
Knowledge Discovery from Transportation Network Data∗

Wei Jiang
Purdue University

250 N. University St.
W. Lafayette, IN 47907-2066

wjiang@cs.purdue.edu

Jaideep Vaidya
Rutgers University and CIMIC

180 University Avenue
Newark, NJ 07102-1803
jsvaidya@rbs.rutgers.edu

Zahir Balaporia
Schneider National, Inc.

Green Bay, WI 54306-2545
balaporiaz@schneider.com

Chris Clifton
Purdue University

250 N. University St.
W. Lafayette, IN 47907-2066

clifton@cs.purdue.edu

Brett Banich
11231 Arrowhead Trail

Indian Head Park, IL 60525
brett banich@alumni.purdue.edu

Abstract

Transportation and Logistics are a major sector of the
economy, however data analysis in this domain has re-
mained largely in the province of optimization. The po-
tential of data mining and knowledge discovery techniques
is largely untapped. Transportation networks are naturally
represented as graphs. This paper explores the problems
in mining of transportation network graphs: We hope to
find how current techniques both succeed and fail on this
problem, and from the failures, we hope to present new
challenges for data mining. Experimental results from ap-
plying both existing graph mining and conventional data
mining techniques to real transportation network data are
provided, including new approaches to making these tech-
niques applicable to the problems. Reasons why these tech-
niques are not appropriate are discussed. We also suggest
several challenging problems to precipitate research and
galvanize future work in this area.

1 Introduction

Transportation and logistics are an important sector
of the economy. Transportation consumes 60% of oil
worldwide[11], and the number is increasing. Data mining
has lead to significant gains in other areas, and should also
be used to improve this sector of our economy. Computer
use is widespread in transportation and logistics. Inventory
management, parcel tracking, and even on-truck location

∗This work supported by a grant from the Purdue’s e-Enterprise Center
at Discovery Park.

sensors provide a wealth of data. This seems a natural ap-
plication area for data mining, however, to date, there have
been few success stories.

There has been some mining with freight flow data, but
with transactional characteristics of freight and events such
as safety/accident records rather than the geometry of the
network. For example, classification on safety/accident
records might find that trucks are prone to accidents at 7:00
AM on east - west roads (i.e., when the sun is in the drivers’
eyes.) A similar problem could be to find conditions in
which trucks suffer from mechanical failure to predict a re-
quirement for maintenance.

Existing methods that utilize the network structure fall
within the domain of optimization. Optimization techniques
have long been computerized, but do not provide the kinds
of insights that are the goal of data mining. These opti-
mization techniques generally fix certain constraints and al-
low a manageable number of free variables to be adjusted
to achieve minimal cost. The goal of our data mining is
not to better optimize these free variables, but to generate
knowledge that enables a business to adjust its process to
modify the constraints, enabling the optimization to gener-
ate a lower cost solution. Optimization may realize a fea-
sible solution, but data mining could find patterns where
constraints could be modified or re-defined to provide a
more robust optimal solution. One of the few reported data
mining successes in this area involves management of in-
ventory levels[3, 4], where the constraints on safety stocks
were modified to achieve lower inventory and higher in-
stock rates.

Transportation networks can be viewed as graph prob-
lems, with vertices corresponding to the origins and desti-
nations, and edges corresponding to goods moved from the

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

origin to the destination. What makes an interesting pat-
tern in this data? One goal is to better utilize truck capacity,
eliminating the need to deadhead empty trucks. Another is
to get loads delivered more quickly. The optimization com-
munity has worked on these problems for years. The goal of
data mining must go beyond this. By finding interesting and
frequent patterns, we hope to allow transportation experts to
identify changes that go beyond the traditional optimization
methods.

There are several known “good” shapes in transportation
networks. For example, a circular route enables a truck to
move from point to point, pick up and drop off goods at
each point and regularly return home. A hub-and-spoke
built around a central warehouse or sorting facility is also
efficient. By finding new patterns in the data, we hope to en-
able transportation experts to devise new methods to make
those a “good” pattern.

Graph mining would seem a natural fit, however exist-
ing graph mining work does not map well to this prob-
lem. Much of the prior work has focussed on finding
frequent sub-graphs from a set of graph “transactions”
[10, 13, 20, 23]. This work is not directly applicable to
the transportation domain, as transportation data is not eas-
ily broken down into a collection of graphs over the same
vertices and edges. There has been some work on mining
single graphs, notably the SUBDUE system [9, 5], but this
also turns out to be a poor match for our problem.

Despite the above, we wish to leverage prior work to
quickly find data mining techniques that apply to trans-
portation network data. This paper discusses problems, and
presents first-cut solutions based on different ways of par-
titioning data, so that existing graph mining algorithms can
be used to obtain meaningful solutions. These solutions are
tested through experiments with actual transportation net-
work data from a real logistics management company, us-
ing both non-graph techniques and graph techniques such
as SUBDUE[9, 5] and FSG[13] to identify frequent sub-
graphs. From this, we identify challenges and directions for
graph mining research.

We first discuss prior work in graph mining. In Section
3, we give background on our transportation network data.
Section 4 formally defines when two sub-graphs within a
single graph support the same pattern. We then introduce
approaches to transform this data into forms amenable for
use with existing graph mining algorithms. Section 5 di-
vides the graph structurally. This enables discovery of pat-
terns that re-occur in multiple geographic locations. In Sec-
tion 6, we describe a temporal-based partitioning, finding
patterns that occur over time. Section 7 converts the data
into a pure transactional form, applying conventional data
mining tools. From experimental results, Section 8 analyzes
the limitations of the existing graph mining softwares and
the conventional data mining algorithms. We then conclude

with challenges and research directions: What problems are
really of interest in this domain, and the resulting general-
ized research challenges.

2 Related Work

Graphs are used to model semi-structured data in several
domains [13, 16, 17, 22]. Graph Mining is still a relatively
new research area. There has been a recent surge in interest
in finding frequent patterns from different types of graphs
and trees. Many of the proposed algorithms are based on
the well known Apriori principle [1]; modifying the func-
tionality of candidate generation, candidate selection, and
support pruning to support graph data.

The first Apriori-based algorithm, WARMR [6], was de-
veloped in response to the IJCAI’97 challenge on predicting
chemical carcinogenicity. [10] proposed an Apriori-based
algorithm, AGM, to discover all frequent (both connected
and disconnected) structures from a set of graphs. FSG [13]
and gFSG[14] also find frequent graph patterns, but using
edges as building blocks. [20] studies the problem of dis-
covering typical patterns of graph data, and proposes a new
algorithm for mining graph data based on a novel definition
of support that works for both labeled and unlabeled data.
[23] proposes a new lexicographic order among graphs and
uses this to construct a novel algorithm to mine frequently
connected sub-graphs efficiently. TreeMinerH and TreeM-
inerV [24] are algorithms for efficiently mining frequent
trees in a forest of ordered, rooted trees. TreeFinder [19],
on the other hand, finds approximate patterns from both or-
dered and unordered trees.

A common feature of this work is the search for patterns
that are common to a set of distinct graphs. This is a nat-
ural outgrowth of the IJCAI’97 toxicity challenge, finding
common substructures in a variety of chemical compounds.
Each compound is represented as a graph, with vertices as
molecules and edges as bonds. The goal is to find the com-
mon structural features among a set of compounds that are
similarly active (e.g., are carcinogenic). Knowledge of the
common features would lead to a better understanding of
what makes a compound active, improving drug discovery
opportunities, speeding toxicity studies, etc.

To give a better understanding of approach to graph min-
ing, we give the problem definition as stated for FSG[13]. A
dataset D is divided into transactions, where each transac-
tion t ∈ D is a labeled undirected graph. Given a minimum
support s, the goal is to find connected subgraphs that oc-
cur in at least s · |D| transactions. A subgraph g occurs
in a graph t if g is isomorphic to t′ ⊂ t, where isomor-
phism is defined to include matching the labels as well as
the vertex/edge structure. FSG proceeds using the Apriori
principle, first finding small frequent subgraphs, then join-
ing these to find candidate larger subgraphs. The candidate

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

generation phase is more complex than for plain transac-
tions, as joining to size k−1 subgraphs can form many size
k subgraphs. However, the basic approach is similar.

The problem with this work is that not all graph problems
are easily modeled as a set of independent graphs. For ex-
ample, the entire world wide web can be appropriately mod-
eled as a single graph[7]. Transportation networks can be
modeled as a single graph (or perhaps a multigraph: differ-
ent edges between a pair of vertices may indicate multiple
trips), with vertices corresponding to places and edges cor-
responding to goods to be moved from sources to destina-
tions. There has been some work in mining single graphs, or
more specifically from single trees. FREQT [2] was devel-
oped to identify frequent patterns in semi-structured data,
specifically XML documents. However, there has been lit-
tle work that applies to general graphs.

SUBDUE [9, 5] is one of the few systems that works on
single graphs. The SUBDUE substructure discovery system
discovers interesting and repetitive subgraphs in a labeled
graph representation using the minimum description length
principle. By replacing previously discovered substructures
in the data, multiple passes produce a hierarchical descrip-
tion of the structural regularities in the data. It also allows
limited inclusion of background knowledge. SUBDUE has
been applied to several domains, such as molecular biol-
ogy, image analysis and computer-aided design. In Section
5.1 we describe experiments we ran with SUBDUE on our
transportation network data. As will be described, we found
several issues. Suffice it to say that SUBDUE (as it now
stands) is not sufficient for our purposes.

In the next two sections, we first provide descriptions of
our transportation network data. Then we describe the basic
graph structure we are interested in and the sort of patterns
we would like to find in it.

3 Transportation Network Data
Description

We present experiments with six months of origin-
destination (OD) data from a large third-party logistic com-
pany. The dataset consists of 98,292 transactions. Each
transaction has 11 attributes, described in Table 1. There
are 4038 distinct latitude-longitude (LL) pairs in the dataset,
with 1797 distinct origins and 3770 distinct destinations
(several locations are both). The dataset contains 20, 900
distinct OD pairs (i.e., there are often multiple deliveries be-
tween the same origin and destination over the six months).
The edges are labeled with the other attributes of the trans-
action: pickup date, delivery date, distance, hours, weight,
and mode.

Labeling edges with the exact values would lead to few
frequent patterns being detected, since the edge labels are
often unique. Instead, we use a binning strategy. Each label

(distance, hours, weight) is divided into ranges, giving a few
distinct labels for each type (we used seven for gross weight
and ten for transit hours in the experiments reported in this
paper). As a result, even edges with similar (though not ex-
actly equal) distances, times, and weight are considered to
support the same pattern. Since the range of values is quite
large, this makes perfect sense. For example, the range for
weight is about 500 tons - in this case, two different trans-
actions from the same source to the same destination with
weights 49 tons and 52 tons respectively should be consid-
ered equal. Binning facilitates this.

This dataset is naturally represented as a directed graph
by mapping locations to vertices. Each transaction can then
be represented as the edge of an OD pair. The dataset does
give a fully connected graph. Minimum, maximum, and
average out-degrees are 1, 2373, and 12 respectively, and
Minimum, maximum, and average in-degrees are 1, 832,
and 6.

We generate three different graphs from the data, named
OD GW, OD TH, OD TD. Each graph has the same
set of vertices and edges but different labeling scheme for
the edges. OD GW uses GROSS WEIGHT , OD TH
uses MOV E TRANSIT HOURS, while OD TD uses
TOTAL DISTANCE for edge labeling.

4 Interesting Patterns

In Section 1, we pointed out some “good” patterns, but
in many cases, even the notion of a pattern is open. The real
data is composed of a single graph with multiple labels on
the edges. However, the concept of a frequent pattern re-
quires that we define when two subgraphs support the same
pattern. With a single graph, this raises issues such as over-
lap (should a single vertex be allowed to belong to two dif-
ferent graphs supporting a pattern?) We instead partition
the data into separate sub-graphs (graph transactions), and
search for frequent patterns across the sub-graphs. How the
partitioning is done determines what the patterns mean.

Here, we formally define when two subgraphs support
the same pattern. Let a labeled graph G be represented as
G = (V, E), where V is the set of vertices and E is the set
of edges. label(x), x ∈ V ∪ E is a function that returns the
label of an edge or vertex. G′ = (V ′, E′) is a sub-graph
of G = (V, E) if V ′ ⊆ V and E′ ⊆ E. Two sub-graphs
G1 = (V1, E1) and G2 = (V2, E2) are considered identical
if there is an isomorphism between G1 and G2 such that
the labels of the edges and vertices match, i.e., the vertices
v1a ∈ V1 can be mapped to v2i ∈ V2 such that if v1a maps
to v2i, label(v1a) = label(v2i); if v1a maps to v2i, v1b

maps to v2j , and there is an edge e1c from v1a to v1b, then
there is a corresponding edge e2k from v2i to v2j such that
label(e1c) = label(e2k); and vice-versa.

Assuming a support threshold s, we wish to find all

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

Table 1. Transportation Network Data Description
Name Description
ID Unique transaction identifier.
REQ PICKUP DT Requested date to pick up the load.
REQ DELIVERY DT Requested delivery date.
ORIGIN LATITUDE Latitude of source (to nearest 0.1 degree.)
ORIGIN LONGITUDE Longitude of source (to nearest 0.1 degree.)
DEST LATITUDE Latitude of destination (to nearest 0.1 degree.)
DEST LONGITUDE Longitude of destination (to nearest 0.1 degree.)
TOTAL DISTANCE Road miles between origin and destination.
GROSS WEIGHT Weight of load.
MOVE TRANSIT HOURS Hours needed to get from origin to destination.
TRANS MODE Truckload or Less than Truckload.

sets P of distinct subgraphs of G such that |P | ≥ s and
∀pi, pj ∈ P , pi is identical to pj .

In the following two sections, we define two valuable
patterns (with distinct underline meanings) for decision
making in transportation and logistic domains. We pro-
pose first cut approach that utilizes the existing graph min-
ing softwares to discover these patterns. From experimental
results, although the existing softwares are not suitable to
mine these patterns and the first cut approach is limited, it
does present the need for further research in this area.

5 Structurally Similar Routes

One problem we have addressed is identifying self-
similarity within the transportation network. The goal is
to identify structurally similar patterns that occur in many
locations. For example, a pattern might be a “bow-tie” with
several small loads converging on a location, large loads to
a distant location, and small loads converging on the distant
location. Seeing this pattern, a transportation expert could
find a way to better utilize resources outside the bounds of
traditional optimization methods. Instead of just optimiz-
ing truck routes, the company could use multi-modal trans-
portation, placing trailers on rail cars for the large load long
distance portion of the pattern, and using the rail-capable
trailers as a pool for the short deliveries in the vicinity of
the endpoints. This is just a hypothetical example; best uti-
lizing the discovered patterns requires considerable external
knowledge. The key is that since the patterns are frequent,
innovative transportation approaches that optimize deliver-
ies in those patterns can be applied in many places.

Since we are interested only in structural similarity and
not particular locations, we assign all vertices the same la-
bel. Thus, vertex labeling is a non-factor in finding frequent
sub-graphs. The three variants for edge labels; weight, dis-
tance, and time; were described earlier.

5.1 Experiments with SUBDUE

SUBDUE [9, 5] is a substructure discovery system that
discovers interesting and repetitive subgraphs in a labeled
(either connected or disconnected) graph representation.
We used release 5.1 of SUBDUE to run experiments on our
transportation data. SUBDUE has three methods available
for evaluating candidate substructures: Minimum Descrip-
tion Length (MDL), Size, and Set Cover principles. More
details on how these work can be found in the user docu-
mentation for SUBDUE. We performed experiments with
two of those methods (the MDL and Size principle). The
Set Cover principle is not relevant, as the value of a sub-
structure S is computed as the number of positive exam-
ples containing S plus the number of negative examples
not containing S, divided by the total number of examples.
The transportation data has no concept of negative exam-
ples. In order to get performance estimates, we also ran
the experiments on sub-graphs of various sizes. These sub-
graphs were derived from the original graph by selecting
the required number of vertices and then including all of
the edges incident on vertices present in the graph. We also
ran the experiments on graphs derived from both the Gross
Weight attribute as well as the Total Distance attribute. We
now describe the results from some of those experiments.

SUDBUE took about 3.25 hours to handle a graph of
100 vertices and 561 edges using the Minimum Description
Length principle to find the best 3 patterns of beam size 4. It
took about 3 days on the same graph when asked to find the
15 most frequent patterns of up to size 6 using the size prin-
ciple. Figure 1 1 shows some of the results obtained using
the MDL principle. For example, one of the (very frequent)

1Vertex labels on figure 1, 2, 3 did not play any role in the process of
pattern discovery. Since we divided the actual edge labeling value into sub-
intervals, each edge label on figure 1, 2, 3 represents a disjoint interval. On
the other hand, both vertex labels and edge labels on Figure 4 participated
in the process of finding patterns.

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

1

99

0

15

4

3

2

1

1 23
15 21

Figure 1. Frequent patterns found by Subdue
on the graph data OD GW

patterns we find here demonstrates possible deadheading of
trucks. Thus, there seems to be significant traffic from node
2 to node 4 via node 3, but not much return traffic. This
might lead to opportunities for pricing changes, e.g., lower-
ing prices on the deadhead routes, that would be outside the
realm of traditional route optimization. SUBDUE required
about 304 hours (12 days) when ran on a truncated graph
consisting of the same 4037 vertices and only about 900
edges, but found fairly trivial results. While we are attempt-
ing to run it on the complete graph of over 6 months of data,
based on prior performance, we expect completion to take
months. All the experiments were done without allowing
overlap in the patterns. After running several experiments,
it was fairly obvious that running with the MDL principle
tends to give trivial results. This matches the expectation
from the data, since all the vertices are labeled the same.
With MDL, SUBDUE finds a large number of repeated pat-
terns of size 1. It tends to get better compression using these
small patterns rather than any of the interesting larger pat-
terns because the larger patterns are relatively infrequent.

We found more interesting results with the Size princi-
ple. When run on the truncated graph for Total Distance
of 100 vertices and 561 edges looking for the best 5 sub-
structures of maximum beam size 5, it took about 4.9 days
(118 hrs) but found very complex patterns. We found a pat-
tern consisting of 31 vertices and 37 edges that was repeated
twice in the graph without overlap. We were also looking
only for exact matches. Given that there can be at most
three non-overlapping patterns of this size in a graph of 100
vertices (31*3 = 93), this seems highly unusual. It would be
very interesting to see if this pattern could appear frequently
in the full dataset, but the time required for such search with
SUBDUE is prohibitive.

To summarize, SUBDUE does not find very interest-
ing patterns from the transportation viewpoint when eval-
uation is done with the MDL principle. The size principle
shows promise of giving interesting results. Unfortunately,
in both cases, SUBDUE requires long run times even on
small graph sizes. A big challenge is to further improve the
running time and make mining on the entire graph feasible.

Algorithm 1 Finding frequent subgraphs in a single graph
Require: k be the number of transactions to partition the

graph into, m be the number of repetitions, and s be the
support threshold.
result = ∅
for i = 1..m do

G1, . . . , Gk = SplitGraph(G, k)
result = result ∪
Find Frequent Graphs(s, G1, . . . , Gk)

end for
return result

5.2 Experiments with FSG

FSG is another existing software for graph mining, but
it merely mines patterns across a set of graph transactions.
Therefore, in order to find patterns in a single graph, we
attacked the problem with approaches designed for finding
patterns across multiple graphs. To support this, we subdi-
vide the single graph into multiple distinct sub-graphs, and
each sub-graph is treated as a separate transaction. We then
used FSG on these transactions to find frequent sub-graphs
This was repeated several times, with a different partition-
ing each time – if a sub-graph is frequent across a particu-
lar partitioning, it is frequent in the entire graph. (Running
multiple times decreases the number of false drops, or sub-
graphs that do not appear frequent because they get split
by the partitioning process.) This is described formally in
Algorithm 1.

In order to utilize FSG, in the following subsection, we
propose two different partitioning strategies breadth / depth
first for the SplitGraph procedure. Each strategy is incre-
mental: a single subgraph is pulled from the overall graph G
at each step. G is then modified to prevent getting the same
subgraph again, as overlapping subgraphs would result in
false positives (i.e., the same part of the graph would be
repeated in several sub-graphs and thus reported to be fre-
quent). This process is repeated until the graph is fully parti-
tioned. Efficient graph partitioning algorithms are available,
e.g., METIS[12]. However, in the experiment with FSG,
we adopt breadth / depth first partitioning strategies because
they allow us to control the type of patterns preserved after
partitioning (e.g., hub-spoke or long chain patterns).

5.2.1 Breadth first / Depth first partitioning

The key idea for both partitioning techniques is similar. In
both cases, we obtain a sub-graph by randomly choosing a
starting vertex in the graph G. All edges from that node are
added to the sub-graph, along with the endpoint vertices.
One of the endpoint vertices is chosen as the next starting
vertex, and the process is repeated. This continues until the

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

Algorithm 2 SplitGraph Breadth first / Depth first parti-
tioning
Require: Graph G, number of transactions k, ordering

structure q (queue for breadth-first, stack for depth-first)
for transactions = 1..k do

edges = |E|/(k − transactions)
Randomly select a vertex from G and insert into q
while edges > 0 and not q.empty do

v = remove next vertex from q
Add v to the new graph G′

while edges > 0 and v has edges remaining do
e = get edge adjoining v
add e to G′

remove e from G
edges = edges − 1
Add the vertex on the other end of e to G and q

end while
end while
Return G′

Remove “orphaned” vertices from G (those with no
edges)

end for

specified sub-graph size (number of edges) is reached, or
the sub-graph cannot be expanded further. At this point, the
edges in the sub-graph are removed from the original G,
along with any orphaned vertices. The process is repeated
until no edges remain in G.

The choice of which vertex to use as the next vertex
gives different ways of growing the graph. We present re-
sults using both depth-first search and breadth-first search.
This is shown in Algorithm 2. The algorithm attempts to
keep similar partition sizes although the potential for dis-
connected graphs forming as G is partitioned may result in
some smaller and larger partitions. Note that in both strate-
gies, as long as the graph G is appropriately modified by
removing the selected sub-graph, we should get almost mu-
tually exclusive sub-graphs by this partitioning.

While ideally we would hope to find any frequent pat-
terns, the partitioning may result in patterns being broken
across partitions, and thus not appearing to be frequent.
The different partitioning approaches give different types of
breaks. Breadth first partitioning allows us to find complex
frequent patterns where the nodes have high out-degree.
Depth first partitioning, on the other hand, leads to frequent
patterns that are long chains. Our experimental results on
real data show that the different partitioning approaches do
give different results; we do not believe either approach is
really finding all the frequent patterns in the data.2

2Tests on simulated data constructed by joining subgraphs with known
frequent patterns to form a single graph, and then partitioned, show recall
rates in the 50% and above range with both depth-first and breadth-first

5.2.2 Experimental Results

We ran experiments on the transportation network data us-
ing both partitioning techniques. We also tried different par-
tition sizes; 400, 800, 1200 and 1600. The support was set at
120 occurrences for the depth-first partitioning and 240 for
the breadth-first. An average of 667 frequent patterns were
found with the breadth-first partitioning, 200 with depth-
first. The smaller number of partitions actually gave a larger
number of frequent itemsets; this is not surprising, as these
produced larger graphs with more potential for overlap.

Some interesting sample results obtained on the real data
are displayed in Figures 2 and 3. The pattern displayed in
Figure 2 was found to be frequent in 243 instances. This
is a hub-and-spoke pattern and common in transportation
networks. A likely interpretation is a single delivery source
(e.g., a factory) that delivers products to many destinations.
Finding this pattern provides some validation of the efficacy
of our partitioning strategies.

The pattern in Figure 3 was frequent in 63 instances and
is found only by depth first partitioning of the graph. This
would be interesting from a transportation point of view, as
it points out a likely case for a repeated route, making deliv-
eries and pickups at each node. Such routes are common in
transportation networks, where deliveries are made from a
common origin to many destinations (e.g., a delivery route).
Of note is that this pattern does not reflect a delivery from a
common origin, but a combination of pickups and deliver-
ies on relatively short routes – an effective route (since the
truck is always utilized) that might be missed in trying to
find traditional delivery routes.

One problem we encountered during the experiment is
that we had runtime and memory problems with lower sup-
ports on the breadth-first partitions. It is safe to say that
with low support and large size of sub-graph transactions,
even though a single graph can be partitioned into a set of
smaller sub-graph transactions, FSG is not an appropriate
tool to use for mining recurrence patterns in a large single
graph.

6 Temporally Repeated Routes

The preceding experiment does not exploit the temporal
nature of the transportation graph. We tried a second ex-
periment where we looked for patterns of routes repeated in
time, rather than space. In other words, an interesting route
would be one that happened many times between the same
places.

To find such patterns, we partitioned each graph into a set
of graph transactions based on date. Each graph represented
all active OD pairs on that date. In other words, if a graph
transaction d is between the required-pickup date and the

partitioning, with better results for smaller graphs.

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

1

2

3

4

5
6

7

8

9

10

11

1

1

2

2

33
3

4

4

4

5

0

Figure 2. Sample results on graph data
OD TH (BF partitioning)

1

1

1

11

0

0

0

0

0

011 0

11

12

3

2

6 1
7

0

14

10

9

8

13

4

5

Figure 3. Sample results on graph data
OD TD (DF partitioning)

required-delivery date of an OD pair, the pair is considered
an active edge in d. Note that the same edge in the original
graph may appear in several graph transactions, based on
the number of days on which the load may be moved.

We present experiments based on a graph whose edges
are labeled based on a range of the gross weight of the load.
In other words, a load that would sometimes require a large
truck and other times only fill a small truck would not sup-
port the same frequent pattern. Since the goal is to find
repeated patterns in the same location across time, each ver-
tex is given a unique label based on its latitude and longitude
(points within a few miles are coalesced to the same vertex.)

Many individual graph transactions contained multiple
connected components. We further broke each discon-
nected graph transaction into multiple connected graph
transactions. Although FSG does not require its input to be
a set of connected graphs, breaking a disconnected graph
transaction into multiple connected graphs does not affect
the outcomes because FSG only finds connected frequent
patterns and the distinct labels prevent the different graphs
on a single day from supporting a common pattern. Before
running through FSG, transactions that have only one edge
were also eliminated as not producing interesting patterns.
We also had to remove duplicate edges within each transac-
tion, as FSG operates on graphs, not multigraphs. Table 2
shows statistics on the graph transactions after partitioning.

6.1 Experimental Results

We were unable to run FSG on the entire data set due to
insufficient memory / swap space. This was on a Sparc /
Solaris with a 900MHZ processor, 1GB main memory and
1.5GB swap space. We found that the large graphs caused
problems – even at 100% support, we could not run FSG on
the large graph transactions.

When we limited the data to dates with fewer than 200
distinct vertex labels, FSG produced 22 frequent patterns at
5% support. (The data after partitioning is summarized in
Table 3.) Most were small patterns, the largest was a three-
edge hub and spoke pattern (Figure 4). While this shows
potential, we need the ability to find more complex patterns
on full data sets to get results with real-world impact.

7 Patterns Discovered by Using Conventional
Mining Algorithms

One approach to pattern discovery in this data is to map
the dataset into a standard “transactional” representation
and use traditional data mining approaches. In this section,
we investigate the kinds of results that can be accomplished
by several conventional data mining algorithms. While this
loses much of the information contained in the network
structure, we want to evaluate this approach to present the

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

Table 2. Summary of Temporally Partitioned Graph Data
Number of Input Transactions: 146
Number of Distinct Edge Labels: 7
Number of Distinct Vertex Labels: 3835
Average Number of Edges In a Transaction: 1092
Average Number of Vertices In a Transaction: 601
Max Number of Edges In a Transaction: 4462
Max Number of Vertices In a Transaction: 2140

The Number of Graph Transactions with Size between 1 to 10: 73
The Number of Graph Transactions with Size between 10 to 100: 5
The Number of Graph Transactions with Size between 100 to 1000: 3
The Number of Graph Transactions with Size between 1000 to 2000: 31
The Number of Graph Transactions with Size between 2000 to 5000: 34

Table 3. Summary of Data Used in Frequent
Pattern Discovery

Number of Input Transactions: 53
Number of Distinct Edge Labels: 7
Number of Distinct Vertex Labels: 154
Average Number of Edges In a Transaction: 4
Average Number of Vertices In a Transaction: 5
Max Number of Edges In a Transaction: 8
Max Number of Vertices In a Transaction: 9

d

c

a

b

[0
, 6

50
0]

[0, 6500]

[1
30

00
, 1

95
00

]

Figure 4. Temporally frequent pattern with
weight ranges as edge labels

need for novel data mining algorithms that emphasize the
structures of the transportation network data.

We used Weka[21] for association rule mining, in-
stance (tuple) classification and cluster analysis on the
transportation data. The trucking data contained two dates
(REQ PICKUP DT, REQ DELIVERY DT) that are of crit-
ical importance when trying to discover periodicity patterns.
Since Weka maps the DATE attribute type to a REAL, in-
terpreting experiment results is non-trivial. This led to our
exclusion of these two attributes in the following experi-
ments.

7.1 Association Based Experiments

We ran the following two experiments to mine associa-
tion rules:

• Experiment 1: Discretize original data set and run
Apriori

• Experiment 2: Find associations, if any, between ori-
gin and destination pairs (this experiment was run us-
ing only the origin and destination latitude and longi-
tude attributes from the data set).

The results from Experiment 1 yielded associations of the
form: GROSS WEIGHT (X, (−∞,−4501])→
TRANS MODE(X, LTL), where TRANS MODE has
two distinct values: Less than Truckload (LTL) and
Truckload (TL). The conclusion is trivial: a lightweight
load is usually an LTL shipment, and the reverse holds
also. An interesting rule found in the result sets of both
experiments with a confidence of 0.87 concluded that:
ORIGIN LONGITUDE(X, (−84.76,−75.43])→
ORIGIN LATITUDE(X, (39.8, 44.08]). This rule is
useful to generalize the geographical area a shipment origi-
nates from.

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

Figure 5. Clustering statistics for Transporta-
tion Data

7.2 Classification Based Experiments

We first ran Weka’s version of the C4.5 algorithm (J4.8)
on the discretized dataset. The J4.8 model was 96% ac-
curate in classifying instances based on the class attribute
TRANS MODE {LTL, TL}. The classification tree first
splits on the GROSS WEIGHT attribute, which is consis-
tent with the strong association rules generated by the Apri-
ori algorithm in section 7.1. J4.8 was also run on the dis-
cretized dataset with the TRANS MODE attribute removed
and TOTAL DISTANCE set as the class attribute. The re-
sults from this experiment were interesting in the sense that
TOTAL DISTANCE and MOVE TRANSIT HOURS were
not as highly correlated as either TOTAL DISTANCE and
DESTINATION LATITUDE or TOTAL DISTANCE and
ORIGIN LATITUDE.

7.3 Clustering Based Experiments

We used the original undiscretized data set as the training
set input to the EM (expectation-maximization) algorithm.
The algorithm works by assigning each object to a cluster
based on a weight representing the probability of member-
ship. Figure 5 summarizes the results produced by the EM
algorithm. The training data were split into nine clusters
varying in size from 3 instances in cluster 0 to 19,386 in-
stances in cluster 2.

Figure 6(a) reflects the mean TOTAL DISTANCE
within each cluster. Similarly Figure 6(b) reflects the mean
TRANSIT HOURS within each cluster. As is evident in the
figures, Cluster 0 contains the outliers in this data set. These
three shipments have on average, traveled over 3, 000 miles
in less than 24 hours. Looking at the latitude and longitude

Cluster Comparison (total_distance)

0

500

1000

1500

2000

2500

3000

3500

0 1 2 3 4 5 6 7 8

cluster #

to
ta

l_
d

is
ta

n
c

e

Cluster Comparison (transit_hours)

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8

cluster #

tr
an

s
it_

h
o

ur
s

Figure 6. Clustering statistics for Transporta-
tion Data

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

of the origin and destination points (as well as the gross
weight), one can conclude the shipments are handled as air
freight (originating in the Pacific Northwest and delivered to
Hawaii). Similar analyses can be applied to characterize the
remaining clusters. Clusters 2, 5, 7, and 8 can be grouped
together and labeled “short-haul”. Similarly, clusters 1, 3,
4, and 6 can be referred to as “long-haul” routes.

Traditional data mining techniques have produced inter-
esting and meaningful results to summarize our data despite
the exclusion of two critical temporal attributes. Further ex-
perimentation with traditional mining algorithms is required
to explore the potential and limitations of these techniques
on temporal transportation network data. In addition, from
these data mining results, it is obvious that the insights from
the structural characteristics of the data cannot be derived.
As a consequence, conventional methods can only produce
limited insights on this transportation and logistic dataset.

8 Limitations of Existing Techniques and
Opportunities for Improvements

From the previous sections, some of the limitations of
SUBDUE and FSG are obvious. Even though SUBDUE
can discover patterns from connected and unconnected
graphs, from a transportation perspective, it does not find
very interesting patterns with the MDL principle. With the
size principle, SUBDUE produced interesting results. Un-
fortunately, SUBDUE requires long running times even on
small graphs, especially with the size principle. A first chal-
lenge is to substantially improve the running time and make
mining on the entire graph feasible.

Section 6 highlights the limitations of FSG, and most
likely other Apriori-style graph mining algorithms. While
breaking a disconnected graph transaction into multiple
connected graph transactions increases the number of graph
transactions in each transaction set; it should allow FSG
to speed up because the decrease in average transaction
size should substantially decrease the required amount of
computation of sub-graph isomorphism. With graph data
that naturally forms large graphs, as in the transportation
and logistic domain, partitioning the data in natural ways
(e.g., temporally) can produce very large graph transactions.
In addition, transaction sets in our problem domain had a
much larger number of distinct vertex labels than the chem-
ical compound dataset used in [13] and others, which has
4 edge labels, 66 vertex labels and 340 transactions with
average size 27.4 edges and 27 vertices.3 That the large
number of distinct labels can cause very large candidate
sets leads to insufficient memory to store these candidate
sets. Since the temporal partitioning strategy produced very

3We also used the synthetic graph generator used in [13] to generate a
set of graph transactions with a large number of distinct vertex labels; this
produced the same out of memory problems.

large graphs that caused FSG to fail, in order for FSG to
work, people may wonder if we could use the breadth /
depth first partitioning strategies to further break these large
sub-graphs. Although it is possible to further divide a large
partition into smaller sub-graph transactions, we may lose
many potentially frequent sub-graph patterns. Based on the
fact that sub-graph isomorphism is NP-Complete [8], if any
partitioning strategy could preserve all possible sub-graph
patterns, the partitioning strategy would generate exponen-
tial number of sub-graphs. Therefore, it is hypothetically
reasonable to believe smaller partitioning size could make
Apriori-based graph mining algorithms to work, but many
more frequent sub-graph patterns would not be discovered.

Traditional data mining tasks can be performed on the
transportation data in their pure transactional forms. How-
ever, they only produce limited insights. Consequently, the
existing graph mining algorithms need to be enhanced to
handle large graph transactions or new graph mining algo-
rithms need to be investigated within the domain of trans-
portation and logistic networks.

9 Conclusion: Challenges for
Data Mining Research

We have presented some ideas for new challenges in
the field of graph mining, based on transportation network
transaction data. We have shown two experiments where we
reduce this data to a problem that can be addressed by ex-
isting graph mining approaches. The first is based on find-
ing structurally similar patterns of origin-destination trans-
actions; the second on temporally similar patterns, or re-
peated routes. While both are interesting as a first cut, they
are perhaps most interesting not for the results produced,
but for the challenges to the data mining community.

We believe that the biggest shortcoming of current meth-
ods is their inability to handle the temporal aspects of
graphs. For useful mining of transportation data, it is critical
to incorporate the temporal nature of the links into the min-
ing algorithms. Thus, one of the biggest challenge problems
is how to do mining of dynamic graphs, where a dynamic
graph is defined as a graph for which an edge / vertex exists
only for certain periods of times. A pertinent question is
to consider what is a pattern over time. One example is to
find frequently repeated connection paths, where the entire
path is not connected at any given time instant but adjacent
edges and vertices always co-exist. Patterns could also oc-
cur spatially or temporally, possibly with an unknown pe-
riod. Including the temporal aspects adds a whole new di-
mension to the problem. Note that interesting patterns need
not be cycles, but patterns including elements that are not
spatio/temporally close are unlikely to be of interest. For
example, one could find that every time there is a load from
Green Bay to Lafayette, there is also one from Portland to

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

Sacramento. However, this is not necessarily very helpful.
Some filtering / constraints are needed.

Incorporating the notion of events into a graph is another
interesting problem. An event can be many different things.
Some examples are: A customer starting to have service
failures or weather incidents that cause longer delays or
even closure of some roads, or seasonality (including holi-
day behavior) which brings about known variability. As a
first cut, it is quite natural to represent events as a change in
the value of a set of nodes and links. Being able to find fre-
quent patterns caused due to the connectivity structure of a
graph would help in determining emergent patterns. Anal-
ysis of the fallout of temporal/spatial events could lead to
figuring out the nature of causality between emergent pat-
terns and a triggering event (i.e., bounce effect). This would
be extremely useful to the transportation industry.

The prediction of events itself might be possible if a
chain of events occur due to causality and graph structure.
This is not necessarily spatial, but there are interesting spa-
tial examples (e.g., balance of flow in/out of a certain mar-
ket, etc.)

While we only tested with FSG[13], the problems posed
by a mix of small and large graphs, and particularly by the
presence of very large graphs, may also pose problems for
other graph mining algorithms. Further experimentation
will be necessary to validate this hypothesis, however ex-
panding graph mining evaluation experiments beyond data
similar to molecular structures would be a worthwhile exer-
cise for graph mining researchers. Recent work in finding
maximal graph patterns, i.e., ignoring sub-patterns of a fre-
quent patterns, may address this challenge.

Another problem is with determining what makes a
graph pattern interesting. Even at high support levels (very
high frequency), we found many frequent patterns. How-
ever, many of these patterns turn out to be trivial or uninter-
esting. A variety of metrics have been developed to evalu-
ate the interestingness of association rules [15, 18]. Similar
metrics are needed for graph mining.

More interesting are the problems that are not easily re-
duced to the current notion of graph mining. Interesting
features of this data that are not well supported by existing
work in graph mining include:

• Graphs are directed. Kuramochi and Karypis point out
that FSG could easily be extended to directed graphs,
and likewise much of the other work in the field could
probably be so extended. Little work has actually been
reported in this direction outside the domain of trees.

• Finding patterns within a single graph is interesting.
Work is first needed to define what a pattern means
within the concept of a single graph; we have given
one definition in Section 5. Further definitions, and
algorithms that efficiently find all such patterns, is an

open problem.

• The data is temporal. Concepts such as periodicity in
routes, or expectation of changes over time, could be
important factors. This is an area where merging exist-
ing ideas in mining time-series data could lead to new
advances.

• Patterns that appear over a time window are more rele-
vant than those appearing at one instant. Knowing that
a cycle from Melbourne to Lafayette to Atlanta and
back to Melbourne exists on a single day is less rele-
vant than knowing that the cycle exists over a space of
a week. Ideas such as frequent episodes could be use-
ful, although it would be necessary to extend them to
recognize that not only must the pattern occur within a
time window, but that the transactions composing the
pattern must be separated by a minimum or maximum
time.

These challenges provide ample room for further research
in the field of graph mining.

10 Acknowledgments

We thank Jim Jeray, Mike Zeimer, Bob Gremley, Rao
Panchalavarapu, Vishvesh Oza, Erick Wikum, Ted Gifford
and Bradley Utz from Schneider National for discussions on
interesting challenge problems and value of results. Fruitful
discussions with Profs. Carla Brodley, Ananth Iyer, Reha
Uzsoy, and Dr. Richard Cho led to our initial focus on this
topic. We also thank Mr. Kuramochi for providing us with
the graph generator and the FSG executable, as well as Prof.
Washio for providing us with the executable for AGM.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining asso-
ciation rules. In Proceedings of the 20th International Con-
ference on Very Large Data Bases, Santiago, Chile, Sept.
12-15 1994. VLDB.

[2] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Satamoto,
and S. Arikawa. Efficient substructure discovery from large
semi-structured data. In Proceedings of the Second SIAM
International Conference on Data Mining, Santiago, Chile,
Apr. 11-13 2002. SIAM.

[3] K. Bansal, S. Vadhavkar, and A. Gupta. Neural net-
works based data mining applications for medical inventory
problems. International Journal of Agile Manufacturing,
1(2):187–200, 1998.

[4] K. Bansal, S. Vadhavkar, and A. Gupta. Neural networks
based forecasting techniques for inventory control applica-
tions. Data Mining and Knowledge Discovery, 2(1):97–102,
1998.

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

[5] D. Cook and L. Holder. Substructure discovery using min-
imum description length and background knowledge. Jour-
nal of Artificial Intelligence Research, 1:231–255, 1994.

[6] L. Dehaspe, H. Toivonen, and R. D. King. Finding fre-
quent substructures in chemical compounds. In R. Agrawal,
P. Stolorz, and G. Piatetsky-Shapiro, editors, Proceedings of
the 4th International Conference on Knowledge Discovery
and Data Mining (KDD-98), pages 30–36, New York, New
York, Aug. 1998. AAAI Press.

[7] S. Dill, S. R. Kumar, K. S. McCurley, S. Rajagopalan,
D. Sivakumar, and A. Tomkins. Self-similarity in the web.
In P. M. G. Apers, P. Atzeni, S. Ceri, S. Paraboschi, K. Ra-
mamohanarao, and R. T. Snodgrass, editors, VLDB 2001,
Proceedings of 27th International Conference on Very Large
Data Bases, pages 69–78, Roma, Italy, Sept. 11-14 2001.
Morgan Kaufmann.

[8] M. R. Garey and D. S. Johnson. Computers and intractabil-
ity : a guide to the theory of NP-completeness. W. H. Free-
man, San Francisco, 1979.

[9] L. Holder, D. Cook, and S. Djoko. Substructure discovery
in the SUBDUE system. In Proceedings of the AAAI Work-
shop on Knowledge Discovery in Databases, pages 169–
180, 1994.

[10] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based al-
gorithm for mining frequent substructures from graph data.
In Proceedings of PKDD’00, pages 13–23, 2000.

[11] The IEA and transport, Feb. 27 2003.
[12] G. Karypis and V. Kumar. A fast and high quality multilevel

scheme for partitioning irregular graphs. SIAM Journal on
Scientific Computing, 20(1):359–392, 1998.

[13] M. Kuramochi and G. Karypis. Frequent subgraph discov-
ery. In Proceedings of the 2001 IEEE International Confer-
ence on Data Mining, pages 313–320, 2001.

[14] M. Kuramochi and G. Karypis. Discovering frequent geo-
metric subgraphs. In Proceedings of the International Con-
ference on Data Mining, pages 258–265, Maebashi City,
Japan, Dec. 9-12 2002. IEEE.

[15] C. Silverstein, S. Brin, and R. Motwani. Beyond market
baskets: Generalizing association rules to dependence rules.
Data Mining and Knowledge Discovery, 2(1):39–68, Jan.
1998.

[16] S. Su, D. J. Cook, and L. B. Holder. Knowledge discovery
in molecular biology: Identifying structural regularities in
proteins. Intelligent Data Analysis, 3:413–436, 1999.

[17] Y. Takahashi, Y. Satoh, and S. Sasaki. Recognition of largest
common fragment among a variety of chemical structures.
Analytical Sciences, 3:23–28, 1987.

[18] P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the right
interestingness measure for association patterns. In Proceed-
ings of the Eighth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 32–41,
Edmonton, Alberta, Canada, 2002.

[19] A. Termier, M.-C. Rousset, and M. Sebag. Treefinder, a
first step towards XML data mining. In Proceedings of the
International Conference on Data Mining, Maebashi City,
Japan, Dec. 9-12 2002. IEEE.

[20] N. Vanetik, E. Gudes, and S. Shimony. Computing frequent
graph patterns from semistructured data. In Proceedings of
the International Conference on Data Mining, pages 458–
465, Maebashi City, Japan, Dec. 9-12 2002. IEEE.

[21] I. H. Witten and E. Frank. Data Mining: Practical Machine
Learning Tools and Techniques with Java Implementations.
Morgan Kaufmann, San Fransisco, Oct. 1999.

[22] E. K. Wong. Model matching in robot vision by subgraph
isomorphism. Pattern Recognition, 25(3):287–304, 1992.

[23] X. Yan and J. Han. gSpan: Graph-based substructure pat-
tern mining. In Proceedings of the 2002 IEEE International
Conference on Data Mining, pages 721–724, Maebashi City,
Japan, Dec. 9-12 2002. IEEE.

[24] M. Zaki. Efficiently mining frequent trees in a forest. In Pro-
ceedings of the Eighth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, Edmonton,
Alberta, Canada, 2002.

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

