CERIAS Tech Report 2005-151
L earning Genetic Algorithm Parameters Using Hidden Markov M odels
by JRees, G Koehler
Center for Education and Research
Information Assurance and Security
Purdue University, West Lafayette, IN 47907-2086

Available online at www.sciencedirect.com

- EUROPEAN
® ¢ I 1 JOURNAL

»“ ScienceDirect oF GOUBNAL AL
RESEARCH

ELSEVIER European Journal of Operational Research 175 (2006) 806-820

www.elsevier.com/locate/ejor

Computing, Artificial Intelligence and Information Management

Learning genetic algorithm parameters
using hidden Markov models

Jackie Rees **, Gary J. Koehler *!

& Krannert Graduate School of Management, 403 West State Street, Purdue University, West Lafayette, IN 47907-2056, USA
® Department of Decision and Information Sciences, Warrington College of Business, University of Florida,
P.O. Box 117169, Gainesville FL 32611-7169, USA

Received 7 October 2003; accepted 14 April 2005
Available online 15 August 2005

Abstract

Genetic algorithms (GAs) are routinely used to search problem spaces of interest. A lesser known but growing group
of applications of GAs is the modeling of so-called “evolutionary processes”, for example, organizational learning and
group decision-making. Given such an application, we show it is possible to compute the likely GA parameter settings
given observed populations of such an evolutionary process. We examine the parameter estimation process using esti-
mation procedures for learning hidden Markov models, with mathematical models that exactly capture expected GA
behavior. We then explore the sampling distributions relevant to this estimation problem using an experimental
approach.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Artificial intelligence; Evolutionary computations; Evolutionary process; Adaptive agents; Genetic algorithms; Heuristics;
Markov processes

1. Introduction

The area of experimental economics (e.g., Kagel and Roth, 1995) studies complex, multi-agent systems
within a computer-simulated environment. Often it is desirable to have the artificial agents adapt to various
events and pressures within their environment. One popular type of adaptive behavior is modeled after nat-
ural evolutionary processes. A simple, yet powerful, form of this behavior is captured in genetic algorithms
(GAs) (see Goldberg, 1989).

* Corresponding author. Tel.: +1 765 494 0320; fax: +1 765 494 9658.
E-mail addresses: jrees@purdue.edu (J. Rees), koehler@ufl.edu (G.J. Koehler).
! Tel.: +1 352 846 2090; fax: +1 352 392 5438.

0377-2217/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.ejor.2005.04.045

mailto:jrees@purdue.edu
mailto:koehler@ufl.edu

J. Rees, G.J. Koehler | European Journal of Operational Research 175 (2006) 806-820 807

Several authors have studied the evolutionary characteristics of systems by creating a simulation envi-
ronment where a GA is used to mimic the adaptive behavior of some agent or group of agents. For exam-
ple, Marks et al. (1995) examined oligopoly behavior in an adaptive framework and used a GA to simulate
market-pricing movements in the coffee industry. An evolutionary model for electronic commerce was pre-
sented in Oliver (1996). Using a GA for learning, automated agents learned strategies for business negoti-
ations within an electronic commerce framework. This investigation focused on a series of simulations of
automated negotiation tasks using a genetic algorithm on automated agents. In Sikora and Shaw (1996), a
GA was used to simulate group interaction leading to a solution among groups of agents. Genetic program-
ming, (see Koza, 1992), another evolutionary computing technique, was used by Dworman et al. (1996) to
automate the discovery of game theory models. A computational model of the organization based on the
simple genetic algorithm was created by Bruderer and Singh (1996). Their research is unique in that it spe-
cifically uses a genetic algorithm as the model for organizational evolution, as opposed to simply simulating
behavior using a genetic algorithm. In the above examples using evolutionary techniques to simulate or
model particular processes, the authors have had to provide very rough estimates of parameters for the evo-
lutionary technique used, for example, crossover or mutation rates, typically without much guidance of
which values might be appropriate. Clearly, these simulations and models could progress further if more
were known about the appropriate settings for the evolutionary parameters.

In Rees and Koehler (2000, 2002) the process is reversed. Rather than simulate behavior, the authors
started with experimental data from an actual adaptive process (in this case a group decision-making case)
and used the data to find a best-fit GA to mimic the evolutionary path. This fitting process was used to
determine parameters required by the GA. They formulated and tested various hypotheses for these param-
eters (Rees and Koehler, 2000).

In traditional GA simulation, the GA parameters, y, the crossover rate, and y, the mutation rate, are
either determined experimentally by running a series of preliminary simulations or are chosen based on pre-
vious results or standard values used in the GA community. As discussed above, there are many real-world
phenomena that appear to possess evolutionary characteristics, not unlike a GA. Following the lead given
in Rees and Koehler (2000, 2002), we seek to investigate further whether there is a way to characterize these
processes in terms of GA instances? In other words, can we reliably learn GA parameters, such as crossover
and mutation rates, from real-world processes?

The expected behavior of a GA process can be modeled exactly using a Markov chain (Nix and Vose,
1992). If we know or assume a real-world process is a GA process, then we have a hidden Markov model
(HMM)—we know it can be modeled by a Markov chain, we just do not know the specific mutation and
crossover rates that generate the transition probabilities. The objective of this research is to use HMM
methods to compute the likely GA parameter settings given observed populations of such an evolutionary
process. In this paper we study the process of learning or “fitting” GA parameters to such evolutionary
processes in more detail than done in Rees and Koehler (2000, 2002). We examine this issue by using math-
ematical models that exactly capture expected GA behavior and explore the sampling distributions relevant
to this estimation problem using an experimental approach.

The value of this research is to provide researchers with a tool to more accurately simulate real-world
evolutionary behavior. Such simulations are becoming commonplace, especially in applications such as
information security, artificial markets and retail management. In such simulations, there is no theoretical
guidance on how to set GA parameters such as crossover and mutation rates. The technique described in
this paper allows researchers to determine these parameter values from existing real-world data. This ability
should lead to more accurate and useful simulation studies.

The remainder of this paper is organized as follows: Section 2 presents relevant background on genetic
algorithms, on the applications of hidden Markov models to this problem, and specifically on the use of
maximum likelihood estimates for computing best-fit genetic algorithm parameters, namely crossover
and mutation rates, from experimental data. Section 3 describes the experimental study comparing known

808 J. Rees, G.J. Koehler | European Journal of Operational Research 175 (2006) 806-820

GA parameters to estimated parameters using the techniques described in Section 2. Section 4 presents the
results of this study and Section 5 provides a discussion of those results. Finally, Section 6 provides con-
clusions and future research directions.

2. Background

In the following sections we present the relevant background information on genetic algorithms for this
study. The Markov model of GAs is then provided in Section 2.2. We then discuss the hidden Markov mod-
el approach used in the study for learning specific parameter settings in Section 2.3.

2.1. Genetic algorithms

Genetic algorithms are derived from the principles of Darwinian natural selection and evolution. A pop-
ulation of agents evolves over time under survival of the fittest pressures. These agents, also called strings or
chromosomes, evolve using three basic operations. These three operations are selection, crossover and
mutation. Selection, or reproduction, stochastically collects the “fittest”” members of the population accord-
ing to a pre-defined fitness function for use in the next population or generation. Crossover pairs off the
members of the new generation and exchanges genetic material between member pairs. Finally, mutation
randomly alters information contained in the population members, adding diversity back into the
population.

We can think of an evolving population as a search for better strings. Crossover and mutation opera-
tions play a guiding role in this search. The crossover rate, y, is a “focusing’ factor in the search process.
Two selected strings are “‘crossed’ with probability y. In proportional selection, every pair of strings that
are crossed has been randomly selected according to their “fitness”. On average, the crossover operator
combines two good solutions into potentially better solutions. The crossover operation attempts to focus
search and move even closer to an optimal point. For this reason, the crossover parameter is often termed
the “exploitation” operator.

The mutation operator using a mutation rate, u, plays a “diversifying” role in genetic search. In uniform
mutation, mutation operates on each bit in the string. Each bit is mutated with probability, u. The mutation
rate is usually set to be very low, for example, 0.1% of all bits in all of the strings might be subject to muta-
tion in a given stage of evolution. If a particular bit is mutated the value of the bit would be altered, from a
zero to a one or vice versa. The purpose of the mutation operation is to add either strings that were “‘se-
lected out” of the population back in or to introduce new strings. Mutation serves to direct the search away
from local minima or maxima. For this reason, the mutation operator is often termed the “exploration”
operator (Goldberg, 1989). Table 1 summarizes a typical GA implementation.

2.2. Markov model for GAs

The first exact expected value model of a simple GA was provided in Vose (1990) and Vose and Liepins
(1991). This has been subsequently extended to include many variants (Vose, 1999). Let Q be a collection of
binary strings of length ¢ and let r = |Q| = 2 be the number of possible strings. These strings are equiva-
lently represented as their integer equivalents 0,1,...,7 — 1. Let M, be the probability that the string of
all zeros is the child of the mating process between parent strings g and k (where g and k are the integer rep-
resentations of the strings). A general form of the mixing matrix, M, was given by Vose and Wright (1995) as

. + Lk T .
way:ZHiykzyké(x(@k@k@y:])' (1)
Jk

J. Rees, G.J. Koehler | European Journal of Operational Research 175 (2006) 806-820 809

Table 1
The simple genetic algorithm

Algorithm: (Genetic Algorithm)
Given:

String length ¢, fitness function f{), mutation rate u € [0, 0.5], crossover rate y € [0, 1] and population size n > 1
Initialization: Generate an initial population, population 0. This is usually done by randomly drawing » strings from
Q=1{0,1,...,2" — 1} with replacement

Step 1: Form a new population as follows. Repeat the following steps until the new population has # members
(A) Randomly choose two (or more) members from the old population according to a selection process. These are
called parent strings
(B) Form a child string through a mixing process consisting of crossover and mutation operations
Step 2: 1f stopping conditions are not met, return to Step 1

Here p1; and y; are called mutation and crossover masks and d(x) is 1 when x is true and 0 otherwise. Here ®
and ® are the bitwise “OR” and “AND” operators. The various mutation and crossover schemes can be
captured using appropriate choices for these masks (see Vose (1999)). In particular, if the model uses simple
one-point crossover and uniform mutation

. YCi if i > 0,
= I —y+yco ifi=0,
where

L if Fk € (0,4) and i=2"—1,

¢ =4 @D
0 otherwise

and

i £—1i]
= ()" (1= ™"
where |i| is the number of non-zero bits of i. Let P be a population of elements from Q where n = |P| is the
population size and N is the number of possible populations. N is given by

v=("T"1) @

r—1

A population is a multiset meaning it may contain multiple copies of the same string. Consider the Markov
Chain where the possible populations of size n are the states. Express a state by the vector of length r, ¢,,
having as its k&th component the number of copies of string k in the population. Let e be a vector of 1’s and
¢’ its transpose. Each ¢; is defined by

o, =n,
(), €{0,1,....n}, j=0,1,....r =1L (3)
The transition probabilities from state (population) i to j are computed by
' r—1 C]E?)g
P = ng Ok (4)

810 J. Rees, G.J. Koehler | European Journal of Operational Research 175 (2006) 806-820

F is used to capture the selection process and M the mixing operators (mutation and crossover) by Vose
(1999). In particular
M(x); = (ox)Maix, (6)

where the permutation of x, ag;x, is defined by

Xka0
oxX = . (7)
Xk (r—1)

The selection process is captured through F. Many representations of F capturing commonly employed
selection processes were shown in Vose (1999). For example, for roulette-wheel selection

Fo

F(4) = Zpg

(8)

where F'is a diagonal matrix and F;; = f{i) is the fitness of string i.

The previous models were developed specifically for binary strings. The model in Nix and Vose (1992)
was extended by Bhattacharyya and Koehler (1994) for strings with digits selected from 2" cardinality
alphabets. Later Koehler et al. (1997) generalized the model in Vose and Liepins (1991) for strings com-
posed of digits having alphabets of arbitrary cardinality z, where z is an integer greater than 1. This model
can now be used to learn GA parameter settings from real-world evolutionary processes by utilizing hidden
Markov models.

2.3. Hidden Markov models and maximum likelihood estimation of GA parameters

An approximate Maximum Likelihood Estimation (MLE) procedure was used in Rees and Koehler
(2000, 2002) to estimate the crossover rate y and mutation rate p of group decision processes. Data was
available from groups using a decision support tool to address a Pareto-optimal, production-planning
problem, under various incentives and group configurations. Every possible production schedule input into
the system was characterized as strings in a genetic algorithm. To compute the MLEs, Rees and Koehler
(2000, 2002) used a Markov chain model of GAs developed by Nix and Vose (1992) and generalized by
Vose (1999) and Koehler et al. (1997). This model gives exact expected transition probabilities for the sim-
ple GA. The transition probabilities were used to determine the likelihood of the observed transitions.
Crossover and mutation rates were then estimated by maximizing these likelihoods.

Hidden Markov models have been applied to application areas such as speech recognition (Rabiner,
1989), broadcast news topic detection and tracking for news on demand (Boykin and Merlino, 2000),
and intrusion detection for network security (Cho and Park, 2003) among others. In HMMs, there is
the observation sequence, the observed outcomes or visible observations of a process, the invisible or hidden
states that one cannot directly view or observe and the set of probabilities governing the model’s behavior.
There are three fundamental problems for HMMs (Dugad and Desai, 1996): (1) how to compute the prob-
ability of occurrence of a particular observation sequence; (2) given a specific model, how to chose the state
sequence so that the joint probability of the observation sequence and the state sequence given the model is
maximized; and finally (3) how to determine the model parameters (for example y and) so that the
probability of the observation sequence given those parameters is maximized. This final problem is consid-
ered the model identification or training problem (Dugad and Desai, 1996) and is the main focus of this

paper.

J. Rees, G.J. Koehler | European Journal of Operational Research 175 (2006) 806-820 811

Given an observed trajectory of a GA process (i.e., the observed sequence of states—here meaning the ob-
served sequence of populations), we wish to estimate the underlying parameters used by the GA. That is, we
wish to estimate rates y and u. The likelihood of an observed trajectory is proportional to the product of the
transition probabilities along the path. Hence, the likelihood of a given chain going from j; to j, to j,... is

les/zpjzd'z o .PjT—lsz' (9)

A simple maximum likelihood estimation (MLE) procedure can be used to determine model parameters.
For example, one might use the Baum—Welch re-estimation method (Rabiner and Juang, 1986) for this pur-
pose. Given there are just two parameters to estimate, the crossover, y, and mutation, g, rates, we maximize
the likelihood function:

-1
max ,11 Pjjis (10)
where T is the number of observed populations using a simple enumeration over a grid of values. The grid
of values of p from 0.0 to 0.5 (where 0.5 represents a random search in the binary case) and the values of y
from 0.0 to 1.0, inclusive, in steps of size 0.001 was employed. This MLE approach is a brute-force approx-
imation of the Baum-Welch re-estimation formulas (Rabiner and Juang, 1986) and was adopted due to its
relative computational simplicity.

Disappointing results in using this MLE technique were reported in Rees and Koehler (2000). The MLEs
of the GA parameters often gave counterintuitive values; however, the problem structure studied turned
out to be that of a highly-constrained optimization problem for which GAs often perform poorly. This
study focuses on the MLE problem. Specifically, this study seeks to measure the robustness of using MLEs
to estimate GA parameters on population data generated using known test functions and parameter set-
tings. We generate these populations using various combinations of the crossover and mutation rates.
These data sets are then used to estimate the known parameters using the above MLE procedure. There-
fore, we will have the ability to compare the known parameters to the estimated ones and investigate how
well the MLE procedure performs. We also provide some useful guidelines for estimating these parameters.

3. Experimental study

We wish to study the results of learning or ““fitting” GA parameters using the above-described MLE pro-
cedures. We do this by generating a large number of controlled cases where we fix the fitness function and
GA parameters. In other words, we run a GA with known parameter values for several scenarios. We then
use MLE on these generated cases to estimate the GA parameters and study the fit of these versus the
known, true values.

We study a collection of problems having string lengths of 10 bits and control the following factors:

o fitness function (see Table 2),

e mutation rate u € {0.001,0.01,0.1},
e crossover rate y € {0.1,0.5,0.9},

e population size n € {20, 50},

e number of populations ¢ € {20, 50}.

Three prototypical fitness functions for generating experimental data were selected. These functions are
summarized in Table 2. The first two are restricted version of De Jong’s F1 and F8 functions (De Jong,
1975) and the third is a fully deceptive trap function (Mason, 1991).

812 J. Rees, G.J. Koehler | European Journal of Operational Research 175 (2006) 806-820

Table 2
Functions
—SZ S
De Jong F1 fls) = l]o_og(;
De Jong F8 fls)=1- ’jo’og + cos(s —r/2)
o 1 [Eem),) <z
Trap Function fls)=1+ {ﬁ (m(s) —z), otherwise

The first function is a modified version of De Jong’s F1. The original F1 was simplified to one variable
and converted to a maximization form having all positive values. The original function is

fle,x,x3) =37 +x5 +x3, —5.12<x <512 (11)

This function was restricted to one variable (x) with the range of 100x € [—g,g) where r = 2¢. The range
constraint is used simply to restrict the search of the GA. In order to convert the function to a maximiza-
tion function, the function was subtracted from its maximum and a small number was added to keep it po-

sitive. This process yields
4477 x?
/%) = 45,000 ~ 10,000
Next, this function had to be converted to a string value, requiring the shifting of s from a range of s € [0, r)
to x’s range. Therefore, our modified F1 becomes
447 (s=57 1—s4rs
= — == . 1
f&) 40,000 10,000 10,000 (13)
This function has a unique maximum at s = r/2 and has no local maxima.

Similarly, the De Jong F8 is simplified to one variable and is converted to a maximization form having
all positive values. The original function is

(12)

k 2 k
fneom) =1+ 4();60 —JJ costx./vi), —512<x <511 (14)
i=1 i=1

Performing the various modification steps yields

§2 —rx

f(s) = l—m—kcos(s—r/Z). (15)
This fitness function has a unique maximum at s = r/2 and has many local maxima.

The third function is a trap function (Ackley, 1987). A trap function is a type of function known to be
GA-deceptive, that is, a problem or function that should make the GA move away from finding the global
optimum. A trap function is a deceptive function that “traps” the search at local optima. These functions
are defined for binary problems (for higher cardinality problems see Mason (1991) and Rees and Koehler
(1999)) are given by

:(z=mls), m(s) <z

f(s)zl—f—{ b

7= (m(s) —z), otherwise, (16)

where a and b are positive and z is chosen under various criteria. Weuse z=¢ — 1, a = 10 and b = 12.
These choices make f{s) fully deceptive (Mason, 1991).

Under each case studied, N = 25 replications were generated. Each run started with a randomly gener-
ated population. This population and the subsequent populations were recorded for later MLE processing.

J. Rees, G.J. Koehler | European Journal of Operational Research 175 (2006) 806-820 813

The MLE process determined best-fit mutation and crossover rates for these population transitions. These,
in turn, were compared to the true mutation and crossover rates. The comparisons were made by perform-
ing goodness-of-fit tests on the generated values assuming the sampling distribution was a lognormal dis-
tribution. The lognormal distribution was used as it was identified during preliminary testing against a
number of distributions, as the best fitting distribution. We hypothesized that the distribution functions
of both the crossover and mutation parameters are lognormal distribution functions with (positive) means
In(y) and In(u), respectively, where y and u are the true crossover and mutation rates after some preliminary
work to narrow the range of possible distributions. This hypothesis can be formally stated as

Hy: F(x)=F"(x) forallxe (0,1)
H,: F(x)# F*(x) for at least one value of x

where F(x) is the estimated distribution of the GA parameter examined and F*(x) is the lognormal distri-
bution of the true GA parameter. We also consider the descriptive statistics for each case, including the
estimated parameter means, standard deviations, skewness and kurtosis. The results are discussed in the
next section.

4. Results

Figs. 1-6 show the frequencies of the mutation and crossover rates determined by MLE for the three
functions. Each figure provides the distribution of the learned parameters for each given crossover or muta-
tion rate. For example, Fig. 1 shows the distributions of the mutation estimates for each of the three func-
tions tested. The given or fixed value of i was set at 0.001.

We examined the distribution of the estimates around their true values. For this we use the Kolmogo-
rov—Smirnov goodness of fit test against the lognormal distribution (Conover, 1999). The results of this test
at the o = 0.1 level (D = 0.10912) against various values of true y and u are provided in Tables 3-5.

While these results are somewhat mixed, there does appear to be evidence that the MLE technique pro-
vides a good approximation for the true GA parameters in the three functions tested. Descriptive statistics
of the estimated values are provided in Tables 6-8.

These results indicate that the MLE’s of the true x and y values are generally robust. However, there is a
tendency to underestimate the parameters, mostly affecting mutation. The crossover parameter is underes-
timated only at the 0.9 level, particular in the F1 and F8 functions. The skewness and kurtosis are also
much more positive for the p estimates than for the y estimates, indicating right-side asymmetry and

Mu = 0.001

Frequency

Fig. 1. Mutation estimates for x = 0.001.

814 J. Rees, G.J. Koehler | European Journal of Operational Research 175 (2006) 806-820

Mu = 0.01
120
100 ——DJ1
& 80 .
£ 60 - DJ8
=
g 40 TRAP
& 20
01 - A sAnds Ay
-20
S o X N
O O S S St
ROMIKANIROAIRN (YRR A
¥ W FE S
N N Q N N N N N
Ny ; : ; NN
Mu
Fig. 2. Mutation estimates for 1 = 0.01.
Mu = 0.1
60
50 1 ——D]J1
> A0
z ‘3‘8] —8—DJg
] N
£ _3.1‘ TRAP
;1
B 10 V.
0 T i T T T T T T T T T T T T =N
-10

RS >
& &P & 5 @
T N SRR\
SOV N D AR PN S
SN SR S SO NN
NN NN N

Mu

Fig. 3. Mutation estimates for ¢ = 0.1.

Chi=0.1
100
80 - ——DJ1
2’ 60 1 —=—DJg
% 40 LS TRAP
5] _ \
Eol ool el
-20 Q o) > N o © N N
N Yol A RS} Q 0
S M P PN & g
a;\» Q(') (,)oo \\ (OV \(\ Q q’/‘)
FFTEFSFT S
Q Q Q
Chi

Fig. 4. Crossover estimates for y = 0.1.

peaking of the estimated distribution. Therefore, the MLE procedure used appears to be biased regarding
mutation, especially for the F1 and F8 functions. Using this information to make adjustments to the esti-
mated parameters might be helpful in future research. Specifically, one might adjust the estimated best-fit
mutation parameter slightly upward, to accommodate the underestimation in the current technique. Inter-
estingly, the estimates do vary as the population size (n) and number of generations (¢) increase, but do not

generally improve significantly.

J. Rees, G.J. Koehler | European Journal of Operational Research 175 (2006) 806-820 815

Chi=0.5

Frequency

WA U
SS3SS
1 1 1 1
f%
p

-10
N ST N S
F O S
I\ v %) X o} o
Q'J»b S NS &9

Fig. 5. Crossover estimates for y = 0.5.

Chi=0.9

Frequency

Chi

Fig. 6. Crossover estimates for y = 0.9.

5. Discussion

For a majority of the datasets tested, evidence supports the hypothesis that the MLEs distributions are
lognormal. This indicates that this HMM technique performs as anticipated and gives results that reason-
ably approximate the true values of the GA parameters examined.

Overall, the MLEs of both crossover and mutation were good approximations of their fixed values.
However, there appears to be an underestimation in both the crossover and mutation rate estimates. This
is more pronounced in the smaller (x = 0.001) values of x and in the larger values of y (y = 0.9). However,
the underestimation was fairly small and overall the technique used provides a good estimate of the GA
parameters. One possible insight on this might be the use of the maximum likelihood technique itself.
MLE is known to produce biased results in many settings (e.g., in estimates of linear regression coefficients).
Using a more sophisticated, but computationally challenging technique, such as a more direct implemen-
tation of the Baum—Welch re-estimation formulas, might overcome this problem. Another possible expla-
nation would be the need to test the estimation behavior at larger values of n and ¢. However, using larger n
and ¢ values again is computationally problematic in terms of run-time of the simulations.

Another interesting observation is the good performance of the technique on the trap or deceptive func-
tion. The estimates found by the MLE technique on the trap datasets were often superior for the crossover
parameter than for the De Jong F1 and F8 datasets. This finding was somewhat unexpected but reaffirms
the usefulness of the approach.

816 J. Rees, G.J. Koehler | European Journal of Operational Research 175 (2006) 806-820

Table 3

Results of Kolmogorov-Smirnov Goodness-of-Fit Tests for Lognormal Distribution (F*(x)) on De Jong F1

Data set True u True x D Statistic p Value Conclusion
DJ1_n20t20 0.001 0.24 <0.01 Reject Hy
DJ1_n20t20 0.01 0.18 <0.001 Reject Hy
DJ1_n20t20 0.1 0.07 >0.25 Do not reject Hy
DJ1_n20t20 0.1 0.08 0.227 Do not reject Hy
DJ1_n20t20 0.5 0.07 >0.25 Do not reject Hy
DJ1 _n20t20 0.9 0.08 0.144 Do not reject Hy
DJ1_n20t50 0.001 0.17 <0.01 Reject H
DJ1_n20t50 0.01 0.15 <0.001 Reject Hy
DJ1_n20t50 0.1 0.10 0.025 Do not reject Hy
DJ1_n20t50 0.1 0.13 <0.001 Reject H
DJ1_n20t50 0.5 0.09 0.04 Do not reject Hy
DJ1_n20t50 0.9 0.09 0.091 Do not reject Hy
DJ1_n50t20 0.001 0.23 <0.01 Reject Hy
DJ1_n50t20 0.01 0.17 <0.001 Reject Hy
DJ1_n50t20 0.1 0.05 >0.5 Do not reject Hy
DJ1_n50t20 0.1 0.16 <0.001 Reject H
DJ1_n50t20 0.5 0.16 <0.001 Reject Hy
DJ1_n50t20 0.9 0.10 0.008 Do not reject Hy
DJ1_n50t50 0.001 0.15 <0.01 Reject H
DJ1_n50t50 0.01 0.16 <0.001 Reject H
DJ1_n50t50 0.1 0.06 >0.5 Do not reject Hy
DJ1 _n50t50 0.1 0.09 0.095 Do not reject Hy
DJ1_n50t50 0.5 0.18 <0.001 Reject Hy

DJ1 n50t50 0.9 0.09 0.042 Do not reject Hy
Table 4

Results of Kolmogorov—Smirnov Goodness-of-Fit Tests for Lognormal Distribution (F*(x)) on De Jong F8

Data set True p True x D Statistic p Value Conclusion
DJ8_n20t20 0.001 0.22 <0.01 Reject Hy
DJ8_n20t20 0.01 0.11 0.009 Reject H
DJ8_n20t20 0.1 0.09 0.077 Do not reject Hy
DJ8_n20t20 0.1 0.07 >0.25 Do not reject Hy
DI8 n20t20 0.5 0.07 >0.25 Do not reject Hy
DJ8_n20t20 0.9 0.12 0.001 Reject H
DJ8_n20t50 0.001 0.37 <0.001 Reject Hy
DJ8_n20t50 0.01 0.14 <0.001 Reject H

DI8 n20t50 0.1 0.08 0.18 Do not reject Hy
DJ8 n20t50 0.1 0.05 >0.5 Do not reject Hy
DJ8_n20t50 0.5 0.13 <0.001 Reject Hy
DJ8_n20t50 0.9 0.10 0.039 Do not reject Hy
DJ8_n50t20 0.001 0.15 <0.001 Reject Hy
DJ8_n50t20 0.01 0.11 0.004 Reject H

DI8 n50t20 0.1 0.09 0.04 Do not reject Hy
DJ8 n50t20 0.1 0.07 >0.25 Do not reject Hy
DJ8 n50t20 0.5 0.08 0.178 Do not reject Hy
DJ8_n50t20 0.9 0.10 0.034 Do not reject Hy
DJ8_n50t50 0.001 0.38 <0.001 Reject H
DJ8_n50t50 0.01 0.14 <0.001 Reject H

DJ8 n50t50 0.1 0.08 0.116 Do not reject Hy
DJ8_n50t50 0.1 0.15 <0.001 Reject H

DJ8 n50t50 0.5 0.09 0.048 Do not reject Hy

DJ8 n50t50 0.9 0.08 0.174 Do not reject Hy

J. Rees, G.J. Koehler | European Journal of Operational Research 175 (2006) 806-820

Table 5

Results of Kolmogorov—-Smirnov Goodness-of-Fit Tests for Lognormal Distribution (F*(x)) on the Trap Function

Data set True p True x D Statistic p Value Conclusion
TRAP_n20t20 0.001 0.22 <0.01 Reject Hy
TRAP_n20t20 0.01 0.10 0.024 Do not reject Hy
TRAP_n20t20 0.1 0.09 0.073 Do not reject Hy
TRAP_n20t20 0.1 0.06 >0.25 Do not reject Hy
TRAP_n20t20 0.5 0.08 0.221 Do not reject Hy
TRAP_n20t20 0.9 0.06 >0.25 Do not reject Hy
TRAP_n20t50 0.001 0.37 <0.001 Reject Hy
TRAP_n20t50 0.01 0.13 <0.001 Reject Hy
TRAP_n20t50 0.1 0.08 0.232 Do not reject Hy
TRAP_n20t50 0.1 0.09 0.065 Do not reject Hy
TRAP_n20t50 0.5 0.10 0.30 Do not reject Hy
TRAP_n20t50 0.9 0.10 0.23 Do not reject Hy
TRAP_n50t20 0.001 0.22 <0.01 Reject Hy
TRAP_n50t20 0.01 0.13 <0.001 Reject H
TRAP_n50t20 0.1 0.07 >0.25 Do not reject Hy
TRAP_n50t20 0.1 0.07 >0.25 Do not reject Hy
TRAP_n50t20 0.5 0.06 >0.5 Do not reject Hy
TRAP_n50t20 0.9 0.11 0.004 Reject H
TRAP_n50t50 0.001 0.37 <0.001 Reject Hy
TRAP_n50t50 0.01 0.25 <0.001 Reject H
TRAP_n50t50 0.1 0.09 0.107 Do not reject Hy
TRAP_n50t50 0.1 0.12 0.003 Reject H,
TRAP_n50t50 0.5 0.07 >0.25 Do not reject H
TRAP n50t50 0.9 0.09 0.05 Do not reject Hy
Table 6

Descriptive statistics for De Jong F1

Data set True p True y Mean Std. deviation Skewness Kurtosis
DJ1_n20t20 0.001 0.0005 0.0007 1.2371 0.8630
DJ1_n20t20 0.01 0.0061 0.0024 1.6245 4.2031
DJ1_n20t20 0.1 0.0556 0.0077 0.2449 -0.2277
DJ1_n20t20 0.1 0.0973 0.0458 0.0202 —0.1710
DJ1_n20t20 0.5 0.4562 0.0942 —0.1156 0.1660
DJ1_n20t20 0.9 0.8372 0.0929 —0.2269 —0.8414
DJ1_n20t50 0.001 0.0007 0.0003 2.2209 5.2000
DJ1_n20t50 0.01 0.0055 0.0015 2.6397 12.4318
DJ1_n20t50 0.1 0.0549 0.0049 0.8630 2.4303
DJ1_n20t50 0.1 0.0925 0.0341 0.6228 1.1836
DJ1_n20t50 0.5 0.4713 0.0785 —0.1519 1.7436
DJ1_n20t50 0.9 0.8494 0.0754 —0.3345 —0.2099
DJ1_n50t20 0.001 0.0009 0.0009 1.2385 0.9093
DJ1_n50t20 0.01 0.0063 0.0022 1.8005 4.2137
DJ1_n50t20 0.1 0.0600 0.0077 0.7916 0.5916
DJ1_n50t20 0.1 0.0976 0.0280 0.4293 2.4528
DJ1_n50t20 0.5 0.4569 0.0741 —1.4096 2.5355
DJ1_n50t20 0.9 0.8350 0.0589 —0.5242 0.6387
DJ1_n50t50 0.001 0.0006 0.0003 2.3797 7.1043
DJ1_n50t50 0.01 0.0056 0.0011 1.4066 5.7322
DJ1_n50t50 0.1 0.0566 0.0047 0.4021 —0.3461
DJ1_n50t50 0.1 0.0975 0.0208 0.1570 1.2909
DJ1_n50t50 0.5 0.4735 0.0487 —0.7448 0.0344
DJ1_n50t50 0.9 0.8479 0.0474 —0.5497 0.6425

818 J. Rees, G.J. Koehler | European Journal of Operational Research 175 (2006) 806-820

Table 7

Descriptive statistics for De Jong F8

Data set True u True y Mean Std. deviation Skewness Kurtosis
DJ8_n20t20 0.001 0.0007 0.0010 1.6552 2.4108
DJ8_n20t20 0.01 0.0075 0.0036 1.3676 1.3046
DJ8_n20t20 0.1 0.0561 0.0069 0.8399 1.9582
DJ8_n20t20 0.1 0.0961 0.0617 0.2670 —0.5609
DJ8_n20t20 0.5 0.3934 0.1110 —0.0297 —0.0151
DJ8 n20t20 0.9 0.7103 0.1494 —0.5583 1.2185
DJ8_n20t50 0.001 0.0006 0.0003 0.9309 1.7551
DJ8_n20t50 0.01 0.0059 0.0016 1.5529 3.3269
DJ8_n20t50 0.1 0.0569 0.0051 0.3012 —0.5216
DJ8_n20t50 0.1 0.1065 0.0552 0.1723 —0.5879
DJ8_n20t50 0.5 0.4118 0.0964 —0.2893 0.7468
DJ8_n20t50 0.9 0.7170 0.1154 —0.0767 1.1750
DJ8_n50t20 0.001 0.0011 0.0010 1.5000 3.0840
DJ8_n50t20 0.01 0.0065 0.0028 2.0787 5.7829
DJ8_n50t20 0.1 0.0540 0.0069 0.1589 —0.7633
DJ8_n50t20 0.1 0.1402 0.0730 0.8729 —0.0166
DJ8_n50t20 0.5 0.4645 0.0635 —0.0350 0.3373
DJ8_n50t20 0.9 0.7842 0.0707 —1.3744 3.0446
DJ8_n50t50 0.001 0.0007 0.0004 2.0669 6.5032
DJ8_n50t50 0.01 0.0051 0.0010 0.2894 0.1495
DJ8_n50t50 0.1 0.0515 0.0057 0.1923 —0.4397
DJ8_n50t50 0.1 0.1653 0.0883 0.5379 —1.2997
DJ8 n50t50 0.5 0.4954 0.0635 0.2503 0.7326
DJ8_n50t50 0.9 0.7993 0.0636 —0.0481 0.1540
Table 8

Descriptive statistics for the trap function

Data set True u True y Mean Std. deviation Skewness Kurtosis
TRAP_n20t20 0.001 0.0007 0.0011 3.6996 17.3209
TRAP_n20t20 0.01 0.0063 0.0028 1.7412 3.0330
TRAP_n20t20 0.1 0.0487 0.0048 —0.2415 —0.3940
TRAP_n20t20 0.1 0.1039 0.0695 0.5366 0.0749
TRAP_n20t20 0.5 0.4566 0.1182 —0.0604 0.7742
TRAP_n20t20 0.9 0.8044 0.1222 —0.5652 0.7612
TRAP_n20t50 0.001 0.0007 0.0006 4.2848 23.7368
TRAP_n20t50 0.01 0.0055 0.0018 2.4877 7.1230
TRAP_n20t50 0.1 0.0489 0.0033 0.1166 —0.4269
TRAP_n20t50 0.1 0.1118 0.0623 0.6775 0.7907
TRAP_n20t50 0.5 0.4724 0.1119 —0.1340 1.1727
TRAP_n20t50 0.9 0.8395 0.0969 —0.1827 —0.3169
TRAP_n50t20 0.001 0.0008 0.0012 5.9099 43.4197
TRAP_n50t20 0.01 0.0054 0.0025 3.4284 15.6305
TRAP_n50t20 0.1 0.0451 0.0041 0.4790 0.0033
TRAP_n50t20 0.1 0.1318 0.0613 0.8701 0.0865
TRAP_n50t20 0.5 0.5121 0.0804 0.0285 0.0876
TRAP_n50t20 0.9 0.8766 0.0657 —0.6884 1.3404
TRAP_n50t50 0.001 0.0007 0.0007 4.6204 24.3889
TRAP_n50t50 0.01 0.0056 0.0028 3.7665 15.2859
TRAP_n50t50 0.1 0.0433 0.0026 0.4974 0.7143
TRAP_n50t50 0.1 0.1539 0.0664 0.5816 —0.7534
TRAP_n50t50 0.5 0.5602 0.0765 0.0855 —0.3557

TRAP_n50t50 0.9 0.9071 0.0649 —0.4654 —0.7052

J. Rees, G.J. Koehler | European Journal of Operational Research 175 (2006) 806-820 819
6. Conclusions and future research

This paper presents a study of a maximum likelihood estimate technique for estimating the crossover
and mutation parameters from a hidden Markov model in the form of data generated by a GA. The ap-
proach shows reasonable promise for use in many simulation settings where it is desirable to accurately de-
pict evolutionary behaviors of the underlying system. The technique was shown to be relatively accurate
over three test functions for various combinations of parameters (mutation rate, crossover rate, population
size and number of populations). It performed less well when mutation rates are very small or crossover
rates very large.

The implications of this research are important for those researchers using evolutionary techniques for
simulation and modeling activities as discussed in Section 1. Researchers now have a technique that can be
applied to data sets generated from experiments and/or real world processes to learn more appropriate
parameter estimates for their simulations, rather than the educated guesswork and repeated simulation runs
with various settings that are currently used. These parameter estimates should in turn provide for more
realistic and hopefully insightful simulation studies, especially for adaptive agent experiments using GAs
as their learning mechanism. Such simulation studies are currently of great importance in information secu-
rity and supply chain management, just to name a few examples.

There are many future research avenues to explore for this estimation technique. Certainly, many other
estimation approaches should be studied, such as an improved implementation of the Baum—Welch method
(Rabiner and Juang, 1986). More sophisticated estimation techniques will probably enhance the accuracy
of the estimates. Additionally, research into more computationally efficient approaches should be at-
tempted. Larger values of the population size and number of populations were not examined due to the
unreasonably high level of computational effort required.

Also, the GA employed in this research is one of the simplest forms (one point crossover and uniform
mutation). More sophisticated versions exist (Vose, 1999) and many other types of selection, crossover and
mutation operators can be examined. Crossover and mutation masks may be implemented (Vose, 1999) in
order to address the question of which specific implementation of the mixing operators should be used,
however, this implementation requires far greater computing power than is currently available. Finally,
other operators can be incorporated into the Markov chain GA model, which would better capture more
complex evolutionary behaviors in systems.

References

Ackley, D.H., 1987. A Connectionist Machine for Genetic Hill Climbing. Kluwer Academic, Dordrecht, The Netherlands.

Bhattacharyya, S., Koehler, G.J., 1994. An analysis of genetic algorithms of cardinality 2”. Complex Systems 8, 227-256.

Boykin, S., Merlino, A., 2000. Machine learning of event segmentation for news on demand. Communications of the ACM 43 (2), 35—
41.

Bruderer, E., Singh, J.V., 1996. Organizational evolution, learning, and selection: A genetic-algorithm-based model. Academy of
Management Journal 39 (5), 1322-1349.

Cho, S.-B., Park, H.-J., 2003. Efficient anomaly detection by modeling privilege flows using hidden Markov model. Computers &
Security 22 (1), 45-55.

Conover, W.J., 1999. Practical Nonparametric Statistics. John Wiley & Sons, New York.

De Jong, K., 1975. An analysis of the behavior of a class of genetic adaptive systems, Ph.D. Thesis, University of Michigan,
Department of Computer and Communications Sciences, Ann Arbor, MI.

Dugad, R., Desai, U.B., 1996. A tutorial on hidden Markov models, Signal Processing and Artificial Neural Networks Laboratory
Technical Report: SPANN-96.1. Indian Institute of Technology, Bombay.

Dworman, G., Kimbrough, S.O., Laing, J.D., 1996. On automated discovery of models using genetic programming: Bargaining in a
three-agent coalitions game. Journal of Management Information Systems 12 (3), 97-125.

Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley, Reading, MA.

820 J. Rees, G.J. Koehler | European Journal of Operational Research 175 (2006) 806-820

Kagel, J.H., Roth, A.E., 1995. The Handbook of Experimental Economics. Princeton University Press, Princeton, NJ.

Koehler, G.J., Bhattacharyya, S., Vose, M.D., 1997. General cardinality genetic algorithms. Evolutionary Computing 5 (4), 439-459.

Koza, J.R., 1992. Genetic Programming: On the Programming of Computers by Means of Natural Selection. The MIT Press,
Cambridge, MA.

Marks, R.E., Midgley, D.F., Cooper, L.G., 1995. Adaptive behaviour in an oligopoly. In: Biethahn, J., Nissen, V. (Eds.), Evolutionary
Algorithms in Management Applications. Springer-Verlag, New York, pp. 225-239.

Mason, A.J., 1991. Partition coefficients, static deception and deceptive problems for non-binary alphabets. In: Belew, R.K., Booker,
L.B. (Eds.), Proceedings of the Fourth International Conference on Genetic Algorithms. Morgan Kaufmann, San Francisco, pp.
210-214.

Nix, N., Vose, M.D., 1992. Modeling genetic algorithms with Markov chains. Annals of Mathematics and Artificial Intelligence 5, 79—
88.

Oliver, J.R., 1996. A machine-learning approach to automated negotiation and prospects for electronic commerce. Journal of
Management Information Systems 13 (3), 83-112.

Rabiner, L.R., 1989. A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE 77
(2), 257-286.

Rabiner, L.R., Juang, B.H., 1986. An introduction to hidden Markov models. IEEE ASSP Magazine (June), 4-16.

Rees, J., Koehler, G.J., 1999. An investigation of GA performance results for different cardinality alphabets. In: Davis, D., De Jong,
M., Vose, M., Whitley, D. (Eds.), IMA Volumes in Mathematics and its Applications, Proceedings from the IMA Workshop on
Evolutionary Algorithms. Springer, New York, pp. 191-206.

Rees, J., Koehler, G.J., 2000. Leadership and group search in group decision support systems. Decision Support Systems 30 (1), 73-82.

Rees, J., Koehler, G.J., 2002. An evolutionary approach to group decision making. INFORMS Journal of Computing 14 (3), 278-292.

Sikora, R., Shaw, M.J., 1996. A computational study of distributed rule learning. Information Systems Research 7 (2), 189-197.

Vose, M.D., 1990. Formalizing genetic algorithms, In: Proceedings of the IEEE Workshop on Genetic Algorithms, Neural Networks,
and Simulated Annealing Applied to Signal and Image Processing, Glasgow, Scotland.

Vose, M.D., 1999. The Simple Genetic Algorithm: Foundations and Theory. The MIT Press, Cambridge, MA.

Vose, M.D., Liepins, G.E., 1991. Punctuated equilibria in genetic search. Complex Systems 5, 31-44.

Vose, M.D., Wright, A.H., 1995. Simple genetic algorithms with linear fitness. Evolutionary Computing 2 (4), 347-368.

	Learning genetic algorithm parameters using hidden Markov models
	Introduction
	Background
	Genetic algorithms
	Markov model for GAs
	Hidden Markov models and maximum likelihood estimation of GA parameters

	Experimental study
	Results
	Discussion
	Conclusions and future research
	References

