
CERIAS Tech Report 2005-146
Adaptable Web Browsing of Images in Mobile Computing Environment: Experiments and Observations

 by A Kumar, A Bhargava, B Bhargava, S Madria
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 314 – 320, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Adaptable Web Browsing of Images in Mobile
Computing Environment: Experiments and Observations

Atul Kumar1, Anjali Bhargava1, Bharat Bhargava1, and Sanjay Madria2

1 Department of Computer Science, Purdue University, West Lafayette, IN
2 Department of Computer Science, University of Missouri-Rolla, MO

Abstract. In this paper, we report some experiments and observations to make
browsing of images more adaptable using small devices. We highlight the
usability of such an alternative in mobile e-commerce and bandwidth-
constrained systems.

1 Introduction

The cellular phones, wearable PCs, personal digital assistants (PDA) being mobile,
wireless and small, pose new challenges for browsing. Some issues include low
bandwidth availability, limited memory, limited display area, frequent disconnection,
fast changing locations etc [4]. In addition there is a problem of redundant
information which becomes all the more costly in the context of limited resources.
Full quality and high-resolution images may not be needed when the user just wants
the stock quote of a company on his cell phone screen. Why burden a user with high
quality thumbnail images for choices when the content provider is sure that the user
will like to see in more detail and in better quality, the particular items he/she is more
interested in?

New features started appearing in the widespread browsers including offline
browsing and also some type of filtering. But they are not flexible enough in the sense
that they can not download a web page with varying levels of compression on the fly
so that the user can select what is suitable in current context nor can they offer
choices with multi-resolution display of a page. Content based editing is difficult
because of the inherent difficulty in understanding the semantics of the contents. The
methodologies in this category offer text-only version or fixed pre-decided contents.
An example is a text-based technology called "Web Clipping" developed by 3Com for
its wireless Palm [16]. Web Clipping allows mobile users to download short bursts of
text information from Web sites that have tailored content for 3Com's technology but
it doesn't allow users to surf the Web at large.

We propose experimental observations [11] that can result in savings in download
time and in easing the strain on the network bandwidth. We consider a novel approach
to bridge the gap between the time required to download a website in its entirety and
the time, the user is ready to wait for that website, by offering information at various
levels of quality. These various levels of qualities are made possible by compressing
the inline images at different ratios. Our solution is scalable as it can add on many
other filtering criteria and can support various modes of compression as well as

 Adaptable Web Browsing of Images in Mobile Computing Environment 315

selective compression. We didn’t emphasize on algorithm of compression as many
standards and effective compression techniques [5] are now supported in most of the
high level languages. The solution is ‘robust and scalable’ in the sense that it can
service a large number of these small devices in parallel without a loss of generality.
It is ‘transparent’ in the sense that the user is totally unaware of the calculations going
at the server side and it appears as if the user is directly connected to the actual web
server. The scheme will work effectively with the new media streaming applications
such as [4,5,9].

In trying to cut down the download time for the entire web site, we compress all
the inline images in it. It warranties trapping all the multiple HTTP requests issued in
effect while trying to access a single URL. We decided to enhance the existing
applications by adding adaptability features in the browsing software (or more
appropriately by changing the way the clients would browse a site) rather than
building a complete new one. This decision is based on following pragmatic assertion:
most users want to use their traditional browsers to surf even on their portable devices
in a fashion similar to their desktop browsers.

2 Background and Relevant Work

Different research groups are developing prototypes to suggest the adaptable features
and the tradeoff between the cost and applicability [1,13]. NetBlitz [1] is a
multiresolution -based system for the WWW. This involves setting up a proxy server
housing the URL cache and the multiresolution techniques. It dynamically generates
different versions and delivers them to the users. It focuses on multiresolution as the
parameter for quality of service. We concentrate on compressing many details and
embedded information in fine quality images that can be taken off without any loss of
generality of the image but in turn savings in the download time. [7] discusses about
techniques to provide dynamic distillation of image and video over the web. Work is
going on in the direction of transcoding images and content negotiation amongst the
web community. We have not come across browsers that support vast adaptability
criterion suitable for hand-held devices. [15] discussed methodologies to adapt
multimedia traffic which is basically based on the idea of the application having some
knowledge about the underlying network and the network having some knowledge of
the kind of application currently running. It tries to fragment packet semantically
rather than using the current IP fragmentation scheme. We observe that the above
scheme when applied to our technique of compressing the images can help in
guaranteeing much better QoS for the application.

2.1 Mobility Issues and Constraints

Providing Internet and WWW services on a wireless data network presents many
challenges [2,3,8]. Mass-market, hand-held wireless devices present a more
constrained computing environment compared to desktop computers. The wireless
data networks present a more constrained communication environment compared to
wired networks. Because of fundamental limitations of power, available spectrum,
and mobility, wireless data networks tend to have less availability, stability, and

316 A. Kumar et al.

bandwidth as well as greater latency. Mobile networks are growing in complexity and
the cost of providing new value-added services to wireless users is increasing.

3 Experimental Set Up

The experimental set up consists of setting our own proxy server. This proxy server
ideally should be a powerful workstation servicing many mobile devices in parallel.
All these devices here configure their client browser to talk to this server instead of
directly connecting to the actual web server. The paradigm is a standard client-server
model [1].

The compression engine, CE, is responsible for compressing the in-line images on
the fly. The cache is supported in proxy to speed up the computation and performance
of our adaptable web browser in the case where the compressed image is already in
the cache. The experiment consists of directing the browsers (i.e. clients) to talk to
the proxy server, which is waiting infinitely for clients’ connections. The server
dispatches a thread to handle each request to minimize loss of any client request. Now
each request consist of multiple HTTP messages being sent to server. From the HTTP
request format (e.g. using the content-type and content-length), the proxy makes
decisions whether to compress the image or let it go as it is. The compression ratio in
our case is determined by the available bandwidth at the client side. So the users can
select the browsing speed at which they want to browse a particular web page. Based
on the browsing speed selected, a compression ratio ranging from 0.0 to 1.0 (lower
quality image implies more compression or equivalently more compression ratio) is
determined by the proxy using JPEG image compression algorithms.

3.1 Experiments and Observations

We conducted an extensive set of experiments on popular websites especially sites
related to e-commerce to evaluate our proposed model. The sites were downloaded at
different browsing speeds and hence at different image compression levels.
Compressing the image results in reduction of the sizes, this finally leads to reduction
in time because of transporting smaller files across the network. There have been
many other researchers in this direction [1,10]. We computed the savings in download
time with different network connection speed. The sample data presented in Table 1
has been collected at two different speeds – 28.8 kbps and 56.6 kbps. Note that this
can be easily extended to any other types of connectivity and speed.

The leftmost column represents all the files present on a single web page. The next
column represents the uncompressed sizes of the files. Measurements for two
different levels of compression were taken. The figure ‘COMPR 1’ represents
maximum compression without losing the sense of images while the next
compression level ‘COMPR 2’ is the compression level which the end user will
gladly accept. The idea was to prove that even at the 2nd compression level, there are
substantial savings in the download time. So the end user can carry out e-business or
any other applications without substantial loss of quality in a much lesser time. The
next column shows the download time that each file takes assuming 28.8 kbps
connection speed. There are three time measurements under that category. Time 0

 Adaptable Web Browsing of Images in Mobile Computing Environment 317

represents the download time for uncompressed image. Time 1 is the time for
maximally compressed images (hence the smallest time) while Time 2 represents time
for lesser compression level, a better quality level. Exactly similar calculations were
made out assuming 56.6 kbps connection. Finally the sum totals were calculated.

Table 2 shows a sample data and the corresponding graph depicting the reduction
in size with varying quality of image. The image is one of the pictures of the planet
Mars posted on the NASA website. The same experiment was carried on large variety
of images and on different kinds of web sites. We took in consideration images
varying from very detailed fine quality to the ones having courser appearance. Also
the sample images were chosen to be representative of largely varying sizes. The
resulting graph was basically of the same nature confirming our experiments.

Table 1. Measurements for the embedded images and text files

Table 3 and 4 shows the effect of trying to compress the original image as well as
image conceived when we extrapolate to better quality size. We found out that many
images are not put at their best quality but are at reduced quality due to the same
underlying assumption as ours i.e. sacrificing quality a bit does not lead to appreciable

318 A. Kumar et al.

Table 2. Size of the image as a function of the quality

Table 3. Compression at original size and quality of image

distortion of the image. The original image (peacock.jpg), for example, here was
between quality 0.8 and 0.9. We tried to extrapolate the image to a better quality (and
hence larger size) and then apply our techniques on that trying to compress it at
different levels. We observe the same trends in the resulting graph. This was repeated
for different original starting quality and hence different initial sizes.

We make the following observations from the sample data. Definitely, compressing
the images result in savings of download time as well as the amount of storage
required to cache the inline images. The obvious drawback is the loss in visual quality
of the images [2,3,6,12]. But this is immaterial here, to an extent, because most of the
times (especially in e-commerce web sites), the user is more concerned with the
contents of the web page rather than the quality of images e.g. the quality of the
various icons or the quality of the images that external advertiser embed in the web
page. This is more pertinent in cases of mobile devices supporting browsers. A more
subtle question is the tradeoff between the overhead associated with the compression
and the final savings in download time. We argue on the basis of the table 2, 3, 4 and
the corresponding graphs that, we get substantial savings in the size of image with a
sacrifice in the quality of image. These savings in turn reflect in the savings in the
download time. Compressing every image even to correspond to just 1 lower level of
quality can benefit us with an appreciable savings in download time. We justify that

 Adaptable Web Browsing of Images in Mobile Computing Environment 319

this kind of application is primarily aimed for users doing lots of e-business and also
assuming that they have a slower Internet connectivity, even though they have top-of-
line fast computers (in terms of processing power). Even with faster network
connectivity, the problem envisioned is the rate at which network bandwidth is being
hogged. Since the available bandwidth is, more or less, constant but the applications
consuming them are burgeoning, it might result that even with a faster link, people
have to suffer considerable delay because of network congestion. Hence it makes
sense to bear the overhead of image compression. Also with now more and more
support being built in programming languages for images, this can be done on the fly.
In other words, this adaptability makes sense if the client is being supported on
mobile devices or it has a low bandwidth connection to the network. Also it is most
effective for sites where we can achieve significance compression without major
sacrifice in visual quality. Another adaptable browser based on multi-resolution [8],
has been studied and it also deduces similar conclusions based on different set of
experiments and setup.

Table 4. Compression at extrapolated size and quality of image

4 Conclusions and Future Research

We reported some experiments and observations for mobile application requirements
such as Web browsing. The experimental results show the huge savings in time that
can be achieved by compressing high resolution and big inline images. This approach
is a step in the direction of making browsing more user-friendly and easing the
constraints on system resources. We also discuss the tradeoff associated with it and
the favorable factors under which proposed solution works best. For future work, we
are using finer criterion for compressing the images. The compressed images should
also be effectively cached at the proxy servers to avoid duplication of work in
compression of same images. This work can be extended to support all the image
types and even the text portion of the pages as they form a major chunk in many of
the web-sites. This would result in further savings of the download time.

320 A. Kumar et al.

References

[1] Swarup Acharya, Henry Korth & Viswanath Poosala. Systematic Multiresolution and its
Application to the World Wide Web, ICDE, 1999, pp. 40-49.

[2] Bharat Bhargava, Shunghe Li et al. Impact of Codec Schemes on Multimedia
Communications, In Proceedings of the IETE International Conference on Multi-media
Information Systems (MULTIMEDIA 96)}, Feb., 96, New Delhi, India, Published by
McGraw Hill, pp. 94-105..

[3] Bharat Bhargava, Shunghe Li et al. Performance Studies for an Adaptive Video
Conferencing System. In Proceedings of the IETE International Conference on Multi-
media Information Systems MULTIMEDIA 96)}, Feb., 96, New Delhi, India, Published
by McGraw Hill, pp 106-116.

[4] Bharat K. Bhargava, Changgui Shi, Sheng-Yih Wang: MPEG Video Encryption
Algorithms. Multimedia Tools Appl. 24(1): 57-79 (2004).

[5] Bharat K. Bhargava, Changgui Shi, Sheng-Yih Wang: MPEG Video Encryption
Algorithms. Multimedia Tools Appl. 24(1): 57-79 (2004)

[6] Ron Frederick. Experiences with Real-time Software Video Compression. In proceedings
of the packet video workshop, Portland, Oregon, 1994.

[7] A. Fox, S. D. Gribble, E. A. Brewer, and E. Amir. Adapting to Network and Client
Variability via On-demand Dynamic Distillation. ASPLOS Proceedings, Oct. 1996.

[8] Martin Gaedke, Michael Beigl, Hans-Werner Gellersen, Christian Segor: Web Content
Delivery to Heterogeneous Mobile Platforms. ER Workshops 1998: 205-217

[9] Mohamed Hefeeda, Bharat K. Bhargava, David K. Y. Yau: A hybrid architecture for cost-
effective on-demand media streaming. Computer Networks 44(3): 353-382 (2004)

[10] Van Jacobsen. Congestion Avoidance and Control. In proceedings of Symposium on
Communications Architectures and Protocols (SIGCOMM’88)

[11] Atul Kumar, Adaptable Web Browsing, Project Report, Purdue University, 2000.
[12] Overview of the MPEG-4 Standard. International Organization for Standardization for

Coding of Moving Pictures and Audio, March 1999.
[13] Standards for Mixed Media Communications. Lucent Technologies, June 1997.
[14] Sanjay Madria, Mukesh Mohania, Sourav Bhowmick, Bharat Bhargava. Mobile Data and

Transaction Management, Information Science Journal, 2002.
[15] Sheng-Yih Wang, Bharat Bhargava. An adaptable network architecture for multimedia

traffic management and control, IEEE International Conference on Multimedia and Expo
(III) 2000: 1615-1618.

[16] Web Clipping. URL: http://cnn.com/TECH/computing

	Introduction
	Background and Relevant Work
	Mobility Issues and Constraints

	Experimental Set Up
	Experiments and Observations

	Conclusions and Future Research
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

