
CERIAS Tech Report 2005-31

POLICY-HIDING ACCESS CONTROL IN OPEN ENVIRONMENT

by Jiangtao Li and Ninghui Li

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

Policy-Hiding Access Control in Open Environment∗

Jiangtao Li and Ninghui Li
CERIAS and Department of Computer Science, Purdue University

250 N. University Street, West Lafayette, IN 47907, USA
{jtli, ninghui}@cs.purdue.edu

Phone: (765) 496-6767, (765) 496-6756
FAX: (765) 494-0739

Abstract

In Trust Management and attribute-based access control systems, access control decisions are based on the
attributes (rather than the identity) of the requester: Access is granted if Alice’s attributes in her certificates
satisfy Bob’s access policy. In this paper, we develop a policy-hiding access control scheme that protects
both sensitive attributes and sensitive policies. That is,Bob can decide whether Alice’s certified attribute
values satisfy Bob’s policy, without Bob learning any otherinformation about Alice’s attribute values or Alice
learning Bob’s policy. To enable policy-hiding access control, we introduce the notion of Certified Input
Private Policy Evaluation (CIPPE). Our construction for CIPPE uses Yao’s scrambled circuit protocol and two
new techniques introduced in this paper. One novel technique is constructing circuits with uniform topology
that can compute arbitrary functions in a family. The other technique is Committed-Integer-based Oblivious
Transfer.

Keywords

Privacy, Access Control, Cryptographic Commitment, Cryptographic Protocol, Secure Function Evalua-
tion, Automated Trust Negotiation, Digital Certificate, Oblivious Transfer

1 Introduction
In Trust Management and attribute-based access control systems [5, 48, 23, 17, 38, 37], access control decisions
are based on attributes of clients, which are often documented by public keycertificates. Each certificate asso-
ciates a public key with the key holder’s identity and/or attributes such as employer, group membership, credit
card information, birth-date, citizenship, and so on. Because these certificates are digitally signed, they can serve
to introduce strangers to one another without online contact with the Certificate Authorities (CA’s). As attribute
information may be sensitive, the certificates that contain attribute data need protection just as other resources
do. Often times, the policies for determining who can access the resources are sensitive also and need protection
as well. Consider the following example.

Example 1 Bob is a bank offering certain special-rate loans and Alice would like to knowwhether she is eligible
for such a loan before she applies. Alice has a digital driver license certificate issued by the state authority; the
certificate contains her birth-date, address, and other attribute data. Alice has also an income certificate issued by
her employer documenting her salary and the starting date of her employment. Bob determines whether Alice is
eligible for a special-rate loan based on Alice’s attribute information. For example,Bob may require that one of
the following two conditions holds: (1) Alice is over 30 years old, has an income of no less than $43K, and has

∗This work is supported by NSF ITR grant CCR-0325951 and by sponsors of CERIAS.

1

been in the current job for over six months; (2) Alice is over 25 years old, has an income of no less than $45K,
and has been in the current job for at least one year.

Bob is willing to reveal that his loan-approval policy uses one’s birth-date, current salary, and the length of
the current employment; however, Bob considers the details of his policy to becommercial secret and does not
want to reveal it to others. Alice is interested in this loan and would like to go forward; however, she wants to
reveal as little information about her attributes as possible. In particular, Bobshouldn’t learn anything about her
address (which is also in her driver license) or learn the exact birth-date of Alice. Ideally, Alice wants Bob to
know whether she is eligible for the loan, but nothing else.

In the above example, the policy is a commercial secret, and knowledge of Bob’s policy would compromise
Bob’s strategy and invite unwelcome imitators. In other examples, the motivation for hiding the policy is not
security from an evil adversary, but simply the desire to prevent legitimate users from gaming the system; e.g.,
changing their behavior based on their knowledge of the policy (which usually renders an economically-motivated
policy less effective). This is particularly important for policies that are not incentive-compatible in economic
terms. Finally, it is important to point out that a process that protects Alice’s certificates from Bob is not only
to Alice’s advantage but also to Bob’s: Bob no longer needs to worry about rogue insiders in his organization
illicitly leaking (or selling) Alice’s private information, and may even lower his liabilityinsurance rates as a result
of this. Privacy-preservation is a win-win proposition, one that is appealing even if Alice and Bob are honest and
trustworthy entities.

Motivated by the preceding applications, we introduce and study the problemof policy-hiding access control.
In this framework, Bob has a private policy and Alice has several sensitive certificates. In the end, Bob learns
whether Alice’s attributes in her certificates satisfy his policy but nothing else about her attribute values; at the
same time, Alice does not learn Bob’s policy except for what attributes are required for his policy.

One may tempt to use existing general solutions to the two-party Secure Function Evaluation (2-SFE) [56,
31, 30] (e.g., Yao’s scramble circuit protocol [56]) for policy-hiding access control. That is, Alice inputs her
certificates and Bob inputs his policy; and they run a 2-SFE protocol to evaluateBob’s policy on Alice’s attributes
in her certificates. Such approach does not work well because (1) the function to compute in 2-SFE is public,
whereas the function (Bob’s policy) in policy-hiding access control is private; (2) as Alice needs to input her
certificates into 2-SFE, certificate verification, which involves verifying digital signatures, needs to be done as
a part of 2-SFE circuit evaluation. This is extremely inefficient. Observe that Alice is not allowed to input her
attribute values directly (instead of her certificates), because, Alice otherwise can input arbitrary faked attribute
values at her will1.

To avoid verifying certificates within circuit evaluation, we useOblivious Attribute Certificates(OACerts)
proposed in [35]. In an OACert, attribute values are not stored in the clear; instead, a cryptographic commitment
for each of these values is stored in the certificate. A certificate authority (CA)generates the commitments of
Alice’s attribute values and stores them in the certificates. Alice is able to discloseher certificates to Bob without
revealing her attribute values. OACerts can be integrated into current standards for public-key certificates such
as X.509 Public Key Infrastructure Certificates [6, 34] and X.509 Attribute Certificates [25]. A prototype of
OACerts as been implemented by storing the commitments in X.590v3 extension fields [35]. Using OACerts, the
policy-hiding access control problem becomes that Alice inputs her committed attributes which are documented
in her OACerts and Bob inputs his policy, they want to learn whether Alice’s committed attributes satisfy Bob’s
policy without revealing the other party’s private input.

In this paper, we introduce the notion ofCertified Input Private Policy Evaluation (CIPPE), which enables
policy-hiding access control using OACerts. Formal definition of CIPPE is given in Section 3. In CIPPE, Alice
has private inputsx1, x2, · · · , xn, Bob has a private functionf drawn from a familyF of functions (usuallyf
outputs ‘yes’ or ‘no’; however, we allow functions that output more than one bit of information), and Alice and
Bob sharec1, c2, · · · , cn, whereci is a cryptographic commitments ofxi, for 1 ≤ i ≤ n. The objective of CIPPE
is for both Alice and Bob to learn the result off(x1, · · · , xn). Bob should not learn anything aboutx1, . . . , xn;
and Alice should not learn more than the fact thatf ∈ F .

1In SFE, there is no way to prevent a dishonest party from changing its localinput before the protocol execution.

2

We develop a CIPPE protocol for certain families of functions that we believe are useful for expressing
policies. Our solution uses Yao’s scrambled circuit protocol [56, 39]. When a circuit is scrambled, the operation
in each gate is hidden; however, the topological structure of the circuit is not. Therefore, Alice could infer some
information about Bob’s policy by looking at the scrambled circuit if Bob constructs the circuit in the naive way.
To protect Bob’s private function, we develop an efficient approach to construct circuits with uniform topology
that can compute certain functions families. To ensure that Alice can evaluate thescrambled circuit only with her
attribute values as committed in her certificates, we develop an efficient and provably secure Committed-Integer-
based Oblivious Transfer (CIOT) protocol. The computation and communicationcomplexity of the proposed
CIPPE protocol is close to the complexity of the scramble circuit protocol that computesf(x1, . . . xn) wheref is
public. The CIPPE protocol is efficient; and we believe it can be deployed in practice (see [39] for an implement
of the scramble circuit protocol by Malkhi et al.).

The rest of this paper is organized as follows. We first describe how CIPPEcan be used to enable policy-
hiding access control in Section 2. Then we give a formal definition of CIPPE in Section 3. In Section 4,
we review two cryptographic building blocks that we use, namely, the Pedersen commitment scheme and the
scrambled circuit protocol for 2-SFE. In the next two sections, we present two building blocks that we build for
CIPPE, one is circuit construction of policy functions with uniform topology, the other is the CIOT protocol. In
Section 7 we give an efficient construction for CIPPE. We discuss the related work in Section 8 and conclude our
paper in Section 9.

2 Using CIPPE for Policy-Hiding Access Control
In this section, we present a high-level framework for policy-hiding access control using CIPPE. We describe
how policy-hiding access control in Example 1 can be enabled. In what follows, we usecommit to denote the
commitment algorithm of a commitment scheme. LetParams denote the public parameters forcommit. To
be secure, a commitment scheme cannot be deterministic; thus a commitment of a value a also depends on an
auxiliary input, a secret random valuer. We usec = commitParams(a, r) to denote a commitment ofa.

1. CA Setup. Let Bureau of Motor Vehicles (BMV) be the CA who issues digital driver licenses. BMV runs
the CA setup program, i.e., BMV picks a signature scheme, a commitment scheme denoted bycommit, a
pair of public/private keys, and the public parameters for the commitment scheme,Params. Let Company
C be Alice’s employer, the CA that issues an income certificate for Alice. Company Cruns the CA setup
program analogously.

2. Alice-CA Interaction. In this phase, Alice obtains two OACerts, one from BMV and the other from
Company C. Alice applies for a digital driver license certificate from BMV as follows. BMV first verifies
the correctness of her attribute values through some (possibly off-line) channels, then issues an OACert for
Alice. The OACert is signed using the BMV’s key and contains Alice’s publickey, BMV’s public key, and
a commitment for each attribute value that is to be included in the certificate. For example, letx be Alice’s
birth-date (encoded as an integer), BMV generates a random numberr, computesc = commitParams(x, r),
and storesc in the OACert. The BMV sends the signed OACert to Alice, together with all the secret random
values that have been used. Similarly Alice obtains an income certificate from heremployer Company C.

3. Alice-Bob Setup. Alice applies for a special-rate loan from Bob. Bob reveals that the loan policy takes
three attributes: birth-date, current salary, and length of current employment. Alice shows her driver license
OACert and income OACert to Bob. Alice then proves the ownership of herOACerts using the usual
techniques [34]. Recall that OACerts can be used as a regular digital certificate (e.g., X.509 certificate)
except the attribute values are stored in the committed form.

4. Alice-Bob Interaction. Alice and Bob run an interaction protocol, where Alice inputs her attribute values
and secret random values she has stored from Phase 2 (Alice-CA Interaction) and Bob inputs his private
policy function. In the end, both Alice and Bob learn whether Alice satisfies Bob’s policy without getting
other information about Alice’s attributes or Bob’s policy.

3

Alice
Bob

BMV

4. Interaction

3.

1.

2. 2.

1.

Company C

����
����
����
����
����
����

����
����
����
����
����
����

Figure 1: An example of policy-hiding access control procedures betweenAlice and Bob.

Figure 1 depicts how CIPPE can be used in the trust negotiation process. We observe that the two CA’s are
involved only in issuing certificates to Alice. When Alice is interacting with various servers such as Bob, the
CA’s are not involved at all.

3 Definition of Certified Input Private Policy Evaluation (CIPPE)
We now give a formal definition of CIPPE, which allows us to prove our protocol for CIPPE is secure.

Definition 1 (CIPPE) A CIPPE scheme is parameterized by a commitment schemecommit. A CIPPE scheme
involves a clientC, a serverS, and a trustedCA, and has the following four phases:

CA Setup CA takes a security parameterσ and another parameterℓ (which specifies the desired range of the
attribute values), and outputs public parametersParams for commit. The domain ofcommit contains
[0..2ℓ − 1] as a subset.CA sendsParams to C andS.

Client-CA Interaction C choosesn valuesx1, . . . , xn ∈ [0..2ℓ − 1] (these areC’s attribute values) and sends
them toCA. For eachi such that1 ≤ i ≤ n, CA generates a new random numberri and computes the
commitmentci = commitParams(xi, ri). CA givesci andri to C, andci to S.

Recall that in the actual usage scenario in Section 2,CA does not directly communicate withS. Instead,
CA verifiesC’s attribute values before computing the commitments and storesc1, . . . , cn into C’s OACert
certificate. The certificate is then sent byC to S, enablingS to have the commitment values as if they are
sent fromCA. Here we abstract these steps away to haveCA sendingci to S. We stress thatCA doesnot
participate in the policy-hiding access control process betweenC andS.

Client-Server Setup S chooses a familyF of functions and sends the description ofF to C (this models the fact
thatF is public knowledge). Eachf in F mapsn ℓ-bit integers to 0 or 1, i.e.,f : ([0..2ℓ − 1])n → {0, 1}.
S chooses a functionf ∈ F privately.

Now S hasc1, . . . , cn, andf . C hasc1, . . . , cn, x1, . . . , xn, andr1, . . . , rn.

Client-Server Interaction C andS run an interactive protocol. In the end, bothC andS outputf(x1, . . . , xn).

To avoid unnecessarily cluttering the exposition, in Definition 1 we assume that there is only oneCA in the
CIPPE scheme, and thatx1, . . . , xn are equal-length and are committed under the same commitment parameters.
The definition of the CIPPE scheme can be modified to support multiple CA’s, differentinput lengths, and
different commitment parameters. As a matter of fact, we can easily adjust ourCIPPE protocol to support the
situation in which eachxi is committed under a different set of commitment parameters.

4

Notion of Security We consider security against three kinds of adversaries [13, 30]. Anadversaryis a prob-
abilistic interactive Turing Machine [32]. Ahonest-but-curiousadversary is an adversary who follows the pre-
scribed protocol, and attempts to learn more information than allowed from the execution. A weak-honestadver-
sary [13] is an adversary who may deviate arbitrarily from the protocol, as long as its behavior appears honest
to parties executing the protocol. Amaliciousadversary is an adversary who may behave arbitrarily. To show
a CIPPE protocol is secure, it should be proved that neitherC nor S could gain more information than in the
ideal model, in which there is a trusted third party who receivesx1, . . . , xn from C andf from S, and sends
f(x1, . . . , xn) to bothC andS. See Appendix A for the formal definitions.

Our construction for CIPPE is provably secure in the honest-but-curious model and the weak-honest model.
The server’s privacy is guaranteed against any malicious client. A malicious server may learn additional infor-
mation about a client’s attributes; however, this additional information is limited to at mostone bit and such
malicious behavior will be detected by the client.

4 Cryptographic Assumptions and Tools
In this section we first give the cryptographic assumptions and then briefly reviewtwo cryptographic tools that
we use for our CIPPE construction: the Pedersen commitment scheme [45] and thescrambled circuit protocol
for 2-SFE [56].

Basic Cryptographic Assumptions The security of our CIPPE protocol is based on the following two standard
assumptions in cryptography. A functionµ is callednegligiblein the security parameterσ if, for every polynomial
p, |µ(σ)| is smaller than1/|p(σ)| for large enoughσ; otherwise, it isnon-negligible.

1. Discrete Logarithm (DL) Assumption. The DL problem is the following: Given a finite cyclic groupG,
a generatorg ∈ G, and a group elementy, computelogg y. The DL assumption is that there exists no
polynomial-time algorithm that can solve the DL problem with non-negligible probability.

2. Decision Diffie-Hellman (DDH) Assumption. The DDH problem is the following: Given a finite cyclic
groupG, a generatorg ∈ G, and group elementsga, gb, andgc, output 0 ifgc = gab and 1 otherwise. The
DDH assumption is that there exists no polynomial-time algorithm that can solve the DDH problem with
non-negligible advantage. The advantage of an algorithm is its success probability minus1/2, as one can
always randomly guess with a1/2 success probability.

The Pedersen Commitment Scheme [45]

Setup A trusted third partyT chooses two large prime numbersp andq such thatq dividesp − 1. It is typical
to havep be 1024 bits andq be 160 bits.T picksg to be a generator ofGq, the unique order-q subgroup
of Z

∗

p. We uses ∈R Zq to denote thats is uniformly randomly chosen fromZq. T picks s ∈R Zq and
computesh = (gs mod p). T keeps the values secret and makes the valuesp, q, g, h public.

Commit The domain of the committed values isZq. For a partyA to commit an integerx ∈ Zq, A chooses
r ∈R Zq and computes the commitmentc = (gxhr mod p).

Open To open a commitmentc, A revealsx andr, and a verifier verifies whetherc = (gxhr mod p).

We use a trusted third partyT to generate the parameters of the Pedersen commitment scheme because the
setup algorithm is run by a trustedCA in the CIPPE setting. The Pedersen commitment scheme isunconditionally
hiding: Even with unlimited computational power it is impossible for an adversary to learn any information about
the valuex from c, because the commitments of any two numbers inZq have exactly the same distribution. This
commitment scheme iscomputationally binding: Under the DL assumption, it is computationally infeasible for
an adversarial committer to open a valuex′ other thanx in the open phase of the commitment scheme.

5

The scrambled circuit protocol for 2-SFE The scrambled circuit protocol was developed by Yao [56] (See
Appendix B for more detailed description of the protocol). This protocol runsbetween two players: agenerator
and anevaluator. To computef(x, y), the generator first constructs a circuit for computingf . The generator
then constructs a scrambled version of the circuit and sends the scrambled circuit to the evaluator for evaluation.
In a scrambled circuit, each wire is associated with two random numbers, one corresponds to0 and the other to1.
Before the evaluation, the evaluator uses oblivious transfer to obtain the random values corresponding to each bit
of the evaluator’s private inputx. During the evaluation, the evaluator learns exactly one random value for each
internal wire, yet she doesn’t know whether it corresponds to0 or 1. Finally the evaluator sends the outcome of
the evaluation to the generator, who recovers the final result.

5 Building Circuits with Uniform Topological Structure
When a circuit is scrambled, the operation in each gate is hidden; however, thetopological structure of the circuit
is not. Therefore, the client could infer some information about the server’s function by looking at the scrambled
circuit if the server constructs the circuit in the naive way. To protect theserver’s private function, we present an
approach to construct circuits that can compute a family of functions and havethe same topological structure.

Function definition We propose a familyF of functions that can express many policy functions in real appli-
cations. We defineF as follows.F has four parametersℓ, n, m, andλ. Each functionf in F(ℓ, n, m, λ) takes
m parametersy1, . . . , ym ∈ [0..2ℓ − 1] andn inputsx1, . . . , xn ∈ [0..2ℓ − 1], and maps them to{0, 1}. Let
f(x1, . . . , xn) = p(xi1 op1 y1, xi2 op2 y2, · · · , xim opm ym), where1 ≤ i1, i2, . . . , im ≤ n, eachopi is one
of the following predicates{=, 6=, >, <,≥,≤}, andp is a disjunctive (or conjunctive) normal form in which the
number of disjuncts (or conjuncts) is no more thanλ.

Loosely speaking, if the server chooses a functionf from the familyF(ℓ, n, m, λ) of functions, the client
should not be able to distinguishf from any other functions in the family. For instance, consider Example 1 in
Section 1, Bob (the bank) can setn = 3, m = 8, λ = 4, and the policy function is of the form:

f(x1, x2, x3) = (x1 ≥ 30 ∧ x2 ≥ 43000 ∧ x3 > 6) ∨ (x1 ≥ 25 ∧ x2 ≥ 45000 ∧ x3 > 12),

wherex1 denotes age,x2 denotes annual income in dollars, andx3 denotes length of current employment in
months. Alice learns thatx1, x2, andx3 are used for comparison at most8 times, she would not learn which
values they are compared with, and how many times each attribute is compared, etc.

If Bob builds a circuit forf(x1, x2, x3) in the naive fashion, Alice can learn from the topology of the circuit
how many times eachxi is compared, what these comparison operators are, and some information about the
structure of the policy function. One technical difficulty is that each attribute maybe compared multiple times,
and we want to hide the number of times it is compared. A straightforward way to dothis is to usem circuits,
each of which select one input from then inputs. This is not efficient as it needsO(nm) gates. Our construction
uses results from the literature on permutation and multicast switching networks([46, 50, 2, 59, 55], to list a few).
We believe that some of these networks may be useful for constructing circuits for families of functions beyond
the ones considered in this paper.

Basic circuit components we introduce three basic circuit components that will be used in our construction:

1. Comparison circuit.Given twoℓ-bit integersx andy, the comparison circuit computesx = y, x 6= y,
x > y, orx < y. Observe thatx ≥ y andx ≤ y can be represented asx > y−1 andx < y+1, respectively.
Let xℓ−1 . . . x1x0 be the binary representation ofx andyℓ−1 . . . y1y0 be the binary representation ofy.

• Circuit for x > y is
∨ℓ−1

i=0

(

xi ∧ ¬yi ∧
∧ℓ−1

j=i+1(xj = yj)
)

• Circuit for x < y is
∨ℓ−1

i=0

(

¬xi ∧ yi ∧
∧ℓ−1

j=i+1(xj = yj)
)

• Circuit for x = y is
∧ℓ−1

i=0(xi = yi)

• Circuit for x 6= y is
∨ℓ−1

i=0(xi 6= yi)

6

k

nj

2j
1j

i

1

n

Pack Copy

k

2k

n

2i
1i

Input Output

x 3x2x1x0

(c)

(d)(b)

(a)
3y2y1y0y

Figure 2: Basic circuit components: (a) the structure of 4-bit comparison circuits, (b) the structure of 8-input
logical operation circuits, (c) the high-level schema for a generalizer circuit, (d) an (8,8)-generalizer,

Note that the circuits forx > y andx < y have the same topology. To make the structure of all comparison
circuits uniform, we modify the circuits forx = y andx 6= y by adding some “dummy” gates. For example,

the comparison circuit forx = y could be
∧ℓ−1

i=0

(

(xi = yi) ∧
∧ℓ−1

j=i+1 g(xi, yi)
)

whereg(xi, yi) always

outputs 1. Figure 2(a) shows the structure of 4-bit comparison circuits. Notethat eachℓ-bit comparison
circuit requiresO(ℓ) gates (5ℓ − 4 gates).

2. Logical operation circuit.Given m Boolean inputsa1, . . . , am, the logical circuit computes
∨

i∈S ai or
∧

i∈S ai whereS ⊆ {1, 2, . . . , m}. We can use a binary tree structure to implement them-input logical
circuit. For example, to compute the logical formula

∨

i∈S bi, every gate in the binary tree computes∨; if
i ∈ S we give the corresponding wire valueai, otherwise, set value 0. Figure 2(b) shows a 8-bit logical
operation circuit. Note that them-input logical circuits requireO(m) gates (m − 1 gates).

3. Generalizer circuit.An (n, n)-generalizer is an inputs andn outputs switching network, it passes each
input i to zero or more outputs. The existence of(n, n)-generalizer withO(n) gates has demonstrated
nonconstructively by Pipenger [46]. Ofman [43] gives a construction ofa generalizer using the schema
shown in Figure 2(c). In his construction, the network consists of two parts:a pack network and a copy
network. The pack network packs those inputs having requests to consecutive positions. The copy network
copies inputs to multiple outputs. The network Ofman proposed requires3n log n gates. Thompson [50]
improved Ofman’s work and gives a construction using2n log n gates. The Thompson’s construction
uses a reversed butterfly network concatenated with a butterfly network. Figure 2(d) is the Thompson’s
construction of a(8, 8)-generalizer.

Our construction Our construction takes the following three stages.

1. Copy Stage.The copy stage takesn ℓ-bit integersx1, . . . , xn and outputsm ℓ-bit integers in which eachxi

is copied to outputvi times wherevi ≥ 0 and
∑

vi = m. To build the copy stage in circuit, we constructℓ
identical(n, m)-generalizers, one for each bit. A(n, m)-generalizer can be implemented by⌈m

n
⌉ numbers

of (n, n)-generalizer. This stage needsO(ℓm log n) gates (around2ℓm log n gates).

7

2. Comparison Stage.The comparison stage takesm ℓ-bit integers and makesm comparisons. This stage
consists ofm comparison circuits, one for each(x, y) pair. This stage needsO(ℓm) gates (around5ℓm
gates).

3. Logical Computation Stage.Observe that all the disjunctive normal forms where the number of conjunc-
tions is no more thanλ can be expressed as

∨λ
j=1(

∧

i∈Sj
ai), whereS1, S2, . . . , Sm ⊆ {1, 2, . . . , m}. Such

disjunctive normal forms can be implemented usingλ m-input logical operation circuits and oneλ-input
logical operation circuits. For eachm-input logical operation circuit, the input is them output bits from
the comparison stage, the output is connected to the input wire of the lastλ-input logical operation circuit.
The conjunctive normal forms can be implemented analogously. This stage needsO(λm) gates (around
λm gates).

Generalization Network

2x

4y3y2y1y

3x1x

L

C

LLLL

C CC

Stage
Computation
Logical

Copy
Stage

Stage
Comparison

Figure 3: An example circuit structure for the familyF of functions with parametersℓ = 3, n = 3, m = 4, and
λ = 4. There are 4 comparison circuits in the comparison stage, and 5 logical operation circuits in the logical
computation stage.

Figure 3 shows the structure of circuits that can compute the familyF(3, 3, 4, 4) of functions. For the family
F(ℓ, n, m, λ) of functions, our circuit construction needsO(ℓm log n+λm) gates (around(2 log n+5)ℓm+λm
gates).

6 Committed-Integer based Oblivious Transfer (CIOT) Protocol
To build a CIPPE protocol using the scrambled circuit protocol (see Section 4),we have to ensure that the client
gets the keys of the input wires corresponding to her committed input. We present a Committed-Integer-based
Oblivious Transfer (CIOT) protocol to achieve this. A CIOT protocol involves a sender and a receiver. The
receiver has a committedℓ-bit integerx, the sender hasℓ pairs of values(k0

1, k
1
1), · · · , (k0

ℓ , k
1
ℓ), and both the

sender and receiver share the commitment ofx. In the end of the protocol, the receiver learns exactly one key
in each pair; furthermore, the keys she learns corresponds to the bits inx. The main idea of CIOT is as follows.
Using the commitment ofx, the receiver generatesℓ new commitments, one for each bit ofx. Then the sender
and receiver run a modified version of non-interactive oblivious transfer protocol [4, 41] for each commitment.

Protocol 1 (CIOT Protocol) Let 〈p, q, g, h〉 be the public parameters of the Pedersen commitment scheme. All
arithmetic in this section ismod p unless specified otherwise. Letx be an integer in[0..2ℓ−1], andxℓ−1 . . . x1x0

be the binary representation ofx, i.e.,x = x02
0 + x12

1 + · · · + xℓ−12
ℓ−1. Let c = commit(x, r) = gxhr be the

commitment ofx with a randomr ∈ Zq.

8

Input The receiver hasx andr, and the sender hasℓ pairs of integers(k0
0, k

1
0), . . . , (k

0
ℓ−1, k

1
ℓ−1). Both the sender

and receiver havec.

Output The receiver learnskx0

0 , . . . , k
xℓ−1

ℓ−1 . The sender learns nothing.

1. The receiver decomposesc into ℓ commitments, one for each bit ofx. More specifically, the receiver
randomly picksr1, . . . , rℓ−1 ∈ Zq and setsr0 = r −

∑ℓ−1
i=1 2iri mod q. The receiver computesci =

commit(xi, ri) = gxihri for i = 0, 1, . . . , ℓ − 1, and gives them to the sender. The sender checks that
∏ℓ−1

i=0(ci)
2i

= c. Observe that
∏ℓ−1

i=0(ci)
2i

=
∏ℓ−1

i=0(gaihri)2
i
= g
Pℓ−1

i=0
ai2

i
h
Pℓ−1

i=0
ri2

i
= gahr = c

2. For i = 0, 1, . . . , ℓ − 1, the sender calculatesK0
i = 〈p, q, h, ci〉 andK1

i = 〈p, q, h, cig
−1〉. Using the

ElGamal encryption scheme [22] (modified to have messages from a subgroup [51]), the sender sends to
the receiver two ciphertextsEK0

i
(k0

i) = (hyi , k0
i c

yi

i) andEK1

i
(k1

i) = (hzi , k1
i (cig

−1)zi), whereyi andzi

are chosen uniformly randomly fromZq by the sender. The receiver can obtainkxi

i as follow: If xi equals
0, thenci = hri , the receiver knows the private key corresponding toK0

i (the private key isri), therefore
she can decryptEK0

i
(k0

i) to recoverk0
i . If xi equals 1, thencig

−1 = hri , the receiver knows the private

key corresponding toK1
i , she can decryptEK1

i
(k1

i) to recoverk1
i .

Note that both the sender and receiver needO(ℓ) modular exponentiation. More precisely, the sender needs
2ℓ modular exponentiation, and receiver needs4ℓ modular exponentiation. The sender does not learn anything
from the CIOT protocol. Under the DDH assumption and the DL assumption onGq, the receiver learns at most
one value per(k0

i , k
1
i) pair; and if the receiver learnsℓ keys, these values must bekx0

0 , . . . , k
xℓ−1

ℓ−1 . Observe that it
is possible for an adversarial receiver to learn keys other thankx0

0 , . . . , k
xℓ−1

ℓ−1 ; however, in such case, she cannot
get allℓ keys. This is sufficient for the security of our CIPPE protocol, because if the client cannot get a key for
each input wire, then she cannot evaluate the scrambled circuit to get an output. Due to space limitation, we put
security properties and formal proofs of CIOT protocol in Appendix C.

7 Our CIPPE Protocol
We now give the CIPPE protocol which follows Definition 1, and specify what each participant does in each step.

Protocol 2 (CIPPE Protocol) The CIPPE protocol involves a clientC, a serverS, and a trustedCA, and has the
following four phases:

CA Setup CA takes a security parameterσ and a setup parametersℓ as input.CA runs the Pedersen commitment
setup algorithm to createParams = 〈p, q, g, h〉 such that2ℓ < q, and sends it toC andS.

Client-CA Interaction C choosesn integersx1, . . . , xn ∈ [0..2ℓ − 1] and sends them toCA. For eachxi,
1 ≤ i ≤ n, CA picksri ∈R Zq and computes the commitmentci = (gxihri mod p). CA givesci andri to
C, andci to S.

Client-Server Setup S takes three parametersℓ, n, m, andλ as input, and outputs the familyF of functions as
defined in Section 5.S sends the description ofF to C, then chooses a private functionf ∈ F .

Now S hasc1, . . . , cn, andf . C hasc1, . . . , cn, x1, . . . , xn, andr1, . . . , rn.

Client-Server Interaction The steps are as follows.

1. Scrambling the circuit:S constructs a circuit that computes the functionf using the technique speci-
fied in Section 5, then scrambles the circuit in the same manner as the generator scrambles the circuit
in the scrambled circuit protocol.S gives the scrambled circuit toC.

2. Committing the output:Let wire wt denote the unique output wire of the scrambled circuit, and
(k0

t , k
1
t) denote the corresponding keys ofwt. S sends〈η0 = Ek0

t
[0σ] , η1 = Ek1

t
[1σ]〉 to C.

3. Coding the input: For eachxi where1 ≤ i ≤ n, there areℓ corresponding input wires in the
scrambled circuit.C andS run the CIOT protocol in whichC inputsxi, ri, andci; andS inputsci and
ℓ pairs of keys that correspond to theℓ input wires. In the end of this step,C learns one key per input
wire; furthermore, each key corresponds to a bit inC’s committed input.

9

4. Evaluating the circuit:After Step 3,C possesses enough information to evaluate the scrambled circuit
independently.C evaluates the circuit and obtainsk, the key of the output wire. Recall thatC receives
〈η0, η1〉 from S in step 2,C tries to decryptη0 andη1 using keyk. If C fails in decrypting both of
them, she aborts; this happens only whenS intentionally misbehave. IfC succeeds in decryptingη0

and gets0σ, she outputs 0. Otherwise, ifC succeeds in decryptingη1 and gets1σ, she outputs 1.

5. Notifying the result:C sendsk to S, enablingS to output0 if k = k0
t and output1 if k = k1

t .

Note that the idea of committing the output in step 2 comes from [42, 39] to achievethe fairness of the
computation. The client and server needO(ℓn) modular exponentiation andO(ℓm log n + λm) symmetric key
encryptions. More precisely, the server needs around2ℓn modular exponentiation and the client needs around
4ℓn modular exponentiation, both the client and server need(16 log n+40)ℓm+8λm symmetric key encryptions.

The CIPPE protocol is complete. Because if bothC andS follow the protocol,C will get proper keys of
the input wires, and will be able to evaluate the scrambled circuit correctly. Our CIPPE protocol is secure both
in the honest-but-curious model and in the weak-honest model. In the malicious model, the protocol is secure
against the client. A malicious server may learn one bit more information than she is allowed, by constructing a
malfunction circuit. Considering the damage caused by being detected to be dishonest, this small extra gain does
not seem to warrant such malicious behavior in the application scenarios we consider. Due to space limitation,
we put security properties and formal proofs of CIPPE protocol in details inAppendix D.

8 Related Work
Automated Trust Negotiation Our work is closely related to a growing body of work on Automated Trust Ne-
gotiation (ATN) [54, 58, 57, 53] whose goal is to enable clients and servers to establish trust in each other through
cautious, iterative, bilateral disclosure of sensitive certificates and policies. Recent works on using cryptographic
protocols for ATN include Hidden Credentials [33, 7, 26], Secret Handshakes [3], and Oblivious Signature Based
Envelope [36]. While these schemes are useful for scenarios where policies are based on attributes such as
secret clearance or memberships in some secret underground movements,they are not suitable for the kind of
e-commerce scenarios such as Example 1. Using any of these schemes, the server could send an encrypted mes-
sage to a client such that the client can decrypt if and only if the client has certificates whose contents are the
same as those identified by the server’s policy; at the same time, the server does not know whether the client has
those certificates or not. These schemes can implement policy-hiding access control when the servers’ policies
have very specific forms. In Example 1, if Bob’s loan approval policy is eitherAlice’s birthdate is April 1st,
1974 or Alice’s salary is exactly $60,000, then policy-hiding access control can be achieved using these existing
schemes. However, for the kind of policies in Example 1, where many possibleattribute values would satisfy a
policy, these schemes do not work well.

Secure Function Evaluation Secure Function Evaluation (SFE) [56, 31, 30] is a powerful and general cryp-
tographic primitive. It allows two or more parties to jointly compute some function while hiding their inputs
to each other. CIPPE may be cast as a special case of 2-SFE problem: (1) takex1, . . . , xn as Alice’s private
input and make the commitment verification part of the public function, (2) treat the description of Bob’s private
functionf as part of Bob’s private input, and (3) make the public function to be evaluated a universal circuit that
takesf ’s description,x1, x2, · · · , xn, andc1, c2, · · · , cn, and computesf(x1, · · · , xn) (this universal circuit is
similar in concept to a universal Turing Machine). However, applying thegeneral solution in this case is very
inefficient, as the circuit for verifying commitments and the universal circuit are very large.

The idea of committing local inputs before the function evaluation has appeared inthe SFE literature (e.g.,
[16, 31, 29, 9]) to ensure the correctness of the computation. This concept is substantially different from our
model, where Alice’s input is certified by a trusted third party in CIPPE. Cachin andCamenisch [9] introduced
the notion of fair secure computation where a partially trusted third partyT participates to ensure the fairness
of the computation. Their work [9] is different from CIPPE in that (1)T ’s job is to achieve fairness instead of
certifying Alice’s input (in fact, Alice’s input is even private toT), and (2) the function to compute is public.

10

Selective Private Function Evaluation (SPFE) was introduced by Canetti et al. [14] whose goal is for Bob to
compute a private functionf(xi1 , . . . , xim) over a subset of Alice’s databasex = x1, . . . , xn without revealing
Bob’s function. In their, the authors focused on the case wheref andm are public but them locations in the
database are private to Bob.

Abadi and Feigenbaum [1] introduced the notion of Secure Circuit Evaluation.In Secure Circuit Evaluation,
Alice has a private inputx and Bob has a private circuitC. In the end Alice learns the valueC(x) but nothing
else aboutC. Sander et al. [49] improved the previous results and gave an efficient one-round protocol for secure
evaluation of circuits that have polynomial size and depthO(log n). In these protocols, Alice can choose which
input value to use in the circuit evaluation. It is not clear how Secure Circuit Evaluation protocols can be applied
to CIPPE because the client’s input in CIPPE is committed and certified by a trust CA.

OACerts and Anonymous Credentials Our work builds directly on OACerts developed in [?]. The ideas of
storing commitments of attribute values in certificates appeared in the literature on anonymous credentials [15, 8,
11, 10]. Thus it is possible to replace OACerts and use anonymous credentials in policy-hiding access control and
CIPPE. Note that using zero-knowledge proof protocols [18, 40, 27, 8,11] together with OACerts or anonymous
credentials, Alice can prove that her attribute values in her certificates havecertain properties without revealing
any other information about her attributes. However, in order for Alice to use such techniques to prove that she
satisfies Bob’s policy, she needs to know the policy. Therefore, zero-knowledge proof protocols are not suitable
for policy-hiding access control.

Oblivious Transfer Crépeau [19] introduced the notion of Committed Oblivious Transfer (COT). InCOT, Bob
commits two bits:a0 anda1, and Alice commits a bitb. In the end, Alice learnsab without learning anything else,
while Bob learns nothing. Garay et al. [28] gave an efficient constructionof COT in the universal composability
framework. The CIOT protocol we propose in this paper differs from the COT protocols in that the receiver’s
input in CIOT is a committed integer instead of a bit. Finally, the details of our CIOT protocol are reminiscent
of the techniques used in the oblivious transfer protocols [41, 52], zero-knowledge proofs of that a committed
number belongs to an interval [40, 21], and anonymous fingerprinting [44].

9 Conclusion and Future Work
We have presented an efficient and provably secure solution to policy-hiding access control, which enables Bob
to decide whether Alice’s certified attribute values satisfy Bob’s policy, withoutBob learning any other infor-
mation about Alice’s attribute values or Alice learning Bob’s policy. Our approach uses OACerts and CIPPE.
Our construction for CIPPE uses Yao’s scrambled circuit protocol and two novel techniques, one is construct-
ing topologically uniform circuits that can compute arbitrary functions in a functionfamily, the other is the
Committed-Integer-based Oblivious Transfer (CIOT) protocol. Future work includes constructing efficient topo-
logically uniform circuits for function families other than the one we studied in Section5.

References

[1] Martı́n Abadi and Joan Feigenbaum. Secure circuit evaluation: A protocol basedon hiding information
from an oracle.Journal of Cryptology, 2(1):1–12, 1990.

[2] S. Arora, T. Leighton, and B. Maggs. On-line algorithms for path selection ina nonblocking network. In
Proceedings of the twenty-second annual ACM symposium on Theory ofcomputing, pages 149–158. ACM
Press, 1990.

[3] Dirk Balfanz, Glenn Durfee, Narendar Shankar, Diana Smetters, Jessica Staddon, and Hao-Chi Wong.
Secret handshakes from pairing-based key agreements. InProceedings of the IEEE Symposium and Security
and Privacy, pages 180–196, May 2003.

11

[4] Mihir Bellare and Silvio Micali. Non-interactive oblivious transfer and applications. InAdvances in Cryp-
tology: CRYPTO ’89, volume 435 ofLecture Notes in Computer Science, pages 547–557. Springer, 1989.

[5] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust management. InProceedings of the 1996
IEEE Symposium on Security and Privacy, pages 164–173. IEEE Computer Society Press, May 1996.

[6] Sharon Boeyen, Tim Howes, and Patrick Richard. Internet X.509 Public Key Infrastructure LDAPc2
Schema. IETF RFC 2587, June 1999.

[7] Robert Bradshaw, Jason Holt, and Kent Seamons. Concealing complex policies with hidden credentials. In
Proceedings of 11th ACM Conference on Computer and Communications Security, October 2004.

[8] Stefan A. Brands.Rethinking Public Key Infrastructures and Digital Certificates: Building in Privacy. MIT
Press, August 2000.

[9] Christian Cachin and Jan Camenisch. Optimistic fair secure computation. InAdvances in Cryptology:
CRYPTO ’00, volume 1880 ofLecture Notes in Computer Science, pages 93–111. Springer, 2000.

[10] Jan Camenisch and Els Van Herreweghen. Design and implementation of the idemix anonymous credential
system. InProceedings of the 9th ACM Conference on Computer and Communications Security, CCS ’02,
pages 21–30. ACM, nov 2002.

[11] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous credentials
with optional anonymity revocation. InAdvances in Cryptology: EUROCRYPT ’01, volume 2045 ofLecture
Notes in Computer Science, pages 93–118. Springer, 2001.

[12] Ran Canetti. Security and composition of multiparty cryptographic protocols.Journal of Cryptology,
13(1):143–202, 2000.

[13] Ran Canetti, Uri Feige, Oded Goldreich, and Moni Naor. Adaptivelysecure multi-party computation. In
STOC ’96: Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pages 639–
648. ACM Press, 1996.

[14] Ran Canetti, Yuval Ishai, Ravi Kumar, Michael K. Reiter, Ronitt Rubinfeld, and Rebecca N. Wright. Se-
lective private function evaluation with applications to private statistics. InProceedings of the twentieth
annual ACM symposium on Principles of distributed computing, pages 293–304. ACM Press, 2001.

[15] David Chaum. Security without identification: Transaction systems to make big brother obsolete.Commu-
nications of the ACM, 28(10):1030–1044, 1985.

[16] David Chaum, Ivan Damg̊ard, and Jeroen van de Graaf. Multiparty computations ensuring privacy of each
party’s input and correctness of the result. InAdvances in Cryptology: CRYPTO ’87, volume 293 ofLecture
Notes in Computer Science, pages 87–119. Springer, 1988.

[17] Dwaine Clarke, Jean-Emile Elien, Carl Ellison, Matt Fredette, Alexander Morcos, and Ronald L. Rivest.
Certificate chain discovery in SPKI/SDSI.Journal of Computer Security, 9(4):285–322, 2001.

[18] Ronald Cramer, Matthew K. Franklin, Berry Schoenmakers, and Moti Yung. Multi-authority secret-ballot
elections with linear work. InAdvances in Cryptology: EUROCRYPT ’96, volume 1070 ofLecture Notes
in Computer Science, pages 72–83. Springer, 1996.

[19] Claude Cŕepeau. Verifiable disclosure of secrets and applications (abstract). InAdvances in Cryptology:
EUROCRYPT ’89, volume 434 ofLecture Notes in Computer Science, pages 150–154. Springer, 1990.

12

[20] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography.SIAM Journal on Computing,
30(2):391–437, 2000.

[21] Glenn Durfee and Matt Franklin. Distribution chain security. InProceedings of the 7th ACM Conference
on Computer and Communications Security, pages 63–70. ACM Press, 2000.

[22] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In
Advances in Cryptology: CRYPTO ’84, volume 196 ofLecture Notes in Computer Science, pages 10–18.
Springer, 1985.

[23] Carl Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian Thomas, and Tatu Ylonen. SPKI certificate
theory. IETF RFC 2693, September 1999.

[24] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for signing contracts.Com-
munications of the ACM, 28(6):637–647, 1985.

[25] Stephen Farrell and Russell Housley. An internet attribute certificate profile for authorization. IETF RFC
3281, April 2002.

[26] Keith B. Frikken, Mikhail J. Atallah, and Jiangtao Li. Hidden access control policies with hidden creden-
tials. InProceedings of the 3rd ACM Workshop on Privacy in the Electronic Society, October 2004.

[27] Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge protocols to prove modular polynomial
relations. InAdvances in Cryptology: CRYPTO ’97, volume 1294 ofLecture Notes in Computer Science,
pages 16–30. Springer, 1997.

[28] Juan Garay, Philip MacKenzie, and Ke Yang. Efficient and universally composable committed oblivious
transfer and applications. InTheory of Cryptography, TCC 2004, volume 2951 ofLecture Notes in Com-
puter Science, pages 297–316. Springer, 2004.

[29] Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified vss andfast-track multiparty computations
with applications to threshold cryptography. InPODC ’98: Proceedings of the seventeenth annual ACM
symposium on Principles of distributed computing, pages 101–111. ACM Press, 1998.

[30] Oded Goldreich. Secure multi-party computation, October 2002.

[31] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game. InProceedings of the
nineteenth annual ACM conference on Theory of computing, pages 218–229, May 1987.

[32] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof
systems.SIAM Journal on Computing, 18:186–208, feb 1989.

[33] Jason E. Holt, Robert W. Bradshaw, Kent E. Seamons, and Hilarie Orman. Hidden credentials. InProceed-
ings of the 2nd ACM Workshop on Privacy in the Electronic Society, October 2003.

[34] Russell Housley, Warwick Ford, Tim Polk, and David Solo. Internet X.509 Public Key Infrastructure
Certificate and CRL Profile. IETF RFC 2459, January 1999.

[35] Jiangtao Li and Ninghui Li. OACerts: Oblivious attribute certificates. In Proceedings of the 3rd Confer-
ence on Applied Cryptography and Network Security (ACNS), volume 3531 ofLecture Notes in Computer
Science. Springer, June 2005. To appear.

[36] Ninghui Li, Wenliang Du, and Dan Boneh. Oblivious signature-based envelope. InProceedings of the 22nd
ACM Symposium on Principles of Distributed Computing (PODC). ACM Press, July 2003.

13

[37] Ninghui Li, John C. Mitchell, and William H. Winsborough. Design of a role-based trust management
framework. InProceedings of the 2002 IEEE Symposium on Security and Privacy, pages 114–130. IEEE
Computer Society Press, May 2002.

[38] Ninghui Li, William H. Winsborough, and John C. Mitchell. Distributed credential chain discovery in trust
management.Journal of Computer Security, 11(1):35–86, February 2003.

[39] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay – secure two-party computation
system. InProceedings of the 13th USENIX Security Symposium, pages 287–302. USENIX, 2004.

[40] Wenbo Mao. Guaranteed correct sharing of integer factorization with off-line shareholders. InPublic
Key Cryptography: PKC’98, volume 1431 ofLecture Notes in Computer Science, pages 60–71. Springer,
February 1998.

[41] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In Proceedings of SODA 2001 (SIAM
Symposium on Discrete Algorithms), pages 448–457, January 2001.

[42] Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preservingauctions and mechanism design. In
Proceedings of the 1st ACM conference on Electronic commerce, pages 129–139. ACM Press, 1999.

[43] Ju P. Ofman. A universal automaton.Transactions of the Moscow Math Society, 14:200–215, 1965.

[44] Joon S. Park and Ravi Sandhu. Smart certificates: Extending X.509 forsecure attribute services on the web.
In Proceedings of the 22nd National Information Systems Security Conference, October 1999.

[45] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. InAdvances
in Cryptology: CRYPTO ’91, volume 576 ofLecture Notes in Computer Science, pages 129–140. Springer,
1991.

[46] Nicholas J. Pippenger. Generalized connectors. Technical Report RC-6532, IBM Res. Rep., 1977.

[47] Michael O. Rabin. How to exchange secrets by oblivious transfer. Technical Report Memo TR-81, Aiken
Computation Laboratory, Harvard University, 1981.

[48] Ronald L. Rivest and Bulter Lampson. SDSI — a simple distributed security infrastructure, October 1996.
Available at http://theory.lcs.mit.edu/∼rivest/sdsi11.html.

[49] Tomas Sander, Adam Young, and Moti Yung. Non-interactive cryptocomputing for nc1. InProceedings
of the 40th Annual Symposium on Foundations of Computer Science (FOCS), page 554. IEEE Computer
Society, 1999.

[50] Clark D. Thompson. Generalized connection networks for parallel processor intercommunication.IEEE
Transactions on Computers, 27(12):1119–1125, December 1978.

[51] Yiannis Tsiounis and Moti Yung. On the security of elgamal based encryption. InProceedings of the First
International Workshop on Practice and Theory in Public Key Cryptography, pages 117–134. Springer,
1998.

[52] Wen-Guey Tzeng. Efficient 1-out-n oblivious transfer schemes.In PKC ’02: Proceedings of the 5th
International Workshop on Practice and Theory in Public Key Cryptosystems, number 2274 in Lecture
Notes in Computer Science, pages 159–171. Springer, 2002.

[53] William H. Winsborough and Ninghui Li. Safety in automated trust negotiation. In Proceedings of the
IEEE Symposium on Security and Privacy, pages 147–160, May 2004.

14

[54] William H. Winsborough, Kent E. Seamons, and Vicki E. Jones. Automated trust negotiation. InDARPA
Information Survivability Conference and Exposition, volume I, pages 88–102. IEEE Press, January 2000.

[55] Yuanyuan Yang and Gerald M. Masson. The necessary conditions for clos-type nonblocking multicast
networks.IEEE Transactions on Computers, 48(11):1214–1227, 1999.

[56] Andrew C. Yao. How to generate and exchange secrets. InProceedings of the 27th IEEE Symposium on
Foundations of Computer Science, pages 162–167. IEEE Computer Society Press, 1986.

[57] Ting Yu and Marianne Winslett. Unified scheme for resource protectionin automated trust negotiation. In
Proceedings of IEEE Symposium on Security and Privacy, pages 110–122. IEEE Computer Society Press,
May 2003.

[58] Ting Yu, Marianne Winslett, and Kent E. Seamons. Supporting structured credentials and sensitive policies
through interoperable strategies for automated trust negotiation.ACM Transactions on Information and
System Security (TISSEC), 6(1):1–42, February 2003.

[59] Ellen Witte Zegura. Evaluating blocking probability in generalized connectors. IEEE/ACM Transactions
on Networking, 3(4):387–398, 1995.

15

A Formal Security Definition of CIPPE
The security definitions we use follow [30, 12, 13]. The security of CIPPE protocol is analyzed by comparing
what an adversary can do in the protocol to what she can do in the ideal model with a Trusted Third Party (TTP).
Recall in the CIPPE scheme,C inputsx, S inputsf , and finally bothC andS outputf(x). The ideal model differs
for honest-but-curious and malicious adversaries (see [30] for a formal definition). When we consider malicious
adversaries, there are certain things we cannot prevent: an adversary (1) may refuse to participate in the protocol,
(2) may substitute its local input, and (3) may abort the protocol prematurely.When we consider weak-honest,
we cannot prevent an adversary from substituting her local input.

1. For the ideal model with honest-but-curious adversaries, the client sends x to the TTP, the server sends
f to the TTP, and finally both the client and the server receivef(x). An honest party outputs her output
from the TTP, whereas a honest-but-curious party outputs an arbitraryfunction from her initial input and
the output she obtained from the TTP.

2. The ideal model for weak-honest adversaries is similar to the ideal model for honest-but-curious adver-
saries, but differs in that a weak-honest adversary can substitute her input before sending to the TTP.

3. The ideal model for malicious adversaries is similar to the ideal model for honest-but-curious adversaries,
but differs in that a malicious adversary can terminate the protocol prematurely, even at a stage when she
has received her output and the other party has not.

Definition 2 (The Ideal Model) Let f : {0, 1}∗ → {0, 1} be a functionality. Let(C, S) be a pair of probabilistic
polynomial-time machines representing the client and server in the ideal model. Such a pair isadmissible, if at
least one of(C, S) is honest. The joint execution off under(C, S) in the ideal model, denotedIDEALC,S(x, f), is
defined as the output pair ofC andS from the above ideal execution. For instance, ifC is malicious and terminates
the computation prematurely, theIDEALC,S(x, f) = (C(x, f(x′)),⊥); if C never aborts,IDEALC,S(x, f) =
(C(x, f(x′)), f(x′)) wherex′ is the inputC gives to the TTP.

Definition 3 (The Real Model) Let f be as in Definition 2. LetΠ be a CIPPE protocol for computingf . Fur-
thermore, let(C, S) be a pair of probabilistic polynomial-time machines representing the client and server in the
real model. Such a pair isadmissible, if at least one of(C, S) is honest, i.e., follows the protocolΠ. Then, the
joint execution ofΠ under(C, S) in the real model, denotedREALΠ,C,S(x, f), is defined as the output pair ofC
andS from the protocol interaction.

Definition 4 (Security) Let f andΠ be as in Definition 3. ProtocolΠ securely computesf if for every pair of
admissible probabilistic polynomial-time machines(C∗, S∗) in real model, there exists a pair of admissible prob-
abilistic polynomial-time machines(C, S) in the ideal model, such thatREALΠ,C∗,S∗(x, f) is computationally
indistinguishable fromIDEALC,S(x, f).

B The scrambled circuit protocol for 2-SFE
The scrambled circuit protocol was developed by Yao [56]. This protocol runs between two players: agenerator
and anevaluator. In the scrambled circuit protocol, the generator “scrambles” the circuit in some manner, then
two players interact, the evaluator “evaluates” the scrambled circuit, and finallythe evaluator sends the result
of the evaluation to the generator, who recover the final result. Our CIPPE protocol builds upon the scrambled
circuit protocol, where the generator is the server (Bob) and the evaluator is the client (Alice).

Protocol 3 (Scrambled Circuit Protocol) Let x be the evaluator’s input, andy be the generator’s input. Let
f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be a function known to both parties. In the end, both parties learnf(x, y). The
scrambled circuit protocol takes the following steps:

16

Encrypting the circuit Assume thatEk [M] is a semantically secure encryption function for the messageM
using the keyk. Suppose the circuit for the functionf(x, y) consists ofs gatesg1, . . . , gs and t wires
w1, . . . , wt, where each gategi has two input wires and one output wire; we usegi to also denote the
function{0, 1}2 → {0, 1} computed by the gate. The generator scrambles the circuit as follows.

1. The generator chooses2t random keysk0
1, k

1
1, . . . , k

0
t , k

1
t and assigns a pair of random keys{k0

i , k
1
i }

to each wirewi for 1 ≤ i ≤ t.
2. For each gategi in the circuit, the generator constructs a tableTi as follows:

(a) Let wa andwb be the input wires of gategi, andwc be the corresponding output wire, where
1 ≤ a, b, c ≤ t.

(b) The generator computes the following four values:

m0,0 = Ek0

b

[

Ek0
a

[

k
gi(0,0)
c || 0σ

]]

m0,1 = Ek1

b

[

Ek0
a

[

k
gi(0,1)
c || 0σ

]]

m1,0 = Ek0

b

[

Ek1
a

[

k
gi(1,0)
c || 0σ

]]

m1,1 = Ek1

b

[

Ek1
a

[

k
gi(1,1)
c || 0σ

]]

wheremx,y (for x ∈ {0, 1} andy ∈ {0, 1}) corresponds to the case that the input wirewa has

valuex and the input wirewb has valuey, andk
gi(x,y)
c ||0σ means concatenating the random

value corresponds to the wirewc having valuegi(x, y) ∈ {0, 1} with a binary string ofσ 0’s.

(c) The generator randomly permutes the set{m0,0, m0,1, m1,0, m1,1} and stores it in the tableTi.

For example, the table for the gategi when it is an AND gate would contain the following four entries
in some random order:

m0,0 = Ek0

b

[

Ek0
a

[

k0
c || 0

σ
]]

m0,1 = Ek1

b

[

Ek0
a

[

k0
c || 0

σ
]]

m1,0 = Ek0

b

[

Ek1
a

[

k0
c || 0

σ
]]

m1,1 = Ek1

b

[

Ek1
a

[

k1
c || 0

σ
]]

If the evaluator knows (k1
a,k1

b), the two keys corresponding to the1 value in wireswa andwb, and tries
to decrypt the four entries, the evaluator will find garbages when trying to decryptm0,0, m0,1, m1,0

and successfully decryptm1,1. The evaluator can tell that the decryption ofm1,1 is successful by
finding the binary string0σ in the decrypted message. This enables the evaluator to learnk1

c , the
value corresponds to the wirewc being1. Of course,wc should be1 when bothwa andwb are1. If
the evaluator knows (k1

a,k0
b), then it can successfully decryptm1,0 and recoverk0

c . In the other two
cases, the evaluator recoversk0

c as well.

3. The generator sendsT1, . . . , Ts to the evaluator. The generator sends also the topology of the circuit,
so that the evaluator knows which gate connects to which.

Coding the input The evaluator learns a random key for each input wire as follows.

1. For each wirewi that corresponds to the generator’s input, the generator sendsk0
i to the evaluator if

his input is 0, he sendsk1
i if his input is 1.

2. For each wirewj that corresponds to the evaluator’s input, the generator and the evaluator engage in
a 1-out-of-2 oblivious transfer protocol [47, 24, 30] in which the generator providesk0

j andk1
j , and

the evaluator choosesk0
j if her input is 0, and choosesk1

j otherwise.

Evaluating the circuit The evaluator evaluates the scrambled circuit gate-by-gate, starting from thecircuit-input
gates and ending at the circuit-output gates. Each gatesgi is evaluated as follows:

1. The evaluator can evaluate gategi only if she has learned one key for each of the input wires.
2. Let wa, wb, wc be the corresponding input wires and output wire of gategi. Assumekx

a andky
b are

the keys the evaluator learned that correspond to wireswa andwb, respectively.
3. Let Ti be the table corresponding to gategi. The evaluator useskx

a andky
b to decrypt each entry in

Ti. She will succeed only in the entrymx,y = Ek
y
b

[

Ekx
a

[

k
gi(x,y)
c

]]

. Thus she learnskgi(x,y)
c , one

of the two keys corresponding to the output wirewc.

17

Finally, the evaluator obtains the output of the scrambled circuit, and sends it back to the generator. The
generator learnsf(x, y) and reveals the result to the evaluator.

The scrambled circuit protocol is secure in honest-but-curious model [56,30]. Let us briefly discuss the
security of the scrambled circuit protocol. As for the security of each gate,it is necessary to construct the table
using anon-malleableencryption scheme [20] (such as AES), to prevent the evaluator from making meaningful
changes in the plaintext by changing the ciphertext. Provided that the encryption scheme is non-malleable,
knowledge of one key for each of the input wires discloses only one keyof the output wire. The other key is
unknown to the evaluator.

As for the security of the entire circuit, the oblivious transfer protocol ensures that the evaluator learns just
one key per input wire, and the generator does not learn which value theevaluator chose. Therefore, the evaluator
can obtain one (and only one) key per wire in the circuit. As the mapping between the (two) random keys of
each wire and the Boolean values is unknown to the evaluator, she learn neither the type of each gate, nor any
intermediate results of the original circuit.

C Security Properties and Proofs for CIOT protocol
Theorem 1 The sender does not learn anything from the CIOT protocol.

Proof. The CIOT protocol consists of two phases: a bit-commitment phase and an oblivious transfer phase.
The sender learns nothing aboutx from the oblivious transfer phase, as the receiver does not send any infor-
mation to the sender during that phase. Thus, all the information the sender learns aboutx is from the bit-
commitment phase. In the bit-commitment phase, the sender learns the commitmentsc0, . . . , cℓ−1. Observe that
c0 = c

∏ℓ−1
i=1(ci)

−2i
; therefore,c0 can be computed fromc, c1, . . . , cℓ−1 and does not leak any additional infor-

mation. Recall thatr, r1, . . . , rℓ−1 are chosen uniformly randomly fromZq; the distributions ofc, c1, . . . , cℓ−1

are exactly the same as the distribution of any commitment under the Pedersen commitment scheme. Thus
c, c1, . . . , cℓ−1 leak nothing about their corresponding committed valuesx, x1, . . . , xℓ−1. Therefore, the sender
does not learn anything aboutx. In other words, for anyx, y ∈ [0..2ℓ − 1] (let cx, cy be the corresponding com-
mitments), and for any adversary executing the sender’s part, the views that the adversary sees when the receiver
inputs(x, cx) and when the receiver inputs(y, cy) are perfectly indistinguishable.

Theorem 2 Under the DDH assumption and the DL assumption onGq, the order-q subgroup ofZ∗

p, the receiver
learns at most one value per(k0

i , k
1
i) pair.

Proof. Suppose an adversarial receiver learns bothk0
i andk1

i for some giveni, where0 ≤ i ≤ ℓ − 1. Under the
DDH assumption, the ElGamal encryption scheme is semantically secure [51]. Therefore, the adversary knows
the private keys corresponding to the ElGamal public keysK0

i = 〈p, q, h, ci〉 andK1
i = 〈p, q, h, cig

−1〉. In
other words, the adversary knowsr wherehr = ci, andr′ wherehr′ = cig

−1. Thus, the adversary knowsr
andr′ wherehr = ghr′ ; she can effectively computelogg(h) = (r − r′)−1 mod q, which contradicts the DL
assumption.

Theorem 3 Under the DDH assumption and the DL assumption onGq, the order-q subgroup ofZ∗

p, if the
receiver learnsℓ keys, these values must bekx0

0 , . . . , k
xℓ−1

ℓ−1 .

Proof. By Theorem 2, if an adversarial receiver learnsℓ keys, she learns exactly one key per(k0
i , k

1
i) pair.

Suppose she learnsky0

0 , . . . , k
yℓ−1

ℓ−1 , whereyi ∈ {0, 1} for i ∈ [0..ℓ − 1] and there exist at least onej such that

xj 6= yj . Therefore,
∑ℓ−1

i=0 yi2
i 6=

∑ℓ−1
i=0 xi2

i = x. Under the DDH assumption, the adversary knows the private
keys corresponding to the ElGamal public keysKy0

i , . . . , K
yℓ−1

i ; thus she knowsti for eachi ∈ [0..ℓ − 1] such
thatgyihti = ci. As

gxhr = c =
∏ℓ−1

i=0(ci)
2i

=
∏ℓ−1

i=0(gyihti)2
i
= g
Pℓ−1

i=0
yi2

i
h
Pℓ−1

i=0
ti2

i
= gyht,

wherey denotes
∑ℓ−1

i=0 yi2
i and t denotes

∑ℓ−1
i=0 ti2

i (mod q), the receiver knowsx, r, y, and t such that
gxhr = gyht. The receiver can efficiently computelogg(h), which contradicts the DL assumption.

18

D Security Properties and Proofs for CIPPE protocol
Theorem 4 The CIPPE protocol is secure in the honest-but-curious model.

Proof. In the honest-but-curious model, the security definition in the ideal model (Definition 4) is equivalent
to the definition based on simulation. That is, it is sufficient to show that,C (andS), given her own input and
f(x1, . . . , xn), can simulate the execution of the protocol.

If, for any x1, . . . , xn ∈ [0, 2ℓ − 1] andf ∈ F , the distribution ofC’s view from the real model cannot be
distinguished from a simulation of this view that only usesx1, . . . , xn, r1, . . . , rn, c1, . . . , cn andf(x1, . . . , xn),
then clearlyC cannot learn anything aboutS’s private functionf . Similarly, if distribution ofS’s view cannot be
distinguished from a simulation of this view that only usesf, c1, . . . , cn andf(x1, . . . , xn), thenS cannot learn
anything aboutC’s inputx1, . . . , xn.

The simulator forS is constructed as follows. Assume the simulator has the knowledge off, c1, . . . , cn and
f(x1, . . . , xn).

1. In step 1 of the client-server interaction phase, givenf ∈ F , the simulator constructs a circuit forf and
scrambled it.

2. In step 3,S runs the CIOT protocoln times withC in the real model. For each ofC’s inputxi, S receivesℓ
commitments, denoted asci,0, ci,1, . . . , ci,ℓ−1, whereci,0 = ci

∏ℓ−1
j=1(ci,j)

−2j
. The simulator choosesℓ− 1

random values fromGq, denoted asc′i,1, . . . , c
′

i,ℓ−1, and computesc′i,0 = ci

∏ℓ−1
j=1(c

′

i,j)
−2j

.

3. In step 5,S receives fromC the key corresponding the resultk ∈ {k0
t , k

1
t }. If f(x1, . . . , xn) = 0, the

simulator generatesk0
t ; otherwise,f(x1, . . . , xn) = 1, the simulator generatesk1

t .

We briefly show that the real and simulated views forS are perfectly indistinguishable. In real views,S

getsci,0, ci,1, . . . , ci,ℓ−1 for eachxi, whereas in simulated views,S getsc′i,0, c
′

i,1, . . . , c
′

i,ℓ−1. By Theorem 1,
the distributions ofci,1, . . . , ci,ℓ−1 are exactly the same as the distribution of any commitment under the Ped-
ersen commitment scheme, thus the distribution of(ci,0, ci,1, . . . , ci,ℓ−1) and(c′i,0, c

′

i,1, . . . , c
′

i,ℓ−1) are perfectly
indistinguishable.

Assume the simulator forC has the knowledge ofx1, . . . , xn, r1, . . . , rn, c1, . . . , cn andf(x1, . . . , xn). Let
us examine whatC receives in the real model.C receives a scrambled circuit, one key per input wire (Theorem 2
guarantees thatC could get only one key per input wire), and〈η0 = Ek0

t
[0σ] , η1 = Ek1

t
[1σ]〉. During the

circuit evaluation phase,C learns one key per wire, and eventually learnsk, the key of the output wire. The
simulator forC is constructed as follows.

1. As the circuits for computing any functionsF has same topological structure by construction, we assume
the topology of the scrambled circuit is public.

2. The simulator generatest random keysk′

1, k
′

2, . . . , k
′

t and assignsk′

i for wire wi where1 ≤ i ≤ t.

3. For each gategi in the circuit, letwa andwb be the corresponding input wires andwc be the corresponding
output wire. The simulator chooses randomly three messagem′

1, m′

2, andm′

3 from the ciphertext space.
The simulator computesm′

4 = Ek′

b

[

Ek′

a
[k′

c||0
σ]

]

. The simulator randomly permutes{m′

1, m
′

2, m
′

3, m
′

4}.

4. If f(x1, . . . , xn) = 0, the simulator computesη′0 = Ek′

t
[0σ], and chooses a random messageη′1 from the

ciphertext space. Iff(x1, . . . , xn) = 1, the simulator computesη′1 = Ek′

t
[1σ], and chooses a random

messageη′0 from the ciphertext space.

We briefly sketch that the real and simulated views forC are computationally indistinguishable. Assume
the encryption scheme is secure,C can learn only one key per wire. The keysC learns for each wire are com-
putationally distinguishable fromk′

1, k
′

2, . . . , k
′

t. For each gategi, {m0,0, m0,1, m1,0, m1,1} in real model is

19

computationally indistinguishable from the permuted set{m′

1, m
′

2, m
′

3, m
′

4} in the simulated views.〈η0, η1〉 in
the real model is computationally indistinguishable from〈η′0, η

′

1〉.
Therefore, our CIPPE protocol is secure against honest-but-curiousadversaries.

Theorem 5 The CIPPE protocol is secure against malicious clients.

Proof Sketch. Due to the space limitation, we only sketch this proof as well as the next two. Theformal proofs
will be given in the full version of this paper.

The correctness of the protocol against malicious clients relies on the security of the CIOT protocol. Theo-
rem 3 guarantees thatC gets only the keys corresponding to her committed input. Assume that the encryption
scheme used in the scrambled circuit is secure,C learns at most one key per wire from the scrambled circuit. AsS

is honest and builds the circuit correctly,C can only get the key of the output wire corresponding tof(x1, . . . , xn).
As for server’s privacy, the reasoning is similar to the correctness of the protocol. BecauseS constructs the

circuit in a way that all circuits have the same topological structure,C cannot distinguishf from otherf ′ ∈ F
from circuit topology. Again, assume that the encryption scheme used in the scrambled circuit is secure and CIOT
is secure,C learns at most one key per wire from the scrambled circuit,C cannot learn which gate computes which
function. Thus, even malicious client cannot further information aboutS’s private function.

Theorem 6 The CIPPE protocol is secure against weak-honest servers.

Proof Sketch. To prove the security against weak-honest servers, we show that for every probabilistic
polynomial-time machineS∗ in the real model, there is a probabilistic polynomial-time machineS in the ideal
model, such that the views of parties(C, S) in the ideal model is computationally indistinguishable from the
views of(C, S∗) in the real model.

Before we prove the security, we briefly analyze the possible server behavior in the real model. For each
instance of the CIOT protocol,S receivesℓ commitments, then it sends2ℓ ElGamal encryptions toC. Weak-
honest server behavior of in the CIOT protocol cannot gainS further information. For the scrambled circuit, a
weak-honestS can do two things that deviate from the protocol: (1) constructing a circuit that computesf ′ other
thanf , and (2) scrambling the circuit without following the protocol description. BecauseS committed two keys
of the output wire (k0

t andk1
t) to C in step 2, andS is weak-honest;S can always get one keyk ∈ {k0

t , k
1
t } from

C in step 5. Keyk is all S learns fromC besides informationS learns from the CIOT protocol.
Let F be the family of functions that eachf ∈ F : ([0..2ℓ − 1])n → {0, 1}. ThenS learns just one

bit information aboutC’s input, i.e.,S learnsf ′(x1, . . . , xn) for some functionf ′ ∈ F . Therefore, for any
x1, . . . , xn ∈ [0, 2ℓ − 1] andf ∈ F , the views of parties(C, S∗) in the real model can be simulated by the view
of parties(C, S) in ideal model usingx1, . . . , xn and possiblyf ′ ∈ F .

Theorem 7 Letg : ([0..2ℓ − 1])n → {0, 1, 2} be a functionality, a malicious server can learng(x1, . . . , xn) for
someg, but no more than that.

Proof Sketch. The analysis is similar to the proof of Theorem 7. For the scrambled circuit, a malicious S can
(1) construct a circuit that computesf ′ other thanf , or (2) scramble the circuit arbitrarily without following
the protocol description. BecauseS committed two keys of the output wire (k0

t andk1
t) to C in step 2, there is

three possibilitiesS can conceive from the CIPPE protocol. First,S learnsk0
t . Second,S learnsk1

t . Third, S

constructed a “bad” scrambled circuit intentionally, andC fails in evaluating the circuit or fails in decryptingη0

andη1. In any case,S learns no more than 2 bit information aboutC’s input.
More precisely, letG be the family of functions that eachg ∈ G : ([0..2ℓ − 1])n → {0, 1, 2}. ThenS

learnsg(x1, . . . , xn) for some functiong ∈ G instead off(x1, . . . , xn) wheref ∈ F . Therefore, for any
x1, . . . , xn ∈ [0, 2ℓ − 1] andf ∈ F , the views of parties(C, S∗) in the real model can be simulated by the view
of parties(C, S) in ideal model usingx1, . . . , xn and possiblyg ∈ G.

20

