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Abstract

In Trust Management and attribute-based access conttersgsaccess control decisions are based on the
attributes (rather than the identity) of the requester: esscis granted if Alice’s attributes in her certificates
satisfy Bob's access policy. In this paper, we develop acpdiiding access control scheme that protects
both sensitive attributes and sensitive policies. ThaBish can decide whether Alice’s certified attribute
values satisfy Bob’s policy, without Bob learning any othrdormation about Alice’s attribute values or Alice
learning Bob’s policy. To enable policy-hiding access coltwe introduce the notion of Certified Input
Private Policy Evaluation (CIPPE). Our construction foPEE uses Yao's scrambled circuit protocol and two
new techniques introduced in this paper. One novel teclenigjagonstructing circuits with uniform topology
that can compute arbitrary functions in a family. The otleshhique is Committed-Integer-based Oblivious
Transfer.
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1 Introduction

In Trust Management and attribute-based access control systen& 3,47, 38, 37], access control decisions
are based on attributes of clients, which are often documented by publtekifjcates. Each certificate asso-
ciates a public key with the key holder’s identity and/or attributes such as empgypep membership, credit
card information, birth-date, citizenship, and so on. Because these eg¢esfire digitally signed, they can serve
to introduce strangers to one another without online contact with the Certificteties (CAs). As attribute
information may be sensitive, the certificates that contain attribute data needtiprmjest as other resources
do. Often times, the policies for determining who can access the resouecgsitive also and need protection
as well. Consider the following example.

Example 1 Bob is a bank offering certain special-rate loans and Alice would like to kmbether she is eligible
for such a loan before she applies. Alice has a digital driver licenddicate issued by the state authority; the
certificate contains her birth-date, address, and other attribute data. Afigddo an income certificate issued by
her employer documenting her salary and the starting date of her employment. tBohides whether Alice is
eligible for a special-rate loan based on Alice’s attribute information. For exampkemay require that one of
the following two conditions holds: (1) Alice is over 30 years old, has anrmmeof no less than $43K, and has
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been in the current job for over six months; (2) Alice is over 25 years @ld,a@m income of no less than $45K,
and has been in the current job for at least one year.

Bob is willing to reveal that his loan-approval policy uses one’s birth;daterent salary, and the length of
the current employment; however, Bob considers the details of his policy ¢orbeercial secret and does not
want to reveal it to others. Alice is interested in this loan and would like to gedat; however, she wants to
reveal as little information about her attributes as possible. In particularsBalildn't learn anything about her
address (which is also in her driver license) or learn the exact bitthafaAlice. Ideally, Alice wants Bob to
know whether she is eligible for the loan, but nothing else.

In the above example, the policy is a commercial secret, and knowledge &f Builry would compromise
Bob's strategy and invite unwelcome imitators. In other examples, the motivationdiogtthe policy is not
security from an evil adversary, but simply the desire to prevent legitimsesdrom gaming the system; e.g.,
changing their behavior based on their knowledge of the policy (whichllysenders an economically-motivated
policy less effective). This is particularly important for policies that areincentive-compatible in economic
terms. Finally, it is important to point out that a process that protects Alicetficates from Bob is not only
to Alice’s advantage but also to Bob’s: Bob no longer needs to worrytatogue insiders in his organization
illicitly leaking (or selling) Alice’s private information, and may even lower his liabilitgurance rates as a result
of this. Privacy-preservation is a win-win proposition, one that is appealieg i€ Alice and Bob are honest and
trustworthy entities.

Motivated by the preceding applications, we introduce and study the pralpaticy-hiding access control
In this framework, Bob has a private policy and Alice has several semsiértificates. In the end, Bob learns
whether Alice’s attributes in her certificates satisfy his policy but nothing ddeateher attribute values; at the
same time, Alice does not learn Bob's policy except for what attributesegréred for his policy.

One may tempt to use existing general solutions to the two-party Secure Functioatiéva(@-SFE) [56,
31, 30] (e.g., Yao’s scramble circuit protocol [56]) for policy-hidingc@ss control. That is, Alice inputs her
certificates and Bob inputs his policy; and they run a 2-SFE protocol to ev@obate policy on Alice’s attributes
in her certificates. Such approach does not work well because (1) rthedio to compute in 2-SFE is public,
whereas the function (Bob’s policy) in policy-hiding access control igapei (2) as Alice needs to input her
certificates into 2-SFE, certificate verification, which involves verifying digital dignes, needs to be done as
a part of 2-SFE circuit evaluation. This is extremely inefficient. Observe thae Adinot allowed to input her
attribute values directly (instead of her certificates), because, Alice adeecan input arbitrary faked attribute
values at her will.

To avoid verifying certificates within circuit evaluation, we udblivious Attribute Certificate§OACerts)
proposed in [35]. In an OACert, attribute values are not stored in the atestead, a cryptographic commitment
for each of these values is stored in the certificate. A certificate authority §€Agrates the commitments of
Alice’s attribute values and stores them in the certificates. Alice is able to dis@osertificates to Bob without
revealing her attribute values. OACerts can be integrated into currentstisnidr public-key certificates such
as X.509 Public Key Infrastructure Certificates [6, 34] and X.509 Attributdifi@ates [25]. A prototype of
OACerts as been implemented by storing the commitments in X.590v3 extension flEldd$thg OACerts, the
policy-hiding access control problem becomes that Alice inputs her committéalites which are documented
in her OACerts and Bob inputs his policy, they want to learn whether Aliaasnitted attributes satisfy Bob’s
policy without revealing the other party’s private input.

In this paper, we introduce the notion Gertified Input Private Policy Evaluation (CIPPENVhich enables
policy-hiding access control using OACerts. Formal definition of CIPPE smgin Section 3. In CIPPE, Alice
has private inputs:;, zo, - - - , x,,, Bob has a private functiofi drawn from a familyF of functions (usuallyf
outputs ‘yes’ or ‘no’; however, we allow functions that output more tha@ loit of information), and Alice and
Bob share:;, co, - - - , ¢, Wherec; is a cryptographic commitments of, for 1 < ¢ < n. The objective of CIPPE
is for both Alice and Bob to learn the result 6fz1, - - - , z,,). Bob should not learn anything abot, . . . , z,,;
and Alice should not learn more than the fact tfiag F.

In SFE, there is no way to prevent a dishonest party from changing itsitgmat before the protocol execution.



We develop a CIPPE protocol for certain families of functions that we believauseful for expressing
policies. Our solution uses Yao’s scrambled circuit protocol [56, 39]. Méheircuit is scrambled, the operation
in each gate is hidden; however, the topological structure of the circuitisTinerefore, Alice could infer some
information about Bob’s policy by looking at the scrambled circuit if Bob carws the circuit in the naive way.
To protect Bob's private function, we develop an efficient approactotstcuct circuits with uniform topology
that can compute certain functions families. To ensure that Alice can evaluaterémebled circuit only with her
attribute values as committed in her certificates, we develop an efficient arabpreecure Committed-Integer-
based Oblivious Transfer (CIOT) protocol. The computation and communicedimplexity of the proposed
CIPPE protocol is close to the complexity of the scramble circuit protocol that complte, . . . x,,) wheref is
public. The CIPPE protocol is efficient; and we believe it can be deployedattipe (see [39] for an implement
of the scramble circuit protocol by Malkhi et al.).

The rest of this paper is organized as follows. We first describe how CtaRbe used to enable policy-
hiding access control in Section 2. Then we give a formal definition of CIPPE ¢tioBe3. In Section 4,
we review two cryptographic building blocks that we use, namely, the Pedememitment scheme and the
scrambled circuit protocol for 2-SFE. In the next two sections, we presenbiiding blocks that we build for
CIPPE, one is circuit construction of policy functions with uniform topology, ttieiois the CIOT protocol. In
Section 7 we give an efficient construction for CIPPE. We discuss the relatédm®ection 8 and conclude our
paper in Section 9.

2 Using CIPPE for Policy-Hiding Access Control

In this section, we present a high-level framework for policy-hiding ssa®ntrol using CIPPE. We describe
how policy-hiding access control in Example 1 can be enabled. In whatg|lewe usecommit to denote the
commitment algorithm of a commitment scheme. Patams denote the public parameters fasmmit. To
be secure, a commitment scheme cannot be deterministic; thus a commitment o a &Ha depends on an
auxiliary input, a secret random valueWe usec = commitparams (@, ) to denote a commitment af

1. CA Setup. Let Bureau of Motor Vehicles (BMV) be the CA who issues digital driveetises. BMV runs
the CA setup program, i.e., BMV picks a signature scheme, a commitment scheotedibycommit, a
pair of public/private keys, and the public parameters for the commitments;Rarams. Let Company
C be Alice’s employer, the CA that issues an income certificate for Alice. Companop<the CA setup
program analogously.

2. Alice-CA Interaction. In this phase, Alice obtains two OACerts, one from BMV and the other from

Company C. Alice applies for a digital driver license certificate from BMV dieves. BMYV first verifies

the correctness of her attribute values through some (possibly off-liaahels, then issues an OACert for
Alice. The OACert is signed using the BMV’s key and contains Alice’s pukdlg, BMV'’s public key, and

a commitment for each attribute value that is to be included in the certificate. Fopkxdetz be Alice’s
birth-date (encoded as an integer), BMV generates a random nuimtmmputes: = commitparams(x, ),

and storeg in the OACert. The BMV sends the signed OACert to Alice, together with alldloest random
values that have been used. Similarly Alice obtains an income certificate froemfpdoyer Company C.

3. Alice-Bob Setup. Alice applies for a special-rate loan from Bob. Bob reveals that the looypgakes
three attributes: birth-date, current salary, and length of current emplaly Alice shows her driver license
OACert and income OACert to Bob. Alice then proves the ownership of0#fLerts using the usual
techniques [34]. Recall that OACerts can be used as a regular digitdica¢e (e.g., X.509 certificate)
except the attribute values are stored in the committed form.

4. Alice-Bob Interaction. Alice and Bob run an interaction protocol, where Alice inputs her attribute salue
and secret random values she has stored from Phase 2 (Alice-CAdtme) and Bob inputs his private
policy function. In the end, both Alice and Bob learn whether Alice satisfiessBaicy without getting
other information about Alice’s attributes or Bob’s policy.



4. Interaction

Figure 1: An example of policy-hiding access control procedures betdlemand Bob.

Figure 1 depicts how CIPPE can be used in the trust negotiation process. @eetismt the two CAs are
involved only in issuing certificates to Alice. When Alice is interacting with variousess such as Bob, the
CA's are not involved at all.

3 Definition of Certified Input Private Policy Evaluation (CIPPE)
We now give a formal definition of CIPPE, which allows us to prove our pratimedCIPPE is secure.

Definition 1 (CIPPE) A CIPPE scheme is parameterized by a commitment sckemenit. A CIPPE scheme
involves a clientC, a servel5, and a trusted A, and has the following four phases:

CA Setup CA takes a security parameterand another parametér(which specifies the desired range of the
attribute values), and outputs public parametessams for commit. The domain ofcommit contains
[0..2° — 1] as a subselCA sendsParams to C andS.

Client-CA Interaction C chooses: valueszy, ..., x, € [0..2° — 1] (these areC’s attribute values) and sends
them toCA. For eachi such thatl < i < n, CA generates a new random numlgiand computes the
commitmentc; = commitpaams(2i, 7). CA givesc; andr; to C, ande; to S.

Recall that in the actual usage scenario in Sectio@&does not directly communicate with Instead,
CA verifiesC's attribute values before computing the commitments and stgres. , ¢,, into C's OACert
certificate. The certificate is then sent®yo S, enablingS to have the commitment values as if they are
sent fromCA. Here we abstract these steps away to @&esendinge; to S. We stress that A doesnot
participate in the policy-hiding access control process betwieamnds.

Client-Server Setup S chooses a familyF of functions and sends the description/fo C (this models the fact
that 7 is public knowledge). Eaclfi in F mapsn ¢-bit integers to 0 or 1, i.ef : ([0..2° — 1]))” — {0,1}.
S chooses a functioli € F privately.

Now S hascy,...,c,, andf. Chascy, ..., cn, 21, ..., 2n, @Ndry, ... 7.

Client-Server Interaction C andS run an interactive protocol. In the end, ba&trandS outputf (x4, ..., z,).

To avoid unnecessarily cluttering the exposition, in Definition 1 we assume #ratighonly oneCA in the
CIPPE scheme, and that, . . ., x,, are equal-length and are committed under the same commitment parameters.
The definition of the CIPPE scheme can be modified to support multiple CA's, diffexpat lengths, and
different commitment parameters. As a matter of fact, we can easily adju§lIB&E protocol to support the
situation in which each; is committed under a different set of commitment parameters.
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Notion of Security We consider security against three kinds of adversaries [13, 30hd&arsaryis a prob-
abilistic interactive Turing Machine [32]. Aonest-but-curiouadversary is an adversary who follows the pre-
scribed protocol, and attempts to learn more information than allowed from thetiexedd weak-honesadver-
sary [13] is an adversary who may deviate arbitrarily from the protosoloiag as its behavior appears honest
to parties executing the protocol. raliciousadversary is an adversary who may behave arbitrarily. To show
a CIPPE protocol is secure, it should be proved that neitheor S could gain more information than in the
ideal model, in which there is a trusted third party who receivgs. ., z, from C and f from S, and sends
f(x1,...,x,) to bothC andS. See Appendix A for the formal definitions.

Our construction for CIPPE is provably secure in the honest-but-curiouslraondehe weak-honest model.
The server’s privacy is guaranteed against any malicious client. A maiserver may learn additional infor-
mation about a client’s attributes; however, this additional information is limited to at omesbit and such
malicious behavior will be detected by the client.

4 Cryptographic Assumptions and Tools

In this section we first give the cryptographic assumptions and then briefly réwi@wryptographic tools that
we use for our CIPPE construction: the Pedersen commitment scheme [45] aswtaimbled circuit protocol
for 2-SFE [56].

Basic Cryptographic Assumptions The security of our CIPPE protocol is based on the following two standard
assumptions in cryptography. A functigris callednegligiblein the security parameterif, for every polynomial
p, |1(o)] is smaller tharl /|p(c)| for large enouglw; otherwise, it isnon-negligible

1. Discrete Logarithm (DL) AssumptioriThe DL problem is the following: Given a finite cyclic grodp,
a generatoy € G, and a group element, computelog, y. The DL assumption is that there exists no
polynomial-time algorithm that can solve the DL problem with non-negligible probability

2. Decision Diffie-Hellman (DDH) AssumptioriThe DDH problem is the following: Given a finite cyclic
groupG, a generatoy € G, and group elementg, ¢°, andg®, output 0 ifg¢ = ¢?® and 1 otherwise. The
DDH assumption is that there exists no polynomial-time algorithm that can solve the Dibtem with
non-negligible advantage. The advantage of an algorithm is its succesbitgbninus1/2, as one can
always randomly guess withlg2 success probability.

The Pedersen Commitment Scheme [45]

Setup A trusted third partyl’ chooses two large prime numberandq such thai; dividesp — 1. It is typical
to havep be 1024 bits ang be 160 bits.T" picks g to be a generator af,, the unique ordeg-subgroup
of Z,. We uses €r Z, to denote that is uniformly randomly chosen froii,. T pickss €r Z, and
computesh = (¢° mod p). T' keeps the value secret and makes the valyeg, g, h public.

Commit The domain of the committed values4g. For a partyA to commit an integer: € Z,, A chooses
r €g Zq and computes the commitment= (¢*~" mod p).

Open To open a commitment, A revealsr andr, and a verifier verifies whether= (g*h" mod p).

We use a trusted third parffy to generate the parameters of the Pedersen commitment scheme because the
setup algorithm is run by a trust€d\ in the CIPPE setting. The Pedersen commitment scheaorenditionally
hiding: Even with unlimited computational power it is impossible for an adversary to legriméormation about
the valuexr from ¢, because the commitments of any two number2 jiave exactly the same distribution. This
commitment scheme somputationally bindingUnder the DL assumption, it is computationally infeasible for
an adversarial committer to open a valtiether thanz in the open phase of the commitment scheme.



The scrambled circuit protocol for 2-SFE The scrambled circuit protocol was developed by Yao [56] (See
Appendix B for more detailed description of the protocol). This protocol heta/een two players: generator
and anevaluator To computef(x,y), the generator first constructs a circuit for computjhgThe generator
then constructs a scrambled version of the circuit and sends the scramblétitoithe evaluator for evaluation.

In a scrambled circuit, each wire is associated with two random numbers, oaemands t® and the other ta.
Before the evaluation, the evaluator uses oblivious transfer to obtainrtierravalues corresponding to each bit
of the evaluator’s private input. During the evaluation, the evaluator learns exactly one random valuadbr e
internal wire, yet she doesn't know whether it correspondsdo1. Finally the evaluator sends the outcome of
the evaluation to the generator, who recovers the final result.

5 Building Circuits with Uniform Topological Structure

When a circuit is scrambled, the operation in each gate is hidden; howeveptiegical structure of the circuit
is not. Therefore, the client could infer some information about the serftarttion by looking at the scrambled
circuit if the server constructs the circuit in the naive way. To protecsémeer’s private function, we present an
approach to construct circuits that can compute a family of functions andiegame topological structure.

Function definition We propose a familyF of functions that can express many policy functions in real appli-
cations. We definé as follows. F has four parameters n, m, and\. Each functionf in F(¢,n, m, \) takes
m parametersg, ..., y, € [0.2° — 1] andn inputszy, ...,z, € [0..2° — 1], and maps them t¢0, 1}. Let
flx1,...,xn) = p(xi; 0Py Y1, Tiy OP2 Y2, ** , Ti, OP,, Ym), Wherel < iy io, ..., i, < n, eachop, is one
of the following predicate$=, #, >, <, >, <}, andp is a disjunctive (or conjunctive) normal form in which the
number of disjuncts (or conjuncts) is no more than

Loosely speaking, if the server chooses a functfdinom the family 7 (¢, n, m, \) of functions, the client
should not be able to distinguighfrom any other functions in the family. For instance, consider Example 1 in
Section 1, Bob (the bank) can set= 3, m = 8, A = 4, and the policy function is of the form:

f($1,$2,x3) = (.1'1 > 30 A xo > 43000 A x3 > 6) V (1‘1 > 25 A xo > 45000 A 3 > 12),

wherez; denotes ageg, denotes annual income in dollars, angdenotes length of current employment in
months. Alice learns that, x-, andx3 are used for comparison at mastimes, she would not learn which
values they are compared with, and how many times each attribute is compared, etc.

If Bob builds a circuit forf (z1, z2, x3) in the naive fashion, Alice can learn from the topology of the circuit
how many times each; is compared, what these comparison operators are, and some informatiarthebou
structure of the policy function. One technical difficulty is that each attribute beagompared multiple times,
and we want to hide the number of times it is compared. A straightforward way tloigls to usemn circuits,
each of which select one input from thenputs. This is not efficient as it need§nm) gates. Our construction
uses results from the literature on permutation and multicast switching netw@ks([42, 59, 55], to list a few).
We believe that some of these networks may be useful for constructingteifoufamilies of functions beyond
the ones considered in this paper.

Basic circuit components we introduce three basic circuit components that will be used in our cotistruc

1. Comparison circuit. Given two ¢-bit integersz andy, the comparison circuit computes= y, = # vy,
x >y, orx < y. Observe that > y andx < y can be representedas> y—1 andx < y+1, respectively.
Letxy,_1 ...x120 be the binary representationefandy,_; . . . y1yo be the binary representation of

Circuit for z > y is \/'_; (mi A —yi A /\§;§+1(x]~ = yj))
Circuit for z < yis \/'Z; (ﬁxi ANyi AN (@5 = yj))

Circuit forz = y is /\f;é (w5 = i)

Circuit for z # y is \/'Z 3 (z; # ;)
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Figure 2: Basic circuit components: (a) the structure of 4-bit comparisonitsiy¢b) the structure of 8-input
logical operation circuits, (c) the high-level schema for a generalizeuitifd) an (8,8)-generalizer,

Note that the circuits for > y andz < y have the same topology. To make the structure of all comparison
circuits uniform, we modify the circuits far = y andx # y by adding some “dummy” gates. For example,

the comparison circuit for = y could be\'_} ((:c,— =) ANZi g(l‘i,yi)> whereg(z;, y;) always
outputs 1. Figure 2(a) shows the structure of 4-bit comparison circuits. tNateach/-bit comparison
circuit requires0O(¢) gates §{¢ — 4 gates).

2. Logical operation circuit. Givenm Boolean inputsuy, .. ., a,,, the logical circuit compute¥/, g a; or
Nicg @i whereS C {1,2,...,m}. We can use a binary tree structure to implementthiput logical
circuit. For example, to compute the logical formija_q b;, every gate in the binary tree computesif
i € S we give the corresponding wire valag, otherwise, set value 0. Figure 2(b) shows a 8-bit logical
operation circuit. Note that the-input logical circuits requir€®(m) gates {n — 1 gates).

3. Generalizer circuit. An (n,n)-generalizer is & inputs andn outputs switching network, it passes each
input 7 to zero or more outputs. The existence(ofn)-generalizer withO(n) gates has demonstrated
nonconstructively by Pipenger [46]. Ofman [43] gives a constructioa géneralizer using the schema
shown in Figure 2(c). In his construction, the network consists of two panpack network and a copy
network. The pack network packs those inputs having requests toattivegpositions. The copy network
copies inputs to multiple outputs. The network Ofman proposed reqiirgss n gates. Thompson [50]
improved Ofman’s work and gives a construction usiglogn gates. The Thompson’s construction
uses a reversed butterfly network concatenated with a butterfly networkreR@) is the Thompson's
construction of &8, 8)-generalizer.

Our construction  Our construction takes the following three stages.

1. Copy StageThe copy stage takes/-bit integersre, . . ., x,, and outputsn £-bit integers in which each;
is copied to output; times wherey; > 0 and) _ v; = m. To build the copy stage in circuit, we constriéct
identical(n, m)-generalizers, one for each bit. (A, m)-generalizer can be implemented B8 | numbers
of (n,n)-generalizer. This stage nee@$/m log n) gates (around¢m log n gates).



2. Comparison StageThe comparison stage takes ¢-bit integers and makes. comparisons. This stage
consists ofm comparison circuits, one for ea¢h, y) pair. This stage need3(¢m) gates (aroun@¢m

gates).
3. Logical Computation StageObserve that all the disjunctive normal forms where the number of conjunc-
tions is no more than can be expressed Q@Zl(/\iesj a;), whereSy, So, ..., S, C{1,2,...,m}. Such

disjunctive normal forms can be implemented usikge-input logical operation circuits and oneinput

logical operation circuits. For each-input logical operation circuit, the input is the output bits from
the comparison stage, the output is connected to the input wire of the-ilagtit logical operation circuit.
The conjunctive normal forms can be implemented analogously. This stage@é\m) gates (around
Am gates).

/\
Logical
Computation
Stage
L L L L

(S:tomparison ‘ c ‘ ‘ C ‘ ‘ C H C ‘
age

LT
Copy Generalization Network
Stage

X

1 X2 X3

Figure 3: An example circuit structure for the famifyof functions with parameters= 3, n = 3, m = 4, and
A = 4. There are 4 comparison circuits in the comparison stage, and 5 logicatiopagiacuits in the logical
computation stage.

Figure 3 shows the structure of circuits that can compute the fafiidy 3, 4, 4) of functions. For the family
F(£,n, m, \) of functions, our circuit construction nee@¢m log n+ Am) gates (aroun@ log n+5)¢m -+ Am
gates).

6 Committed-Integer based Oblivious Transfer (CIOT) Protocol

To build a CIPPE protocol using the scrambled circuit protocol (see Sectiored)ave to ensure that the client
gets the keys of the input wires corresponding to her committed input. Werira<Committed-Integer-based
Oblivious Transfer (CIOT) protocol to achieve this. A CIOT protocoldives a sender and a receiver. The
receiver has a committetibit integerz, the sender haé pairs of valuegk?, ki), --- , (k?, k}), and both the
sender and receiver share the commitment.ofn the end of the protocol, the receiver learns exactly one key
in each pair; furthermore, the keys she learns corresponds to the bit3'tre main idea of CIOT is as follows.
Using the commitment of, the receiver generatésnew commitments, one for each bitef Then the sender
and receiver run a modified version of non-interactive oblivious tramsteocol [4, 41] for each commitment.

Protocol 1 (CIOT Protocol) Let (p, g, g, h) be the public parameters of the Pedersen commitment scheme. All
arithmetic in this section isiod p unless specified otherwise. Lebe an integer if0..2¢ — 1], andz,_; ... 2129

be the binary representationefi.e.,z = 202 + 12! 4 - - + 2,121, Letc = commit(x,r) = g°h" be the
commitment ofr with a random- € Z,.



Input The receiver has andr, and the sender hd9airs of integergk, k), ..., (kY_,, k}_,). Both the sender
and receiver have
Output The receiver learns’, ..., k;“7'. The sender learns nothing.

1. The receiver decomposesnto /¢ commltments, one for each bit of More specifically, the receiver
randomly picksry,...,r,—1 € Z4y and setsy = r — Zf;ll 2ir; mod ¢. The receiver computes =
commit(x;, ;) = g¥*h™ fori = 0, 1,...,¢£ — 1, and gives them to the sender The sender checks that
Hf;ol(cz)zz = c. Observe thaﬂ ( )22 = HZ 0( aipTi )22 = gzz 0 @2 p3liZo ri2 — = g*h"

2. Fori = 0,1,...,¢ — 1, the sender calculates? = (p,q,h,c;) andK}! = (p,q,h,cig” 1>. Using the
ElGamal encryption scheme [22] (modified to have messages from a sub&dyptlie sender sends to
the receiver two ciphertextByo (k) = (h¥', kjc{") and B (kj) = (h*, k{(cig~')*), wherey; andz;
are chosen uniformly randomly frof, by the sender. The receiver can obtafn as follow: If z; equals
0, thene; = h'i, the receiver knows the private key correspondindfb(the private key is-;), therefore
she can decrypEK?(k?) to recoverk?. If z; equals 1, them;g~! = A", the receiver knows the private
key corresponding t&!, she can decrypl (k}) to recoverk;.

Note that both the sender and receiver né¢d) modular exponentiation. More precisely, the sender needs
2¢ modular exponentiation, and receiver neddsnodular exponentiation. The sender does not learn anything
from the CIOT protocol. Under the DDH assumption and the DL assumptic@iqothe receiver learns at most
one value pe(k?, k}) pair; and if the receiver learriskeys, these values must b§, ..., k,";". Observe that it
is possible for an adversarial receiver to learn keys otherkfjan .., k,“1"; however in such case, she cannot
get all/ keys. This is sufficient for the security of our CIPPE protocol because i€lient cannot get a key for
each input wire, then she cannot evaluate the scrambled circuit to getmrn.dbue to space limitation, we put

security properties and formal proofs of CIOT protocol in Appendix C.

7 Our CIPPE Protocol

We now give the CIPPE protocol which follows Definition 1, and specify whaheparticipant does in each step.

Protocol 2 (CIPPE Protocol) The CIPPE protocol involves a cliefit a servelS, and a trusted A, and has the
following four phases:

CA Setup CA takes a security parameterand a setup parameteras input.CA runs the Pedersen commitment
setup algorithm to creafarams = (p, ¢, g, h) such thak’ < ¢, and sends it t€ andS.

Client-CA Interaction C chooses: integerszy,...,z, € [0..2° — 1] and sends them t6A. For eachz;,
1 <i < n, CA picksr; €r Z, and computes the commitment= (¢**h" mod p). CA givesc; andr; to
C, andc; to S.

Client-Server Setup S takes three parametefsn, m, and\ as input, and outputs the famil§y of functions as
defined in Section 55 sends the description ¢f to C, then chooses a private functighe F.

Now S hascy,...,c,, andf. Chascy,...,cp, o1,..., 2y, @andry, ..., 7.
Client-Server Interaction The steps are as follows.

1. Scrambling the circuitS constructs a circuit that computes the functjoasing the technique speci-
fied in Section 5, then scrambles the circuit in the same manner as the generattrastae circuit
in the scrambled circuit protocadb. gives the scrambled circuit .

2. Committing the outputLet wire w, denote the unique output wire of the scrambled circuit, and
(k?, ki) denote the corresponding keyswf. S sends(ng = Eyo [07],m = Ej1 [17]) to C.

3. Coding the input: For eachz; wherel < ¢ < n, there are/ corresponding input wires in the
scrambled circuitC andS run the CIOT protocol in whicl€ inputszx;, r;, ande;; andS inputsc; and
¢ pairs of keys that correspond to thenput wires. In the end of this stefy,learns one key per input
wire; furthermore, each key corresponds to a bit®micommitted input.
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4. Evaluating the circuit:After Step 3,C possesses enough information to evaluate the scrambled circuit
independentlyC evaluates the circuit and obtaikhsthe key of the output wire. Recall th@treceives
(no,m) from S in step 2,C tries to decrypt)y andn; using keyk. If C fails in decrypting both of
them, she aborts; this happens only wiseintentionally misbehave. I succeeds in decrypting,
and get$)?, she outputs 0. Otherwise,(f succeeds in decrypting and getsl?, she outputs 1.

5. Notifying the result:C sendsk to S, enablingS to output0 if k£ = kY and outputl if k = k}.

Note that the idea of committing the output in step 2 comes from [42, 39] to actiieviairness of the
computation. The client and server ne@(n) modular exponentiation and(¢m logn + Am) symmetric key
encryptions. More precisely, the server needs ard@éndmodular exponentiation and the client needs around
4¢n modular exponentiation, both the client and server ri¢étbg n+40)¢m-+8\m symmetric key encryptions.

The CIPPE protocol is complete. Because if batlandS follow the protocol,C will get proper keys of
the input wires, and will be able to evaluate the scrambled circuit correctly CORPE protocol is secure both
in the honest-but-curious model and in the weak-honest model. In the maliciowe, rifaprotocol is secure
against the client. A malicious server may learn one bit more information than shaned, by constructing a
malfunction circuit. Considering the damage caused by being detected to baelstthis small extra gain does
not seem to warrant such malicious behavior in the application scenariosnsiler. Due to space limitation,
we put security properties and formal proofs of CIPPE protocol in detaAgpendix D.

8 Related Work

Automated Trust Negotiation Our work is closely related to a growing body of work on Automated Trust Ne
gotiation (ATN) [54, 58, 57, 53] whose goal is to enable clients and setearstablish trust in each other through
cautious, iterative, bilateral disclosure of sensitive certificates and polRexsnt works on using cryptographic
protocols for ATN include Hidden Credentials [33, 7, 26], Secret Haaklss [3], and Oblivious Signature Based
Envelope [36]. While these schemes are useful for scenarios wiadiciep are based on attributes such as
secret clearance or memberships in some secret underground movethmenere not suitable for the kind of
e-commerce scenarios such as Example 1. Using any of these schemesy¢heauld send an encrypted mes-
sage to a client such that the client can decrypt if and only if the client éxdi§icates whose contents are the
same as those identified by the server’s policy; at the same time, the sergerald@ow whether the client has
those certificates or not. These schemes can implement policy-hiding aocotiss when the servers’ policies
have very specific forms. In Example 1, if Bob’s loan approval policy is eifkiee’s birthdate is April 1st,
1974 or Alice’s salary is exactly $60,000, then policy-hiding access alocdn be achieved using these existing
schemes. However, for the kind of policies in Example 1, where many posdthlmute values would satisfy a
policy, these schemes do not work well.

Secure Function Evaluation Secure Function Evaluation (SFE) [56, 31, 30] is a powerful and genenal cry
tographic primitive. It allows two or more parties to jointly compute some function whilegitheir inputs

to each other. CIPPE may be cast as a special case of 2-SFE problem: () take xz,, as Alice’s private
input and make the commitment verification part of the public function, (2) treateberigition of Bob’s private
function f as part of Bob’s private input, and (3) make the public function to be etedwauniversal circuit that
takesf’s description,zy, x2, - - - ,x,, andey, ca, - - - , ¢, @and computeg(zy, - - - , x,) (this universal circuit is
similar in concept to a universal Turing Machine). However, applyinggieeral solution in this case is very
inefficient, as the circuit for verifying commitments and the universal cirgeitvery large.

The idea of committing local inputs before the function evaluation has appeatiee 8FE literature (e.g.,
[16, 31, 29, 9]) to ensure the correctness of the computation. This doiscepbstantially different from our
model, where Alice’s input is certified by a trusted third party in CIPPE. CachinCamdenisch [9] introduced
the notion of fair secure computation where a partially trusted third ganparticipates to ensure the fairness
of the computation. Their work [9] is different from CIPPE in that {I%¥ job is to achieve fairness instead of
certifying Alice’s input (in fact, Alice’s input is even private ), and (2) the function to compute is public.
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Selective Private Function Evaluation (SPFE) was introduced by Canetti et al. [ibgpvgoal is for Bob to
compute a private functioffi(z;,, ..., z;,, ) over a subset of Alice’s database= z1, ..., z,, without revealing
Bob’s function. In their, the authors focused on the case wlieardm are public but then locations in the
database are private to Bob.

Abadi and Feigenbaum [1] introduced the notion of Secure Circuit Evaludtiddecure Circuit Evaluation,
Alice has a private input and Bob has a private circuit. In the end Alice learns the valug(x) but nothing
else abouCC. Sander et al. [49] improved the previous results and gave an efficierrooimd protocol for secure
evaluation of circuits that have polynomial size and depttogn). In these protocols, Alice can choose which
input value to use in the circuit evaluation. It is not clear how Secure Cireaituiation protocols can be applied
to CIPPE because the client’s input in CIPPE is committed and certified by a trust CA.

OACerts and Anonymous Credentials Our work builds directly on OACerts developed iA.[ The ideas of
storing commitments of attribute values in certificates appeared in the literaturemwynaous credentials [15, 8,
11, 10]. Thus itis possible to replace OACerts and use anonymous tiedgg@npolicy-hiding access control and
CIPPE. Note that using zero-knowledge proof protocols [18, 40, 2I71]&pgether with OACerts or anonymous
credentials, Alice can prove that her attribute values in her certificatescleaigen properties without revealing
any other information about her attributes. However, in order for Alice gosugh techniques to prove that she
satisfies Bob's policy, she needs to know the policy. Therefore, zavodedge proof protocols are not suitable
for policy-hiding access control.

Oblivious Transfer Crépeau [19] introduced the notion of Committed Oblivious Transfer (COTQOi, Bob
commits two bitsiag anda;, and Alice commits a bit. In the end, Alice learns, without learning anything else,
while Bob learns nothing. Garay et al. [28] gave an efficient construcfi@@OT in the universal composability
framework. The CIOT protocol we propose in this paper differs from@®OT protocols in that the receiver’'s
input in CIOT is a committed integer instead of a bit. Finally, the details of our Cl@iopol are reminiscent
of the techniques used in the oblivious transfer protocols [41, 52p-lmeowledge proofs of that a committed
number belongs to an interval [40, 21], and anonymous fingerprinting [44].

9 Conclusion and Future Work

We have presented an efficient and provably secure solution to policyghadoess control, which enables Bob
to decide whether Alice’s certified attribute values satisfy Bob’s policy, witlBnli learning any other infor-
mation about Alice’s attribute values or Alice learning Bob’s policy. Our apphouses OACerts and CIPPE.
Our construction for CIPPE uses Yao’s scrambled circuit protocol and twel nechniques, one is construct-
ing topologically uniform circuits that can compute arbitrary functions in a fundamnily, the other is the
Committed-Integer-based Oblivious Transfer (CIOT) protocol. Futundkwiludes constructing efficient topo-
logically uniform circuits for function families other than the one we studied in Seétion
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A Formal Security Definition of CIPPE

The security definitions we use follow [30, 12, 13]. The security of CIPREggol is analyzed by comparing
what an adversary can do in the protocol to what she can do in the ideal mith a Trusted Third Party (TTP).
Recall in the CIPPE schem€,inputsz, S inputs f, and finally bothC andS outputf(z). The ideal model differs
for honest-but-curious and malicious adversaries (see [30] fomaaladefinition). When we consider malicious
adversaries, there are certain things we cannot prevent: an agvdrsaay refuse to participate in the protocol,
(2) may substitute its local input, and (3) may abort the protocol prematudien we consider weak-honest,
we cannot prevent an adversary from substituting her local input.

1. For the ideal model with honest-but-curious adversaries, the clieds seto the TTP, the server sends
f to the TTP, and finally both the client and the server recgiis€. An honest party outputs her output
from the TTP, whereas a honest-but-curious party outputs an arbitnaction from her initial input and
the output she obtained from the TTP.

2. The ideal model for weak-honest adversaries is similar to the ideal mmdkbhest-but-curious adver-
saries, but differs in that a weak-honest adversary can substituirgple before sending to the TTP.

3. The ideal model for malicious adversaries is similar to the ideal model foishdué-curious adversaries,
but differs in that a malicious adversary can terminate the protocol preehgtaven at a stage when she
has received her output and the other party has not.

Definition 2 (The Ideal Model) Let f : {0,1}* — {0, 1} be afunctionality. Le{C, .S) be a pair of probabilistic
polynomial-time machines representing the client and server in the ideal modél.asudr isadmissible if at
least one of C, S) is honest. The joint execution gfunder(C, S) in the ideal model, denoteéDEALc s(x, f), is
defined as the output pair 6fand.S from the above ideal execution. For instancé, i§ malicious and terminates
the computation prematurely, theEAL¢c s (z, f) = (C(z, f(2')), L); if C never aborts|DEAL¢ g(z, f) =
(C(z, f(2)), f(2")) wherez' is the inputC gives to the TTP.

Definition 3 (The Real Model) Let f be as in Definition 2. Leil be a CIPPE protocol for computing Fur-
thermore, le{C, S) be a pair of probabilistic polynomial-time machines representing the client avef sethe
real model. Such a pair sdmissibleif at least one of C, S) is honest, i.e., follows the protocbl. Then, the
joint execution oflI under(C, S) in the real model, denoteREAL; ¢ s(x, f), is defined as the output pair 6f
andsS from the protocol interaction.

Definition 4 (Security) Let f andII be as in Definition 3. Protocdl securely computeg if for every pair of
admissible probabilistic polynomial-time machin&s", S*) in real model, there exists a pair of admissible prob-
abilistic polynomial-time machine@”, S) in the ideal model, such th&®EAL ¢+ s+ (z, f) is computationally
indistinguishable froMDEAL¢ s(x, f).

B The scrambled circuit protocol for 2-SFE

The scrambled circuit protocol was developed by Yao [56]. This protoecs between two players:generator
and anevaluator In the scrambled circuit protocol, the generator “scrambles” the circuitrimesmanner, then
two players interact, the evaluator “evaluates” the scrambled circuit, and fihallgvaluator sends the result
of the evaluation to the generator, who recover the final result. Our CIP&®E&cpt builds upon the scrambled
circuit protocol, where the generator is the server (Bob) and the d@walisahe client (Alice).

Protocol 3 (Scrambled Circuit Protocol) Let = be the evaluator’s input, anglbe the generator’s input. Let
f:{0,1}* x {0,1}* — {0,1}* be a function known to both parties. In the end, both parties Igarny). The
scrambled circuit protocol takes the following steps:
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Encrypting the circuit Assume thatr;, [ M | is a semantically secure encryption function for the messdge
using the keyk. Suppose the circuit for the functiof{x, y) consists ofs gatesg, ..., gs andt wires
wy,...,w:, Where each gatg; has two input wires and one output wire; we usdo also denote the
function{0, 1} — {0, 1} computed by the gate. The generator scrambles the circuit as follows.

1. The generator choosesrandom keys:?, k1, ..., kP, k! and assigns a pair of random kelys, k}}
to each wirew; for1 <17 <.
2. For each gate; in the circuit, the generator constructs a tables follows:
(a) Letw, andw, be the input wires of gate;, andw, be the corresponding output wire, where
1<a,bc<t.
(b) The generator computes the following four values:

mo = Ejp [Ekg [kgi(o,O) I 00} } moy = By [Ekg [kgi(o,l) [ 00} }
mig = By [Ekg {kgm,o) HO"H miy = Ep [Ek}l [k:gi(l»l) HOUH

wherem,,, (for z € {0,1} andy € {0, 1}) corresponds to the case that the input witghas
value z and the input wirew, has valuey, and k% “*)||0° means concatenating the random
value corresponds to the wite. having valuey;(z,y) € {0, 1} with a binary string ot 0's.

(c) The generator randomly permutes the{sep o, mo 1,m1,0,m1,1} and stores it in the table;.

For example, the table for the gatewhen it is an AND gate would contain the following four entries
in some random order:

moo = By [ Byg [ke |107] ] mo. = By [ Brg [ke [107] ]

muo = Eyo [ By [k2]]07]] m1y = B [ By [k ]]07]]

If the evaluator knowsk(é,k,}), the two keys corresponding to thealue in wiresw, andwy, and tries
to decrypt the four entries, the evaluator will find garbages when tryingtoyptimg o, mo.1,m1,0
and successfully decrypt, ;. The evaluator can tell that the decryptionsof ; is successful by
finding the binary string)? in the decrypted message. This enables the evaluator to A¢athe
value corresponds to the wite. being1. Of coursew,. should bel when bothw, andw, arel. If
the evaluator knowsk{ ,k?), then it can successfully decrypt; o and recover?. In the other two
cases, the evaluator recovétsas well.

3. The generator sends, . . ., T to the evaluator. The generator sends also the topology of the circuit,
so that the evaluator knows which gate connects to which.

Coding the input The evaluator learns a random key for each input wire as follows.

1. For each wirev; that corresponds to the generator’s input, the generator é€rtdshe evaluator if
his input is 0, he sendg' if his input is 1.

2. For each wirev; that corresponds to the evaluator’s input, the generator and the evangtge in
a 1-out-of-2 oblivious transfer protocol [47, 24, 30] in which the erator providesk? andk}, and

the evaluator choosé§ if her inputis 0, and choosé@ otherwise.

Evaluating the circuit The evaluator evaluates the scrambled circuit gate-by-gate, starting framahiéinput
gates and ending at the circuit-output gates. Each gaievaluated as follows:

1. The evaluator can evaluate gatenly if she has learned one key for each of the input wires.
2. Letw,, wy, w. be the corresponding input wires and output wire of gateAssumek? andk; are

the keys the evaluator learned that correspond to wireandwy, respectively.
3. LetT; be the table corresponding to gate The evaluator usels’ andk; to decrypt each entry in

T;. She will succeed only in the entry, , = Ek-g [Ekg []{gi(m,y)} } Thus she Iearnsgi(x,y), one
of the two keys corresponding to the output wirg
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Finally, the evaluator obtains the output of the scrambled circuit, and sendskitd®¢he generator. The
generator learng(z, y) and reveals the result to the evaluator.

The scrambled circuit protocol is secure in honest-but-curious modeBB[H6, Let us briefly discuss the
security of the scrambled circuit protocol. As for the security of each gatenecessary to construct the table
using anon-malleableencryption scheme [20] (such as AES), to prevent the evaluator from maiéaningful
changes in the plaintext by changing the ciphertext. Provided that theptiocryscheme is non-malleable,
knowledge of one key for each of the input wires discloses only oneokdlye output wire. The other key is
unknown to the evaluator.

As for the security of the entire circuit, the oblivious transfer protocasless that the evaluator learns just
one key per input wire, and the generator does not learn which valesaheator chose. Therefore, the evaluator
can obtain one (and only one) key per wire in the circuit. As the mapping bettte (two) random keys of
each wire and the Boolean values is unknown to the evaluator, she |atrerrbe type of each gate, nor any
intermediate results of the original circuit.

C Security Properties and Proofs for CIOT protocol

Theorem 1 The sender does not learn anything from the CIOT protocol.

Proof. The CIOT protocol consists of two phases: a bit-commitment phase anbliaiows transfer phase.
The sender learns nothing abaufrom the oblivious transfer phase, as the receiver does not sgnuhfan
mation to the sender during that phase. Thus, all the information the sendes Ezoutr is from the bit-
commitment phase. In the bit-commitment phase, the sender learns the commimentsc,_;. Observe that
co = cHz 1(cl) 2" therefore ¢y can be computed from 1, . . ., c,_; and does not leak any additional infor-
mation. Recall that,rq, ..., are chosen uniformly randomly frof,; the distributions ot:, ¢y, ..., c/—1
are exactly the same as the distribution of any commitment under the Pedersen comiradimene. Thus
¢, c1,...,co_1 leak nothing about their corresponding committed values, ..., z,_;. Therefore, the sender
does not learn anything abauit In other words, for any, y € [0..2¢ — 1] (let c,, ¢y be the corresponding com-
mitments), and for any adversary executing the sender’s part, the vietthahadversary sees when the receiver
inputs(zx, c¢;;) and when the receiver inputs, c,) are perfectly indistinguishable. |

Theorem 2 Under the DDH assumption and the DL assumptiortnthe order-g subgroup &, the receiver
learns at most one value pét?, k}) pair.

Proof. Suppose an adversarial receiver learns lkﬁtandk} for some givent, where0 < ¢ < ¢ — 1. Under the
DDH assumption, the EIGamal encryption scheme is semantically secure [S1gfdieerthe adversary knows
the private keys corresponding to the ElGamal public kEYs= (p, q,h,c;) and K} = (p,q,h,c;g™!). In
other words, the adversary knowsvhereh” = ¢;, andr’ whereh” = c;g~ . Thus, the adversary knows
andr’ whereh” = gh’’; she can effectively computeg, (k) = (r —')~' mod ¢, which contradicts the DL
assumption. [ |

Theorem 3 Under the DDH assumption and the DL assumption@y) the order-q subgroup of.;, if the

receiver learnd keys, these values musth§, ..., k"'
Proof. By Theorem 2, if an adversarial receiver leatnkeys, she learns exactly one key géf, k}!) pair.
Suppose she Iearn‘(%0 ., k;*", wherey; € {0,1} fori € [0..£ — 1] and there exist at least orjesuch that

T # Yj. Thereforez 0 Ly 2t £ Zf;é x;2" = . Under the DDH assumption, the adversary knows the private
keys corresponding to the EIGamal public key¥’, ..., K/*~'; thus she knows,; for eachi € [0..¢ — 1] such
thatg¥ihti = ¢;. As
g = ¢ = [0 (c)? = TTCa(ghinti)? = gizo w2 pXizo ti2' = gupt,
wherey denotesz 0 Ly2t andt denotesze '#:21 (mod q), the receiver knows;, r, y, and¢ such that
g*h" = gYh!. The receiver can efficiently compdtgg(h), which contradicts the DL assumption. [ |
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D Security Properties and Proofs for CIPPE protocol
Theorem 4 The CIPPE protocol is secure in the honest-but-curious model.

Proof. In the honest-but-curious model, the security definition in the ideal model (Defifjigs equivalent
to the definition based on simulation. That is, it is sufficient to show &gndS), given her own input and

f(z1,...,z,), can simulate the execution of the protocol.

If, for any x1,...,z, € [0,2° — 1] and f € F, the distribution ofC’s view from the real model cannot be
distinguished from a simulation of this view that only usgs. .., z,, 71, ..., 7, c1,...,cp and f(x1, ..., zy),
then clearlyC cannot learn anything abofis private functionf. Similarly, if distribution ofS’s view cannot be
distinguished from a simulation of this view that only uges, ..., ¢, and f(z1, ..., x,), thenS cannot learn
anything abouC'’s inputz1, ..., z,.

The simulator folS is constructed as follows. Assume the simulator has the knowledge-gof. . . , ¢, and
flxy, ... xn).

1. In step 1 of the client-server interaction phase, gifen F, the simulator constructs a circuit fgrand

scrambled it.

2. Instep 35 runs the CIOT protocatb times withC in the real model. For each @fs inputz;, S received
commitments, denoted aso, ¢; 1, - - , i o—1, Wheree; o = ¢; Hﬁ;}(ci,j)—w. The simulator chooséds- 1
random values front,, denoted as} , ..., c;,_,, and computes] ; = ¢; [[,_;(c] ;) 7%,

3. In step 55 receives fromC the key corresponding the resilte {k?, ki}. If f(z1,...,2,) = 0, the
simulator generateg’; otherwise f (1, ..., ,) = 1, the simulator generatés.

We briefly show that the real and simulated views $oare perfectly indistinguishable. In real views,
getsc;o,c¢it,--.,cig—1 for eachz;, whereas in simulated views, get5c§’0,c’i71, .. .,c;,e_l. By Theorem 1,
the distributions ot; 1,...,c; 1 are exactly the same as the distribution of any commitment under the Ped-
ersen commitment scheme, thus the distributiotegf, c; 1, .. ., cie—1) and(cj g, ¢; 1, ..., ¢; ,_,) are perfectly
indistinguishable.

Assume the simulator fa€ has the knowledge afy, ..., =y, 71,..., 7, ¢1,...,cp @and f(zq,...,z,). Let

us examine what receives in the real model receives a scrambled circuit, one key per input wire (Theorem 2
guarantees thaf could get only one key per input wire), arigh = Ejo [07],m = Ej [19]). During the
circuit evaluation phase; learns one key per wire, and eventually leaknghe key of the output wire. The
simulator forC is constructed as follows.

1. As the circuits for computing any functiot’shas same topological structure by construction, we assume
the topology of the scrambled circuit is public.

2. The simulator generatesandom keys|, k5, . . ., k; and assigna; for wire w; wherel < i <.

3. For each gatg; in the circuit, letw, andw, be the corresponding input wires atwd be the corresponding
output wire. The simulator chooses randomly three mességen,,, andm from the ciphertext space.
The simulator computes), = Ej, [ Ey, [KL]|07]]. The simulator randomly permutésa/ , m5, m, m} }.

4. If f(x1,...,2,) = 0, the simulator computeg, = £y, [07 ], and chooses a random messagéom the
ciphertext space. If(z1,...,2,) = 1, the simulator computeg; = Ej, [17], and chooses a random
messagey, from the ciphertext space.

We briefly sketch that the real and simulated views oare computationally indistinguishable. Assume
the encryption scheme is secufecan learn only one key per wire. The ke§dearns for each wire are com-
putationally distinguishable from}, k), ..., k;. For each gatey;, {moo,mo,1,m1,0,m1,1} in real model is
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computationally indistinguishable from the permuted{sef , m/, m4, m} } in the simulated views(ng, 1) in
the real model is computationally indistinguishable fragfy, 7).
Therefore, our CIPPE protocol is secure against honest-but-cladvwessaries. [ |

Theorem 5 The CIPPE protocol is secure against malicious clients.

Proof Sketch Due to the space limitation, we only sketch this proof as well as the next twofofinal proofs
will be given in the full version of this paper.

The correctness of the protocol against malicious clients relies on thatgeafithe CIOT protocol. Theo-
rem 3 guarantees thétgets only the keys corresponding to her committed input. Assume that thepgaory
scheme used in the scrambled circuit is secearns at most one key per wire from the scrambled circuitS As
is honest and builds the circuit correctfycan only get the key of the output wire correspondingte;, . . ., z,,).

As for server’s privacy, the reasoning is similar to the correctnessegbthtocol. Becausg constructs the
circuit in a way that all circuits have the same topological structGreannot distinguisty from otherf’ € F
from circuit topology. Again, assume that the encryption scheme used iorralsled circuit is secure and CIOT
is secure(C learns at most one key per wire from the scrambled cir€utgnnot learn which gate computes which
function. Thus, even malicious client cannot further information aS&uprivate function. |

Theorem 6 The CIPPE protocol is secure against weak-honest servers.

Proof Sketch To prove the security against weak-honest servers, we show dhatvery probabilistic
polynomial-time machin&™ in the real model, there is a probabilistic polynomial-time maclsiria the ideal
model, such that the views of partié§', S) in the ideal model is computationally indistinguishable from the
views of (C, S*) in the real model.

Before we prove the security, we briefly analyze the possible servavlmehin the real model. For each
instance of the CIOT protoco§ receives! commitments, then it send@f EIGamal encryptions t€. Weak-
honest server behavior of in the CIOT protocol cannot @afarther information. For the scrambled circuit, a
weak-hones$ can do two things that deviate from the protocol: (1) constructing a circuittraputesf’ other
thanf, and (2) scrambling the circuit without following the protocol description. Bee&wommitted two keys
of the output wire kY andk;}) to C in step 2, and is weak-honestS can always get one keyc {k?, k! } from
Cin step 5. Keyk is all S learns fromC besides informatio§ learns from the CIOT protocol.

Let F be the family of functions that each € F : ([0..2° — 1])» — {0,1}. ThenS learns just one
bit information aboutC’s input, i.e.,S learnsf’(z1,...,z,) for some functionf’ € F. Therefore, for any
r1,..., 2, €[0,2° — 1] andf € F, the views of partie$C, S*) in the real model can be simulated by the view
of parties(C, S) in ideal model using, . .., z,, and possiblyf’ € F. |

Theorem 7 Letg : ([0..2° — 1])™ — {0, 1,2} be a functionality, a malicious server can leagty, .. ., z,,) for
somey, but no more than that.

Proof Sketch The analysis is similar to the proof of Theorem 7. For the scrambled circuitjieionag S can
(1) construct a circuit that computég$ other thanf, or (2) scramble the circuit arbitrarily without following
the protocol description. BecauSecommitted two keys of the output wiré{{ andk}) to C in step 2, there is
three possibilities can conceive from the CIPPE protocol. FirStlearnsk:?. SecondS Iearnsk:tl. Third, S
constructed a “bad” scrambled circuit intentionally, anthils in evaluating the circuit or fails in decrypting
andn;. In any case$ learns no more than 2 bit information abdii input.

More precisely, leG be the family of functions that eagh € G : ([0..2° — 1)) — {0,1,2}. ThenS
learnsg(z1,...,z,) for some functiong € G instead off(z1,...,x,) where f € F. Therefore, for any
r1,..., 2, € 10,2 — 1] andf € F, the views of partie$C, S*) in the real model can be simulated by the view
of parties(C, S) in ideal model using, . .., z,, and possibly € G. |
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