is used for detecting errors
in the data structure. They construct an online checker for
RAMs using a variant of Merkle’s hash-tree authentication
scheme for digital signatures [20].

Incremental cryptography was first introduced by Bel-
lare, Goldreich and Goldwasser [4, 5]. The goal of in-
cremental schemes is to quickly update the value of a
cryptographic primitive when the underlying data is mod-
ified. They propose an incremental authentication scheme
based on a 2-3 search tree in order to allow efficient in-
sert/delete/replace block operations.

Maheshwari, Vingralek and Shapiro [18] built a trusted
database system on untrusted storage by making use of hash
trees for comparing data or checking the integrity of part of
a larger collection of data.

In the certificate revocation problem, directory is an en-
tity that get updated certificate revocation information from
the certificate authority and serve as a certificate database
accessible by the users. An authenticated dictionary, de-
fined in [21], is a data structure used by the directory to
efficient maintain a set of elements. Naor and Nissim
[21] construct to an authenticated dictionary by a 2-3 hash
search tree to support insertion and deletion of elements.
Goodrich, Schwerin and Tamassia [15] develop a data struc-
ture for authenticated directories based on one-way accu-
mulators [6]. Their underlying idea is to dynamically main-
tain a one-way accumulator function over the set elements.

Our model differs from these related existing frame-
works in that, in addition to the only �	�� �¢ storage per smart
card, there is also an asymmetry in computing power (slow

smart card, fast workstation) that imposes the necessity for
protocols to place most of the computational burden on the
workstation rather than on the smart card.

5.2 One-way accumulator scheme

A family of one-way accumulators, as defined by Be-
naloh and Mare [6], is a family of one-way hash functions
each of which is quasi-commutative. A well-known exam-
ple of a one-way accumulator function is the exponential
accumulator,

ÌMÍ:Î+Ï�Í-Ð�Ñ^ÒuÓÔÍ½Õ?Ö	×aØxÙ~Ð
for suitably-chosen values of the generator Í and modulusÙ [6]. As denoted in [6], a prime Î is called to be safe if ÎÈÓÚ Î½ÛÝÜßÞ where ÎQÛ is an odd prime. In particular, Benaloh and
Mare choose ÙàÓ[Î½á where Î and á are distinct safe primes
such that â Î â Ó â á â . As we may notice, almost any odd
number is relative prime to ã Ï%ÙÃÒ . To see why, let ÙäÓ�Î½á ,Î!Ó Ú ÎQÛåÜ	Þ , áæÓ Ú áEÛçÜxÞ , such that Î , á , ÎQÛ , and áEÛ are all large
distinct primes. Thus, ã Ï%ÙÃÒuÓ�ÏèÎUéêÞ�Ò�Ï%áHéêÞ�ÒIÓÔëYÎQÛ°áEÛ%ì Any
odd number is relative prime to ã Ï�ÙÃÒ if it is relative prime
to Î½Û°áEÛ . Numerically, a 200 bit Ù would result in around 100
bit size in Î½Û and áEÛ , the probability of a randomly chosen
odd number that is not relative prime to ã Ï�ÙíÒ is well belowÞMîaïñð�ò . Therefore, we neglect this probability in the rest of
this paper.

Note that if Ñ is relatively prime to ã Ï%ÙÃÒ , by Euler and
Fermat theorems (see [23]) there exists Ñ ’s multiplicative
inverse ÑQï$ó modulo ã Ï%ÙÃÒ , such that ÏçÍ Õ Ò Õ=ô)õ2ö Í·Öx×aØ·Ù
for any Í relative prime to Ù .

Let ÷ Óäø=ù ó Ð#ù:úOÐMì±ì°ì°Ð#ù:ûñü be the list of license keys the
smart card need to manage. The card has two safe primes Î
and á that are suitably large, and a suitably-large generatorÍ that is relatively prime to Ù . (Î , á , and Í are already
chosen by the card producer during production time.) The
values of Í and Ù can be obtained by the workstation, butÎ and á are kept secretly in the card.

For each license key ù)ý , we calculate Ñ:ý�Ó Ú ù:ý/ÜÆÞ
which is an odd integer. Assume that every Ñ)ý is rela-
tively prime to ã Ï�ÙÃÒ . The smart card computes the accu-
mulated hash þ ÓÆÍ Õ õ ÕKÿ������ Õ�� Ö	×aØ	Ù and keeps this value
inside the card as the integrity check value to the list. The
workstation for each element ù)ý from the list computesþ ý*Ó�Í Õ õ ����� Õ�� ô)õ Õ���� õ ����� Õ�� Öx×aØ	Ù which represents the accu-
mulated hash of all the Ñ
	 with �
�Ó�� . The workstation
keeps the Ï%ù ý Ð þ ý Ò pairs as the data structure. At the ini-
tial state, the license key list is empty. Therefore, initially
the data structure in the workstation is null, whereas the in-
tegrity check value in the smart card is the generator Í .

Query: The smart card sends a membership query to the
workstation with format � ù)ý�� . The workstation will look up
its data structure to find whether ù)ý exists. If ù:ý does not

exist in the list, the workstation simply replies NO. If ùCý
exists in the list, the workstation replies � YES Ð þ ý�� . Note
that if ù ý is a member of the list, there is no reason for the
workstation to reply NO, which will eventually result in the
loss of a software license.

Validation: To verify the answer of a query � YES Ð þ ý � ,
the smart card first computes Ñ ý Ó Ú ù ý Ü Þ , then computesþ Õ �ý Öx×aØ	Ù and compares it to þ . If þ Ó þ Õ �ý Ö	×aØ	Ù , then
the smart card is reassured of the validity of the answer.
Indeed, it is generally accepted to be computational infea-
sible for someone who does not know the values of Î and á
to compute a value � such that þ Ó � ú���� ó Öx×aØ·Ù whenù �� ÷ . Therefore, it is computational infeasible for an ad-
versary to fake a particular membership.

Insertion: To insert a license key ù)û�� ó into the list ÷ ,
both the data structure � and the integrity check value �
need to be updated. The card updates the integrity check
value of the new list ÷ ÛíÓ ÷�� ø=ù û�� ó ü by setting the
accumulated hash þ Û�Ó þ Õ ��� õ Ö	×aØxÙ , where Ñ û�� ó ÓÚ ù û�� ó ÜyÞ . The workstation updates the data structure by
computing new þ Ûý Ó þ Õ ��� õý Ö	×aØ	Ù for each element. The
workstation also adds Ï%ù)û�� ó Ð þ û�� ó Ó Í Õ õ Õ ÿ ����� Õ � Ö	×aØ·ÙÃÒ
into the data structure.

Deletion: To delete a license key ù�	 from the list ÷ , both
the workstation and the smart card first verify ù�	 � ÷ , then
update the data structure � and its integrity check value � .
The list will become ÷ Û8Ó ÷! øEù"	=ü . The smart card com-
putes Ñ"	?Ó Ú ù
	,Ü¨Þ and Ñ ï$ó	 as multiplicative inverse mod-
ulo ã Ï�ÙíÒ (recall that each Ñ:ý is relative prime to ã Ï�ÙÃÒ).
The smart card then updates the integrity check value by
setting the accumulated hash þ Û½Ó þ Õ ô)õ# Ö	×aØ·Ù . Indeed, þ Û
is equal to the accumulated hash of all Ñ ý with � �Ó � , which
is exactly the accumulated hash of new list ÷ Û . The worksta-
tion first deletes the entry of license key ù�	 , then computesþ ý for all � �Ó � from scratch. Note that the smart card cannot
reveal Ñ ï$ó	 to the workstation, otherwise, the workstation
could factor Ù by the knowledge of Ñ�	 and Ñ ï$ó	 . The per-
formance of this scheme using the exponential accumulator
is summarized in Table 3.

Smart Card Workstation
space $ Ï¡Þ=Ò $ Ï&%-Ò

insertion time $ Ï¡Þ�Ò $ Ï'%-Ò
deletion time $ Ï¡Þ�Ò $ Ï&% ú Ò

query/verify time $ Ï�Þ�Ò $ Ï¡Þ=Ò
Table 3. One-way accumulator scheme

5.3 Balanced tree scheme

In the one-way accumulator scheme, there is a need to
perform exponentiations for validation and updating a li-

cense key in the list. As computing modular exponentiation
is expensive, we avoid it by using only cryptographic hash
functions, in a kind of balanced tree scheme that has been
used by many others before (e.g., [7, 4, 5, 18, 21], to men-
tion a few). Because this is a standard technique, we only
sketch it briefly.

Support each card has a pseudorandom function [14] (*)
with seed + only known to itself. We maintain a 2-3 tree
with leaves corresponding to the license keys in the list (de-
tails of 2-3 trees can be found in [1]). Recall that a 2-3 tree
has all leaves at the same level/height and each internal node
has either 2 or 3 children. And a 2-3 tree is an ordered tree,
thus its leaves are in order.

Let ,.-0/"132"4�165648797�794�16:<; be the sorted list of license keys
the card need to manage. For any =?>A@ , we have 13B!>�1
C .
We build the balanced tree in a bottom-up fashion:

D For each leaf, let the value of the =�E'F leaf be a pairG (�) G 16BIH�4 size H , where size is 1.

D For each non-leaf node J , let the value of node J be
a pair

G (�) G'K 2
4 K 5�4 K�L H�4 size H , where
K B is the value of

the = E'F child of J (in case J has only two children,K�L -0M) and size is the number of leaves in the sub-
tree rooted at J .

The root value of the balanced tree is kept in the card. The
size value is used to prevent an adversary from inserting
a subtree instead of a license key.

To query the membership of license key 1 , the smart card
sends a membership query with value 1 to the workstation.
If 1 belongs to the list, the workstation sends all the nodes
on the path from the corresponding leaf to the root and their
children to the card. The card verifies that each nodes in
the path is equal to the hash value of its children. The card
also checks that the subtree sizes of the children sum-up to
be subtree size of their parent. Due to memory limitation of
the card, the card starts from the leaf up to the root verifying
one node at a time. To insert a license key into the list, the
card updates the values of the nodes on the insertion path.
To delete a license key from the list, the card updates the
values of the nodes on the deletion path. Again, the card
updates these values one by one from the leaf upto the root.
In order to prevent the workstation sending fault values, the
card verifies the path before updates the root value. The
performance of this balanced tree scheme is summarized in
Table 4.

5.4 License ticket scheme

In this subsection, we propose a simple and efficient
scheme, given the assumption that the license verification
happens much frequently than license transfer. This scheme
has N GPO H validation and insertion time and N G'Q H deletion

Smart Card Workstation
space N GRO H N G&Q H

insertion time N G&S9T�UVQ H N G'S�T6UVQ H
deletion time N G&S9T�UVQ H N G'S�T6UVQ H

query/verify time N G'S�T6UVQ H N G&S9T�UWQ H
Table 4. Balanced tree scheme

time. Due to space limitation, we sketch this scheme only
briefly, the details will be given in the full version of the
paper.

Suppose each card has a pseudorandom function () with
seed + only known to itself. The card can give an authen-
ticated tag () G 1XH for each license key 1 in the list. Later
on, a license key can prove its membership by showing the
authenticated tag. Unfortunately, it cannot prevent replay
attack (i.e. using an obsolete tag).

This scheme is inspired by the authenticated tag, the card
gives each license key 1 a license ticket if 1 belongs to the
list. The license ticket is of the form () G 1Y4 sn H where sn
is a serial number. The card assigns each license ticket an
identical serial number. The integrity check value of the
license key list will be those valid serial numbers. Given
N GRO H storage capacity of a card, the card cannot afford to
store each serial number within its storage. Instead the card
only store a boundary in the card. We manage these se-
rial numbers in a way that all serial numbers between the
boundary are valid and any serial number small than the
lower bound is obsoleted.

Initially the list is empty, the boundary in the card is also
null. Suppose in a given time, there are

Q
licenses in the

list, the boundary is Z [<4�[]\ Q_^.O8`
, for some [baAM . Verify-

ing the membership of a license key is easy: simply check
whether its ticket’s serial number is between the boundary.
To insert a new license key 1 into the list, the card issues
a license ticket for 1 with serial number [c\ Q

and set the
new boundary to Z [<4�[d\ QY`

. To delete a license key 1 with
ticket serial number egfhZ [<4i[d\ Qj^AOk`

, the card set its new
boundary as Z el\ O 4�em\ Qn^oO8` . The card effectively expires
1 ’s ticket, since e is not in the boundary any more. On the
other hand, it also expires some valid license tickets, in this
example, all tickets between Z [<4�e ^pOk`

are expired. We can
solve it by replacing each old ticket with a new ticket, i.e.,
replacing tickets of serial number between Z [<4�e ^qOk`

into
tickets of serial number between Z [r\ Q 4�es\ Qt^�Ok`

. The
performance of this license ticket scheme is summarized in
Table 5.

6 Conclusion

We gave an enhanced solution to software license man-
agement based on tamper-resistant smart cards. We pre-

Smart Card Workstation
space uwvPx�y uwv'zmy

insertion time uwvPx�y uwvRx"y
deletion time uwv'zmy uwv'zmy

query/verify time uwvRx"y uwvRx"y
Table 5. License ticket scheme

sented public-key protocols for binding software licenses to
smart cards and transferring licenses between cards. Our
model supports software distribution through retail stores,
wholesale from software publishers, and over the Internet.
The user can partially transfer licenses from several cards
onto a single card so that juggling between several cards in
the reader is eliminated. Given that the smart card has only
limited storage capacity, most of the license information is
stored outside the card where it is managed in a secure way.

References

[1] A. Aho, J. Ullman, and J. Hopcroft. The design and analysis
of computer alogrithm. Addison-Wesley, 1974.

[2] T. Aura and D. Gollmann. Software license management
with smart cards. In Proceedings of the USENIX Work-
shop on Smart Card Technology, USENIX Association, May
1999.

[3] T. Aura. Distributed access-rights management with delega-
tion certificates. In J. Vitek and C. Jensen, editors, Secure
Internet Programming: Security Issues for Distributed and
Mobile Objects, LNCS. Springer, 1999.

[4] M. Bellare, O. Goldreich, and S. Goldwasser. Incremental
cryptography: The case of hashing and signing. In Advances
in Cryptology CRYPTO 94, volume 839 of Lecture Notes in
Computer Science, pages 216-233, 1994. Springer-Verlag.

[5] M. Bellare, O. Goldreich, and S. Goldwasser. Incremental
cryptography and application to virus protection. In Proceed-
ings of the Twenty-Seventh Annual ACM Symposium on the
Theory of Computing, pages 45-56, 1995.

[6] J. Benaloh and M. de Mare. One-way accumulators: A de-
centralized alternative to digital signatures (extend abstract).
In T. Heleseth, editor, Advances in Cryptology (Proceedings
of EuroCrypt ’93), pages 274-285, Lofthus, Norway, May
1993.

[7] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor.
Checking the correctness of memories. Algorithmica, vol.
12, pages 225-244, 1994. Springer-Verlag.

[8] T. A. Budd. Protecting and managing electronic content with
a digital battery. Computer, 34(8):2-8, Augest 2001.

[9] M. Burrows, M. Abadi, and R. Needham. A Logic of
Authentication. ACM Transactions on Computer Systems,
8(1):18-36, February 1990.

[10] H. Chang and M. J. Atallah. Protecting software code by
guards. ACM Workshop on Security and Privacy in Digital
Rights Management, Philadelphia, Pennsylvania, November
2001.

[11] C. Collberg, C. Thomborson, and D. Low. Manufacturing
cheap, resilient, and stealthy opaque constructs. In Principles
of Programming Languages 1998, POPL’98, San Diego,
CA, January 1998.

[12] C. M. Ellison, B. Franz, B. Lampson, R. Rivest, B. M.
Thomas, and T. Ylonen. Simple public key certificate. In-
ternet draft, IETF SPKI Working Group, March 1998.

[13] M. Fischlin. Incremental cryptography and memory check-
ers. In EUROCRYPT: Advances in Cryptology: Proceedings
of EUROCRYPT, LNCS 1233, pages 393-408, 1997.

[14] O. Goldreich, S. Goldwasser, and S. Micali. How to con-
struct random functions. Journal of the ACM, 33(4):792-807,
October, 1986.

[15] M. T. Goodrich, A. Schwerin, and R. Tamassia. An efficient
dynamic and distributed cryptographic accumulator. Tech-
nical Report, Johns Hopkins Information Security Institute,
2000.

[16] B. Kaliski and J. Staddon. PKCS #1: RSA cryptogra-
phy specification, version 2.0. Internet draft, IETF Network
Working Group, September, 1998.

[17] G. Lowe. An attack on the Needham-Schroeder public-
key authentication protocol. Information Processing Letters,
56(3):131-133, 1995.

[18] U. Maheshwari, R. Vingralek, and W. Shapiro. How to build
a trusted database system on untrusted storage. In Proceed-
ings of the 4th Symposium on Operating Systems Design and
Implementation, pages 135-150, October, 2000.

[19] T. Maude and D. Maude. Hardware protection against soft-
ware piracy. Communications of the ACM, 27(9):950-959,
September 1984.

[20] R. C. Merkle. A certified digital signature. In G. Brassard,
editor, Advances in Cryptology CRYPTO 89, volume 435 of
Lecture Notes in Computer Science, pages 218-238, 1990.
Springer-Verlag.

[21] M. Naor and K. Nissim. Certificate revocation and certificate
update. In Proceedings of the 7th USENIX Security Sympo-
sium (SECURITY-98), pages 217-228, Berkeley, 1998.

[22] R. Needham and M. Schroeder. Using encryption for authen-
tication in large networks of computers. Communications of
the ACM, 21(12):993-999, 1978.

[23] B. Schneier. Applied Cryptography. John Wiley & Sons, Inc.,
second edition, 1995.

[24] D. Skeen. A quorum-based commit protocol. In Berkeley
Workshop on Distributed Data Management and Computer
Network, number 6, pages 69-80, February 1982.

[25] C. Wang. A Security Architecture for Survivabil-
ity Mechanisms. PhD thesis, University of Virginia,
School of Engineer and Applied Science, October 2000.
http://www.cs.virginia.edu/˜survive/pub/
wangthesis.pdf.

