
CERIAS Tech Report 2005-142
CollectCast: A Peer-to-Peer Service for Media Streaming

 by M Hefeeda, A Habib, D Xu, B Bhargava, B Botev
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Multimedia Systems (2005) 11(1): 68–81
DOI 10.1007/s00530-005-0191-6

REGULAR PAPER

Mohamed Hefeeda · Ahsan Habib · Dongyan Xu ·
Bharat Bhargava · Boyan Botev

CollectCast: A peer-to-peer service for media streaming

Published online: 14 October 2005
c© Springer-Verlag 2005

Abstract We present CollectCast, a peer-to-peer (P2P) ser-
vice for media streaming where a receiver peer is served
by multiple sender peers. CollectCast operates at the ap-
plication level but infers underlying network properties to
correlate end-to-end connections between peers. The salient
features of CollectCast include: (1) a novel multisender se-
lection method that exploits the performance correlation and
dependency among connections between different candidate
senders and the receiver, (2) a customization of network to-
mography techniques and demonstration of improved prac-
ticality and efficiency, and (3) an aggregation-based P2P
streaming mechanism that sustains receiver-side quality in
the presence of sender/network dynamics and degradation.
We have performed both real-world (on PlanetLab) and sim-
ulation evaluation of CollectCast. Our simulation results
show that for a receiver, CollectCast makes better selection
of multiple senders than other methods that do not infer un-
derlying network properties. Our PlanetLab experiments are
performed using a P2P media streaming application (called
PROMISE) which we developed on top of CollectCast. Both
packet-level and frame-level performance of MPEG-4 video
streaming demonstrates the practicality and effectiveness of
CollectCast.

Keywords Peer-to-peer systems · Multimedia streaming

M. Hefeeda
School of Computing Science, Simon Fraser University, Surrey,
BC V3T 2W1, Canada
E-mail: mhefeeda@cs.sfu.ca

A. Habib
School of Information and Management Systems,
University of California, Berkeley, CA 94702, USA
E-mail: habib@sims.berkeley.edu

D. Xu (B) · B. Bhargava · B. Botev
Department of Computer Science, Purdue University, West Lafayette,
IN 47907, USA
E-mail: {dxu, bb, botev}@cs.purdue.edu

1 Introduction

Peer-to-peer (P2P) systems have gained tremendous mo-
mentum in recent years. In a P2P system, peers communi-
cate directly with each other for the sharing of data as well as
other resources such as storage and CPU cycles. Paralleling
research in other aspects of P2P, such as lookup [23, 26, 30],
storage [11, 27], and multicast [1, 9, 32], we in this pa-
per focus on P2P media streaming, which poses more strin-
gent bandwidth requirement than general file sharing. More
specifically, as first addressed in our earlier work [33], for
a media streaming session with playback rate R0, a single
sending peer may not be able or willing to contribute the
full outbound bandwidth of R0. As a result, we propose a
P2P streaming model where one receiving peer collects me-
dia data from multiple sending peers – each contributing a
streaming rate lower than R0. We also note that download-
ing the entire media file before playback is not always a good
alternative, because of the potentially large media file size
and thus long downloading time.

Under the “multiple-to-one” P2P streaming model, we
present our solution to the following challenge: in a highly
diverse and dynamic P2P network, how to select, moni-
tor, and possibly switch sending peers in a P2P streaming
session, so that the best possible streaming quality can be
achieved and sustained for the receiver? The dynamics and
diversity are reflected in both peers and network connections
between peers: (1) a sender may stop contributing to a P2P
streaming session, (2) the outbound bandwidth contributed
by a sender may change, (3) the connection between a sender
and the receiver may exhibit changing end-to-end bandwidth
and loss rate, and (4) most importantly, the underlying net-
work topology determines that the end-to-end connections
between the senders and the receiver are not independent
of each other with respect to their bandwidth and loss rate.
As a result, the quality of a P2P streaming session depends
on (1) judicious selection of senders, (2) constant monitor-
ing of sender/network status, and (3) timely switching of
senders when the sender or network fails or seriously de-
grades. Unfortunately, previous works in P2P streaming do

CollectCast: A peer-to-peer service for media streaming 69

not systematically address these requirements. For example,
some simply assume that a receiver receives media data from
only one sender [2, 9, 32]. For works that do assume the
multiple-to-one streaming model [17, 20], there is no study
on the selection of multiple senders.

As our solution, we present CollectCast, a multiple-to-
one P2P streaming service. CollectCast operates at the appli-
cation level but infers underlying network properties (topol-
ogy and performance) to correlate end-to-end connections
between candidate senders and the receiver. Different from
other multiple-to-one network services such as Concast [6],
each CollectCast session involves two sets of senders: the
standby senders and the active senders. Members of the two
sets may change dynamically during the session. Collect-
Cast reflects the P2P philosophy of dynamically and oppor-
tunistically aggregating limited capacity of peers to perform
a task (streaming) traditionally performed by a dedicated en-
tity (a media server).

Our main contributions in CollectCast include the
following: (1) a novel multisender selection method
that exploits the performance correlation among multi-
ple end-to-end connections between candidate senders and
receiver, (2) customization of network tomography tech-
niques and demonstration of improved practicality and ef-
ficiency, and (3) an aggregation-based P2P streaming mech-
anism that sustains receiver-side quality in the presence of
sender/network dynamics and degradation. We have per-
formed both PlanetLab-based and simulation-based eval-
uation of CollectCast. Our simulation results show that
for a receiver, CollectCast makes better selection of mul-
tiple senders than methods that do not infer underlying
network properties. Our PlanetLab experiments are per-
formed using a P2P media streaming application (called
PROMISE) which we developed on top of CollectCast. Both
packet-level and frame-level performance of MPEG-4 video
streaming demonstrate the practicality and effectiveness of
CollectCast.

The rest of the paper is organized as follows. An
overview of CollectCast describing its main components
and operations is given in Sect. 2. The following four sec-
tions present key aspects of CollectCast design: multisender
selection in Sect. 3, topology inference and labeling in
Sect. 4, rate and data assignment in Sect. 5, and moni-
toring and adaptation in Sect. 6. We evaluate CollectCast
via simulation in Sect. 7. Section 8 describes an application
(PROMISE) built on top of CollectCast and presents the per-
formance results obtained from running PROMISE on Plan-
etLab nodes. Section 9 discusses related work, and Sect. 10
concludes the paper.

2 Overview of CollectCast

CollectCast is proposed as a P2P transport service sup-
porting distributed streaming applications. As shown in
Fig. 1, the CollectCast service is layered on top of a P2P
lookup substrate and is comprised of four main compo-

Assignment
Rate/Data

Inference and
Labeling

Topology

Candidate set

Monitoring and
Adapatation

C
ol

le
ct

C
as

t

Active set

Active, Rates

Annotated topology
Peer Selection

Switch peers

Peer to Peer Lookup Substrate (Pastry)

Redistribute rates

Distributed Streaming Application

_ _

Fig. 1 Main components of CollectCast and their interactions. Num-
bers on the arrows indicate a typical sequence of establishing a stream-
ing session.

nents: (1) topology inference and labeling, (2) multisender
selection, (3) rate and data assignment, and (4) monitoring
and adaptation. Operations of these components are initi-
ated and coordinated from the receiver-side in a streaming
session.

The P2P lookup substrate manages peer membership and
performs object look up. CollectCast is designed to be inde-
pendent of the P2P substrate. Therefore, it can use substrates
such as Pastry [26], Chord [30], or CAN [23]. We choose
Pastry in CollectCast implementation because Pastry has an
open-source Java implementation [13] with good portability.
We note that current P2P lookup methods return one peer for
each object lookup request. In our implementation, Pastry is
extended to return multiple peers for each lookup request.

A CollectCast streaming session can be established in
four steps, as shown in Fig. 1: (1) The receiver issues a
lookup request to the P2P lookup substrate, which returns a
set of candidate sender peers that have the requested media
file. The set of candidates is usually small. In fact, as shown
in our performance evaluation (Sect. 7.5), a set of no more
than 20 candidates warrants good sender selection. (2) The
topology inference and labeling component is invoked to in-
fer and annotate the underlying topology that connects the
candidate peers to the receiver. The topology is annotated
with available bandwidth and packet loss rate on different
segments. (3) The peer selection component uses the anno-
tated topology to select the active senders from the candidate
peers, such that the receiver obtains full streaming rate ag-
gregated from the active senders. The rest of the candidate
peers are kept in a standby sender set. (4) The rate and data
assignment component is called to determine the rate and
data assignment to each active sender.

Once the rates and data are assigned, the receiver
establishes parallel connections, each from an active sender
to the receiver. Two types of connections are established: A

70 M. Hefeeda et al.

UDP connection for data streaming1 and a TCP connection
for exchanging control messages. The monitoring and
adaptation component oversees the streaming session to
maintain receiver-side aggregate streaming rate. It measures
the streaming rate and packet loss rate from each active
sender. If the rate from a sender degrades due to peer failure
or network congestion, the monitoring and adaptation
component will try to redistribute the rate among the
remaining active peers. If such redistribution is not possible,
a peer switching will be performed by the peer selection
component to replace poor-performing peer(s) with peer(s)
from the standby set.

3 Multisender selection in CollectCast

The key component of CollectCast is the selection of active
senders. This section presents the proposed tomography-
based multisender selection method and discusses its advan-
tages over methods that only use end-to-end performance
observation between the candidate senders and the receiver.
In particular, we show that for multisender selection, it is im-
portant to avoid selecting senders that share the same low-
performance underlying network path.

In CollectCast, our tomography-based selection method
infers the underlying network topology to find active senders
that lead to the best aggregate streaming rate on the receiver
side. For the sake of comparison, we also consider the non-
correlating end-to-end selection method commonly used in
wide-area server selection [29, 35]. The end-to-end selection
method probes the end-to-end “sender-receiver” connections
without inferring the underlying network, treating these con-
nections as totally independent.

To illustrate the two selection methods, consider the ex-
ample shown in Figs. 2 and 3. Suppose that the candidate
sender set consists of P1, P2, . . . , P6 while the receiver peer
is Pr . In Fig. 2, the noncorrelating end-to-end method ob-
serves the quality of end-to-end connections from the can-
didate senders to the receiver. As a simplification in this ex-
ample, the quality is in terms of available end-to-end band-
width. Based on the end-to-end bandwidth probing results
(as shown in the figure), the method selects peers P3, P5, P6.
However, this selection is not aware of the shared segment
on the two network paths P5 � Pr and P6 � Pr , which
cannot support the aggregate rate from P5 and P6. As shown
in Fig. 3, the tomography-based method infers the underly-
ing network topology as well as the available bandwidth on
different segments. As a result, it is able to make a more ap-
propriate selection: P2, P3, and P6. The selection decision
will be explained in detail in Sect. 3.2.

3.1 Peer model

Before presenting the tomography-based multisender selec-
tion method, we first define our peer model. Peers are het-

1 Adjusting the rate of the UDP connection to compete fairly with
TCP traffic of other applications is discussed in [14].

P1: 0.25, 0.2

P2: 0.25, 0.7

Pr: Receiver

0.25

0.5

0.25

0.5 0.5

0.5

e2e Avail bw

P3: 0.25, 0.8 P5: 0.25, 0.8 P6: 0.5, 0.9P4: 0.5, 0.5

Availability ApOffered rate Rp

Fig. 2 Noncorrelating end-to-end sender selection. It treats sender –
receiver connections as independent.

1.0

P1: 0.25, 0.2

P2: 0.25, 0.7

Avail bw

Pr: Receiver

P3: 0.25, 0.8 P5: 0.25, 0.8 P6: 0.5, 0.9P4: 0.5, 0.5

5

2

0.5

0.5

Offered rate Rp

4

1

30.25

Availability Ap

Fig. 3 Tomography-based sender selection in CollectCast. It con-
structs a virtual tree topology that correlates the sender – receiver con-
nections

erogeneous in their capacity and availability and they do
not exhibit server-like behavior. A peer p has two param-
eters: offered rate and availability. The offered rate Rp is the
maximum sending rate that a peer can (or is willing to) con-
tribute at any time. A lower bound on the offered rate (Rmin

p)
is imposed by the system to limit the maximum number of
senders required to serve a CollectCast session, thus limit-
ing the number of connections that a receiver needs to main-
tain. The offered rate is specified by the user when joining
the system and adjusted by a CollectCast daemon if the first-
hop network connection of p is lower than the user-specified
rate.

The availability is a function that describes how individ-
ual peers use their machines, and hence how available the

CollectCast: A peer-to-peer service for media streaming 71

240 16

Time

8 12 184

Up

Peer status

Down

Day 1

Day 2

Day 3

Day 4

Fig. 4 The status of an example peer over a 24-hour period for 4 con-
secutive days

machines are to serve others. The availability varies with
time of the day and from one peer to another. For instance,
one peer may connect to the Internet and participate in the
streaming system in the evening (e.g., between 6:00 PM and
10:00 PM) and then disconnect. Another peer may stay con-
nected 24 hours, but use most of its upstream bandwidth
between 8:00 AM and 9:00 AM. The availability informa-
tion helps the selection algorithm to avoid soon-to-be-down
peers. In order to model a peer’s availability, a software dae-
mon running on that peer collects information on the sta-
tus of the peer over a moving window of several days (e.g.,
1 week). The status is either “up” or “down”. The mean-
ing of “up” is that the peer is connected and can serve
a request, while “down” means that the peer is not avail-
able because it is offline or is using its entire bandwidth.
Figure 4 shows the status of a peer over 24-hour period for
4 consecutive days. Given the status information, we define
the availability at time t as a random variable Ap(t) which
takes on two values: 1 (“up”) and 0 (“down”). The proba-
bility distribution of Ap(t) is determined by sampling the
status information over several days at time t . For example,
for t = 4, we see from Fig. 4 that the peer was up in days 2,
3, and 4 and was down in day 1. Thus, the peer is expected to
be up with probability 3/4 and down with probability 1/4 at
t = 4.

At the beginning of the selection process, each candi-
date peer reports to the receiver its offered rate and avail-
ability. As to be explained in the next section, the re-
ceiver will use the expected value of sender availability in
the calculations. Therefore, only E[Ap] value will be re-
ported, not the entire distribution. Moreover, to be safe in
the selection, a candidate peer reports the minimum ex-
pected availability value during the upcoming streaming
session.

3.2 Tomography-based selection method

The input of the multisender selection method is the set
of candidate senders returned by the P2P lookup substrate.
The next step is performed by the topology inference and
labeling component, which applies network tomography
techniques to infer the topology connecting the candidate
senders and the receiver. This step further annotates seg-
ments of the topology with network performance metrics.
Details of this step will be presented in Sect. 4. The result of
this step is a tree topology rooted at the receiver, as shown
in Fig. 3. Note that, an edge in the inferred tree represents
a network path segment, which may actually be a sequence
of physical network links. Collapsing several links into one
segment yields a compact representation of the topology. We
also assume that routes from the candidate senders to the re-
ceiver do not change during the streaming session.

The last step of the multisender selection method
further processes the inferred tree which we denote as
T . Table 1 lists the symbols used in the section. Each
leaf node of T represents a peer p in the set of candidate
senders P and has two attributes: offered rate Rp and
availability Ap. An edge (or “segment”) between node i
and node j is denoted by i → j , and is labeled with a
quality metric gi→ j . We define the segment quality as a
function of both packet loss rate and available bandwidth
because they can be measured segment-wise [3] and
they both impact the receiving rate, and hence impact the
streaming quality. The quality of segment i → j is given by:

gi→ j = wi→ j (1 − l i→ j), (1)

where l i→ j is the packet loss rate on i → j , and wi→ j is a
weight determined by the available bandwidth on i → j and
the aggregate rate from peers sharing this segment if they are
selected in the active set. The weight of segment i → j for
a peer p is denoted by w

(p)
i→ j and is given by:

w
(p)
i→ j =min

1, max

0,

bi→ j −

∑
s∈S,i→ j∈s�r

Rs

/

Rp

,

(2)

Table 1 List of symbols used in the paper

Symbol Definition

Rp Maximum sending rate from peer p

R0 Playback rate of requested media data

P Set of candidate sender peers

Ap Availability of peer p

gi→ j Quality of network path segment i → j

l i→ j Packet loss rate of network path segment i → j

w
(p)
i→ j A weight factor determined by the available bandwidth

on network path segment i → j for peer p

Gp Quality of peer p in the session being established

α Packet loss tolerance level

72 M. Hefeeda et al.

where bi→ j is the available bandwidth on segment i → j ,
S is the set of peers selected to be in the active set thus far,
and s � r is the path from the sending peer s to the receiv-
ing peer r . The intuition behind this formulation is that, if a
segment has a bandwidth equal to or higher than the aggre-
gate rate contributed from peers sharing this segment, then
this segment will not throttle this aggregate rate, and hence
its weight is set to 1. Otherwise, the weight is a fraction pro-
portional to the shortage in the bandwidth if peer p along
with peers in S are chosen to serve. The example given later
in this section explains numerically how to compute these
weights.

In the final step of the peer selection process, we formu-
late the selection problem as an optimization problem stated
as follows. Given the inferred tree T , find the set of active
peers P

actv ⊆ P that maximizes the expected aggregated rate
at the receiver, provided that the receiver inbound bandwidth
is not exceeded. Mathematically, this can be formulated as:
find P

actv that

Maximizes E

 ∑

p∈Pactv

Gp Rp

 (3)

Subject to Rl ≤
∑

p∈Pactv

Rp ≤ Ru, (4)

where Rp is the offered rate of peer p, Rl and Ru are the
lower and upper rate targets (Sect. 5 shows how they are de-
termined), and Gp is the quality of peer p for the streaming
session. Gp is a function of the availability of peer p and the
quality of all segments comprising the path p � r , and is
given by:

Gp = Ap

∏
i→ j∈p�r

gi→ j

= Ap

∏
i→ j∈p�r

w
(p)
i→ j (1 − l i→ j). (5)

A high expected quality value (close to 1) indicates that the
peer is likely to provide good and sustained sending rate: it
is unlikely to stop sending packets and the packets will be
transmitted through network paths of low dropping proba-
bility.

Given the problem formulation above, finding the best
active set P̂

actv is straightforward. Figure 5 describes an al-
gorithm to determine P̂

actv given the inferred tree T . The al-
gorithm starts by enumerating all possible peer sets that sat-
isfy the constraints in Eq. (4). Different orderings of peers
are considered different sets. The number of possible peer
sets is not too large, because the input (the candidate set) to
the algorithm is fairly small (10–20 peers, as our simulation
shows in Sect. 7.5) from which we choose 3–5 active peers
(also shown in Sect. 7.5). Many sets will be immediately
disqualified by the constraints. For each qualified set, the al-
gorithm determines the expected aggregate rate (lines 5–13
in Fig. 5) as follows. The expected quality (E[Gp]) of each
peer in the set is computed using Eqs. (2) and (5), which are

Fig. 5 Pseudo code for selecting the best active sender set

implemented by line 7 and the for loop in lines 8–11. Then,
the expected quality of the peer multiplied by its offered rate
is added to the expected aggregate rate of the set (line 12).
The algorithm finds the set with the maximum expected ag-
gregate rate (lines 14–16) and returns it. The complexity of
the algorithm is not a concern, because: (1) the input size is
small, and (2) the algorithm is invoked only a few times: at
the beginning of the session and when a peer switching is
needed. Therefore, although designing more efficient selec-
tion algorithms is possible, we believe that the payoff will
not be significant.

To demonstrate how the tomography-based selection
technique works, we provide the details of selecting the best
peers in the topology shown in Fig. 3. We set Rl = Ru = R0
and the packet loss rate in all path segments to 0 to sim-
plify the discussion. The playback rate R0 is 1 Mb/s. The
possible active sets that satisfy the constraints in Eq. (4)
are: {P4, P6}, {P3, P5, P6}, {P2, P5, P6}, {P1, P5, P6},
{P3, P4, P5}, {P2, P4, P5}, {P1, P4, P5}, {P1, P3, P4},
{P2, P3, P4}, {P2, P3, P6}, {P1, P3, P6}, {P1, P2, P4},
{P1, P2, P6}, and {P1, P2, P3, P5}. Note that, different
orderings of peers are not shown, but are considered in the
calculations. The expected aggregated rate is then computed
for every set. For instance, the expected aggregated rate for
{P3, P5, P6} is 1 × .8 + 1 × .8 + .25/.50 × .9 = 2.05. P5
and P6 have a shared segment (5 → 3) of bandwidth .5.
If we assign w

(P5)
5→3 = 1 (because the available bandwidth

on the path is greater than P5’s offered rate), P6 will get
a left-over bandwidth of 0.25, which makes the weight
w

(P6)
5→3 = 0.25/0.50. If we assign the w

(P6)
5→3 = 1, P5 gets a

weight of 0 because no bandwidth is left for this peer on the
shared segment. The expected rate of all possible sets are
1.4, 2.05, 1.95, 1.45, 1.85, 2.0, 1.5, 1.75, 1.25, 2.4, 1.9, 1.2,
1.6, and 2.3, respectively. The highest aggregate rate (2.4)
comes from the set {P2, P3, P6}.
3.3 End-to-end selection method

For comparison with the tomography-based sender selec-
tion method, we describe a selection technique which we

CollectCast: A peer-to-peer service for media streaming 73

refer to as the end-to-end selection method. The end-to-end
selection exploits no information about the path segments
shared among peers. It uses the end-to-end path available
bandwidth and packet loss rate in addition to peer avail-
ability in choosing peers. While end-to-end selection may
impose less probing overhead, it does not perform as well
as the tomography-based selection, as demonstrated by our
performance results in Sects. 7 and 8.

We can formulate the end-to-end selection as a special
case of the tomography-based selection as follows. Instead
of writing the peer quality as in Eq. (5), we write it as:
GGGp = AAApwp�r (1 − lll p�r), where wp�r is the path weight
and lll p�r is the end-to-end packet loss random variable.
Computing the path weight is much easier in this case and is
given by:

wp�r =
{

1, Rp ≤ bp�r
Rp−bp�r

Rp
, otherwise.

(6)

Using this formulation, the expected rate maximization
problem can be solved in a way similar to the one in
Sect. 3.2. To show how the calculations are performed, we
solve the example in Sect. 3.2 using the end-to-end selec-
tion techniques. The possible active sets are still the same.
The end-to-end selection utilizes the availability of peers
and the path available bandwidth to calculate the expected
rate. For example, the expected rate of the set {P3, P5, P6}
is 1 × .8 + 1 × .8 + 1 × .9 = 2.5. The corresponding ex-
pected rate of all possible sets are 1.4, 2.5, 2.4, 1.9, 2.1, 2.0,
1.5, 2.0, 1.5, 2.4, 1.9, 1.4, 1.8, and 2.5, respectively. The
maximum expected rate is 2.5, which is supplied by peer
sets {P3, P5, P6} and {P1, P2, P3, P5}. Either of them can be
taken, but we prefer the set with fewer peers to reduce the
overhead of maintaining multiple concurrent connections.

4 Topology inference and labeling in CollectCast

The tomography-based selection algorithm of CollectCast
(Sect. 3.2) relies on the inferred tree T , which is a trans-
formed version of the topology inferred and labeled through
end-to-end probing techniques. Discovering the interior
characteristics of the network by probing from its end points
is called network tomography [10]. In this section, we de-
scribe our approach to inferring and labeling an approximate
topology sufficient for peer selection. The contributions of
this section are twofold. First, we modify current network
tomography techniques to achieve significant reduction in
probing overhead and convergence time. Second, we show
through a concrete example (i.e., P2P streaming) the po-
tential performance gain by applying network tomography
techniques to distributed applications.

The inferred tree topology is constructed in three steps.
In the first step, traceroute is used to build the physical
topology connecting the candidate senders with the receiver.
Then, consecutive links with no branching points are merged
into one segment. We note that some routers do not support
traceroute. This, however, does not severely harm the tech-

nique because we are not interested in the exact topology,
but in the shared segments among peers.

In the second step, the inferred topology is annotated
with available bandwidth. The end-to-end available band-
width of a path is defined as the maximum rate that this
path can provide to a flow, without reducing the rate of other
traffic [15]. The link with the minimum available bandwidth
(i.e., the tightest link) determines the path available band-
width. Measuring the path available bandwidth is costly: one
should keep increasing the probing traffic rate till at least it
reaches (and probably exceeds) the available bandwidth on
the tightest link. Measuring available bandwidth on individ-
ual path segments is even more costly. In CollectCast, we
are not interested in the exact available bandwidth if it ex-
ceeds the media streaming rate. Therefore, we tradeoff the
unnecessary accuracy for far less bandwidth measurement
overhead.

We modify the basic available bandwidth measurement
technique proposed by Jain and Dovrolis [15]. The authors
show that the one-way delay difference of a periodic packet
stream is a good indication of the end-to-end available band-
width. The idea is that if the streaming rate is higher than
the available bandwidth, the one-way delay difference will
show a trend of increase. On the other hand, if the stream-
ing rate is lower than the available bandwidth, the one-way
delay difference will be zero. To measure the available band-
width, the sender sends a stream of packets with a specific
rate. The receiver measures the trend in the delay difference
and decides whether the next stream rate should be increased
or decreased by a factor of 2. The procedure continues till
the available bandwidth estimate is within the desired range
of accuracy. We make several adaptations to the basic pro-
cedure. First, instead of measuring the path available band-
width, we test whether a path can accommodate the aggre-
gated rate from peers sharing this path, which is at most R0.
We set the initial rate of the probing stream to the minimum
possible offered rate (Rmin

p), and we terminate whenever the
stream rate reaches the minimum of R0 and the aggregate
rate from peers sharing the path. Second, since one peer may
not be able to send at rate R0, we coordinate the probing
from multiple peers to get the same effect as probing from
one sender. Third, we conservatively label all segments of a
path with the value of its tightest segment. Finally, we use
the actual media data to generate probing traffic (i.e., data
from the media file that needs to be sent anyway).

To illustrate, consider the topology in Fig. 3. Let us es-
timate the bandwidth on the path segment 5 → 3. Peer
P5 sends a stream of packets (say 100 packets) with rate
R0/8. The receiver Pr notices that the delay differences
are 0. Then P5 increases its rate to R/4. Still no increas-
ing trend in the delay differences, but P5 cannot increase its
rate anymore. Now Pr triggers P6 to start sending at R0/4
while P5 is still sending, making the aggregate rate cross-
ing 5 → 3 to be R0/2. Pr measures the delay differences
for the packet stream coming from P5, that is, the stream
coming from P6 is considered as cross traffic to reduce the
available bandwidth seen by P5. P6 keeps increasing its rate

74 M. Hefeeda et al.

till it reaches its maximum (R0/2) or Pr notices increasing
delay differences. If the former happens, segment 5 → 3
will be considered to have an available bandwidth of 0.75R0,
even though its actual available bandwidth might be higher.
In the latter case, the actual available bandwidth on 5 → 3
can be determined as 0.5R0. The available bandwidth on
4 → 3 and 2 → 1 can be measured in a similar way. To
measure the available bandwidth on 3 → 1, Pr will coor-
dinate the probing from P3, P4, P5 and P6. As a final note,
suppose that the available bandwidth on 3 → 1 is less than
that on 5 → 3, say R0/4. In this case, our technique will
underestimate the available bandwidth on 5 → 3 because
Pr will see increasing delay difference due to the tight link
3 → 1. This conservative estimation will make the expected
rate computed from Eq. (3) even worse for the set of peers
that share a tight segment, helping the selection algorithm to
avoid them as output.

The third step in constructing the inferred tree is to an-
notate it with packet loss rate. Instead of explicitly prob-
ing for segment-wise loss rates, we leverage the information
obtained during available bandwidth measurements. The re-
ceiver assigns the sending rate to each of the sending peers.
It also determines which data packets should be sent by
each peer. Therefore, it is easy to determine the loss rates
on individual end-to-end paths. To compute the segment-
wise loss rates, we use the recently proposed Bayesian infer-
ence using Gibbs sampling method [19]. The method models
the network tomography (for segment-wise loss rates) as a
Bayesian inference problem. Then, using the measured data
and setting an initial distribution for the segment losses, the
method iteratively computes the posterior distribution of the
segment losses [19].

Constructing the inferred tree imposes two types of
overhead: processing and communication. The communica-
tion overhead is due to sending probing packets. Since we
send actual data packets as probes, we effectively introduce
no communication overhead. The receiver, though, needs
a larger buffer (in the order of seconds) to store these data
packets for later use. The processing overhead is mainly
due to topology inference and peer selection. This is not a
major concern, given that the topology will typically be very
small (10–20 nodes). We note that building the topology
and determining the best active set will increase the start up
delay of a streaming session. However, it is still in the order
of seconds. Finally, the need for updating the topology will
be infrequent, since the active set is expected to last for
a relatively long period, because: (1) peers in this set are
carefully chosen and are likely to have high availability, and
(2) several Internet measurement studies (e.g., [36]) have
shown fairly good stability of path properties such as loss,
delay, and throughput.

5 Rate and data assignment in CollectCast

This section describes how CollectCast coordinates the ac-
tive peers by assigning appropriate rate and media data to
each of them.

Each media file is divided into data segments, each with
a size of � packets. Data segments are encoded using for-
ward error correction (FEC) to tolerate packet losses dur-
ing transmission. FEC codes such as Reed–Solomon codes
and Tornado codes [4] can be used. We use Tornado codes
because they are faster to encode/decode, albeit with little
decoding inefficiency [4]. We use the notation FEC(α) to
indicate that up to (α − 1) × 100% packet loss rate can be
tolerated. For instance, FEC(1.25) means that a data seg-
ment will be successfully reconstructed even if 25% of the
packets are lost. α is the parameter that defines the current
packet loss tolerance level in the system. α has two bounds:
αu, αl, which are the maximum and minimum loss tolerance
levels, respectively. These bounds impact the selection of ac-
tive peers determined by solving the maximization problem
(Sect. 3.2) because the bounds Rl, Ru in Eq. (4) are com-
puted as: Ru = αu R0 and Rl = αl R0.

Data segments stored at peers are preencoded using
FEC(αu). A segment of � packets is encoded into �/(2 −
αu) packets. For instance, FEC(1.25) on a segment of
120 packets results in 160 encoded packets, from which
any 120 packets can reconstruct the original segment. Even
though data segments are pre-encoded with αu, we do not
send at aggregated streaming rate of αu R0 at all time. In-
stead, we adapt the sending rate dynamically based on the
expected packet loss rate. Therefore, the number of redun-
dant packets sent is proportional to the current packet loss
rate. If the packet loss rate is low, only a small number of
extra packets will be sent to save network bandwidth. The
sending rate is set to αR0, where αl ≤ α ≤ αu and α is
given by:

α = max(αl, 1 + min(αu, 1 + L∑)). (7)

L∑ is the the current expected aggregated loss rate and is

computed as L∑ = ∑
p∈Pactv l p�r Rp/

∑
p∈Pactv Rp, where

l p�r is the expected loss rate on the path p � r . After com-
puting the appropriate rate (αR0), each peer p is assigned an
actual sending rate R̂p proportional to its offered rate:

R̂p = αR0∑
x∈Pactv Rx

Rp. (8)

The active peers cooperate in sending every segment of
the media file. Note that, since the active peers send at rate
αR0, they send only �/(2 − α) packets out of the stored
�/(2 − αu) packets. Each peer p is assigned a number of
packets Dp to send in proportion to its actual streaming rate:

Dp =
⌈

�

(2 − α)

R̂p

αR0

⌉
. (9)

Example. Let αl = 1.0625, and αu = 1.25. Assume
that the media file is divided into segments of 120 pack-
ets each. Encoding with FEC(αu = 1.25), each encoded
segment will have 160 packets. Suppose that the current

CollectCast: A peer-to-peer service for media streaming 75

active set has three peers P1, P2, P3 with offered rates
RP1 = R0/2, RP2 = R0/4, RP3 = R0/2, respectively. As-
sume that the current estimated α is 1.125. The assigned
rates are: R̂P1 = 0.45, R̂P2 = 0.225, R̂P3 = 0.45. The num-
ber of packets that need to be sent is 138, and the data as-
signment is: DP1 = 55, DP2 = 28, DP1 = 55. P1 sends
packets with sequence numbers from 1 to 55, P2 from 56 to
83, and P3 from 84 to 138.

6 Monitoring and adaptation in CollectCast

Changes may occur during a CollectCast streaming session:
peers may fail or network paths may become congested. To
maintain good streaming quality on the receiver side, Col-
lectCast performs dynamic adaptations. During the session,
the receiver collects statistics on the loss rate and streaming
rate from each sending peer. These statistics are used to up-
date the inferred tree, which may later be used to adjust the
active set.

6.1 Peer failure

A peer failure is detected in two ways: (1) from the TCP
control channels established between the receiver and the
sending peers (e.g., connection reset), and (2) from signif-
icant sending rate degradation. Once a failure is detected,
the active set is adjusted by replacing the failed peer with
new one(s). We choose the replacement peers using the
tomography-based selection method (Sect. 3.2), provided
that the currently good peers are part of the new active set.
This may not yield the optimal solution, but it is more prac-
tical for two reasons. First, a freshly computed sender set
may be totally different from the old one, which would re-
quire tearing down all current connections and establishing
new ones. Second, the inferred tree may be outdated: for the
standby peers, we use information gathered at the beginning
of the streaming session. Thus, it is better to keep peers that
are currently doing well. After determining the new active
set, the receiver sends a control packet containing the new
rate and data assignments to each active sender.

6.2 Network fluctuations

The receiver makes a switching decision after receiving each
segment of the media file. A segment is in the order of a few
seconds. Switching means one of two actions: (1) assigning
new rates to the currently active peer set, or (2) adjusting
the active set by adding or replacing peers. After receiving a
segment, the receiver computes γ = (R� − R0)/R0, where
R� is the aggregate rate measured during the last segment.
A value of γ < 0 means that the network is dropping more
than the current loss tolerance level α allows. In this case,
the receiver tries to increase α to reach the desired R0. It
computes a new value for α using the updated topology. If

the new α exceeds the upper bound αu, a new active set is se-
lected using the tomography-based selection method. Other-
wise, a new rate and data assignment is computed using the
new α. If γ is positive but less than a threshold (e.g., 0.1),
no adaptation is needed. If γ is larger than the threshold, a
new lower α will be adopted to reduce the FEC overhead.

7 Simulation results

In this section, we evaluate the performance of CollectCast
using extensive simulations. We first present the setup and
parameters used in the simulation. We then compare the per-
formance of the tomography-based selection method with
the end-to-end and random selection methods. The perfor-
mance metrics are the aggregated streaming rate and packet
loss rate on the receiver side. Finally, we assess the impact
of peer availability on the size of the candidate peer set and
estimate the average size of the active sender set during a
streaming session.

7.1 Simulation setup

We simulate a hierarchical network topology with three
levels. The highest level is composed of transit domains,
which represent large Internet Service Providers (ISPs). Stub
domains, which represent small ISPs, campus networks,
moderate-size enterprise networks, and similar networks, are
attached to the transit domains at the second level. Some
links may exist among stub domains. At the lowest level,
the end hosts (peers) are connected to stub routers. The
first two levels are generated using the GT-ITM topology
generation tool [5]. We then probabilistically add hosts to
stub routers. Each experiment was run on several different
topologies. The topologies used in the experiments have,
on average, 600 routers and 1,000 hosts (peers). Imposing
cross traffic over such a large topology is not feasible. In-
stead, we approximate the effect of cross traffic by: (1) at-
taching a stochastic loss model to the links, and (2) ran-
domly setting the links’ bandwidth. We use the two-state
Markov loss model (a.k.a Gilbert model), which has been
shown to model the Internet packet losses with a reasonable
accuracy [16, 34]. In this model, the loss process is mod-
eled as a Markov chain with two states: good and bad. In the
good state, the probability of losing packets is very small
and typically assumed to be zero. In the bad state, the prob-
ability of losing packets is assumed to be 1.0. The model
has two parameters, which are the transition probabilities
between the good and bad states. The available bandwidth
on each link is chosen uniformly at random in the range
[0.25R0, 1.5R0]. Peer’s parameters are chosen to reflect the
diversity in the P2P community [28]. The expected avail-
ability of peers (AAAp) is distributed uniformly in the range
[0.1, 0.9]. The offered rate (Rp) is also distributed uniformly
in the range [0.125R0, 0.5R0]. The streaming session lasts
for 60 min and the streaming rate R0 is 1 Mb/s.

76 M. Hefeeda et al.

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 500 1000 1500 2000 2500 3000 3500

 P
ac

ke
t l

os
s

ra
te

Time (sec)

Tomography-based
End-to-end

Random

Fig. 6 Aggregated loss rate perceived by the receiver: no peer failures.

7.2 Performance of tomography-based selection

This section demonstrates the effectiveness of the
tomography-based sender selection method. Two sce-
narios are simulated. In the first scenario, there are no peer
failures, while in the second scenario, there are peer failures
and switchings.

We simulate a streaming session as follows. First, we
randomly select a number of candidate peers (e.g., 20 peers)
and a receiver from the the 1,000-peer community. Then, we
select the active sender set using either the random, end-to-
end, or tomography-based selection method (Sect. 3). Each
session is run three times with the same parameters, albeit
each run with a different peer selection algorithm. Peers in
the active set start streaming till a switching is needed. The
loss tolerance level αu is set to 1.2.

7.3 Results with no peer failures

Figure 6 depicts the aggregate loss rate seen by the re-
ceiver under the three selection methods. The tomography-
based method achieves lower loss rate (13%) than end-to-
end (17%) and random (18%) methods. The aggregated loss
rate is high in this experiment because we set the avail-
able bandwidth on the links in the range [0.25, 1.5] Mb/s
in order to stress the selection techniques. The aggregated
streaming rate perceived by the receiver is shown in Fig. 7.
The tomography-based technique yields a steady rate of
1.0 Mb/s, which achieves full-quality playback. The end-to-
end technique performs better than the random technique.
However, neither of them can achieve the rate for full-quality
playback.

7.4 Results with peer failures

We simulate peer failures as follows. We schedule a fixed
number of failure “trials” at random times throughout the

0.8

0.85

0.9

0.95

1

1.05

0 500 1000 1500 2000 2500 3000 3500

A
gg

re
ga

te
d

st
re

am
in

g
ra

te
 a

t r
ec

ei
ve

r
(M

b/
s)

Time (sec)

Tomography-based
End-to-end

Random

Fig. 7 Aggregated streaming rate at the receiver: no peer failures.

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 500 1000 1500 2000 2500 3000 3500

 P
ac

ke
t l

os
s

ra
te

Time (sec)

Tomography-based
End-to-end

Random

Fig. 8 Aggregated loss rate perceived by the receiver: with peer fail-
ures

streaming session. Upon each failure trial, a peer is selected
randomly from the active set and we fail it probabilistically
according to its availability: we generate a random number
between 0 and 1. If this number is greater than the peer’s
expected availability, the peer fails. Otherwise, the peer re-
mains active and the session continues normally till the next
failure trial. The intuition behind this failing method is that
if we have many failure trials, each peer will get enough
opportunities to be tested. The fraction of “no-failure” trials
will approximately be its expected availability. Figures 8 and
9 show the aggregated loss rate and the aggregated stream-
ing rate, respectively, in the presence of peer failures. The
tomography-based method performs better than the other
two methods, achieving a lower loss rate while maintaining
full quality. Note that, in Fig. 9, the aggregated rate is slowly
decreasing as the session progresses. This is because as the
time elapses, more peers fail and the selection method is left
with fewer peers in the standby set to choose from.

CollectCast: A peer-to-peer service for media streaming 77

0.8

0.85

0.9

0.95

1

1.05

0 500 1000 1500 2000 2500 3000 3500

A
gg

re
ga

te
d

st
re

am
in

g
ra

te
 a

t r
ec

ei
ve

r
(M

b/
s)

Time (sec)

Tomography-based
End-to-end

Random

Fig. 9 Aggregated streaming rate at the receiver: with peer failures

7.5 Candidate set and active set sizes

In this section, we study two aspects of CollectCast. First,
we assess the impact of peer availability on the size of the
candidate peer set. The size of the candidate peer set is
an important parameter because it allows us to configure
the P2P lookup substrate to return an appropriate number
of peers. If the size is too small, CollectCast may run
out of peers during the streaming session because of peer
failures. In this case, a new request is issued to the P2P
lookup substrate to return more peers, which may cause
long period of disruption. On the other hand, if the size
is too large, the overhead incurred during the construction
of the topology will be higher and the selection algorithm
may take unnecessarily long time to determine the active
set. Second, we estimate the average size of the active peer
set during the streaming session. This indicates the average
number of connections that a receiving peer may need to
maintain concurrently.

7.6 Impact of peer availability on the size
of the candidate set

We estimate the size of the candidate set for different values
of peer average availability. We vary the average availability
of peers from 0.1 to 0.9. A total of 25 failure trials are sched-
uled during each streaming session. If a failure trial is suc-
cessful (i.e., a peer fails), a replacement peer (or peers) will
be chosen. We run the simulation 10 times for each value of
peer availability and count the total number of peers that are
needed to complete the session. Figure 10 shows the impact
of peer availability on the size of candidate set. The figure
shows the average number of successful failure trials (out
of 25) and the minimum, mean, and maximum number of
peers required in the candidate set as the average availabil-
ity grows from 0.1 to 0.9, over the 10 simulation runs. For
example, for an average peer availability of 0.6, we need an
average of 11 peers in the candidate set, and a maximum

0

5

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 p

ee
rs

 r
eq

ui
re

d

Average availability

Number of peers
Average number of failures

Fig. 10 Size of the candidate peers set required for different average
peer availability values. The midpoint is the mean, the lower point is
the minimum, and the top point is maximum number of peers required
in the candidate set

of 14 will guarantee that we will not run out of peers in
the candidate set. Figure 10 shows that as the availability
increases, the number of peers needed in the candidate set
decreases.

7.7 Size of the active set

The receiving peer establishes concurrent connections with
all peers in the active set. Each connection adds overhead
on the receiver: more buffers are allocated and more control
packets are sent. Using the same parameters as in Sect. 7.1,
we conducted several experiments to estimate the average
size of the active set. As shown in Fig. 11, we find that
the average number of active peers is fairly small, less
than four most of the time and it does not depend on the
availability.

0

1

2

3

4

5

500 1000 1500 2000 2500 3000

A
ve

ra
ge

 n
um

be
r

pe
er

s
in

 th
e

ac
ti

ve
 s

et

Time (sec)

0.1 Availability
0.5 Availability
0.9 Availability

Fig. 11 Average number of senders in the active set under different
average peer availability

78 M. Hefeeda et al.

Table 2 PlanetLab nodes used in our experiments

Node Abbreviation Location

planetlab3.millennium.berkeley.edu ucb West USA
planetlab1.ucsd.edu ucsd West USA
planlab1.cs.caltech.edu caltech West USA
planetlab-1.stanford.edu stanford West USA
planetlab1.cs.duke.edu duke East USA
planetlab1.lcs.mit.edu mit East USA
planetlab-1.cmcl.cs.cmu.edu cmu East USA
planetlab-01.bu.edu bu East USA
ricepl-1.cs.rice.edu rice South USA
planetlab1.cs.purdue.edu purdue Midwest USA
pads21.cs.nthu.edu.tw taiwan Taiwan, Asia
planetlab1.cs.unibo.it bolonga Italy, Europe
miranda.tkn.tu-berlin.de berlin Germany, Europe
planetlab-1.it.uu.se sweden Sweden, Europe
planetlab1.inria.fr inria France, Europe

8 PlanetLab experiment results

To assess the performance of CollectCast in real environ-
ments, we have implemented a P2P media streaming sys-
tem on top of CollectCast, called PROMISE. PROMISE has
been tested in both local and wide area environments. In
the implementation, we use Pastry as the P2P lookup sub-
strate [13]. We have modified Pastry to support multiple
peer lookup. For experiments in a wide area environment,
we have installed PROMISE on 15 nodes of the Planet-
Lab testbed [22]. PlanetLab is composed of machines con-
tributed from many academic and industrial research institu-
tions. All machines run a customized version of Linux, and
are centrally administered by the PlanetLab team. The Plan-
etLab nodes chosen for our experiments are distributed over
different geographic locations. Table 2 lists all nodes, their
locations, and their shortcut names used in this section.

We have conducted an extensive experimental study to
assess the performance of PROMISE from several angles.
In this section, we present two sets of results. The first set
presents the packet-level performance, which considers the
aggregated rate measured on the receiver side and how it
changes over time. The second set addresses the frame-level
performance, which focuses more on the perceived quality
quantified in terms of the number of frames that either miss
their deadlines or are lost. More results showing the impact
of changing system parameters on the streaming quality, as
well as how PROMISE handles peer failures and switchings
can be found in [14].

8.1 Packet-level performance

In this set of experiments, we focus on the raw aggregated
received rate measured by the receiver. The setup is as fol-
lows. The receiver is located at the UC Berkeley peer. The
remaining 14 peers constitute the set of candidate peers.
We construct and annotate the tree topology connecting
the candidate peers with the receiving peer. We construct
the topology using the tracepath tool, which is simi-

 200

 300

 400

 500

 600

 700

 800

 900

 0 200 400 600 800 1000 1200A
gg

re
ga

te
d

st
re

am
in

g
ra

te
 a

t r
ec

ei
ve

r
(K

b/
s)

Time (sec)

End-to-end
Tomography-based

Fig. 12 Effect of peer selection methods on aggregated streaming rate

lar to the traceroute tool but does not require supe-
ruser privileges. We measure the available bandwidth using
pathload [21]. After annotating the topology, we choose
the active peer set using two sender selection methods:
tomography-based and end-to-end. The streaming session
lasts 20 min. The playback rate R0 is 800 Kb/s. Dynamic
peer switching and FEC encoding are turned off. We repeat
the streaming session five times and obtain the average ag-
gregated streaming rate. The results are shown in Fig. 12.
The aggregated streaming rate from peers selected by the
end-to-end method varies widely and sometimes drops be-
low 600 Kb/s, whereas the aggregated streaming rate from
peers selected by the tomography-based method is smooth
and rarely drops below 750 Kb/s. The reason is that the end-
to-end method selected two peers (one at Caltech and the
other at UCSD) that share a tight network segment, which
could not support the aggregated rate from them both. The
tomography-based method avoided that segment and chose
a better active set containing two peers, one at Rice and one
at UCSD.

8.2 Frame-level performance

In this set of experiments, we study the movie streaming
quality using CollectCast. We quantify the quality by the
number of frames that either miss their playback deadlines
or are lost. We differentiate among the two cases because
a larger initial buffering time could mitigate the first case,
while it does not affect the second one (unless if we em-
ploy a retransmission technique). Moreover, higher values
for α (loss tolerance level) may recover lost frames but it
has little effect on late frames. We also study the impact of
initial buffering on the quality, and compare the buffer size
required by the tomography-based and the end-to-end sender
selection methods.

We use video traces of several movies encoded using
MPEG-4. The traces were obtained from [31]. We use the
verbose versions of the traces. Each row of the trace file has

CollectCast: A peer-to-peer service for media streaming 79

Table 3 MPEG-4 movie traces used in PlanetLab experiments

Movie title Average rate (Kb/s) Peak rate (Kb/s) Size (Mbyte) Streaming rate (R0 Kb/s)

Star Wars IV 287.21 1874.00 43.08 400.00
The Firm 364.72 2020.40 54.71 400.00
Aladdin Cartoon 402.90 2559.80 60.44 400.00
From Dusk Till Dawn 576.12 3106.00 86.42 800.00

four entries: frame number, frame type (I, P, or B), frame
playout time, and frame length in bytes. The frame play-
out time is relative to the first frame playout time, which is
set to zero. The movie titles and some statistics are listed in
Table 3. We stream only the first 20 min of each movie,
that is, we stream 30,000 frames of each movie because all
movies have a frame rate of 25 frames/s. The setup of these
experiments is similar to the setup of the previous set of ex-
periments, except that the FEC encoding is enabled. We set
α = 1.2 and the segment size equals 1 s playback. We record
the arrival time of each single packet. After the termination
of the streaming session, we determine the number of frames
that would have missed their deadlines for a specific initial
buffering time. To decide whether a frame f misses its dead-
line, we compare two values: fdeadline and favail. If fdeadline
is greater than favail, f misses its deadline. The fdeadline is
the sum of the frame playout time (read from the trace file)
and the initial buffering time. The favail is the time at which

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 5 10 15 20 25 30 35 40 45

N
um

be
r

of
 f

ra
m

es
 m

is
si

ng
 d

ea
dl

in
e

Initial buffering (sec)

StarWars IV, R0 = 400 Kb/s, segment size = 1 sec, α = 1.2

End-to-end
Tomography-based

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 10 20 30 40 50 60

N
um

be
r

of
 f

ra
m

es
 m

is
si

ng
 d

ea
dl

in
e

Initial buffering (sec)

The Firm, R0 = 400 Kb/s, segment size = 1 sec, α = 1.2

End-to-end
Tomography-based

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50 60

N
um

be
r

of
 f

ra
m

es
 m

is
si

ng
 d

ea
dl

in
e

Initial buffering (sec)

Aladdin Cartoon, R0 = 400 Kb/s, segment size = 1 sec, α = 1.2

End-to-end
Tomography-based

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20

N
um

be
r

of
 f

ra
m

es
 m

is
si

ng
 d

ea
dl

in
e

Initial buffering (sec)

From Dusk Till Dawn, R0 = 800 Kb/s, segment size = 1 sec, α = 1.2

End-to-end
Tomography-based

a b

c d

Fig. 13 Frame-level performance: initial buffering needed to ensure full quality. The tomography-based method requires much shorter initial
buffering than the end-to-end method to ensure that all frames meet their deadlines. Traces from four different movies are used in the experiments

all packets constituting f are successfully reconstructed by
the FEC decoder and are available in the buffer.

Figure 13 shows the results from four different movies:
Star Wars IV, The Firm, Aladdin Cartoon, and From Dusk
Till Dawn. For each movie, we repeat the session five times
and plot the average. The first observation is that peers se-
lected by the tomography-based method require much less
initial buffering in all four cases. To ensure full quality, i.e.,
no frame misses its deadline, the tomography-based method
requires, on the average, less than half of the initial buffering
required by the end-to-end method. The second observation
is that the total number of frames that miss their deadlines
depend on the movie characteristics and the streaming rate
R0. For example, in Fig. 13a, the initial buffering needed
to ensure full quality is fairly small (about 10 s) for the
tomography-based method. Also, the number of frames that
missed their deadlines is relatively small for buffering less
than 10 s. This is because the average and peak rates of the

80 M. Hefeeda et al.

Star Wars IV movie are only 287.21 Kb/s and 1874.00 Kb/s,
respectively, and we stream at R0 = 400 Kb/s. In contrast,
we need a larger initial buffering in the case of The Firm
(Fig. 13b) and Aladdin Cartoon (Fig. 13c) because the aver-
age and peak rates are higher in these two cases. This implies
that selecting the appropriate streaming rate for each movie
has a direct impact on the playback quality.

9 Related work

In the past few years, the P2P paradigm has received tremen-
dous attention from researchers. Two main categories of re-
search can be identified: research on protocols and algo-
rithms (such as searching and replication), and research on
building P2P systems. The first category aims at building
scalable and efficient P2P infrastructure (substrate), which
could be used for systems in the second category. Lookup
(or routing) protocols such as CAN [23], Chord [30], and
Pastry [26] guarantee locating the requested object within
a logarithmic number of steps, if the object exists in the
system. However, network locality has not been amply ex-
ploited (except in case of Pastry). Examples of P2P systems
include CFS [11] on top of Chord [30], and PAST [27] on
top of Pastry [26]. Another example is Pixie [25]: a P2P con-
tent exchange architecture. Pixie aggregates requests from
multiple peers and multicasts content to requesting peers.
These systems do not target media streaming. Therefore, un-
like CollectCast, they do not consider real-time and sending
rate requirements for P2P data transport.

Application level multicast (ALM) is proposed to over-
come the limited deployment of IP multicast. Each ALM-
based system has its own protocol for building and main-
taining the multicast tree. For example, both NICE [1] and
Zigzag [32] adopt hierarchical distribution trees and there-
fore scale to a large number of peers. Narada [9], on the
other hand, targets small scale multisender multireceiver ap-
plications. Narada maintains and optimizes a mesh that in-
terconnects peers. The optimized mesh yields good perfor-
mance but it imposes maintenance overhead. SpreadIt [12]
constructs a distribution tree rooted at the sender for a live
media streaming session. A new receiver joins by traversing
the tree starting at the root till it reaches a node with suf-
ficient remaining capacity. CoopNet [20] supports both live
and on-demand streaming. It employs multidescription cod-
ing and constructs multiple distribution trees (one tree for
each description) spanning all participants. SplitStream [7]
provides a cooperative infrastructure that can be used to dis-
tribute large files (e.g., software updates) as well as stream-
ing media. SplitStream is built on top of Scribe [8], a scal-
able publish-subscribe system that employs Pastry [26] as
the lookup substrate. The content in SplitStream is divided
into several stripes, each distributed by a separate tree. Dif-
ferent from these systems, CollectCast is not intended for
multicast. As a complementary P2P service, CollectCast is
proposed for media streaming from multiple senders to one
receiver.

Many P2P data sharing and distribution systems im-
plicitly assume that a sending peer is capable of support-
ing one or more receiving peers. However, it has been
shown that peers are heterogeneous in their capability and/or
willingness to contribute resources to other peers [28].
Few systems before CollectCast have considered the prob-
lem of selecting multiple supplying peers for a receiver,
based on peer heterogeneity as well as network tomography
information.

The distributed video streaming framework [17, 18]
shows the feasibility and benefits of streaming from multiple
servers to a single receiver. The receiver uses a rate alloca-
tion algorithm to determine the sending rate for each server
to minimize the total packet loss. The rate allocation is based
on estimates of the end-to-end loss rate and available band-
width between the receiver and each server. However, the
framework is not designed for P2P environments. Therefore,
it does not address the selection and dynamic switching of
senders.

Finally, Rodrigues and Biersack [24] show that parallel
download of a large file from multiple replicated servers
achieves significantly shorter download time. The subsets
of a file supplied by each server are dynamically adjusted
based on network conditions and server load. However, their
work targets bulk file transfer, not real-time media stream-
ing. Moreover, it does not consider the sender selection
problem and it does not leverage network tomography tech-
niques.

10 Conclusion and future work

This paper presents CollectCast, a novel P2P media stream-
ing service that provides high-quality streaming in cooper-
ative P2P environments. CollectCast optimizes the quality
of each streaming session by carefully selecting senders and
dynamically adapting to peer failures and network fluctua-
tions. To select the best senders, CollectCast constructs the
network topology connecting all candidate senders and the
receiver. It then employs network tomography techniques to
infer the loss rate and available bandwidth on each segment
of the topology. Using this information, CollectCast maps
the selection problem to a constrained optimization prob-
lem with the objective of maximizing the aggregated rate at
the receiver. The constraints of the problem are defined by
the lower and upper bounds of the receiver’s inbound band-
width.

We have evaluated CollectCast using packet-level sim-
ulations. Our simulations demonstrate that CollectCast
achieves significant gain in the streaming quality in terms
of streaming rate and packet loss rate even in the pres-
ence of peer failures and network fluctuations. In addition,
we have implemented a P2P media streaming system called
PROMISE on top of CollectCast and evaluated the system in
PlanetLab. The performance results obtained from stream-
ing several MPEG-4 video files show that: (1) the aggregated
received rate is much smoother in streaming sessions that

CollectCast: A peer-to-peer service for media streaming 81

employ CollectCast than those that do not, and (2) the num-
ber of frames that miss their deadlines is reduced by about
50%. Our experimental and simulation results confirm that
streming from multiple failure-prone peers to a receiver in a
wide-area P2P environment is indeed feasible.

CollectCast can be extended beyond physical network
characteristics and streaming applications. For example,
CollectCast may take a peer’s social properties such as cred-
its and trustworthiness into consideration, which will lead to
a logical topology formed by a set of candidate suppliers and
a requester with its links labeled with trust-related metrics.
This will enable security-sensitive applications to choose the
best set of peers that will supply the most trusted data or ser-
vice.

Acknowledgements We would like to thank the Associate Editor and
the anonymous reviewers for their valuable comments. We also thank
Jen-Yeu Chen of Purdue University for his helpful suggestions. This re-
search is sponsored in part by the National Science Foundation grants
ANI-0219110 and IIS-0209059 and by a gift from Microsoft Corpora-
tion.

References

1. Banerjee, S., Bhattacharjee, B., Kommareddy, C., Varghese, G.:
Scalable application layer multicast. In: Proceedings of ACM
SIGCOMM’02, pp. 205–220. Pittsburgh, PA (2002)

2. Bawa, M., Deshpande, H., Garcia-Molina, H.: Transience of peers
and streaming media. First Workshop on Hot Topics in Networks
(HotNets 2002)(2002)

3. Bestavros, A., Byers, J., Harfoush, K.: Inference and labeling of
metric-induced network topologies. In: Proceedings of IEEE IN-
FOCOM’02. New York (2002)

4. Byers, B., Luby, M., Mitzenmacher, M., Rege, A.: A digital foun-
tain approach to reliable distribution of bulk data. In: Proceedings
of ACM SIGCOMM’98, pp. 56–67. Vancouver, British Columbia
(1998)

5. Calvert, K., Doar, M., Zegura, E.: Modeling Internet topology. In:
IEEE Commun. Mag., 35, 160–163 (1997)

6. Calvert, K., Griffioen, J., Mullins, B., Sehgal, A., Wen, S.: Con-
cast: Design and implementation of an active network service.
IEEE J. Sel. Area Commun. 19(3), 426–437 (2001)

7. Castro, M., Druschel, A., Kermarrec, P., Nandi, A., Rowstron,
A., Singh, A.: SplitStream: High-bandwidth content distribution
in a cooperative environment. In: Proceedings of 2nd Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS’03). Berkeley,
CA (2003)

8. Castro, M., Druschel, P., Kermarrec, A., Rowstron, A.: SCRIBE:
A large-scale and decentralized application-level multicast infras-
tructure. IEEE J. Sel. Areas Commun. (JSAC) 20(8), 1489–1499
(2002)

9. Chu, Y., Rao, S., Seshan, S., Zhang, H.: A case for end system
multicast. IEEE J. Sel. Areas Commun. (JSAC) 20(8), 1456–1471
(2002)

10. Coates, M., Hero, R., Nowak, A., Yu, B.: Internet tomography.
IEEE Signal Process. Mag. 19(3) (2002)

11. Dabek, F., Kaashoek, M., Karger, D., Morris, D., Stoica, I.: Wide-
area cooperative storage with CFS. In: Proceedings of ACM SOSP
(2001)

12. Deshpande, H., Bawa, M., Garcia-Molina, H.: Streaming live me-
dia over peer-to-peer network. Technical report, Stanford Univer-
sity (2001)

13. Free pastry home page. http://www.cs.rice.edu/CS/Systems/Pastry
14. Hefeeda, M.: A Framework for Cost-effective Peer-to-Peer Con-

tent Distribution. PhD thesis, Department of Computing Sciences,
Purdue University. West Lafayette (2004)

15. Jain, M., Dovrolis, C.: End-to-end available bandwidth: Measure-
ment methodology, dynamics, and relation with TCP throughput.
In: Proceedings of ACM SIGCOMM’02, pp. 295–308. Pittsburgh,
PA (2002)

16. Markovski, V., Xue, F., Trajkovic, L.: Simulation and analysis of
packet loss in user datagram protocol transfers. J. Supercomput.
20(2), 175–196 (2001)

17. Nguyen, T., Zakhor, A.: Distributed video streaming over Inter-
net. In: Proceedings of Multimedia Computing and Networking
(MMCN’02). San Jose, CA (2002)

18. Nguyen, T., Zakhor, A.: Distributed video streaming with forward
error correction. In: Proceedings of the Int’l Packetvideo Work-
shop (PV’02). Pittsburgh, PA (2002)

19. Padmanabhan, V., Qiu, L., Wang, H.: Server-based inference of
Internet link lossiness. In: Proceedings of IEEE INFOCOM’03.
San Francisco, CA (2003)

20. Padmanabhan, V., Wang, H., Chou, P., Sripanidkulchai, K.: Dis-
tributing streaming media content using cooperative networking.
In: Proceedings of NOSSDAV’02. Miami Beach, FL (2002)

21. Pathload home page. http://www.cc.gatech.edu/fac/Constantinos.
Dovrolis/pathload.html/

22. Planetlab home page. http://www.planet-lab.org/
23. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.:

A scalable content-addressable network. In: Proceedings of ACM
SIGCOMM’01. San Diego, CA (2001)

24. Rodriguez, P., Biersack, E.: Dynamic parallel access to replicated
content in the Internet. IEEE/ACM Transactions on Networking
10(4), 455–465 (2002)

25. Rollins, S., Almeroth, K.: Pixie: A jukebox architecture to support
efficient peer content exchange. In: Proceedings of ACM Multi-
media. Juan Les Pins, France (2002)

26. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed ob-
ject location and routing for large-scale peer-to-peer systems.
In: Proceedings of 18th IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware 2001). Heidelberg,
Germany (2001)

27. Rowstron, A., Druschel, P.: Storage management in past, a
large-scale, persistent peer-to-peer storage utility. In: Proceed-
ings of 18th ACM Symposium on Operating Systems Principles
(SOSP’01). Chateau Lake Louise, Banff, Canada (2001)

28. Saroiu, S., Gummadi, P., Gribble, S.: A measurement study of
peer-to-peer file sharing systems. In: Proceedings of Multimedia
Computing and Networking (MMCN’02). San Jose, CA (2002)

29. Stemm, M., Seshan, S., Katz, R.: A network measurement ar-
chitecture for adaptive applications. In: Proceedings of INFO-
COM’00. Tel-Aviv, Israel (2000)

30. Stoica, I., Morris, R., Kaashoek, M., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for Internet applications. In:
Proceedings of ACM SIGCOMM’01. San Diego, CA (2001)

31. Traces, MPEG-4 movie. http://www-tkn.ee.tu-berlin.de/research/
trace/ltvt.html

32. Tran, D., Hua, K., Do, T.: Zigzag: An efficient peer-to-peer
scheme for media streaming. In: Proceedings of IEEE INFO-
COM’03. San Francisco, CA (2003)

33. Xu, D., Hefeeda, M., Hambrusch, S., Bhargava, B.: On peer-
to-peer media streaming. In: Proceedings of IEEE ICDCS’02.
Vienna, Austria (2002)

34. Yajnik, M., Moon, S., Kurose, J., Towsley, D.: Measurement and
modeling of the temporal dependence in packet loss. In: Proceed-
ings of IEEE INFOCOM’99, pp. 345–352, York, NY (1999)

35. Zegura, E., Ammar, M., Fei, Z., Bhattacharjee, S.: Application-
layer anycasting: A server selection architecture and use in a repli-
cated web service. IEEE/ACM Trans. Netw. 8(4) (2000)

36. Zhang, Y., Duffield, N., Paxon, V., Shenker, S.: On the constancy
of Internet path properties. In: Proceedings of ACM SIGCOMM
Internet Measurement Workshop. San Francisco, CA (2001)

