
CERIAS Tech Report 2005-135
Verifying Data Integrity in Peer-to-Peer Media Streaming

 by Mikhail J. Atallah
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Verifying Data Integrity in Peer-to-Peer Media Streaming∗

Ahsan Habib†† Dongyan Xu‡ Mikhail Atallah‡ Bharat Bhargava‡ John Chuang†

†School of Information Management and Systems ‡Department of Computer Sciences

University of California, Berkeley Purdue University

102 South Hall, Berkeley, CA 94720 West Lafayette, IN 47907

{habib,chuang}@sims.berkeley.edu {dxu,mja,bb}@cs.purdue.edu

ABSTRACT

We study data integrity verification in peer-to-peer media streaming for content distribution. Challenges
include the timing constraint of streaming as well as the untrustworthiness of peers. We show the inade-
quacy of existing data integrity verification protocols, and propose Block-Oriented Probabilistic Verification
(BOPV), an efficient protocol utilizing message digest and probabilistic verification. We then propose Tree-
based Forward Digest Protocol (TFDP) to further reduce the communication overhead. A comprehensive
comparison is presented by comparing the performance of existing protocols and our protocols, with respect
to overhead, security assurance level, and packet loss tolerance. Finally, experimental results are presented
to evaluate the performance of our protocols.

1. INTRODUCTION

A media streaming session allows the playback of media data while the data is being transmitted. Com-
pared with traditional music file sharing, a media streaming session has longer duration and requires higher
bandwidth. As a result, a media server with fixed capacity may not be able to distribute media in streaming
mode to a large number of clients. Recently, peer-to-peer (P2P) real-time streaming has been proposed as a
highly scalable technology to distribute content especially media data. We focus on data integrity verification
during distribution of large-volume and high-quality media data using P2P real-time streaming technology.
One key characteristic of P2P media streaming is that a streaming session may involve multiple supplying
peers, due to the limited bandwidth contributed by each of them.5

In this media distribution scenario, a supplier peer may corrupt any block of the media data during
the streaming session. As a result, media data integrity verification becomes a critical task, and poses the
following challenges. First, unlike authentication for multicast11, 14, 17 (one-to-many) streaming, the suppliers
cannot be assumed as trusted. In P2P media streaming, packets signed by a peer may not be acceptable
to other peers. Thus, a client needs a point of reference to verify the media data it receives. Second, due
to the real-time constraint of media streaming, data integrity check has to be performed also in real-time.
Third, the objective of checking data integrity is not only to verify that the data are not corrupted, but also
to validate that the data is really what the client has requested. We note that other protection issues exist
in P2P media distribution, such as how to ensure that the clients will not distribute media data to their
unauthorized friends. These issues are outside the scope of this paper.

Unfortunately, existing protocols for data integrity verification are either inapplicable or too expensive for
P2P media streaming. We adopt the method of message digest, and propose protocols that involve different
trade-off strategies between degree of assurance and computation/communication overhead. We first propose
a Block-Oriented Probabilistic Verification (BOPV) protocol for efficient data integrity verification. We
show that probabilistic verification provides high assurance of data integrity and incurs significantly lower
computation overhead. To further reduce communication overhead, we propose Tree-based Forward Digest
Protocol (TFDP). TFDP uses Merkle signature tree, and distributes the total communication overhead over
the duration of a streaming session. Both protocols work well with unreliable transport protocols. This is

∗This work is supported in part by NSF-ITR 0085879, NSF-ANI 0219110, NSF-IIS 0209059, NSF-EIA 9903545, NSF-ISS

0219560, and CERIAS.
†This work was partially done when the author was at Purdue University.

achieved by using multiple hashes or Forward Error Correction (FEC) codes (applied only to digests, not
data). We note that homomorphic hash function—used to verify rateless erasure codes during bulk data
transfer in P2P networks8—can be used in our protocols. Our experiments using movies (The Matrix, Star
Wars IV, and From Dusk Till Dawn) show that the proposed protocols achieve high degree of assurance in
data integrity with low communication and computation overhead.

The rest of the paper is organized as follows: Section 2 surveys related work. Section 3 presents the two
protocols for data integrity verification. Comparisons among different verification protocols are presented in
Section 4. Section 5 provides our experimental results. Finally, Section 6 concludes this paper.

2. RELATED WORK

We discuss existing schemes that have the potential to be applied to real-time P2P streaming. We then
identify the limitations of the existing schemes. To the best of our knowledge, there has been no prior study
on data integrity verification in many-to-one P2P media streaming.

2.1. Digital Signature

One common way to verify data integrity is to let the server sign every packet‡ or hash of each packet with
its private key using digital signature. A user can then verify the digests using the source server’s public key.
The RSA signature verification has high computation overhead and not suitable for real-time applications.15

Unlike RSA, one-time signature schemes9, 12 incur low verification overhead and latency. These schemes are
usually used to sign multicast or broadcast streams. Rohatgi proposed k-time signature scheme which is
more efficient than the one-time signature scheme.16 Still, the scheme requires 300 bytes for each signature.
Moreover, these signatures are secure only for a short period of time. As a result, they are not suitable to
P2P streaming, where the supplying peers may store the digests for days or weeks before the digests are
supplied to other clients.

2.2. Signature Chain

Gennaro and Rohatgi introduced techniques to sign off-line and on-line digital streams.3 The first packet
of an off-line stream is signed and hash of each packet is embedded in the next packet. The on-line scheme
signs the initial packet and embeds the public key of a one-time signature in each packet, which is used to
sign the subsequent packet. Although an elegant solution, it does not tolerate packet losses and it incurs
high communication overhead.

Perrig et al. proposed TESLA and EMSS for efficient and secure multicast.13, 14 TESLA embeds the
signature of packet pi and the key to verify packet pi−1 in packet pi. The key of packet pi is sent in packet
pi+1. The adversary will see the key but it is too late to forge the signature. TESLA requires strict ordering
of packets by the sender, which makes it inappropriate for P2P streaming where there are multiple senders in
each session. Furthermore, if supplying peers generate keys and sign the digests like TESLA, they might not
be acceptable to other clients because peers are not assumed to be trustworthy. The efficient multi-chained
stream signature (EMSS) tolerates packet loss by sending multiple hashes with each packet. We also explore
this option to make our protocols robust against packet losses.

2.3. Signature Tree

Wong and Lam studied data authenticity and integrity for lossy multicast streams.17 They proposed Merkle
signature tree to sign multicast streams. In their scheme, the root is signed to amortize one signature over
multiple messages. Each packet contains the digests of all nodes necessary to compute the digest of the
root and the signature of the root. As a result, the space requirement is rather high: 200 bytes in each
packet using 1024-bit RSA for a tree of 16 packets. One of our protocols also uses Merkle tree. However, we
significantly reduce the overhead by sending the digests of one subtree before sending any data.

Park et al. proposed SAIDA that leverages erasure codes to amortize a single signature operation over
multiple packets.11 In SAIDA, a block of a packets carries the encoded digests and signature of the block.

‡We use packet to indicate the minimum unit of media streaming, not the actual IP packet.

The signature and digests are recoverable, if the receiver gets any b ≤ a packets. This digest encoding is
robust against bursty packet losses to a certain level. To reduce overhead, FEC is used to encode only
digests, not data.

Both signature tree and SAIDA are designed for multicasting where the sender signs packets and the
receiver trusts the sender. In our protocols, the receiver does not need to trust the senders. Unlike these
signature tree and SAIDA, we do not use digital signature to reduce overheads.

2.4. Escrow Server

Horne et al. proposed an escrow service infrastructure to verify data in P2P file sharing environment.6 An
escrow server is responsible for file verification and for payment to peers that offer file sharing. However,
it is not appropriate for streaming media dissemination, due to the unacceptable latency and overhead in
verifying every single block via the escrow server.

3. PROPOSED SOLUTION

All our protocols require that a receiver collects a certain reference from a trusted authority. We name the
authority as Authentication Server S0 where a client authenticates itself to initiate a streaming session and
obtains a point of reference that can be used in a streaming session to verify the integrity of the incoming
data. If authentication is not enforced by the system, the point of reference data for media files can be
distributed in the network. A peer can download the reference data from a trusted node. We define the
streaming model, incentive model, and adversary model before introducing our protocols.

Streaming Model. Client P0 requests a media file and receives the stream in real-time from a set of
supplying peers P = {P1, P2, . . . , Pm}§. A media file is divided into a set of M blocks as B = {b1, b2, . . . , bM}.
Each block consists of l packets. We express block bi = {pi1, pi2, . . . , pil}, where pij is the j-th packet of
block i: A series of contiguous packets is referred to as a block, and a series of blocks is referred to as a group.

An entire block can come from one or multiple peers. Multiple peers collaborate to provide the packets of
each block to the receiver, and the receiver will re-construct the block. We define a set of suppliers as active
set P

act for each P2P media streaming session. The receiver assigns a sending rate to each of the active
senders. The streaming session continues as far as there is no need to switch to a different active sending
set. A switch is needed if a peer fails or the network path becomes congested.

Incentive Model. We consider peers as rational users seeking to maximize their individual utilities
through their actions, as opposed to users that are strictly obedient to the protocol. In the absence of
incentives, peers may choose to engage in free-riding, i.e., consuming resources without contributing any
in return. This behavior has been observed in P2P file-sharing networks such as Gnutella.2 By using
appropriate incentive mechanisms, the peers can be induced to cooperate by serving as suppliers to streaming
sessions.4

Adversary Model. In this model, any supplier of a media file may put garbage data in any segment
during transmission. If a supplying peer can successfully send garbage data without getting caught by the
receiving peer, the supplying peer can pretend to have a media file without actually having the file, which
foils our objective that a receiver is able to verify the integrity of downloaded data. Moreover, the adversary
can intentionally drop some of its own packets or others’ packets to pretend that the network is congested.
If the receiver does not receive enough packets to verify each segment, the suppliers will be replaced, and the
adversary does not gain (incentives or satisfaction by disrupting a streaming session) anything. However, a
set of adversary peers sitting at strategic locations can disrupt P2P media streaming sessions, which may
eventually launch denial of service attacks on the system. This type of attack is out of scope of this paper.

Now, we present the proposed protocols to defeat the adversary during P2P media streaming.

§The set of suppliers is determined by a P2P lookup substrate.

3.1. Block-Oriented Probabilistic Verification (BOPV) Protocol

The Block-Oriented Probabilistic Verification (BOPV) Protocol reflects the following idea: it takes the hash
of a block of packets instead of the hash of each packet, in order to reduce communication overhead. The
idea of taking hash of a block has already been explored.11, 17 We integrate probabilistic verification in
this protocol that verifies selective blocks rather than all blocks during a streaming session to reduce the
computation overhead. Our analysis shows that the probabilistic verification achieves high level of security
assurance.

The BOPV protocol, illustrated in Figure 1, runs as follows:

�������������������������

�������������������������

�����
�����
�����

�����
�����
����� P

P

P
j

1. A
uthentication

3.

4.

2. K
eys and D

igest

3.
4.

3.
Key

s

5. Verify Digests

4.
Data

 an
d d

ig
es

ts
S0

0

i

Figure 1. Steps of the BOPV protocol: P0 is the requesting client. P0 contacts the S0 for authentication and
communicates to different peers for the content.

• Step 1: Client P0 authenticates itself with the server S0 by sending ES0
(DP0

(M0)), where the request
message M0 is signed by P0 for non-repudiation. Then, it is encrypted with the public key of S0.

• Step 2: The server generates a secret key Ki=1...M ∈ K for each block i, where K is set of all keys for
the file. To reduce computation overhead, the server groups N blocks, and compute n message digest
δj=1...n ∈ ∆ out of the N (N > n) blocks in the group, where ∆ is the set of message digests of the file.
The digests are computed using keyed hash.7 These digests are used as a reference to verify the data
sent later by the suppliers. Thus, the server sends EP0

(DS0
(K,∆, T)), which is signed by the server

and encrypted with P0’s public key. T is a timestamped ticket that needs to be presented to each peer
for authentication. The timestamp prevents a peer from using the same ticket beyond a specific time
period.

• Step 3: P0 sends EXi
(Ki=1...k ∈ K, T) to each supplier having k blocks to provide one key for each

block assuming P0 and Pi shares a common key Xi for a streaming session. An arbitrary adversary
cannot fool P0 easily because it has to obtain the keys first. Without the keys the digests are not
acceptable.

• Step 4: Each supplier uses the keys to generate digests δ′j=1...k and sends them to P0 with the blocks
bj=1...k. These digests are required in the verification process when some of the packets are lost.

• Step 5: For each block, P0 computes the digest and matches the outcome against the corresponding
digest it receives from the server. If there is a match, the block is accepted, otherwise the block is
rejected.

An example: If the server divides the movie The Matrix of size 1.3 GB into packets of size 1 KB, 26
MB of digests will be generated assuming each hash is 160 bits long. P0 may not want to download this
amount of data before starting the streaming. However, if each block contains 128 packets, the volume of
digests is reduced by 128 times, which is 0.209 MB. To further reduce overhead, the server randomly selects
n blocks out of the N (N > n) blocks to generate digests, and gives them to P0. Each supplier peer does
not know which blocks will be tested by P0, and they send all digests to P0. P0 only verifies the blocks it
gets digests from the server. Verifying 8 out of 16 blocks will finally reduce the the total digest transmission
overhead to 107 KB.

Probabilistic verification. BOPV provides adjustable levels of security and reduces computation
overhead. In general, if a malicious peer tampers with r blocks out of N blocks, the cheat success probability

is Pr[cheat(N,n, r)] =
(N−r

n)
(N

n)
= (N−r)!×(N−n)!

(N−n−r)!×N ! . Pr[cheat(N,n, r)] defines the probability that a malicious

peer can successfully send r corrupted blocks to the client without getting caught because of the probabilistic
verification performed by the client.

8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

Number of segments tested (n)

P
ro

ba
bi

lit
y[

ch
ea

t]

r=2
r=3
r=4

(a)

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

Percentage of segments are corrupted (r/N)

P
ro

ba
bi

lit
y[

ch
ea

t]

N=8, n=4
N=12, n=6
N=16, n=8

(b)

2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

Number of groups

P
ro

ba
bi

lit
y[

ch
ea

t]

r=1
r=2

(c)

Figure 2. Success probability of cheating under different number of blocks. N is the number of blocks of a group,
n is the number of blocks that are verified out of N , and r is the number of blocks an adversary corrupts in a group.
(a) Increasing number of blocks to verify (n) reduces success cheating probability. (b) Success cheating probability
is very low when 30% or more blocks are corrupted. (c) X-axis is the number of groups an adversary tries to cheat r

blocks. The cheating probability drops exponentially in multiple groups.

Now, we show how to reduce the cheat success probability. Let N = 16 and n = 8. If a peer tampers with
one block, i.e. r = 1, the chance to detect this is only 50%. However, if a peer tampers with 4 blocks, then
more than 96% of the time P0 will detect that Figure 2(a). This probability will reach 0.99 if n = 9. Again,
the cheat success probability is very low when 30% or more blocks are corrupted (Figure 2(b)). Therefore,
the level of data integrity assurance can be adjusted by tuning the values of n and N .

The cheat success probability drops exponentially when a redistribution peer attempts to corrupt multiple
groups of data: The probability goes down to 0.002 when one block is corrupted in 10 groups. Figure 2(c)
shows that the probability is 0.0008 when two blocks are corrupted in six groups. Thus, the probabilistic
verification of BOPV reduces both computation and communication overhead, yet at the same time, data
integrity violation can be detected with a very high probability.

One limitation of BOPV is that if any packet is lost, the requesting peer will not be able to verify the
entire block containing the lost packet. To deal with packet losses, we have the following two extensions to
BOPV.

Multiple Hashes (BOPV-MH). Efficient multi-chained stream signature (EMSS) achieves robustness
against packet losses by sending multiple hashes (or digests) of other packets with the current packet14

. We study how this idea performs in P2P media streaming. Here, the supplier send each packet pij =
[Mij , Hi,j+1%l, . . . , Hi,j+t%l], where t defines the loss threshold, and Mij is the data of j-th packet for block

i. To verify the packets of a block bi, peer P0 checks which packets of the block it received and which of
them are lost. When a packet is lost, its hash will be found in other packets unless total packet loss of a
block exceeds the threshold t. P0 computes hashes of packets received, and uses the hash provided by the
sending peer for lost packets. If the computed digest matches the digest provided by the server S0, the client
accepts the data, otherwise it rejects the data. We can tolerate up to t lost packets out of l packets in a
block yet we can still verify the integrity of the remaining l − t packets.

We provide an example to illustrate the digest scheme for lossy environments. Let, let l = 5 (l is
the number of packets in a block) and t = 2. P0 receives h(Ki, Hi1, Hi2, Hi3, Hi4, Hi5,Ki) from a trusted
entity as a point of reference. A peer sends [Mi1, Hi2, Hi3], [Mi2, Hi3, Hi4], [Mi3, Hi4, Hi5], [Mi4, Hi5, Hi1],
[Mi5, Hi1, Hi2]. If the first and second packets are lost, P0 can still verify by using hashes Hi1 and Hi2 sent
by the peer in the fourth and fifth packets, and computing hashes for rest of the packets. In this example,
we can tolerate up to two lost packets out of five packets.

Forward Error Correction (BOPV-FEC). Park et al. used erasure code to encode digests and
signatures instead of data block.11 We apply a similar idea to BOPV. For each block, the peers encode the
digests into αa (α ≥ 1) packets out of which a packets are sufficient to decode the digests. This scheme is
robust against bursty packet losses because any a packets can recover the digests of all packets. However, if
less than a packets are available to the client, the whole block cannot be verified. The receiver first decodes
the digests, and then verifies the integrity of the received packets.

3.2. Tree-based Forward Digest Protocol (TFDP)

To further reduce the initial digest downloading overhead, we propose TFDP, or Tree-based Forward Digest
Protocol. It requires to download only one digest from the server S0. TFDP can adopt the probabilistic
verification to reduce the computation overhead at the receiver.

TFDP uses Merkle tree, and is similar to Tree-chaining proposed by Wong and Lam17 for multicast flows.
However, our protocol does not sign the root of every subtree that belongs to each block. Instead, we only
compute digests to form the Merkle tree. Another difference is that our protocol creates one tree for the
entire media file, rather than a separate tree for each block.

Initially, the server generates the Merkle signature tree for a media file. The leaves of the tree are packets
of a block. All non-leaf nodes of the tree represent digests of the leaves of their corresponding subtrees. The
server enforces a minimum number of blocks to be stored at each supplier so that the overhead of sending
extra digests is amortized over a group of blocks. During a streaming session, Nmin digests are downloaded
before downloading the original blocks. A higher Nmin will reduce the overhead. However, it will incur
longer delay in the streaming session.

Figure 3 shows a simplified example with 32 packets that are part of 8 blocks. Let P1 be assigned to
provide the digests of first two blocks, P2 provides digests of next four, and P3 provides the rest. From
previous section, we know that a block is downloaded from a set of peers P

act. P1, P2, and P3 are members
of P

act at different part of the streaming session. When P0 wants to download blocks from P
act, P1 first

provides all digests to compute the digest of the root. In this case, those are H1, H2, H10, and H14. P0

computes H9 from H1 and H2, H13 from H9 and H10, and H15 from H13 and H14, and then verifies with
the digest supplied by the server. If there is a match, the belief in H15 is transferred to all hashes provided
by P1. Later, the data sent by the active set P

act is verified block by block using H1 and H2. P2 and P3 act
independently in a similar fashion. We now describe the steps of TFDP:

• Step 1: Client P0 authenticates itself with the server S0 by sending ES0
(DP0

(M0)), where the request
message M0 is signed by P0 for non-repudiation. Then, it is encrypted with the public key of S0.

• Step 2: The server provides P0 the digest of the root of the Merkle tree EP0
(DS0

(Droot, T)) encrypted
with the public key of P0 and signed by its private key. T is the ticket used in authentication for each
session with Pi. The timestamp prevents a peer from using the same ticket beyond a specific time
period.

H6

1615141312111098765431 2

H4H3H2H1

P1 P3P2

H7H5

3126252221191817 3230292827242320

H15

H13 H14

H12H11H10H9

H8

Figure 3. Tree structure of 32 packets that constitute 8 blocks. P1, P2, and P3 are members of an active set at
different part of streaming session. P1 is assigned to provide digests that are required to verify first two blocks. P1

sends H1, H2, H10, and H14 to P0. P2 provides H3, H4, H5, H6, H9, H12 and P3 provides H7, H8, H11, and H13 .

• Step 3: P0 tells each supplying peer Pi of the active set P
act to forward the digests that are required

to verify the Nmin blocks assigned to the active set.

• Step 4: Each peer Pi provides the digests of all leaves of the subtree it has and digests of all other
internal nodes to compute the root. Each peer sends δ′ij , i = 1 . . . |Pact|, j = 1 . . . k to P0, where k is
the number of digests required to verify all Nmin blocks. These digests are obtained from the server
off-line.

• Step 5: If the computed digest at P0 matches the root digest obtained from the server, P0 will allow
Pi to send the data. P0 can trust the digests of each block of the Nmin blocks because the computed
digest matches the digest of the root.

• Step 6: P0 signals the peers that the digests are verified, and requests them to send media data.

• Step 7: The peers send media data, and P0 can verify every block individually.

To reduce the delay in Step 4, we tune the value of Nmin. For example, if Nmin is 64 blocks, then Step

4 downloads Nmin +
⌈

log(F
Nminl

)
⌉

digests, which is equal to 75 digests, i.e., 1500 Bytes for our example.

Downloading this digest takes very little time for P0.

Figure 3 is a binary tree if we exclude the leaves. Each leaf is a packet, and the parent of the leaves
represent the digests of the blocks that contain the packets. The size of a block needs to be chosen carefully
to ensure that it does not introduce delay to collect all packets of a block. All the blocks (internal nodes) can
be arranged as a d-ary tree. The height of the tree will be logd

F
l
, where F is the size of the media file. The

extra digests required to verify each block depends on the height of the tree. It requires (d− 1)
⌈

logd
F

Nminl

⌉

digest to verify a group of Nmin blocks. The number of extra digests required to verify a group of Nmin

blocks is minimized when d = 2. Higher value of Nmin can reduce the required number of digests, however,
it might increase delay to download extra digests before downloading data.

Table 1. Comparison of different data integrity verification protocols. M is total number of block in a file, l is the
size of a block in packets, v is the probability that a block is verified, α is defined in Equation 1, K is the size of a
key, Nmin is the minimum number of block a peer stores, and X = M + M

Nmin
log(M

Nmin
).

Allow Download Download # of Hash # of Hash Sign at Verify sign Decode Security
packet server →P0 P→P0 computation computation server at peers at P0
loss (Bytes) (Bytes) at server at P0

Tree Chaining YES 0 20Ml log l M(2l − 1) M(2l − 1) M M — deterministic
(1024 bit) +128Ml

BOPV NO (20 + K)Mv 20M Mv Mv — — — probabilistic

BOPV+MH YES (20 + K)Mv 20Mlt Mv(l + 1) Mv(l + 1) — — — probabilistic

BOPV + FEC YES (20 + K)Mv 20Mlα Mv(l + 1) Mv(l + 1) — — M probabilistic

TFDP YES 20 20Mlα + 20X 2M − 1 Mvl + M/Nmin — — M probabilistic
×[(Nmin − 1)
+ log(M/Nmin)]

SAIDA YES 0 (20l + 128)Mα M(l + 1) M(l + 1) M M M deterministic

4. COMPARISON AND EVALUATION

It is shown that SAIDA performs better than both EMSS14 and chaining17 in tolerating bursty packet
losses.11 Therefore, we only compare our protocols with SAIDA11 and Tree Chaining.17 We evaluate
the overhead of BOPV, the BOPV variations that integrate multiple hashes (BOPV-MH) and FEC codes
(BOPV-FEC), as well as TFDP.

We compare the communication and computation overhead of the protocols. The communication over-
head is the extra bytes per packet client P0 needs to download from other peers and the server S0 to verify
data integrity. The computation overhead (of P0) is due to hash computation, signature verification, and
FEC decoding. Before the comparison, we show the overhead computation for each protocol.

Tree Chaining needs to download the public key (usually 128 bytes) of the server to verify the signature.
The receiving peer P0 downloads l log l digests for each block, where l is the size of a block in terms of packets.
Each packet carries one 1024-bit signature. Thus, for each block P0 downloads 20l log l + 128l bytes. All
flavors of BOPV download one digest and one key from the server for each block. TFDP downloads only
one digest (20 bytes) from the server. However, it needs 1 + 1

Nmin
log(M

Nmin
) extra digests for each block,

and digest of each block is encoded using FEC. We define α, the overhead due to FEC, as:

α =
total packets sent per block

total packets required to reconstruct the block
(1)

Thus, the total communication overhead of TFDP is 20(lα+1+ 1
Nmin

log(M
Nmin

)) bytes per block. SAIDA
downloads one signature per block, and it uses FEC. Thus, it incurs (20l + 128)α bytes of overhead for each
block. Tree Chaining and TFDP require similar amount of digest computation because both of them use
Merkle tree.

BOPV-MH requires only M(l + 1) hash computation. The Tree Chaining has M subtrees, and each tree
incurs 2l−1 hash functions, which is close to the load of TFDP. TFDP needs to compute extra digests for each
Nmin blocks verification. The number of extra digests computation is M/Nmin[(Nmin − 1) + log(M/Nmin)],
and it verifies each packet with probability v. Thus, total computation overhead at the receiver is Mlv +
M/Nmin[(Nmin − 1) + log(M/Nmin)]. Table 1 summarizes the comparison results. Now, we compare the
communication and computation overhead of these protocols by using them to distribute the movie The
Matrix in a P2P network.

Communication Overhead. Figure 4 shows the performance results of different protocols based on
the movie The Matrix. Figure 4(a) shows that the communication overhead can be reduced significantly,
if FEC is used to encode digests and signatures. The Tree Chaining has extremely high communication
overhead (208 bytes, for l=16, not shown in Figure 4). TFDP and BOPV-FEC incur less overhead than
SAIDA. TFDP reduces the overhead by combining Nmin blocks together to make a group. Then, it downloads
the necessary digests to verify all blocks of the group. This reduces the height of the verification tree from
log M to log M

Nmin
. The difference in communication overhead narrows when the block size gets larger.

20 40 60 80 100 120
25

30

35

40

45

Segment size (l)

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d
(B

yt
es

/P
kt

)

Tree Chain
BOPV+MH
BOPV+FEC
TFDP
SAIDA

(a) Communication

20 40 60 80 100 120

20

40

60

80

100

120

140

160

Segment size (l)

C
om

pu
ta

tio
n

O
ve

rh
ea

d
(S

ec
.)

Tree Chain
BOPV+MH
BOPV+FEC
TFDP
SAIDA

(b) Computation

Figure 4. Overheads among Tree Chaining, BOPV with multiple hashes, BOPV with FEC, TFDP, and SAIDA for
movie The Matrix of size 1.3 GB. The communication overhead is shown per packet and the computation overhead
is for the entire file.

Computation Overhead. We use openSSL crypto library to calculate SHA-1 hash, RSA sign, and
RSA verification. Cauchy-based Reed-Solomon code is used to encode digests in our protocols and in SAIDA.
Figure 4(b) shows that the BOPV with multiple hashes has the lowest computation overhead. If FEC is
used, the computation overhead increases with the block size, because the decoder needs to decode more
packets within a block. The computation overhead in Tree Chaining is reduced by caching digests carried by
previous packets. This cache is used to verify upcoming packets of a block. However, its high communication
overhead makes this solution hard to deploy in P2P real-time streaming. SAIDA has higher computation
overhead than TFDP because SAIDA has to verify the signature for each block, which takes longer time
than verifying a digest. TFDP has higher computation overhead than BOPV; however, we prefer TFDP
over BOPV because, unlike the latter, TFDP reduces the initial communication overhead between the client
and the authentication server.

5. EXPERIMENTAL RESULTS

We perform P2P streaming experiments using both ns-2 simulations10 and real-world implementation. In
our simulation, one client requests and receives streaming media from five peers. Like in SAIDA, we use a
Two-state Markov loss model to introduce bursty packet loss. The parameters of the Markov model are
Pr{no loss} = 0.95 and Pr{loss} = 0.05. The shared link incurs a packet loss rate of 25%. We calculate the
fraction of verifiable packets by

V =
1

M

M
∑

i=1

number of verifiable packets in block i

number of packets received in block i
(2)

We compare SAIDA and TFDP in the simulation. The simulation results are shown in Figure 5. The
digests and signatures are encoded to tolerate 37.5% packet loss rate. We observe that due to burstiness,
some blocks have low fraction of verifiable packets. The reason why TFDP performs better is that SAIDA
sends slightly more data than TFDP due to RSA signature for each block.

We have developed a P2P media streaming system called PROMISE.5 Our system monitors network
dynamics, quality of connections from suppliers to receivers, as well as availability of peers, in order to
maintain full media playback quality on the client side. Particularly, the set of active peers in each streaming

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 500 1000 1500 2000 2500 3000 3500

Fr
ac

tio
n

of
 v

er
if

ia
bl

e
pa

ck
et

s

Time (sec)

TFDP
SAIDA

Figure 5. Fraction of verifiable packets at the receiver during simulation. More than 97% received packets are
verified using TFDP.

session may change dynamically, so that the fluctuation of network and peer conditions will not affect the
client-side aggregated media streaming rate. Each of the proposed data integrity verification protocols can
be plugged into PROMISE. We evaluate our system by conducting experiments in the wide-area PlanetLab1

testbed.

Figure 6 shows two sets of results from two PlanetLab-based experiments. Both can tolerate up to
20% packet loss by using FEC. If the loss rate is more than 20%, an entire block of packets will not be
verifiable. TFDP is used in both experiments. In Experiment 1 (exp1), TFDP can verify almost all the
packets throughout the experiment and thus all packets are verified most of the time. Sometimes, the loss
goes as high as 40% and the probability goes down to 0.9. In this case, we have to discard the blocks.
Experiment 2 (exp2) experiences a few more glitches than Experiment 1. If the loss continues for a while,
the peer(s) on the congested path will be replaced by other peers, thanks to the adaptivity of our PROMISE
system. The wide-area experimental results show that with FEC, fraction of verifiable packets is very high
when TFDP is used.

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 50 100 150 200 250 300

Fr
ac

tio
n

of
 v

er
if

ia
bl

e
pa

ck
et

s

Time (Sec)

exp1
exp2

Figure 6. Fraction of verifiable packets in two P2P media streaming experiments in the wide-area PlanetLab test-bed.
Due to bursty loss, the fraction of verifiable packets goes down by as high as 10%.

We use video traces of two movies (Star Wars IV and From Dusk Till Dawn) encoded using MPEG-4 to
study how FEC overhead α impacts on the performance of our protocols. The traces have the information of
frame number, frame type (I, P, or B), frame play-out time, and frame length in bytes. We stream the first

20 minutes of each movie, and both movies have a frame rate of 25 frames per second. For each streaming
session, we record the arrival time of each single packet. Then, we determine the number of frames that
would have missed their deadlines. In this experiment, we vary the overhead due to FEC to tolerate packet
loss. We calculate the number of segments that cannot be decoded because more than (α - 1)% of the packets
are lost or corrupted. For each undecodable segment, we consider all of its packets as lost and count the
number of frames. Figure 7 shows the number of undecoded blocks for two different experiments. It shows
that with all blocks of Star Wars IV can be decoded when α = 1.2 in both cases. However, without the
FEC, 47 blocks are wasted for exp 1 and 67 blocks are wasted in exp 2. Thus, with 20% FEC overhead,
the number of undecoded blocks can be reduced significantly. Experiments with the movie From Dusk Till
Dawn produce similar results.

 0

 10

 20

 30

 40

 50

 60

 70

 1 1.2 1.4 1.6 1.8 2

of

 u
nd

ec
od

ed
 b

lo
ck

s

α

Exp 1
Exp 2

Figure 7. Number of undecoded blocks comparing to the level of redundant data due to FEC. The result is shown
for the movie Star Wars IV in wide area Planet-Lab test-bed.

6. CONCLUSION

In P2P media distribution, data integrity verification is a critical requirement. Existing data integrity
verification protocols are either inapplicable or too expensive for P2P media streaming. We propose simple
and efficient protocols to verify data integrity in real-time during streaming sessions that involve multiple
supplying peers. Our probabilistic packet verification protocol (BOPV) provides good trade-off between
integrity assurance and verification overhead. Our Tree-based Forward Digest Protocol (TFDP) incurs even
lower communication overhead and tolerates packet losses with moderate computation overhead. Our real-
world and simulation experiments demonstrate the effectiveness of the proposed protocols. Particularly,
TFDP is able to verify close to 100% of the media data in a P2P streaming session, even under a packet loss
rate of 20%.

REFERENCES

1. Planetlab testbed. http://www.planet-lab.org/, 2004.

2. E. Adar and B. Huberman. Free riding on gnutella. First Monday, 5(10), Oct. 2000.

3. R. Gennaro and P. Rohatgi. How to sign digital streams. Technical report, IBM T. J. Watson research
center, 1997.

4. A. Habib and J. Chuang. Incentive mechanism for Peer-to-Peer media streaming. In proceedings In-
ternational Workshop on Quality of Service (IWQoS ’04), pages 171–180, Montreal, Canada, June,
2004.

5. M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava. PROMISE: Peer-to-peer media streaming
using CollectCast. In proceedings ACM Multimedia (MM ’03), Nov. 2003.

6. B. Horne, B. Pinkas, and T. Sander. Escrow services and incentives in peer-to-peer networks. In
proceedings ACM Electronic Commerce (EC ’01), Oct. 2001.

7. H. Krawcayk, M. Bellare, and R. Canetti. HMAC: keyed-hashing for message authentication, RFC
2104, 1997.

8. M. N. Krohn, M. J. Freedman, and D. Mazieres. On-the-fly verification of rateless erasure codes
for efficient content distribution. In proceedings IEEE Symposium on Security and Privacy, Oakland,
California, May, 2004.

9. L. Lamport. Constructing digital signatures from a one-way function. Technical report, SRI-CSL-98,
SRI International Computer Science Laboratory, Oct. 1979.

10. S. McCanne and S. Floyd. Network simulator ns-2. http://www.isi.edu/nsnam/ns/, 1997.

11. J. M. Park, E. Chong, and H. Siegel. Efficient multicast packet authentication using signature amorti-
zation. In proceedings IEEE Symposium on Security and Privacy (S&P), May 2002.

12. A. Perrig. The BiBa one-time signature and broadcast authentication protocol. In proceedings ACM
Conference on Computer and Communications Security (CCS ’01), pages 28–37, Philadelphia, PA, Nov.
2001.

13. A. Perrig, R. Canetti, D. Song, and D. Tygar. Efficient and secure source authentication for multicast.
In proceedings Network and Distributed System Security Symposium, (NDSS ’01), San Diego, CA, Feb.
2001.

14. A. Perrig, R. Canetti, J. D. Tygar, and D. X. Song. Efficient authentication and signing of multicast
streams over lossy channels. In proceedings IEEE Symposium on Security and Privacy (S&P ’00), pages
56–73, Nov. 2000.

15. R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital signature and public key
cryptosystems. Commnunication of the ACM, pages 120–126, Feb. 1978.

16. P. Rohatgi. A compact and fast hybrid signature scheme for multicast packet. In proceedings ACM
Conference on Computer and Communications Security (CCS ’01), pages 93–100, Nov. 1999.

17. C. Wong and S. Lam. Digital signatures for flows and multicasts. IEEE/ACM Transactions on Net-
working, 7(4):502–513, Aug. 1999.

