
CERIAS Tech Report 2005-144
Multimedia Data Transmission and Contol Using Active Networks

 by B Bhargava, S Wang, M Khan, A Habib
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Multimedia data transmission and control using active networks*

Bharat Bhargavaa, Sheng-Yih Wangb, Maleq Khana,*, Ahsan Habibc

aDepartment of Computer Sciences, Purdue University, West Lafayette, IN 47907, USA
bFoundry Networks, Inc. 2100 Gold Street, Alviso, CA 95002, USA

cSchool of Information Management Systems, University of California, Berkeley, CA 94720, USA

Received 5 August 2004; accepted 5 August 2004

Available online 21 September 2004

Abstract

Active network is an excellent paradigm to provide customized network services to the applications by allowing them to inject specific

program to the intermediate routers. Active networks provide the flexibility for the application programs to modify the services that a router

can provide to suit its specific needs. Therefore, it has the potential to provide application-level quality of service (QoS) at the transport and

network layers. In this paper, we present an adaptable network architecture, called ADNET, which provides mechanisms to allow the

application adapt to the resource constraints to achieve improved QoS. Our design aims to unify different QoS control mechanisms (e.g.

integrated services, differentiated services, and active networks) together to provide a wide range of network services to all users to meet their

specific needs. We propose a new fragmentation scheme with low overhead (!5%) to transfer large-size multimedia data. Using this

fragmentation scheme, a new transport protocol, called ACtive Transport Protocol (ACTP) is integrated with the design. We use a new

measure, called usefulness, to better reflect the QoS perceived by the end-users. In our experiments, we compare different schemes of video

transmissions: non-active transport protocols such as UDP and TCP with IP fragmentation, ACTP framework with active networks,

and ACTP framework without active networks. The ACTP scheme with active networks outperforms the others in achieving application

level QoS.

q 2004 Elsevier B.V. All rights reserved.

Keywords: Multimedia data; Active networks; Quality of service; Fragmentation
1. Introduction

Distributed Multimedia Systems [1] are promising to

cause major changes in our everyday life. For example,

desktop video conferencing and collaboration systems

enable people to interact and collaborate with others who

may be far away. Home shopping systems allow people to

browse merchandize at home through virtual reality

techniques and to order on-line. Video-on-Demand systems

allow people to watch their favorite programs at home

any time they want. To make all these scenarios

reality, distributed multimedia systems need support from
0140-3664/$ - see front matter q 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2004.08.020

* This research was partially supported by CERIAS, and NSF grant

ANI-219110 and CCR-001712.

* Corresponding author.

E-mail addresses: bb@cs.purdue.edu (B. Bhargava), swang@

foundrynet.com (S.-Y. Wang), mmkhan@cs.purdue.edu (M. Khan),

habib@sims.berkeley.edu (A. Habib).
the underlying transporting networks. Transmitting multi-

media data, especially for continuous media such as video or

audio, over the network is a challenging problem. The

network requirements for multimedia data are different from

those for traditional network traffic such as TELNET or

FTP. For example, multimedia data are very sensitive to

packet delivery delay, but can endure some loss of data. In

contrast, traditional data network traffic can endure packet

delivery delay, but have to be delivered 100% error free.

Multimedia data flows through several subsystems. For

example, a video frame is encoded at the video server

program, sent through the underlying transport network, and

is decoded at the receiving application. To provide better

understanding of the requirements of the multimedia

applications, these requirements are abstracted as a set of

Quality of Service (QoS) parameters. The problem of

providing satisfactory QoS to applications can then be

formulated as satisfying constraints on QoS parameters.

Since each subsystem in the data transmission process
Computer Communications 28 (2005) 623–639
www.elsevier.com/locate/comcom

http://www.elsevier.com/locate/comcom

B. Bhargava et al. / Computer Communications 28 (2005) 623–639624
contributes to the degradation of the QoS, QoS control

mechanisms are studied at all these different components.

To facilitate the study, QoS are usually grouped into

different layers [2]. The application QoS layer (which

includes User-oriented and Application-specific QoS par-

ameters) and the network QoS layer (which includes the

whole network protocol stacks, especially the transport and

network layers in networking terminology) are the two

major layers where the current research on QoS parameters

and QoS control mechanisms is focused.

From the discussion above, it is clear that the integration

of different layers of QoS control mechanisms are needed to

provide satisfactory QoS to the applications. In this regard,

several design issues need to be investigated: (1) The

network design should be flexible to accommodate

emerging new applications. (2) The design should provide

mechanisms for the application to convey their QoS needs

to the network. (3) The application-specific and network-

specific QoS control mechanisms should be integrated to

provide a unified system of QoS provision.

Active network is a paradigm that provides flexibility

and mechanisms for the applications to convey their QoS

needs to the network. This powerful communication

paradigm can adapt upcoming traffic by methods, which

are part of the transported multimedia streams. This

promising approach has lots of unexplored potential

applications. New high level protocols can be dynamically

integrated without changing network software, and new

adaptive algorithms become possible which increase the

flexibility of multimedia communication systems [3].

Various network operations such as fragmentation, error

recovery, and traffic control can be performed efficiently

and with high quality of service when application specific

information is available. Using active paradigm, an

application can tell the network nodes (routers) how the

operations can be performed to achieve higher quality of

services because only the application program has the

knowledge of the internal properties of the data being

transported. For example, when multimedia data are

fragmented arbitrarily and if a packet is lost, the whole

video frame containing the packet might be useless. On the

other hand, in active paradigm, the application can provide

the fragmentation procedures/information/hints, and using

this information data can be fragmented in such a way that

the data in other packets are still useful even if some packets

are lost. In some cases, it might be possible to reconstruct

the lost packets from the other related packets. This active

paradigm has the potential to provide the application-level

QoS at the transport or network layers [4,5]. We show that

active network techniques can be used as a mechanism to

extend the Differentiated Services (DiffServ) techniques in

providing application-level QoS. In addition, active network

techniques can be used to provide dynamic re-negotiation in

DiffServ approach.

This paper focuses on the investigation and development

of approaches to manage and control the transmission of
multimedia data using active network paradigm, which can

provide satisfactory QoS to the applications. We propose an

adaptable network architecture, called ADNET, which

allows different QoS provisioning schemes such as Active

Network, Integrated Services (IntServ) and DiffServ to

co-exist and provides customized services to achieve better

application-level QoS. This architecture also enables the

application programs and the networks to adapt and perform

the tasks of traffic management and control together. We

design a new transport protocol, called ACtive Transport

Protocol (ACTP), to transmit multimedia data using the

proposed architecture. ACTP provides datagram delivery

similar to UDP, but with some extensions such as built-in

fragmentation scheme and security mechanisms to better

support the active network traffic. ACTP does not rely on

the underlying IP-fragmentation in the network layer.

Instead, it uses a new fragmentation scheme designed for

multimedia data transmission in active environment. The

fragmentation scheme utilizes the properties of active

network paradigm and the proposed adaptable architecture

ADNET. Experimental results show that ACTP protocol

with the proposed fragmentation scheme in active network

environment provides better QoS than traditional IP

networks. Using ADNET architecture, we transmit three

sets of video clips: Jurassic Park, Lion King, and Tai Chi

from video sources to destinations via active routers. The

results show that the packet loss rate for ACTP fragmenta-

tion in active environment is reduced by 10% than that in

traditional IP delivery.

A new metric, called usefulness, to measure QoS

received by the application is developed systematically.

Usefulness is shown to provide a more accurate assessment

of the user-perceived QoS than other commonly used

measures. Experimental results show that when usefulness

is higher, the visual quality of the received clips are also

better (clear and sharp). In Section 6, we see that usefulness

provided by the proposed solution is always higher than that

of the traditional IP networks. Usefulness in ADNET is as

high as twice of usefulness in IP networks.

The rest of the paper is organized as follows. The works

related to the topics addressed in this paper are discussed in

Section 2. In Section 3, we propose an adaptable

architecture of an active router. Section 4 presents a

fragmentation scheme for large multimedia data. A new

measure of QoS is developed in Section 5. Experimental

results are presented in Section 6. Finally, the conclusions

and future works are in Section 7.
2. Related works

Wetherall et al. [6] develop a toolkit called ANTS for

building and dynamically deploying network protocols.

ANTS is based on mobile code, demand loading, and

caching techniques. ANTS allows new protocols to be

dynamically deployed at both routers and end systems,

B. Bhargava et al. / Computer Communications 28 (2005) 623–639 625
without the need for coordination and without unwanted

interaction between co-existing protocols. A group at

University of Pennsylvania developed a programming

language for active networks called PLAN [7], a self-

learning network device called Active Bridge, an active

network encapsulation protocol called ANEP, and a security

infrastructure based on the idea of Query Certificate

Managers. Hicks et al. [8] reported the experience on

capsule-based active networking for ANTS and PLAN

systems. The authors reported that both systems can achieve

useful levels of flexibility, performance, and usability. In

our approach, we put the responsibilities of managing code

movements to the capsules. In contrast, the demand loading

and caching scheme in ANTS rely on the active routers to

make decisions.

Tennenhouse and Wetherall [9] describe their vision of

an active network architecture, outline the design, and

survey the technologies that can be brought to bear on its

implementation. They propose that the research community

mount a joint effort to develop and deploy a wide area

ActiveNet. Our research can contribute to this vision to

design a unified framework of integrated services, differ-

entiated services, and active networks. Our proposed

fragmentation scheme will be an excellent choice to transfer

a large volume of multimedia traffic and fulfill the user

perceived quality of service.

Wolf and Turner [10] discuss the design issues of high

speed active routers. Custom processing of packets at the

link speeds requires immense computational power. To

overcome the limitation, the authors propose to use multiple

network processors with cache and memory on a single

application specific integrated circuit. The design is used as

a vehicle for studying the key issues that need to be resolved

to allow active networking [6] to become a mainstream

technology. AMnet [11] is an architecture for program-

mable networks that mostly runs in the user-space of an

unmodified Linux installation. The idea is to use the existing

operating systems functionalities and give a general

specification of an interface between the generic operating

system and the particular active node functionalities. On the

other hand, VERA [12] defines an interface between router

hardware and software. An example of flexible router

hardware is the Dynamically Extensible Router (DER) [13],

which inserts processing elements between the line cards

and the switching fabric.

An active network architecture based on the discrete

active network approach is proposed and analyzed in [14].

The proposed architecture is applied to the congestion

control problem on multimedia data [15]. Several data

reduction techniques such as lossless compression, selective

discard, and transcoding are built into the active routers.

Prabhavalkar et al. [16] provide an active mechanism for

controlling unresponsive connections and minimizing the

degradation in network performance caused by bandwidth-

greedy applications. This menu-based approach gives strict
administrative control over the services that the network can

offer in transmitting data in an active environment.

In the Raid laboratory at Purdue University, active

network technologies have been applied to multimedia

applications such as video conferencing [17]. An architec-

ture, called active gateway, is proposed for video conferen-

cing traffic and QoS control. It is shown through

experiments that this facility enables more control functions

than are seen in conventional video conferencing tools.

Uruena et al. [4] provide a pragmatic technical approach to

active networks that supports prototyping of multimedia

transport protocols. The authors propose an a Simple Active

Router Assistant Architecture (SARA) that allows upgrad-

ing legacy high-speed routers to work as active nodes by

delegating active processing to an external entity called

assistant. A transport protocol sub-layer, called Fully

Programmable Transport Protocol (FPTP), is located

between the application and the traditional transport

protocols so that multimedia applications are able to specify

the QoS transport required in terms of order, reliability,

bandwidth, time and synchronization constraints. In our

work, we focus on designing architecture and protocols to

achieve high application-level QoS for multimedia data

transmission.

Receiver-driven Layered Multicast (RLM) [18] com-

bines a layered source coding algorithm with a layered

transmission system. The video sender utilizes a layered

source coding algorithm to divide the video data into several

layers. Each layer of video data is then sent to a different

multicast group. The traffic control mechanism for layered

multicast is discussed in [19]. Our goal is to use active

networking in efficient transmitting of large volume multi-

media data.

SwitchWare [20] project provides higher level of

abstraction on network services which are selectable on a

per user or even per packet basis. A special feature of

SwitchWare approach is that the security mechanism in

SwitchWare is provided by using formal methods at the

programming language level. Therefore, various safety and

security properties of a SwitchWare program can be tested

before execution. Security is an important issue in

deploying active networks. However, the objective of this

paper is to provide a framework to provide application level

QoS. Any security prototype such as [21] that provides

authorization control with strong end-to-end authentication

can be integrated with our design.
3. ADNET: an adaptable network architecture

3.1. Preliminaries

QoS can be provided at different layers of the network

stack. The application layer and the network layer are the

two major layers where QoS parameters and QoS control

mechanisms are studied. For network layer QoS

B. Bhargava et al. / Computer Communications 28 (2005) 623–639626
provisioning, Integrated Services (IntServ) [22] and Differ-

entiated Services (DiffServ) [23] are proposed by Internet

Engineering Task Force for IP-based networks such as the

current Internet.

The IntServ is a reservation-based QoS control mechan-

ism. The objective of IntServ is to provide customized QoS

to each individual traffic flow. In contrast, the existing IP

networks do not provide any mechanism to support

customized QoS for traffic flows. Scalability to a large

number of flows and complexity in implementations are the

two most serious drawbacks of IntServ approach. The

DiffServ is a new effort to provide QoS support in IP

networks. DiffServ tries to eliminate the need of RSVP-style

resource reservation by aggregating traffic flows with

similar QoS requirements into one single traffic class. The

packets belonging to the same aggregated traffic class are

marked using the same Differentiated Services Code Point

(DSCP), contained in the IP header DSFIELD/ToS. The

packets are forwarded according to the per-hop behaviors

(PHB) defined for this particular traffic class.

One drawback of the DiffServ approaches is that the QoS

parameters cannot be dynamically changed. The QoS in

DiffServ is specified by Service Level Agreement (SLA). It

is not easy to re-negotiate and adapt when communication

requirements change dynamically. Another drawback of

IntServ (and DiffServ) is that they provide only network-

level QoS. They cannot provide application-level QoS. The

QoS parameters in both approaches are specified by network

performance parameters such as bandwidth and delay.

However, sometimes the application QoS parameters are

different from the network QoS parameters. For example, a

video application may want to have a smooth playback

(constant frame rates) no matter what the conditions of the

network are.

Active networks [24] allow application programs to

execute specific programs in the routers and provide the

flexibility to modify the default services that a router can

provide to suit its specific needs. Therefore it has the

potential to provide the application-level QoS at the

transport or network layers. We show that active network

techniques can be used as a mechanism to extend the

DiffServ techniques in providing application-level QoS. In

addition, active network techniques can be used to provide

dynamic re-negotiation in DiffServ approach.

We design an adaptable network architecture, called

ADNET, which allows all of the active traffic, IntServ

traffic, and DiffServ traffic to co-exist. Our long-term goal is

to unify all three paradigms together to provide a wide

range of network services to all the users and meet their

specific needs.

3.2. Design goals and requirements

Adaptable. The adaptability features in ADNET include:

adaptable network services and adaptable applications.

ADNET allows the application to adapt to the resource
constraints. For applications that do not make reservation in

advance, the traffic is aggregated into a specific class based

on its attributes such as its DSCP label. The aggregated

traffic classes are subject to traffic management similar to

DiffServ.

Safe. ADNET explicitly includes the resource manage-

ment module. In contrast, SANE [25] left the resource

management problem untouched, and therefore can not

provide true safe execution.

Secure. ADNET employs the standardized Secure IP

Protocol (IPSEC) [26] to ensure secure communications.

Security requirement is an adaptable feature in our design. It

can be specified as a QoS parameter when setting up

reservations.

Efficient. The efficiency of ADNET comes in two flavors:

short-cut path for non-active traffic and primitive operations

for multimedia payloads.

Scalable. Because our design address both the custo-

mized aspect and the aggregated aspect of network services,

it is scalable to very large networks.

Interoperable. For applications which are based on the

current best-effort paradigm, our design provides seamless

interoperability so that they can run without any modifi-

cation. Similarly, in absence of active routers on the path of

a multimedia session, the packets of the session will be

forwarded without any special treatment by the router.

3.3. Architecture design

ADNET is inspired and partially derived from the work

in Integrated Services [22], Differentiated Services [23], and

Active Networks [24]. Fig. 1 shows the architecture of

ADNET. The design focuses on the explicit management of

resources for classified traffic flows. The notion of classified

traffic flow is a generalization of the usual sense of the traffic

flow which encompasses a variety of aggregated flows.

ADNET is comprised of four major modules: Input

Interface, Active Execution Environment (AEE), Output

Scheduler, and Policy Database. The Input Interface

receives packets from the network and performs classifi-

cation and shaping of the traffic. The AEE is composed of a

virtual machine and a CPU scheduler which provides an

execution environment for active network traffic. The output

scheduler performs output bandwidth allocation to share

fairly the output bandwidth among different types of

classified traffic flows. The policy database provides policy

information to other major components and interacts with

AEE to update the policies.

We keep a per-classified-flow state to enforce various

policies on the traffic. We argue that per-classified-flow

state is a necessity for future networks because it will

enhance the security and accountability of future networks.

For each classified traffic flow, a resource limitation tuple is

set up to limit the usage of various resources in the router. In

the current design, a resource limitation tuple consists of

maximum input bandwidth, maximum output bandwidth,

Fig. 1. Architecture of an active router. It shows the components in the input interface, active execution engine, and output scheduler.

B. Bhargava et al. / Computer Communications 28 (2005) 623–639 627
and maximum CPU time allowed. Our design is IP-based.

On the top of IP, we introduce a transport layer protocol

called ACTP for active traffic.
3.3.1. Input interface

The input interface consists of two types of submodules:

traffic classifiers and traffic shapers.

Traffic classifier. We classify the network traffics into

four categories: active traffic with explicit reservations,

active traffic without explicit reservation, non-active traffic

with explicit reservations, and non-active traffic without

explicit reservation. The router provides a default resource

limitation tuple for every active traffic flow. For active

traffic with explicit reservations (which include a set-up

phase before the actual data are sent), the value of the

resource limitation tuple is negotiated using primitives

provided by the active router. The resource request is made

at the set-up phase, or on-the-fly when necessary. This is

how an active traffic which needs guaranteed service can

reserve the required resources and become an active (or

non-active) traffic with explicit reservations, while adapt-

able active traffic can simply request additional resource

when needed. Once the resource requests are granted, usage

of the resources is up to the application. If the system is out

of resources, we have two different options. One is to drop

the packet, and other is to forward the packet without any

special service. Both are easy to deploy. However, a hybrid

version can be implemented where the application specifies

in the packet what to do in this situation.

The DiffServ traffic flows are aggregated into different

super-flows based on the DSCP values in their packets. These

super-flows correspond to the category of the non-active
traffic with explicit reservations. The router keeps a flow state

for each aggregated flow for the purpose of management

(policing, billing, shaping, and dropping). We aggregate all

the best-effort traffic (traditional network traffic) into a single

flow under the category ‘non-active traffic without explicit

reservations’. The non-active guaranteed service traffic flows

correspond to the notion of non-active traffic with explicit

reservations.

Traffic shapers. Shaping reduces the traffic variation,

makes it smooth, and provides an upper bound for the rate at

which the traffic is admitted into the network. A shaper has a

finite-size buffer. Packets are discarded if there is not

sufficient space to hold the delayed packets. There are three

traffic shapers in our design: one for the active traffic flows,

one for the non-active flows with explicit reservations, and

one for non-active best-effort flows. The logical separation

of the traffic shapers into three categories is for functional

description only. In practice all the three traffic shapers may

be implemented as one module. More details on traffic

shaping can be found in [27,28].
3.3.2. Execution environment for active flows

Virtual Machine. Active nodes run a Node Operating

System (NodeOS) and one or more Execution Environments

(EEs) on top of NodeOS [29,30]. Each EE implements a

virtual machine (VM) which runs the active programs

coming with the data packets. The VM can be very general

(such as Java Virtual Machine, which is the most popular

one) or very specific (such as Spanner [31], which provide

specialized functions for network management tasks).

Since emerging applications will contain a lot of multimedia

data such as compressed video and audio, some specialized

B. Bhargava et al. / Computer Communications 28 (2005) 623–639628
processing functions are necessary in order to provide better

services to these data.

We propose a new VM for our design. Although Java

Virtual Machine (JVM) is popular, we argue that a new

customized VM for running programs inside the router is

necessary because of the following reasons: (1) Compact-

ness. The object code (or bytecode) format for currently

available general-purpose VMs such as JVM is not very

compact. The original design of these VMs is for execution in

the end system or device, which usually do not need to handle

programs of huge size. The router may need to process

thousands or even millions of active programs in a very short

period of time. Even the existing VM specifically designed

for active networks such as Spanner [31] is not able to encode

any interesting algorithms in few bytes. (2) Resource

management. Currently available general-purpose virtual

machines such as JVM do not include fine-grain resource

management mechanisms. In particular, the VM is not tightly

coupled with the OS, therefore resource management cannot

be done effectively. In our design, the VM includes

operations dedicated to resource management tasks.

VM plays several roles in the overall architecture.

Specifically, VM can (1) work as a Bandwidth Broker

(BB), (2) work as a signaling mechanism, (3) change DSCP

definitions and update policy database, (4) constrain resource

consumptions of active flows. VM includes some instruc-

tions that are unique: (1) Resource management (Request and

Setup). (2) Specialized multimedia data processing (MPEG

and H261 encoding/decoding). (3) User installable operation

codes. The program can ask the virtual machine to install

some particular part of the code into a single opcode. There

are two modes of installable opcodes: the secure mode and

the light-weight mode. In secure mode, the security hash

algorithm MD5 is used to generate the footprint of the user

code. In light-weight mode, the opcode is determined by the

user as a 16-bit number.

We conduct experiments to compare VMs implemented

with Java and C. In our experiments, the Java decoder is

6–10 times slower than the C decoder under Linux and

Solaris environment. Although these results are not a

surprise to us, it does provide an idea of the magnitude of

slowdown when using Java in real-world. We also found

that the JIT compiler does provide substantial improvement

in execution time over the bytecode interpreter (over four

times of speed up). However, there is a room for significant

improvement for the performance of Java bytecodes to be

close to native object codes. The results suggest that

although there are potentials in the mobile code techno-

logies in the future, a native (C/CCC) implementation is

favored under current technologies if multimedia data

processing capabilities are needed in the VM.

CPU scheduler. For each active traffic flow, a thread

(light-weight process) of the designated execution environ-

ment (virtual machine) is created to handle the flow.

The execution of the thread is under the control of the CPU

scheduler to compete for CPU time with other active traffic
flows. Since all threads are scheduled together, the CPU

scheduler ensures that each flow receives a fair share of CPU

time. After processing, the generated active capsules is put in

an output queue. For each active traffic flow, there is a

corresponding output queue. These output queues, together

with all the output queues of the traffic shapers for non-active

guaranteed-service traffic and best-effort traffic flows, are

linked to the output scheduler. For more details on scheduling

processing resources, readers are referred to [32].
3.3.3. Output scheduler

The output scheduler is responsible for fairly allocating

the output bandwidth among different classified traffic

flows. The output scheduler schedules the packet delivery

using fair queuing scheduling disciplines. Note that since

every active traffic flow has its own output bandwidth

limitation enforced, it is not possible for a misbehaving

active traffic to shut down the output link.
3.3.4. Active transport protocols (ACTP)

Our design introduces a new transport protocol called

Active Transport Protocol (ACTP) to isolate the interactions

(possibly very complex) among active traffic flows and

other traffic flows based on other transport protocols such as

TCP or UDP ACTP reduces the complexity of the traffic and

resource management tasks. It also simplifies the program-

ming interface for active network programming by provid-

ing APIs similar to BSD-sockets.

ACTP is a transport protocol on top of the IP protocol.

The ACTP provides datagram delivery similar to UDP, but

with some extensions such as built-in fragmentation scheme

and security mechanisms to better support the active

network traffic. The ACTP supports the concept of

source/destination port similar to those in TCP or UDP to

differentiate different sessions. Since the behavior of a

transport protocol can greatly influence the network

performance, care must be taken when new functionality

are added. We have developed a fragmentation scheme on

ACTP for multimedia traffic (Section 4) and performed a

series of experiments (Section 6).

ACTP supports built-in security mechanisms. For a

secure ACTP session, the key management protocol that is

used with IP layer security is performed at the ACTP

layer. The authentication, encryption, and other security

functions are performed at the IP layer using IPSEC [26]

(‘IP Authentication Header’ [33] and the ‘IP Encapsulating

Security Payload’ [34]). The format of the ACTP packet is

shown in Fig. 2.

Each packet consists of an ACTP header and a body. An

ACTP header consists of the following fields: source port

number, destination port number, total packet length,

checksum, active program length, and fragment offset. The

body consists of two parts: the active program and additional

data. The active protocol implemented in our tool provides an

easier way to construct large active programs when

Fig. 2. Data format of active packets.

B. Bhargava et al. / Computer Communications 28 (2005) 623–639 629
compared to using IP options. In order to provide interoper-

ability, we wrap our ACTP packet with an ANEP header [35].
3.4. Features of ADNET

A unique feature of our design is the explicit consider-

ation of resource management. We introduce the concept of

default resource reservation to provide better services to the

active traffic.
Fig. 3. Active execution environm
ADNET explicitly includes the CPU scheduler as one of

the resource management component. It addresses simul-

taneously the issues of the overheads associated with per-

flow accounting and customized services for individual

traffic flow. ADNET seeks to provide a broad spectrum of

services ranging from traditional stateless best-effort to

IntServ-style per-flow accounting. In one extreme, per-flow

customized service such as IntServ or active traffic can be

provided. On the other extreme, traditional best-effort

service can be provided. In the middle, aggregated QoS

schemes such as DiffServ can be provided.

ADNET routers play different roles, depending on where

they are located: (1) As leaf (first hop) routers: The sender

simply sends any traditional traffic as usual and active traffic

with or without reservation. If a premium service (as in

DiffServ) is required, the sender sends an active program to

the router to request resources. After validation, the request

is granted by the router and the traffic from the sender is

tagged as DiffServ traffic with specific DiffServ class

(Fig. 3). (2) As boundary (border) routers: The egress router

issues a setup request to the ingress router of ISP. (3) As

core routers: The AEE only processes the active flows that

are authorized to go across the domain and enter the current

domain. The router does not accept Non-Active Explicit

Reservation to ensure safety.

In Section 4, we describe a fragmentation scheme which

is designed to support ACTP protocol to transfer a large

volume of multimedia data using the architecture.
4. Fragmentation scheme for ACTP

ACTP does not rely on the underlying IP-fragmentation

in network layer. Instead, it uses a new fragmentation

scheme designed for multimedia data transmission in active

environment, which addresses the unique need of active
ent as a bandwidth broker.

B. Bhargava et al. / Computer Communications 28 (2005) 623–639630
networks and utilizes the special properties of active

networks to achieve the goals.

4.1. The need for fragmentation

Multimedia objects such as audio, video and image are

usually very large in size. For example, one MPEG-1 movie

in NTSC video quality (which we digitized from a VHS

video tape) has an average size of 8617 bytes/frame. The

average I-frame size is even larger (17,997 bytes/frame).

When transporting multimedia data in the networks, the

sizes of the payload are usually larger than the Maximum

Transmission Unit (MTU) of the underling physical

networks. For example, the MTU of Ethernet is

1500 bytes. It is inevitable that the multimedia data have

to be fragmented into smaller-size units when transmitting

through the networks. In the past, this issue was not

particularly significant because the application programs

can simply assume that the lower level protocols (such as IP

and ATM) can reliably deliver reasonably large packet

(64 KB in IP and unlimited size in ATM AAL5) and let the

lower level protocols handle the fragmentation process.

In the recent years, the researches on active networks

[36] show some potentials in providing better network

services to the emerging applications which are rich in

content and require large bandwidth. For example, video

gateways, which used to be implemented in application-

level, may be possible to be implemented using active

networks [17]. However, since any network traffic, no

matter it is from active network or not, has to be transported

using conventional link-layer technologies such as Ethernet

or ATM, the problem of fragmenting large packets still

exists in active networks. Furthermore, some new issues

emerge when active capsules are fragmented into smaller

units. Therefore new fragmentation schemes are needed for

the active communication environment.

4.2. Alternatives to the fragmentation of large data units

There are several alternatives to handle the fragmenta-

tion problem. They are:
†
 Fragment at network layer. This is the current practice

when passive protocols such as TCP and UDP send large

packets. The internals of the payload are not revealed to

the network and the fragmentation points are decided

arbitrarily and this task is up to the network layer

protocol. IP fragmentation and ATM Adaptation Layer

(AAL) are examples of this approach. A performance

analysis of IPv6 fragmentation for multimedia traffic is

discussed in [37]. The advantage of this approach is that

the fragmentation process is transparent to the higher

layer protocols (both transport and application layers).
†
 Fragment at transport layer. Transport layer can also

fragment data into units of appropriate sizes. However,

current practice of IP networks allow very large packet
(64 KB) to be sent and let the IP layer handle the

fragmentation.
†
 Fragment at application layer. The application layer is

the best place to decide how to fragment the data because

it has complete information about the data to be sent. The

idea of application-level framing [38], integrated layer

processing [39], and trace-adaptive fragmentation [40]

explore some aspects of this alternative. However,

applications may not be able to know the limitation of

the underlining networks. Therefore it may not be able to

make the best decision in case there are several

alternatives available. Practically speaking, there is no

mechanism in current network architectures to support

the cooperation between the application programs and

network protocol in dealing with data fragmentation.

Although active networks are promising network archi-

tectures for the next-generation networks, some issues

specific to the active networks exist regarding to the

fragmentation of data. They are:
†
 Fragments of the same capsule may travel different

routes. The intermediate active routers may never have

the chance to execute the active programs inside a

capsule simply because the successful execution of the

active programs needs all the fragments of the same

capsule. This is not a problem in conventional IP

networks because the reassembly only occurs at the

receiver, not at the routers.
†
 Reassembly cost of active capsules in the intermediate

routers may be high. If an active capsule can be

processed only after all fragments are received by the

active router and the active capsule is very large (which

results in a lot of fragments), the time of waiting for the

fragments may be very long for time-sensitive data and

the overhead to reassembly the fragments and re-

fragment them after processing can be high.
†
 If the active capsules are fragmented arbitrarily, the

fragments may contain partial logical data units which

increases the complexity of the active programs inside

the capsules because the active programs have to be

aware of the possibility of partial data due to fragmenta-

tion and have to handle the problem by themselves.

Although researchers of active networks recognize the

importance of the fragmentation problem [41], the issues of

fragmentation mechanisms in active networks have not been

addressed in current research yet. The fragmentation

scheme described in this paper represent our first attempt

to address this important problem.
4.3. The proposed scheme

Our design goals of a fragmentation scheme for active

networks are: (1) Fragmentation points should correspond

to the natural boundaries inside the data which can

B. Bhargava et al. / Computer Communications 28 (2005) 623–639 631
be meaningfully managed, if it is possible to do so.

(2) Fragmentation policy should not divide a data into

fragments unless it is necessary. (3) For the data that cannot

be fragmented at the natural boundaries, the fragmenta-

tion/reassembly costs should be minimized.

The basic ideas of the proposed scheme are: (1) Instead

of letting the network layer blindly fragment the application

data, the application gives hints to the lower layer protocols

on how the data can be fragmented. The application also

tells the lower layer protocols how it handles the data in both

fragmented and un-fragmented cases. (2) The network layer

passes MTU size to the application and the application

adjust its behavior to fit the network constraints whenever

possible.

The ACTP Protocol (Section 3.3.4) at transport layer is a

logical choice to combine and process both information

from application layer and network layer. The advantages of

handling the fragmentation process inside the active

protocol are: (1) The fragmentation process can be done

in an uniform, application-independent way. (2) By giving

out hints only, the applications do not need to handle the

complexity of actually fragmenting the data. (3) The active

programs do not need to handle the complexity of dealing

with partial data.

There are two types of hints that can be passed to the

active protocol: fixed-size hint and variable-size hint.

Fixed-size hint contains a single value which represents
Fig. 4. Algorithm for act
the required fragment size for the data. It is useful when

the nature of the data requires that it can be divided into

fixed-size fragments. For example, sound samples in an

audio-conference are usually fixed-size data. Variable-size

hint contains an array of breakpoints that can be applied to

the data. Note that fixed-size hint is actually a special case of

variable-size hint. Since we envision that there are many

cases where fixed-size hint will be useful and the

programming interface of fixed-size hint can be greatly

simplified, we separate it out as another type of hint.

The actual fragmentation process occurs inside the active

transport protocol ACTP. The fragmentation process

utilizes the information from both the applications (hints)

and network infrastructure (MTU). There are many possible

ways to fragment the application data using the provided

information. We provide an algorithm which minimizes the

number of fragments generated based on the provided

information. Fig. 4 present the algorithm in C-style pseudo-

codes. The algorithm is optimal in terms of number of

fragments (Theorem 1). The algorithm is designed based on

the following constraints: (1) The algorithm tries to fill as

many data sub-units (determined by the breakpoints inside

the data unit) as possible into a fragment whose size is upper

bounded by the maximum fragment size. (2) Partial data

sub-units are not placed in the same fragment as whole data

sub-units. (3) The data are fragmented at non-breakpoints

only when it is impossible to fit the data into the maximum
ive fragmentation.

B. Bhargava et al. / Computer Communications 28 (2005) 623–639632
fragment size by using breakpoints only. (4) The data are

not re-ordered within a data unit.

Theorem 1. Algorithm given in Fig. 4 generates minimum

number of fragments satisfying the given constraint and

requirements.

The proof is given in Appendix.

Programming interfaces. We propose the following new

system calls to the socket API to provide the services

described above.
†
 int send_actp(int s, void *msg, int len,
int hints[], void *seg_prog, VOID *UNSEG_MSG,

UNSIGNED INT FLAGS)—send_actp() is similar to the

send() system call in usual socket library. It is

augmented with three more arguments, which pass the

hints to the active protocol. The argument hints is an

array of breakpoints. If hints is for fixed-size hint, a

single negative integer value will be provided whose

absolute value is then used by the active protocol as

the proposed fragmentation size. The argument seg_
prog and unseg_msg correspond to the active

programs which handle the fragmented and un-fragmen-

ted data.
†
 int getsockopt(int s, IPPROTO_ACTP,
ACTP_MTU, void *optval, int *optlen)—A

new socket option at the active protocol layer (or level in

terms of socket library convention) called ACTP_MTU

is introduced. When the application calls getsock-
opt() to retrieve MTU information, active protocol

can perform a path-MTU discovery to retrieve this

information and cache it for future use.

An example. To illustrate the fragmentation scheme,

consider the case when one frame of a MPEG video is to be

sent via an ACTP/IP/Ethernet network. The size of the

packet is 5300 bytes, which is larger than the maximum

fragment size of 1286 bytes (1286 bytes is the MTU of

Ethernet minus necessary spaces for IPv6 header, ANEP

header [35] and active programs). The application pass the

list of hints {8, 1251, 2433, 4096, 5300} to ACTP and

ACTP obtains the constraint of maximum fragment size

(1286 bytes) from the network layer. The list of hints

corresponds to the offsets from the beginning of the frame

where a new slice of macro-blocks starts. The first

fragmentation point is 1251 because the maximum possible

sub-units from the beginning of the data that can fit into an

1286 bytes fragment is at 1251 bytes. The next fragmenta-

tion point is 2433 because the fragment will be too large if

ACTP fragments at the next breakpoint. The next

fragmentation point is 3719, which dose not correspond to

any breakpoints in the hint list since data sub-unit between

offset 2433 and 4096 is too large for a 1286 bytes fragment;

ACTP has no choice but to fragment at the middle of the

data sub-unit. Finally, 4096 and 5300 are the last two

fragmentation points.
5. Usefulness: a QoS metric

Packet loss rate, link utilization, goodput, transmission

latency, jitter, signal-to-noise ratio, queue length, and

subjective perpetual quality are some commonly used QoS

metrics for assessing the effectiveness of multimedia data

transmission protocols. However, research results have

shown that these parameters cannot reflect true QoS

perceived by the end-user [42,43]. The problem is that

currently there are two important issues for multimedia data

transmission which have not been resolved satisfactorily.

They are:
†
 System-level integration of error control and conceal-

ment techniques. The source coding, transport protocol

and post-processing techniques should be designed

together to achieve the optimal performance.
†
 Adaptable source-coding and transport-control mechan-

isms. In current error concealment approaches, there is a

very little interaction between the source coder and the

transport layer. An optimal system should be adaptable to

the error characteristics of the networks and dynamically

shift the burden of error concealment between the source

coder and the transport layer.

In this section, a general model is developed for

evaluating the application of active techniques such as

transcoding [44] and active fragmentation (Section 4) to the

compressed video transmission problem. Systematically, a

metric called usefulness is developed which measures the

portion of data received by the receiver that are usable. A

fragmentation scheme is necessary for this framework.

Considering active networks, packetized video data may go

through a series of transformations before it reaches the

destination. The objective of these transformations is to

reduce the data size when congestion occurs to adapt to the

network status. However, since each packet acts indepen-

dently when travelling through the network, the decoder

must be able to deal with packets from the same frame

which are transformed differently when decoding the video

frame. The active fragmentation scheme is very useful in

this case.

Assume a data stream consists of n frames. The term

‘frame’ is used to refer to a complete data unit which can

possibly be divided into smaller units. For example, an

MPEG video frame can be divided into slices. The size of

frame i is denoted by fi, and the number of fragments

generated from this frame is mi. For IP fragmentation, mi

can be expressed as dfi/Me where M denotes the maximum

fragment size (or maximum transport unit, MTU) of the

underlying transport network. For ACTP fragmentation, mi

depends on both MTU and the hints provided by the

application.

Each frame is assumed to be sent at time ti,j where i is the

frame number and j is the fragment number of the frame i

(i ranges from 1 to n and j ranges from 1 to mi). If no packet

Fig. 5. Usability function for multimedia data.

B. Bhargava et al. / Computer Communications 28 (2005) 623–639 633
is lost and the router is not active (i.e. the router does not

process the packets, it just forwards them), the total amount

of data received by the destination D is
Pn

iZ1 fi. Assume that

the router applies a transform G(s,l(t)) to the packet of size s

at time t with the load lt). In the simplest case, the router just

forwards the packet or drops it based on the load of the

router (for example, the load can be derived from the queue

size at time (t). Therefore, the value of G(s,l(t)) can either be

0 or s depending on the size of the queue. In the active router

case, the possible value of G(s,l(t)) can be anything. Since

this paper focuses on those cases where the network is

congested, it makes sense to restrict the value of G(s,l(t)) to

be between 0 and s.

Based on the above definitions, the actual amount of the

data received by D is

Xn

iZ1

Xmi

jZ1

Gðsði; jÞ; lðti;jÞÞ:

the function s(i,j) is the size of the packet received by the

router and takes the value M most of the time except for the

last fragment for each frame.

Not all data received by D is useful. For example, in

TCP/IP protocol suite, the reassembly of the packet occurs

at the IP layer. If any one of the fragments is lost, all other

fragments from the same frame are useless. To model the

usefulness of the received data, assume that the receiver D

applies a function U(a, b) to the data fragments received for

the same frame. Let a be the total data received for a

particular frame. That is aiZ
Pmi

jZ1 Gðsði; jÞ; lðti;jÞÞ for

frame i. b is the frame size. For frame i, biZfi. Since the

importance of each frame is different, a weight Wi is

associated with frame i.

Finally, the usefulness of the data received is defined as

g Z

Pn
iZ1 WiUðai; biÞPn

iZ1 Wifi

:

For simplicity, Wi is assumed to be 1 for all i. Now, consider

the following two cases.

Case 1. Traditional router and IP fragmentation. The

usability function for IP fragmentation is

Uða;bÞ Z
b if aRb;

0 if a!b:

(

Simply speaking, if not all of the fragments are received,

none of the fragments are useful. Assume that the packets

are lost with a fixed probability p. The loss of a packet could

be the result of the router buffer overflow or reassembly

timeout at the destination. For simplicity of analysis, let’s

assume the usability function to be the identity function

Uðai; biÞZai. Then the expected lost data is

Ei Z min
fi

M

� �
!p; 1

� �
!

Xfi
M

� 	
jZ1

Gðsði; jÞ; lðti;jÞÞ:
and the usefulness of the data received is

gIP Z 1 K

Pn
iZ1 EiPn
iZ1 fi

:

Case 2. ACTP fragmentation. Under ACTP fragmentation,

the usability function is different for different types of data.

For text or numeric data, the usability model is same as that

of IP fragmentation. For multimedia data such as video or

image, an approximate usability function is given by the

following empirical equation.

Uða; bÞ Z b!eK5ðða=bÞK1Þ2 :

A graphical representation of this equation is given in Fig. 5.

The empirical equation is developed by using the evidences

from the researches on user-perceived QoS [42] and our

experimental data on various video/image data.

Now the expected lost data is

Ei Z p!
Xmi

jZ1

Gðsði; jÞ; lðti;jÞÞ

and the usefulness of the data received is

gACTP Z

Pn
iZ1 Uðfi KEi; fiÞPn

iZ1 fi

:

Remarks:
†
 Our approach to the evaluation of usefulness in multi-

media data is unique in the sense that we consider the

data in the sub-frame level. Other work either consider

the data at the packet level (each physical packet is a unit

of data) or at the frame level (a frame is a data unit). For

example, in [15] two active techniques (Frame-level

Discard and GOP-level Discard) are investigated to

address the problem of network congestion. The

objective of their work is very close to ours. Frame-

level Discard mechanism queues a datagram if and only

if its corresponding frame can be queued in its entirety.

GOP-level Discard mechanism maintains a state about

Table 1

Profiles of three video clips

Clip name Jurassic Park Tai Chi Lion King

Resolution 320!240 352!240 320!240

of frames 3000 2996 3750

Total size 23,091,162 12,497,528 10,273,216

Avg. I—frame size 19,458.98 (251) 7684.57 (334) 8056.66 (313)

Avg. P—frame size 14,423.05 (750) 5632.38 (666) 4752.44 (938)

Avg. B—frame size 3695.67 (1999) 3094.44 (1996) 1317.00 (2499)

Overall avg. frame size 7696.38 4170.34 2738.85

GOP pattern IBBPBBPBBPBB IBBPBBPBB IBBPBBPBBPBB

1

B. Bhargava et al. / Computer Communications 28 (2005) 623–639634
the type of frame discarded. In case an I-frame is

discarded, the other frames (P-frames and B-frames) in

the same group of pictures are discarded as well. Since

any partially received frame contributes to the useful-

ness, aggressive discarding schemes such as those in [15]

may result in lower application QoS. Specifically, if a

frame is buffered only in its entirety, many I-frames will

not be available to the applications in the period of heavy

network congestion. In addition, if all the frames in a

group of pictures are dropped altogether, the application

will experience a very jittery video period because a

group of pictures usually consists of more than 10 frames

and lasts for more than 1/3 s.
†
 The criteria used in other research works for the

evaluation of the effectiveness of MPEG video trans-

mission algorithm are frame-level parameters such as the

percentage of complete I-frame received [18,45]. We

consider a partial frame to be useful if it can be repaired

by some error-concealment techniques. From the exper-

iment results, we observe that a repaired I-frame and the

corresponding P-frames and B-frames in the same GOP

can make the quality of the video playback very close to

the case in which no data is lost.
†
 Usability function U is very similar to utility function in

the literature. However, the usability function is applied

to the packets at the system level. It is different in the

sense that the function is calculated from the system

point of view. Therefore the same amount of data

received by the network software in OS can lead to very

different usefulness level for the applications depending

on the protocols used and other system parameters.
6. Experimental results

We are presenting simulation results for a part1 of the

functionality of ADNET using ns-2 network simulator. We

have extended ns-2 to include certain functionalities

described in this paper.
Other results will be presented gradually in separate papers.
6.1. Test data

To perform experiment under realistic scenario, follow-

ing three digital (MPEG) video clips are created from

commercial video tapes.
1.
 Jurassic Park (JP)—A typical movie with different types

of scenes. The characteristics of this video clip are

similar to most of the other videos in the market.
2.
 Lion King (LK)—A cartoon video. The distinguishing

feature of a cartoon video is that there are many sharp

edges. Compressing a cartoon is usually more difficult

because the MPEG scheme works better on real-world

objects.
3.
 Tai Chi (TC)—An instruction video which teaches Tai

Chi Chun (a form of Chinese Martial Art). This video is a

typical instruction video. The distinguishing feature of

instruction videos is that usually there are no fast

changing scenes and background. The changes in the

video are slow because most of the scenes involve only

motions of the instructor.

Table 1 gives the details of these video clips.
6.2. Comparison between ACTP and UDP

A prototype video application suite is implemented to

conduct the experiments. The suite includes a video

encoder/server, an active router emulator, and a video

decoder with error concealment modules. Another module

is included to simulate the proposed transport protocol

ACTP. Experiments are conducted to determine the effect of

ACTP fragmentation scheme on QoS in adaptable video-on-

demand applications. Fig. 6 shows the setup of the

experiments.

A 300-frame video clip from Jurassic Park is used as the

input video. The experiments are conducted using frame rate

of 3, 2 and 1 frames/s. For each experiment of frame rate n, a

timer is set to expire at every 1/n second in the client program.

When the timer expires, the expected frame number is

increased by one and the data received for previous frames

are considered late and discarded. As depicted in Fig. 6, the

video data are sent from a video server running at the machine

raid4. The video traffic goes through a simulated active

Fig. 6. Experiment setup to transmit video in RAID lab. raid4.cs.purdue.edu

sends video files through pirx.cs.purdue.edu—an active router—to

pcswang.cs.purdue.edu

Fig. 7. Sequence of video clips using IP and ACTP fragmentation. The

ACTP fragmentation maintains same quality among all clips where as the

IP fragmentation suffers from severe QoS degradation in d006.jpg,

d007.jpg, d008.jpg, d010.jpg, d011.jpg, d015.jpg, d016.jpg, and d017.jpg

clips.

B. Bhargava et al. / Computer Communications 28 (2005) 623–639 635
router program running at the machine pirx and is received by

the video client program running at the machine pcswang.

The results of ACTP simulation are compared with

traditional UDP/IP approach (Table 2).

The results show that in UDP session for 3 frames/s, the

average timer expiration is 182 times, therefore in average

only 118 out of the 300 frames are received and playable. In

contrast, under ACTP session the timer expired 237 times on

average, but there are 287 playable frames on average

because most of the frame are partially received when the

timer expired and most of these frames can be made playable

using simple error concealment techniques in the client

program. By conducting real experiment, we see that the

ACTP session provides a very smooth playback, although

there is some occasional block noise during the playback due

to the lost slices. In contrast, regular playback session is very

jittery because a lot of frames are not available. A demo is

available to visually see the impact of ACTP vs. non-ACTP

approach on video quality. Extractions of some video frames

of ACTP and UDP sessions are shown in Fig. 7. By visually

comparing the two figures, the difference in the user-

perceived QoS between the two approaches is very apparent.

Usefulness, g, with varying packet loss probability for clip JP

is given in Fig. 8. Usefulness of ACTP session is much better

than that of IP session.
6.3. Comparison between ACTP Fragmentation

and IP Fragmentation

In this experiment, we compare three different scenarios

of video transmissions: (1) sending the video one frame at
Table 2

Comparison of ACTP and UDP video session

Frame

rate

Timer

expired

Playable

frame

G Perceptual

quality

ACTP 3 237 287 0.80 Good

2 248 290 0.80 Good

1 235 286 0.83 Good

UDP 3 182 118 0.17 Bad

2 187 113 0.16 Bad

1 185 115 0.16 Bad Fig. 8. Usefulness for clip Jurassic Park with varying packet loss

probability.

http://raid4.cs.purdue.edu
http://pirx.cs.purdue.edu
http://pcswang.cs.purdue.edu

Fig. 9. Simulation setup for ADNET experiments. The ADNET router is the

active router. FTP applications create background traffic.

B. Bhargava et al. / Computer Communications 28 (2005) 623–639636
a time at the rate of 30 frames/s under IP fragmentation,

(2) sending the video at the same rate under ACTP

fragmentation, (3) sending the video at the same rate

under ACTP fragmentation and with active program in each

packet (50 bytes).

The active program queries the current status of the

system queue. If addition of the packet causes the queue to

drop packets, the packet is handed over to the active

execution environment and transformed to 80% of its

original size by sacrificing the quality of the video frame.

The transformation causes a delay of 5 ms for the packet.

The configuration of the experiments is shown in Fig. 9.

The bottleneck link is configured at 5 MB/s. This value is

large enough for the video source to send the video at

30 frames/s without any loss when no competing traffic

source exists. The experiments are repeated for the

configuration of 1–5 competing traffic sources

(FTP sources).

Figs. 10–12 show the results of the experiments. Byte

loss rates for the three scenarios are almost the same

(Fig. 10). Since in the ADNET routers the queuing

discipline is DRR, it is expected to be fair to all traffic

flows. However, the packet loss rates for ACTP fragmenta-

tion with active transformation is less than that for the

other cases (Fig. 11). By reducing the size of the packet,
Fig. 10. Byte loss rates under various fragmentation schemes and video files. Byte

much higher loss than other two videos.
the packet has a higher chance of surviving and the loss rates

are reduced by around 10%. The most exciting results are

that the QoS observed by the applications (usefulness, g)

improves significantly for ACTP fragmentation, and even

more for ACTP fragmentation with transformation under

heavy network load.

6.4. Overhead of the fragmentation scheme

The purpose of this experiment is to get an idea of how

many extra bytes are needed in ACTP fragmentation. We

choose the maximum fragment size to be 1286, which is the

MTU of Ethernet minus the spaces for IPv6 Header, ANEP

header and an active program of 100 bytes. We pass a hint

list consists of the offsets from the beginning of a video

frame which correspond to the starting points of the slices

inside the video frame. Slices are the largest meaningful

sub-units inside a video frame. The application and the

active programs know how to deal with slices directly. It

makes sense to fragment the video frames at the boundary of

slices to reduce the complexity of active programs. Thus the

processing of the fragments is optimized and can be done

independently.

The results are given in Figs. 13 and 14. The result shows

that the average overhead ranges from 5.66% (clip JP,

MFSZ1236) to 0.40% (clip TC, MFSZ1436) of the total

data size, and the maximum overhead for a single frame

range from 27.77 to 2.68%. The worst case occurs when the

video frame consists of a lot of slices, which are slightly

larger than the maximum fragment size. From these

experimental results, we see that the proposed scheme is

performing well, with low overhead, under the realistic

experiment scenario.
7. Conclusions and future works

The paper investigated techniques to solve multimedia

data transmission problem using active network paradigm.

We developed an adaptable network architecture which

allows different QoS provision schemes such as active

networks, integrated services, and differentiated services to
loss rates for the three scenarios are almost same. Jurassic park experiences

Fig. 11. Packet loss rates under various fragmentation schemes and video files. The packet loss rates for ACTP fragmentation with active transformation is

reduced by 10% than the other schemes. Because it reduces the size of the packet, which increases the chance of surviving the packet.

Fig. 12. Usefulness g, for various fragmentation schemes and video files. ACTP fragmentation with transformation has the highest usefulness for all three

experiments. Additional TCP traffic makes the network congested and lowers the usefulness.

B. Bhargava et al. / Computer Communications 28 (2005) 623–639 637
co-exist. Thus, the proposed architecture can be used in

monitoring and controlling all types of incoming traffic

inside a network domain. This architecture enables both the

application programs and the networks to adapt and perform

the tasks of traffic management and control together.

A fragmentation scheme is proposed to address the unique

need of active networks and utilizes the special properties the

new infrastructure provides. In order to provide a better

assessment of QoS received by the applications, a new metric

to quantify the user-perceived QoS is introduced. It is shown
Fig. 13. Average byte overhead of ACTP fragmentation for three video

files. The overhead is very low for 1435 fragment size.
to provide a more accurate assessment of the user-perceived

QoS than other commonly used measures.

In our future work, we plan to conduct rigorous

experiments on interoperability of the IntServ and DiffServ

with active paradigm. The long-term goal is to integrate the

DiffServ architecture into the active network architecture as

a special case. It may even be possible to integrate the

IntServ architecture to create a unified traffic class.
Fig. 14. Maximum overhead of ACTP fragmentation. Even though the

maximum overhead is very high for 1235, it is less than 35% for 1435

fragment size.

B. Bhargava et al. / Computer Communications 28 (2005) 623–639638
Appendix

Proof. (Theorem 1) The breakpoint preceding a data sub-

unit with size, T, larger than the maximum fragment size M

is a fragmentation point. Since no partial data sub-unit is

combined with a whole data sub-unit, the next breakpoint is

also a fragmentation point. In this case, at least dT/Me

fragments are needed and the algorithm produces exactly

dT/Me fragments.

Following the above reasoning, the only case we need to

consider is where all the data sub-units have sizes which are

less than the maximum fragment size. Let the algorithm’s

solution A produces a sequence of fragmentation points

a1,a2,.,an. Assume that solution A is not optimal. Let S be

the optimal solution, with the sequence of fragmentation

points s1,s2,.,sm. m!n since S is optimal. Now, s1!a1

because the algorithm requires that a1 contains the

maximum possible breakpoints that can be included.

s2%a2 because (a1,a2) contains the maximum possible

breakpoints that can be included, and (s1,a2) contains at least

one more breakpoint than (a1,a2). Following similar

arguments, we conclude that si%ai for all 1%i%m. Now

consider the last fragment of solution S. It starts from offset

sm to the end of the data. Since sm%am and m!n, there is a

k%n such that sm!ak. Then from the requirement of the

algorithm there are at least two fragments between sm and

the end of the data because it require at least two fragments

between am and the end of the data. But this is a

contradiction because by assumption sm is the last

fragmentation points. Therefore, the given algorithm

produces minimum number of fragments. ,
References

[1] P.W. Agnew, A.S. Kellerman, Distributed Multimedia: Technologies,

Applications, and Opportunities in the Digital Information Industry,

ACM Press, 1996.

[2] S. Li, Quality of service control for distributed multimedia systems,

PhD Thesis, Department of Computer Science, Purdue University,

December 1997.

[3] O. Spaniol, J. Meggers, Active networks nodes for adaptive multi-

media communication, in: Fifth International Conference on Intelli-

gence in Networks (SMARTNET 99), 1999.

[4] M. Uruena, D. Larrabeiti, M. Calderon, A. Azcorra, J.E. Kristensen,

L.K. Kristensen, E. Exposito, D. Garduno, M. Diaz, An active

network approach to support multimedia relays, in: Joint International

Workshop on Interactive Distributed Multimedia Systems/Protocols

for Multimedia Systems (IDMS-PROMS), 2002.

[5] Y. Li, L. Wolf, Adaptive resource management in active network

nodes, in: Proceedings of IEEE Symposium on Computers and

Communications (ISCC’2003), 2003.

[6] D.J. Wetherall, J. Guttag, D.L. Tennenhouse, ANTS: a toolkit for

building and dynamically deploying network protocols, in: Proceed-

ings of IEEE OPENARCH’98, San Francisco, California, 1998.

[7] M. Hicks, P. Kakkar, J.T. Moore, C.A. Gunter, S. Nettles, PLAN: a

packet language for active networks, in: Proceedings of the Third
ACM SIGPLAN International Conference on Functional Program-

ming Languages, 1998, pp. 86–93.

[8] M. Hicks, J.T. Moore, D. Wetherall, S. Nettles, Experiences with

capsule-based active networking, in: Proceedings DARPA Active

Networks Conference and Exposition, San Francisco, California,

2002, pp. 16–24.

[9] D.L. Tennenhouse, D.J. Wetherall, Towards an active network

architecture, in: Proceedings DARPA Active Networks Conference

and Exposition, San Francisco, California, 2002, pp. 2–15.

[10] T. Wolf, J. Turner, Design issues for high performance active routers,

IEEE Journal on Selected Areas of Communications—Special Issue

on Active and Programmable Networks 19 (3) (2001) 404–409.

[11] T. Fuhrmann, T. Harbaum, M. Schoeller, M. Zitterbart, AMnet 2.0: an

improved architecture for programmable networks, in: Proceedings

Fourth Annual International Working Conference on Active Net-

works, Zurich, Switzerland, 2002.

[12] S. Karlin, L. Peterson, VERA: an extensible router architecture,

Computer Networks 38 (3) (2002) 277–293.

[13] F. Kuhns, J. DeHart, A. Kantawala, R. Keller, J. Lockwood, P. Pappu,

D. Richards, D. Taylor, J. Parwatikar, E. Spitznagel, J. Turner, K.

Wong, Design of a high performance dynamically extensible router,

in: Proceedings DARPA Active Networks Conference and Expo-

sition, San Francisco, California, 2002, pp. 42–64.

[14] S. Bhattacharjee, K.L. Calvert, E.W. Zegura, An architecture for

active networking, in: High Performance Networking (HPN’97),

White Plains, New York, 1997.

[15] S. Bhattacharjee, K.L. Calvert, E.W. Zegura, Congestion control and

caching in CANES, in: Proceedings of ICC’98, Atlanta, GA, 1998.

[16] N. Prabhavalkar, M. Parashar, Controlling unresponsive connections

in an active network architecture, International Journal of Network

Management 13 (4) (2003) 289–305.

[17] S. Li, B. Bhargava, Active gateway: a facility for video conferencing

traffic control, in: Proceedings of COMPSAC’97, Washington, DC,

IEEE, 1997, pp. 308–311.

[18] S. McCanne, V. Jacobson, Receiver-driven layered multicast, in:

Proceedings of the ACM SIGCOMM, Stanford, CA, 1996.

[19] S. Kang, H.Y. Youn, Y. Lee, D. Lee, M. Kim, The active traffic

control mechanism for layered multimedia multicast in active

network, in: Proceedings Eighth International Symposium on

Modeling, Analysis and Simulation of Computer and Telecommuni-

cation Systems, San Francisco, CA, 2000.

[20] D.S. Alexander, W.A. Arbaugh, M.W. Hicks, P. Kakkar,

A.D. Keromytis, J.T. Moore, C.A. Gunter, S.M. Nettles, J.M. Smith,

The switchware active network architecture, IEEE Network Magazine

12 (3) (1998) 29–36.

[21] S.L. Murphy, E.T. Lewis, R.N. Watson, Secure active network

prototypes, in: Proceedings DARPA Active Networks Conference and

Exposition, San Francisco, CA, 2002, pp. 166-181.

[22] B. Braden, D. Clark, S. Shenker, Integrated Services in the Internet

Architecture: An Overview, RFC 1633.

[23] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss, An

Architecture for Differentiated Services, RFC 2475.

[24] K.L. Calvert, S. Bhattacharjee, E. Zegura, J. Sterbenz, Directions

in active networks, IEEE Communications Magazine 36 (10) (1998)

72–78.

[25] D.S. Alexander, W.A. Arbaugh, A.D. Keromytis, J.M. Smith, A

secure active network environment architecture: realization in

switchware, IEEE Network Magazine 12 (3) (1998) 37–45.

[26] S. Kent, R. Atkinson, Security Architecture for the Internet Protocol,

RFC 2401.

[27] J.-Y. L. Boudec, Some properties of variable length packet shapers,

in: Proceedings SIGMETRICS/Performance, 2001, pp. 175-183.

[28] A. Habib, B. Bhargava, Network tomography-based unresponsive

flow detection and control, in: Proceedings IEEE Workshop on Future

Trends of Distributed Computing Systems (FTDCS ’03), 2003,

pp. 258-264.

B. Bhargava et al. / Computer Communications 28 (2005) 623–639 639
[29] P. Tullmann, M. Hibler, J. Lepreau, Janos: A java-oriented os

for active network nodes, in: Proceedings DARPA Active Networks

Conference and Exposition, San Francisco, CA, 2002, pp. 117-129.

[30] N. Shalaby, Y. Gottlieb, L. Peterson, M. Wawrzoniak, Snow on Silk:

A NodeOS in the Linux kernel, in: Proceedings Fourth Annual

International Working Conference on Active Networks, Lecture

Notes in Computer Science, Springer, Zürich, Switzerland, 2002, pp.

1-19.

[31] B. Schwartz, A. Jackson, T. Strayer, W. Zhou, R. Rockwell,

C. Partridge, Smart packets: applying active networks to network

management, ACM Transactions on Computer Systems (TOCS) 18

(1) (2000) 67–88.

[32] P. Pappu, T. Wolf, Scheduling processing resources in programmable

routers, in: Proceedings of IEEE Infocom, New York, New York,

2002.

[33] S. Kent, R. Atkinson, IP Authentication Header, RFC 2402.

[34] S. Kent, R. Atkinson, IP Encapsulating Security Payload (ESP), RFC

2406.

[35] D.S. Alexander, B. Braden, C.A. Gunter, A.W. Jackson, A.D.

Keromytis, G.J. Minden, D. Wetherall, Active network encapsulation

protocol (anep).

[36] D.L. Tennenhouse, J.M. Smith, W.D. Sincoskie, D.J. Wetherall,

G.J. Minden, A Survey of Active Network Research, IEEE

Communications Magazine 35 (1) (1997) 80–86.
[37] D. Grimm, Evaluation of IPv6 fragmentation for RTP streaming

video, in: Australian Telecommunications, Networks and Appli-

cations Conference (ATNAC ’03), 2003.

[38] D.D. Clark, D.L. Tennenhouse, Architectural considerations for a new

generation of protocols, in: Proceedings of the ACM SIGCOMM,

1990.
[39] T. Braun, C. Diot, Protocol Implementation using integrated layer

processing, in: Proceedings of the ACM SIGCOMM, 1995.

[40] F. Li, I. Nikolaidis, Trace-adaptive fragmentation for periodic

broadcast of vbr video, in: Proceedings of Ninth International

Workshop on Network and Operating System Support for Digital

Audio and Video (NOSSDAV ’99), 1999.

[41] J.B. Evans, G.J. Minden, Active Networking Archive, URL

http://www.ittc.ukans.edu/Projects/ActiveNets (1999).

[42] C.J. Van den Branden Lambrecht, O. Verscheure, Perceptual quality

measure using a spatio-temporal model of the human visual system,

in: Proceedings of the SPIE 96, San Jose, CA, 1996.

[43] O. Verscheure, X. Garcia, G. Karlsson, J.-P. Hubaux, User-Oriented

QoS in Packet Video Delivery, IEEE Network Magazine 12 (6) (1998)

12–21.

[44] E. Amir, S. McCanne, H. Zhang, An Application level video gateway,

in: ACM Multimedia’95, San Francisco, CA, 1995.

[45] J.-C. Bolot, T. Turletti, I. Wakeman, Scalable feedback control for

multicast video distribution in the internet, in: Proceedings of the

ACM SIGCOMM, London, England, 1994.

	Multimedia data transmission and control using active networks
	Introduction
	Related works
	ADNET: an adaptable network architecture
	Preliminaries
	Design goals and requirements
	Architecture design
	Features of ADNET

	Fragmentation scheme for ACTP
	The need for fragmentation
	Alternatives to the fragmentation of large data units
	The proposed scheme

	Usefulness: a QoS metric
	Experimental results
	Test data
	Comparison between ACTP and UDP
	Comparison between ACTP Fragmentation and IP Fragmentation
	Overhead of the fragmentation scheme

	Conclusions and future works
	Appendix
	References

