
CERIAS Tech Report 2005-128

VIDEO AND IMAGE WATERMARK SYNCHRONIZATION

by Eugene Ted Lin

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

VIDEO AND IMAGE WATERMARK SYNCHRONIZATION

A Thesis

Submitted to the Faculty

of

Purdue University

by

Eugene Ted Lin

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2005

ii

To My Parents and Brother

iii

ACKNOWLEDGMENTS

I would like to thank my advisor, Professor Edward J. Delp, for his helpful

advice, invaluable guidance, and for “keeping my mind right.” He has provided

many opportunities to explore the most interesting and challenging pursuits, and his

teachings in scholarly research and in life shall always be cherished and remembered.

He has been an advisor of the highest regard.

I would also like to thank my graduate committee: Professors Leah H. Jamieson,

Mary P. Harper, and Zygmunt Pizlo, for their advice, encouragement, criticism,

and insight. They have encouraged me to look deeper, to explore and discover new

perspectives.

I appreciate the support and friendship of all my colleagues in the Video and

Image Processing (VIPER) lab, past and present: Dr. Gregory Cook, Dr. Cuneyt

Taskiran, Dr. Paul Salama, Dr. Eduardo Asbun, Dr. Sheng Liu, Dr. Yuxin Liu (Zoe),

Dr. Jinwha Yang, Dr. Sahng-Gyu Park, Dr. Yajie Sun, Dr. Lauren Christopher,

Anthony Martone, Aravind Mikkilineni, Hyung Cook Kim, Hwayoung Um, Zhen Li,

Limin Liu, Jennifer Talavage, Michael Igarta, Oriol Guitart Pla, Hakeem Ogunleye,

Martha Saenz, Dan Hintz, and Ray Wolfgang. This journey would not have been

as special, or as memorable, without their camaraderie and friendship. I would

like to thank my colleagues from abroad for their encouragement and perspective:

Professor Luis Torres, Dr. Josep Prades-Nebot, Dr. Alberto Albiol, Rafael Villoria,

and Andreas Lang. I would also like to thank Dan Teany and Mercan Topkara for

their support, advice, and many enjoyable discussions. Dan was involved in so many

occasions that he was practically a member of our lab.

I would especially like to thank Cuneyt “Taskmaster” Taskiran for providing

his unique outlook on all things; Jinwha “Texcan” Yang for providing so much

feedback and advice; Gregory Cook for all his knowledge of “how things work”;

iv

Yuxin Liu for being an inspiration to work even harder and for the “real” perspective

about China; Anthony “TON LOC” Martone for bringing out the lighter side of our

advisor; Aravind “Qrovna ho3e-y337: Cja3q Zvpebfbsg” Mikkilineni and Dan “User-

Thread” Teany for too many geeky conversations about Linux, C++, and anime;

Professor Thomas “=/Knife-” Talavage and Jennifer “Shira” Talavage for luring the

geeks out of the lab to appreciate life; Michael “bling-bling” Igarta for one more

“secret” project; and Rafael “Depredator” Villoria for professing the finest qualities

of American gourmet and movies.

I would also like to thank Professor Ahmet Eskicioglu, Professor Reginald La-

gendijk, Professor Jana Dittmann, Dr. Ton Kalker, Dr. Christine Podilchuk, Dr. Ad-

nan Alattar, and Dr. Mehmet Celik, with whom I have had the pleasure of collabo-

rating.

Lastly, I would like to thank my parents for unwavering support and encourage-

ment. My father has encouraged me to try my best, work hard at every endeavor,

and persevere because one does not find the rewards in life handed upon silver plat-

ters. My mother has taken care of “all the little things” that I have neglected over

these many years, put up with me coming home from the lab at 4:30 am, and taught

patience and compassion. Finally, I would like to express my deepest gratitude to

Jeff, for being the best brother in the world.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT . xiii

1 INTRODUCTION . 1

1.1 Content Protection . 2

1.2 Encryption . 4

1.3 Watermarking . 5

1.3.1 Watermarking applications . 6

1.3.2 Synchronization and synchronization attacks 8

1.4 Overview of the Dissertation . 9

2 BACKGROUND . 11

2.1 Watermarking Overview . 11

2.1.1 Watermark embedding . 12

2.1.2 Watermark attack . 16

2.1.3 Watermark detection . 21

2.2 Watermarking Objectives and Evaluation 27

2.2.1 Perceptual transparency . 27

2.2.2 Robustness . 30

2.2.3 Capacity . 31

2.2.4 Security . 32

2.2.5 Other criteria . 33

2.2.6 Performance evaluation, benchmarking, and tradeoffs 34

2.3 Digital Images and Video . 36

2.4 Digital Video Compression . 40

vi

Page

2.4.1 Video compression standards 41

2.4.2 Hybrid predictive-transform coding 45

2.5 Image and Video Watermarking . 50

2.5.1 Image watermarking . 50

2.5.2 Video watermarking . 53

2.6 Synchronization . 61

2.6.1 Synchronization attacks . 65

2.6.2 Synchronization insensitivity and invariant transformations . . 69

2.6.3 Synchronization and templates 72

2.7 Additional Background . 77

2.7.1 Pseudo-random number generators 77

2.7.2 State machines . 79

2.7.3 Steganography . 81

3 TEMPORAL SYNCHRONIZATION . 83

3.1 Temporal Synchronization Framework 83

3.2 Watermark Embedding Model . 88

3.3 Watermark Detection Model . 92

3.4 Analysis . 98

3.5 Temporal Redundancy and Synchronization 104

3.5.1 Adaptive state transitions . 111

3.5.2 Security . 113

3.6 Experimental Results . 115

3.6.1 Frame averaging . 127

3.6.2 Adaptive state transitions . 131

3.7 Conclusions and Future Work . 135

4 SPATIAL SYNCHRONIZATION . 139

4.1 Watermark Embedding . 140

4.2 Watermark Synchronization . 143

vii

Page

4.2.1 Watermark scale estimation 147

4.2.2 Watermark rotation estimation 154

4.3 Experimental Results . 155

4.3.1 Scale and rotation rank . 156

4.3.2 Discussion . 157

4.4 Conclusions and Future Work . 169

5 SEMI-FRAGILE WATERMARKING . 171

5.1 Robust, Fragile, and Semi-Fragile Watermarking 171

5.1.1 Semi-fragile watermarking . 174

5.2 A Semi-Fragile Watermark . 176

5.2.1 Watermark generation and insertion 176

5.2.2 Watermark Detection . 178

5.3 Evaluation of the Semi-Fragile Watermark 180

5.4 Conclusions . 188

6 CONCLUSIONS . 190

6.1 Contributions . 191

6.2 Future Work . 192

LIST OF REFERENCES . 195

VITA . 218

viii

LIST OF TABLES

Table Page

2.1 Desired output of ideal robust watermark detector 23

2.2 Observation of the watermarked signal Ŷ by users and watermark detec-
tors. The user is interested in the original signal. Watermark detectors
are interested in the watermark. A non-blind detector has access to the
original signal and can remove host-signal interference. 25

2.3 Common sizes of digital video frames . 39

2.4 Examples of spatial synchronization attacks 67

3.1 Structure of watermarked video using adaptive state transitions for Akiyo 132

3.2 Structure of watermarked video using adaptive state transitions for Foreman133

3.3 Structure of watermarked video using adaptive state transitions for Bus . 133

3.4 Structure of watermarked video using adaptive state transitions (Mean
over all videos) . 134

5.1 Block Statistics for detector (embedding strength γ = 5.0, detection
blocksize=16 × 16) . 182

ix

LIST OF FIGURES

Figure Page

2.1 Classical model of watermarking . 12

2.2 Watermark embedding . 14

2.3 Original image Fruit . 16

2.4 Watermarked Fruit and difference images using technique of [61]. Distor-
tion introduced by watermark insertion is more visible as the strength γ
is increased. 17

2.5 Mosaic Attack on the watermarked Fruit image. Each block represents
an individual image. The gaps between the images are not present when
the images are displayed. Watermark detection fails when each of the
small images is examined individually. 19

2.6 Visibility of distortion in Flowergarden. Additive white noise has been
inserted into the image. The noise is independent of the image and uni-
formly distributed with zero mean. The PSNR of the noisy image is
27.67 dB. The distortion is not very noticeable at the bottom (textured
flower region) of the noisy image but obvious at the top (smooth sky
region). 29

2.7 Chrominance subsampling showing positions of chrominance pixels rela-
tive to luminance pixels (×=Luminance pixel, ©=Chrominance pixel) . 38

2.8 Video compression . 42

2.9 Example of the object-oriented video compression supported by MPEG–
4. Each video object is encoded as a separate elementary stream. The
elementary streams for all the objects are multiplexed within the MPEG–
4 compressed stream. An MPEG–4 decoder composes the scene from the
individual objects for display. 46

2.10 Hybrid predictive-transform coding framework. The encoder contains a
fully functional decoder within the prediction loop. 47

2.11 Example of temporal prediction used in hybrid coding. I-frames are white,
P-frames are black, and B-frames are gray. Frames are numbered to
indicate display order. Arrows indicate temporal prediction, pointing
from a reference frame to the predicted inter-frame. 48

x

Figure Page

2.12 Compressed domain watermark embedding. The original compressed
video is parsed and partially decoded to expose elements of the com-
pressed video data. Some of the elements are modified to insert the
watermark, and then the compressed data is reassembled to obtain the
watermarked video. 57

2.13 Watermark embedding, detection and synchronization 62

2.14 Watermark detection with synchronization 73

3.1 Watermark embedding model . 89

3.2 Example key generators . 93

3.3 Watermark detection model . 94

3.4 State sequence of modified embedder. Each circle represents the state
used to watermark a single video frame. Arrows indicate frames where
state transitions occur in the key generator. 106

3.5 State sequence in a frame dropping attack 108

3.6 Modified embedder with temporal redundancy control 110

3.7 Example of changing feature values reducing temporal redundancy 112

3.8 Detection rate under frame dropping attack 121

3.9 Detection rate under frame decimation attack 122

3.10 Detection rate under frame decimation attack (continued) 123

3.11 Detection rate under frame transposition attack 124

3.12 Detection rate under frame averaging attack 125

3.13 Detection rate under frame averaging attack (continued) 126

3.14 Frame averaging attack on watermarked video (β = 5) with window size
λ = 3. Each box indicates a separate frame of the watermarked video,
with the watermarks embedded in each frame indicated. 130

4.1 Watermark embedder with state machine key generator for spatial syn-
chronization . 141

4.2 Watermark structure showing macroblocks and blocks. The image shows
an example of the structure of a watermark constructed and inserted in
the spatial domain. The first block of all macroblocks are identical. . . . 142

xi

Figure Page

4.3 Autocorrelation of watermark showing location of local maxima or peaks.
Peaks are indicated by ×, forming a regular grid. Not all the peaks in
the autocorrelation are shown. 145

4.4 Spatial synchronization procedure . 146

4.5 Example of watermark scale and rotation estimation using image Girl.
PSNR of watermarked image is 33.8 dB, M = 3, B = 16. Attack is re-
scaling by factor f = 1.15 followed by rotation of 6◦. Neighbor distance
is χ = MBf = 55.2 pixels. 148

4.6 Distance histogram of Girl (histogram bin size ∆s = 1). Large values
occur at the bins corresponding to the distances of 55 pixels, 78 pixels,
110 pixels, and 123 pixels. 149

4.7 Improving the scale estimation . 151

4.8 Score function Ss(k∆s) of Girl (∆s = 1). The largest score occurs for the
distance of 55 pixels, which implies that scale estimation is correct on the
first attempt. 153

4.9 Original and watermarked Girl and Crowd (γ = 5.0, M = 2, B = 16) . . 162

4.10 Original and watermarked Fruit and Peppers (γ = 5.0, M = 2, B = 16) . 163

4.11 Scale and rotate ranks for scaling attack (30% to 210%) without rotation,
with watermark construction parameters M and B varied. 164

4.12 Scale and rotate ranks for rotation attack (0◦to 89◦) without scaling, with
watermark construction parameters M and B varied. 165

4.13 Scale and rotate ranks for rotation and scaling attack. Scaling is varied
from 30% to 210% while rotation is fixed at 3◦. Watermark construction
parameters M and B varied. 166

4.14 Scale and rotate ranks for rotation and scaling attack. Scaling is fixed
at 120% while rotation is varied from 0◦to 89◦. Watermark construction
parameters M and B varied. 167

4.15 Effect of image padding. When an image is rotated near 45◦, a significant
area of the attacked image is occupied by padding (the black triangular
regions.) These regions, and the strong edges between the padded regions
and the image, disrupt the pattern of peaks in the autocorrelation. . . . 168

5.1 Watermark generation in DCT domain for 8 × 8 blocks. For each wa-
termark block, white coefficients are generated using a PRNG. Shaded
coefficients are not watermarked and have a value of zero. 177

5.2 Example of block operators on a block B of size 4 × 4 samples 178

xii

Figure Page

5.3 Original Images . 183

5.4 Altered Images . 184

5.5 Mean correlation of unaltered and altered blocks when the tampered im-
age is provided to the watermark detector (embedding strength γ = 5.0,
blocksize=16 × 16) after varying degrees of JPEG compression. The ac-
curacy of the detector improves when there is a large separation between
the mean ρb of altered and unaltered blocks. 185

5.6 Detector accuracy when the threshold is varied from 0.0 to 1.0, for a
tampered image compressed at various JPEG quality factors. When the
threshold is near 0.0, almost all of the incorrect detections are misses.
When the threshold is near 1.0, almost all of the incorrect detections are
false positives. 186

5.7 Example of Detection. γ = 5.0, T = 0.1, blocksize=16 × 16, JPEG
Q = 60 data rate=0.90 bits/pixel, 93% correct detection (5332 blocks
correct out of 5704 blocks), 4% false positive (211 false positives out of
4753 unaltered blocks), 17% misses (161 misses out of 951 altered blocks).
A box indicates an altered block correctly identified, X indicates false
positive, and X within a box indicates a miss. 187

xiii

ABSTRACT

Lin, Eugene T. Ph.D., Purdue University, May, 2005. Video and Image Watermark
Synchronization. Major Professor: Edward J. Delp.

Digital watermarking is the practice of inserting a signal, known as the water-

mark, into an original signal in an imperceptible manner. The watermark encodes

or represents information that can protect the watermarked signal, typically identi-

fying the owner (source) or the intended recipient (destination) of the signal. The

embedded watermark may be detected by using a watermark detector, which enables

an application to react to the presence (or absence) of the watermark in a signal.

However, the watermarked signal may be processed, or attacked, prior to watermark

detection. Attacks may remove the embedded watermark or make the watermark

more difficult to detect.

One type of attack that has received considerable attention is synchronization at-

tacks. A synchronization attack confuses the watermark detector by re-positioning

the embedded watermark. Most watermark detectors will fail to detect the water-

mark embedded in the attacked signal unless the position of the watermark can be

identified. This is a significant vulnerability in robust watermark detection. The

process of identifying the position of the watermark is known as watermark detector

synchronization.

A new framework is developed for temporal synchronization in blind symmetric

video watermarking. Embedding and detection models are proposed that encom-

pass the behavior of many video watermarking techniques. These models demon-

strate that synchronization is challenging when the watermark lacks redundancy,

but also that efficient synchronization can be achieved by designing the watermark

with temporal redundancy. The temporal synchronization models are adapted to

xiv

spatial synchronization in still image watermarks. For spatial synchronization, re-

dundancy is obtained by constructing a watermark which induces a pattern in the

auto-correlation. Experimental results support the theoretical foundations for both

temporal and spatial synchronization.

In addition, earlier exploration in watermarking led to the development of a semi-

fragile watermarking technique for image authentication. The semi-fragile technique

is capable of detecting significant alterations to the watermarked image, but is tol-

erant to lossy JPEG compression and other, more subtle alterations. This earlier

work is not related to watermark synchronization.

1

1. INTRODUCTION

The use of digital video has grown dramatically in recent times. Digital video applica-

tions include video-conferencing, video-on-demand, digital television, digital cinema,

distance learning, entertainment, surveillance, and advertising. Many users experi-

ence digital video when they watch a motion picture recorded on a digital video

disc (DVD) or downloaded over the Internet. The proliferation of digital video into

more applications is encouraged by improving compression technology, better au-

thoring and editing tools, lower-cost capture and display devices, and more available

bandwidth in digital communication networks.

Digital representation offers many advantages for processing and distributing

video and other types of information. First, digital software programs offer un-

precedented flexibility in creating, editing, presenting, and manipulating the digital

information. Analog devices lack the flexibility, malleability, and extensibility of

software processing. Second, digital communications networks (such as the Internet)

allow digital data to be distributed and disseminated on a wide scale. On some of

these networks, existing open and proprietary protocols such as the World Wide Web

allow any user to easily and inexpensively obtain, provide, exchange, and find digital

information. Lastly, digital information can be processed, and in particular, copied

without introducing loss, degradation, or noise [1]. For example, an unlimited num-

ber of perfect copies can be produced from a single digital video signal. In contrast,

the addition of noise into a copy from analog signal processing is unavoidable. (That

is, a copy of an analog video signal is not an exact replica of the original.)

While the aforementioned advantages offer immense opportunities for creators,

the ability to make perfect copies and the ease by which those copies can be dis-

tributed also facilitate misuse, illegal copying and distribution (“piracy”), plagiarism,

2

and misappropriation. Content creators and owners are concerned about the con-

sequences of illegal copying and distribution on a massive scale. This problem is

not merely theoretical. The economic damage arising from illegal copying and dis-

tribution of copyrighted materials is estimated to be in the billions of dollars [2, 3].

Recently, popular Internet software based on a peer-to-peer (P2P) architecture (such

as Kazaa [4], BitTorrent [5], eDonkey [6] and Gnutella) has been used to share (dis-

tribute) copyrighted music, movies, software, and other materials. Future P2P sys-

tems may encrypt the data being shared, preserve the anonymity of its users, support

a larger number of users, and be more robust [7,8]. These advances in P2P systems

will create considerable challenges for copyright enforcement. Thus, there is a great

desire for methods which can preserve the economic value of digital video and protect

the rights of content owners.

1.1 Content Protection

Content protection [2] is a challenging problem which involves conflicting inter-

ests. Content owners wish to ensure that their intellectual property is not misused,

illegally copied, or distributed. Device manufacturers desire to keep their prod-

ucts inexpensive and simple, however, implementing technological content protection

measures increases both the cost and complexity of devices. Device manufacturers

also desire to minimize the risk of introducing devices to market which restrict or

limit the activities of their users, as they are aware that potential customers (greatly)

shun such devices. Users desire their legal privileges (such as First Sale and Fair

Use) [9–11] and privacy [12] to be safeguarded. Users do not wish to pay for devices

which are more expensive, more complex, less compatible (interoperable), and more

restrictive of their activities. Users are wary that they shall burden the costs for

content protection systems, even though the primary beneficiaries of such systems

are content owners and providers.

3

While it is not clear where the balancing point amongst the diverse interests

ultimately lie, there has been technical and legal initiatives towards content protec-

tion [2]. The Digital Millennium Copyright Act (DMCA) was the first legislation

in a series of efforts by the U.S. Congress to update the U.S. copyright law for the

digital age. President Clinton signed the Act into law on October 28, 1998. The

DMCA prohibit circumvention of technological measures used by copyright owners

to protect their works.1 Similar provisions appear in the European Copyright Di-

rective (EUCD), or Directive 2001/29/EC of the European parliament. The EUCD

obliges the Member States to call into being legal protection against the circumven-

tion of technical security measures as well as against manufacturing, offering for sale

or trading in equipment the primary object of which is to circumvent these technical

security measures. Member States of the European Union are currently implement-

ing the directive, be it with a much slower pace than what the implementation

deadline of December 2002 called for. Furthermore, some national parliaments have

rejected (initial) proposals to implement the EUCD.

To complement the legal initiatives, content owners have also sought technical

measures to protect their works. Technical content protection measures generally

use three approaches: access control, copy protection, and content tracking.

The objective of access control is to ensure that video is accessible only under

the rules or conditions specified by the content owner. For example, the owner may

specify that only certain users may view the video, or that the video can be viewed

for a limited number of times, or that payment is required each time the video is

viewed. Access control alone offers limited protection, however, because at some

point the video will be provided to a user. When this occurs, access control will not

prevent the user from creating illicit copies or misusing the video.

Copy protection [14] prevents or hinders the creation of copies. Copies of a video

can be created digitally, or by recording the video as it is displayed to the user.

1These provisions are controversial. In particular, it may be illegal to circumvent technical protec-
tion measures even if the intended reason for doing so falls under Fair Use provisions or if making
a copy is otherwise legal [11,13].

4

Recording the video as it is displayed for the intent of circumventing or removing

technical content protection measures is known as exploiting the “analog hole” [15].

A copy protection system identifies copy protected video and then uses some means

to prevent or make more difficult the creation of a copy. Unfortunately, copy pro-

tection is very challenging and techniques for copy protection have consistently been

defeated.

Content tracking is a means to protect video even if access control and copy

protection are circumvented. In content tracking, each legitimate copy of the video

is personalized or individualized by embedding information indicating the user who

has custody of that copy. If a copy of the video is discovered in a suspicious location

(such as being shared using P2P software), an investigator may extract the embedded

information from the copy and determine source or origin of the suspect copy. The

content owner may decide to initiate action if many suspect copies are found.

1.2 Encryption

Access control has often been addressed by using encryption. Encryption [16–25]

is the process of scrambling data into an unintelligible form. The original data

is known as the plaintext and the scrambled data is known as the ciphertext. The

inverse process of obtaining the plaintext from the ciphertext is known as decryption.

Encryption provides confidentiality because a secret key is necessary for decryption.

Traditionally, encryption has been used to ensure the confidentiality of sensitive

information (such as electronic mail, military secrets, and financial information)

transmitted through an insecure communications channel. For access control, video

is encrypted and the decryption key is provided only after the access conditions have

been satisfied. Obtaining the encrypted video alone (without the decryption key)

does not allow the video to be displayed.

The significant limitation of encryption is that it offers no protection once the

video is decrypted. This implies that encryption alone is not sufficient for content

5

protection and another method is needed to protect the video after decryption. Wa-

termarking has been proposed to provide more lasting protection.

1.3 Watermarking

Digital watermarking [26–33] is the insertion of a signal, known as the watermark,

into original video in an imperceptible manner. The watermark encodes or repre-

sents information that can protect the video, typically identifying the owner (source)

or the intended recipient (destination) of the video. The process of inserting the wa-

termark introduces distortion, however, watermarking techniques use heuristics or

perceptual models [32] to conceal the presence of the watermark embedded in the

watermarked video. Ideally, the watermarked and original videos are perceptually

indistinguishable when displayed. The embedded watermark may be detected by us-

ing a watermark detector, which enables an application to react to the presence (or

absence) of the watermark in a video. In addition to video, watermarking techniques

have been proposed to protect images, audio, text, and other types of data [29].

A challenge in watermarking is that processing the watermarked video may re-

move or damage the embedded watermark, or make the watermark more difficult to

detect. The watermarked video may be processed for any number of reasons, includ-

ing the normal processing that occurs in an application; unintentional damage or loss

during storage, retrieval, or transmission over a network; or deliberate processing by

a (hostile) user for the purpose of removing the embedded watermark. Processing

the watermarked video is known as an attack, whether the intent such processing is

malicious or not.

In addition to perceptually transparent embedding, another goal of watermarking

is robustness against attacks.2 The watermark detector should detect the watermark

in the watermarked video, even when the video has been subjected to attack. The

2Robustness is not a desired property in some watermarks used for authentication. This will be
discussed in Chapter 5.

6

watermark should be securely embedded and difficult to remove, such that the em-

bedded watermark is a permanent and inseparable part of the watermarked video.

1.3.1 Watermarking applications

While content protection (including content tracking) has often been mentioned

as the motivation for digital watermarking, watermarking can be used in other

applications as well. Applications and potential applications of watermarking in-

clude [2, 28,34–37]:

• Content Tracking: The owner personalizes each copy of the content by em-

bedding a watermark into the copy. The embedded watermark identifies the

user who has custody of that copy. Any subsequent digital copies made of

the watermarked content will also be watermarked. If a suspicious copy of the

content is discovered, detecting the watermark reveals the source of the suspect

copy. These watermarks are sometimes referred to as fingerprints.

Content tracking is not necessarily directed at individual users. For exam-

ple, consider the mass production of pre-recorded video. Suppose the video

owner contracts the services of various mastering and distribution companies

to create and distribute the video on media. However, the owner is worried

that some companies may have insufficient security measures to safeguard the

video. Unscrupulous companies or employees may even conspire to “leak” il-

licit copies to pirates. To trace security breaches, the owner embeds a different

watermark into the copies he provides to each mastering company. If illicit

copies are found before the official release of the video, the video owner detects

the watermark to identify the company whose security is lacking. The content

owner may then choose not to deal with that company in the future. A simi-

lar application lies in digital cinema, where the movie owner is worried about

collusion between some theater owners and pirates.

7

• Owner or Copyright Identification: In copyright watermarking, the embedded

watermark encodes ownership information such as the identity of the owner

and the copyright date. Detecting the watermark provides the content owner

with additional evidence of ownership in the event of a dispute. The embedded

information may also be useful in detecting or showing plagiarism, particularly

when the watermark is detected in allegedly original content from a third party.

• Copy Protection: The presence of the watermark identifies the watermarked

content as copy protected. A device that obeys the copy protection protocol

detects the watermark and then disallows the creation of copies. Some copy

protection schemes allow the user to create a single generational copy but

restrict the user from making additional copies from a copy [14]. In such

schemes, an embedded watermark could encode information such as “always

allow additional copies”, “only one additional copy allowed”, and “no more

copies allowed”. Using watermarks in this manner requires cooperation from

recording devices to detect the watermark and prevent unauthorized copying.

The embedded watermark will not prevent the video from being copied if the

recording device does not detect or ignores the watermark.

• Broadcast Monitoring [38]: An embedded watermark may be used to recognize

or identify a signal of interest, particularly when the signal has been spliced or

merged with other signals. Recognition occurs when the watermark is detected.

For example, an advertiser wishes to verify that a particular advertisement is

being broadcast as contracted. Verification and auditing are important con-

siderations when the production and distribution of broadcast video content,

including advertisements, entertainment content, and news, have immense eco-

nomic value.

• Authentication: The ability to detect altered or forged video is critical in ap-

plications such as video surveillance [39,40]. An embedded watermark encodes

information necessary to verify the integrity of the watermarked signal [41–44].

8

If alterations are detected, the watermark allows the identification of the al-

tered regions (though not necessarily the nature of the alterations). Authen-

tication also encompasses anti-counterfeiting, where a watermark is embedded

to increase the difficulty in creating illegitimate content (including illegitimate

copies). For example, watermarks have been proposed to protect documents

such as identification cards and passports [45].

• “Smart” Content [46]: An embedded watermark can be used in conjunction

with devices to provide additional functionalities or services that benefit the

user. For example, the watermark embedded in a music video may describe

a link to the artist’s Internet site which allows a user to purchase the artist’s

(other) works.

• Robust Data Hiding or Steganography [47]: The embedded watermark may be

used as a covert channel to communicate messages from one user to another.

For example, the sender embeds the watermark into a video, encoding the

secret message in the watermark. The watermarked video is then provided

to the recipient(s), possibly by using an insecure channel or by making the

video publicly available. Because the watermarked video and original video are

perceptually similar, the communication of the secret message is disguised by

using the original video signal as an innocuous cover. The intended recipient(s)

detects and decodes the watermark to obtain the secret information.

1.3.2 Synchronization and synchronization attacks

A type of attack that has received considerable attention in watermarking is syn-

chronization attacks. A synchronization attack confuses the watermark detector by

moving, or re-positioning the embedded watermark. Unless the watermark detector

can identify where the watermark resides in the attacked video, most watermark de-

tectors will fail to detect the watermark. This is a major vulnerability in watermark

detection. If the watermark cannot be detected, then the watermark does not confer

9

any benefit or protection in the application. It is often easier to confuse the water-

mark detector by a synchronization attack than to remove or destroy the embedded

watermark, and in fact many synchronization attacks are easy, or even trivial, to

perform.

The process of identifying the position of the watermark is known as watermark

detector synchronization. Synchronization is generally a search to discover where the

watermark has been re-positioned in a watermarked signal. While a blind, exhaustive

search is not practical, a variety of strategies have been proposed to reduce the

search. Some watermarking techniques confront synchronization issues by designing

the watermark such that re-positioning is more difficult. Other techniques propose

designing a pattern, known as a template, which allow the watermark detector to

use an informed search to discover the position of the watermark. The ease by

which synchronization attacks can render undetectable the watermarks produced

by current watermarking techniques has inspired much effort to find techniques for

efficient synchronization.

Efficient synchronization is the focus of this dissertation. Unlike most other works

which merely propose a template or technique for synchronization, models of syn-

chronization are developed that allow a deeper insight into why synchronization is

relatively easy for some watermarks but considerably more difficult for others. In

particular, when synchronization is viewed as an informed search, redundancy in the

watermarked signal affects the difficulty of synchronization. The models also allow

the development of watermarks that have demonstrable resilience against synchro-

nization attacks.

1.4 Overview of the Dissertation

The primary objectives of this research are to obtain a deeper understanding of

watermark detector synchronization and to design watermarks that are more robust

against synchronization attacks.

10

Chapter 2 is a background of watermarking. The background includes an overview

of the fundamentals of watermarking, digital image and video watermarking (which

is the emphasis in this dissertation), and watermark synchronization.

Chapter 3 describes new models for temporal synchronization. These models

encompass the behavior of many proposed video watermark embedders and detec-

tors. Using the models, temporal synchronization is explored and the vulnerability

of some current watermarking techniques against temporal synchronization attacks

is demonstrated. The models also show that resilience against temporal synchro-

nization attacks can be achieved by designing a watermark that possesses temporal

redundancy. Experimental results corroborate the theoretical foundations.

In Chapter 4, spatial synchronization is explored. A method for efficient spatial

synchronization is developed which is inspired from the temporal synchronization

models. Spatial redundancy is used to construct an autocorrelation-based template

for spatial synchronization. The results demonstrate that redundancy is helpful for

spatial synchronization.

Chapter 5 describes some of the earlier work in semi-fragile watermarking for

content authentication. The watermarking technique described in this chapter allows

alterations to a watermarked image to be distinguished from more innocuous signal

processing, such as lossy compression. Because digital signals can be manipulated

with relative ease, tamper detection and authentication is useful, if not necessary,

for the use of digital signals as evidence in law, journalism, intelligence, and other

applications. This work is not related to watermark detector synchronization.

Conclusions are in Chapter 6, as well as directions for future work.

11

2. BACKGROUND

This chapter provides an overview of the fundamental concepts and current ap-

proaches in digital watermarking, particularly for video and still images. The focus

of this research work is watermark synchronization, which will be introduced and

identified as a significant issue (and vulnerability) in watermark detection.

The overview of watermarking begins with a description of watermark embed-

ding, detection, and attacks. These three fundamental processes are described in

Section 2.1. The desirable properties of watermarks and watermark evaluation are

discussed in Section 2.2. While there is a slight emphasis towards the watermarking

of images and video in these sections, the discussion is generally applicable for wa-

termarking of multimedia signals, including audio. The structure and properties of

digital images and video are described in Sections 2.3. Section 2.4 briefly describes

digital video compression. Section 2.5 is a review of watermarking techniques specific

to digital images and video, including techniques for watermarking compressed video.

Synchronization is described in Section 2.6. Some topics useful in later discussions

appear in Section 2.7.

2.1 Watermarking Overview

Digital watermarking [27–33] is the art of embedding information into an original

signal in an imperceptible and secure manner, and the subsequent detection of the

embedded information from the watermarked signal. The watermarked signal may

be attacked, or altered, before it is made available to the watermark detector. These

three processes of watermark embedding, attack, and watermark detection are fun-

damental to watermarking and are shown in Figure 2.1. Each of these fundamental

processes will be elaborated below.

12

Watermark

Embedding

Message

M

Embedding Key

KE

Watermark

Detection

Attack /

Distortion

Channel

Watermarked

Signal Y

Test Signal

Z

Detection Key

KD

Original Signal

X

Watermark

Detected?

Extracted

Message M'

Arbitrary Signal

Y
^

Fig. 2.1. Classical model of watermarking

2.1.1 Watermark embedding

Watermark embedding is the process of encoding information in the form of

the watermark and then inserting the watermark into an original signal to produce

the watermarked signal. The watermark embedder accepts as inputs the original

signal X, embedding key KE, and message M , and produces the watermarked signal

Y . The watermarked signal contains the embedded watermark and is therefore not

identical to the original signal. Nevertheless, the original signal and the watermarked

signal should be perceptually similar under casual observation. Distinct signals may

be perceptually similar because of limitations in human perception [32, 34, 48–50],

which makes watermarking (and lossy compression [51–54]) possible for visual and

auditory signals.

The original signal X is the signal into which the watermark will be embedded.

Once the watermarked signal is produced, the original signal is safeguarded. The use

of watermarking confers no protection or benefit to the original signal because the

original signal is not watermarked. Unrestricted access to the original signal would

defeat the purpose of watermarking.

13

The embedding key KE is the secret that is necessary to generate and embed

the watermark. A watermarking technique is generally capable of embedding many

watermarks and is not limited to embedding a single, specific watermark. From the

embedder’s viewpoint, KE is a parameter that identifies which watermark to embed.

Each (choice of) KE identifies a distinct watermark. From a broader perspective,

knowledge of KE confers the ability to embed the watermark. That is, embedding

the watermark with knowledge of the corresponding KE is easy. However, embedding

the watermark without knowledge of KE should be very difficult, even with complete

knowledge of all the workings of the watermark embedder.

The set of all embedding keys is the embedding keyspace, KE, and KE ∈ KE.

The cardinality of the keyspace, or |KE|, is generally very large.

A detail that needs to be addressed when using watermarking is key manage-

ment [16,55]. One aspect of key management is the assignment of keys to recipients,

owners, users, and other entities in an application. For example, an application

embedding watermarks for expressing ownership would assign a unique KE to each

owner. Key management, however, is not a concern in this dissertation. It is suffi-

cient herein that each KE corresponds to a distinct watermark.

Watermarking techniques may allow additional side information to be encoded

into the watermark, known as the payload or message M . Upon successful water-

mark detection (see Section 2.1.3), the watermark detector is able to extract the

payload and provide the extracted payload to the application. The same payload

may be encoded in multiple watermarks (corresponding to distinct KE’s). Some

watermarking techniques do not support encoding a payload.

Watermark embedding is the two-step process shown in Figure 2.2. First, the

watermark signal W is constructed by the watermark generator using KE and M .

While the specific methods by which W is constructed depends on the watermark-

ing technique, many watermarking techniques produce W using a pseudo-random

number generator (PRNG). Section 2.7.1 describes PRNGs in more detail. The

14

Watermark

Insertion

Message

Embedding
Key

Watermark

Generation

Original

Signal

Watermarked

Signal

X Y

KE

M

W

Fig. 2.2. Watermark embedding

embedding key KE is typically the seed to the PRNG, which results in W as a

KE-dependent noise-like pattern.

Some watermarking techniques provide the original signal X to the watermark

generator, which permits signal-adaptive embedding. Adapting the watermark to

the characteristics of the original signal can significantly improve the performance

of watermarking techniques. One way to exploit signal-adaptive embedding is to

use a perceptual model [32, 34] to allow the watermarked signal to be more percep-

tually similar to the original signal. Signal-adaptive watermarks can also be more

robust against attack [56,57]. The concept of generating the watermark based on an

examination of the original signal is known as informed embedding [28,58,59].

Once W has been constructed, it is inserted into the original signal in the step

of watermark insertion. Watermark insertion introduces distortion into the water-

marked signal, causing the watermarked signal to be distinct from the original signal.

When the watermarked signal is shown or displayed, the effect of the distortion is

similar to noise. Like watermark generation, the methods by which the watermark is

inserted depends on the watermarking technique. Watermark generation and water-

mark insertion may be tightly coupled and are not necessarily independent processes.

15

Many watermarking techniques use the insertion methods of additive embedding,

multiplicative embedding, or quantization embedding. In additive embedding, W is

added into the corresponding sample values of X analogous to additive noise, or

Y = X + γW, (2.1)

where γ is a parameter which scales the amplitude of the embedded watermark.

This parameter is commonly referred to as the embedding strength. Multiplicative

embedding [60,61] uses

Y = (1 + γW)X. (2.2)

Quantization embedding is watermark insertion by quantizing samples of X. Quan-

tization [62] is a non-reversible process which transforms a continuous value to one

of a countable set of values. The difference between the quantized value and the

original value is known as the quantization error. Different quantizers may be used

for each sample or group of samples of X. Watermarking techniques using quan-

tization embedding include Quantization Index Modulation (QIM) [63] and Scalar

Costa Scheme1 (SCS) [56,64,65] watermarks. When quantization error is viewed as

additive noise, then for quantization embedding W is the residual W = Y −X that

has been added X to produce Y .

Before moving the discussion to attacks, an example is useful to illustrate the

basic concepts of watermark embedding. This example uses the still-image water-

marking technique described in [61]. The watermark is a pseudo-random sequence

multiplicatively inserted in the Discrete Cosine Transform (DCT) [66,67] coefficients

of the Fruit image shown in Figure 2.3. The embedding strength is varied. Fig-

ure 2.4 shows the watermarked images and the corresponding difference images for

γ = 0.01, 0.1, 0.2, and 0.5. The difference images show the difference between the

corresponding pixels of the watermarked image and the original image. A neutral

gray region in the difference image indicate that the corresponding pixel values of the

1SCS watermarking extends the earlier work in QIM, hence QIM with dither modulation is a special
case of SCS.

16

Fig. 2.3. Original image Fruit

watermarked and original images are similar, while bright and dark regions indicate

dissimilar pixel values. The contrast of the difference images have been increased to

make the differences more visible.

The watermarked images show that as the strength is increased, the watermark

becomes more noticeable. For example, the distortion in the watermarked image

is generally noticeable for γ = 0.5. However, if the strength is sufficiently small

then there is little or no perceptual difference between the watermarked image and

the original image. The inserted watermark is more noticeable in relatively smooth

regions of the image, such as the background region near the very top of the image,

and less noticeable in “busy” regions of the image such as the region near the grapes

and strawberries.

2.1.2 Watermark attack

The watermarked signal may be attacked [68–70] before examination by the wa-

termark detector. An attack is any process which may remove the embedded water-

mark, increase the difficulty in detecting the watermark, or subvert the security of

the watermark. While the word “attack” has an adversarial connotation, attacks do

not necessarily have malicious intent. For example, the watermarked signal may be

subjected to innocuous processing in an application. Conversely, attacks may arise

from deliberate attempts to remove an embedded watermark or defeat the security

17

(a) Watermarked γ = 0.01 (b) Difference γ = 0.01

(c) Watermarked γ = 0.1 (d) Difference γ = 0.1

(e) Watermarked γ = 0.2 (f) Difference γ = 0.2

(g) Watermarked γ = 0.5 (h) Difference γ = 0.5

Fig. 2.4. Watermarked Fruit and difference images using technique
of [61]. Distortion introduced by watermark insertion is more visible
as the strength γ is increased.

18

of the watermarking system. The watermarked signal may also be attacked multiple

times.

Removal attacks are attacks which damage or destroy an embedded watermark.

Removal attacks include filtering, lossy compression, addition of noise, noise removal,

quantization [71], transcoding [72, 73], amplitude scaling [74], and digital-to-analog

and analog-to-digital conversion. Some removal attacks (such as lossy compression)

are general processing which do not specifically target the embedded watermark

but may incidentally destroy or damage it. Other removal attacks are designed to

eliminate the embedded watermark while preserving the “quality” or usefulness of

the attacked signal. Some removal attacks directed specifically against watermarks

are described in [70,75–81].

Another method for attack is to increase the difficulty of detecting the watermark.

These detection-disabling attacks do not remove the watermark, but obfuscate the

watermark from the watermark detector.2 Because the watermark is not removed,

the watermark could be readily detected by the watermark detector if the detec-

tor can determine (or if it is provided with information) how the watermark has

been obfuscated. One type of detection-disabling attack that has received consider-

able attention is synchronization attacks. Watermark detector synchronization and

synchronization attacks are the focus of this dissertation and will be discussed in

Section 2.6. Another detection-disabling attack is the Mosaic Attack [70]. In the

Mosaic Attack, a large watermarked signal is partitioned into smaller signals, each

of which is sufficiently small such that the watermark detector will fail to detect the

watermark when examining the small signal alone. The Mosaic Attack is effective

against watermark detectors that do not possess the ability or resources to splice the

smaller signals and detect the watermark on the unified signal. An example of the

Mosaic Attack is shown in Figure 2.5.

2While a detection-disabling attack is not directed towards watermark removal, the manipulations
to the watermarked signal that are performed as part of the detection-disabling attack may, as a
secondary effect, damage or destroy an embedded watermark.

19

Fig. 2.5. Mosaic Attack on the watermarked Fruit image. Each
block represents an individual image. The gaps between the images
are not present when the images are displayed. Watermark detection
fails when each of the small images is examined individually.

Collusion attacks exploit correlation to remove embedded watermarks. Corre-

lation may be present in multiple signals or within a single signal [82, 83]. When

multiple watermarked signals are produced from a common original signal, the wa-

termarked signals are correlated because they all contain the original signal. The only

difference amongst the watermarked signals are their embedded watermarks, which

are usually uncorrelated with respect to each other. Averaging a sufficient number

of watermarked signals provides a good estimate of the (unwatermarked) original

signal. This is a significant issue for content tracking, where a group of users may

conspire to create an unwatermarked signal which does not identify any of the con-

spirators. There have been efforts in designing collusion-secure watermarks [82–87]

which can expose one or more conspirators when the total number of conspiring users

is sufficiently few. But despite these efforts, collusion remains a significant problem

for content tracking. Collusion attacks may also exploit correlation within a signal.

This latter type of collusion attack is an issue for video watermarking and will be

described in Section 2.5.2.

Not all attacks are concerned with removing or obfuscating embedded water-

marks. Some attacks, such as security and protocol attacks [69], are designed to

20

subvert watermark security. Two attacks are briefly mentioned as examples: the

copy attack and the ambiguity attack.

The copy attack [88] is a method of forgery by estimating and transferring the

watermark from a watermarked signal to another (arbitrary) target signal. The copy

attack can have significant repercussions in watermarking applications. For example,

when watermarks are used for content tracking, an innocent user may be framed when

the copy attack is used to transfer the innocent user’s watermark from a legitimate

signal to a pirated signal. When watermarks are used to express ownership, the copy

attack may be used to transfer an owner’s watermark from an innocuous work into

disturbing or illegal works, such as child pornography. Countermeasures against the

copy attack include signal-adaptive watermarking, such as [89], and also [90–92].

The ambiguity attack is an attack against copyright or ownership watermarks [93–

95]. An ownership watermark is embedded so that, in the event of a dispute, the

owner can demonstrate ownership by detecting his or her own watermark in the

disputed content. However, an attacker may also produce another signal, a “false

original,” in such a way that the true owner cannot be determined by the watermark.

One way to combat the ambiguity attack is to use non-inverible watermarking [93]

to make difficult the creation of a false original. See also [94, 96], and embedding

secure timestamps [16].

The context of the application is an important consideration when discussing

attacks. While many attacks against watermarks have been described, not all of

the attacks are necessarily significant for a particular application. For example,

the application may anticipate certain kinds of attacks and require an embedded

watermark to be robust to these attacks. Robustness against other attacks may have

lesser or no importance, particularly if such attacks are not likely to occur in the

application. This will be mentioned again when security is discussed in Section 2.2.4.

21

2.1.3 Watermark detection

The last fundamental process to be introduced is watermark detection. The

objective of the watermark detector is to determine whether or not an input signal

Z is watermarked. The watermark detector is also provided with a detection key KD,

and, in some techniques, the original signal X. If watermark detection is successful

and the technique supports a payload, the watermark detector also extracts the

payload M ′. If Z had been attacked, then M ′ is not necessarily identical to M .

The detection key KD specifies the watermark to be detected. An embedded

watermark should only be detectable with knowledge of KD. If the key to detect the

watermark is identical to the key used to embed the watermark (KD = KE), then

the watermarking technique is known as a symmetric or private key watermarking

technique. Otherwise, KD �= KE and the technique is known as an asymmetric or

public key watermarking technique [41, 97, 98]. Asymmetric watermarks have the

advantage that the knowledge to detect a watermark does not confer the ability

to embed the watermark (because a different key is used.) The vast majority of

proposed watermarking techniques are symmetric.

The detection keyspace KD is the set of all detection keys, and KD ∈ KD. For

symmetric techniques, the embedding and detection keyspaces are identical and the

keyspace of the technique can be written as K = KE = KD. The embedding and

detection keyspaces may be identical or distinct for asymmetric techniques.

Some watermark detection techniques require access to the original signal for

watermark detection. These techniques are known as non-blind (detection) tech-

niques. A non-blind technique requires a secure method for providing the original

image to the watermark detector, which is a significant limitation in many proposed

applications. Watermarking techniques that do not require the original signal for

watermark detection are known as blind (detection) techniques.

22

In general, the input test signal Z is arbitrary and can be any signal. How-

ever, four cases are considered when describing the desired output of the watermark

detector:

1. When Z is the original signal X.

2. When Z is the watermarked signal Y .

3. When Z is a watermarked signal that has been attacked Ŷ .

4. When Z is any other signal.

Because the original signal is not watermarked, the watermark detection should fail

when the original signal X is examined by the detector. Conversely, watermark

detection should always succeed if the watermarked signal Y is examined and the

proper detection key is provided to the detector. If the watermarked signal has been

attacked, the watermark detector should successfully detect the watermark unless:

(1) the attack sufficiently damages or degrades the watermarked signal so that it

is no longer usable in the application, in which case the output of the detector is

“don’t care,” or (2) the watermarking technique is fragile. The focus of the discus-

sion is on robust watermarks, which are watermarks designed to be detectable even

after the watermarked signal has been attacked. Fragile watermarking will not be

discussed until Chapter 5. The watermark should not be detected if any other signal

is examined by the detector because these signals are not watermarked. Table 2.1

summarizes the desired output of an ideal robust watermark detector.

When the watermark detector examines Z and produces a result (watermark

present, watermark not present), its correctness is one of three cases: correct, false

positive, or miss. Assuming that the corresponding KD is provided to the detector,

the watermark detector is correct when it reports Z as watermarked and Z (actually)

is watermarked. The watermark detector is also correct if it reports that Z is not

watermarked and Z is (actually) not watermarked. A false positive occurs when the

watermark detector reports an unwatermarked Z as watermarked. A miss occurs

23

Table 2.1
Desired output of ideal robust watermark detector

Test Signal Z Detection Key Detector Output

Watermarked, not attacked (Y) Correct KD Watermark Present

Watermarked, not attacked (Y) Incorrect KD Watermark Not Present

Watermarked, attacked (Ŷ) Correct KD Watermark Present*

Watermarked, attacked (Ŷ) Incorrect KD Watermark Not Present

Original signal (X) Any Watermark Not Present

Other (none of the above) Any Watermark Not Present

*If the attack sufficiently damages or degrades the watermarked signal such that

it is no longer usable in the application, the detector output is “Don’t Care”.

when the watermark detector reports watermarked Z as unwatermarked. Obviously,

false positives and misses are detection errors. When any other KD is provided

to the watermark detector, a false positive occurs when the detector reports Z as

watermarked. A miss is not possible because the watermark detector should never

detect an embedded watermark without the proper KD.

The watermark detector is able to detect an embedded watermark and extract

the payload because it has access to side information. Specifically, (1) the water-

mark detector is aware of the specific methods by which the watermark is created

and embedded, and (2) the watermark detector is provided with the detection key.

This side information generally provides the detector with complete information how

the watermark has been embedded.3 Using the side information, the detector exam-

ines the test signal Z and determines the likelihood that Z is watermarked by using

fundamental signal detection and statistical signal processing principles [28,99–103].

While not all watermark detectors use correlation (for example, [104, 105]), correla-

3Thus, the signal W is often available to the watermark detector, even though W is not an explicit
input to the detector.

24

tion or matched filtering followed by a decision threshold is very common. Because

the watermark detector makes use of knowledge how the watermark is embedded,

the watermark detector is usually specific to the watermarking technique.

The two main challenges for robust watermark detection are to detect the water-

mark in an attacked signal and to prevent interference from causing detection error.

Robustness against attack is often addressed by modeling. Developing and using

models allow countermeasures to be devised against the attacks in which the model

is applicable. Unfortunately, models are generally applicable to a relatively small

set of attacks against watermarks. For example, a model suitable for some removal

attacks may not consider detection-disabling or synchronization attacks. Designing

a watermark that is robust against “everything” remains elusive because currently

there is no useful model that describes all attacks against watermarks.

Watermark detection is affected by interference, which may cause detection error

even in the absence of attack. Two sources of interference are host-signal interference

and watermark interference. Host-signal interference is the phenomenon where the

original signal acts like a source of noise with respect to blind watermark detection.

Because the watermark should be perceptually invisible, the power of the signal

of interest to the detector (the watermark) is often orders of magnitude less than

the power of the interference source (the original signal). If the original signal is

available at the detector, or non-blind detection, then the host-signal interference is

known and can be subtracted or removed by the detector. Table 2.2 summarizes this

discussion. Host-signal interference can be reduced in blind detection by informed

embedding [28, 56, 64, 106–108]. Filtering or whitening may also reduce host-signal

interference [38,109].

Watermark interference occurs when two or more watermarks produced by dis-

tinct KE’s appear indistinguishable to the watermark detector. In other words, the

one-to-one correspondence between KE and KD is lost. This interference may occur

coincidentally or as a result of poor design of the watermarking technique. The result

25

Table 2.2
Observation of the watermarked signal Ŷ by users and watermark
detectors. The user is interested in the original signal. Watermark
detectors are interested in the watermark. A non-blind detector has
access to the original signal and can remove host-signal interference.

When Ŷ is Signal of

examined by Interest Noise Effect of Noise

User X W + Attacks Perceptual distortion; may

be distracting

Blind Detector W X + Attacks Attacks or host signal inter-

ference may cause miss

Non-Blind Detector W Attacks Attacks may cause miss

is false positives, because a watermark produced by any of the affected embedding

keys will be detected by using any of the corresponding detection keys.

This section concludes with an example of a simple additive watermarking tech-

nique with a blind correlation-based detector. This example is similar to the wa-

termarking technique implemented in the experimental work described in Chap-

ter 3. Suppose X = 〈x[0], . . . , x[N − 1]〉 is an original signal of length N samples.4

The watermark is generated as a KE-dependent, zero mean, N -dimensional signal

W = 〈w[0], . . . , w[N − 1]〉 and additive embedding is used to produce the water-

marked signal Y = X + γW . The watermark detector is a blind correlation-based

detector which obtains the (linear) correlation:

ρ =
1

N
(Z · W) (2.3)

The dot (·) signifies dot-product, or the sum of the products of corresponding sam-

ples. If ρ is sufficiently large, then the watermark detector concludes that the water-

4In this text, the notation 〈·〉 is used to denote an ordered sequence, such as the samples of a signal
or the elements of a vector, and {·} is used to denote set membership. X = 〈x1, x2, x3〉 is the
ordered sequence x1 followed by x2, followed by x3. X = {x1, x2, x3} is a set with members x1, x2,
and x3.

26

mark is present. Otherwise, the watermark detector concludes that the watermark

is not present. In signal detection theory, this is expressed as a comparison with

some detection threshold T :

Detector Output =







ρ ≥ T : Watermark Present

ρ < T : Watermark Not Present
(2.4)

A common assumption in watermarking is that an arbitrary signal is not correlated

with the watermark. This assumption is based on the fact that watermarks typically

possess a noise-like structure that does not resemble any useful signal. Thus, given

an arbitrary unwatermarked signal Z, the expected correlation value is

E [ρ|Z �= Y] =
1

N
E [Z · W] = 0 (2.5)

Now suppose that the input is watermarked, or Z = Y . Then, substituting in (2.3),

ρ =
1

N
(Y · W)

=
1

N
([X + γW] · W)

=
1

N
(X · W) +

γ

N
(W · W) (2.6)

and taking expectation,

E [ρ|Z = Y] =
1

N
E [X · W] +

γ

N
(W · W) . (2.7)

Making a similar assumption that W is not correlated with arbitrary (original) signal

X, then

E [X · W] = 0 (2.8)

and the expected correlation value becomes

E [ρ|Z = Y] = 0 +
γ

N
(W · W) =

γ

N
(W · W) (2.9)

Equation (2.9) is the expected correlation value when the input is watermarked.

The threshold value of (2.4) is chosen to be less than (2.9), such as T = γ

2N
(W · W),

although a precise value for T is not important in this example. In practice, T

27

would be chosen based on the desired false-positive or miss rate, if such information

is available or can be estimated [99–101].

Host-signal interference is expressed by the first term of (2.6). This equation

shows that the original signal X appears in ρ, which allows X to interfere and cause

detection error. The assumption of (2.8) is that for arbitrary X, the expectation is

that X is not correlated with W . However, there will generally be some correlation

(but usually weak correlation) between a fixed X and W , thus X ·W will be non-zero.

This may cause ρ to fall beneath threshold T and the detector to miss, particularly

if some part of X is (coincidentally) anti-correlated with W . When the embedding

power of W is low, the second term of (2.6) is decreased, which increases the influence

of the first term (the interference term). The expectation of (2.5) also only applies

for arbitrary unwatermarked Z, and there will generally be some correlation between

a fixed Z and W . If the correlation is sufficiently large, than ρ will be greater than

the threshold, causing a false positive for Z. These detection errors may occur even

without attacks.

2.2 Watermarking Objectives and Evaluation

There is general agreement that the performance criteria [28–33, 110, 111] for

watermarking should include at least perceptual transparency, robustness, capacity,

and security. Perceptual transparency is the degree of invisibility of the embedded

watermark when the watermarked signal is displayed. Robustness is the resilience

of the embedded watermark against removal by signal processing. Capacity is the

amount of information that can be encoded or expressed by the watermark, and

security is the ability of the watermark to resist hostile attacks.

2.2.1 Perceptual transparency

Perceptual transparency is the degree of invisibility of the watermark when the

watermarked signal is displayed. Watermark embedding requires inserting distortion

28

into a signal, and as a result watermarking is not possible if no amount of distortion

is tolerable. While the precise limits of watermark visibility is determined by an

application, preserving the “quality” of the watermarked signal and minimizing the

perceived distortion caused by watermark embedding are generally desirable.

One way to quantify distortion is the mean-square error. The mean-square error

between any signals S1 and S2 is defined as

MSE(S1, S2) =
1

N

∑

∀v

(S1[v] − S2[v])2 (2.10)

where v is a coordinate vector (t for one-dimensional signals, (x, y) for two-dimensional

signals, and (x, y, t) for three-dimensional signals) and N is the total number of sam-

ples in each signal. When S1 and S2 are identical, then MSE (S1, S2) = 0. A related

distortion measure is the peak signal-to-noise ratio, or PSNR, in decibels (dB)

PSNR(S1, S2) = 10 log10

[

(Smax)
2

MSE(S1, S2)

]

(2.11)

where Smax is the maximum value for any sample of S1 or S2. The higher the

PSNR(S1, S2), the less distortion between S1 and S2. If the signals are identical,

then PSNR(S1, S2) = ∞. The MSE and PSNR provide a way of quantifying the

true distortion between two signals. However, true distortion is not as significant in

watermarking as perceptual distortion, or how the distortion is perceived when an

observer views the distorted signal. Neither the MSE nor the PSNR consider how

distortion is perceived.

When examining the perceptibility of distortion, the spatial and temporal dis-

tribution of the distortion is as significant as the total power of the distortion. For

example, distortion that alternates rapidly in successive frames of video may appear

to flicker or shimmer to an observer. This can be extremely distracting, even when

the total amount of distortion is small. On the other hand, relatively large amounts

of distortion may be unnoticed in textured or busy areas of an image, such as the

flowers in Flowergarden (Figure 2.6). In general, many factors affect human per-

ception of distortion [34, 50, 112, 113], including the (original) signal characteristics,

distortion characteristics, and the environmental or viewing conditions.

29

(a) Original

(b) Noisy

Fig. 2.6. Visibility of distortion in Flowergarden. Additive white
noise has been inserted into the image. The noise is independent of
the image and uniformly distributed with zero mean. The PSNR of
the noisy image is 27.67 dB. The distortion is not very noticeable at
the bottom (textured flower region) of the noisy image but obvious
at the top (smooth sky region).

30

There have been efforts to develop perceptual distortion measures that are appli-

cable for assessing image and video quality, including [112,114–121]. These distortion

measures vary in complexity and accuracy (or agreement) with subjective evalua-

tion. Unfortunately, perception of visual distortion is an open problem and there is

currently no distortion measure that agrees with subjective assessment for all types

of images, types of distortion, and viewing conditions. The PSNR is often used as

an objective measure of distortion even though the PSNR does not consider per-

ception and does not fully agree with subjective assessment of visual quality [119].

The widespread use of the PSNR in the watermarking (and lossy compression) lit-

erature does allow some “loose” basis for comparison. Until there is agreement on a

perceptual distortion measure to assess visual quality, watermarking techniques typ-

ically select (perhaps arbitrarily) one or more known distortion measures, such as

the MSE, PSNR or some perceptual distortion measure, to demonstrate perceptual

transparency.

2.2.2 Robustness

Robustness is the resilience of the embedded watermark against removal by signal

processing. A watermark is robust against an attack if the attack does not appre-

ciably remove the watermark or hinder its detection by the watermark detector.

Many applications do not require the watermark to be robust against any conceiv-

able attack, but only against attacks that are likely or expected to occur before the

watermarked signal is examined by the watermark detector. Robustness is also not

necessary against attacks that sufficiently damage the watermarked signal to render

the attacked signal useless.

A variety of methods have been used to experimentally demonstrate robustness

against attacks. Some papers describing techniques using correlation-based detectors

show the detector correlation values with and without attack. The watermark is

robust if the correlation values do not change appreciably after attack. For techniques

31

that support a payload, robustness can be measured as the bit error rate (BER) of

the extracted payload. A robust technique will have a very low payload BER after

attack. In other techniques, the detector examines a large input signal and detects

the watermark on a unit basis, such as a video watermark detector that performs

a separate detection on each video frame. In these techniques, robustness can be

measured by the average number of successful detections, or the average number of

successful detections per unit time. The detection rate of a robust technique does not

appreciably decrease after attack. Because there are many methods to operationally

measure robustness, comparing the robustness of different watermarking techniques

can be awkward.

2.2.3 Capacity

Capacity is the amount of information that can be represented or encoded by an

embedded watermark. For watermarking techniques that do not support a payload,

the capacity is a single bit (watermark is present or watermark is absent). Water-

marking techniques which support a payload [122] typically express the capacity in

terms of bits of payload per sample of the watermarked signal. A technique with

higher capacity allows more information to be embedded in a signal of fixed size,

and is generally desirable. A signal-dependent watermarking technique may embed

more information when the characteristics of the original signal are favorable, and

less information otherwise.

Capacity and robustness may be viewed from the perspective of a communications

framework [28,63,123]. In this view, the watermark is analogous to a channel which

communicates the payload from a sender (the watermark embedder) to a receiver

(the detector). Without any attack, the capacity of the channel is a property of

the watermark technique and, in the case of blind techniques that are affected by

host-signal interference, the original signal. The effect of attacks is to reduce the

capacity of the watermark, until capacity reaches zero and no information may be

32

reliably communicated. A robust watermark is one whose capacity is not significantly

reduced as a result of attack.

2.2.4 Security

Watermark security [28, 124] is the ability of the watermark to resist hostile at-

tacks. Attacks can render the watermark useless or subvert how the watermark is

used in an application, thereby compromising watermark security. In general, wa-

termark security is compromised if the embedded watermark can no longer function

as intended by an application. The application determines the (possible) threats

against the watermark, the resources (including technical knowledge) possessed by

adversaries, and the cost or consequences of security breaches. Some applications do

not require much security, while other applications anticipate many threats against

an embedded watermark and require a high level of security.

While the security requirements of specific applications lie beyond the scope of

this discussion, applications generally consider one or more of the following threats:

unauthorized embedding, unauthorized detection, and unauthorized removal [28].

Unauthorized embedding, or forgery, is an attack which embeds a false watermark

into an arbitrary signal or allows the payload of an existing watermark to be al-

tered. The copy attack is an example of unauthorized embedding. Unauthorized

detection is the detection of the watermark by users which should not be able to

detect the watermark. An example of unauthorized detection is estimation of the

watermark by processing a watermarked signal. Unauthorized removal refer to at-

tacks which remove an embedded watermark or prevent the watermark from being

detected. Examples of unauthorized removal include removal, detection-disabling,

synchronization, and collusion attacks.

The threats of unauthorized embedding, detection, and removal imply that es-

timating or deducing the structure of an embedded watermark (by examination or

processing a watermarked signal) should be very difficult. If an attacker can success-

33

fully deduce the structure of a watermark, then removing the watermark is trivial

(for example, [78]). The attacker may also be able to transfer the watermark to

another signal by the copy attack.

Security is not the same concept as robustness. While many watermarks must

be robust to be secure, this is not always the case. Some watermarks can be secure

without being robust. These watermarks will be described in Chapter 5. Conversely,

robustness alone may not be sufficient for security. For example, a robust watermark

may be vulnerable to the copy or ambiguity attacks, and hence insecure for some

applications. Some applications require watermarks with a high degree of robustness

but relatively little security, for example [46]. The security requirements of [46] are

relatively low because users have little reason to attack the watermark. However,

this application requires a watermarking technique with robustness to many sig-

nal processing attacks. These attacks include noise insertion, geometric distortion,

changes in image brightness, and many other effects that arise from the printing and

detection processes which are used in [46].

2.2.5 Other criteria

In some proposed applications, the watermark embedder resides in an environ-

ment where available (computational) resources are scarce, or where real-time wa-

termark embedding is needed. One example is watermarking of broadcast video

of a live performance or sporting event. In these applications, watermark embed-

ding is constrained by the available resources and the cost of watermark embedding

is a significant issue. Other applications, such as content tracking, require many

different watermarked signals to be produced. Summing the cost to produce each

watermarked signal can result in a significant total cost. This cost is not necessarily

in computation. For example, content tracking of printed images requires a print

process that can produce a large number of unique (watermarked) images. Such

34

a print process is generally more expensive than the process of printing the same

number of identical copies of a single image.

Similarly, the cost of watermark detection is incurred each time the watermark

detector examines an input signal. Detection cost is a concern for applications that

require frequent watermark detection, such as for each time a signal is accessed,

copied, or displayed [14]. The detection cost is also a concern if the watermark

detector is constrained by limited resources or when a quick response time is re-

quired [46]. Broadcast monitoring is an example of an application which performs

many watermark detections. An example of an application in which detection cost

may not be critical is content tracking. In content tracking, watermark detection is

performed only when needed and any reasonable cost is generally acceptable.

Detection accuracy refers to the false positive and miss rates of the watermark

detector. It was mentioned in Section 2.1.3 that detection error can occur even

without attack, such as errors caused by host-signal and watermark interference.

Thus, detection accuracy can be examined under attack-free conditions as well as

when the watermarked signal is attacked. It is generally not feasible to evaluate

detection accuracy by empirically testing over the set of all original signals and

the set of all watermarks because the cardinalities of these sets are generally large.

However, evaluation is possible by modeling [28].

2.2.6 Performance evaluation, benchmarking, and tradeoffs

Benchmarking and performance evaluation [70, 125–130] are open issues in wa-

termarking. Common objectives of watermark benchmarking are to (fairly) compare

the performance of watermarking techniques and to determine the suitability of wa-

termarking techniques to the requirements of an application. For a variety of reasons,

these objectives are difficult to achieve. First, as the earlier discussion has mentioned,

there is no clear agreement on how some of the performance criterion should be ob-

jectively measured and compared. Second, even if objective measures are obtained

35

for each criterion, there is no agreement how the measures should be combined to a

holistic view that can be compared to the needs of a specific application.

A third reason why watermark benchmarking is difficult is that the design of

watermarking techniques represent tradeoffs in the performance criteria. One can

trade, or sacrifice, performance in one or more criterion to improve the performance

in another criterion. For example, decreasing the embedding strength (or equiva-

lently, the embedding power) of the watermark allows perceptual transparency to be

improved at the cost of decreased robustness. This tradeoff requires neither chang-

ing the specific methods used by the watermarking technique, nor changing any

parameter other than the embedding strength. Some tradeoffs require modifying the

watermarking technique but in a relatively simple manner, such as decreasing water-

mark capacity to increase robustness by encoding the payload using error-correcting

codes [131] prior to embedding. These tradeoffs imply that a performance compari-

son should not consider only a specific “operating point” amongst the performance

criteria, but rather the range of possible “operating points” that a technique can

achieve. An analogy can be made with lossy compression: In lossy compression, a

signal can be encoded at various data rates, and at each rate with a corresponding

distortion [132, 133]. Comparing either the rate or the distortion alone is meaning-

less. However, the (achievable) rate-distortion performance is a characteristic of each

lossy compression technique which allows comparison. This overall methodology for

comparing techniques, analogous to rate-distortion analysis in lossy compression, has

not been developed for watermarking.

Despite these issues, applications generally favor some (subset) of the perfor-

mance criteria. The remaining criteria are of secondary importance, even if the rel-

ative importance may not be precisely quantified by some measure at this time. For

example, an application may require robustness against certain attacks, regardless

of any reasonable cost in security or capacity. Thus, certain tradeoffs are interesting

for these applications, with complementary interest in techniques to achieve these

tradeoffs with minimal cost.

36

2.3 Digital Images and Video

An image I(x, y) is a signal whose values represent the intensity of light emitted to

an observer at each spatial coordinate (x, y). An analog image is a continuous-space

signal taking on a real value at any coordinate. A digital image [50,113,134–136] has

values only at discrete coordinates, known as samples or pixels. Each pixel value is a

member of a countable set. From an analog image, a digital image can be obtained

in two steps: First, the analog image is sampled to form a discrete-space signal.

Sampling [137,138] does not cause any information to be lost if the analog image is

band-limited and the sampling rate is sufficient (exceeding the Nyquist rate). After

sampling, each sample value is quantized to one of a countable set of values and the

digital representation is obtained. Many images use 8 bits to represent each pixel

value, which allows for up to 256 discrete intensity levels.

An elementary view of digital video [50,136,139] is an ordered sequence of digital

images that are displayed in succession, as well as the corresponding audio and

synchronization signals. Each image of the video is known as a frame. The number

of displayed frames per unit time is the frame rate. Some videos represent each frame

as two separate fields [139] that are displayed in an interlaced or interleaved fashion.

Fields more closely resemble the interlaced scanning used by analog television. The

synchronization signal is used to maintain consistency during the presentation of

the video, ensuring that the visual and audio signals are displayed together at the

correct time. (This synchronization signal is not related to watermark detector

synchronization.) While the focus of this discussion is the visual portion of the video

signal, the audible portion is recognized as an integral part of the user experience

for many videos.

The perception of color [48, 140–142] occurs when the observer’s visual system

and brain interpret light incident upon the retina with wavelengths of approximately

400 nm to 700 nm. The human retina has four types of receptors, with three types

involved in color vision. Each type of color receptor has a different frequency response

37

to the power spectra of the incident light. (The frequency responses of the receptors

generally overlap, such that a specific wavelength of light excites all three types of

receptors but to different degrees.) From the receptors, a complex neural process

occurs in the retina, optic nerve, and brain that eventually leads to the percept of

color.

Previous studies have demonstrated that human color vision is trichromatic [142].

In the trichromatic model, a color can be obtained by superimposing, or mixing,

three monochromatic lights. The monochromatic lights are known as primaries.

The relative intensities of the primaries are adjusted to obtain or match a desired

color.5 As a result of the trichromatic model, a color image can be represented as

the superposition of three monochromatic images. In particular, the entire spectrum

between 400 nm and 700 nm does not need to be represented or encoded in a color

image.

There are many different color systems, or colorspaces, that can be used to repre-

sent a color image [136,139,142]. A colorspace is analogous to the coordinate system

used to specify a color. Displays often use a colorspace based on the intensity of

“red,” “green,” and “blue” light added to produce a color, known as an RGB col-

orspace [143, 144]. Colorspaces used in image and video processing typically use a

luminance component and two chrominance components. The luminance is defined

as radiant power weighted by the spectral sensitivity function that is characteristic

of the human visual system [136], although “brightness” is often used as a synonym

for luminance in non-technical discussions. The chrominance components specify

the hue. A colorspace that is often used in digital video processing and compression

is the YCBCR colorspace [145], which uses luminance Y and two chrominance com-

ponents CB and CR. Linear and non-linear transformations allow a color expressed

in one colorspace to be expressed in another colorspace.

5The range of colors that can be produced by the superposition of light is limited and depends
on the primaries. This limitation arises because light can be “added” (by superposition) but not
“subtracted.” The range of colors that can be produced using a fixed set of primaries is known as
the gamut.

38

(a) No subsampling (b) 4:2:2 (c) 4:1:1

(d) 4:1:1 (alternate) (e) 4:2:0 (MPEG–1,H.263) (f) 4:2:0 (MPEG–2,H.264)

Fig. 2.7. Chrominance subsampling showing positions of chromi-
nance pixels relative to luminance pixels (×=Luminance pixel,
©=Chrominance pixel)

In many digital color images, the luminance and chrominance images are sampled

at the same rate, such that the luminance and chrominance pixels at (x, y) are co-

located. However, the chrominance may be sampled at a lower rate and at distinct

positions from the luminance in some images. The human visual system has less

spatial acuity for color information than for brightness [136], and subsampling the

chrominance allows a digital color image to be represented using less bandwidth.

Chrominance subsampling is very common in digital video, and there are many

ways to subsample. Figure 2.7 shows some examples, indicating the positions of the

chrominance pixels (©) relative to the luminance pixels (×).

The size of an image or video frame can refer to either the displayed size or

the pixel size. The display size is the physical dimensions of the image when it is

displayed. Display size is independent of pixel representation and is well-defined for

both analog and digital images. The ratio of the display width to the display height

39

Table 2.3
Common sizes of digital video frames

Luminance Luminance

Name Pixels per Line Number of Lines

Sub-QCIF 128 96

QCIF 176 144

CIF* 352 288

4CIF 704 576

16CIF 1408 1152

CCIR601 [145] 720 480

SMPTE 274M [146] 1920 1080

SMPTE 296M [147] 1280 720

*Common Intermediate Format

is known as the aspect ratio [136]. Conventional analog television uses a 4:3 aspect

ratio while high definition television (HDTV) uses an aspect ratio of 16:9. Motion

pictures typically use aspect ratios of 1.85:1 or 2.35:1. The pixel size is the number

of pixels in the horizontal and vertical dimensions of a digital image. (Analog images

do not have pixels and the pixel size undefined.) The ratio of the pixel width to the

pixel height is not necessarily identical to the aspect ratio; pixels are not necessarily

“square” when the video is displayed. In this dissertation, the image size shall refer

to the pixel size unless stated otherwise. Some standard (pixel) sizes for digital video

frames are shown in Table 2.3.

40

A challenge for processing or storing digital video is the rate of the video data.

An uncompressed 4:2:2 YCBCR CCIR601 video represented using 8 bits/pixel and

30 frames/s has a data rate of

[

(720 Y pixels/line) × (480 Y lines/frame) +

(360 CB pixels/line) × (480 CB lines/frame) +

(360 CR pixels/line) × (480 CR lines/frame)
]

× (30 frames/s) × (8 bits/pixel)

= (691 200 pixels/frame) × (30 frames/s) × (8 bits/pixel)

= 165 888 000 bits/s

= 20 736 000 bytes/s

≈ 70 Gbytes/hour

A typical compact disc (with approximately 650 Mbytes of storage) could store

approximately 30 seconds of this video while a DVD [148] (with nearly 17 Gbytes

capacity) can store approximately 15 minutes. The data rate of nearly 160 Mbits per

second exceeds the capacity for many low cost, local-area networks such as 10 Mbits/s

or 100 Mbits/s Ethernet. Clearly, processing uncompressed video is either expensive

or impractical. The high data rates required for processing uncompressed video

motivates the use of digital video compression.

2.4 Digital Video Compression

The large size of digital video signals is a challenge for storage, transmission,

and processing. Digital video compression techniques allow a video signal to be

represented more efficiently, which reduces the size and bandwidth of the video

signal with a tradeoff in distortion. The use of compression is common in video

applications, including distribution of prerecorded video [148], streaming video [149–

151], video conferencing, digital television [152], and many others. Compression may

be avoided in a relatively few applications (such as some video editing applications)

41

when distortion-free processing and processing costs have greater importance than

video signal size or bandwidth. Video compression is an important consideration

for video watermarking because of its prevalence in video applications, and that

compression is an attack when performed on watermarked video.

Figure 2.8 shows the video compression framework. The objective of digital

video compression is to encode or represent the digital video signal as efficiently and

accurately as possible. Many approaches are used to obtain efficient representation,

including quantization, prediction (including motion estimation and compensation),

region and texture coding, model-based coding, and entropy coding [153–155].

The average data rate of the compressed video stream is the average number

of bits the decoder reads and processes per unit time to reconstruct the video for

real-time display. If the compressed video is transmitted over a communications

network [149–151], the data rate determines the bandwidth required to transmit the

video for real-time display (neglecting overhead and other features, such as error

correction coding.) To obtain useful compressed data rates, most video compression

techniques are lossy, where the reconstructed video signal V ∗ is not identical to the

input video V . (If V ∗ is identical to V , the compression technique is lossless.) The

difference between the input and the reconstructed video signals is the coding dis-

tortion. The coding distortion can cause artifacts to appear when the reconstructed

video is displayed, such as blurring and blocking. The data rate and the amount of

coding distortion of the reconstructed video are tradeoffs [132]. When the introduc-

tion of distortion is unavoidable, a goal of lossy video compression is to introduce

distortion in a manner that minimizes its visibility.

2.4.1 Video compression standards

Video compression standards facilitate interoperability between systems and de-

vices created by different manufacturers and avoid the problems associated with the

use of incompatible, proprietary compression systems. By consensus, a video com-

42

Video

Reconstructed

Input Video

Compressor/

Encoder

Decompressor/

Decoder

Compressed Video

(Binary Stream)

V

V*

B

Fig. 2.8. Video compression

43

pression standard establishes the basic architecture and behavior of a decoder and

defines the syntax of the compressed binary stream. By defining the behavior of

a decoder, the standard ensures that the interpretation of a compressed stream is

consistent regardless of the manner by which the stream was encoded. The behavior

of encoders is not specified, and an encoder is free any means to generate a compliant

binary stream.

Another feature of video compression standards is the use of annexes, levels, and

profiles to define the coding limits and options available when using the standard.

By restricting the coding parameters, a restricted or simplified version of the stan-

dard can be used in applications where implementing the full standard is expensive

or unneeded. For example, in the MPEG–2 standard, profiles determine the sub-

set of allowed coding and predictive features while levels determine the allowable

range of parameters using in coding [156]. In the ITU standards (H.261, H.263),

the fundamental decoding algorithm is described followed by many optional annexes

that extend, modify, or replace sections of the basic algorithm. Some advanced

coding features, such as scalable compression [149, 157–162] or error resilient com-

pression [163–166], can be incorporated either as part of the main standard or as an

optional annex or profile.

A brief list of some video compression standards follows.

• MPEG–1 [167]: Defined by the Motion Pictures Experts Group (MPEG) and

finalized in 1993 for use in multimedia computing [168], the goal of MPEG–1

is to compress 4:2:0 CIF images at 30 frames/s (about 35 Mbits/s) to a rate

of 1.5 Mbits/s, which is the data transfer rate of a single-speed CD-ROM

drive. MPEG–1 employed motion compensation and estimation, the system

layer for multiplexing audio and synchronization data, and rate control for

video. MPEG–1 audio (particularly Layer III, or “mp3”) is very popular for

compressing digital audio [53].

44

• H.261 [169]: A standard developed by the International Telecommunication

Union, H.261 encoded 4:2:0 CIF and QCIF video for low data rates suitable

for transmission through telephone lines. Interactivity and low coding latency

are emphasized for videoconferencing and videophone applications. Unlike

MPEG–1, H.261 defines only the coding of pictures and refers to other stan-

dards (for example, H.223 [170]) for multiplexing and audio.

• MPEG-2 [171]: A successor to MPEG–1 that supports more coding options,

such as interlaced video and scalability [156]. MPEG–2 is currently used to

store motion pictures on DVD discs (with data rates up to about 10 Mbits/s)

and for the transmission of digital television in the United States, including

high definition digital television (HDTV).

• H.263 [172] and its revisions: A successor to H.261 with optional annexes for

more prediction modes, scalability, arithmetic coding, and other options [173].

Input picture formats other than 4:2:0 CIF and QCIF are supported. Like

H.261, H.263 specifies only the coding of visual data and does not include

multiplexing and audio.

• MPEG–4 [174]: A recent standard for coding video that supports shape cod-

ing, sprites, model-based coding, fine grain scalability [158], and many other

features [175]. MPEG–4 introduces an object-oriented approach, where audio-

video objects can be individually defined and then rendered together to form

scenes. Figure 2.9 shows an example of object-objected video coding. One

of the features of the standard is to support enhanced user interactivity. The

system layer and audio coding capabilities have also been expanded.

• H.264 [52]: The state-of-the-art video compression technique, also known as

advanced video coding (AVC) or MPEG–4 Part 10, utilizes a variety of tech-

niques to achieve considerable coding efficiency compared with the previous

standards. These coding techniques include a new block transform [176] that

45

reduces “ringing” artifacts compared with the DCT, more refined spatial and

temporal prediction, adaptive deblocking filter [177], arithmetic and context-

based variable length codes for more efficient entropy coding [178], and many

other refinements. H.264 has been observed to achieve a 50% reduction in rate

when encoding at the same quality (distortion) as the other standards [52,179].

2.4.2 Hybrid predictive-transform coding

The video compression standards described in Section 2.4.1 are all implementa-

tions of a general coding framework known as hybrid predictive-transform coding,

or simply hybrid coding [155]. Hybrid coding, shown in Figure 2.10, consists of

four principal components: decorrelating transformation, quantization, prediction,

and binary encoding. Transformation and quantization make compression easier by

discarding information from the video. Prediction removes spatial and temporal

redundancy in the video. Binary encoding removes redundancy in the compressed

binary stream.

In hybrid compression, individual frames of the video can be encoded with or

without temporal prediction. A frame that is coded without temporal prediction

is known as an intra-frame, or I-frame. A frame that is coded using temporal pre-

diction is an inter-frame. Temporal prediction uses one or more previously decoded

frames, known as reference frames, as predictors for the inter-frame. The common

types of inter-frames are predicted frames (P-frames) and bi-directionally predicted

frames (B-frames.) Notably, the use of temporal prediction requires the encoder to

contain the decoder and frame buffer, as shown in Figure 2.10. This structure allows

previously reconstructed frames to be used as predictors for encoding subsequent

frames. The feedback used for predictive coding is known the prediction loop. Hy-

brid coders can use multiple prediction loops to improve coding performance, for

scalable coding, or for error resilience [162,180]. Figure 2.11 shows an example video

46

Video Object #1 Video Object #2

Video Object #3

Video Object #4

Displayed Video

Fig. 2.9. Example of the object-oriented video compression sup-
ported by MPEG–4. Each video object is encoded as a separate
elementary stream. The elementary streams for all the objects are
multiplexed within the MPEG–4 compressed stream. An MPEG–4
decoder composes the scene from the individual objects for display.

47

Motion Vectors

C
o

m
p

re
ss

ed
 B

in
a

ry
 S

tr
ea

m

B
in

a
ry

 E
n

co
d

in
g

Video

Source
Transform Quantization

Reconstruction

Temporal

Prediction

Frame Buffer

Inverse

Transform

Decoder

Quantized

Coefficients

Inter/Intra

Fig. 2.10. Hybrid predictive-transform coding framework. The en-
coder contains a fully functional decoder within the prediction loop.

48

time

I B B P B B P B B P B B II B B P B B P B B P B B I

1 2 31 2 3 4 4 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

time

Fig. 2.11. Example of temporal prediction used in hybrid cod-
ing. I-frames are white, P-frames are black, and B-frames are gray.
Frames are numbered to indicate display order. Arrows indicate tem-
poral prediction, pointing from a reference frame to the predicted
inter-frame.

encoded by a hybrid encoder. Arrows indicate temporal prediction, pointing from a

reference frame to an inter-frame.

Intra-frame encoding uses a decorrelating transformation to transform the pixels

of the frame to a set of transform coefficients, followed by quantization and binary

encoding. The Karhounen-Loève Transform (KLT) is generally considered optimal

or near-optimal for a decorrelating transformation [181–183] but the KLT has two

disadvantages: High computational costs (computation of eigenvectors) and the ne-

cessity of obtaining or estimating the statistics (covariance) of the signal. Decorre-

lating transforms used for video compression include the Discrete Cosine Transform

(DCT) [66,67,184], discrete wavelet transforms (DWT) [159,185–187], and [176]. Af-

ter decorrelation, the transform coefficients are quantized. Quantization reduces the

amount of information that is represented by the compressed video stream, but at

the cost of introducing distortion into the video. The degree of quantization applied

to the transform coefficients, or equivalently, the step size of the quantizer(s), are pa-

49

rameters by which the rate of the compressed video is adjusted. After quantization,

the quantization indices are encoded in the compressed binary stream.

An inter-picture is temporally predicted using one or more reference frames. The

processes involved in temporal prediction are motion estimation and motion com-

pensation. In motion estimation, the reference frames are searched to locate the

best predictors (closest matches) for the inter-frame. Typically, the inter-frame is

partitioned into blocks and the search is performed on each block. The predictors

are encoded in the compressed stream as a set of motion vectors. How the search is

performed is dependent on the implementation of the encoder. Motion estimation is

computationally expensive because a search is required for each block of the inter-

frame.6 Motion compensation is the application of the motion vector information

to predict the inter-frame from its reference pictures. Motion compensation is per-

formed by a decoder and does not require search. Therefore, motion compensation

does not have the large computational cost of motion estimation.

After temporal prediction, the prediction residual (known as the predictive error

frame, or PEF) is encoded in a similar process as an intra-frame. Summarizing, the

compressed binary stream contains the following elements:

1. For each intra-frame: The quantized transform coefficients of the image.

2. For each inter-frame: Motion vectors describing temporal prediction, and quan-

tized transform coefficients of the PEF.

3. Headers and other information that is needed by a decoder to reconstruct the

video.

Decoding the binary stream is conceptually straightforward. The decoder parses

the stream and extracts the encoded data for each frame. For an intra-frame, the

decoder obtains the quantization indices from the compressed stream, reconstructs

the transform coefficients, and then applies the inverse transform to reconstruct the

6There is interest in reducing the amount of computation at the encoding device, or distributed
encoding [162,188].

50

intra-frame. For an inter-frame, the decoder retrieves each of the reference frames

from the frame buffer. The motion vectors are obtained from the stream and motion

compensation is applied to form the predictor image. The decoder decodes the PEF

(similar to an intra-frame) and then adds the PEF to the predictor image to obtain

the reconstructed inter-frame. Reconstructed frames are stored in the frame buffer

for temporal prediction or display.

2.5 Image and Video Watermarking

This section summarizes the methodologies and approaches that have been used

for the watermarking of digital image and video signals. The number of proposed

watermarking techniques in the published literature is staggering, which reflects the

immense interest in watermarking and watermarking applications. While it is not

possible (nor useful) to review the large number of techniques in exhaustive detail,

watermarking techniques share some common principles. The focus of this section

will be on these common principles, and the reader is encouraged to review tutorials

and overviews [27–33] for additional breadth.

2.5.1 Image watermarking

Early watermarking techniques [189–197] generated the watermark signal as a

pseudo-random noise-like pattern. A variety of random number distributions were

proposed for generating the watermark samples. Some watermarks were produced

using a sequence of Bernoulli-distributed samples, such as bi-polar (−1 and 1) or

binary (0 and 1) sequences. Other watermarks were white or colored sequences of

uniform or Gaussian distributed samples, but generally any probability distribution

could be used. The embedding key was often the seed to the pseudo-random number

generator (see Section 2.7.1). Many techniques inserted the watermark by additive

embedding, or by replacing the least-significant bits (LSB) of the pixel values of

the original image with the watermark. These techniques usually relied on the low

51

amplitude of the watermark signal for perceptual transparency and did not explicitly

use visual modeling. Watermark detection is usually based on correlation.

Perceptual models were proposed to improve the perceptual transparency and ro-

bustness of watermarking techniques [32, 34, 198–203]. A perceptual model predicts

the amount of distortion that can be inserted into (specific regions of) an image with-

out detrimentally impacting the overall perceptual quality. Applied to watermarking,

a perceptual model allows the embedder to increase the amplitude or power of the

watermark in regions where watermark embedding is not likely noticed. With or

without attacks, watermark detection is easier with increased embedding power and

watermark robustness is improved. Conversely, the watermark is attenuated (or not

embedded at all) in regions where watermark embedding is likely to be noticed. Per-

ceptual models vary in complexity and may account for many different properties of

the human visual system, including frequency sensitivity, luminance sensitivity, and

contrast masking [29, 34, 198, 204]. Adjusting the power of an embedded watermark

by using a perceptual model is also known as perceptual shaping. A disadvantage of

perceptual shaping is that perceptual modeling increases the complexity, and thus

the cost, of watermark embedding. Perceptual models may also be used to attack

watermarks [205].

Robust watermarking became more effective by the recognition that robustness

required inserting the watermark into “perceptually significant” regions of an im-

age [61]. A watermark embedded only in perceptually insignificant regions could be

removed by attack without causing any appreciable decrease in the quality of the at-

tacked image. Many early watermarking techniques embedded the watermark solely

in perceptually insignificant regions of the image, which limited their robustness.

While embedding in perceptually significant regions was recognized, there has

been debate in how or where the watermark should be embedded. Some techniques

have suggested embedding within certain spectral components of an image [206–

210], such as low-frequencies, middle-frequencies, or high-frequencies. Su and Girod

showed that a spectrally adaptive watermark is most robust against Weiner filtering

52

and estimation attacks [57, 211]. Some techniques proposed embedding the water-

mark in the spatial domain [212,213], but many techniques have suggested represent-

ing the image as transform coefficients and embedding the watermark in a transform

domain. Such transforms include the DCT [32,43,61,203,207,214], Discrete Fourier

Transform (DFT) [105,210], DWT [32,199,208,215–221], and others [200,222–225].

Watermarking techniques may take advantage of the (special) properties of a partic-

ular transformation to improve performance, such as [200, 223, 224, 226]. For water-

marking color images, many techniques watermarked only the luminance and do not

watermark the chrominance components. However, some techniques have suggested

watermarking in the chrominance [214,226–228] of a color image.

Many robust watermarking techniques [60, 61, 229, 230] generate and embed the

watermark using principles from spread-spectrum communications [231]. In classical

spread-spectrum, a (spectrally) narrow-band input signal is encoded or modulated

to produce a wide-band signal, and the wide-band signal is transmitted through

a noisy or lossy channel. The process of producing the wide-band signal from the

input signal is known as spreading. While transmitting the wide-band signal requires

more bandwidth, spreading reduces the effect of noise and interference that may be

introduced in the channel (for example, from jamming). There are also other benefits

of spreading [231]. The receiver obtains the wide-band signal and recovers the input

signal through decoding.

The benefits of spread-spectrum are useful in robust watermarking. Spread-

spectrum watermarks treat the payload as the narrow-band signal and the the wa-

termark itself as the wide-band signal. The robustness of the watermark arises

from the resilience of spread-spectrum encoding against noise. Removal attacks

are analogous to jamming or a noisy channel. Interference suppression is useful

for watermark detection, which may be subject to host-signal and inter-watermark

interference. Spreading is often accomplished by encoding individual bits of the pay-

load with pseudo-random sequences, which is a method known as direct sequence

spread-spectrum (DSSS). Pseudo-random sequences have desirable auto-correlation

53

and cross-correlation properties [232]. In DSSS, the receiver recovers the payload by

matched filtering (correlation).

Recent informed embedding techniques explicitly use information available at

the embedder to design more effective watermarks [28, 56, 58, 59, 64, 122, 123]. Such

information include (characteristics of) the original image, the embedding method,

the detection method, and potential attacks. While earlier techniques often gener-

ated and embedded the watermark in a fixed manner, informed embedders adapt

the structure of the watermark for improved performance. For example, host-signal

interference may be reduced [56]. An informed embedder has the potential to adapt

the watermark to anticipate attacks [123], and generate image- and attack-dependent

watermarks.

2.5.2 Video watermarking

A näıve way of extending still image watermarking techniques to video is to treat

the video as an ordered sequence of still images, which are then watermarked indi-

vidually. Some techniques [61,212,233–235] suggest this approach. These techniques

(1) embed the same watermark signal into each frame, (2) embed different (uncorre-

lated) watermarks into each frame, or (3) do not precisely specify how the watermark

is generated temporally and merely state “the (still-image) technique is applied to

each frame of the video.” These frame-by-frame techniques generate and embed the

watermark into each frame independently, without regard to temporal structure of

the video.

Unfortunately, neglecting the temporal structure of video leaves the watermark

vulnerable to collusion attacks. For many videos, the frames that are displayed tem-

porally close are usually correlated while frames that are displayed temporally distant

are less correlated or uncorrelated. Embedding the same watermark in all frames of

a sufficiently lengthy video results in a large number of uncorrelated images that are

watermarked by a common watermark. With a sufficient number of watermarked

54

frames, a good estimate of the watermark can be obtained by averaging. Conversely,

embedding uncorrelated watermarks into correlated frames leaves the watermark

vulnerable to removal by averaging. These vulnerabilities were mentioned in [89]

and examined more closely in [82,236].

Collusion attacks allude that there is more to video watermarking than merely the

repeated exercise of still image watermarking. Video and still image watermarking

are now compared.

First, applications often process video in ways that are either impossible (because

still images are not temporally varying signals) or atypical in still image applications.

This processing includes common video editing operations such as interlacing and de-

interlacing [139,237], frame-rate conversion (including 3:2 pulldown [139]), temporal

cropping, and aspect ratio conversion (including pan-and-scan [148]). Thus, video

watermarks may require robustness against attacks (not only collusion attacks) that

do not occur for still image watermarks.

Second, computational costs of watermark embedding and detection are gener-

ally more significant issues for video than still images. One reason for the increased

emphasis on computational cost is that video data is often much larger than still im-

age data. As a result, processing a single video signal is more costly than processing

a still image. Another reason is that some video applications necessitate real-time

processing, which would include watermark embedding or detection.

Third, video watermark detectors may not have the opportunity to examine or

process the entire input signal. Even when the watermark detector has (physical)

access to the entire video, the size of the video data makes reading and processing

the video time consuming. Applications and users often require a response from the

detector much before an entire video can be examined by the detector. And even

when processing time is not constrained, buffering entire video signals is expensive.

In some applications, for example broadcast monitoring of digital television, the

video is regarded as a very long signal and the concept of “entire video” is not well-

55

defined. In contrast, watermark detectors for still images are often able to examine

an entire image before deciding the detection result.

When an application does not or cannot provide the entire video stream to the

watermark detector, the detector is constrained to processing sections of the video

at a time. These sections may be as small as single frames of the video, perhaps

even portions of a single video frame. Furthermore, any portion of the video may

be provided to the detector and not necessarily what a user would consider the

“beginning” of the video. This has implications for video watermark synchronization

and will be elaborated in Section 2.6.

Lastly, designing perceptual models for video watermarking is more challenging.

A perceptual model for video should consider both temporal and spatial proper-

ties [34,112] of the human visual system. Some types of distortion produce perceptual

phenomena that is only visible for temporally varying signals, such as flickering and

shimmering (mentioned in Section 2.2.1). Modeling temporal properties of visual

perception requires a more complex and costly perceptual model than one for still

images. Conversely, cost limitations imposed by applications constrain or prevent

the use of perceptual models which require expensive analysis.

Video watermarking techniques have used three approaches for watermark em-

bedding: uncompressed embedding, compressed domain embedding, and joint com-

pression watermarking. These approaches differ in the interaction between water-

mark embedding and video compression.

In uncompressed embedding, both the original video and the watermarked video

are uncompressed. The original video is viewed as a spatially- and temporally-

varying signal of pixels. The pixel values are modified to insert the watermark and

produce the watermarked video. Similar to still image watermarking, the watermark

may be embedded in a transform domain [238–241] or in the spatial domain [38,

242]. The näıve frame-by-frame techniques mentioned previously are examples of

uncompressed embedding. Uncompressed embedding is agnostic to and separate

from video compression.

56

While uncompressed embedding is suitable when compression is not used, com-

pressing the watermarked video is a removal attack with respect to watermarking.

An application that requires the watermarked video to be compressed is forced to

attack the watermarked video. Therefore, the watermark is embedded with excess

robustness such as to possess the degree of robustness needed by the application after

compression. Embedding with excess robustness incurs a performance cost, such as

increased watermark visibility or decreased capacity.

In compressed domain embedding, the original video is provided to the embedder

as a compressed stream. The embedder partially decodes the stream to expose ele-

ments of the compressed video, such as transform coefficients [104,242–244], motion

vectors [245,246], or video objects [247–250]. The elements of the partially decoded

video are modified to insert the watermark, and then reassembled to from the com-

pressed watermarked video stream. The reassembly step retains the coding decisions

that were used to encode the original video whenever possible and requires much less

computational effort than compression.7 The watermark embedder ensures that the

watermarked video is a valid compressed video stream, which can be decoded by

using a standard decoder. These steps are summarized in Figure 2.12.

The benefits and disadvantages of compressed domain watermarking arise from

processing a compressed video stream. In contrast with uncompressed embedding,

watermarking with excess robustness is unnecessary because the watermarked video

is already compressed and no further compression is needed. In addition, the com-

pressed video stream contains information, such as prediction and quantization pa-

rameters, which allows informed decisions to improve robustness, transparency, or

other performance criteria. In uncompressed embedding, the embedder processes the

video prior to compression, hence compression information is generally not available

to the embedder.

7Because reassembly does not involve search, the watermarked video may be sub-optimally repre-
sented. The loss of coding performance caused by using reassembly instead of re-compression after
watermark insertion has not been explored.

57

Compressed

Original Video

C
o

m
p

re
ss

ed
 S

tr
ea

m

P
a
rs

in
g

Compressed

Watermarked

Video

R
ea

ss
em

b
ly

P
a
rt

ia
l

R
ec

o
n

st
ru

ct
io

n

Watermark

Generation

Embedding Key

Message

W
a
te

rm
a

rk

In
se

rt
io

n

Motion Vectors, ...)

Elements

(Transform Coefficients,

W

Fig. 2.12. Compressed domain watermark embedding. The original
compressed video is parsed and partially decoded to expose elements
of the compressed video data. Some of the elements are modified to
insert the watermark, and then the compressed data is reassembled
to obtain the watermarked video.

58

A compressed domain embedder is specific to the compression technique used

to encode the original video. This specificity arises because the syntax of the com-

pressed video stream is strongly dependent on the video compression technique. As

a result, changing the compression technique used by an application necessitates

changing the watermark embedder. In addition, the performance of the watermark

embedder is dependent on the implementation of the compressor and the compression

parameters. Some coding decisions (made by the compressor) generate compressed

streams that are more easily watermarked. For example, an embedding technique

which inserts the watermark in the motion vectors will be more effective when water-

marking video streams containing many inter-frames than streams containing many

intra-frames (because intra-frames lack motion vectors and cannot be watermarked

by the technique).

Lastly, compressed domain embedding introduces issues of drift compensation

and data rate control [242,243]. Drift occurs when prediction is used in compression.

Modifying an element in the compressed stream (such as to insert the watermark)

affects the reconstruction of all other elements which use the modified element as a

predictor. The difference between the reconstruction of the predicted elements using

the original and modified predictors is drift. Unless the drift is compensated, the

accumulation of drift results in very noticeable artifacts in the watermarked video.

In addition to drift compensation, the data rate of the watermarked video must be

controlled to within application-specified limits. If no measures are taken to control

the data rate, watermark insertion will usually cause an increase in the rate of the

watermarked video (compared to the rate of the original video.) The increase occurs

because watermarks are generally noise-like signals that are difficult to represent

efficiently.

A joint compression watermarking technique [251] accepts uncompressed original

video and produces a compressed watermarked video stream by combining compres-

sion and watermark embedding together. The combination should be more tightly

coupled than compression followed by watermark embedding, since the latter would

59

be the same as compressed domain embedding. For example, the watermark embed-

der may be within the prediction loop of a hybrid coder. The watermark embedder

and compressor are able to influence each other and performance improvement may

be possible over compressed domain embedding. However, this approach is largely

unexplored and rigorous performance comparisons have not been made to date.

A brief overview of notable video watermarking techniques follows.

Hartung [3, 242] applies (direct sequence) spread-spectrum techniques towards

video watermarking for both uncompressed embedding and compressed-domain em-

bedding. For uncompressed embedding, the watermark is inserted into the pixels of

the video. For compressed-domain embedding, the watermark is inserted into the

DCT coefficients of MPEG–2 video streams with drift compensation. Data rate is

controlled by watermarking only non-zero DCT coefficients, and then, only if water-

mark insertion does not increase the rate. Watermark detection is correlation-based

with optional pre-filtering. The technique was evaluated for high rate (8 Mbits/s)

video. Alattar [243] extends the spread-spectrum approach for low rate MPEG–4

video, with drift compensation, a rate control method that is more suitable for low

rate video, and a simple model for perceptual shaping. The MPEG–4 watermark-

ing technique also embeds templates for spatial synchronization; Templates will be

discussed later in Section 2.6.3.

Langelaar [36] has proposed two compressed-domain embedding techniques. The

first technique [244] embeds the watermark by modifying the variable length binary

codes of DCT coefficients encoded in MPEG–2 video. This technique is similar

in principle to least-significant-bit embedding used in early still-image watermarks.

The second technique [104] is known as Differential Energy Watermarking (DEW).

In DEW, an intra-frame is partitioned into sets using the embedding key, with each

set consisting of two subsets containing the same number of DCT blocks. Each set

expresses a single payload bit, depending on which of the two subsets contains more

energy in the reconstructed DCT coefficients. When necessary, DCT coefficients are

zeroed within a subset such that the desired payload bit is expressed. Changing

60

a non-zero DCT coefficient to zero reduces the rate, thus watermark embedding

is guaranteed to not increase the rate. The detector compares the energies of the

subsets and does not involve correlation. While the original DEW technique only

watermarked the intra-frames, DEW has been extended for embedding into inter-

frames [252].

Swanson [238] describes a technique whereby the watermark is inserted into scenes

using a three-dimensional spatiotemporal wavelet transform and perceptual shaping.

Because the wavelet transform is performed across an entire scene, this technique has

relatively high memory and computational costs. An advantage of this technique is

that the embedded watermark has some robustness when frames of the watermarked

video are lost or processed.

Deguillaume [239] describes a technique which embeds the watermark in the mid-

frequencies of the three-dimensional spatiotemporal Discrete Fourier Transform (3D-

DFT). The watermark is inserted into fixed-sized groups of frames and this technique

does not require entire scenes to be processed like [238]. Watermark generation

using the 3D-DFT produces a locally correlated structure in the spatial domain,

which provides some benefits against local frame averaging or collusion attack. This

technique also embeds a template for robustness against synchronization attacks.

Kalker [38] proposes a watermark for broadcast monitoring, known as Just An-

other Watermarking System (JAWS). The watermark is constructed as a tiled pseudo-

random pattern and additively inserted in the spatial domain of each video frame.

Detection uses the phase of the DFT, which takes advantage of the tiled structure

to allow efficient watermark detection even if the frame has been spatially shifted.

While most video watermarking efforts have focused on embedding the watermark

in the visual portion of video, videos may also contain auditory signals that can be

involved in watermarking. For example, a watermark may be embedded into both

the visual and auditory portions of the video [253]. Auditory information can be used

to generate the watermark which is inserted into the visual portion of the video, and

61

conversely, the visual portion of the video can be used to generate a watermark that

is embedded in the audio portion.

2.6 Synchronization

Watermark detector synchronization, or simply synchronization, is recognized as

a significant challenge in blind robust watermark detection. Most watermark detec-

tors will fail to detect an embedded watermark if synchronization cannot be achieved.

In this section, the concepts of synchronization and synchronization attacks are de-

fined and current approaches for addressing synchronization are reviewed.

Watermark insertion introduces a correspondence between the coordinates of the

embedded watermark and the coordinates of the watermarked signal. This corre-

spondence arises because the watermarked signal Y is defined as a function of the

original signal X and the watermark W , causing individual samples of W to be in-

serted into samples (pixels or transform coefficients) of Y . For example, re-writing

the additive embedding equation (2.1) to explicitly indicate the samples being added,

and defining the coordinate vector v similarly to (2.10), then

Y (v) = X(v) + γW (v) (2.12)

and the correspondence is that the v-th watermark sample W (v) is embedded into

the v-th sample of Y . This correspondence extends to both the spatial and tem-

poral dimensions for video watermarks. Conceptually, the embedded watermark is

“positioned” in the watermarked signal in accordance to the watermark insertion

technique. Figure 2.13(a) illustrates this correspondence for a watermark embedded

using a hypothetical image watermarking technique.

The watermark detector is designed with knowledge of the embedding technique,

and thus the position of the embedded watermark. When the watermarked signal

is provided to the detector (Z = Y) with the appropriate detection key, as shown

in Figure 2.13(b), the detector successfully detects the watermark. (Assume for this

62

Original

Fruit

Watermark Watermarked

Fruit

(a) Watermark embedding using hypothetical watermarking technique. Watermark is nor-

mally invisible but shown here to emphasize its location and orientation when embedded in

the watermarked image.

Watermarked

Fruit

Detector Successful

Detection

(b) Watermark detection without attack. Detector examines image and discovers that the

watermark is present at its expected position. Watermark is detected.

Rotated

Watermarked

Fruit

Detector Detection

Failed

(c) Watermark detection with synchronization attack. Rotating the watermarked image causes

the watermark to be rotated. Detector examines the rotated image, but the watermark has

been rotated and cannot be detected in its original position.

Fig. 2.13. Watermark embedding, detection and synchronization

63

discussion that a miss does not occur due to interference or other signal detection

issues.)

Now suppose that a synchronization attack is applied to the watermarked signal,

such as the rotation of the watermarked image shown in Figure 2.13(c). A coor-

dinate transformation applied to the watermarked signal transforms the embedded

watermark in an identical manner as the watermarked signal in the spatial domain.

For most signals, the position of the embedded watermark relative to the attacked

signal Ŷ is changed and no longer identical to the position of the watermark prior

to the attack. Some watermarks are invariant to particular coordinate transforma-

tions, which will be discussed later in Section 2.6.2. When Z = Ŷ is provided to

the watermark detector, the detector will fail to detect the watermark in its original

position. The attacked signal is watermarked, but the detector misses unless it can

determine or deduce the position of the watermark in the attacked signal.

Synchronization is the process of identifying the correspondence between the

spatial and temporal coordinates of a watermarked (and possibly attacked) signal

and that of an embedded watermark. An intuitive description of synchronization

is “finding the watermark.” As the prior example shows, the watermark is inserted

at some position in the watermarked signal. If the watermarked signal is not at-

tacked, then synchronization is trivial because of the detector’s knowledge of the

embedding technique. However, when the watermarked signal is attacked, the posi-

tion of the embedded watermark may change. With most watermarking techniques,

the watermark detector misses because successful detection is possible only when

examining the watermark where it resides after the attack. Even spread-spectrum

watermarks, which have demonstrated robustness against signal processing attacks

and addition of noise, are vulnerable to detection miss under a synchronization at-

tack. The challenge is to determine how the watermark has been relocated (which is

synchronization), or to design watermarks that are less sensitive to synchronization

attacks [254].

64

While the possibility of malicious attacks alone provides sufficient motivation to

address synchronization, synchronization is generally an issue for robust watermark

detection even in the absence of malicious attacks. Some applications process signals

in ways that may disturb the positions of embedded watermarks. For example, video

watermarked for broadcast monitoring may be subjected to editing that is typical

for broadcast television video, including aspect ratio conversion, frame rate conver-

sion, (spatial and temporal) cropping, and video splicing. Other applications do not

deliberately process a watermarked signal but nonetheless require robust watermark

detection. For example, when a watermark is embedded to trace illicit copies of

a motion picture made by theater recording [255], or so-called “camcorder piracy,”

the position of the watermark is changed in an illicit copy because the recorder is

not perfectly aligned with the movie display. Similarly, when a watermarked image

is printed and then scanned [46, 70], the position of the watermark in the scanned

copy will be changed. Damage to the watermarked signal may also cause the water-

mark detector to lose synchronization. One example where signal damage may occur

is network transmission in video streaming and broadcast applications [2, 149–151].

Network congestion and noise may even cause the signal to be entirely lost for an

indeterminate time.

Video watermarking applications have additional reasons to be concerned with

synchronization. As mentioned in Section 2.5.2, many video watermark detectors do

not have the opportunity to examine the entire input video, but only sections of the

video at a time. These detectors must synchronize when the input signal first be-

comes available, which is a process known as initial synchronization. The significant

challenge for initial synchronization is that any portion of a video may be provided

to the detector. A robust watermark detector generally cannot rely on observing a

specific portion of the video (such as the “beginning” of the video) because (1) that

portion of the video may not be provided to the detector, and (2) relying on observ-

ing a specific portion of the video for synchronization is a vulnerability. Specifically,

the detector would be vulnerable to an attack which crops that portion of the video.

65

Once initial synchronization is successful, the detector can continue to detect the

watermark as the input video is available until an attack or some other event (such

as loss of the input signal) causes synchronization to be lost. After synchronization

loss, the detector must resynchronize with the input to resume watermark detection.

Synchronization is also an issue for watermarking techniques which insert the

watermark into individual video objects [247–250]. For example, each video object

of Figure 2.9 may be individually watermarked. To detect the watermarks, the

watermark detector must locate the position of each watermarked object in the video.

This is a synchronization problem [256]. Information in the compressed stream

may identify the position of the video objects, which would make synchronization

relatively easy. However, such information is lost if the video is uncompressed,

or transcoded into a new compressed format which does not support video object

coding.

2.6.1 Synchronization attacks

Synchronization attacks are part of the class of detection-disabling attacks where

the watermark is obfuscated by relocation. The embedded watermark is moved,

but not destroyed, by a synchronization attack. Like other attacks, synchronization

attacks can occur from innocuous or malicious signal processing. When synchroniza-

tion attacks occur maliciously, the objective of the attacker is to cause the watermark

detector to miss. Often, causing a miss is considerably easier than destroying or re-

moving an embedded watermark.

Most synchronization attacks are coordinate transformations applied to a water-

marked signal. Coordinate transformations relocate the embedded watermark, forc-

ing the watermark detector to confront a more challenging synchronization problem.

The processing involved in a coordinate transformation is a (re-)mapping followed

by interpolation, which is generally easy to accomplish. No knowledge of the wa-

termark structure or keys is required. Furthermore, a coordinate transformation

66

does not necessarily affect the watermarked signal in a dramatic or obvious manner.

Subtle coordinate transformations are often sufficient to cause a watermark detec-

tor to miss without synchronization, although whether a specific transformation is

sufficient or not depends on the transformation and the watermarking technique.

Spatial synchronization attacks, or geometric attacks, are transformations that

change the spatial position of the pixels of a watermarked image or video frame.

These transformations include, but are not limited to, rotation, uniform and non-

uniform scaling, translation (or shifting), reflection (or flipping), perspective trans-

formation, and warping. Table 2.4 shows examples of these transformations applied

to the Fruit image of Figure 2.3. For each transformation, the grid (left column)

and the left hand image (middle column) have been transformed identically. The

right hand image (rightmost column) has been transformed in a more subtle fashion.

Stated with emphasis, the transformations applied to the right-hand images are gen-

erally sufficient to cause many watermark detectors to miss without synchronization.

Temporal synchronization attacks are transformations that change the temporal

structure of a watermarked video signal. These transformations include frame drop-

ping, insertion, transposition, and averaging. A frame drop occurs when a frame is

removed from the video. Multiple frames may be dropped from the video, at regular

intervals or at random. Temporal cropping or removal of a section of video can result

in many successive frames being dropped. Temporal decimation (by factor λ) is a

special case of frame dropping where a single frame is retained for every λ frames

of the video while all other frames are dropped. Frame insertion is the insertion

or splicing of one or more arbitrary frames into the video. A special case of frame

insertion is temporal upsampling, where each frame of the video is repeated λ times.

Frame transposition is the interchanging of two or more frames of the video, which

changes the order in which those frames are displayed. Frame transposition does

not necessarily involve adjacent frames. Frame averaging uses a moving window of

λ frames, where the value of each pixel in the attacked video is obtained by the

67

arithmetic mean of the pixel values at the corresponding spatial location of each

frame in the window.

Temporal synchronization attacks also include more general processes of temporal

filtering and temporal warping. Temporal filtering is the application of a filter with

impulse response involving the temporal dimension (i.e. multiple video frames.)

Frame averaging is an example of finite impulse response (FIR) temporal filtering,

where each tap has weight 1/λ. Temporal filtering may be combined with temporal

decimation or upsampling as part of frame rate conversion, which is conceptually

identical to sampling rate conversion [137]. Temporal warping is temporal filtering

with a spatiotemporally variant filter.

Aside from coordinate transformations, synchronization attacks may also target

the synchronization mechanism used by the watermark detector. These synchro-

nization attacks do not necessarily cause synchronization loss by themselves, but

they disable or inhibit the detector’s ability to synchronize with the attacked signal.

These attacks may be combined with coordinate transformations to challenge the

watermark detector. Examples of these attacks are discussed in Section 2.6.3.

Table 2.4: Examples of spatial synchronization attacks

Transformation Attacked Fruit

Rotation 15◦ Rotation 0.5◦ Rotation

Continued on next page

68

Transformation Attacked Fruit

Scaling 10% Reduction 1% Reduction

Translation 15 pixel shift 1 pixel shift

Reflection Horizontal axis Vertical axis

Perspective

Continued on next page

69

Transformation Attacked Fruit

Warping

2.6.2 Synchronization insensitivity and invariant transformations

One way to address synchronization issues is to design watermarks that are less

sensitive to synchronization attacks. Invariant domain watermarking is an approach

to render some synchronization attacks ineffective. Many image and video water-

marking techniques embed the watermark in a transform domain, by applying a

signal transform8 to represent the original signal as coefficients, and then inserting

the watermark into the coefficients. The inverse signal transform is applied to ob-

tain the watermarked signal in the spatial domain. Some signal transforms have the

property that certain coordinate transformations applied to the signal in the spatial

domain do not change or affect the coefficients of the transform domain. These signal

transforms are said to be invariant to the coordinate transformations.

Invariance properties allow the watermark detector to bypass synchronization.

When the watermark is embedded in a domain invariant to particular coordinate

transformations, those transformations in the spatial domain do not relocate the

watermark. Because the watermark is not relocated, the coordinate transformation

does not desynchronize the watermark detector. Watermarks that are embedded in

8The word “transform” alone may be confusing in this section. “Signal transform” is used for the
concept of transforms like the DFT and DCT, to avoid confusion with “coordinate transform.”
Similarly, “transform coefficients” will be referred to as “signal transform coefficients” or shortened
to simply “coefficients.”

70

transform domains specifically for their invariance properties are known as invariant

domain watermarks.

An example of invariance is the magnitude of the DFT with respect to spatial

translation or shifting. A well-known property of the DFT is that (cyclic) shifting

in the spatial domain results in only a phase change in the DFT [135, 137, 138]. A

watermark that is embedded in the magnitude of the DFT (and not the phase) is

invariant to shifts in the spatial domain.

Several watermarking techniques take advantage of the Fourier-Mellin trans-

form [223,224]. To obtain the Fourier-Mellin transform, a two-dimensional signal is

first transformed using the log-polar mapping (LPM) and then the Fourier Transform

is applied to the LPM-transformed image. The LPM is a mapping (x, y) → (µ, θ)

from each point in Cartesian (x, y) space to a unique point in log-polar (µ, θ) space,

analogous to transforming from a Cartesian coordinate system to polar coordinates.

Specifically,

µ = log
√

x2 + y2 (2.13)

θ = arctan
(y

x

)

(2.14)

and the inverse LPM is

x = eµ cos(θ) (2.15)

y = eµ sin(θ) (2.16)

The interesting property of the LPM is that uniform scaling and rotation in

Cartesian space are mapped to shifts in the log-polar space. For example, uniform

scaling by scale factor ρ maps the point (x, y) to (ρx, ρy) in Cartesian space, or

µ′ = log

√

(ρx)2 + (ρy)2 = log
[

ρ
√

x2 + y2
]

= log
√

x2 + y2 + log ρ (2.17)

θ′ = arctan

(

ρy

ρx

)

= arctan
(y

x

)

(2.18)

in log-polar space. Comparing (2.17) and (2.18) with (2.13) and (2.14), it is seen

that uniform scaling in Cartesian space is a shift (by log ρ) in log-polar space, or

(ρx, ρy) → (µ + log ρ, θ) (2.19)

71

Rotation by η (counterclockwise) in Cartesian space maps the point (x, y) to (x cos η−
y sin η, x sin η + y cos η). In log-polar space, this is

µ′′ = log

√

(x cos η − y sin η)2 + (x sin η + y cos η)2

= log
√

x2
[

sin2 η + cos2 η
]

+ y2
[

sin2 η + cos2 η
]

(2.20)

= log
√

x2 + y2 (2.21)

θ′′ = arctan

[

(x sin η + y cos η)

(x cos η − y sin η)

]

= arctan









(x sin η + y cos η)

x cos η
(x cos η − y sin η)

x cos η









= arctan





y

x
+ tan η

1 − y

x
tan η



 (2.22)

= arctan
y

x
+ arctan [tan η]

= arctan
y

x
+ η (2.23)

Note that (2.20) uses the trigonometric identity sin2(x) + cos2(x) = 1 and (2.22)

uses the identity arctan x+arctan y = arctan
(

x+y

1−xy

)

, or see [257]. Thus, rotation in

Cartesian space results in a shift in the log-polar space:

(x cos η − y sin η, x sin η + y cos η) → (µ, θ + η). (2.24)

With both uniform scaling and rotation, a similar result can be shown:

(ρ(x cos η − y sin η) , ρ(x sin η + y cos η)) → (µ + log ρ, θ + η). (2.25)

Applying the Fourier Transform of the LPM of a signal, and (2.25), imply that uni-

form scaling and rotation in the spatial domain produce phase shifts in the Fourier-

Mellin domain. The magnitude of the Fourier-Mellin Transform is a domain invariant

to uniform scaling and rotation.

The Fourier-Mellin Transform may be used to construct a transform domain that

is invariant to uniform scaling, translation, and rotation, into which a watermark may

72

be inserted [224,258]. The conversion from (spatial domain) scaling and rotation to

(Fourier-Mellin domain) phase shifts may also be useful for synchronization and

template analysis [223,259,260], discussed in the next section.

The disadvantage of relying on invariance is that invariance properties are gen-

erally applicable for a relatively small set of coordinate transformations. Attacks

which apply coordinate transformations in which the signal transform is not invari-

ant will require the detector to have some other means for synchronization. Invariants

for some transformations, such as non-uniform scaling, perspective transformations,

and warping, may be difficult to find. There are also implementation issues (such

as interpolation and signal transform issues) that can complicate invariant domain

watermarking [223,258].

Synchronization-insensitive watermarking without invariant transformation was

proposed in [261]. This technique creates a watermark using patches of colored

noise such that the watermark detector does not require precise (sample-to-sample)

correspondence to successfully detect the watermark. The technique is promising in

that some degree of robustness against synchronization attack was observed, however

much more development and evaluation is needed. Security issues were noted in [261].

2.6.3 Synchronization and templates

When watermarked signals are subjected to synchronization attack and the wa-

termark is not insensitive or invariant to these attacks, then synchronization is nec-

essary for successful watermark detection. The watermark detector with synchro-

nization is shown in Figure 2.14. The synchronizer examines the input signal and

estimates the correspondence between the coordinates of the input signal and that

of an embedded watermark. This correspondence information is provided to the

watermark signal detector, which attempts to detect the watermark as described in

Section 2.1.3. If watermark detection succeeds, then the payload is extracted (if ap-

plicable) and the watermark detection process is complete. If watermark detection

73

Synchronizer
Watermark

Signal Detection

Payload

Decoding

Detector Input

Signal

Extracted

Payload

Fig. 2.14. Watermark detection with synchronization

does not succeed, the watermark detector may either “give up” or request another

correspondence from the synchronizer and repeat the process. Obviously, the syn-

chronizer is interested in identifying the correspondence with the fewest number of

attempts. The synchronization and watermark signal detection processes may be

(tightly) coupled and are not necessarily independent.

The synchronization process will not succeed for every input signal. First, the

detector’s input is not necessarily watermarked and synchronization should fail for

unwatermarked input. Because of the possibility of receiving unwatermarked input,

a mechanism or strategy for deciding when the synchronizer “gives up” is necessary.

On the other hand, synchronization may (undesirably) fail when a watermarked

signal is provided to the detector. Failure to synchronize on watermarked input

generally causes the watermark detector to miss. For this reason, the synchronization

mechanism itself may be targeted by attacks. Examples of these attacks will be

described later.

The watermark signal detector can make use of the information provided by the

synchronizer in several ways. The signal detector could detect the watermark directly

in the coordinates provided by the synchronizer. The signal detector could also

use the synchronizer information to “reverse” any coordinate transformations that

may have occurred. For example, the rotation of Figure 2.13(c) may be reversed by

rotating the attacked image in the opposite direction. Once the transformations have

been reversed, the signal detector detects the watermark in a straightforward manner.

More generally, the synchronizer allows the input signal to be transformed to some

pre-determined or normalized coordinate system for watermark signal detection.

74

The most fundamental approach for synchronization is näıve or blind search.

In this approach, the watermark detector explicitly searches the space of coordinate

transformations to locate the watermark, but without using any special properties of

the watermark or other side information. Two examples of the näıve search approach

are the exhaustive search and the sliding correlator [3, 242]. The exhaustive search

attempts to detect the watermark by searching all possible spatial and temporal

coordinate transformations. The sliding correlator attempts to detect the watermark

(using correlation) over all spatial and temporal shifts x0, y0, t0, or

ρ = max
∀x0,y0,t0

∑

x

∑

y

∑

t

Z(x − x0, y − y0, t − t0) W (x, y, t). (2.26)

The obvious issue with näıve search is that the size or cardinality of the search

space is an obstacle for computationally efficient search. The second issue is that

näıve search is prone to false positives [262]. Even when the signal detector has a

very low false positive rate, the number of attempted detections that occur during a

näıve search dramatically increases the likelihood of false positives. False positives

make the näıve search approach questionable even when computational cost is not

constrained.

The approach generally proposed to address synchronization is the use of tem-

plates. A template is a pattern which indicates the position of the embedded wa-

termark in the watermarked signal. By examining the template, which is the pro-

cess known as template matching or template analysis, the synchronizer is able

to (quickly) estimate the position of the watermark. Thus, templates enable the

synchronizer to use informed search instead of blind search. Several methods for

using templates will be described below. In this dissertation, the formal definition

of a template is side-information regarding the structure of the watermarked sig-

nal which allows the watermark detector to reduce the computational search for

synchronization.

Watermarking techniques have proposed three methods for constructing tem-

plates. The first method is the embedding of an explicit synchronization signal

75

into the watermarked signal. The second method is to use the watermark itself as

the synchronization signal by placing constraints in the structure of the watermark.

The third method is to use salient features of the original signal as the basis for

synchronization.

The first method for template construction is the insertion of an auxiliary syn-

chronization signal into the watermarked signal. For example, the synchronization

signal may resemble a constellation of peaks [209]. Coordinate transformations that

are applied to the watermarked signal affect the synchronization signal in a man-

ner similar to the embedded watermark. Thus, the synchronizer is able to estimate

of the position of the watermark by examining where the template resides in the

attacked signal. Video watermarking techniques using explicit template embedding

include [235, 239, 256], as well as the “helper watermarks” mentioned in [3] and the

orthogonal sequences used for temporal synchronization in [263]. Unlike the em-

bedded watermark (which is often noise-like), the synchronization signal is designed

to be easily detected or identified by the synchronizer but generally invisible in the

spatial domain.

The embedding of the synchronization signal increases the overall distortion of

the watermarked signal compared with the original signal. In addition, the synchro-

nization signal is vulnerable to attack. For example, the location of the peaks in

a constellation may be estimated and then the peaks removed [264]. Estimation of

the template is easier when the same synchronization signal is used for many water-

marked signals. Attacks may also insert “fake” synchronization signals or alter an

existing signal to lead the synchronizer astray.

The second method for constructing a template is to apply constraints on the

structure of the watermark signal to generate the synchronization pattern. An ex-

ample is a watermark with periodic structure created by repeating or tiling an el-

ementary watermark signal. This structure allows the search for synchronization

under spatial shifts to be reduced [38]. In addition, tiled or periodic watermarks

have known auto-correlation properties which allow the estimation of rotation and

76

scale [260, 265, 266]. (Auto-correlation is used for the spatial synchronization tech-

nique described in Chapter 4.) The structure of the watermark itself provides the

template and no auxiliary synchronization signal is embedded. Unfortunately, the

same constraints placed upon the watermark signal to create the template also reduce

the capacity and security of the watermark. For example, the redundancy present

in a tiled watermark implies that estimating the watermark signal is easier. Other

examples of this method are [267–270].

The third method for obtaining a synchronization template is to use salient fea-

tures of the original signal [212,236,271–275] as the basis for synchronization. When

the watermark is embedded, a feature detector is used to identify the locations of

salient features of the original signal. Example features include the position of edges

or corners of an image. The watermark is inserted in accordance to the features.

A coordinate transformation applied to the watermarked signal generally affects or

moves the features in a similar manner as the watermark. When the watermarked

(or attacked) signal is provided to the detector, the synchronizer examines the signal

using the feature detector to estimate where the watermark resides.

Synchronization attacks against these templates involve manipulating the fea-

tures. For example, features may be removed or inserted, or translated (moved).

Cropping the watermarked signal may remove features. The manipulation of the

watermarked signal must be sufficient to cause a misleading detection by the feature

detector (in the synchronizer). Manipulating some features may require some sig-

nificant alteration to the watermarked signal, but this is dependent on the choice of

features used by the watermarking technique.

Some search may be necessary for synchronization despite the use of templates.

Template analysis allows the position of an embedded watermark to be estimated

but often the degree of precision in the position estimate is limited. Hence, templates

reduce but do not generally eliminate the computational search for synchronization.

Temporal synchronization for video watermarking is a relatively unexplored area.

Proposed techniques generally embed an “address” or index into the watermarked

77

video frames [263, 276]. The embedded addresses allow the watermark detector to

detect dropped or transposed frames. In [276], only the intra-frames of compressed

video are watermarked and the performance was found to be dependent on the degree

of motion in the video. In [263], orthogonal sequences are embedded into each video

frame which encode the frame’s temporal index relative to the video sequence. A

correlation based technique is used to recover the index.

This concludes the overview of synchronization. In Chapter 3, temporal synchro-

nization in video watermarking will be explored and models for addressing temporal

synchronization will be proposed. Spatial synchronization (for still images) is ex-

plored in Chapter 4.

2.7 Additional Background

This section provides a brief overview of some topics of interest. The pseudo-

random number generator has been mentioned in the background and their structure

and properties are described in Section 2.7.1. State machines are computational de-

vices used in the temporal synchronization models in Chapter 3. A brief overview of

state machines appears in Section 2.7.2. Lastly, a few remarks contrasting steganog-

raphy and watermarking is in Section 2.7.3.

2.7.1 Pseudo-random number generators

The generation of random numbers is useful in many applications, including

(Monte Carlo) simulations [277], randomized algorithms [278], recreation (games),

cryptography, and watermarking. In a strict sense, random numbers cannot be gen-

erated by software alone because the output of a computer program is a deterministic

function of its inputs. While the generation of true random numbers lies beyond the

reach of software, pseudo-random number generators (PRNGs) produce numbers

that “appear” statistically random to applications.

78

PRNGs have common structure. A PRNG has an internal state and produces

output values using the internal state. Each value produced by the PRNG is a func-

tion of (only) the state at the instant the value is produced. Furthermore, producing

a value also causes the PRNG to change its state. This process is deterministic and

lacks any inherent source of “randomness.” The internal state of the PRNG is initial-

ized by the application prior to producing any output values. This process is known

as seeding the PRNG and the initial value is known as the seed. The consequences

of using a PRNG are:

1. The values produced by a PRNG are not random, but are part of a fixed

sequence of values.

2. The sequence of values produced by a PRNG is a function of only the seed.

Each time the PRNG is seeded with a particular value, then the PRNG will

produce the same sequence of output values. Many applications, including

watermarking, depend on this “repeatability” property (see below.) Some ap-

plications seed the PRNG with a value dependent on a hardware clock or timer,

as to cause the PRNG to produce different sequences each time a computer

program is executed by the user.

3. An implementation of a PRNG has a finite number of states, which are tra-

versed in a fixed order as the PRNG produces output values. If enough values

are produced, then the initial state will be reached again. Thus, the sequence

of values produced by a PRNG is periodic. The number of output values pro-

duced by the PRNG before the sequence repeats is known as the period of the

PRNG. Generally, long period PRNGs are desirable.

There are many methods for pseudo-random number generation, including linear-

congruential [103,277,279], feedback shift registers [277], and others [279,280]. These

methods may be used to produce pseudo-random sequences that simulate a variety

of statistical properties. Some applications desire sequences that appear to be ob-

tained from an independent identically-distributed (i.i.d.) uniform random source.

79

Other applications desire an i.i.d. Gaussian distributed source, or perhaps sequences

with other distributions or correlation properties [232]. There are no guarantees

regarding the statistical randomness of the output, which should not be surprising

because there is no inherently random process in a PRNG. An application should

test the output of a PRNG to verify that the sequence of numbers are suitable for

the requirements of the application. A variety of tests [279,281] have been proposed

for evaluating the statistical properties of PRNGs.

In watermarking, PRNGs are often involved in generating the watermark signal.

The seed to the PRNG is generally the embedding key KE, which places an upper

bound on the cardinality of the embedding keyspace as the period of the PRNG.

Many techniques directly use output values produced by the PRNG as the watermark

signal, while other techniques use the PRNG to perform KE-dependent permutations

or other types of KE-dependent processing. Because the output of a PRNG is

dependent only on the seed, the seed value (uniquely) characterizes the pseudo-

random sequence, and hence, the watermark. For example, a symmetric watermark

detector with the same PRNG used by the watermark embedder is able to recover

W for detection (such as for correlation) with only the parameter KD = KE.

2.7.2 State machines

A state machine (SM) is a general computational model for systems that possess

memory (or state) [282]. SMs have been used in a variety of applications, including

character string recognition and regular-expression matching [278, 283], theoretical

computing (such as Turing Machines) [284, 285], and simple “artificial intelligence”

engines used in recreational computing [286].

A state machine is defined by the tuple (S,S0, I,O, φ, λ), where S is the set of

states, S0 is the set of initial states, I is the input domain, O is the output range, φ

is the state transition function, and λ is the output function. S = {s0, s1, . . . , s|S|−1}
is the non-empty, countable set of states in the state machine. A “state” is a repre-

80

sentation of memory, which allows the output and behavior of the SM to depend on

current and past inputs. At any given (discrete) time t ≥ 0 the state of the machine,

known as the current state s(t), is exactly one of the members of S.9 The current

state of the SM can change in response to the state machine input in accordance to

the state transition function. If S has finite cardinality, then the SM is known as a

finite state machine (FSM). S0 is the set of initial states, and is a non-empty subset

of S. The current state of the SM is initialized to a member of S0 when the machine

is started, such that s(0) ∈ S0. I is the input domain, which is the set of all possi-

ble inputs to the state machine, and O is the output range, which is the set of all

possible outputs of the state machine. The state transition function φ : S × I → S
describes the state transitions of the SM. If the current state of the SM is s(t) ∈ S,

and the current input is i(t) ∈ I, then the next state will be s(t + 1) = φ(s(t), i(t)).

The output function λ : S → O is a mapping from each state to an output value.

Thus, the output of the state machine is λ(s(t)) ∈ O, which is a function of only

the current state s(t). The output function of some state machines (known as Mealy

Machines [282]) are more general, in that λ is also a function of the current input

(λ : S × I → O). However, it is sufficient for the output to depend only on s(t) for

the SMs of interest in this dissertation.

Some state machines are non-deterministic. A non-deterministic state machine

may have one or both of the following: multiple starting states, and non-deterministic

state transitions. A state machine with multiple starting states has |S0| > 1. When

the state machine is initialized before t = 0, a random member of S0 is chosen as

the starting state. A state machine with non-deterministic state transitions has a

state transition function φ(s, i) which returns a non-empty set of possible next states.

When a state transition occurs, the state machine transitions to a randomly chosen

member of that set.

9Note the difference between the notation si and s(t). si refers to a specific member of S (the i-th
state) and is independent of time. s(t) is the current state of the state machine at time t.

81

A state machine is often illustrated or represented using a directed graph, where

the vertices corresponds to the states and the edges correspond to the state transition

function φ(·).

2.7.3 Steganography

Watermarking and steganography are often mentioned together, and indeed, ro-

bust watermarking techniques may be used in some steganographic applications. In

this section, these related areas are (briefly) contrasted.

The objective of steganography [47] is to create a covert channel. Steganographic

techniques create the channel by embedding information into innocuous cover signals.

The signal containing the embedded information, known as the stego-signal, appears

identical to the cover signal and may be transmitted through an insecure channel

or even publicly distributed. However, only parties that are aware of the hidden

communications are able to (easily) recover the embedded message from a stego-

signal. There may be censors, sometimes known as wardens, who examine channels

for the purpose of identifying possible stego-signals. Distinguishing stego-signals

from signals that contain no hidden information is a part of steganalysis [287].

The parallels between steganography and watermarking are straightforward. The

hidden message is the payload, the cover signal is the original signal, and the stego-

signal is the watermarked signal. Embedding hidden information is a process similar

to watermark embedding, and extracting hidden information from a stego-signal is

a process similar to watermark detection.

The difference between watermarking and steganography lies in the purpose and

requirements of the embedded watermark. For steganography, the most important

objective is to avoid suspicion of the stego-signal. Therefore, the degree of invisibil-

ity required for information embedding is generally much greater for steganography

than robust watermarking. This arises under the assumption that wardens are likely

to use statistical analysis [287–290] to identify possible stego-signals, and thus infor-

82

mation embedding for steganography must not only be perceptually invisible, but

also statistically invisible. Robustness may be a concern in some steganography

applications, but generally perceptual and statistical invisibility is of much greater

importance than robustness. On the other hand, robust watermarking applications

are generally more concerned that an embedded watermark is difficult to remove.

Perceptual transparency is important, but generally not to the degree in which users

cannot differentiate watermarked and unwatermarked signals with statistical analy-

sis. In fact, users may be quite aware that signals are watermarked. For example,

a video distributor may warn users that all videos are watermarked to protect the

interests of the copyright holder. Another difference is that in robust watermark-

ing applications, the embedded watermark is generally related to the watermarked

signal in some way, such as encoding the source or intended recipient of the water-

marked signal. In steganography, it is not unusual for the embedded message to be

completely unrelated to the cover signal.

83

3. TEMPORAL SYNCHRONIZATION

In this chapter, a framework is developed for temporal synchronization in blind sym-

metric video watermarking [291]. New models are proposed for watermark embed-

ding and detection that apply to a large class of video watermarking techniques. The

models demonstrate that temporal synchronization is challenging for video water-

marks lacking temporal redundancy. Efficient temporal synchronization is achievable

by designing watermarks with temporal redundancy and allowing a limited search by

the watermark detector. Experimental results obtained from an implementation of

the models show agreement with the theoretical foundations. Spatial synchronization

issues are not considered in this chapter.

3.1 Temporal Synchronization Framework

In this section, the foundation for exploring temporal synchronization is devel-

oped from the classical model of watermarking. The classical model was described

in Section 2.1 (see also Figure 2.1) and is adapted here for video watermarking, us-

ing notation that indicates the temporal structure of video more explicitly. Under

the classical model, a watermark is inserted into an original video to produce the

watermarked video. The watermarked video may be subjected to attack. Finally,

the watermarked and possibly attacked video is provided to the watermark detector.

The watermark embedder is provided three inputs: The original video X, the

embedding key KE, and payload M . The original video is an ordered sequence X =
〈

X(0), X(1), X(2), . . . , X(t), . . .
〉

, with X(t) corresponding to the (two-dimensional)

frame displayed at time t. For convenience, t is discrete and expressed in units of

frames, so t can also be referred to as the frame index. The first frame of the

video is indexed by t = 0. The embedding key KE and message M are identi-

84

cal to Section 2.1.1. The output of the embedder is the watermarked video Y =
〈

Y (0), Y (1), . . . , Y (t), . . .
〉

.

The watermarked video may be attacked. The primary focus here is temporal

synchronization attacks, which were introduced in Section 2.6.1. These attacks alter

the temporal structure of the watermarked video and may confuse the watermark

detector. Let Ŷ =
〈

Ŷ (0), Ŷ (1), . . . , Ŷ (t), . . .
〉

denote the watermarked and possibly

attacked video that is provided to the detector. If the video has not been attacked,

then Ŷ is identical to Y and Ŷ (t) = Y (t) for all t. If the video is attacked then it is

not necessarily true that Ŷ (t) = Y (t) for any t. For example, frame dropping attacks

remove frames from Y, while a frame insertion attacks insert arbitrary frames into

Y to produce Ŷ.

The watermark detector examines its input video Z and determines if the water-

mark is present. Whille any signal could be provided to the detector, the interest

here is when Z = Ŷ. The following assumptions are made with respect to watermark

detection:

1. Watermark detection is blind and the original signal X is not available to the

detector. Blind detection is more general than non-blind detection because the

detector has less information for watermark detection.

2. The watermarking technique is symmetric, with KD = KE. Thus, the keyspace

can be written as K = KE = KD. Like the classical model, the cardinality of

the keyspace is assumed to be very large. More specifically, K is assumed

sufficiently large that a computational search through K is not feasible.

3. The watermark detector does not have access to the entire input video, but only

a relatively small portion of the video by which to detect the watermark. As

mentioned in Section 2.5.2, this is a common condition in video watermarking

and the complications in synchronization described in Section 2.6 are applica-

ble. Thus, the watermark detector performs initial synchronization, and then

85

continues to detect the watermark as the input signal is available, or until the

watermark detector loses synchronization.

While the classical model is useful for an overview of watermarking, insight in

the temporal synchronization problem requires a more detailed examination of the

temporal structure of video watermarks. The discussion will now extend from the

classical model, leading to new models for watermark embedding and detection.

When a watermark is embedded in a video sequence, one of the parameters that

determines its structure is the embedding key KE. In video watermarking, KE is gen-

erally used to create a key schedule or key sequence K = 〈K(0), K(1), . . . , K(t), . . .〉,
which is the ordered sequence of sub-keys for generating the watermark embedded

in the individual frames of Y. Specifically, K(t) is the sub-key used for generat-

ing the watermark signal W (t) embedded in frame Y (t). Many video watermarking

techniques use KE as the seed of a PRNG (see Section 2.7.1), which produces the

watermark signal W directly or performs KE-dependent processing that produces

the watermarked signal. For these techniques, K(t) corresponds to the internal

state of the PRNG when frame X(t) is watermarked. Other watermarking tech-

niques explicitly embed the same watermark signal in each frame of video, and for

these techniques K(t) = KE for all t. This assumption, where a key sequence is

produced from KE, holds for a large class of video watermarking techniques, includ-

ing [38,61,89,104,212,233–235,242,243]. KE and K(t) are assumed to be members

of the key space K.

Let the ordered sequence K̂ =
〈

K̂(0), K̂(1), . . . , K̂(t), . . .
〉

denote the keys used

to produce the watermark signals Ŵ =
〈

Ŵ (0), Ŵ (1), . . . , Ŵ (t), . . .
〉

embedded in

the frames of Ŷ, where K̂(t) is the key used to generate the watermark Ŵ (t) embed-

ded in frame Ŷ (t). If the watermarked video has not been attacked, then Ŷ (t) = Y (t)

and thus K̂(t) = K(t) for all t. However, temporal synchronization attacks such as

frame dropping, insertion, and transposition alter the sequence of frames in the video,

causing changes to K̂(t). Signal processing attacks that do not affect the temporal

structure of the watermarked signal, such as spatial filtering, affect Ŷ but not K̂.

86

K̂(t) and Ŵ (t) are not defined if Ŷ (t) is an arbitrary, unwatermarked frame that

has been inserted into the video (as an attack.)

The objective for the watermark detector is to determine K̂(t) when frame Ŷ (t)

is examined. (A blind detector does not have access to Y (t).) The process of finding

K̂(t) when frame Ŷ (t) is examined is temporal synchronization. If the detector can

determine K̂(t), then temporal synchronization is achieved. If the detector cannot

determine K̂(t), then temporal synchronization is lost. Note that the watermark

detector can still miss (such as by interference) when temporal synchronization is

successful.

If an attacker can determine K̂(t) or Ŵ (t) for any frame Ŷ (t), then the struc-

ture of the watermark has been deduced and watermark security is broken. As

discussed in Section 2.2.4, watermark estimation permits unauthorized removal and

may permit unauthorized embedding. One way to examine security is to consider

how difficult the watermark is to estimate. The watermark detector does have an

advantage compared to an attacker, in that the detector is provided with KD = KE.

The key schedule can have a dramatic effect on the ease of synchronization and

the security of the watermark. To illustrate the effects of the key schedule on syn-

chronization and security, three classes of watermarks with special key sequences are

discussed: The time invariant key, time independent key, and periodic key water-

marks.

A time invariant key watermark uses the same key to construct and embed the

watermark into each frame of the video. Temporal synchronization for this class

of watermarks is a simple matter because the detection key for any watermarked

frame of the video is known to be KE = K̂(t) = K(t) for all t without performing

search. However, time invariant key watermarks may be vulnerable to estimation by

temporal averaging, and an attacker that successfully obtains the watermark for a

single frame of the video breaks the security of the watermark.

For a time independent key watermark, the keys used to construct and embed

the watermark signal in successive video frames are nearly independent. Such a

87

key schedule may be produced by using a PRNG to create the watermark signal

for each frame, whose internal state is never re-seeded after the initial seeding with

KE. Strictly speaking, the watermark keys K(t1) and K(t2), t1 �= t2, are not truly

independent because a single key KE is used to produce all the watermarking keys

in the key schedule. The keys in the time independent key schedule, however, do

not repeat or repeat with an extremely long period. Knowledge of the key used to

embed the watermark in one frame yields little information about the key used to

embed the watermark in other frames, however, the detector must generally search K
to find K̂(t) when synchronization is lost. Watermark robustness against temporal

collusion attacks may also be an issue (see Section 2.5.2.)

In a time periodic key watermark, the keys of the key schedule form a repeating

sequence (with relatively short period). In such a key schedule, every K(t) (and thus

every K̂(t)) is a member of a small set of keys K′ ⊂ K (with |K′| ≪ |K|) that are

repeated. A search over K′ may not be infeasible. With the repeated keys, estimating

the watermark requires more effort than time-invariant key watermarks but much less

effort than for time-independent key watermarks. For example, estimating the period

of the watermark key sequence may be possible by (auto-)correlation, and vector

quantization or clustering techniques [82] may be used to estimate the embedded

watermark from Ŷ. Once an attacker obtains the key sequence over a single period,

the attacker has obtained the entire key sequence of the watermark.

The time invariant key, independent key, and periodic key sequences differ in the

amount of temporal redundancy in the key schedule. Temporal redundancy in the key

schedule refers to the degree of “randomness” of the keys in the key schedule. The

sequence of keys appearing in a key schedule with low temporal redundancy (such as

the time-independent key schedule) is more random and recovering synchronization

may require a search over K. A key schedule with greater temporal redundancy

allows the detector to reduce the search needed for synchronization. For example,

the detector may be able to predict likely values for an unknown K̂(t), based on the

past keys K̂(t−1), K̂(t−2), However, there is a security trade-off in that greater

88

temporal redundancy in the key schedule can make deducing K̂(t) or estimating the

embedded watermark easier for an attacker. Temporal redundancy shall be revisited

in the design of key schedules that are resistant to frame dropping and transposition

attacks in Section 3.5. In the next sections, models for watermarking are introduced

which encompasses the time invariant key, time independent key, and periodic key

watermarks as special cases.

3.2 Watermark Embedding Model

To model the construction of the key schedule, the classical watermark embedder

is extended as shown in Figure 3.1. The function of the watermark signal generator

and watermark insertion are identical to that of watermark generation and insertion,

respectively, in the classical model. The embedder model assumes that the water-

mark is generated on a frame-by-frame basis, but does not depend on the structure or

design of the watermarks embedded in each video frame. Any watermark construc-

tion and embedding techniques may be used to produce the embedded watermark

for each frame of the video. The key generator and the feature extraction are new

components, and will be described in detail below.

The overall steps for watermark embedding are as follows. For each frame of the

video:

Watermark Embedding Procedure (WEP)

1. The key generator provides K(t), the key used to watermark the current frame,

to the watermark signal generator.

2. The watermark signal generator uses K(t) to produce W (t), the watermark

signal to be embedded into the current frame. For example, K(t) may be used

to seed a pseudo-random number generator which produces W (t). Like the

classical model, the watermark signal may be dependent on the payload M as

well as the current video frame X(t).

89

Input Frame

X(t)
Watermarked

Frame

Y(t)

Feature

Extraction

K(t)

F(t)

W(t)

Watermark

Signal

Generator

P
a

y
lo

a
d

KE

Insert

Key Generator

Note: Key generator

introduces a delay.

K(t) is produced by the

feature vector of the

previous frame

Fig. 3.1. Watermark embedding model

90

3. The watermark embedder inserts W (t) into the original video frame X(t) to

produce the watermarked video frame Y (t).

4. The feature extractor examines the watermarked video frame and produces a

feature vector F (t).1

5. The key generator produces the watermark key for the next frame, K(t + 1).

To produce K(t + 1), the key generator uses KE and F (t). Return to step 1

for the next frame of the video.

The purpose of the key generator is to produce the watermarking key for each

frame of the video, and thus, produce the key schedule for the watermark. The key

generator is modeled using a state machine (SM), introduced in Section 2.7.2. The

state machine may be non-deterministic.

When an SM is used as a key generator, the SM accepts fixed KE and frame-

dependent feature vector F (t) as inputs and produces a key value as output. Thus,

the input domain I will generally be the Cartesian product of the key space K and

the range of all possible feature vectors from the feature extractor. The output range

is the key space O = K. The starting state may depend on KE. In step 1 of the

WEP, the state machine outputs λ(s(t)). State transitions occur in step 5, where

s(t + 1) = φ(s(t), KE, F (t)). After the state transition, the key K(t + 1) is obtained

by λ(s(t + 1)). The output mapping function λ(·) of a key generator must also be

one-to-one.

The feature extractor examines each watermarked video frame Y (t) and produces

a feature vector F (t). The feature vector is then provided to the key generator, which

allows the key sequence to be video-dependent. A video-dependent key schedule can

increase the difficulty of inverting the watermark and provide some benefit against

ownership and copy attacks (see Section 2.1.2.) However, the disadvantage of us-

ing features is that the dependence of the key schedule on the features imply that

1Strictly speaking, F (t) is a vector. However, it is a vector obtained from observing a single frame,
Y (t). F (t) is not written as F(t) to avoid confusion with X, Y, Ŷ, and other symbols whose
elements form an ordered sequence across time (i.e. over multiple frames of video).

91

temporal synchronization can be lost by performing attacks that change the feature

vectors. For robust video watermarking, the features should be chosen such that

F (t) changes in value only when significant alterations are made to the watermarked

frame Y (t). Ideally, the features should be sufficiently robust so that such an attack

is successful only when the attacked video no longer has any value in the appli-

cation. For security, the features should be dependent on an auxiliary key. The

features should also be computationally efficient to obtain. Feature extraction may

be omitted if the key generator does not use F (t).

The modeling of the key generator using a state machine provides generality

for the embedder model. While video watermarking techniques generally do not

(explicitly) mention the use of a state machine, most (and arguably, nearly all)

techniques use a PRNG for watermark generation. A PRNG is a state machine

that produces a (nearly) time-independent key sequence. Examples of the time-

invariant key, time-independent key, and time-periodic key generators are shown to

illustrate these key sequences as special cases of the model. These examples are not

unique and there are other key generator configurations which can produce these

key schedules. None of the watermark embedders for these key schedules use feature

extraction. Assume the key space is K = {0, 1, 2, . . . , |K|−1} and the embedding key

is KE ∈ K. With the exception of the state transition function, the state machines for

these examples are common: S = {s0, s1, . . . , s|K|−1}, S0 = {sKE
}, I = K, O = K,

and λ(si) = i.

The key generator for a time-invariant key watermark has the state transition

function

φ(si, KE) = si (3.1)

For a time-independent key watermark, the key generator has state transition func-

tion

φ(si, KE) =







si+1, si ∈ {s0, s1, . . . , s|K|−2}
s0, si ∈ {s|K|−1}

(3.2)

92

For a periodic key watermark with period T > 1 frames, the key generator has state

transition function

φ(si, KE) =







si+1, si ∈ {sKE
, sKE+1, . . . , sKE+T−2}

sKE
, otherwise

(3.3)

for KE ∈ {0, 1, . . . , |K| − T}.2 The graph representation of these state machines is

shown in Figure 3.2.

The computational cost of watermark embedding is expressed by

Φembed = Φgenerate + Φinsert + Φfeature (3.4)

where Φembed is the embedding cost per video frame, Φgenerate is the cost for generating

the watermark signal, Φinsert is the cost for watermark insertion, and Φfeature is the

cost for feature extraction. Φgenerate and Φfeature generally depend on the size of

the video frame while Φfeature depends on the (choice of) features. The cost of key

generation (the state machine) is neglected in (3.4), as this cost is generally negligible.

3.3 Watermark Detection Model

This section describes a model for symmetric blind video watermark detection.

The detector model is shown in Figure 3.3, under the assumption that the test signal

is the attacked video Z = Ŷ. Symmetric watermark detection also has the detection

key KD = KE. The major components of the detector model are the watermark

signal detector, feature extractor, state predictor, detector control, and the queue.

The detector has knowledge of the embedder’s key generator (S,S0, I,O, φ, λ) and

feature extraction.

The watermark signal detector is identical to that of the classical model. It is the

watermark detector corresponding to the technique used to embed the watermark

signal. The watermark signal detector is provided Ŷ (t) and a detection key, and

2The state transition function for KE ∈ {|K| − T + 1, . . . , |K| − 1} is conceptually similar to (3.3),
but requires the indices of the states in the period to “wrap-around”: There is no state s|K| in S,
so the next state after s|K|−1 is s0.

93

sK
E

sK -1 E
sK +1 E

sK
E

(a) Time-Invariant Key

(b) Time-Independent Key

(c) Time-Periodic Key

sK
E

sK +1 E

sK +3 E

sK +4 E

sK +5 E

sK +T-1 E

sK +2 E

Fig. 3.2. Example key generators

94

Feature

Extraction

Detector

Control

State

Predictor

F(t)^

key

detected?

KE

Queue

Watermark

Signal

Detector

s(t)^ s(t+1)
~

^
Input Frame

Y(t)

Fig. 3.3. Watermark detection model

95

determines whether or not the watermark is present in the frame using the key. The

detection key is obtained from the detector control. The watermark signal detector

may be invoked multiple times for a single frame of video.

The feature extraction is identical to that of the embedder. The detector’s feature

extractor examines the input frame Ŷ (t) and produces a feature vector F̂ (t), which

is provided to the state predictor.

The state predictor and the queue are the significant components for watermark

detection and synchronization. At this time, the structure of the the state predictor

and the queue are described. The underlying synchronization mechanism will be

discussed later. The state predictor accepts a state input ŝ(t), the embedding key

KE, and feature input F̂ (t) and outputs s̃(t + 1), the predicted state for ŝ(t + 1).

The prediction function is identical to the state transition function of the watermark

embedder: s̃(t + 1) = φ(ŝ(t), KE, F̂ (t)). The state predictor is not a state machine.

The queue serves as the detector’s memory. A queue is an array of elements

Q =
〈

q(0), q(1), . . . , q(|Q| − 1)
〉

, where each element may contain some data. The

queue size |Q| is number of elements present in the queue and the queue capacity

is the maximum size of the queue. The element q(0) is known as the head, and

q(|Q| − 1) is known as the tail. When new data is inserted into the queue, all of the

data in the queue shift one element and the new data is placed at the head of the

queue. If the queue was full prior to the insertion, then any data that resided at the

tail of the queue is lost. This type of queuing behavior is known as a FIFO (First-

In-First-Out) queue. In addition to the insertion of new data, the queue supports

moving or “promoting” any data present in the queue to the head of the queue.

When data in a specific queue element is promoted, all the other data in the queue

are moved–preserving their relative order–to make room at the head of the queue

and the promoted data is placed into the head. For the watermark detector queue,

the data stored in the queue will be members of S. Prior to receiving the first frame

of video, the watermark detector queue is empty.

96

The detector control component manages the operation of all the components of

the watermark detector, performing the steps of the Watermark Detection Procedure

(WDP).

Watermark Detection Procedure (WDP)

1. The input frame Ŷ (t) is provided to the watermark signal detector and the

feature extractor. The feature extractor examines Ŷ (t) and obtains F̂ (t).

2. For each state sinit ∈ S0, the detector sends the key λ(sinit) to the watermark

signal detector. If the detector finds the watermark using key λ(sinit), let

ŝ(t) = sinit and continue to step 5. If the detector fails to find the watermark

using the keys of all states in S0, continue to the next step.

3. For each state sq ∈ Q, the detector sends the key λ(sq) to the watermark signal

detector. If the detector finds the watermark using sq, let ŝ(t) = sq, promote

sq to the head of the queue, and continue to step 5. If the detector fails to find

the watermark using the keys of all states in the queue, continue to the next

step.

4. At this step, either Ŷ (t) is not watermarked or temporal synchronization failed

for the current frame. Return to step 1 and try synchronizing with the next

frame, Ŷ (t + 1).

5. At this step, K̂(t) was found and temporal synchronization is achieved for the

current frame. ŝ(t) is the state which maps to K̂(t) under λ(·). Use the state

predictor to predict the state s̃(t + 1) = φ(ŝ(t), KE, F̂ (t)). If the predicted

s̃(t + 1) is already in the queue, promote it to the head. Otherwise insert the

predicted s̃(t + 1) into the queue. Then return to step 1 for the next frame of

video. If φ(·) returns a set of states (a non-deterministic SM), then this step

is repeated for every member of φ(ŝ(t), KE, F̂ (t)), before returning to step 1.

A glance at the WDP shows that the queue is used to perform a limited search to

find the appropriate detection key for each frame of the video. The queue stores the

97

states which produced recently detected keys, and their next states. The next states

are obtained by using the state predictor. Watermark detection only involves a single

frame at a time, which fulfills the assumed condition that the entire test signal is not

available to the detector. A more detailed analysis of the synchronization mechanism

is presented in Section 3.4.

The watermark detection model generalizes the behavior of video watermark

detectors, analogous to the watermark embedding model described in Section 3.2

generalizing a symmetric blind video watermark embedder. Video watermark detec-

tors generally perform the steps of the WDP in principle, even when the watermark

detection technique is not described with explicit mention of the watermark detection

model. In particular, the watermark detector possesses side-information regarding

the watermark embedding process. This side-information generally allows the detec-

tor to generate the watermark signal (step 3 of the WDP) and then detect for the

presence of the watermark signal in the input video frame. If the detector discovers

that K̂(t) was the correct key to watermark frame Ŷ (t), the detector assumes (i.e.

predicts) K̂(t+1) by using this side-information (step 5 of the WDP) and searches for

this key in subsequent frames of the video. Watermark detection continues in such a

manner until the detector becomes confused by a synchronization attack. When the

detector loses synchronization, and for initial synchronization, the detector searches

for a particular key to resynchronize (step 2 of the WDP).

The computational cost for watermark detection (per frame) is given by

Φdetect = κ [Φsignal−detect] + Φfeature, (3.5)

where κ is the sum of the queue capacity and the cardinality of the set S0, and

Φsignal−detect is the computational cost for watermark signal detection. Φsignal−detect

is generally dependent on the size of a video frame. The detector control and state

prediction generally have negligible cost and have not been included in (3.5). Clearly,

the detection cost is linear with respect to the queue capacity, which represents the

cost of performing the limited search for synchronization. If computational resources

are available, the individual signal detections may be implemented in parallel.

98

3.4 Analysis

The function of the embedder and detector models are examined in this section.

It is shown that the detector will detect the watermark embedded in every frame

of the watermarked video without attacks and that the insertion of arbitrary (un-

watermarked) frames will not desynchronize the detector. The vulnerability of the

watermark detector to synchronization loss under frame dropping or transposition

attack is also shown.

The objective of the detector is to determine K̂(t) when frame Ŷ (t) is examined.

However, for a watermark produced by the watermark embedder discussed in Section

3.2, K̂(t) = λ(ŝ(t)), where ŝ(t) is the underlying state of the key generator which

produced K̂(t). The function λ(·) is one-to-one, and is only a function of the state.

Thus, the objective of the detector can be restated as to determine ŝ(t) when frame

Ŷ (t) is examined. The analysis will focus on the states, specifically the states of the

embedder’s key generator to produce the watermark and the states in the detector’s

queue.

The watermark signal detector is assumed to be always correct for any key and

input video frame (no false positives and no misses). Also, the analysis shall assume

that the key generator uses a deterministic state machine. This is to simplify the

presentation; a similar analysis can be performed for non-deterministic state ma-

chines, which would be complicated by φ(·) returning a set of states as opposed to a

single state for a deterministic SM, but the general principle remains the same.

Some lemmas about the properties of the embedder and detector models:

• Lemma 1 (Fundamental Watermark Structure) Let Y (t) and Y (t + 1)

be any two successive frames of the watermarked video. Assume that K(t) =

λ(s(t)) produced the watermark signal embedded in Y (t) and K(t+1) = λ(s(t+

1)) produced the watermark signal embedded in Y (t + 1). Assume that F (t) is

obtained from the feature extractor from Y (t), and KE is constant. Then,

s(t + 1) = φ(s(t), KE, F (t)).

99

Proof This follows from the WEP. In particular, exactly one state transition

occurs for every pair of successive frames, and for any state transition s(t+1) =

φ(s(t), KE, F (t)).

• Lemma 2 Suppose Ŷ (t) and Ŷ (t + 1) are two successive watermarked frames

of the detector’s input video and neither frame is attacked or involved in an

attack. Assume that K̂(t) = λ(ŝ(t)) produced the watermark signal embedded

in Ŷ (t) and K̂(t + 1) = λ(ŝ(t + 1)) produced the watermark signal embedded in

Ŷ (t + 1). Assume that F̂ (t) is obtained from the detector’s feature extractor at

time t, and KE is constant. Then, ŝ(t + 1) = φ(ŝ(t), KE, F̂ (t)).

Proof Because neither Ŷ (t) nor Ŷ (t + 1) is attacked, there must exist a pair

of frames Y (u) and Y (u + 1) such that Ŷ (t) = Y (u) and Ŷ (t + 1) = Y (u + 1).

(The time indices t and u are not necessarily identical because frames may

have been dropped or inserted into Ŷ outside the time interval t and t + 1.)

From Ŷ (t) = Y (u), it follows that K̂(t) = K(u) and ŝ(t) = s(u). The feature

extraction will also produce identical feature vectors F̂ (t) = F (u). From Ŷ (t+

1) = Y (u + 1), it follows that K̂(t + 1) = K(u + 1) and ŝ(t + 1) = s(u + 1).

Lemma 1 holds for Y (u) and Y (u+1), so s(u+1) = φ(s(u), KE, F (u)). Then,

ŝ(t + 1) = s(u + 1) = φ(s(u), KE, F (u)) = φ(ŝ(t), KE, F̂ (t)).

• Lemma 3 (Detector Behavior) Let Ŷ (t) be the frame of the video examined

by the detector. Then, temporal synchronization is achieved if and only if Ŷ (t)

is watermarked, and ŝ(t) is either a member of S0 or in the queue at time t,

where ŝ(t) is the state which produced K̂(t) = λ(ŝ(t)).

Proof Suppose temporal synchronization is achieved. This implies that the

detector found some key K̂(t) and state ŝ(t) such that K̂(t) = λ(ŝ(t)) produced

the watermark signal embedded in frame Ŷ (t). To establish synchronization,

the WDP searches the keys corresponding to the states in S0 (during step 2)

100

and the queue (during step 3), and no other states. Thus, it must be the case

that ŝ(t) is either in S0 or the queue. Suppose that Ŷ (t) is watermarked with

key K̂(t) = λ(ŝ(t)), and ŝ(t) is either a member of S0 or is in the queue at time

t. Because the WDP attempts to detect the watermark using all of the states

in S0 and in the queue, the watermark detector will try ŝ(t) and temporal

synchronization is achieved.

• Lemma 4 (Initial Synchronization) Let Ŷ (t) be the frame of the video ex-

amined by the detector, watermarked by K̂(t) = λ(ŝ(t)) and ŝ(t) ∈ S0. Tem-

poral synchronization will be achieved.

Proof This follows immediately from Lemma 3. The significant statement of

this Lemma is that synchronization will be achieved regardless of the contents

of the queue.

• Lemma 5 (Queue Lemma I) Let Ŷ (t) be the watermarked frame examined

by the detector, where K̂(t) = λ(ŝ(t)) produced the watermark embedded in the

frame. Suppose temporal synchronization is achieved. Then, for frame Ŷ (t+1),

the state at q(0) (the head of the queue) is φ(ŝ(t), KE, F̂ (t)), and if ŝ(t) /∈ S0

and the queue is sufficiently large, the state at q(1) is ŝ(t).

Proof By lemma 3, if temporal synchronization is achieved then ŝ(t) must

either be in S0 or the queue. The remainder of the proof follows by inspecting

the queue after step 5 of the WDP.

When the key generator uses a non-deterministic state machine, this lemma

should be restated such that when ŝ(t) /∈ S0 and the queue is sufficiently large,

then the state ŝ(t) will be in the queue at q(|φ(ŝ(t), KE, F̂ (t))| + 1). A suf-

ficiently large queue capacity implies that the queue has enough elements to

store the current state and all next states. This is a queue capacity of 2 for

101

a deterministic SM key generator, but larger for a SM with non-deterministic

state transitions. Specifically, the queue capacity must be at least the maxi-

mum number of next states returned by φ(·) for any s(t), KE, and F (t), plus

one additional element (for the current state s(t).)

• Lemma 6 (Queue Lemma II) Let Ŷ (t) be the frame of the video examined

by the detector. Suppose temporal synchronization is not achieved. Then the

queue is unchanged.

Proof If temporal synchronization fails, then either Ŷ (t) is not watermarked

or the state that produces the key which generated the watermark signal em-

bedded in Ŷ (t) is not in S0 or the queue. In this case, none of the steps in the

WDP affect the queue.

Theorem 3.4.1 (Correctness of watermark detector with no attacks) Let

Ŷ be the watermarked video provided to the detector. Suppose no attacks are per-

formed on Ŷ. Then the watermark detector will achieve synchronization and detect

the watermark in every frame of the video.

Proof The proof will be by induction on t. Base Case: Ŷ (0) is the first frame of

the video. There are no attacks, so Ŷ (0) = Y (0), which was watermarked by the

key generated by state s(0) ∈ S0. By Lemma 4, temporal synchronization will be

achieved.

Inductive Case: Suppose temporal synchronization is achieved for frame Ŷ (t).

By Lemma 5, φ(ŝ(t), KE, F̂ (t)) will be at the head of the queue. By Lemma 2, the

state for the next frame is ŝ(t+1) = φ(ŝ(t), KE, F̂ (t)). Thus, by Lemma 3, temporal

synchronization will succeed for frame Ŷ (t + 1).

Theorem 3.4.2 (Ineffectiveness of frame insertion attack) Suppose Y (u) and

Y (u + 1) are consecutive frames of the watermarked video, and Ŷ (t) = Y (u), Ŷ (t +

102

N + 1) = Y (u + 1), N > 0, and all frames Ŷ (t + i), i ∈ {1, 2, . . . , N} are arbi-

trary, unwatermarked frames inserted as an attack, and temporal synchronization is

achieved for frame Ŷ (t). Then, temporal synchronization will be achieved for frame

Ŷ (t + N + 1).

Proof Ŷ (t) = Y (u) implies K̂(t) = K(u), ŝ(t) = s(u), and F̂ (t) = F (u). Ŷ (t +

N + 1) = Y (u + 1) implies K̂(t + N + 1) = K(u + 1), ŝ(t + N + 1) = s(u + 1).

Lemma 1 applies to s(u) and s(u+1), thus s(u+1) = φ(s(u), KE, F (u)). And thus,

ŝ(t + N + 1) = φ(ŝ(t), KE, F̂ (t)).

Temporal synchronization on frame Ŷ (t) is achieved, so by Lemma 5, the state

φ(ŝ(t), KE, F̂ (t)) will be at the head of the queue. The next N (inserted) frames of

Ŷ after Ŷ (t) are all unwatermarked, which implies that temporal synchronization

will not succeed for those frames (Lemma 3). By Lemma 6, however, the queue is

not changed during the processing of any of the N frames and φ(ŝ(t), KE, F̂ (t)) will

remain at the head of the queue. Thus, by Lemma 3, temporal synchronization will

be achieved for frame Ŷ (t + N + 1).

Theorem 3.4.3 (Vulnerability to frame dropping) Suppose Y (u), Y (u + 1),

and Y (u + 2) are consecutive frames of the watermarked video, watermarked us-

ing keys K(u) = λ(s(u)), K(u + 1) = λ(s(u + 1)), and K(u + 2) = λ(s(u + 2)),

respectively. Also assume s(u) �= s(u + 1) �= s(u + 2), and s(u + 2) /∈ S0. Suppose

Ŷ (t) = Y (u), but the next frame is dropped so that Ŷ (t + 1) = Y (u + 2). Suppose

ŝ(t+1) is not in the detector’s queue at time t. Then, temporal synchronization will

not succeed for frame Ŷ (t + 1), even if temporal synchronization succeeded for frame

Ŷ (t).

Proof Ŷ (t) = Y (u) implies K̂(t) = K(u) and ŝ(t) = s(u). Likewise, Ŷ (t + 1) =

Y (u + 2) implies K̂(t + 1) = K(u + 2) and ŝ(t + 1) = s(u + 2). If temporal syn-

chronization is not achieved for frame Ŷ (t), by Lemma 6, the queue will not change

when the detector examines frame Ŷ (t). Since ŝ(t + 1) was not in the queue at time

103

t, then ŝ(t + 1) will not be in the queue when Ŷ (t + 1) is examined. Furthermore,

since ŝ(t + 1) /∈ S0, by Lemma 3 temporal synchronization will not be achieved for

frame Ŷ (t + 1).

Suppose temporal synchronization succeeded for frame Ŷ (t). Then by Lemma

5, state s̃ = φ(ŝ(t), KE, F̂ (t)) and possibly state ŝ(t) will be in the queue. However

neither ŝ(t) = s(u) nor s̃ = s(u + 1) is equal to ŝ(t + 1) = s(u + 2) since s(u) �=
s(u + 1) �= s(u + 2). It was assumed that state ŝ(t + 1) was not in the queue at time

t, thus when the detector examines frame Ŷ (t + 1), the state ŝ(t + 1) will not be in

the queue. Since ŝ(t + 1) = s(u + 2) /∈ S0, by Lemma 3 temporal synchronization

will not be achieved for frame Ŷ (t + 1).

From the proof of Theorem 3.4.1, it can be seen that the φ(·) function induces a

“chain of states” that is created by the embedder (through the state transitions in

the key generator) and traced by the detector (using the queue and state predictor).

The frame dropping attack severs the chain, causing the watermark detector to be

unable to discover the state sequence used by the embedder. A frame transposition

attack can affect the state sequence similarly. In Section 3.5, watermark detection

in the presence of frame dropping and transposition attack shall be addressed by

adding temporal redundancy into the key schedule.

When the detector loses temporal synchronization, Lemma 3 shows why recover-

ing synchronization is relatively simple for time-invariant key and time-periodic key

watermarks, and difficult for time-independent key watermarks. For a time-invariant

key watermark, the state of the key generator for all time is s(t) = ŝ(t) = sKE
∈ S0.

Thus, synchronization will always succeed for any watermarked frame in a time-

invariant key watermark, even without a queue. For a periodic key watermark, the

state sequence includes sKE
∈ S0 in each period. If the detector loses synchroniza-

tion, it will be able to recover synchronization at a frame which ŝ(t) = sKE
, or a frame

which ŝ(t) ∈ Q in a future period. However, the situation is much different for a

time-independent key watermark. If the detector loses synchronization, a frame that

104

is watermarked by the state sKE
or a state in the detector’s queue may not appear

until nearly |K| frames in the future. Synchronization for a time-independent key

watermark by search alone may not be practical, and synchronization may require

embedding additional information into the watermarked signal (such as an explicit

synchronization signal) to describe K̂(t).

3.5 Temporal Redundancy and Synchronization

Section 3.4 showed that the watermark detector may be vulnerable to frame drop-

ping and transposition attacks. However, the resilience of the watermark detector

against these attacks may be increased by adding temporal redundancy into the key

schedule. Temporal redundancy adds robustness into the key schedule, permitting

some frames to be dropped or re-ordered without adversely affecting temporal syn-

chronization. A modified embedder is described which adds temporal redundancy

by watermarking multiple frames of the video with an identical key.

One strategy for increasing the robustness of the watermark is to limit the effect

of synchronization loss to as few frames as possible. If the detector can recover

synchronization quickly, then the effect of losing synchronization is not severe. An

example of this strategy is the time-periodic key watermark. If the detector loses

synchronization, then a frame that allows the detector to recover synchronization

should be examined by the detector in the near future.

The embedder’s key generator can be modified to produce a key schedule that

is similar to, but not necessarily identical to a time-periodic key watermark. The

modification entails “resetting” the key generator after α consecutive frames of the

video have been watermarked. When the key generator is reset, its current state is

set to a member of S0, similar to the initialization which occurs before t = 0. The

parameter α is the period, although the name is somewhat a misnomer because the

watermark state sequence is not necessarily strictly periodic. The larger α, the less

often the key generator is reset and the key schedule produced by the key generator

105

has less temporal redundancy. The key generator may also be reset at random

intervals, where α is the expected number of frames between resets. This change

does not require any modification to the watermark detector, nor is it necessary to

provide α to the detector as side-information because temporal synchronization will

succeed when a frame is watermarked with a state ŝ(t) ∈ S0. A frame watermarked

when the key generator state is a member of S0 is known as a resynchronization frame,

because these frames allow the detector to recover synchronization if synchronization

has been lost, as well as initial synchronization.

Theorem 3.4.3 shows that the loss of a single state (frame) can cause the detec-

tor to lose synchronization, indicating the fragileness of the state sequence. Another

strategy for increasing the robustness of the watermark is to find a means for protect-

ing the state sequence so that the loss of individual states can be tolerated without

synchronization loss. Consider a modified embedder in which the key generator does

not change its state after every frame of the video is watermarked. In the modi-

fied embedder, the current state of the key generator changes to φ(s(t), KE, F (t))

only after β consecutive frames are watermarked, using the feature vector of the last

frame to determine the next state. The current state of the state machine remains

unchanged and the feature vector is ignored for all other frames during step 5 of

the WEP. The parameter β is known as the repeat parameter. The resulting state

sequence resembles that of Figure 3.4.

Now, it will be shown that having consecutive frames watermarked using the

same key generator state will not destroy temporal synchronization at the detector.

Because of this property, it is not necessary to modify the watermark detector to

accommodate the change made to the embedder, or to provide β to the detector

as side-information. Also, if the feature vectors are identical over those frames, the

detector’s queue will not change over those frames.

Lemma 7 (Queue Lemma III) Suppose Ŷ (t) and Ŷ (t + 1) are two consecutive

frames watermarked using the same key λ(ŝ(t)) = λ(ŝ(t + 1)) and thus, same state

ŝ(t) = ŝ(t+1). Suppose temporal synchronization is achieved for frame Ŷ (t) and the

106

β frames

s(0)=s(1)=···=s(β -1)

s(0) s(β -1) s(β) s(2β -1)

β frames

s(β)= ···=s(2β -1)

s(2β) s(3β -1)

β frames

Fig. 3.4. State sequence of modified embedder. Each circle represents
the state used to watermark a single video frame. Arrows indicate
frames where state transitions occur in the key generator.

queue capacity is sufficiently large. Then, temporal synchronization will be achieved

for frame Ŷ (t + 1). Furthermore, if F̂ (t + 1) = F̂ (t), then the detector queue after

examining frame Ŷ (t + 1) is identical to that after examining Ŷ (t).

Proof Suppose ŝ(t) ∈ S0. Then ŝ(t + 1) = ŝ(t) ∈ S0, so by Lemma 4, temporal

synchronization will succeed for frame Ŷ (t+1). By Lemma 5, the head of the queue

will be q(0) = φ(ŝ(t), KE, F̂ (t)) after examining frame Ŷ (t). If F̂ (t + 1) = F̂ (t),

then φ(ŝ(t + 1), KE, F̂ (t + 1)) = φ(ŝ(t), KE, F̂ (t)), which is already at the head of

the queue and no new state will be added to the queue during step 5 of the WDP

for frame Ŷ (t + 1). Thus, the queue after examining frame Ŷ (t + 1) is identical to

that after examining Ŷ (t).

Now suppose ŝ(t) /∈ S0. By Lemma 5, successful temporal synchronization for

frame Ŷ (t) implies that after examining Ŷ (t), the queue has q(0) = φ(ŝ(t), KE, F̂ (t))

and q(1) = ŝ(t). Consider the WDP when frame Ŷ (t+1) is examined by the detector.

State ŝ(t+1) = ŝ(t) is in the queue, so temporal synchronization will succeed in step

3 of the WDP. During this step, the state ŝ(t) will be promoted and thus q(0) = ŝ(t)

and q(1) = φ(ŝ(t), KE, F̂ (t)). But if F̂ (t+1) = F̂ (t) then φ(ŝ(t+1), KE, F̂ (t+1)) =

φ(ŝ(t), KE, F̂ (t)), which is already in the queue, so during step 5 of the WDP, that

state shall be promoted to the head and q(0) = φ(ŝ(t), KE, F̂ (t)) and q(1) = ŝ(t).

107

No other states in the queue are affected by the WDP. Thus, if F̂ (t + 1) = F̂ (t),

then the queue is not changed when Ŷ (t + 1) is examined.

Lemma 8 (Corollary) Suppose Ŷ (t), Ŷ (t + 1), . . . , Ŷ (t + β − 1) are consecutive

frames watermarked using the same state ŝ(t) = ŝ(t + 1) = . . . = ŝ(t + β − 1) for

β > 1, and that temporal synchronization is achieved for frame Ŷ (t). Then temporal

synchronization will be achieved for frames Ŷ (t + 1), . . . , Ŷ (t + β − 1). Furthermore,

if F̂ (t) = F̂ (t + 1) = . . . = F̂ (t + β − 1), then the queue after the detector examines

frame Ŷ (t+β − 1) is identical to the queue after the detector examines frame Ŷ (t).

Proof Apply Lemma 7 to every pair of frames Ŷ (t) and Ŷ (t + 1), Ŷ (t + 1) and

Ŷ (t + 2), . . . , and Ŷ (t + β − 2) and Ŷ (t + β − 1).

Theorem 3.5.1 (Temporal redundancy and frame dropping.) (See Figure 3.5

for a diagram showing the assumptions of this theorem, as the hypothesis is lengthy.)

Suppose Y (u − 1), Y (u), . . . , Y (u + β) are consecutive frames of the watermarked

video produced by the modified embedder such that:

• Frame Y (u − 1) is watermarked by key K(u − 1) = λ(s(u − 1))

• Frame Y (u + β) is watermarked by key K(u + β) = λ(s(u + β))

• All frames Y (u), . . . , Y (u + β − 1), denoted set Z, are watermarked by the key

K∗ = K(u) = . . . = K(u + β − 1) = λ(s∗) = λ(s(u)) = . . . = λ(s(u + β − 1))

• Feature value does not change for the frames in set Z, or F ∗ = F (u) = . . . =

F (u + β − 1).

• The state transitions of the key generator occur after watermarking frames

Ŷ (u − 1) and Ŷ (u + β − 1). Thus, φ(s(u − 1), KE, F (u − 1)) = s∗ and

φ(s∗, KE, F ∗) = s(u + β).

The watermarked video is provided to the detector, where frames Ŷ (t−1) = Y (u−1)

and Ŷ (t + τ) = Y (u + β), fixed τ ≤ β, are not attacked. However, one or more

108

s(u-1) s(u+β)

s(u) s(u+β-1)

β frames

s*=s(u)=s(u+1)=…=s(u+β-1)

F*=F(u)=F(u+1)=…=F(u+β-1)

φ(s*,KE,F*)=s(u+β)

Attack: Frames dropped

s(t-1) ^ s(t) ^ s(t+τ-1) ^ s(t+τ) ^

Fig. 3.5. State sequence in a frame dropping attack

frames in set Z may be dropped. Let the set Ẑ = {Ŷ (t), . . . , Ŷ (t+τ −1) be the set of

frames from Z that remain after the frame drop attack. Assume there are no other

attacks on Ẑ, and temporal synchronization is achieved for frame Ŷ (t− 1). Then, if

there is at least one frame in Ẑ, then temporal synchronization will be achieved for

all the frames in Ẑ as well as frame Ŷ (t + τ).

Proof Temporal synchronization is successful for frame Ŷ (t− 1). Thus, the queue

shall contain the state φ(ŝ(t − 1), KE, F̂ (t − 1)) = φ(s(u − 1), KE, F (u − 1)) = s∗

(Lemma 5). Since Ẑ is non-empty and no other attacks have been performed in Ẑ,

there exists a frame, Ŷ (t) ∈ Ẑ. For any frame in Ẑ, the state of the key generator

used to watermark the frame is s∗ and the feature vector extracted from the frame

is F ∗. Since s∗ is in the queue, temporal synchronization will be achieved for frame

Ŷ (t) (Lemma 3). After examining Ŷ (t), the head of the queue will be the state

φ(ŝ(t), KE, F̂ (t)) = φ(s∗, KE, F ∗) = s(u + β) = ŝ(t + τ) (Lemma 5). If there is more

109

than one frame in Ẑ, temporal synchronization will be achieved for every frame in Ẑ
and the queue will remain unchanged (Lemma 8). Thus, when the detector examines

frame Ŷ (t + τ), the state ŝ(t + τ) will be in the queue and by Lemma 5, temporal

synchronization will be achieved for Ŷ (t + τ).

Theorem 3.5.1 shows that the watermark produced by modified embedder, in

which sets of β consecutive frames are watermarked by the same state of the key

generator, will be resilient against frame dropping attack unless all β frames in a

set are dropped (assuming feature vectors are constant over each set, or if feature

extraction is not used). By performing state transitions every β frames instead of at

every frame as described in Section 3.2, redundant copies of each state are created

prior to a state transition. These redundant copies will not confuse the detector

(Lemma 8), and the detector only needs to observe each state once to maintain

temporal synchronization (Theorem 3.5.1). Any frame dropping attack which drops

less than β consecutive frames will fail to desynchronize the detector.

Lemma 8 also demonstrates that temporal upsampling, where the attacked video

is obtained by repeating each frame of the watermarked video multiple times, will not

desynchronize or otherwise affect the watermark detector. In fact, temporal upsam-

pling increases the temporal redundancy of the watermark, making the watermark

more robust against frame dropping.

Both the strategies described above require the watermark embedder to be mod-

ified from Section 3.2, by the insertion of a Temporal Redundancy Control. The new

embedder is shown in Figure 3.6. The temporal redundancy control interfaces with

the WEP, as follows:

1. Initialization: Set counters a = 0 and b = 0. The key generator is reset, by

setting the current state to a member of S0.

2. During step 1 of the WEP, the temporal redundancy control provides λ(s(t))

to the watermark signal generator, where s(t) is the current state of the key

generator.

110

Input Frame

X(t)
Watermarked

Frame

Y(t)

Feature

Extraction

K(t)

F(t)

W(t)

Watermark

Signal

Generator

P
a

y
lo

a
d

KE

Temporal

Redundancy

Control

Insert

Key Generator

Fig. 3.6. Modified embedder with temporal redundancy control

111

3. During step 5 of the WEP, the temporal redundancy control increments a and

b. Then:

(a) If a = α, then the key generator and the temporal redundancy control are

reset for the next frame of the video. Return to step 1 for the next frame

of the video.

(b) Otherwise, if b = β, then the key generator performs a state transition.

Set b = 0, and then return to step 2 for the next frame of the video.

(c) Otherwise, return to step 2 for the next frame of the video, without chang-

ing the current state of the key generator.

Selecting α = ∞ and β = 1 produces a watermark key schedule identical to that

of Section 3.2.

3.5.1 Adaptive state transitions

The temporal redundancy control described above uses two parameters to pro-

duce key sequences of varying degrees of temporal redundancy. The period (α) is the

number of frames watermarked before the key generator is reset, which corresponds

to the interval between resynchronization frames. The repeat (β) is the number

of consecutive frames watermarked with the same key before the key generator is

used to produce a new key. Generally, decreasing α and increasing β increases the

amount of temporal redundancy in the key sequence and provides increased robust-

ness against attack. However, using a fixed β for the temporal redundancy control

can sometimes cause a dramatic loss in temporal redundancy when feature vectors

change.

A key assumption in Theorem 3.5.1 is that feature vectors remain constant over

each set of β frames watermarked with the same state. However, the actual state

transition of the embedder’s key generator uses only the feature vector of the last

frame in a set. If feature vectors change within a set of β frames, then temporal re-

112

s(t) s(t+1) s(t+β-2) s(t+β-1)

s(t+β)

Actual state transition

of key generator is

φ(s(t+β-1),KE,F(t+β-1))

s

F(t)=F(t+1)=…=F(t+β-2)

s(t)=s(t+1)=…=s(t+β-1)

~

Fig. 3.7. Example of changing feature values reducing temporal redundancy

dundancy is reduced. An example is illustrated in Figure 3.7. Frames Y (t), . . . , Y (t+

β − 1) are watermarked with the same state s∗, and Y (t), . . . , Y (t + β − 2) have the

same feature vector F ∗. Assume that φ(s∗, KE, F ∗) = s̃, which is some state in the

state machine. However, suppose that the feature vector changes value for frame

F (t + β − 1), and that φ(s∗, KE, F (t + β − 1)) = s(t + β) �= s̃. Then, the frames

Y (t), . . . , Y (t+β−2) will not provide the detector queue with the state s(t+β), even

if temporal synchronization is successful for those frames. Because of the change in

the feature value, the loss of frame Y (t + β − 1) would be catastrophic for temporal

synchronization at the detector.

An alternate strategy is to perform state transitions in the key generator based

on when the feature values change, instead of a fixed interval of β frames. That is,

the key generator changes its current state only after (1) feature values have been

constant for β consecutive frames, and (2) at least β frames have been watermarked

with the same state. This strategy adapts the key generator state transitions to the

characteristics of the video to increase the temporal redundancy of the key sequence

and improve the robustness of the watermark.

113

3.5.2 Security

Temporal redundancy is an advantage for temporal synchronization of the wa-

termark detector, however redundancy is a disadvantage for security. A watermark

whose key sequence has more redundancy is less random and is more vulnerable to

estimation attacks. Thus, the state transitions should appear as random as pos-

sible, which increases the difficulty for an attacker to predict the key schedule (or

equivalently, the state sequence).

One method for increasing the degree of randomness in the key schedule is to use

a non-deterministic state machine for the key generator. The key schedule produced

by a deterministic key generator is dependent only on the embedding key and the

feature vectors obtained from the video. The state transitions and initial states in a

non-deterministic state machine introduce randomness into the key sequence. Even

a small degree of randomness for each state transition can have a large effect on the

state sequence because each state transition affects not just the next state of the

state machine, but potentially all future states of the state machine.

Another method for increasing the randomness in the key schedule is to define

the state transition function by using cryptographic hash functions. A cryptographic

hash function, or a one-way hash function, H(M) is a function that accepts as input

an arbitrary length binary string message M (in this context, M is not related to

the watermark payload) and produces a fixed length bit string output of size L

bits, known as a digest or hash value [16, 292]. The notation H(x1, x2, . . .) is used

to indicate the L-bit digest produced by H when the concatenation of the binary

representation of the values x1, x2, . . . is provided as the message input. Given a

message M , it is very easy to obtain digest H(M). However, given the digest, one

cannot easily construct a message that hashes to that digest. Cryptographic hash

functions are typically used for constructing message authentication codes [16].

An example state transition function using hash functions is:

s(t + 1) = φ(s(t), KE, F (t)) = sH(s(t),KE ,F (t)) (3.6)

114

where the set of states is S = {s0, s1, s2, . . . , s2L−1} with cardinality |S| = 2L. An

example state transition function for a non-deterministic state machine is:

s(t + 1) = φ(s(t), KE, F (t)) = sH(s(t),KE ,F (t),Γ(t)) (3.7)

where Γ(t) is a randomly selected member of the set {0, 1, 2, . . . , 2R − 1}, R a fixed

positive integer. Because the detector must insert into the queue and search all 2R

possible values of φ(·), R is usually chosen to be a small number.

The cryptographic hash function increases the difficulty in predicting or identi-

fying the state sequence. First, the hash function allows KE to be involved in each

state transition, which is unlike a PRNG in which there is only a single state tran-

sition sequence and KE merely chooses the seed (the starting state). The hash is

similar to having a different PRNG for each KE. The properties of the hash function

make it difficult to predict the state sequence without knowledge of KE, and obtain-

ing KE from observation of the state sequence is difficult. A good hash function also

allows the next state to be determined while avoiding preferential treatment to the

binary values of particular parameters, such as the current state, feature values, and

random bits.

The major security concern lies in the resynchronization frames. These frames

may occur frequently over the video, which presents an opportunity for estimation

attacks similar in spirit to those attacking a time-periodic key watermark. The

frequency of resynchronization frames (parameter α) is a trade-off between the ease

of synchronization and security. To improve security, resynchronization frames must

be more difficult to identify and estimate. One method to do this is to use image-

dependent watermarking [89, 293]. Another method is to use the feature vector of

the previous frame to determine the key for the resynchronization frame. That is, if

the key generator is reset for watermarking frame X(t), s(t) is not set to a member

of S0, but to a state which is dependent on F (t − 1), KE, and possibly Γ(t). The

WDP (step 2) would be modified accordingly. These methods generate different

watermark patterns for the resynchronization frames and make them more difficult

to identify and estimate. Neither of these methods are implemented here.

115

3.6 Experimental Results

To evaluate the effectiveness of adding temporal redundancy on temporal syn-

chronization, the watermark embedding and detection models have been imple-

mented for uncompressed video sequences. The implementations of the watermark

signal generation, insertion, and signal detection techniques are simple, which main-

tains the focus on the temporal structure of the watermark and its effects on syn-

chronization (and not on the intricacies of signal embedding and detection.)

The watermark signal generator is a PRNG that is seeded by K(t) for each

video frame X(t), producing a zero-mean unit variance i.i.d. Gaussian distributed

pseudo-random sequence W (t). The watermark embedder inserts W (t) additively in

the spatial domain (pixel values) of the video frame, producing watermarked Y (t).

Perceptual shaping is not used. Only the luminance of the video was watermarked;

the embedder ignores the chrominance.

The watermark signal detector applies a spatial de-correlating filter to reduce

host-signal interference (see [38] and [3,109]), followed by correlation and comparison

with a threshold value. The decorrelating filter is applied by convolving the input

image with the point-spread function

h =
1

4











1 −2 1

−2 4 −2

1 −2 1











. (3.8)

Correlation is similar to (2.3), except that the dot product is with the filtered input:

ρ(t) =
1

N
[Z(t) ∗ h] · WK (3.9)

where Z(t) is the input frame, h is the filter of (3.8), N is the length of the watermark

signal (which is identical to the number of pixels in a video frame), and WK is the

watermark signal when key K is provided to the signal detector. The watermark

embedding strength is such that the nominal correlation value is ρ(t) = 2.0 when

the watermark is present. The detection threshold was such that the watermark

116

detector reports the watermark is present in the frame when ρ(t) ≥ T = 1.0. The

detector queue capacity for all experiments is fixed to 10 elements.

Watermark embedders using three different key generators are examined. All

three key generators include the temporal redundancy control shown in Figure 3.6

and the state transition functions are cryptographic hash functions as described in

Section 3.5.2. SHA-1 [294] is used as the hash function, which produces a message

digest of L = 160 bits in size. The key generators also share in common K =

{0, 1, 2, . . . , 2160 − 1}, S = {s0, s1, . . . , s2160−1}, S0 = sKE
, and λ(si) = i.

The first key generator (“Features Only”) uses feature extraction and a deter-

ministic state machine (3.6). The feature extraction produces a feature vector by

partitioning each frame into non-overlapping blocks of 32 × 32 pixels in size. Each

block is pseudo-randomly assigned to one of three groups, Ω1, Ω2, Ω3, using KE as

the seed to determine the assignment. This assignment is determined once, and the

same block assignments is used for each frame of the video. The feature vector is

determined by

F (t) =

〈⌊

mean(Ω1)

∆

⌋

,

⌊

mean(Ω2)

∆

⌋

,

⌊

mean(Ω3)

∆

⌋〉

(3.10)

where mean(Ωi) is the mean of all pixels values in Z(t) assigned to group Ωi and ⌊·⌋
indicates the floor function (or rounding towards zero.) The division by ∆ and floor

effectively implement a uniform scalar quantizer with step size ∆. In the experiments,

∆ = 4 was used. With each pixel value in the range 0 . . . 255, ∆ = 4 implies that each

feature in F (t) is in the range 0 . . . 64, or a 6-bit integer value. These features are

selected because they are straightforward to implement and computationally efficient

to obtain, and not because they are optimal in any sense (including robustness and

security).

The second key generator (“Random Only”) uses the non-deterministic key gen-

erator with the state transition function of (3.7), with R = 2. The “Random Only”

embedder does not perform feature extraction. The third key generator (“Adap-

tive”) uses a non-deterministic key generator with the state transition function of

117

(3.7), with R = 2, the same features as the “Features Only” key generator, and the

adaptive state transitions described in Section 3.5.1.

The results show the mean performance of the detector after 10 trials of each

of the Akiyo, Foreman, and Bus sequences (352 × 288 CIF, 30 frames/sec). The

Akiyo and Foreman sequences are 300 frames in length while the Bus sequence is

150 frames in length. A random KE was used for each trial. Because the watermark

detector performs an independent watermark detection attempt for each video frame,

performance can be measured by the percentage of the watermarked frames that are

detected in the attacked video as the temporal redundancy is varied. A detection rate

of 100% indicates that the watermark detector detects the watermarks embedded in

every frame of the attacked video and the attack is ineffective. A detection rate of

0% indicates that the detector is unable to detect the watermark in the attacked

video. Temporal redundancy is expressed in terms of α (period) and β (repeat)

parameters.

Figure 3.8 shows the watermark detection performance after frame dropping

attack, where each frame of the watermarked video is dropped with probability

P = 0.25 and 0.5. For fixed α, the detections improve for all the embedders as β is

increased, showing that robustness improves with increasing temporal redundancy

(Theorem 3.5.1). When there is little temporal redundancy (β = 1), the performance

of all the embedders is poor, in agreement with Theorem 3.4.3. However, the per-

formance of the embedders improve significantly with added temporal redundancy

(β = 5, 10), particularly for the “Random Only” and “Adaptive” embedders. For

fixed β, the performance improves with decreasing α. When the detector loses tem-

poral synchronization, it will not recover synchronization until it discovers a frame

watermarked with a state ŝ(t) ∈ S0 or in the queue. When α is decreased, frames

are watermarked from a state in S0 more frequently, allowing the detector to recover

synchronization.

To show that the loss of temporal synchronization occurs when β consecutive

frames are dropped, the detection rate was examined after temporal decimation

118

attack. The results are shown in Figures 3.9 and 3.10. Decimation by a factor of

λ retains the first frame out of every λ consecutive frames. Choosing to retain the

first frame of every λ frames provides the most advantageous situation with respect

to the watermark detector (and not the attacker). This shows Theorem 3.5.1 most

vividly, as the intent is to show that the detection rates drop significantly when the

decimation factor exceeds β, even in the best case. If the decimation attack retained

the last frame of every λ frames, initial synchronization will fail when λ exceeds β.

The effect of changing feature values on temporal redundancy (described in Sec.

3.5.1) is dramatic, resulting in the poor performance of the “Features Only” embed-

der. For the “Random Only” and “Adaptive” embedders, the watermark detection

rate is 100% when the decimation factor is equal to or below β, demonstrating that

the loss of β−1 frames will not destroy temporal synchronization. The detection rate

decreases significantly when the decimation factor exceeds β. There is one exception,

in which the detection rate of these embedders when α = 30 and β = 5 remains good

even after the watermarked video is decimated by factor of 6. This arises because

the key generator is reset so often that the watermark detector discovers a frame

watermarked by a state in S0 before the decimation attack can affect detection.

The insertion of unwatermarked frames into the video does not affect watermark

detection, in agreement with Theorem 3.4.2. The observed detection rate is 100%

for all embedders and temporal redundancy parameters. In this attack, an arbitrary

number of frames from the original video are inserted between consecutive frames

of the watermarked video. Failure to detect the watermark in the inserted frames

does not penalize the performance of the detector because the inserted frames are

not watermarked.

Frame transposition has a similar effect to frame dropping on disrupting the

“chain of states” induced by φ(·), with the difference being that the attack displaces

the video frames in time instead of removing frames from the video. The implemen-

tation of this attack is as follows: The watermarked video is scanned from beginning

to end, with each frame having a fixed probability (P = 0.25 and 0.5) of being

119

interchanged with another (target) frame in the local neighborhood of the candi-

date frame. A temporally local frame was chosen because these frames are likely

to be similar. Transposing temporally distant frames does not make much sense

as an attack because these frames are generally disparate, and transposing them

causes the quality of the attacked video to be severely degraded (by flickering.) The

target frame is selected by generating a Gaussian random number (with variance

5.0), dropping fractions, and treating the number as a relative time index where 0

is the current frame, −1 is one frame in the past, +1 is one frame in the future,

and so on. Because transposing a frame with itself does not accomplish anything,

another random number is chosen if the relative time index is zero or out of range of

the video. The performance of the watermark detection under frame transposition

attack, shown in Fig. 3.11, shows similar trends to frame dropping.

Temporal frame averaging was also investigated using several moving window

sizes. Figures 3.12 and 3.13 show the detection rate of the watermark after frame

averaging using window sizes of λ = 2, 3, and 4. Frame averaging does not change the

sequence of frames appearing in the video, but averaging can detrimentally affect the

detection rate for two reasons: First, frame averaging itself may attenuate or remove

the embedded watermark, causing the detector to miss. Second, frame averaging

can cause the detector to obtain different feature values than those used by the

embedder to generate the key schedule. When this occurs, the detector’s state

prediction will fail and the detector will lose synchronization. Thus, frame averaging

is interesting in that it is both a removal attack as well as a synchronization attack.

The performance of the “Random Only” embedder shall be useful in explaining the

watermark detection performance under the frame averaging attack because this

embedder does not use feature extraction.

Attenuation of the watermark causes the watermark detector to miss for all of

the embedders when β = 1. In particular, the poor performance of the “Random

Only” embedder shows that changing feature values is not the culprit. The poor per-

formance of β = 1 watermarks is in agreement with other works discussing temporal

120

collusion attacks [82, 89]. However, watermark attenuation is also the cause of the

decreased detection rates for the “Random Only” embedder for β > 1 and λ = 2, 4.

The reason why the “Random Only” watermark detector does not miss for window

size λ = 3 but misses for λ = 2, 4 is not surprising once frame averaging is examined

more closely. Section 3.6.1 explores frame averaging as a removal attack in detail.

Frame averaging can also cause synchronization loss by changing the values of

the features. The change in feature values has a severe effect on synchronization

of the “Features Only” embedder when β > 1. The “Adaptive” embedder often

shows much better detection rate than “Features Only”, because state transitions

do not occur as frequently for the “Adaptive” embedder compared with the “Features

Only” embedder for fixed β. Because less state transitions occur for the “Adaptive”

embedder, there is less opportunity for the detector to lose synchronization.

Comparing the three embedders, the “Features Only” embedder often has worse

performance than the “Random Only” and the “Adaptive” embedders, whose perfor-

mances are often similar. This vividly shows the effect of changing feature values on

the temporal redundancy of the watermark described in Sec. 3.5.1, as the “Features

Only” and “Adaptive” embedders use the same feature extractor but the perfor-

mance of “Adaptive” is better than “Features Only”. Adaptive state transitions

significantly improve the performance of the watermark when feature extraction is

used.

The inserted watermarks are generally not noticeable in these experiments (the

embedding is such that the PSNR between the watermarked and original videos is

≥ 40 dB), however the various attacks performed has a noticeable impact on the

quality of the attacked video. The frame dropping attack is generally unnoticeable

when approximately 5%–10% frames are dropped, however higher drop rates make

the video appear “jerky”. Decimation reduces the frame rate, which is noticeable

even when the decimation factor is 2. The frame transposition attack produces

“jerky” video like the frame dropping attack, and frame averaging noticeably blurs

the video.

121

25% Frame Drop

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

3
0

0
 /
 1

3
0

0
 /
 3

3
0

0
 /
 5

3
0

0
 /
 1

0

1
5

0
 /
 1

1
5

0
 /
 3

1
5

0
 /
 5

1
5

0
 /
 1

0

3
0

 /
 1

3
0

 /
 3

3
0

 /
 5

3
0

 /
 1

0

Redundancy(Period [Frames] / Repeat [Frames])

%
 D

e
te

c
ti
o

n
s

Features Only Random Only Adaptive

50% Frame Drop

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

3
0

0
 /
 1

3
0

0
 /
 3

3
0

0
 /
 5

3
0

0
 /

 1
0

1
5

0
 /
 1

1
5

0
 /
 3

1
5

0
 /
 5

1
5

0
 /

 1
0

3
0

 /
 1

3
0

 /
 3

3
0

 /
 5

3
0

 /
 1

0

Redundancy(Period [Frames] / Repeat [Frames])

%
 D

e
te

c
ti
o

n
s

Features Only Random Only Adaptive

Fig. 3.8. Detection rate under frame dropping attack

122

Decimation (Factor 3)

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

3
0

0
/3

3
0

0
/5

3
0

0
/1

0

1
5

0
/3

1
5

0
/5

1
5

0
/1

0

3
0

/3

3
0

/5

3
0

/1
0

Redundancy(Period [Frames] / Repeat [Frames])

%
 D

e
te

c
ti
o

n
s

Features Only Random Only Adaptive

Decimation (Factor 4)

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

3
0

0
/3

3
0

0
/5

3
0

0
/1

0

1
5

0
/3

1
5

0
/5

1
5

0
/1

0

3
0

/3

3
0

/5

3
0

/1
0

Redundancy(Period [Frames] / Repeat [Frames])

%
 D

e
te

c
ti
o

n
s

Features Only Random Only Adaptive

Fig. 3.9. Detection rate under frame decimation attack

123

Decimation (Factor 5)

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

3
0

0
/3

3
0

0
/5

3
0

0
/1

0

1
5

0
/3

1
5

0
/5

1
5

0
/1

0

3
0

/3

3
0

/5

3
0

/1
0

Redundancy(Period [Frames] / Repeat [Frames])

%
 D

e
te

c
ti
o

n
s

Features Only Random Only Adaptive

Decimation (Factor 6)

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

3
0

0
/3

3
0

0
/5

3
0

0
/1

0

1
5

0
/3

1
5

0
/5

1
5

0
/1

0

3
0

/3

3
0

/5

3
0

/1
0

Redundancy(Period [Frames] / Repeat [Frames])

%
 D

e
te

c
ti
o

n
s

Features Only Random Only Adaptive

Fig. 3.10. Detection rate under frame decimation attack (continued)

124

25% Frame Transpose

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

3
0

0
 /
 1

3
0

0
 /
 3

3
0

0
 /
 5

3
0

0
 /

 1
0

1
5

0
 /
 1

1
5

0
 /
 3

1
5

0
 /
 5

1
5

0
 /

 1
0

3
0

 /
 1

3
0

 /
 3

3
0

 /
 5

3
0

 /
 1

0

Redundancy(Period [Frames] / Repeat [Frames])

%
 D

e
te

c
ti
o

n
s

Features Only Random Only Adaptive

50% Frame Transpose

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

3
0

0
 /
 1

3
0

0
 /
 3

3
0

0
 /
 5

3
0

0
 /

 1
0

1
5

0
 /
 1

1
5

0
 /
 3

1
5

0
 /
 5

1
5

0
 /

 1
0

3
0

 /
 1

3
0

 /
 3

3
0

 /
 5

3
0

 /
 1

0

Redundancy(Period [Frames] / Repeat [Frames])

%
 D

e
te

c
ti
o

n
s

Features Only Random Only Adaptive

Fig. 3.11. Detection rate under frame transposition attack

125

Frame Averaging (Window Size 2)

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

3
0

0
 /

 1

3
0

0
 /

 3

3
0

0
 /

 5

3
0

0
 /

 1
0

1
5

0
 /

 1

1
5

0
 /

 3

1
5

0
 /

 5

1
5

0
 /

 1
0

3
0

 /
 1

3
0

 /
 3

3
0

 /
 5

3
0

 /
 1

0

Redundancy(Period [Frames] / Repeat [Frames])

%
 D

e
te

c
ti
o

n
s

Features Only Random Only Adaptive

Frame Averaging (Window Size 3)

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

3
0

0
 /
 1

3
0

0
 /
 3

3
0

0
 /
 5

3
0

0
 /

 1
0

1
5

0
 /
 1

1
5

0
 /
 3

1
5

0
 /
 5

1
5

0
 /

 1
0

3
0

 /
 1

3
0

 /
 3

3
0

 /
 5

3
0

 /
 1

0

Redundancy(Period [Frames] / Repeat [Frames])

%
 D

e
te

c
ti
o

n
s

Features Only Random Only Adaptive

Fig. 3.12. Detection rate under frame averaging attack

126

Frame Averaging (Window Size 4)

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

3
0

0
 /
 1

3
0

0
 /
 3

3
0

0
 /
 5

3
0

0
 /

 1
0

1
5

0
 /
 1

1
5

0
 /
 3

1
5

0
 /
 5

1
5

0
 /

 1
0

3
0

 /
 1

3
0

 /
 3

3
0

 /
 5

3
0

 /
 1

0
Redundancy(Period [Frames] / Repeat [Frames])

%
 D

e
te

c
ti
o

n
s

Features Only Random Only Adaptive

Fig. 3.13. Detection rate under frame averaging attack (continued)

127

3.6.1 Frame averaging

The earlier discussion regarding frame averaging (and Figures 3.12 and 3.13)

noted that the watermark detector did not miss for the “Random Only” embedder

for β > 1 and a moving window size of λ = 3, but some misses were noted for λ = 2

or λ = 4. This has to do with how frame averaging affects the watermark as a

removal attack, as will be detailed in this section.

Before discussing frame averaging, a small digression into the correlation-based

detector is worthwhile. The blind correlation-based watermark signal detector is

provided with an input video frame Z(t) and key K. For simplifying this discussion,

assume that the filtering of (3.8) was not performed prior to correlation. The detector

generates the zero-mean candidate watermark signal WK using K and then performs

correlation as in (2.3):

ρ(t) =
1

N
(Z(t) · WK). (3.11)

For a watermark that is embedded additively as

Y (t) = X(t) + γW (t) (3.12)

and when Y (t) is provided to the detector, or Z(t) = Y (t), then the correlation is

similar to (2.6), or

ρ(t) =
1

N
(X(t) · WK) +

γ

N
(W (t) · WK) . (3.13)

Taking expectation with respect to WK ,

E [ρ(t)] =
1

N
E [X(t) · WK] +

γ

N
E [W (t) · WK] . (3.14)

The expected value of the first term (the host interference term) is zero since the

original signal X(t) is expected to be uncorrelated with any WK . For the second

term, watermark signals corresponding to distinct keys are generally uncorrelated,

thus the expected value is

E [WK · W (t)] =







W (t) · W (t) WK = W (t)

0 Any other WK

(3.15)

128

and the expected value of the overall correlation is

E [ρ(t)] =







ρ∗ =
γ
N [W (t) · W (t)] WK = W (t)

0 Any other WK

(3.16)

The watermark detector reports that the watermark detector is present in Z(t) if

the correlation ρ(t) is larger than a threshold. Assume for this discussion that the

threshold is taken to be T = 1
2
ρ∗, or that

Detector Output =







ρ(t) ≥ 1
2
ρ∗ Watermark Present

otherwise Watermark Not Present
(3.17)

Section 3.6 had mentioned that the watermark is constructed such that the nominal

correlation value is ρ∗ = 2.0, and the detection threshold was T = 1
2
ρ∗ = 1.0 for the

experiments.

Temporal frame averaging is an attack which constructs an attacked frame by

averaging the pixel values of the frames in the averaging window. More precisely,

the frame averaging attack constructs the attacked frame Ŷ (t) by

Ŷ (t) =
1

λ

[

λ−1
∑

i=0

Y (t + i)

]

=
1

λ

[

λ−1
∑

i=0

X(t + i) + γW (t + i)

]

(3.18)

The frames of the original video will not be identical unless the video is static in

the window. However, the video is usually highly correlated (for a sufficiently small

window) and the approximation

X(t) ≈ X(t + 1) ≈ . . . ≈ X(t + λ − 1) (3.19)

is convenient. Then, (3.18) can be written as

Ŷ (t) ≈ X(t) +
γ

λ

[

λ−1
∑

i=0

W (t + i)

]

(3.20)

When the watermark detector examines Ŷ (t), the correlation obtained is

ρ(t) =
1

N
(X(t) · WK) +

γ

Nλ

[

λ−1
∑

i=0

W (t + i) · WK

]

(3.21)

129

and taking expectation with respect to WK ,

E [ρ(t)] =
γ

Nλ

[

λ−1
∑

i=0

E [W (t + i) · WK]

]

(3.22)

Consider averaging with a window size of λ = 2 and a watermark constructed

with any value of β. Suppose the averaging window is positioned such that the

first frame of the window is watermarked with W (t) = WA and the second frame is

watermarked with W (t + 1) = WB, with WA �= WB. (This occurs every β frames.)

Then substituting in (3.22),

E [ρ(t)] =
γ

2N
[E [WA · WK] + E [WB · WK]] (3.23)

If WK is either WA or WB, then the expected correlation becomes

E [ρ(t)] =
γ

2N
[WK · WK] =

1

2
ρ∗ (3.24)

Comparing (3.24) with (3.17), the expected correlation is identical to the threshold.

This situation results in a large probability of detection miss.

For frame averaging using β = 1 and any window size λ > 1, there is no temporal

redundancy in the watermark so the first miss is immediately fatal. When the

detector examines a watermarked frame and misses, the queue is not updated and

the detector will not be able to detect the watermark in subsequent frames until

a resynchronization frame is encountered. Thus, the β = 1 detection performance

is very poor for “Random Only” (as well as the other embedders) in Figures 3.12

and 3.13 regardless of the window size.

Now consider when λ = 2 but with β ≥ 2. State transitions occur every β

frames, which imply that for every set of β frames, there are β − 1 frames in which

the averaging window contains two frames that have the same embedded watermark,

and 1 frame where the averaging window contains frames with different watermarks.

In the first β − 1 frames, averaging does not affect the expected correlation value

of E [ρ(t)] = ρ∗. Thus, the watermark will be detected in these frames, which

also provides the next states in the detector’s queue for detecting the embedded

130

WA WA WA WA WA WB WB WB WB WB

Case I

Case II

Case III

Fig. 3.14. Frame averaging attack on watermarked video (β = 5)
with window size λ = 3. Each box indicates a separate frame of the
watermarked video, with the watermarks embedded in each frame
indicated.

watermarks in future frames. In the last frame of the set, the expected correlation is

E [ρ(t)] = 1
2
ρ∗. In contrast with the β = 1 case, a detection miss in the last frame is

not fatal because the next state is already in the detector’s queue. Making the simple

assumption that the detector misses half the time on the last frame, the expected

detection rate is then

Detection Rate =
[(β − 1) + 0.5]

β
=

β − 0.5

β
(3.25)

For β = 3, the expected detection rate is approximately 83%. For β = 5, the expected

detection rate is approximately 90%. And for β = 10, the expected detection rate is

approximately 95%. The observed detection rates for the “Random Only” embedder

in Figure 3.12 are in agreement with these expected rates.

Consider a window size of λ = 3 and β = 3, 5, 10. Figure 3.14 shows a moving

averaging window on the watermarked video for β = 5. There are three possible

configurations for each window. Case I: For every set of β frames, the averaging

window will contain three frames watermarked identically for the first β − 2 frames.

This averaging does not decrease the expected correlation when the averaged frame

Ŷ (t) is examined, and E [ρ(t)] = ρ∗ and watermark detection is very likely to succeed.

Successful detection also provides the next state (shown as WB in Figure 3.14) into

the detector’s queue. Case II: Near the end of the set, the window contains two

131

frames watermarked with WA and a single frame watermarked with WB. When Ŷ (t)

is provided to the detector, the correlation will be

E [ρ(t)] =
γ

3N
[E [WA · WK] + E [WA · WK] + E [WB · WK]] (3.26)

When the detector correlates with the watermark WK = WA, then the expected

correlation value is E [ρ(t)] = 2
3
ρ∗. This is significantly greater than the threshold

of (3.17), so the detector is unlikely to miss. A similar result holds for the last

configuration, where the averaging window contains two frames watermarked with

WB and a single frame watermarked with WA. The detector will already have WB in

its queue, and correlating Ŷ (t) with WK = WB results in E [ρ(t)] = 2
3
ρ∗. Thus, for

λ = 3, the smallest correlation value obtained from an attacked frame is E [ρ(t)] =

2
3
ρ∗ and the detector rarely misses. This is why the detection rates for “Random

Only” are 100% for λ = 3 in Figure 3.12.

When the averaging window is λ = 4 frames in size, a similar analysis reveals that

for every β frames, there is one case where the attacked frame Ŷ (t) is constructed

by averaging two frames with WA and two frames with WB, which then results in a

correlation of E [ρ(t)] = 1
2
ρ∗ when WK = WA or WB. Thus, (3.25) also describes the

expected detection rate for λ = 4.

3.6.2 Adaptive state transitions

The use of adaptive state transitions changes the temporal structure of the wa-

termark based on the characteristics of the video, such that a minimum amount of

temporal redundancy is present with respect to changing feature values. To com-

pare the structure of the watermarked video when adaptive state transitions are used

(“Adaptive”) and when adaptive state transitions are not used (“Features Only”),

one can examine runs in the watermarked video. A run of length k is a set of k

consecutive frames that have been watermarked by the same key, where the frame

immediately before and after the run are watermarked using a different key. If adap-

tive state transitions are not used, the watermark is constructed such that all runs of

132

Table 3.1
Structure of watermarked video using adaptive state transitions for Akiyo

Redundancy Unique Keys Number of Runs Mean Run Length

α = 300 β = 3 98 98 3.06

α = 300 β = 5 56 56 5.36

α = 300 β = 10 26 26 11.54

α = 150 β = 3 98 98 3.05

α = 150 β = 5 56 56 5.36

α = 150 β = 10 27 27 11.11

α = 30 β = 3 90 99 3.03

α = 30 β = 5 49 57 5.25

α = 30 β = 10 20 28 10.71

the video are of length β frames. The average run length is thus β. When adaptive

state transitions are used, run lengths vary across the video depending on when the

feature values change. Run lengths depend on the video and the features.

For the “Adaptive” embedder, Tables 3.1–3.4 show the average run lengths of the

watermarked video for the Akiyo, Foreman, and Bus sequences, as well as averages

over all the videos. The number of unique keys used by the embedder to watermark

the video are also noted. A key is unique if the same key has not been used to

watermark an earlier frame of the video. The Bus video was only 150 frames in

length so no results are available for α = 300.

The Akiyo sequence consists of a woman speaking in front of a static background

and has very little activity or motion. The Foreman sequence has more motion in

the scene while the Bus sequence introduces a panning and zooming camera, which

results in significant amounts of activity. Comparing the run lengths, the Akiyo

sequence has run lengths that are very close to β. Short run lengths indicate that

feature values are changing infrequently, such that the embedder is easily able to

133

Table 3.2
Structure of watermarked video using adaptive state transitions for Foreman

Redundancy Unique Keys Number of Runs Mean Run Length

α = 300 β = 3 65 65 4.61

α = 300 β = 5 29 29 10.34

α = 300 β = 10 9 9 33.33

α = 150 β = 3 65 65 4.62

α = 150 β = 5 30 30 10.00

α = 150 β = 10 10 10 30.00

α = 30 β = 3 62 68 4.41

α = 30 β = 5 30 66 8.43

α = 30 β = 10 11 16 18.70

Table 3.3
Structure of watermarked video using adaptive state transitions for Bus

Redundancy Unique Keys Number of Runs Mean Run Length

α = 300 β = 3 — — —

α = 300 β = 5 — — —

α = 300 β = 10 — — —

α = 150 β = 3 29 29 5.17

α = 150 β = 5 8 8 18.75

α = 150 β = 10 2 2 75.00

α = 30 β = 3 28 30 5.00

α = 30 β = 5 10 12 13.07

α = 30 β = 10 3 4 38.25

134

Table 3.4
Structure of watermarked video using adaptive state transitions
(Mean over all videos)

Redundancy Unique Keys Number of Runs Mean Run Length

α = 300 β = 3 82 82 3.84

α = 300 β = 5 43 43 7.85

α = 300 β = 10 18 18 22.44

α = 150 β = 3 64 64 4.28

α = 150 β = 5 31 31 11.37

α = 150 β = 10 13 13 38.70

α = 30 β = 3 60 66 4.15

α = 30 β = 5 30 45 8.92

α = 30 β = 10 11 16 22.55

135

find β consecutive frames with constant features. In fact, for Akiyo, the run lengths

are very close to β. On the other hand, the run lengths increase as the amount of

motion and activity in the video increases in the Foreman and Bus sequences, which

indicate rapidly changing feature values. When feature values change rapidly, the

embedder does not observe β frames with constant features. For example, finding

β = 10 consecutive frames with constant features within Bus is very difficult and the

run lengths far exceed β. (This watermark is nearly time-invariant.)

3.7 Conclusions and Future Work

Temporal synchronization was examined using a new framework for blind sym-

metric video watermark embedding and detection. The embedder and detector

models are general and encompass the behavior of most current video watermark-

ing techniques, including those techniques which produce time-invariant key, time-

independent key, and time-periodic key watermarks. The framework demonstrates

the relationship between temporal redundancy and temporal synchronization.

• A watermark without temporal redundancy is vulnerable to frame dropping

and transposition attack (Theorem 3.4.3). The φ(·) function induces a “chain

of states” that is created by the embedder (through the state transitions in the

key generator) and traced by the detector (using the queue and state predictor).

Frame dropping and transposition severs this chain, causing the detector to

lose synchronization. This vulnerability is particularly a concern for time-

independent key watermarks.

• By designing a watermark with temporal redundancy, an arbitrary amount of

robustness can be achieved against frame dropping, decimation, and transpo-

sition. In particular, a watermark can be designed (such as the watermark

discussed in Section 3.5) to be robust unless β consecutive frames are dropped

(Theorem 3.5.1), but at a tradeoff in security.

136

• Insertion of an arbitrary number of unwatermarked frames will not cause the

detector to lose synchronization, because unwatermarked frames do not affect

the detector’s queue (Theorem 3.4.2). Temporal upsampling will not desyn-

chronize the detector (Lemma 8).

• Initial synchronization is trivial for time-invariant key watermarks because

every frame is watermarked with a key in S0, but is only at the beginning of the

video for a time-independent key watermark, where keys do not repeat. Initial

synchronization may occur at resynchronization frames (every α frames) in the

watermark described in Section 3.5. A watermark with many resynchronization

frames is vulnerable to attacks which attempt to identify and remove these

frames. Some methods for improving the security of resynchronization frames

were mentioned in Section 3.5.2.

One of the contributions of the framework is the modeling of the key generator

using state machines. This opens avenues for further research. The graph structure of

the state machine, induced by representing states as vertices and φ(·) as edges, affects

temporal redundancy. For example, a key generator using a state machine with a

strongly connected graph representation may be more robust or secure. Instead

of watermarking multiple frames with the same key, temporal redundancy may be

inserted into the key schedule by altering or exploiting the structure of the graph.

This observation leads to the desire to quantify temporal redundancy in a more

general and formal manner than α and β. This is challenging, as the framework

shows that temporal redundancy is useful for both local sets of frames (β) as well

as globally throughout the watermark (α). Quantifying temporal redundancy by

simply one measure, such as redundancy in the information-theoretic sense [132],

is not necessarily insightful. An extended analysis may involve (Hidden) Markov

Models [295], Kalman filtering, or other state-estimation techniques.

Related to quantifying temporal redundancy is the tradeoff in security. The

discussion in Section 3.1, as well as estimation and collusion mentioned in other

137

works [82, 89], support the claim that increased redundancy reduces security. How-

ever, demonstrating a concrete relationship between redundancy and security is a

goal for future work. In essence, we would like to consider how difficult an arbitrary

watermark signal is to estimate using collusion and other attacks. For example, one

could try to estimate watermarks with varying redundancy by using various signal

estimators (such as simple arithmetic mean, Weiner estimation) as a preliminary

step to a more in-depth examination of security issues.

Another avenue for exploration is the prediction mechanism. One extension is

to extend the detector state prediction from predicting the next state (s̃(t + 1)) to

predicting multiple states in time (s̃(t + 1), s̃(t + 2), . . .). Another extension is to

provide the state predictor additional side-information (such as by a template) to

improve predictions.

A method for obtaining a measure for the “goodness” of the feature extraction is

desired. There are many functions that may be used for obtaining features, such as

the simple features used in these experiments and more sophisticated functions such

as a “visual hash” [296]. Because different applications require different degrees of

robustness and expect different attacks on the watermark, the feature set is likely

to be application dependent. Amongst the criteria for good features include (1) the

degree of robustness of the feature against attacks, (2) the number of distinct feature

values that can be produced for any video frame, (3) the degree of sensitivity of the

feature to the characteristics of a video frame, and (4) computational costs. We

would like to determine properties of functions which are most helpful for improving

the robustness and security of the watermark.

The embedder model uses feature extraction for each frame to affect the water-

mark structure of future frames. This can be compared, in terms of robustness,

security, and invisibility, to frame-dependent techniques, such as [89], where features

of the video frame are used to affect the watermark structure of the current frame.

The adaptive state transition model described in Section 3.5.1 simple, but has the

shortcoming that state transitions occur when the video is relatively static. This can

138

introduce flicker when the watermarked video is viewed. Flicker was not observed

in the experiments because the power of the embedded watermark was sufficiently

small, but flicker may be an issue when the embedding power is increased. A more

sophisticated adaptive model would would also consider the video before deciding a

state transition. For example, the state transition may be deferred until the next

frame when feature values change, after the feature values have been constant for at

least β consecutive frames.

The examination of synchronization in watermark detection has often focused on

designing templates, either by embedding an explicit synchronization signal, orga-

nizing the watermark to produce such a signal, or by using salient features of the

video for synchronization. However, there has been relatively little work in modeling

the watermark embedding and detection processes for synchronization similarly to

the approach taken in this chapter. Such models can be used to show why some

watermarks (such as time-invariant key watermarks for temporal synchronization

and tiled watermarks for spatial synchronization) are “easier” to synchronize than

others, even when the watermark embedding does not take advantage of any special

transform or invariance properties, or the insertion of an explicit synchronization

signal.

139

4. SPATIAL SYNCHRONIZATION

In the previous chapter, a framework was proposed for temporal synchronization

in video watermarking. In the framework, the watermark embedder creates the

watermark embedded into each frame of the video using a state machine key gen-

erator. The objective of the watermark detector is to determine, for each frame of

the input video, which key was used to produce the watermark embedded in that

frame. The key generators that produce time-invariant key, time-periodic key, and

time-independent key schedules are special cases. A technique for efficient temporal

synchronization was described by designing temporal redundancy in the watermark

key sequence. Only temporal synchronization was addressed.

In this chapter, the temporal synchronization framework is adapted and extended

to spatial synchronization of still image and video watermarks. Like temporal syn-

chronization, redundancy in the watermark structure can be used to produce a tem-

plate for efficient spatial synchronization. Specifically, the watermark embedder

constructs a watermark with a regular or “tiled” structure. When the autocorrela-

tion of the watermarked image is obtained, peaks (local maxima) occur in a pattern

resembling a grid, and this pattern is examined to estimate the rotation and the scale

of the watermark. The redundant structure of a tiled watermark reduces security

because such a watermark is more easily estimated.

Previous works have considered synchronization by using the autocorrelation or

constructing a tiled watermark structure. Kutter [267] constructs the watermark by

the superposition of an elementary watermark signal and shifted versions of the same

signal. The shifted watermarks induce peaks in the autocorrelation, which serves as

the basis for obtaining the watermark rotation and scale. Kalker [38] constructs a

tiled watermark for efficient synchronization under spatial translation. Alattar [260]

140

constructs a tiled watermark, and then uses a log-polar mapping of the autocorrela-

tion to estimate the watermark rotation and scale. Deguillaume [266] also constructs

a tiled watermark, but the affine coordinate transformation is estimated by using the

Hough Transform. Unfortunately, the Hough Transform is computationally expen-

sive to obtain, particularly if the rotation and scale is estimated to a high degree of

precision.

The synchronization method described in this chapter is similar to those pro-

posed by Alattar [260] and Deguillaume [266] in that the grid-like pattern of peaks

in the autocorrelation is used to estimate the position of the watermark. However,

an alternate method for watermark scale and rotation estimation is proposed, other

than the log-polar mapping and Hough Transform. This method is limited to uni-

form scaling and rotation attacks, which is more restrictive than [266] and identical

to the restrictions of [260]. However, the method described here does not require

the detector to obtain the Hough Transform of the autocorrelation. In addition, a

method for constructing watermarks with varying the degree of spatial redundancy

is described here, while [260, 266] focuses on the template matching while leaving

watermark construction open.

4.1 Watermark Embedding

A straightforward approach for extending the temporal synchronization frame-

work to spatial synchronization is to construct the watermark in a block-by-block

basis. The watermark embedder is shown in Figure 4.1. The original image and

the embedding key KE are provided as inputs. Let X(n) be a block of the original

image, where n = 0, 1, . . . is the block index. The key generator provides the key

K(n) to the watermark generator, which uses the key to produce the watermark

signal W (n). W (n) is inserted into X(n) to produce the watermarked block Y (n).

The block analyzer examines Y (n) to produce a feature vector F (n), which is used

by the key generator to produce the key to watermark the next block X(n+1). This

141

Current Block

X(n)

Watermark

Generator

Insert

Watermark

W(n)

Block

Analyzer

Redundancy

Control

Feature Vector

F(n)

Key

K(n)

Watermarked

Block

Y(n)

Key GeneratorKE

Fig. 4.1. Watermark embedder with state machine key generator for
spatial synchronization

process is repeated until all blocks of the image have been watermarked. The redun-

dancy control “resets” the key generator at regular intervals to control the structure

of the watermark, which will be described below.

The key generator is a state machine whose internal state is denoted by s(n) ∈ S,

where S is the set of states. When block X(n) is watermarked, the key generator

supplies key K(n) = λ(s(n)) to the watermark generator. When the watermarked

block Y (n) is produced and the feature vector F (n) is available, the key generator

performs a state transition: s(n + 1) = φ(s(n), KE, F (n)), where φ(·) is the state

transition function. A cryptographic hash function, where s(n), KE and F (n) are

hashed, is an example state transition function (equations (3.6) and (3.7).) Prior to

watermarking the first block of the image, the state of the key generator is set to an

initial state s0 ∈ S, which may be dependent on KE
1. The key used to watermark

the first block is thus K(0) = λ(s0) = K0. Also, when the key generator is reset

by the redundancy control, its internal state is set to s(n) = s0 and the key used to

watermark the block is K(n) = K0.

1The key generator may have randomized (non-deterministic) state transitions as in chapter 3.
However, in this chapter, the state machine must have a unique initial state.

142

Each

macroblock

is MxM

blocks

in size

Each block is

BxB pixels

in size

b0 b1

Watermarked Image

Fig. 4.2. Watermark structure showing macroblocks and blocks. The
image shows an example of the structure of a watermark constructed
and inserted in the spatial domain. The first block of all macroblocks
are identical.

This scheme can produce a watermark with a structure resembling that shown

in Figure 4.2, where the watermark is partitioned into non-overlapping macroblocks

Γ0, Γ1, Each macroblock is a region of MxM blocks, with blocks b0, b1, . . . , bM2−1.

Each block is a region of BxB pixels. Assume, for convenience, that the dimensions of

the image are integral multiples of MB. To produce the watermark structure, the key

generator is reset prior to watermarking the first block (b0) of each macroblock. This

block is watermarked by using the key K0 = λ(s0). After this block is watermarked,

the key generator performs state transitions to construct the watermark for the

remaining blocks b1, . . . , bM2−1. After the last block of the macroblock has been

watermarked, the key generator is reset by the redundancy control to watermark the

first block of the next macroblock. There are other watermark structures that can

be produced by this framework (such as by changing the redundancy control or the

order which the blocks of the image are watermarked), however only this watermark

structure will be considered in this chapter.

143

The first block (b0) of all the macroblocks are generated by the key K0. If W (n)

is only a function of K(n), then these blocks are identical.2 These synchronization

blocks form a regular pattern, or spatial redundancy, which shall be the basis for the

spatial synchronization technique discussed in Section 4.2. The remaining blocks of

the watermark, the non-synchronization blocks, are generated by keys that depend

on the block analyzer and are generally not identical. Thus, only the synchronization

blocks are redundant. Although the non-synchronization blocks do not play a role

in synchronization, they are part of the watermark and can be detected by the

watermark detector. For example, the non-synchronization blocks may encode a

payload.

The degree of spatial redundancy in the watermark can be adjusted by changing

M and B. For M = 1, the watermark is constructed by regularly repeating, or

tiling, an elementary watermark signal of size BxB pixels. All the blocks are syn-

chronization blocks and there are no non-synchronization blocks. For M > 1, spatial

redundancy is decreased because the watermark contains non-synchronization blocks.

As M increases, the fraction of synchronization blocks to non-synchronization blocks

decreases. Increasing B does not directly reduce the ratio between synchronization

blocks to non-synchronization blocks, but any increase in the product MB decreases

the number of macroblocks that can “fit” the area of an image of fixed size. Because

each macroblock contains a single synchronization block, decreasing the number of

macroblocks of the watermark decreases the total number of synchronization blocks,

and hence, spatial redundancy of the watermark.

4.2 Watermark Synchronization

When the watermarked image is provided to the watermark detector, the detector

establishes synchronization and then detects the watermark. In this section, the

2In particular, it is assumed that the watermark generator does not change or adapt the watermark
structure of the synchronization blocks based on the original image block, except for possibly
amplitude scaling (perceptual shaping).

144

focus shall be on the synchronization process, when the watermarked image may be

attacked by uniform scaling and rotation. The objective of the synchronizer is to

estimate the rotation and scale of the embedded watermark. Once the synchronizer

estimates the rotation and scale, these transformations are “reversed” to obtain a

normalized watermark. Detecting the normalized watermark is a straightforward

adaptation of the Watermark Detection Protocol (see Section 3.3) from frame-by-

frame detection to block-by-block detection, and will not be described here. Also,

this synchronization process does not estimate the translation (spatial shifting) of

the watermark. The shift be estimated in a manner similar to Kalker [38] or by

using an auxiliary template, or even by blind search. Because watermark detection

can occur at any macroblock, the translation search is only needed up to the size of

a single macroblock, not the size of an image.

For a watermark with the structure described in Section 4.1, the synchronization

blocks are repeated at regular intervals. When the autocorrelation of the watermark

is obtained, the synchronization blocks induce local maxima, or peaks, with a grid-

like arrangement similar to Figure 4.3(a). The distance between two adjacent peaks

of the grid is the neighbor distance χ. If the watermark has not been attacked,

χ = BM pixels. Uniformly scaling the watermark causes the distance of the peaks

to change to χ = BMf pixels, where f is the (unknown) scaling factor. The scaling

factor is the ratio of each dimension (height, width) of the attacked image to the

corresponding dimension of the watermarked image. Figure 4.3(b) illustrates the

effect of uniform scaling on the autocorrelation peaks of the watermark. Rotating the

watermark does not change the neighbor distance, but causes the peaks to be rotated

by the same rotation angle θ as shown in Figure 4.3(c). Thus, if the watermark has

been re-scaled by unknown scaling factor f and rotated by unknown angle θ, the

synchronizer can estimate the watermark scale and rotation by estimating χ and θ.

Several issues complicate the synchronization process. First, the signal power of

the embedded watermark is much lower than that of the original image. The auto-

correlation of the watermarked image may not show the desired grid of peaks unless

145

lag

lag

BM
pixels

(a) No Attack

lag

lag

χ

(b) Uniform Scaling

lag

lag

θ

(c) Rotation

Fig. 4.3. Autocorrelation of watermark showing location of local
maxima or peaks. Peaks are indicated by ×, forming a regular grid.
Not all the peaks in the autocorrelation are shown.

146

Input Image

Decorrelating

Filter

Auto-

correlation

Peak

Finding

Pre-process

Peak List

Scale

Estimation

Rotation

Estimation

Peak List
(xi , yi , mi)

Fig. 4.4. Spatial synchronization procedure

the host-signal interference is reduced prior to obtaining the autocorrelation. An-

other issue is that the autocorrelation of a watermarked image may have additional

peaks, missing peaks, and peaks that are slightly moved (or “perturbed”) from their

ideal positions.

The synchronization process is shown in Figure 4.4. The decorrelating filter (3.8)

is convolved with the input image to reduce host-signal interference, and then the

autocorrelation of the filtered image is obtained. Then, the location and magnitude

of all local maxima of the autocorrelation is obtained. The method for peak finding

is simple: A window is moved across the autocorrelation and the local maximum

inside the window is obtained. If the center value is the maximum, then it is a peak.

After peak finding, a list of peaks P = {pi}, pi = (xi, yi, mi) is obtained, where xi

and yi are the coordinates (position) of peak pi in the autocorrelation and mi is the

magnitude of pi.

147

Since the autocorrelation function of an image is symmetric about the origin, half

the peaks are redundant and are removed from the peak list. (As an optimization, the

autocorrelation would only need to be obtained from lags over a half-plane, instead of

obtaining the (full) autocorrelation and then removing half of the peaks.) Then, the

peak list is truncated to retain only the P peaks of greatest magnitude. Retaining

too few peaks does not allow the grid structure of Figure 4.3 to be detected, and

retaining too many peaks causes an excessive number of “noise” peaks (or peaks

that are not part of the grid structure). The value P = 50 (chosen empirically) was

used in the experiments, which provided a reasonable balance between detecting too

many noisy peaks and too few peaks.

The image shown in Figure 4.5 will be used as an example to illustrate the scale

and rotation estimation. This image has been watermarked in the spatial domain

(M = 3, B = 16) and attacked by scaling the image using f = 1.15 followed by six

degrees rotation. Figure 4.5(a) shows the watermarked and attacked image. The

positions of the peaks in P are shown in Figure 4.5(b). The grid pattern is present,

but also accompanied by a number of additional “noise” peaks that arise from the

interference of the original image. The neighbor distance is χ = MBf = 55.2 pixels.

4.2.1 Watermark scale estimation

The peaks of P are assumed to be spatially arranged in a grid with unknown

neighbor distance χ and oriented with unknown angle θ. The objective of the scale

estimation is to estimate χ. The scale estimation technique considers the distances

between all pairs of peaks, for two reasons. First, the distance between any two

peaks of the grid is independent of the orientation (or rotation) of the grid. Second,

the arrangement of the peaks implies that certain distances should occur frequently,

which becomes the basis by which the watermark scale can be estimated. Thus, the

first step is to obtain the distance

dij = d(pi, pj) =
√

(xi − xj)2 + (yi − yj)2 (4.1)

148

(a) Attacked image (b) Peak positions

Fig. 4.5. Example of watermark scale and rotation estimation using
image Girl. PSNR of watermarked image is 33.8 dB, M = 3, B = 16.
Attack is re-scaling by factor f = 1.15 followed by rotation of 6◦.
Neighbor distance is χ = MBf = 55.2 pixels.

149

0 50 100 150 200
0

5

10

15

20

25

Distance [Pixels]

C
o
u
n
t

Fig. 4.6. Distance histogram of Girl (histogram bin size ∆s = 1).
Large values occur at the bins corresponding to the distances of 55
pixels, 78 pixels, 110 pixels, and 123 pixels.

between every pair of peaks pi, pj ∈ P, i �= j. There are P peaks in P, so there

are 1
2
P (P − 1) pairs of peaks. The pairwise peak distances are used to construct

a distance histogram D. The value of each bin in the histogram is the number of

dij’s in the interval
[

(n − 1
2
)∆s, (n + 1

2
)∆s

)

for n = 0, 1, 2, . . . and histogram bin size

∆s > 0. The bins with high values are important because these bins correspond to

dij’s which occur most frequently. “Noise” peaks are not likely to form a regular

pattern that gives rise to high bin values. The distance histogram of Girl is shown in

Figure 4.6. The bin corresponding to the actual neighbor distance of 55.2 pixels has

a high value, however it is not the bin with the maximum value in the histogram.

150

The construction of the distance histogram from the pairwise peak distances does

not consider the fact that the peaks may be slightly shifted or “perturbed” from their

ideal positions. Small shifts in the peak positions may arise when the image pixel

values are interpolated after the coordinate transformation. Interpolation has the

effect of “blurring” the image, which can cause the peaks in the autocorrelation to not

be as “sharp” or “well-defined” as the non-interpolated image. The peak finder may

also have limited precision, such that peaks can only be identified with single pixel

(as opposed to sub-pixel) resolution. Lastly, nearby peaks arising from the original

image may also confuse the peak finder, leading to a “perturbed” peak. Figure 4.7(a)

illustrates the effect when a peak is slightly shifted from its ideal position. In the

ideal case where there is no perturbation in the positions of the peaks, each of the

distances between the non-center peaks (A,B,C,D) to the center peak (Z) is χ. When

D is obtained, there is a high value at the the bin whose distance interval contains

χ. However, when the peaks are not in their ideal locations then some pairwise

distances become slightly longer and other distances become slightly shorter. These

distances may map onto different bins in D. When this occurs, the value of the

bin whose distance interval contains χ is reduced and estimating χ from D is more

challenging.

The effect of perturbed peaks may be reduced by smoothing the distance his-

togram. Specifically, the distance histogram D is treated like a discrete one-dimen-

sional signal D(n) where the bin values are the values of the signal, and smoothing is

accomplished by convolving D with a smoothing filter hs to generate the processed

distance histogram D∗ = D∗hs. The distance intervals of the bins of D∗ correspond

to the same intervals as the bins of D. Smoothing the distance histogram allows the

value of each histogram bin to influence the value of nearby bins, in recognition that

the pairwise peak distances may be affected by a small amount of noise.

While the distance histogram provides some information regarding χ, the esti-

mation of χ can be improved by using additional geometric properties of the grid.

Figure 4.7(b) shows a regular grid of peaks with neighbor distance χ. The center

151

lag

lag

χ

A

B

C

D

Z

Actual Peak Position

Ideal Peak Position

(a) Effect of shifted or “perturbed” peak on pairwise peak distances

χ

χ 2
2χ

χ 5

(b) Geometric structure of grid peaks

Fig. 4.7. Improving the scale estimation

152

peak represents any peak on the grid. The four nearest neighboring peaks lie at

the distance χ from the center peak. Estimating χ directly from D or D∗ uses only

these four peaks to infer a grid structure. However, a regular grid structure also has

four peaks at a distance of χ
√

2 from the center peak, four additional peaks at a

distance 2χ, and eight peaks at the distance of χ
√

5 from the center peak. Observ-

ing all these distances suggests the presence of a grid more than merely observing

the distance χ. The distance histogram of Girl (Figure 4.6, with χ = 55.2 pixels)

shows large values at bins whose distance intervals include the distances 55.2 pixels,

55.2
√

2 ≈ 78.0 pixels, 110.4 pixels, and 55.2
√

5 ≈ 123.4 pixels.

A score function is used to estimate the neighbor distance. The score function

Ss is a discrete function with values at k∆s for integral k:

Ss(k∆s) = qs(k∆s) + qs(
√

2k∆s) + qs(2k∆s) + qs(
√

5k∆s) for k = 1, 2, . . . (4.2)

where qs(z) is the value of the bin in D∗ whose distance interval contains z. For

fixed k, the score Ss(k∆s) is a quantity that reflects the likelihood (based on the

pairwise distances) that the autocorrelation peaks form a grid with neighbor distance

χ̂ = k∆s. Having obtained Ss(·), the watermark detector detects the watermark

using the neighbor distance which has the largest score (χ̂ = arg maxSs(k∆s)). If

the watermark is not detected, then the watermark detector attempts to detect

the watermark using the neighbor distance with the second highest score. This

process is repeated in decreasing order of score until the watermark is detected or

the watermark detector “gives up.”

The score function obtained for the Girl image is shown in Figure 4.8. The

maximum score occurs at the distance of χ̂ = 55 pixels so the detector successfully

estimates the scale of the watermark on the first attempt. If the first estimate was

not the correct neighbor distance, the detector would then try χ̂2 = 56 pixels, then

χ̂3 = 39 pixels, χ̂4 = 78 pixels, and so on.

153

0 50 100 150 200
0

20

40

60

80

100

120

Distance [Pixels]

S
c
o
re

Fig. 4.8. Score function Ss(k∆s) of Girl (∆s = 1). The largest
score occurs for the distance of 55 pixels, which implies that scale
estimation is correct on the first attempt.

154

4.2.2 Watermark rotation estimation

The estimation of the watermark orientation is challenging because of the sym-

metry of the template. Rotating the watermark by angles of θ, θ + π
2
, θ + π, and

θ + 3π
2

produce indistinguishable patterns of peaks. Horizontal and vertical flipping

also produce indistinguishable patterns. Similar to [266], all eight ambiguities aris-

ing from combinations of rotation and flipping must be searched by the detector if

other means for distinguishing these transformations are not used, such as another

template.

The objective of watermark rotation estimation is to estimate the orientation of

the grid of peaks θ, where 0 ≤ θ < π
2
. The rotation by angles θ + k

(

π
2

)

, k =

. . . ,−1, 0, 1, . . ., 0 ≤ θ < π
2

are considered congruent. The technique for rotation

estimation is conceptually similar to the scale estimation. The pairwise angles

ψij = ψ(pi, pj) = arctan

(

yi − yj

xi − xj

)

(4.3)

are used to construct the angle histogram A. The bins of A partition the interval
[

0, π
2

)

to intervals of the histogram bin size ∆r > 0. For example, ∆r = 1◦ = π
180

uses 90 bins in A.

Once the angle histogram is obtained, it is smoothed by convolving with the

smoothing filter hr to produce the smoothed histogram A∗ = hr ∗ A. Unlike the

smoothing for the distance histogram, angles are congruent in
[

0, π
2

)

and the convo-

lution is circular. After histogram smoothing, the rotation score is obtained

Sr(k∆r) = qr(k∆r) + qr

(

k∆r +
π

6

)

+ qr

(

k∆r +
π

4

)

+ qr

(

k∆r +
π

3

)

for 0 ≤ k∆r <
π

2
(4.4)

where qr(z) is the value of the bin of A∗ whose interval contains the angle congruent

to z in 0 ≤ θ < π
2
. Similarly to estimating the neighbor distance, the watermark

detector first estimates the rotation to be θ̂ = arg maxSr(k∆r). If the watermark is

not detected using θ̂, then the detector attempts the angle with the second highest

155

score for θ̂2, and so on until either the the watermark is detected or the detector

gives up.

4.3 Experimental Results

To evaluate the synchronization technique, an additive watermark in the spatial

domain was implemented. The watermark embedder embeds the watermark in the

luminance of the original image block X(n) to produce the watermarked image block

Y (n) = X(n) + γW (n), where W (n) is a zero mean, unit variance Gaussian signal

produced by a pseudo random number generator seeded with K(n), and n is the

block index. The block analyzer ignores the watermarked image block and produces

the feature F (n) by generating a random (32-bit) number. The key generator’s state

transition function hashes the current state, embedding key, and features to pro-

duce the next state, using SHA-1 [294] as the hash function with (3.6). Using the

hash function and the random feature values effectively create random keys K(n)

for all non-synchronization blocks, causing the corresponding W (n) to be uncorre-

lated. Correlation amongst the non-synchronization blocks may be beneficial to the

synchronizer by strengthening some of the peaks in the grid of the autocorrelation,

and is avoided in the experiments.

The original images were Girl, Fruit, Crowd, and Peppers, with each image

256×256 pixels in size. The embedding strength was γ = 5.0, which produced water-

marked images with PSNR of 33.8 dB compared with the original image. Perceptual

shaping reduces the visibility of the watermark and may improve performance, how-

ever perceptual shaping is not used in these experiments to minimize the number

of experimental parameters. The original and watermarked images are shown in

Figures 4.9 and 4.10. Embedding parameters were macroblock sizes M = 1, 2, 3

blocks and block sizes B = 8, 16, 32 pixels. Synchronization attacks were performed

as a transformation (either scaling or rotation) followed by bicubic interpolation to

re-sample the attacked image. When scaling and rotation were both performed on a

156

single image, scaling was performed, followed by bicubic interpolation, followed by

a rotation and a second bicubic interpolation.

The watermark synchronization uses a peak list of P = 50 peaks. For scale

estimation, ∆s = 1 pixel, which allows χ to be estimated to the nearest pixel. For

histogram smoothing, the FIR filter kernel hs is [0.15 0.50 1.00 0.50 0.15] where

1.0 is the value of hs(0). The design of this filter was ad hoc. A more rigorous design

of hs would assume a probability model for the peak perturbations and then use

the probability model to determine the filter, which may be dependent on ∆s. For

rotation estimation, ∆r = 1◦, which allows θ to be estimated to the nearest degree.

Histogram smoothing was not performed for rotation estimation so A∗ = A. In these

experiments, it is assumed that ∆s = 1 pixel and ∆r = 1◦ offers sufficient precision

necessary for successful watermark detection, although the necessary precision is

dependent on the watermarking technique in practice. Additional search may also

be performed to refine the scale and rotation estimation.

4.3.1 Scale and rotation rank

The synchronization performance is measured in terms of the number of attempts

that the watermark detector requires before obtaining the correct scale and orienta-

tion. In Section 4.2.1, it was described that the watermark detector estimates the

neighbor distance of the grid (which estimates of the watermark scale) by choosing

the distance d with the highest score Ss(d). If this estimated scale is not correct, the

watermark detector estimates the scale using the distance with the second highest

score. Consecutive attempts continue in decreasing order of Ss(·) until the water-

mark detector correctly estimates the watermark scale. The scale rank is defined as

the total number of attempts that the synchronizer requires to obtain the correct

watermark scale, to the precision of ∆s. For example, if the detector correctly esti-

mates the scale of the watermark on the first attempt, the scale rank is 1, which is

the best rank. A large scale rank indicates a failure in the scale estimation technique.

157

For the purposes of obtaining the scale rank, the number of attempts (or searches)

by the synchronizer is not constrained. A hypothetically flawed synchronizer which

never searches the proper scale given unlimited searches would have a scale rank

of ∞. The rotation rank is similarly defined as the total number of attempts that

the watermark detector requires to obtain the correct watermark orientation to the

precision of ∆r.

In [260], a rough “distance” metric was used as the basis for performance measure,

ADE =
1

N

N
∑

n=1

√

(χn − χactual)2 + (θn − θactual)2 (4.5)

where χn, θn represent a scale and rotation estimate by the synchronizer and χactual,

θactual represent the actual scale and rotation. (The ADE is defined in [260] as the

average detection error.) This measure was not used in these experiments for several

reasons. First, decreased ADE does not necessarily reflect better synchronization.

For example, whether the synchronizer is incorrect by 3◦ or 30◦ is irrelevant if the

watermark detector cannot detect the watermark in either case. Second, the belief of

the author is that synchronization is generally a search problem (and with templates,

an informed search problem), and a better metric for synchronization reflects the

number of search attempts needed to achieve synchronization. Even if the initial

searches produce poor rotation and scale estimates (resulting in a high ADE), a

synchronization technique which converges on the true scale and rotation with less

search is more preferable. There is no intention to state that ADE is a useless

measure because small ADE is likely to result in successful synchronization (with

the precise meaning of “small” dependent on the watermarking technique). However,

the scale and rotation ranks quantify the success of the search more directly, and are

used herein as the performance measure.

4.3.2 Discussion

Several experiments were performed with various attacks. The first experiment

examined synchronization performance under (uniform) scaling attack, without ro-

158

tation. The scaling factor was varied from 30%, 40%, 50%, 60%, 70%, 80%, 90%,

100%, 110%, 120%, 130%, 140%, 150%, 160%, 180%, 200%, to 210% scaling. The

scale and rotation ranks are shown in Figure 4.11. Next, synchronzation performance

was examined under rotation attack, without scaling. The watermarked image was

rotated by angles 0◦, 1◦, 3◦, 5◦, 15◦, 25◦, 30◦, 40◦, 45◦, 50◦, 60◦, 63◦, 70◦, 75◦, 80◦,

85◦, 87◦, and 89◦. Results are shown in Figure 4.12. Lastly, both scaling and rotation

attacks were performed. In Figure 4.13, the attack scaling factor f is varied from

0.3 to 2.1 and the rotation is fixed at θ = 3◦. In Figure 4.14, the scaling is fixed to

f = 1.2 and the rotation is varied.

Over all of the experiments, synchronization is generally successful (with low

scale and rotation ranks) for the M = 1, B = 16, 32 watermarks, the M = 2,

B = 8, 16 watermarks, and the M = 3, B = 8 watermark. (Specific exceptions

will be described below.) Synchronization generally fails for the M = 1, B = 8

watermark, as well as M = 2, B = 32 and M = 3, B = 16, 32 watermarks.

The synchronization failures for the M = 2, B = 32 and M = 3, B = 16, 32 wa-

termarks are caused by an insufficient number of synchronization blocks, or equiva-

lently, insufficient spatial redundancy. Two effects occur when there is an insufficient

number of synchronization blocks: The first effect is a decrease in the the magnitude

of the peaks of the autocorrelation grid, which are induced by the synchronization

blocks. Decreased magnitude of the grid peaks (1) may cause some peaks to be

missed entirely by the peak finder; (2) may cause more “noise” peaks to occur in the

autocorrelation when the magnitude of the grid peaks are similar to or less than the

magnitude of peaks arising from the original image; (3) may cause some grid peaks

to be lost when the peak list is truncated to the P peaks of greatest magnitude;

(4) increases the likelihood of “perturbed” peaks caused by host-signal interference

or interpolation. The second effect of a reduced number of synchronization blocks

is that there may not be enough peaks of the autocorrelation grid to estimate the

rotation and scale in the presence of “noise” peaks, even if all of the grid peaks

are precisely identified by the peak finder. The number of synchronization blocks is

159

identical to the total number of macroblocks in the image, which decreases as the

macroblock size (MB × MB pixels) increases.

The scale estimation performance degrades when the neighbor distance of the

grid is small. This occurs for small macroblocks (M = 1, B = 8), or when the attack

scales the watermarked image to a small scaling factor (less than 50%.) There are

several reasons for the decreased performance. First, when the distances between

peaks become smaller, perturbations of the peak positions introduce larger relative

error in the peak distances. Second, histogram smoothing increases the difficulty

of precisely estimating small neighbor distances. Third, constructing the distance

histogram effectively quantizes the peak distances in accordance to ∆s, which may

increase the difficulty in estimating the neighbor distance when ∆s is not small

compared to χ. When the scaling factor is small, image interpolation also has a

greater effect (as a removal attack) on the embedded watermark. Thus, the scale

ranks rise significantly when the scale factor is less than 60% for all experiments

which the scale factor is decreased.

Synchronization performance under both scaling and rotation attack is gener-

ally worse than performance under scaling or rotation alone. When the rotation is

varied, difficulties in estimating the scale for rotations near θ = 45◦ were observed

(see the sharp rise in the scale ranks of Figure 4.14 for M = 2 watermarks and

M = 3, B = 8.) These difficulties arise because the grid pattern is not present in the

autocorrelation. For these rotation angles, a significant area of the attacked image

consists of the border regions created by padding (see Figure 4.15) when the image

dimensions are expanded to accommodate the rotated image. When the autocor-

relation is obtained, these border regions reduce the magnitude of the peaks that

form the grid while at the same time the edges between the border region and the

image cause very strong peaks to occur along the edge. These border regions also

cause the rise in the scale rank for M = 1, B = 32 Fruit image, although in this

case the border regions do not completely destroy the grid of peaks. One potential

way to address the border region issue is to crop the watermarked image to only the

160

center-most area prior to obtaining the autocorrelation. Cropping should remove

the large areas near the image borders and allow the autocorrelation grid to be ob-

tained, although cropping also reduces the magnitude of the grid peaks because less

of the image is used to produce the autocorrelation. Perhaps ironically, when the

autocorrelation peaks become dominated by the border regions, their arrangement

makes rotation estimation very easy. Hence, rotation estimation is not affected like

the scale estimation.

The fact that two bicubic interpolation operations are applied to the watermarked

image when both scaling and rotation attacks are performed is also likely to have an

effect on the synchronization performance. Each bicubic interpolation may damage

the watermark, thereby reducing the magnitude of the peaks on the grid. In partic-

ular, the effects of padding were observed when the attack consists of both scaling

and rotation, but were not observed when rotation was performed without scaling.

Comparing amongst the images, the Crowd image is most difficult to synchronize

and the Girl image is the easiest. The structure of the Crowd image has many peaks

in the autocorrelation, which introduces host-signal interference to the synchronizer.

The effect of this interference is an increased number of “noise” peaks, which is

most obvious by the increased scale ranks of Crowd when the scale factor is reduced.

Often, the scale rank of Crowd is much worse than the other images when the scale

factor is less than 100%.

In summary, the proposed synchronization technique is successful under uniform

scaling and rotation attack for the M = 1, B = 16, 32 watermarks, the M = 2,

B = 8, 16 watermarks, and the M = 3, B = 8 watermark, although there is an

issue in the scale estimation when an attacked image is rotated near 45◦ caused by

padding. Also, very small neighbor distances are difficult to estimate, which limits

the size of macroblocks and makes estimation of very small scale factors difficult.

Despite these limitations, the spatial synchronization mechanism (the rotation and

scale estimation) is generally successful in synchronizing under uniform scaling and

161

rotation attack when there is sufficient spatial redundancy to induce a regular grid

pattern of peaks in the autocorrelation.

162

(a) Original Girl (b) Watermarked Girl

(c) Original Crowd (d) Watermarked Crowd

Fig. 4.9. Original and watermarked Girl and Crowd (γ = 5.0, M = 2, B = 16)

163

(a) Original Fruit (b) Watermarked Fruit

(c) Original Peppers (d) Watermarked Peppers

Fig. 4.10. Original and watermarked Fruit and Peppers (γ = 5.0, M = 2, B = 16)

164

1 2

5

10

15

20

25
Scale Rank

Scaling Factor

S
c
a

le
 R

a
n

k

girl
fruit
crowd
peppers

1 2

5

10

15

20

25
Rotate Rank

Scaling Factor

R
o

ta
te

 R
a

n
k

girl
fruit
crowd
peppers

(a) M = 1 B = 8

1 2

5

10

15

20

25
Scale Rank

Scaling Factor

S
c
a

le
 R

a
n

k

girl
fruit
crowd
peppers

1 2

5

10

15

20

25
Rotate Rank

Scaling Factor

R
o

ta
te

 R
a

n
k

girl
fruit
crowd
peppers

(b) M = 1 B = 16

1 2

5

10

15

20

25
Scale Rank

Scaling Factor

S
c
a

le
 R

a
n

k

girl
fruit
crowd
peppers

1 2

5

10

15

20

25
Rotate Rank

Scaling Factor

R
o

ta
te

 R
a

n
k

girl
fruit
crowd
peppers

(c) M = 1 B = 32

1 2

5

10

15

20

25
Scale Rank

Scaling Factor

S
c
a
le

 R
a
n
k

girl
fruit
crowd
peppers

1 2

5

10

15

20

25
Rotate Rank

Scaling Factor

R
o
ta

te
 R

a
n
k

girl
fruit
crowd
peppers

(d) M = 2 B = 8

1 2

5

10

15

20

25
Scale Rank

Scaling Factor

S
c
a
le

 R
a
n
k

girl
fruit
crowd
peppers

1 2

5

10

15

20

25
Rotate Rank

Scaling Factor

R
o
ta

te
 R

a
n
k

girl
fruit
crowd
peppers

(e) M = 2 B = 16

1 2

10

20

30

40

50

60

70

80

90

100
Scale Rank

Scaling Factor
S

c
a
le

 R
a
n
k

girl
fruit
crowd
peppers

1 2

5

10

15

20

25
Rotate Rank

Scaling Factor

R
o
ta

te
 R

a
n
k

girl
fruit
crowd
peppers

(f) M = 2 B = 32

1 2

5

10

15

20

25
Scale Rank

Scaling Factor

S
c
a
le

 R
a
n
k

girl
fruit
crowd
peppers

1 2

5

10

15

20

25
Rotate Rank

Scaling Factor

R
o
ta

te
 R

a
n
k

girl
fruit
crowd
peppers

(g) M = 3 B = 8

1 2

5

10

15

20

25
Scale Rank

Scaling Factor

S
c
a
le

 R
a
n
k

girl
fruit
crowd
peppers

1 2

5

10

15

20

25
Rotate Rank

Scaling Factor

R
o
ta

te
 R

a
n
k

girl
fruit
crowd
peppers

(h) M = 3 B = 16

1 2

10

20

30

40

50

60

70

80

90

100
Scale Rank

Scaling Factor

S
c
a
le

 R
a
n
k

girl
fruit
crowd
peppers

1 2

5

10

15

20

25
Rotate Rank

Scaling Factor

R
o
ta

te
 R

a
n
k

girl
fruit
crowd
peppers

(i) M = 3 B = 32

Fig. 4.11. Scale and rotate ranks for scaling attack (30% to 210%)
without rotation, with watermark construction parameters M and B
varied.

165

0 50

5

10

15

20

25
Scale Rank

Rotation [Degrees]

S
c
a

le
 R

a
n

k

girl
fruit
crowd
peppers

0 50

5

10

15

20

25
Rotate Rank

Rotation [Degrees]

R
o

ta
te

 R
a

n
k

girl
fruit
crowd
peppers

(a) M = 1 B = 8

0 50

5

10

15

20

25
Scale Rank

Rotation [Degrees]

S
c
a

le
 R

a
n

k

girl
fruit
crowd
peppers

0 50

5

10

15

20

25
Rotate Rank

Rotation [Degrees]

R
o

ta
te

 R
a

n
k

girl
fruit
crowd
peppers

(b) M = 1 B = 16

0 50

5

10

15

20

25
Scale Rank

Rotation [Degrees]

S
c
a

le
 R

a
n

k

girl
fruit
crowd
peppers

0 50

5

10

15

20

25
Rotate Rank

Rotation [Degrees]

R
o

ta
te

 R
a

n
k

girl
fruit
crowd
peppers

(c) M = 1 B = 32

0 50

5

10

15

20

25
Scale Rank

Rotation [Degrees]

S
c
a
le

 R
a
n
k

girl
fruit
crowd
peppers

0 50

5

10

15

20

25
Rotate Rank

Rotation [Degrees]

R
o
ta

te
 R

a
n
k

girl
fruit
crowd
peppers

(d) M = 2 B = 8

0 50

5

10

15

20

25
Scale Rank

Rotation [Degrees]

S
c
a
le

 R
a
n
k

girl
fruit
crowd
peppers

0 50

5

10

15

20

25
Rotate Rank

Rotation [Degrees]

R
o
ta

te
 R

a
n
k

girl
fruit
crowd
peppers

(e) M = 2 B = 16

0 50

10

20

30

40

50

60

70

80

90

100
Scale Rank

Rotation [Degrees]
S

c
a
le

 R
a
n
k

girl
fruit
crowd
peppers

0 50

5

10

15

20

25
Rotate Rank

Rotation [Degrees]

R
o
ta

te
 R

a
n
k

girl
fruit
crowd
peppers

(f) M = 2 B = 32

0 50

5

10

15

20

25
Scale Rank

Rotation [Degrees]

S
c
a
le

 R
a
n
k

girl
fruit
crowd
peppers

0 50

5

10

15

20

25
Rotate Rank

Rotation [Degrees]

R
o
ta

te
 R

a
n
k

girl
fruit
crowd
peppers

(g) M = 3 B = 8

0 50

5

10

15

20

25
Scale Rank

Rotation [Degrees]

S
c
a
le

 R
a
n
k

girl
fruit
crowd
peppers

0 50

5

10

15

20

25
Rotate Rank

Rotation [Degrees]

R
o
ta

te
 R

a
n
k

girl
fruit
crowd
peppers

(h) M = 3 B = 16

0 50

10

20

30

40

50

60

70

80

90

100
Scale Rank

Rotation [Degrees]

S
c
a
le

 R
a
n
k

girl
fruit
crowd
peppers

0 50

5

10

15

20

25
Rotate Rank

Rotation [Degrees]

R
o
ta

te
 R

a
n
k

girl
fruit
crowd
peppers

(i) M = 3 B = 32

Fig. 4.12. Scale and rotate ranks for rotation attack (0◦to 89◦) with-
out scaling, with watermark construction parameters M and B var-
ied.

166

1 2

5

10

15

20

25
Scale Rank

Scaling Factor

S
c
a

le
 R

a
n

k

girl
fruit
crowd
peppers

1 2

5

10

15

20

25
Rotate Rank

Scaling Factor

R
o

ta
te

 R
a

n
k

girl
fruit
crowd
peppers

(a) M = 1 B = 8

1 2

5

10

15

20

25
Scale Rank

Scaling Factor

S
c
a

le
 R

a
n

k

girl
fruit
crowd
peppers

1 2

5

10

15

20

25
Rotate Rank

Scaling Factor

R
o

ta
te

 R
a

n
k

girl
fruit
crowd
peppers

(b) M = 1 B = 16

1 2

5

10

15

20

25
Scale Rank

Scaling Factor

S
c
a

le
 R

a
n

k

girl
fruit
crowd
peppers

1 2

5

10

15

20

25
Rotate Rank

Scaling Factor

R
o

ta
te

 R
a

n
k

girl
fruit
crowd
peppers

(c) M = 1 B = 32

1 2

5

10

15

20

25
Scale Rank

Scaling Factor

S
c
a
le

 R
a
n
k

girl
fruit
crowd
peppers

1 2

5

10

15

20

25
Rotate Rank

Scaling Factor

R
o
ta

te
 R

a
n
k

girl
fruit
crowd
peppers

(d) M = 2 B = 8

1 2

5

10

15

20

25
Scale Rank

Scaling Factor

S
c
a
le

 R
a
n
k

girl
fruit
crowd
peppers

1 2

5

10

15

20

25
Rotate Rank

Scaling Factor

R
o
ta

te
 R

a
n
k

girl
fruit
crowd
peppers

(e) M = 2 B = 16

1 2

10

20

30

40

50

60

70

80

90

100
Scale Rank

Scaling Factor
S

c
a
le

 R
a
n
k

girl
fruit
crowd
peppers

1 2

5

10

15

20

25
Rotate Rank

Scaling Factor

R
o
ta

te
 R

a
n
k

girl
fruit
crowd
peppers

(f) M = 2 B = 32

1 2

5

10

15

20

25
Scale Rank

Scaling Factor

S
c
a
le

 R
a
n
k

girl
fruit
crowd
peppers

1 2

5

10

15

20

25
Rotate Rank

Scaling Factor

R
o
ta

te
 R

a
n
k

girl
fruit
crowd
peppers

(g) M = 3 B = 8

1 2

5

10

15

20

25
Scale Rank

Scaling Factor

S
c
a
le

 R
a
n
k

girl
fruit
crowd
peppers

1 2

5

10

15

20

25
Rotate Rank

Scaling Factor

R
o
ta

te
 R

a
n
k

girl
fruit
crowd
peppers

(h) M = 3 B = 16

1 2

10

20

30

40

50

60

70

80

90

100
Scale Rank

Scaling Factor

S
c
a
le

 R
a
n
k

girl
fruit
crowd
peppers

1 2

10

20

30

40

50

60

70

80

90

100
Rotate Rank

Scaling Factor

R
o
ta

te
 R

a
n
k

girl
fruit
crowd
peppers

(i) M = 3 B = 32

Fig. 4.13. Scale and rotate ranks for rotation and scaling attack.
Scaling is varied from 30% to 210% while rotation is fixed at 3◦.
Watermark construction parameters M and B varied.

167

0 50

5

10

15

20

25
Scale Rank

Rotation [Degrees]

S
c
a

le
 R

a
n

k

girl
fruit
crowd
peppers

0 50

5

10

15

20

25
Rotate Rank

Rotation [Degrees]

R
o

ta
te

 R
a

n
k

girl
fruit
crowd
peppers

(a) M = 1 B = 8

0 50

5

10

15

20

25
Scale Rank

Rotation [Degrees]

S
c
a

le
 R

a
n

k

girl
fruit
crowd
peppers

0 50

5

10

15

20

25
Rotate Rank

Rotation [Degrees]

R
o

ta
te

 R
a

n
k

girl
fruit
crowd
peppers

(b) M = 1 B = 16

0 50

5

10

15

20

25
Scale Rank

Rotation [Degrees]

S
c
a

le
 R

a
n

k

girl
fruit
crowd
peppers

0 50

5

10

15

20

25
Rotate Rank

Rotation [Degrees]

R
o

ta
te

 R
a

n
k

girl
fruit
crowd
peppers

(c) M = 1 B = 32

0 50

5

10

15

20

25
Scale Rank

Rotation [Degrees]

S
c
a
le

 R
a
n
k

girl
fruit
crowd
peppers

0 50

5

10

15

20

25
Rotate Rank

Rotation [Degrees]

R
o
ta

te
 R

a
n
k

girl
fruit
crowd
peppers

(d) M = 2 B = 8

0 50

5

10

15

20

25
Scale Rank

Rotation [Degrees]

S
c
a
le

 R
a
n
k

girl
fruit
crowd
peppers

0 50

5

10

15

20

25
Rotate Rank

Rotation [Degrees]

R
o
ta

te
 R

a
n
k

girl
fruit
crowd
peppers

(e) M = 2 B = 16

0 50

10

20

30

40

50

60

70

80

90

100
Scale Rank

Rotation [Degrees]
S

c
a
le

 R
a
n
k

girl
fruit
crowd
peppers

0 50

5

10

15

20

25
Rotate Rank

Rotation [Degrees]

R
o
ta

te
 R

a
n
k

girl
fruit
crowd
peppers

(f) M = 2 B = 32

0 50

5

10

15

20

25
Scale Rank

Rotation [Degrees]

S
c
a
le

 R
a
n
k

girl
fruit
crowd
peppers

0 50

5

10

15

20

25
Rotate Rank

Rotation [Degrees]

R
o
ta

te
 R

a
n
k

girl
fruit
crowd
peppers

(g) M = 3 B = 8

0 50

10

20

30

40

50

60

70

80

90

100
Scale Rank

Rotation [Degrees]

S
c
a
le

 R
a
n
k

girl
fruit
crowd
peppers

0 50

5

10

15

20

25
Rotate Rank

Rotation [Degrees]

R
o
ta

te
 R

a
n
k

girl
fruit
crowd
peppers

(h) M = 3 B = 16

0 50

10

20

30

40

50

60

70

80

90

100
Scale Rank

Rotation [Degrees]

S
c
a
le

 R
a
n
k

girl
fruit
crowd
peppers

0 50

5

10

15

20

25
Rotate Rank

Rotation [Degrees]

R
o
ta

te
 R

a
n
k

girl
fruit
crowd
peppers

(i) M = 3 B = 32

Fig. 4.14. Scale and rotate ranks for rotation and scaling attack.
Scaling is fixed at 120% while rotation is varied from 0◦to 89◦. Wa-
termark construction parameters M and B varied.

168

(a) Attacked image (Girl Scaling 120% Rotation 50◦)

Lag (pixels)

0 100 200 300 400
250

200

150

100

50

0

50

100

150

200

250

L
a

g
 (

p
ix

e
ls

)

(b) Autocorrelation of attacked image. Dots (·) indicate observed peak positions,

circles (◦) indicate expected peak positions for the grid-like pattern, which is absent.

Fig. 4.15. Effect of image padding. When an image is rotated near
45◦, a significant area of the attacked image is occupied by padding
(the black triangular regions.) These regions, and the strong edges
between the padded regions and the image, disrupt the pattern of
peaks in the autocorrelation.

169

4.4 Conclusions and Future Work

In this chapter, a technique was described for spatial synchronization for still

images and video frames. The watermark was constructed in a manner inspired by

the temporal synchronization technique of Chapter 3. For spatial synchronization,

redundant blocks are used to construct an array of peaks in the autocorrelation. The

synchronization method examines the arrangement of the peaks to estimate the po-

sition and orientation of the watermark. Like the work in temporal synchronization,

insufficient redundancy in the watermark led to poor performance of the synchro-

nizer. This technique is applicable for synchronization under uniform scaling and

rotation attack.

To improve the performance of the technique, subsequent efforts should consider

reducing host-signal interference [269] and improving the precision of the estima-

tion. It was noted that peaks in the the autocorrelation may be perturbed from

their ideal locations. Some of the perturbations of the peak positions occur because

peak locations are discretized to pixel locations by the (simple) peak finder. This

“quantization” effect on the peak locations limits the precision by which the rotation

and scale can be estimated [297]. In addition, the effects of image padding are pro-

found when the rotation is near θ = 45◦. Another method for improved effectiveness,

particularly for images such as Crowd, is to adapt the orientation of the watermark

to the characteristics of the original image. For example, the embedder can detect

existing peaks in the autocorrelation of the original (unwatermarked) image and then

“align” the watermark (for example, rotate and scale the watermark) in accordance

to the peaks.

Although this synchronization technique exploits geometric properties of the grid

of peaks that would be challenging to generalize to other attacks, we desire to find

a more general framework for spatial synchronization that will allow the modeling

of spatial synchronization attacks other than uniform scaling and rotation. A more

formal method to quantify (spatial) redundancy is desired. The construction of the

170

watermark described in Section 4.1 was inspired by the temporal synchronization

work, however spatial redundancy can be induced by other watermark construction

methods. For example, a watermark designed as a tessellation has a redundant or

regular pattern, but not necessarily in the form of macroblocks. Embedding shifted

versions of the same signal, as in [267], is also a method for introducing redundancy.

This work shows that spatial redundancy is helpful for spatial synchronization, but

we seek to obtain a more general framework that takes this work, as well as [260,

266,267], as special cases.

171

5. SEMI-FRAGILE WATERMARKING

This chapter describes earlier work in semi-fragile watermarking, which is not related

to watermark synchronization. Fragile and semi-fragile watermarks have consider-

ably different properties and applications than the robust watermarks discussed in

the earlier chapters. A semi-fragile watermarking technique is described which allows

detection of alterations to a watermarked image but allows the watermarked image

to undergo lossy JPEG compression.

5.1 Robust, Fragile, and Semi-Fragile Watermarking

The discussion of watermarking thus far has focused on robust watermarks, which

are watermarks that are designed to be detectable even if the watermarked signal

has been attacked. Robust watermarks are proposed for applications such as content

tracking, copyright watermarking, copy protection, and broadcast monitoring, where

embedded watermark should be difficult to remove. A robust watermark should be

a permanent and inseparable part of the watermarked signal.

Unlike robust watermarks, fragile watermarks [29,41,42,44,190,195,220,298,299]

are not designed to be robust against attacks. On the contrary, a fragile watermark

is designed to be destroyed by even the slightest alteration or modification to the

watermarked signal. This property of fragile watermarks is useful for authentication

applications, where the objective is to provide confidence that a signal (1) originated

from a known source, and (2) has not been tampered or altered. For example, a

digital camera can embed a camera-dependent signature (the watermark) into an

image as the user takes a snapshot [40], which allows the user to demonstrate that

the image was taken using the camera. Authenticating digital images, video, and

other content is an important and challenging problem because digital data can be

172

easily manipulated. This limits the credibility of digital data as evidence, particularly

in surveillance [39], law, journalism, intelligence, and other applications where the

trustworthiness of the data must be demonstrated.

The authenticity of a watermarked signal can be obtained by using the watermark

detector. If the detector successfully detects the watermark, both the source of the

signal and the integrity of the signal are authenticated. The source of the signal is

authenticated because the watermark was embedded with secret KE, which should

be available only to the source. The integrity of the signal is authenticated because

tampering will damage or destroy the embedded fragile watermark. If the watermark

is not detected, then either the signal did not originate from the source (that is,

the signal may be a forgery) or the entire signal had been tampered with. The

embedded watermark could be damaged, but not completely destroyed, which could

indicate localized tampering. This leads to the next benefit of fragile watermarking:

localization.

In addition to tamper detection, fragile watermarking allows tampering to be

localized. Localization is identifying regions of the signal that are likely tampered and

distinguishing these regions from regions that have not been tampered. The ability

to localize tampering is an advantage of fragile watermarking compared with other

authentication methods, for example digital hashes or signatures [16,292,294]. While

a digital hash or signature can easily identify altered signals, localization requires

significantly more effort. For example, localization using digital signatures is possible

by signing features obtained from the signal [300] (as opposed to signing the signal

directly) or by partitioning a large signal into smaller regions and signing each region

individually. Also, a digital signature is separate from the signal to be authenticated.

Keeping the signature and signal together may be cumbersome and the signature may

be prone to becoming lost. Whereas an embedded watermark cannot be accidentally

separated from the signal to be authenticated. Some fragile watermarks use or embed

digital hashes to obtain the desired fragileness properties [41].

173

One of the drawbacks of fragile watermarking is that the fragileness of the water-

mark may be too sensitive for some applications. For example, if a lossy compression

technique, such as JPEG [54], was applied on a watermarked image, then the frag-

ile watermark detector will report that the entire image has been tampered with

even though the compressed image appears nearly the same as the watermarked

image. This is not desired in some applications. It would be nice if the water-

mark detector could identify “information-altering” transformations, which change

the watermarked signal in a significant way, but not be sensitive to “information-

preserving” transformations, which change the signal in a literal sense but not in

a way that is significant to the application. Watermarks with fragileness to some

transformations but robustness to other transformations are known as semi-fragile

watermarks [43,220,301–308].

The objective of attacks against fragile and semi-fragile watermarks are different

than attacks against robust watermarks. Removal attacks and detection-disabling

attacks prevent a robust watermark from protecting the content by removing or ob-

fuscating the watermark. However, these attacks do not affect fragile and semi-fragile

watermarks. Quite the contrary— if a removal or detection-disabling attack was

applied against a fragile or semi-fragile watermark, the watermark detector would

report the watermarked signal as unauthentic. Because these attacks involve tam-

pering with the watermarked signal, the assessment by the detector is correct. While

removal and detection-disabling attacks are generally not a concern for (semi-)fragile

watermarks, counterfeiting and forgery attacks [309, 310], such as the copy attack,

are much more significant. These attacks may allow the attacker to create a falsified

signal that appears authentic to the watermark detector.

There is some irony in using watermarks for authentication. The watermark de-

tector cannot determine the authenticity of the original signal because the original

signal is not watermarked. The watermark detector can determine the authenticity

of the watermarked signal, but watermark insertion introduces distortion into the

original signal. Protecting the authenticity of a signal by using (semi-)fragile wa-

174

termarking requires watermark insertion, which could be viewed as tampering. To

address this concern, some techniques allow the original signal to be recovered by

the watermark detector if it determines that its input is authentic. That is, the wa-

termark detector can obtain X if its input Z is the watermarked signal Y . However,

if the input is an altered signal Z = Ŷ , then X is generally not recoverable. These

techniques are known as reversible or invertible watermarks [311–315].1

5.1.1 Semi-fragile watermarking

A semi-fragile watermark combines the properties of fragile and robust water-

marks. Like a robust watermark, a semi-fragile watermark is capable of tolerating

some degree of change to the watermarked signal, such as the addition of quantization

noise from lossy compression. These changes are known as “information preserving”

transformations because they do not substantially affect the use of the watermarked

signal in the application. And like a fragile watermark, the semi-fragile watermark is

capable of localizing regions of the image that have been substantially tampered by

“information altering” transformations. For authentication applications, blind detec-

tion is almost always required. In addition, the distortion introduced by watermark

insertion also should not degrade the value of the image in the application.

The application defines which transformations or processes are “information-

preserving” and which transformations are “information-altering.” Feature replace-

ment is the (deliberate) alteration of specific areas of a signal and is usually consid-

ered information-altering. Examples of feature replacement in digital images include:

altering or juxtaposing faces or bodies of persons shown in the image; editing text

shown on the image, such as a sign or license plate; removing an object from the im-

age; inserting an object into the image. Applications may consider lossy compression

to be information-preserving. Other examples of transformations that may either be

information-altering or information-preserving include global amplitude adjustment

1In this context, “invertible” does not have the same meaning as when discussing ambiguity attacks.

175

(such as the volume for digital audio, or brightness for images), contrast adjust-

ment, gamma correction [136], digital-to-analog(-to-digital) conversion, colorspace

transformation [136] or color-to-grayscale conversion (for images), stereo-to-mono

conversion (for audio), transcoding [73], and cropping.

In the development of a semi-fragile watermarking technique, one should consider

the challenges that prevent näıve use of a good fragile or robust watermarking tech-

nique as a semi-fragile technique. Many fragile watermarking techniques insert the

watermark into the least-significant bit (LSB) plane of a signal and are unable to tol-

erate a single bit error in the LSB. However, noise introduced into the watermarked

signal by information-preserving transformations is likely to cause many LSBs to

change. Secondly, cryptographic hash functions used by some fragile watermarking

techniques are challenging to use in a semi-fragile watermark. To use a hash function

for semi-fragile watermarking, the hash would need to be obtained over some char-

acteristic of the signal that is invariant to information-preserving transformations.

The output of the hash function (or the digest) may also need to be embedded in a

way that is resilient to noise introduced by information-preserving transformations.

The challenge of transforming a robust watermarking technique into a semi-

fragile technique is localization. Robust watermarking techniques generally obtain

their robustness properties by generating the watermark as a long signal. Long

signals are more resilient against noise introduced by attacks and is also helpful

to the watermark detector in overcoming host-signal interference. However, while

using longer sequences improve watermark detection performance, long sequences

also limit localization.

Many papers proposing semi-fragile watermarking techniques suggest JPEG com-

pression as an information-preserving transformation. JPEG is a lossy compression

technique for still images [54] that is often used for digital photography and Internet

imagery. To control the compressor, applications often specify a “quality factor”

or quality parameter Q which affects the degree of quantization internally used by

the compressor to encode an image. The typical range of Q is from 1 to 100. Low

176

values of Q produce encoded images that are smaller in size but have significant

amounts of distortion introduced as quantization error. High values of Q introduce

relatively little distortion, but the size of the encoded image is larger. As a general

rule, low values of Q produce “low quality” images and high values of Q produce

“high quality” images.

Embedding multiple watermarks [316] has also been proposed as a method of au-

thenticating an image with a degree of robustness. For example, a robust watermark

can be embedded into an image to establish ownership followed by the embedding of a

fragile watermark for authentication. The primary disadvantage is that if lossy com-

pression or other information-preserving transformations are performed, then most

or all of the authentication information is lost whereas a semi-fragile watermark is ca-

pable of providing some confidence of authenticity even after information-preserving

transformations.

5.2 A Semi-Fragile Watermark

The semi-fragile watermarking technique described in this chapter (see also [43])

is based on extending a spread-spectrum watermarking technique with a modified

detector that correlates pixel value differences in the spatial domain. The detection

process is repeated for blocks of an image, allowing alterations to be can be identified

and localized.

5.2.1 Watermark generation and insertion

The watermark is constructed in the DCT domain as smooth patterns that will

resist being damaged by JPEG compression. The watermark is constructed as a

signal with the same size (dimensions) as the original image, partitioned into non-

overlapping blocks of fixed size. For each block, a PRNG is used to produce a

zero-mean unit variance Gaussian distributed signal. A different pseudo-random se-

quence is generated for each watermark block, and the embedding key KE is used

177

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

In
cr

ea
si

n
g

 V
er

ti
ca

l
F

re
q

u
en

cy

Increasing Horizontal Frequency

Fig. 5.1. Watermark generation in DCT domain for 8 × 8 blocks.
For each watermark block, white coefficients are generated using a
PRNG. Shaded coefficients are not watermarked and have a value of
zero.

to seed the PRNG prior to constructing the first watermark block. The DCT uses

cosines as the basis functions for the transformation and each coefficient corresponds

to basis functions of different spatial frequencies. Only the middle frequencies of the

DCT coefficients are watermarked; see Figure 5.1. The DC coefficient is not water-

marked because watermarking this coefficient is likely cause visible block artifacts in

the watermarked image. Watermarking the DC coefficient also would not contribute

significantly to the performance of the detector. The high frequency AC coefficients

are not watermarked because these coefficients are likely to be affected by JPEG

compression. Once the watermark has been constructed in the DCT domain, apply-

ing the inverse DCT produces a spatial domain watermark W . W is then inserted

into the original image X via additive embedding, or equation (2.1), to produce

the watermarked signal Y . For color images, the watermark is embedded in the

luminance.

178

B(x, y) =

















−1 1 4 −7

3 3 5 −1

5 1 4 3

1 −4 −5 −3

















→



























































































∆COL(B) =

















−2 −3 11 0

0 −2 6 0

4 −3 1 0

5 1 2 0

















∆ROW (B) =

















−4 −2 −1 −6

−2 2 1 −4

4 5 9 6

0 0 0 0

















Fig. 5.2. Example of block operators on a block B of size 4 × 4 samples

5.2.2 Watermark Detection

The detector is based on the differences of adjacent pixel values in the spatial

domain. Most natural images consist of large areas of relatively smooth features with

an occasional edge, so the power in a difference signal should be substantially less

than the power of the signal itself. Therefore, unless an edge is present, the differ-

ence between adjacent pixel values of the watermarked signal will be the embedded

watermark signal with relatively low amount of host-signal interference. Define an

operator ∆COL(·) as the difference-of-columns, where B(x, y) is an arbitrary block

and BS is the blocksize:

∆COL(B(x, y)) =







B(x, y) − B(x + 1, y) if x ∈ {1, . . . , BS − 1}
0 if x = BS

(5.1)

The difference-of-rows operator ∆ROW (·) can be similarly defined:

∆ROW (B(x, y)) =







B(x, y) − B(x, y + 1) if x ∈ {1, . . . , BS − 1}
0 if x = BS

(5.2)

Figure 5.2 shows the effect of applying these operators for an example block.

Let Zb be a block of the test image provided to the detector and Wb be the

corresponding block of the watermark (in the spatial domain), where b is the block

179

index. The detector can regenerate Wb given the detection key and embedding

strength. The watermark detector will correlate both the row and column differences.

Let Z∗
b be defined as the concatenation of the column-difference and row-difference

of the test block and let W ∗
b be the corresponding differences of the watermark block

as shown in (5.3) and (5.4) below:

Z∗
b =

[

∆COL(Zb(x, y))
... ∆ROW (Zb(x, y))

]

(5.3)

W ∗
b =

[

∆COL(Wb(x, y))
... ∆ROW (Wb(x, y))

]

(5.4)

Correlating Z∗
b and W ∗

b involves 2(n2−n) points (where the subtraction of n reflects

the row or column of zeroes after the difference operator), which is greater than the

n2 points for a spatial correlation of the block. By correlating the spatial difference

between adjacent pixels as opposed to a direct correlation, host-signal interference

during watermark detection is reduced, provided that the image is sufficiently smooth

in the block.

The block detection statistic is then the normalized correlation

ρb =
Z∗

b · W ∗
b

√

(Z∗
b · Z∗

b)(W ∗
b · W ∗

b)
. (5.5)

The dot product is defined on vectors and not matrices, so Z∗
b and W ∗

b are first

“reshaped” to a row or column vector. The permutation by which the reshaping is

performed is not important but the same permutation must be used for both Z∗
b and

W ∗
b . Once the normalized correlation statistic ρb has been obtained for each block,

it is compared to a threshold T to determine the classification for each block:

Detector Output =







ρb > T : Block is authentic

ρb < T : Block is altered
(5.6)

The framework of (5.5) and (5.6) is that of a binary hypothesis test between the

hypotheses

H0: Block is authentic

H1: Block is altered
(5.7)

180

Defining the conditional means

ρ∗
U = E[ρb | Block b is authentic] (5.8)

ρ∗
A = E[ρb | Block b is altered] (5.9)

then the performance of the detector is based on the mean separation or |ρ∗
A − ρ∗

U |.
The larger the mean separation, the better the performance of the detector. A more

detailed analysis, such as obtaining the probability of false positive and miss, will

require making assumptions regarding the conditional distributions (and not merely

the expectations) under each hypothesis as well as the a priori probabilities for a

Bayesian framework. For example, if conditional Gaussian distributions are assumed

for convenience, then the detector performance can be expressed as a function of ρ∗
A,

ρ∗
U , and their respective variances using well-known results from statistical hypothesis

testing [100,101,103].

5.3 Evaluation of the Semi-Fragile Watermark

A synthetic image Gradient and real images Girls, Sign, and Money were altered

to evaluate the semi-fragile watermarking technique. The original images are shown

in Figure 5.3 and the altered images are shown in Figure 5.4. For each pair of

original and altered images, a difference image is constructed. The difference image is

necessary to evaluate the performance of the watermark detector, but the watermark

detector itself will not have access to the difference images. Neither the original,

altered, nor difference images are watermarked.

The watermark embedder is provided with each original image to produce the

watermarked image (with γ = 5.0, randomly chosen KE). Then, for every pixel

where the original and altered images differ, the pixel value in the watermarked

image is replaced with the corresponding pixel value in the altered image, producing

a tampered image. This simulates an attacker acquiring a watermarked image and

altering it. Finally, the tampered image is compressed using JPEG with various

quality factors.

181

As mentioned in Section 5.2.2, the values of ρb for altered and unaltered blocks

determine the detectability of alterations. Let ρU be the set {ρb} for all unaltered

blocks and ρA be the set {ρb} for all blocks containing at least one altered pixel.

Table 5.1 below shows the observed values for E[ρU], E[ρA], Var [ρU], and Var [ρA].

Figure 5.5 shows the same results in graphical form. The block size is 16× 16 pixels

for all images.

The detector has little difficulty discerning the unaltered and altered blocks for

lightly compresssed Gradient and Girls images, as the difference in the mean corre-

lations of altered and unaltered blocks is large. However, effects of the edges in Sign

and the textures in Money can be seen by the low difference of means for even high-

quality compression. Out of the three real images examined, the best performance

is seen in Girls and the worst performance in Money.

The detector performance, measured as the percentage of correctly classified

blocks, varies as the detection threshold is changed. Figure 5.6 shows the percentage

of correct detections for the four images at various compression levels (see Table 5.1

for the data rates at each JPEG quality factor). For moderate compression, at least

75% correct block detection was achieved for all images using a threshold of T = 0.1.

It is interesting to note that the performance does not decrease uniformly as the

amount of compression is increased; some edges present in the image that cause

detector errors may be “softened” by lossy compression, yielding better detection.

Figure 5.7 shows an example illustrating the performance of the detector (see

the caption for the embedding and detection parameters). Most of the detection

errors occur near the edges in the image or in textured areas. Many detection misses

occur in blocks which contain a boundary between an altered region and unaltered

regions. A block is considered “altered” even if a single pixel value within that

block was changed from the original image. However, a semi-fragile detector with

single-pixel sensitivity and resilience to lossy compression may not be feasible.

182

Table 5.1
Block Statistics for detector (embedding strength γ = 5.0, detection
blocksize=16 × 16)

Unaltered Blocks Altered Blocks

Actual Sample Actual Sample

Number of Sample Variance Number of Sample Variance

JPEG Image Data Unaltered Mean ρb of ρb for Altered Mean ρb of ρb for

Compress Q Rate Blocks of Unaltered Unaltered Blocks of Altered Altered

(%) (bits/pixel) Present Blocks Blocks Present Blocks Blocks

GRADIENT

Uncompress 24 382 0.9779 0.00257 300 0.1106 0.00037

90 1.1173 382 0.8634 0.00227 300 0.0962 0.00032

70 0.5504 382 0.4983 0.00131 300 0.0477 0.00016

50 0.3617 382 0.3100 0.00081 300 0.0290 0.00010

30 0.2425 382 0.1199 0.00031 300 0.0131 0.00004

GIRLS

Uncompress 24 4753 0.5608 0.00012 951 0.0670 0.00007

90 2.1843 4753 0.5452 0.00011 951 0.0646 0.00007

70 1.1072 4753 0.3337 0.00007 951 0.0385 0.00004

50 0.7627 4753 0.2313 0.00005 951 0.0239 0.00003

30 0.5072 4753 0.1322 0.00003 951 0.0114 0.00001

SIGN

Uncompress 24 1459 0.2377 0.00016 77 0.1598 0.00210

90 2.9761 1459 0.2210 0.00015 77 0.0692 0.00091

70 1.3825 1459 0.1990 0.00014 77 0.0561 0.00074

50 0.8617 1459 0.1857 0.00013 77 0.0399 0.00053

30 0.5726 1459 0.0954 0.00007 77 0.0124 0.00016

MONEY

Uncompress 24 427 0.2407 0.00057 143 0.0189 0.00013

90 3.7061 427 0.2330 0.00055 143 0.0174 0.00012

70 2.0879 427 0.1699 0.00040 143 0.0119 0.00008

50 1.5433 427 0.1338 0.00031 143 0.0139 0.00010

30 1.1203 427 0.1002 0.00024 143 0.0104 0.00007

183

(a) Gradient (b) Girls

(c) Sign

(d) Money

Fig. 5.3. Original Images

184

(a) Gradient (b) Girls

(c) Sign

(d) Money

Fig. 5.4. Altered Images

185

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
a
n

 C
o

rr
e
la

ti
o

n
 V

a
lu

e

Image Data Rate (bits/pixel)

Altered
Unaltered

(a) Gradient

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
a
n

 C
o

rr
e
la

ti
o

n
 V

a
lu

e

Image Data Rate (bits/pixel)

Altered
Unaltered

(b) Girls

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
a
n

 C
o

rr
e
la

ti
o

n
 V

a
lu

e

Image Data Rate (bits/pixel)

Altered
Unaltered

(c) Sign

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
a
n

 C
o

rr
e
la

ti
o

n
 V

a
lu

e

Image Data Rate (bits/pixel)

Altered
Unaltered

(d) Money

Fig. 5.5. Mean correlation of unaltered and altered blocks when the
tampered image is provided to the watermark detector (embedding
strength γ = 5.0, blocksize=16 × 16) after varying degrees of JPEG
compression. The accuracy of the detector improves when there is a
large separation between the mean ρb of altered and unaltered blocks.

186

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1

Threshold Value

P
e
rc

e
n

t
C

o
rr

e
c
t

D
e
te

c
ti

o
n

s

JPEG-90 JPEG-50 JPEG-30

(a) Gradient

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1

Threshold Value

P
e
rc

e
n

t
C

o
rr

e
c
t

D
e
te

c
ti

o
n

s

JPEG-90 JPEG-50 JPEG-30

(b) Girls

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1

Threshold Value

P
e
rc

e
n

t
C

o
rr

e
c
t

D
e
te

c
ti

o
n

s

JPEG-90 JPEG-50 JPEG-30

(c) Sign

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1

Threshold Value

P
e
rc

e
n

t
C

o
rr

e
c
t

D
e
te

c
ti

o
n

s

JPEG-90 JPEG-50 JPEG-30

(d) Money

Fig. 5.6. Detector accuracy when the threshold is varied from 0.0
to 1.0, for a tampered image compressed at various JPEG quality
factors. When the threshold is near 0.0, almost all of the incorrect
detections are misses. When the threshold is near 1.0, almost all of
the incorrect detections are false positives.

187

Fig. 5.7. Example of Detection. γ = 5.0, T = 0.1, blocksize=16 ×
16, JPEG Q = 60 data rate=0.90 bits/pixel, 93% correct detection
(5332 blocks correct out of 5704 blocks), 4% false positive (211 false
positives out of 4753 unaltered blocks), 17% misses (161 misses out
of 951 altered blocks). A box indicates an altered block correctly
identified, X indicates false positive, and X within a box indicates a
miss.

188

5.4 Conclusions

A semi-fragile watermark was described which could identify altered regions

within a watermarked image with 75% accuracy under moderate compression and

with near 90% accuracy under light compression for blocks of 16 × 16 pixels. The

detector was based on correlation of spatial-domain pixel differences, which takes

advantage of the fact that most natural images consist of large regions that are rela-

tively smooth. The watermark pattern itself is smooth, consisting of low and middle

frequency DCT components to resist damage from JPEG compression. Edges and

textures increase the likelihood of false positives and misses. While the presence of

edges and texture can be a problem for the detector, regions of the image that are

highly textured can also be more strongly watermarked due to the masking effects

of the human visual system. Thus, perceptual shaping can be used to improve the

performance of the detector.

The block size of 16 × 16 is also fairly small and using larger block sizes may

reduce the effect of host-signal interference, with the tradeoff of reduced precision

in localization. However, tamper detection on a coarser scale (or using larger block

sizes) may be sufficient for applications, particularly for reduced detection error.

The performance using larger block sizes and different embedding strengths should

be investigated in additional development of the technique.

The performance of this technique has been independently evaluated in [317] and

was shown to have favorable robustness against non-malicious signal processing as

well as good false alarm performance in comparison with other semi-fragile water-

marking techniques. In this evaluation, the detector classifies each block of 64 × 64

pixels as altered or unaltered, however this is not a direct extension of the technique

to larger block sizes. Instead, each 64 × 64 block is constructed as 16 blocks of

16× 16 pixels in size, and the entire (large) block is considered altered when the de-

tector classifies five or more of the small blocks as altered. This scheme was used to

compare different semi-fragile techniques because some techniques cannot function

189

at particular block sizes. It was noted in [317] that Weiner filtering (to enhance the

watermark signal) may improve detector performance in this technique.

This watermarking technique was proposed prior to the copy attack [88], and

the technique may be vulnerable to the copy attack. In particular, the watermark

signal is generated independent of the original image. However, introducing depen-

dence of the original image in watermark generation can provide resilience against

the copy attack. For security, each block of the watermark should depend on the

embedding key, the original image, as well as the position of the block within the

image [309]. Fridrich also suggests generating the watermark with dependence on

ancillary data, such as the image dimensions, to make attacks involving multiple

watermarked signals (including the copy attack and [310]) more difficult.

190

6. CONCLUSIONS

Spatial and temporal synchronization were examined in this dissertation. For tem-

poral synchronization, a new framework was developed that encompass the behavior

of a large number of blind symmetric video watermarking techniques. The frame-

work expresses the temporal structure of the watermark using a state machine key

generator but is agnostic to the structure of the watermark that is embedded into

each video frame. The framework demonstrates a relationship between temporal

redundancy and synchronization, and explain why temporal synchronization is easy

for some watermarks and much more difficult for others. The framework also leads

to the design of watermarks that have arbitrary robustness against frame dropping,

transposition, insertion, decimation, and upsampling. However, increased temporal

redundancy has a cost of increased vulnerability to temporal estimation. Spatial

synchronization was explored by constructing a watermark in a manner inspired

by the work in temporal synchronization. With sufficient spatial redundancy, the

detector is able to estimate of the rotation and scale of the watermark using the

autocorrelation.

In addition to the work in synchronization, a technique was described for au-

thentication watermarking. The semi-fragile watermarking technique is capable of

detecting substantial alterations in watermarked images but is also sufficiently in-

sensitive to allow the watermarked image to be compressed using JPEG. Experi-

mental results show that the watermark detector can identify altered blocks with

75% accuracy under moderate compression and with near 90% accuracy under light

compression for blocks of 16 × 16 pixels. Independent evaluation have shown that

the proposed technique (using larger block sizes) has performance that is comparable

with other semi-fragile watermarking techniques described in the literature. Addi-

191

tional analysis and development can improve the detection performance and security

of the proposed technique.

6.1 Contributions

• New models for video watermark embedding and detection where the struc-

ture of the watermark is expressed as a key sequence produced using a state

machine. The watermark detector uses a queue to perform a limited search

to establish and maintain synchronization. State machines were described for

time-invariant key, time-independent key, and periodic key watermarks. The

state machine may represent a pseudo-random number generator as well as

many other key generators. The state machine may be defined using crypto-

graphic hash functions.

• The models demonstrate the temporal properties of video watermarks. In

particular, the state transition function φ(·) induces a chain of states that is

produced by the embedder and traced by the detector. The analysis shows that

under the proposed framework, watermarks are robust against frame insertion

and temporal upsampling attacks. However, frame dropping, decimation, and

transposition may disrupt the chain of states, causing desynchronization.

• A method for designing watermarks with demonstrable resilience against frame

dropping, transposition, and temporal decimation. By designing temporal

redundancy in the watermark, temporal synchronization is lost only after β

consecutive frames have been dropped or moved (transposed). Initial synchro-

nization is addressed by resetting the key generator.

• The key sequence produced by the key generator may be video-dependent

by the use of a feature extractor, which improves the security of the water-

mark against estimation, copy, and ambiguity attacks. The state transitions

themselves may occur in accordance to the characteristics of the video, which

192

prevents a loss of temporal redundancy caused by changing feature values and

improves the robustness of the watermark.

• A method for designing watermarks with spatial redundancy was proposed, in-

spired by the temporal synchronization models. A method for template match-

ing was proposed based on the geometric arrangement of the grid of peaks in

the autocorrelation of a spatially redundant watermark. Redundancy allows

the scale and orientation of the watermark to be estimated under uniform

scaling and rotation attacks.

• A semi-fragile watermark for authentication that can detect and localize tam-

pering but is not sensitive to JPEG compression.

6.2 Future Work

Synchronization is a significant issue in robust watermark detection and robust

watermarking applications such as content protection. The relative ease of per-

forming a synchronization attack and the effectiveness of synchronization attacks to

cause detection miss provides the attacker with a tremendous advantage. For ex-

ample, the watermark may be rendered undetectable by subtle scaling, rotation, or

warping. Synchronization is generally a search, which implies an added cost to wa-

termark detection. While we have taken a step towards a fundamental understanding

of synchronization, more work is needed. Hopefully, future watermarks shall be more

resilient against both spatial and temporal synchronization attacks and more efficient

search methods shall be devised to address synchronization issues.

We believe that the approach of modeling watermark construction, embedding,

and detection allows a deeper examination of the underlying issues and the design

of more effective watermarks. Models should explain the difficulties of current tech-

niques against a particular process (such as synchronization attacks), as well as

demonstrate a more effective watermark design. While modeling has been used for

resilience against removal attacks, papers discussing synchronization generally de-

193

scribe or propose methods for creating templates and template matching but often

neglect modeling the watermarking process. Modeling the watermarking process is

useful in examining the limitations of current techniques before one inserts informa-

tion (in the form of a template) for synchronization. Despite the differences between

temporal and spatial synchronization that was mentioned in this dissertation, a uni-

fied model that encompasses both spatial and temporal synchronization would be

useful in exploring the limits of synchronization.

There are many synchronization attacks that have not been addressed in this

dissertation, such as non-uniform scaling, shearing, cropping, and perspective trans-

formations. Hopefully, models for these attacks and their effects on watermark de-

tection will be devised. Even more difficult attacks include generalized spatiotem-

poral transformations, particularly those transformations that are neither linear nor

spatiotemporally-invariant. New approaches may be needed for addressing these at-

tacks. One potential approach is to examine synchronization as an inverse problem,

where the attack obtains Ŷ = Ψ(Y) and the synchronizer attempts to obtain Ψ−1.

Constraints or regularization may be needed to obtain the solution to inverse prob-

lems, such as by restricting Φ to a conformal mapping. Another potential approach

is to extend the state machine concept used in this dissertation towards a Markov-

Random Field (MRF) technique to estimate the most likely Ψ−1, once appropriate

boundary conditions are found. The regularization (in the inverse approach) or

Markov models (in the MRF approach) may rely on the fact that the coordinate

transformation should not damage the perceptual quality of the attacked signal too

greatly. For example, synchronization under any spatiotemporal warping attack may

not be realistic, but synchronization under “subtle” spatiotemporal warping may be

achievable.

Additional work in fragile and semi-fragile watermarks will improve the security

and detection performance of these watermarks. Many types of security attacks

have been identified to produce forgeries, as well as countermeasures against these

attacks. Some applications may benefit when authentication allows other types

194

of information-preserving transformations than lossy compression, such as printing

and scanning, contrast adjustment, and slight geometric distortion. Development in

semi-fragile watermarks may also devise methods to provide robustness to particular

types of information-preserving transformations.

Watermarking is a technology with a promising role in content protection, au-

thentication, and other applications. Vulnerabilities such as detection miss under

synchronization attacks demonstrate that additional technical maturity is needed,

but perhaps one day the hurdles can be overcome.

LIST OF REFERENCES

195

LIST OF REFERENCES

[1] A. M. Eskicioglu and E. J. Delp, “An overview of multimedia content protec-
tion in consumer electronics devices,” Signal Processing: Image Communica-
tion, vol. 16, no. 7, pp. 681–699, Apr. 2001.

[2] E. T. Lin, A. M. Eskicioglu, R. L. Lagendijk, and E. J. Delp, “Advances in
digital video content protection,” Proceedings of the IEEE: Special Issue on
Advances in Video Coding and Delivery, vol. 93, no. 1, pp. 171–183, Jan. 2005.

[3] F. Hartung, “Digital watermarking and fingerprinting of uncompressed and
compressed video,” Ph.D. dissertation, Universität Erlangen–Nürnberg, 1999.

[4] Kazaa software version 2.6. http://www.kazaa.com

[5] B. Cohen. (2001) BitTorrent. http://bitconjurer.org/BitTorrent/index.
html

[6] eDonkey and Overnet. http://www.edonkey2000.com

[7] P. Biddle, P. England, M. Peinado, and B. Willman, “The Darknet and
the future of content distribution,” Proceedings of the ACM Workshop
on Digital Rights Management, Washington D.C., Nov. 18, 2002.
http://crypto.stanford.edu/DRM2002/darknet5.doc

[8] R. Parloff, “Morpheus falling?” IEEE Spectrum, vol. 40, no. 12, pp. 18–19,
Dec. 2003.

[9] E. W. Felten, “A skeptical view of DRM and fair use,” Communications of the
ACM: Special Issue on Digital Rights Management and Fair Use by Design,
vol. 46, no. 4, pp. 56–59, Apr. 2003.

[10] P. Samuelson, “DRM {And, Or, Vs.} the law,” Communications of the ACM:
Special Issue on Digital Rights Management and Fair Use by Design, vol. 46,
no. 4, pp. 41–45, Apr. 2003.

[11] J. Litman, Digital Copyright. Amherst, NY: Prometheus Books, 2001.

[12] D. K. Mulligan, J. Han, and A. J. Burstein, “How DRM-based content deliv-
ery systems disrupt expectations of “personal use”,” Proceedings of the ACM
workshop on Digital Rights Management, Washington D.C., 2003, pp. 77–89.

[13] D. Clark, “How copyright became controversial,” Proceedings of the 12th An-
nual Conference on Computers, Freedom and Privacy, San Francisco, CA,
2002.

196

[14] J. A. Bloom, I. J. Cox, T. Kalker, J.-P. M. G. Linnartz, M. L. Miller, and
C. B. S. Traw, “Copy protection for dvd video,” Proceedings of the IEEE,
vol. 87, no. 7, pp. 1267–1276, July 1999.

[15] E. Diehl and T. Furon, “ c©watermark: Closing the analog hole,” Proceedings of
the IEEE International Conference on Consumer Electronics, 2003, pp. 52–53.

[16] B. Schneier, Applied Cryptography. New York, NY: John Wiley and Sons,
Inc, 1996.

[17] D. R. Stinson, Cryptography Theory and Practice. Boca Raton, FL: CRC
Press, 1995.

[18] H. Beker and F. Piper, Cipher Systems: The Protection of Communications.
New York, NY: John Wiley & Sons, Inc., 1982.

[19] J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied
Cryptography. CRC Press, 1997.

[20] X. Liu and A. M. Eskicioglu, “Selective encryption of multimedia content
in distribution networks: Challenges and new directions,” Proceedings of the
2nd International Conference on Communications, Internet, and Information
Technology, Scottsdale, AZ, Nov.17–19, 2003.

[21] N. Bourbakis and A. Dollas, “SCAN-based compression-encryption-hiding for
video on demand,” IEEE Transactions on Multimedia, pp. 79–87, July–Sept.
2003.

[22] W. Zeng and S. Lei, “Efficient frequency domain selective scrambling of digital
video,” IEEE Transactions on Multimedia, vol. 5, no. 1, pp. 118–129, Mar.
2003.

[23] J. G. Wen, M. Severa, W. Zeng, M. H. Luttrell, and W. Jin, “A format-
compliant configurable encryption framework for access control of video,”
IEEE Transactions on Circuits and Systems for Video Technology, vol. 12,
no. 6, pp. 545–557, June 2002.

[24] Announcing the Advanced Encryption Standard (AES), National Institute of
Standards and Technology Std. FIPS-197, Nov. 2001. http://csrc.nist.
gov/publications/fips/fips197/fips-197.pdf

[25] M. Johnson, P. Ishwar, V. Prabhakaran, D. Schonberg, and K. Ramchandran,
“On compressing encrypted data,” IEEE Transactions on Signal Processing:
Supplement on Secure Media, vol. 52, no. 10, pp. 2992–3006, Oct. 2004.

[26] M. Barni and F. Bartolini, “Data hiding for fighting piracy,” IEEE Signal
Processing Magazine, vol. 21, no. 2, pp. 28–39, Mar. 2004.

[27] G. Doërr and J.-L. Dugelay, “A guide tour of video watermarking,” Signal
Processing: Image Communication, vol. 18, no. 4, pp. 263–282, Apr. 2003.

[28] I. Cox, M. Miller, and J. Bloom, Digital Watermarking. San Francisco, CA:
Morgan Kaufmann, 2002.

197

[29] C. I. Podilchuk and E. J. Delp, “Digital watermarking: Algorithms and ap-
plications,” IEEE Signal Processing Magazine, vol. 18, no. 4, pp. 33–46, July
2001.

[30] G. Langelaar, I. Setyawan, and R. Lagendijk, “Watermarking digital image and
video data: A state-of-the-art overview,” IEEE Signal Processing Magazine,
vol. 17, no. 5, pp. 20–46, Sept. 2000.

[31] F. Hartung and M. Kutter, “Multimedia watermarking techniques,” Proceed-
ings of the IEEE, vol. 87, no. 7, pp. 1079–1107, July 1999.

[32] R. Wolfgang, C. Podilchuk, and E. Delp, “Perceptual watermarks for digital
images and video,” Proceedings of the IEEE, vol. 87, no. 7, pp. 1108–1126, July
1999.

[33] M. Swanson, M. Kobayashi, and A. Tewfik, “Multimedia data-embedding and
watermarking technologies,” Proceedings of the IEEE, vol. 86, no. 6, pp. 1064–
1087, June 1998.

[34] C. de Vleeschouwer, J.-F. Delaigle, and B. Macq, “Invisibility and application
functionalities in perceptual watermarking—an overview,” Proceedings of the
IEEE, vol. 90, no. 1, pp. 64–77, Jan. 2002.

[35] I. Cox, M. Miller, and J. Bloom, “Watermarking applications and their proper-
ties,” Proceedings of the International Conference on Information Technology:
Coding and Computing, Las Vegas, NV, Mar. 27–29, 2000, pp. 6–10.

[36] G. C. Langelaar, “Real-time watermarking techniques for compressed video
data,” Ph.D. dissertation, Delft University of Technology, 2000.

[37] R. J. Anderson and F. A. Petitcolas, “On the limits of steganography,” IEEE
Journal on Selected Areas in Communications, vol. 16, no. 4, pp. 474–482, May
1998.

[38] T. Kalker, G. Depovere, J. Haitsma, and M. Maes, “A video watermarking
system for broadcast monitoring,” Proceedings of the SPIE Security and Wa-
termarking of Multimedia Contents, vol. 3657, San Jose, CA, Jan. 25–27, 1999,
pp. 103–112.

[39] F. Bartolini, A. Tefas, M. Barni, and I. Pitas, “Image authentication techniques
for surveillance applications,” Proceedings of the IEEE, vol. 89, no. 10, pp.
1403–1418, Oct. 2001.

[40] G. Friedman, “The trustworthy digital camera: Restoring credibility to the
photographic image,” IEEE Transactions on Consumer Electronics, vol. 39,
pp. 905–910, Nov. 1993.

[41] P. W. Wong and N. Memon, “Secret and public key image watermarking
schemes for image authentication and ownership verification,” IEEE Trans-
actions on Image Processing, vol. 10, no. 10, pp. 1593–1601, Oct. 2001.

[42] M. U. Celik, G. Sharma, E. Saber, and A. M. Tekalp, “Hierarchical watermark-
ing for secure image authentication with localization,” IEEE Transactions on
Image Processing, vol. 11, no. 6, pp. 585–595, June 2002.

198

[43] E. T. Lin, C. I. Podilchuk, and E. J. Delp, “Detection of image alterations using
semi-fragile watermarks,” Proceedings of the SPIE Security and Watermarking
of Multimedia Contents II, vol. 3971, San Jose, CA, Jan. 23–28, 2000, pp. 152–
163.

[44] E. T. Lin and E. J. Delp, “A review of fragile image watermarks,” Proceedings
of the Multimedia and Security Workshop at ACM Multimedia ’99, Orlando,
FL, Oct. 30–31, 1999, pp. 25–29.

[45] J. Picard, C. Vielhauer, and N. Thorwirth, “Towards fraud-proof ID documents
using multiple data hiding technologies and biometrics,” Proceedings of the
SPIE Security, Steganography, and Watermarking of Multimedia Contents VI,
San Jose, CA, Jan. 19–22, 2004, pp. 416–427.

[46] A. M. Alattar, ““Smart images” using Digimarc’s watermarking technology,”
Proceedings of the SPIE Security and Watermarking of Multimedia Contents
II, vol. 3971, San Jose, CA, Jan. 24–26, 2000, pp. 264–273.

[47] S. Katzenbeisser and F. A. P. Petitcolas, Eds., Information Hiding: Techniques
for Steganography and Digital Watermarking. Norwood, MA: Artech House,
2000.

[48] B. A. Wandell, Foundations of Vision. Sunderland, MA: Sinauer Associates,
Inc., 1995.

[49] R. N. Haber, Ed., Information-Processing Approaches to Visual Perception.
New York, NY: Holt, Rinehart, and Winston, Inc., 1969.

[50] A. Bovik, Ed., Handbook of Image & Video Processing. San Diego, CA:
Academic Press, 2000.

[51] N. Jayant, J. Johnston, and R. Safranek, “Signal compression based on models
of human perception,” Proceedings of the IEEE, vol. 81, no. 10, pp. 1385–1422,
Oct. 1993.

[52] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview of
the H.264/AVC video coding standard,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 13, no. 7, pp. 560–576, July 2003.

[53] D. Pan, “A tutorial on MPEG/audio compression,” IEEE Transactions on
Multimedia, vol. 2, no. 2, pp. 60–74, Summer 1995.

[54] G. K. Wallace, “The JPEG still picture compression standard,” IEEE Trans-
actions on Consumer Electronics, vol. 38, no. 1, pp. xviii–xxxiv, Feb. 1992.

[55] W. Fumy and P. Landrock, “Principles of key management,” IEEE Journal on
Selected Areas in Communications, vol. 11, no. 5, pp. 785–793, June 1993.

[56] J. J. Eggers, R. Bäuml, R. Tzschoppe, and B. Girod, “Scalar costa scheme
for information embedding,” IEEE Transactions on Signal Processing, vol. 15,
no. 4, pp. 1003–1019, Apr. 2003.

[57] J. K. Su and B. Girod, “Power-spectrum condition for energy-efficient water-
marking,” IEEE Transactions on Multimedia, vol. 4, no. 4, pp. 551–560, Dec.
2002.

199

[58] M. L. Miller, G. Doërr, and I. J. Cox, “Applying informed coding and em-
bedding to design a robust high-capacity watermark,” IEEE Transactions on
Image Processing, vol. 13, no. 6, pp. 792–807, June 2004.

[59] J. Eggers and B. Girod, Informed Watermarking. Boston, MA: Kluwer Aca-
demic Publishers, 2002.

[60] M. Barni, F. Bartolini, and A. D. Rosa, “Advantages and drawbacks of mul-
tiplicative spread spectrum watermarking,” Proceedings of the SPIE Security
and Watermarking of Multimedia Contents V, Santa Clara, CA, Jan. 21–24,
2003, pp. 290–299.

[61] I. J. Cox, J. Kilian, F. T. Leighton, and T. Shamoon, “Secure spread spectrum
watermarking for multimedia,” IEEE Transactions on Image Processing, vol. 6,
no. 12, pp. 1673–1687, Dec. 1997.

[62] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression.
Boston, MA: Kluwer Academic Publishers, 1992.

[63] B. Chen and G. W. Wornell, “Quantization index modulation: A class of
provably good methods for digital watermarking and information embedding,”
IEEE Transactions on Information Theory, vol. 47, no. 4, pp. 1423–1443, May
2001.

[64] J. Oostveen, T. Kalker, and M. Staring, “Adaptive quantization watermark-
ing,” Proceedings of the SPIE Security, Steganography, and Watermarking of
Multimedia Contents VI, vol. 5306, San Jose, CA, Jan.19–24, 2004, pp. 296–
303.

[65] R. Bäuml, R. Tzschoppe, A. Kaup, and J. Huber, “Optimality of SCS water-
marking,” Proceedings of the SPIE Security and Watermarking of Multimedia
Contents V, vol. 5020, Santa Clara, CA, Jan. 21–24, 2003, pp. 612–622.

[66] K. R. Rao and P. Yip, Discrete Cosine Transform - Algorithms, Advantages,
Applications. New York, NY: Academic Press, 1990.

[67] N. Ahmed, T. Natarajan, and K. Rao, “Discrete cosine transform,” IEEE
Transactions on Computers, vol. 23, no. 23, pp. 90–93, Jan. 1974.

[68] S. Voloshynovskiy, S. Pereira, V. Iquise, and T. Pun, “Attack modelling:
Towards a second generation watermarking benchmark,” Signal Processing,
vol. 81, no. 6, pp. 1177–1214, June 2001.

[69] S. Voloshynovskiy, S. Pereira, T. Pun, J. J. Eggers, and J. K. Su, “Attacks
on digital watermarks: Classification, estimation-based attacks, and bench-
marks,” IEEE Communications Magazine, vol. 39, no. 8, pp. 118–126, Aug.
2001.

[70] F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn, “Attacks on copyright
marking systems,” Proceedings of the Second International Workshop on In-
formation Hiding, Portland, OR, Apr. 15–17, 1998, pp. 219–239.

[71] J. J. Eggers and B. Girod, “Quantization effects on digital watermarks,” Signal
Processing, vol. 81, no. 2, pp. 239–263, Feb. 2001.

200

[72] J. Xin, C.-W. Lin, and M.-T. Sun, “Digital video transcoding,” Proceedings of
the IEEE: Special Issue on Advances in Video Coding and Delivery, vol. 93,
no. 1, pp. 84–97, Jan. 2005.

[73] A. Vetro, C. Christopoulos, and H. Sun, “Video transcoding architectures and
techniques: An overview,” IEEE Signal Processing Magazine, vol. 20, no. 2,
pp. 18–29, Mar. 2003.

[74] I. D. Shterev, I. L. Lagendijk, and R. Heusdens, “Statistical amplitude scale es-
timation for quantization-based watermarking,” Proceedings of the SPIE Secu-
rity, Steganography, and Watermarking of Multimedia Contents VI, vol. 5306,
Jan.19–22, 2004, pp. 796–804.

[75] D. Kirovski and F. A. P. Petitcolas, “Blind pattern matching attack on water-
marking systems,” IEEE Transactions on Signal Processing, vol. 51, no. 4, pp.
1045–1053, Apr. 2003.

[76] M. F. Mansour and A. H. Tewfik, “Attacks on quantization-based watermark-
ing schemes,” Proceedings of the IEEE Seventh International Symposium on
Signal Processing and its Applications, vol. 2, July 1–4, 2003, pp. 367–370.

[77] S. A. Craver, M. Wu, B. Liu, A. Stubblefield, B. Swartzlander, D. W. Wal-
lach, D. Dean, and E. W. Felten, “Reading between the lines: Lessons from
the SDMI challenge,” Proceedings of the 10th USENIX Security Symposium,
Washington, D.C., Aug. 13–17 2001.

[78] S. Voloshynovskiy, S. Pereira, A. Herrigel, N. Baumgartner, and T. Pun, “Gen-
eralized watermarking attack based on watermark estimation and perceptual
remodulation,” Proceedings of the SPIE Security and Watermarking of Multi-
media Contents II, vol. 3971, San Jose, CA, Jan. 24–26, 2000, pp. 358–370.

[79] R. Barnett and D. E. Pearson, “Frequency Mode LR attack operator for digi-
tally watermarked images,” Electronics Letters, vol. 19, pp. 1837–1838, 1998.

[80] G. C. Langelaar, R. L. Lagendijk, and J. Biemond, “Removing spatial spread
spectrum watermarks,” Proceedings of the European Signal Processing Confer-
ence (EUSIPCO’98), Rodes, Greece, Sept. 8–11, 1998.

[81] I. J. Cox and J.-P. M. G. Linnartz, “Some general methods for tampering with
watermarks,” IEEE Journal on Selected Areas in Communications, vol. 16,
no. 4, pp. 587–593, May 1998.

[82] G. Doërr and J.-L. Dugelay, “Security pitfalls of frame-by-frame approaches
to video watermarking,” IEEE Transactions on Signal Processing: Supplement
on Secure Media, vol. 52, no. 10, pp. 2955–2964, Oct. 2004.

[83] ——, “Switching between orthogonal watermarks for enhanced security
against collusion in video,” Eurécom Institute, Tech. Rep. RR-03-080, July 4,
2003. http://www.eurecom.fr/~doerr

[84] M. Wu, W. Trappe, Z. J. Wang, and K. J. R. Liu, “Collusion resistant multi-
media fingerprinting: A unified framework,” Proceedings of the SPIE Security,
Steganography, and Watermarking of Multimedia Contents VI, vol. 5306, San
Jose, CA, Jan. 19–22, 2004, pp. 748–759.

201

[85] D. Boneh and J. Shaw, “Collusion-secure fingerprinting for digital data,” IEEE
Transactions on Information Theory, vol. 44, no. 5, pp. 1897–1905, Sept. 1998.

[86] M. U. Celik, G. Sharma, and A. M. Tekalp, “Collusion-resilient fingerprinting
using random pre-warping,” Proceedings of the IEEE International Conference
on Image Processing, Sept. 14–17, 2003, pp. 509–512.

[87] W. Trappe, M. Wu, and K. J. R. Liu, “Anti-collusion codes: Multi-user and
multimedia perspectives,” Proceedings of the IEEE International Conference
on Image Processing, vol. 2, Sept. 22–25, 2002, pp. 149–152.

[88] M. Kutter, S. Voloshynovskiy, and A. Herrigel, “The watermark copy attack,”
Proceedings of the SPIE Security and Watermarking of Multimedia Contents
II, vol. 3971, San Jose, CA, Jan. 24–26, 2000, pp. 371–380.

[89] M. Holliman, W. Macy, and M. M. Yeung, “Robust frame-dependent video
watermarking,” Proceedings of the SPIE Security and Watermarking of Multi-
media Contents II, vol. 3971, San Jose, CA, Jan.24–26, 2000, pp. 186–197.

[90] F. Deguillaume, S. Voloshynovskiy, and T. Pun, “Secure hybrid robust wa-
termarking resistant against tampering and copy attack,” Signal Processing,
vol. 83, no. 10, pp. 2133–2170, Oct. 2003.

[91] C.-S. Lu, H.-Y. M. Liao, and M. Kutter, “Denoising and copy attacks resilient
watermarking by exploiting prior knowledge at detector,” IEEE Transactions
on Image Processing, vol. 11, no. 3, pp. 280–292, Mar. 2002.

[92] A. Adelsbach, S. Katzenbeisser, and H. Veith, “Watermarking schemes prov-
ably secure against copy and ambiguity attacks,” Proceedings of the ACM
Workshop on Digital Rights Management, Washington D.C., 2003, pp. 111–
119.

[93] S. Craver, N. Memon, B.-L. Yeo, and M. M. Yeung, “Resolving rightful owner-
ships with invisible watermarking techniques: Limitations, attacks, and impli-
cations,” IEEE Journal on Selected Areas in Communications, vol. 16, no. 4,
pp. 573–586, May 1998.

[94] W. Zeng and B. Liu, “A statistical watermark detection technique without
using original images for resolving rightful ownerships of digital images,” IEEE
Transactions on Image Processing, vol. 8, no. 11, pp. 1534–1548, Nov. 1999.

[95] S. Craver, “The return of ambiguity attacks,” Proceedings of the SPIE Security
and Watermarking of Multimedia Contents IV, vol. 4675, San Jose, CA, Jan.
21–24, 2002, pp. 252–259.

[96] R. Liu and T. Tan, “An SVD-based watermarking scheme for protecting right-
ful ownership,” IEEE Transactions on Multimedia, vol. 4, no. 1, pp. 121–128,
Mar. 2002.

[97] J. Picard and A. Robert, “On the public key watermarking issue,” Proceedings
of the SPIE Security and Watermarking of Multimedia Contents III, San Jose,
CA, Jan. 22–25, 2001, pp. 290–299.

[98] F. Hartung and B. Girod, “Fast public-key watermarking of compressed video,”
Proceedings of the IEEE International Conference on Image Processing 1997,
vol. 1, Santa Barbara, CA, Oct.26–29, 1997, pp. 528–531.

202

[99] H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part I. New
York, NY: John Wiley & Sons, Inc., 2001.

[100] G. Casella and R. L. Berger, Statistical Inference. Belmont, CA: Duxbury
Press, 1990.

[101] M. D. Srinath, P. K. Rajasekaram, and R. Viswanathan, Introduction to Sta-
tistical Signal Processing with Applications. Englewood Cliffs, NJ: Prentice
Hall, 1996.

[102] W. B. Davenport, Jr. and W. L. Root, An Introduction to the Theory of Ran-
dom Signals and Noise. New York, NY: IEEE Press, 1987.

[103] A. Papoulis, Probability, Random Variables, and Stochastic Processes. New
York, NY: McGraw-Hill, Inc., 1991.

[104] G. Langelaar and R. Lagendijk, “Optimal differential energy watermarking of
DCT encoded images and video,” IEEE Transactions on Image Processing,
vol. 10, no. 1, pp. 148–158, Jan. 2001.

[105] M. Barni, F. Bartolini, A. D. Rosa, and A. Piva, “A new decoder for the
optimum recovery of nonadditive watermarks,” IEEE Transactions on Image
Processing, vol. 10, no. 5, pp. 755–766, May 2001.

[106] A. S. Cohen and A. Lapidoth, “The gaussian watermarking game,” IEEE
Transactions on Information Theory, vol. 48, no. 6, pp. 1639–1667, June 2002.

[107] C. B. Peel, “On ‘dirty-paper coding’,” IEEE Signal Processing Magazine,
vol. 20, no. 3, pp. 112–113, May 2003.

[108] M. H. M. Costa, “Writing on dirty paper,” IEEE Transactions on Information
Theory, vol. IT-29, no. 3, pp. 439–441, May 1983.

[109] G. Depovere, T. Kalker, and J.-P. Linnartz, “Improved watermark detection
reliability using filtering before correlation,” Proceedings of the IEEE Inter-
national Conference on Image Processing 1998, vol. 1, Chicago, IL, Oct. 4–7,
1998, pp. 430–434.

[110] F. A. P. Petitcolas, “Watermarking schemes evaluation,” IEEE Signal Process-
ing Magazine, vol. 17, no. 5, pp. 58–64, Sept. 2000.

[111] F. Mintzer, G. W. Braudaway, and M. M. Yeung, “Effective and ineffective dig-
ital watermarks,” Proceedings of the IEEE International Conference on Image
Processing 1997, Santa Barbara, CA, Oct. 1997, pp. 9–12.

[112] A. B. Watson, J. Hu, and J. F. McGowan III, “Digital video quality metric
based on human vision,” Journal of Electronic Imaging, vol. 10, no. 1, pp.
20–29, 2001.

[113] A. N. Netravali and B. G. Haskell, Digital Pictures Representation and Com-
pression. New York, NY: Plenum Press, 1998.

[114] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality
assessment: From error visibility to structural similarity,” IEEE Transactions
on Image Processing, vol. 13, no. 4, pp. 600–612, Apr. 2004.

203

[115] Z. Wang, L. Lu, and A. C. Bovik, “Video quality assessment based on struc-
tural distortion measurement,” Signal Processing: Image Communication,
vol. 19, no. 2, pp. 121–132, Feb. 2004.

[116] M. A. Masry and S. S. Hemami, “A metric for continuous quality evaluation
of compressed video with severe distortions,” Signal Processing: Image Com-
munication, vol. 19, no. 2, pp. 133–146, Feb. 2004.

[117] S. J. P. Westen, R. L. Lagendijk, and J. Biemond, “Spatio-temporal model of
human vision for digital video compression,” Proceedings of the SPIE Human
Vision and Electronic Imaging II, vol. 3016, San Jose, CA, 1997, pp. 260–268.

[118] C. J. van den Branden Lambrecht and O. Verscheure, “Perceptual quality
measure using a spatio-temporal model of the human visual system,” Proceed-
ings of the SPIE Conference on Digital Video Compression: Algorithms and
Technologies, vol. 2668, San Jose, CA, Jan./Feb. 1996, pp. 450–461.

[119] A. Basso, İ. Dalgiç, F. A. Tobagi, and C. J. van den Branden Lambrecht,
“Study of MPEG–2 coding performance based on a perceptual quality met-
ric,” Proceedings of the 1996 Picture Coding Symposium, Melbourne, Australia,
Mar. 1996, pp. 263–268.

[120] A. A. Webster, C. T. Jones, M. H. Pinson, S. D. Voran, and S. Wolf, “An
objective video quality assessment system based on human perception,” Pro-
ceedings of the SPIE Human Vision, Visual Processing, and Digital Displays
IV, San Jose, CA, Feb. 1993, pp. 15–26.

[121] F. X. J. Lukas and Z. L. Budrikis, “Picture quality prediction based on a
visual model,” IEEE Transactions on Communications, vol. COM-30, no. 7,
pp. 1679–1692, July 1982.

[122] M. Wu and B. Liu, “Data hiding in image and video: Part I—fundamental
issues and solutions,” IEEE Transactions on Image Processing, vol. 12, no. 6,
pp. 685–695, June 2003.

[123] P. Moulin and J. A. O’Sullivan, “Information-theoretic analysis of information
hiding,” IEEE Transactions on Information Theory, vol. 49, no. 3, pp. 563–
593, Mar. 2003.

[124] M. Barni, F. Bartolini, and T. Furon, “A general framework for robust water-
mark security,” Signal Processing, vol. 83, no. 10, pp. 2069–2084, Oct. 2003.

[125] H. C. Kim, H. Ogunley, O. Guitart, and E. J. Delp, “The watermark evalua-
tion testbed,” Proceedings of the SPIE International Conference on Security,
Steganography, and Watermarking VI, vol. 5306, San Jose, CA, Jan. 19–22,
2004, pp. 236–247.

[126] B. Macq, J. Dittmann, and E. J. Delp, “Benchmarking of image watermarking
algorithms for digital rights management,” Proceedings of the IEEE, vol. 92,
no. 6, pp. 971–984, June 2004.

[127] J. C. Vorbrüggen and F. Cayre, “The Certimark benchmark: Architecture
and future perspectives,” Proceedings of the IEEE International Conference
on Multimedia and Expo 2002, vol. 2, Lausanne, Switzerland, Aug. 26–29,
2002, pp. 485–488.

204

[128] S. Pereira, S. Voloshynovskiy, M. Madueno, S. Marchand-Maillet, and T. Pun,
“Second generation benchmarking and application oriented evaluation,” Infor-
mation Hiding Workshop, Pittsburgh, PA, Apr. 2001.

[129] M. Steinebach, F. A. P. Petitcolas, F. Raynal, J. Dittmann, C. Fontaine,
C. Seibel, N. Fatès, and L. C. Ferri, “StirMark benchmark: Audio water-
marking attacks,” Proceedings of the International Conference on Information
Technology: Coding and Computing, Las Vegas, NV, Apr. 2–4, 2001, pp. 49–54.

[130] V. Solachidis, A. Tefas, N. Nikolaidis, S. Tsekeridou, A. Nikolaidis, and I. Pitas,
“A benchmarking protocol for watermarking methods,” Proceedings of the
IEEE International Conference on Image Processing 2001, vol. 3, Thessaloniki,
Greece, Oct. 7–10, 2001, pp. 1023–1026.

[131] S. B. Wicker, Error Control Systems for Digital Communication and Storage.
Englewood Cliffs, NJ: Prentice Hall, 1995.

[132] T. M. Cover and J. A. Thomas, Elements of Information Theory. New York,
NY: John Wiley & Sons, Inc., 1991.

[133] A. Ortega and K. Ramchandran, “Rate-distortion methods for image and video
compression,” IEEE Signal Processing Magazine, vol. 15, no. 6, pp. 23–50, Nov.
1998.

[134] A. K. Jain, Fundamentals of Digital Image Processing. Englewood Cliffs, NJ:
Prentice Hall, 1989.

[135] J. S. Lim, Two-Dimensional Signal and Image Processing. Englewood Cliffs,
NJ: Prentice Hall, 1990.

[136] C. A. Poynton, A Technical Introduction to Digital Video. New York, NY:
John Wiley & Sons, Inc., 1996.

[137] J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Principles,
Algorithms, and Applications, 3rd ed. Upper Saddle River, NJ: Prentice Hall,
1996.

[138] A. V. Oppenheim, A. S. Willsky, and I. T. Young, Signals and Systems. En-
glewood Cliffs, NJ: Prentice Hall, 1983.

[139] K. Jack, Video Demystified. San Diego, CA: HighText Publications, 1996.

[140] D. H. Hubel, Eye, Brain, and Vision. New York, NY: Scientific American
Library, 1995.

[141] R. M. Boynton, Human Color Vision. USA: Optical Society of America, 1992.

[142] G. Sharma and H. J. Trussell, “Digital color imaging,” IEEE Transactions on
Image Processing, vol. 6, no. 7, pp. 901–932, July 1997.

[143] S. Süsstrunk, R. Buckley, and S. Swen, “Standard RGB color spaces,” Pro-
ceedings of the IS&T/SID Seventh Color Imaging Conference: Color Science,
Systems and Applications, Scottsdale, AZ, Nov. 1999, pp. 127–134.

205

[144] Parameter Values for the HDTV Standards for Production and International
Programme Exchange, International Telecommunication Union Std. ITU-R
BT.709-3, 1998.

[145] Studio Encoding Parameters of Digital Television for Standard 4:3 and Wide-
Screen 16:9 Aspect Ratios, International Telecommunication Union Std. ITU-R
BT.601-5, 1995.

[146] Television – 1920 × 1080 Scanning and Analog and Parallel Digital Interfaces
for Multiple Picture Rates, Society of Motion Picture and Television Engineers
Std. 274M, 2003.

[147] Television – 1280 × 720 Progressive Image Sample Structure – Analog and
Digital Representation and Analog Interface, Society of Motion Picture and
Television Engineers Std. 296M, 2001.

[148] J. Taylor, DVD Demystified. New York, NY: McGraw-Hill, 1998.

[149] E. T. Lin, C. I. Podilchuk, T. Kalker, and E. J. Delp, “Streaming video and rate
scalable compression: What are the challenges for watermarking?” Journal of
Electronic Imaging, vol. 13, no. 1, pp. 198–205, Jan. 2004.

[150] X. Li, M. H. Ammar, and S. Paul, “Video multicast over the internet,” IEEE
Network, vol. 13, no. 2, pp. 46–60, Mar.–Apr. 1999.

[151] D. Wu, Y. T. Hou, W. Zhu, Y.-Q. Zhang, and J. M. Peha, “Streaming video
over the internet: Approaches and directions,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 11, no. 3, pp. 282–300, Mar. 2001.

[152] Advanced television systems committee. http://www.atsc.org

[153] A. Tekalp, Digital Video Processing. Upper Saddle River, NJ: Prentice Hall,
1995.

[154] V. Bhaskaran and K. Konstantinides, Image and Video Compression Stan-
dards: Algorithms and Architectures, 2nd ed. Boston, MA: Kluwer Academic
Publishers, 1997.

[155] L. Torres and M. Kunt, Eds., Video Coding: The Second Generation Approach.
Boston, MA: Kluwer Academic Publishers, 1996.

[156] B. G. Haskell, A. Puri, and A. N. Netravali, Digital Video: An Introduction to
MPEG–2. New York, NY: Chapman & Hall, 1997.

[157] J.-R. Ohm, “Advances in scalable video coding,” Proceedings of the IEEE:
Special Issue on Advances in Video Coding and Delivery, vol. 93, no. 1, pp.
42–56, Jan. 2005.

[158] W. Li, “Overview of fine granularity scalability in MPEG–4 video standard,”
IEEE Transactions on Circuits and Systems for Video Technology, vol. 11,
no. 3, pp. 301–317, Mar. 2001.

[159] K. Shen and E. J. Delp, “Wavelet based rate scalable video compression,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 9, no. 1, pp.
109–122, Feb. 1999.

206

[160] H.-C. Huang, C.-N. Wang, and T. Chiang, “A robust fine granularity scala-
bility using trellis-based predictive leak,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 12, no. 6, pp. 372–385, June 2002.

[161] Y. Liu, Z. Li, P. Salama, and E. J. Delp, “A discussion of leaky prediction
based scalable coding,” Proceedings of the IEEE International Conference on
Multimedia and Expo (ICME), vol. 2, Baltimore, MD, July 6–9, 2003, pp.
565–568.

[162] Y. Liu, “Layered scalable and low complexity video encoding: New approaches
and theoretic analysis,” Ph.D. dissertation, Purdue University, Aug. 2004.

[163] M. Karczewicz and R. Kurceren, “The SP– and SI–frames design for
H.264/AVC,” IEEE Transactions on Circuits and Systems for Video Tech-
nology, vol. 13, no. 7, pp. 637–644, July 2003.

[164] R. Talluri, “Error-resilient video coding in the ISO MPEG–4 standard,” IEEE
Communications Magazine, vol. 36, no. 6, pp. 112–119, June 1998.

[165] Y. Wang, S. Wenger, J. Wen, and A. K. Katsaggelos, “Error resilient video
coding techniques,” IEEE Signal Processing Magazine, vol. 17, no. 4, pp. 61–
82, July 2000.

[166] Y. Wang and Q.-F. Zhu, “Error control and concealment for video communi-
cations: A review,” Proceedings of the IEEE, vol. 86, no. 5, pp. 974–997, May
1998.

[167] Information Technology – Coding of Moving Pictures and Associated Audio for
Digital Storage Media at up to About 1.5 Mbit/s, International Organization
for Standardization Std. ISO/IEC 11 172-2, May 1993.

[168] J. L. Mitchell, W. B. Pennebaker, C. E. Fogg, and D. J. LeGall, Eds., MPEG
Video Compression Standard. New York, NY: Chapman & Hall, 1997.

[169] Line transmission of Non-Telephone Signals: Video Codec for Audiovisual Ser-
vices at p×64 kbits, International Telecommunication Union Std. ITU-T H.261,
Mar. 1993.

[170] Multiplexing Protocol for Low Bit Rate Multimedia Communication, Interna-
tional Telecommunication Union Std. ITU-T H.223, July 2001.

[171] Information Technology – Generic Coding of Moving Pictures and Associ-
ated Audio Information, International Organization for Standardization Std.
ISO/IEC 13 818-2, 1994.

[172] Coding for Low Bitrate Communication, International Telecommunication
Union Std. ITU-T H.263, Mar. 1996.

[173] G. Côté, B. Erol, M. Gallant, and F. Kossentini, “H.263+: Video coding at low
bit rates,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 8, no. 7, pp. 849–866, Nov. 1998.

[174] Information Technology – Coding of Audio-Visual Objects: Video, Interna-
tional Organization for Standardization Std. ISO/IEC 14 496-2, Oct. 1998.

207

[175] T. Ebrahimi and C. Horne, “MPEG–4 natural video coding–an overview,”
Signal Processing: Image Communication, vol. 15, no. 4, pp. 365–385, Jan.
2000.

[176] H. S. Malvar, A. Hallapuro, M. Karczewicz, and L. Kerofsky, “Low-complexity
transform and quantization in H.264/AVC,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 13, no. 7, pp. 598–603, July 2003.

[177] P. List, A. Joch, J. Lainema, G. Bjøntegaard, and M. Karczweicz, “Adap-
tive deblocking filter,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 13, no. 7, pp. 614–619, July 2003.

[178] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based adaptive binary arith-
metic coding in the H.264/AVC video compression standard,” IEEE Transac-
tions on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 620–636,
July 2003.

[179] T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, and G. J. Sullivan, “Rate-
constrained coder control and comparison of video coding standards,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7, pp.
688–703, July 2003.

[180] Y. Liu, P. Salama, G. W. Cook, and E. J. Delp, “Rate-distortion analysis of
layered video coding by leaky prediction,” Proceedings of the SPIE Interna-
tional Conference on Video Communications and Image Processing (VCIP),
vol. 5308, San Jose, CA, Jan. 18–22, 2004, pp. 543–554.

[181] H. Feng and M. Effros, “On the rate-distortion performance and computational
efficiency of the Karhunen-Loève Transform for lossy data compression,” IEEE
Transactions on Image Processing, vol. 11, no. 2, pp. 113–122, Feb. 2002.

[182] K. I. Diamantaras and M. G. Strintzis, “Optimal transform coding in the pres-
ence of quantization noise,” IEEE Transactions on Image Processing, vol. 8,
no. 11, pp. 1508–1515, Nov. 1999.

[183] V. R. Algazi and D. J. Sakrison, “On the optimality of the Karhunen-Loève
expansion,” IEEE Transactions on Information Theory, vol. IT-15, no. 2, pp.
319–321, Mar. 1969.

[184] M. Vetterli, “Fast 2-D discrete cosine transform,” Proceedings of the IEEE In-
ternational Conference on Acoustics, Speech, and Signal Processing (ICASSP
’85), vol. 10, Apr. 1985, pp. 1538–1541.

[185] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet coeffi-
cients,” IEEE Transactions on Signal Processing, vol. 41, no. 12, pp. 3445–
3462, Dec. 1993.

[186] D. Taubman, “High performance scalable image compression with EBCOT,”
IEEE Transactions on Image Processing, vol. 9, no. 7, pp. 1158–1170, July
2000.

[187] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using
wavelet transform,” IEEE Transactions on Image Processing, vol. 1, no. 2, pp.
205–220, Apr. 1992.

208

[188] B. Girod, A. M. Aaron, S. Rane, and D. Rebollo-Monedero, “Distributed video
coding,” Proceedings of the IEEE: Special Issue on Advances in Video Coding
and Delivery, vol. 93, no. 1, pp. 71–83, Jan. 2005.

[189] R. B. Wolfgang and E. J. Delp, “A watermark for digital images,” Proceed-
ings of the IEEE International Conference on Image Processing 1996, vol. 3,
Lausanne, Switzerland, Sept. 16–19, 1996, pp. 219–222.

[190] ——, “Fragile watermarking using the VW2D watermark,” Proceedings of the
SPIE Security and Watermarking of Multimedia Contents I, vol. 3657, San
Jose, CA, Jan.25–27, 1999, pp. 204–213.

[191] R. G. van Schyndel, A. Z. Tirkel, and C. F. Osborne, “A digital watermark,”
Proceedings of the IEEE International Conference on Image Processing 1994,
vol. 2, Austin, TX, Nov. 13–16, 1994, pp. 86–90.

[192] W. Bender, D. Gruhl, N. Morimoto, and A. Lu, “Techniques for data
hiding,” IBM Systems Journal, vol. 35, no. 3 & 4, pp. 313–336, 1996.
http://www.almaden.ibm.com/cs/people/dgruhl/313.pdf

[193] G. C. Langelaar, J. van der Lubbe, and J. Biemond, “Copy protection for mul-
timedia data based on labeling techniques,” Proceedings of the 17th Symposium
on Information Theory in the Benelux, Enschede, May 1996, pp. 33–39.

[194] W. Zeng and B. Liu, “On resolving rightful ownerships of digital images by
invisible watermarks,” Proceedings of the IEEE International Conference on
Image Processing 1997, vol. 1, Santa Barbara, CA, Oct. 26–29, 1997, pp. 552–
555.

[195] S. Walton, “Information authentication for a slippery new age,” Dr. Dobbs
Journal, vol. 20, no. 4, pp. 18–26, Apr. 1995.

[196] G. Caronni, “Assuring ownership rights for digital images,” Proceedings of
Reliable IT Systems VIS ‘95, H. H. Brüggemann and W. Gerhardt-Häckl, Eds.,
1995. http://www.olymp.org/~caronni/work/papers/givis-final.pdf

[197] M. Kutter, F. Jordan, and F. Bossen, “Digital watermarking of color images
using amplitude modulation,” Journal of Electronic Imaging, vol. 7, no. 2, pp.
326–332, Apr. 1998.

[198] M. Kutter and S. Winkler, “A vision-based masking model for spread-spectrum
image watermarking,” IEEE Transactions on Image Processing, vol. 11, no. 1,
pp. 16–25, Jan. 2002.

[199] M. Barni, F. Bartolini, and A. Piva, “Improved wavelet-based watermarking
through pixel-wise masking,” IEEE Transactions on Image Processing, vol. 10,
no. 5, pp. 783–791, May 2001.

[200] Y. Liu, B. Ni, X. Feng, and E. J. Delp, “LOT-based adaptive image watermark-
ing,” Proceedings of the SPIE Security, Steganography, and Watermarking of
Multimedia Contents VI, San Jose, CA, Jan. 19–22, 2004, pp. 513–523.

[201] J. F. Delaigle, C. D. Vleeschouwer, and B. Macq, “Watermarking algorithm
based on a human visual model,” Signal Processing, vol. 66, no. 3, pp. 337–355,
May 1998.

209

[202] C. I. Podilchuk and W. Zeng, “Image-adaptive watermarking using visual mod-
els,” IEEE Journal on Selected Areas in Communications, vol. 16, no. 4, pp.
525–539, May 1998.

[203] M. D. Swanson, B. Zhu, and A. H. Tewfik, “Transparent robust image water-
marking,” Proceedings of the IEEE International Conference on Image Pro-
cessing 1996, vol. 3, Lausanne, Switzerland, Sept. 16–19, 1996, pp. 211–214.

[204] A. B. Watson, “DCT quantization matrices visually optimized for individual
images,” Proceedings of the SPIE Conference on Human Vision, Visual
Processing, and Digital Display IV, B. E. Rogowitz, Ed., 1993, pp. 202–216.
http://vision.arc.nasa.gov/publications/spie93abw/spie93abw.pdf

[205] A. Robert and J. Picard, “Masking models and watermark unDetection,” Pro-
ceedings of the SPIE Security and Watermarking of Multimedia Contents III,
vol. 4314, San Jose, CA, Jan. 22–25, 2001, pp. 455–467.

[206] G. W. Braudaway, “Protecting publicly-available images with an invisible im-
age watermark,” Proceedings of the IEEE International Conference on Image
Processing 1997, vol. 1, Santa Barbara, CA, Oct. 26–29, 1997, pp. 524–527.

[207] C.-T. Hsu and J.-L. Wu, “Hidden signatures in images,” Proceedings of the
IEEE International Conference on Image Processing 1996, vol. 3, Sept. 16–19,
1996, pp. 223–226.

[208] S. Tsekeridou and I. Pitas, “Wavelet-based self-similar watermarking for still
images,” Proceedings of the 2000 IEEE International Symposium on Circuits
and Systems, vol. 1, Geneva, Switzerland, May28–31, 2000, pp. 220–223.

[209] S. Pereira and T. Pun, “Robust template matching for affine resistant image
watermarks,” IEEE Transactions on Image Processing, vol. 9, no. 6, pp. 1123–
1129, June 2000.

[210] V. Solachidis and I. Pitas, “Circularly symmetric watermark embedding in the
2-D DFT domain,” IEEE Transactions on Image Processing, vol. 10, no. 11,
pp. 1741–1753, Nov. 2001.

[211] J. K. Su, J. J. Eggers, and B. Girod, “Analysis of digital watermarks subjected
to optimum linear filtering and additive noise,” Signal Processing, vol. 81, no. 6,
pp. 1141–1175, June 2001.

[212] J. Dittmann, T. Fiebig, and R. Steinmetz, “A new approach for transforma-
tion invariant image and video watermarking in the spatial domain: SSP—self
spanning patterns,” Proceedings of the SPIE Security and Watermarking of
Multimedia Contents II, vol. 3971, San Jose, CA, Jan. 24–26, 2000, pp. 176–
185.

[213] A. Nikolaidis and I. Pitas, “Region-based image watermarking,” IEEE Trans-
actions on Image Processing, vol. 10, no. 11, pp. 1726–1740, Nov. 2001.

[214] M. Barni, F. Bartolini, and A. Piva, “Multichannel watermarking of color
images,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 12, no. 3, pp. 142–156, Mar. 2002.

210

[215] X. Kang, J. Huang, Y. Q. Shi, and Y. Lin, “A DWT-DFT composite wa-
termarking scheme robust to both affine transform and JPEG compression,”
IEEE Transactions on Circuits and Systems for Video Technology, vol. 13,
no. 8, pp. 776–786, Aug. 2003.

[216] X.-G. Xia, C. G. Boncelet, and G. R. Arce, “A multiresolution watermark for
digital images,” Proceedings of the IEEE International Conference on Image
Processing 1997, vol. 1, Santa Barbara, CA, Oct. 26–29, 1997, pp. 548–551.

[217] W. Zhu, Z. Xiong, and Y.-Q. Zhang, “Multiresolution watermarking for images
and video,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 9, no. 4, pp. 545–550, June 1999.

[218] R. Dugad, K. Ratakonda, and N. Ahuja, “A new wavelet-based scheme for
watermarking images,” Proceedings of the IEEE International Conference on
Image Processing 1998, vol. 2, Chicago, IL, Oct. 4–7, 1998, pp. 419–423.

[219] H. Inoue, A. Miyazaki, and T. Katsura, “An image watermarking method
based on the wavelet transform,” Proceedings of the IEEE International Con-
ference on Image Processing 1999, vol. 1, Kobe, Japan, Oct. 24–28, 1999, pp.
296–300.

[220] D. Kundur and D. Hatzinakos, “Digital watermarking for telltale tamper proof-
ing and authentication,” Proceedings of the IEEE, vol. 87, no. 7, pp. 1167–1180,
July 1999.

[221] P. Meerwald and A. Uhl, “A survey of wavelet-domain watermarking algo-
rithms,” Proceedings of the SPIE Security and Watermarking of Multimedia
Contents III, vol. 4314, San Jose, CA, Jan. 22–25, 2001, pp. 505–516.

[222] S. Kang and Y. Aoki, “Digital image watermarking by Fresnel Transform and
its robustness,” Proceedings of the IEEE International Conference on Image
Processing 1999, vol. 2, Kobe, Japan, Oct. 24–28, 1999, pp. 221–225.

[223] C.-Y. Lin, M. Wu, J. A. Bloom, I. J. Cox, M. L. Miller, and Y. M. Lui,
“Rotation, scale, and translation resilient watermarking for images,” IEEE
Transactions on Image Processing, vol. 10, no. 5, pp. 767–782, May 2001.

[224] J. J. K. Ó Ruanaidh and T. Pun, “Rotation, scale and translation invariant
spread spectrum digital image watermarking,” Signal Processing, vol. 66, no. 3,
pp. 303–317, May 1998.

[225] F. Autrusseau and J. Guédon, “Image watermarking for copyright protection
and data hiding via the Mojette Transform,” Proceedings of the SPIE Security
and Watermarking of Multimedia Contents IV, vol. 4675, San Jose, CA, Jan.
21–24, 2002, pp. 378–386.

[226] M. Barni, F. Bartolini, A. D. Rosa, and A. Piva, “Color image watermarking
in the Karhunen-Loeve Transform domain,” Journal of Electronic Imaging,
vol. 11, no. 1, pp. 87–95, Jan. 2002.

[227] A. Reed and B. Hannigan, “Adaptive color watermarking,” Proceedings of the
SPIE Security and Watermarking of Multimedia Contents IV, vol. 4675, San
Jose, CA, Jan. 21–24, 2002, pp. 222–229.

211

[228] M. Caramma, R. Lancini, F. Mapelli, and S. Tubaro, “A blind & readable
watermarking technique for color images,” Proceedings of the IEEE Interna-
tional Conference on Image Processing 2000, vol. 1, Thessaloniki, Greece, Sept.
10–13, 2001, pp. 442–445.

[229] H. S. Malvar and D. A. Florêncio, “An improved spread spectrum technique
for robust watermarking,” Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing, vol. 4, May 13–17, 2002, pp.
3301–3304.

[230] G. L. Guelvouit and S. Pateux, “Wide spread spectrum watermarking with side
information and interference cancellation,” Proceedings of the SPIE Security
and Watermarking of Multimedia Contents V, vol. 5020, Santa Clara, CA, Jan.
21–24, 2003, pp. 278–289.

[231] R. L. Pickholtz, D. L. Schilling, and L. B. Milstein, “Theory of spread-spectrum
communications—a tutorial,” IEEE Transactions on Communications, vol.
COM-30, no. 5, pp. 855–884, May 1982.

[232] E. H. Dinan and B. Jabbari, “Spreading codes for direct sequence CDMA
and wideband CDMA cellular networks,” IEEE Communications Magazine,
vol. 36, no. 9, pp. 48–54, Sept. 1998.

[233] M. Ejima and A. Miyazaki, “A wavelet-based watermarking for digital im-
ages and video,” Proceedings of the IEEE International Conference on Image
Processing 2000, vol. 3, Vancouver, Canada, Sept. 10–13, 2000, pp. 678–681.

[234] C.-H. Li and S.-S. Wang, “Transform-based watermarking for digital images
and video,” Proceedings of the IEEE International Conference on Consumer
Electronics, Los Angeles, CA, June 22–24, 1999, pp. 108–109.

[235] R. Lancini, F. Mapelli, and S. Tubaro, “A robust video watermarking tech-
nique in the spatial domain,” Proceedings of the IEEE Region-8 International
Symposium on Video / Image Processing and Multimedia Communications,
Zadar, Croatia, June 16–19, 2002, pp. 251–256.

[236] K. Su, D. Kundur, and D. Hatzinakos, “A novel approach to collusion-resistant
video watermarking,” Proceedings of the SPIE Security and Watermarking of
Multimedia Contents IV, San Jose, CA, Jan. 21–24, 2002, pp. 491–502.

[237] G. D. Haan and E. B. Bellers, “Delacing—an overview,” Proceedings of the
IEEE, vol. 86, no. 9, pp. 1839–1857, Sept. 1998.

[238] M. D. Swanson, B. Zhu, and A. H. Tewfik, “Multiresolution scene-based video
watermarking using perceptual models,” IEEE Journal on Selected Areas in
Communications, vol. 16, no. 4, pp. 540–550, May 1998.

[239] F. Deguillaume, G. Csurka, J. O’Ruanaidh, and T. Pun, “Robust 3D DFT
video watermarking,” Proceedings of the SPIE Security and Watermarking of
Multimedia Contents I, vol. 3657, San Jose, CA, Jan. 25–27, 1999, pp. 113–124.

[240] C. V. Serdean, M. A. Ambroze, M. Tomlinson, and J. G. Wade, “DWT-based
high-capacity blind video watermarking, invariant to geometrical attacks,” IEE
Proceedings of Vision, Image, and Signal Processing, vol. 150, no. 1, pp. 51–58,
Feb. 2003.

212

[241] J. H. Lim, D. J. Kim, H. T. Kim, and C. S. Won, “Digital video watermarking
using 3D-DCT and intra-cubic correlation,” Proceedings of the SPIE Security
and Watermarking of Multimedia Contents III, vol. 4314, San Jose, CA, Jan.
22–25, 2001, pp. 64–72.

[242] F. Hartung and B. Girod, “Watermarking of uncompressed and compressed
video,” Signal Processing, vol. 66, no. 3, pp. 283–301, May 1998.

[243] A. M. Alattar, E. T. Lin, and M. U. Celik, “Digital watermarking of low bit-
rate advanced simple profile MPEG-4 compressed video,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 13, no. 8, pp. 787–800,
Aug. 2003.

[244] G. C. Langelaar, R. L. Lagendijk, and J. Biemond, “Real-time labeling of
MPEG-2 compressed video,” Journal of Visual Communication and Image
Representation, vol. 9, no. 4, pp. 256–270, Dec. 1998.

[245] J. Zhang, J. Li, and L. Zhang, “Video watermark technique in motion vector,”
Proceedings of the XIV Brazilian Symposium on Computer Graphics and Image
Processing, Florianopolis, Brazil, Oct. 15–18, 2001, pp. 179–182.

[246] M. Kutter, F. Jordan, and T. Ebrahimi, “Proposal of a watermarking tech-
nique to hide/retrieve copyright data in video,” ISO/IEC JTC1/SC29/WG11,
Stockholm, Sweden, Tech. Rep. M2281, July 1997.

[247] P. Bas and B. Macq, “A new video-object watermarking scheme robust to
object manipulation,” Proceedings of the IEEE International Conference on
Image Processing 2001, vol. 2, Thessaloniki, Greece, Oct. 7–10, 2001, pp. 526–
529.

[248] M. Barni, F. Bartolini, V. Cappellini, and N. Checcacci, “Object watermarking
for MPEG-4 video streams copyright protection,” Proceedings of the SPIE
Security and Watermarking of Multimedia Contents II, vol. 3971, San Jose,
CA, Jan. 24–26, 2000, pp. 465–476.

[249] A. Piva, R. Caldelli, and A. D. Rosa, “A DWT-based object watermarking
system for MPEG-4 video streams,” Proceedings of the IEEE International
Conference on Image Processing 2000, vol. 3, Vancouver, Canada, Sept. 10–
13, 2000, pp. 5–8.

[250] X. Wu, W. Zhu, Z. Xiong, and Y.-Q. Zhang, “Object-based multiresolution
watermarking of images and video,” Proceedings of the IEEE International
Symposium on Circuits and Systems, vol. 1, Geneva, Switzerland, May 28–31,
2000, pp. 212–215.

[251] R. Dugad and N. Ahuja, “A scheme for joint watermarking and compression of
video,” Proceedings of the IEEE International Conference on Image Processing
2000, vol. 2, Vancouver, Canada, Sept. 10–13, 2000, pp. 80–83.

[252] I. Setyawan and R. L. Lagendijk, “Low bit-rate video watermarking using
temporally extended Differential Energy Watermarking (DEW) algorithm,”
Proceedings of the SPIE Security and Watermarking of Multimedia Contents
III, vol. 4314, San Jose, CA, Jan. 22–25, 2001, pp. 73–84.

213

[253] J. Dittmann, M. Steinebach, I. Rimac, S. Fischer, and R. Steinmetz, “Com-
bined video and audio watermarking: Embedding content information in mul-
timedia data,” Proceedings of the SPIE Security and Watermarking of Multi-
media Contents II, vol. 3971, San Jose, CA, Jan. 24–26, 2000, pp. 455–464.

[254] D. Delannay and B. Macq, “Classification of watermarking schemes robust
against loss of synchronizaton,” Proceedings of the SPIE Security, Steganogra-
phy, and Watermarking of Multimedia Contents VI, vol. 5306, San Jose, CA,
Jan. 19–22, 2004, pp. 581–591.

[255] A. van Leest, J. Haitsma, and T. Kalker, “On digital cinema and watermark-
ing,” Proceedings of the SPIE Security and Watermarking of Multimedia Con-
tents V, vol. 5020, Santa Clara, CA, Jan. 21–24, 2003, pp. 526–535.

[256] N. V. Boulgouris, F. D. Koravos, and M. G. Strintzis, “Self-synchronizing
watermark detection for MPEG-4 objects,” Proceedings of the 8th IEEE Inter-
national Conference on Electronics, Circuits, and Systems 2001, vol. 3, Oct.
2–5, 2001, pp. 1371–1374.

[257] E. W. Weisstein, CRC Concise Encyclopedia of Mathematics. Boca Raton,
FL: Chapman & Hall/CRC, 1999, pp. 921–923; 1848.

[258] D. Zheng, J. Zhao, and A. E. Saddik, “RST-Invariant digital image watermark-
ing based on log-polar mapping and phase correlation,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 13, no. 8, pp. 753–765, Aug.
2003.

[259] S. Pereira, J. J. K. Ó Ruanaidh, F. Deguillaume, G. Csurka, and T. Pun,
“Template based recovery of Fourier-based watermarks using log-polar and log-
log maps,” Proceedings of the IEEE International Conference on Multimedia
Computing and Systems, vol. 1, Florence, Italy, June 7–11, 1999, pp. 870–874.

[260] A. M. Alattar and J. Meyer, “Watermark re-synchronization using log-polar
mapping of image autocorrelation,” Proceedings of the IEEE International
Symposium on Circuits and Systems, vol. 2, Bangkok, Thailand, May 25–28,
2003, pp. 928–931.

[261] I. Setyawan, G. Kakes, and R. L. Lagendijk, “Synchronization-insensitive video
watermarking using structured noise pattern,” Proceedings of the SPIE Secu-
rity and Watermarking of Multimedia Contents IV, vol. 4675, San Jose, CA,
Jan. 21–24, 2002, pp. 520–530.

[262] J. Lichtenauer, I. Setyawan, T. Kalker, and R. Lagendijk, “Exhaustive geo-
metrical search and the false positive watermark detection probability,” Pro-
ceedings of the SPIE Security and Watermarking of Multimedia Contents V,
vol. 5020, Santa Clara, CA, Jan. 21–24, 2003, pp. 203–214.

[263] X. Niu, M. Schmucker, and C. Busch, “Video watermarking resisting to ro-
tation, scale, and translation,” Proceedings of the SPIE Security and Water-
marking of Multimedia Contents IV, vol. 4675, San Jose, CA, Jan. 21–24, 2002,
pp. 512–519.

[264] A. Herrigel, S. Voloshynovskiy, and Y. Rytsar, “The watermark template at-
tack,” Proceedings of the SPIE Security and Watermarking of Multimedia Con-
tents III, vol. 4314, San Jose, CA, Jan.22–25, 2001, pp. 394–405.

214

[265] E. T. Lin and E. J. Delp, “Spatial synchronization using watermark key struc-
ture,” Proceedings of the SPIE Security, Steganography, and Watermarking
of Multimedia Contents VI, vol. 5306, San Jose, CA, Jan. 19–22, 2004, pp.
536–547.

[266] F. Deguillaume, S. Voloshynovskiy, and T. Pun, “A method for the estimation
and recovering from general affine transforms in digital watermarking appli-
cations,” Proceedings of the SPIE Security and Watermarking of Multimedia
Contents IV, vol. 4675, San Jose, CA, Jan. 21–24, 2002, pp. 313–322.

[267] M. Kutter, “Watermark resisting to translation, rotation, and scaling,” Pro-
ceedings of the SPIE: Multimedia Systems and Applications, A. G. Tescher,
B. Vasudev, J. V. Michael Bove, and B. Derryberry, Eds., vol. 3528, Jan.
1999, pp. 423–431.

[268] D. Delannay and B. Macq, “Generalized 2-D cyclic patterns for secret water-
mark generation,” Proceedings of the IEEE International Conference on Image
Processing 2000, vol. 2, Vancouver, Canada, Oct. 10–13, 2000, pp. 77–79.

[269] C.-H. Lee, H.-K. Lee, and Y. Suh, “Autocorrelation function based watermark-
ing with side information,” Proceedings of the SPIE Security and Watermark-
ing of Multimedia Contents V, vol. 5020, Santa Clara, CA, Jan. 21–24, 2003,
pp. 349–358.

[270] J. Lichtenauer, I. Setyawan, and R. Lagendijk, “Hiding correlation-based wa-
termark templates using secret modulation,” Proceedings of the SPIE Security,
Steganography, and Watermarking of Multimedia Contents VI, vol. 5306, San
Jose, CA, Jan. 19–22, 2004, pp. 501–512.

[271] P. Bas, J.-M. Chassery, and B. Macq, “Geometrically invariant watermarking
using feature points,” IEEE Transactions on Image Processing, vol. 11, no. 9,
pp. 1014–1028, Sept. 2002.

[272] J. S. Seo and C. D. Yoo, “Image watermarking based on scale-space represen-
tation,” Proceedings of the SPIE Security, Steganography, and Watermarking
of Multimedia Contents VI, vol. 5306, San Jose, CA, Jan. 19–22, 2004, pp.
560–570.

[273] C.-W. Tang and H.-M. Hang, “A feature-based robust digital image water-
marking scheme,” IEEE Transactions on Signal Processing, vol. 51, no. 4, pp.
950–959, Apr. 2003.

[274] A. Nikolaidis and I. Pitas, “Robust watermarking of facial images based on
salient geometric pattern matching,” IEEE Transactions on Multimedia, vol. 2,
no. 3, pp. 172–184, Sept. 2000.

[275] C.-P. Wu, P.-C. Su, and C.-C. J. Kuo, “Robust and efficient digital audio
watermarking using audio content analysis,” Proceedings of the SPIE Security
and Watermarking of Multimedia Contents II, vol. 3971, San Jose, CA, Jan.24–
26, 2000, pp. 382–392.

[276] E. Hauer and S. Thiemert, “Synchronization techniques to detect MPEG vidoe
frames for watermark retrieval,” Proceedings of the SPIE Security, Steganogra-
phy, and Watermarking of Multimedia Contents VI, vol. 5306, San Jose, CA,
Jan. 19–22, 2004, pp. 315–324.

215

[277] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical
Recipes in C: The Art of Scientific Computing, 2nd ed. Cambridge, United
Kingdom: Cambridge University Press, 1992, pp. 274–328.

[278] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms.
Cambridge, MA: The MIT Press, 1990.

[279] D. E. Knuth, Seminumerical Algorithms, 3rd ed., ser. The Art of Computer
Programming. Reading, MA: Addison-Wesley, 1997, vol. 2.

[280] M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-dimensionally
equidistributed uniform pseudorandom number generator,” ACM Transactions
on Modeling and Computer Simulation, vol. 8, no. 1, pp. 3–30, Jan. 1998.

[281] G. Marsaglia. (1996) DIEHARD: A battery of tests of randomness (source
code). http://stat.fsu.edu/~geo/diehard.html

[282] J. F. Wakerly, Digital Design Principles and Practices. Englewood Cliffs, NJ:
Prentice Hall, 1990.

[283] C. Fischer and R. LeBlanc Jr, Crafting a Compiler With C. Redwood City,
CA: Benjamin/Cummings, 1991.

[284] M. D. Davis, R. Sigal, and E. J. Weyuker, Computability, Complexity, and
Languages, 2nd ed. Boston, MA: Academic Press, 1994.

[285] M. R. Garey and D. S. Johnson, Computers and Intractability A Guide to the
Theory of NP-Completeness. New York, NY: W. H. Freeman and Company,
1979.

[286] S. Cass, “Mind games,” IEEE Spectrum, pp. 40–44, Dec. 2002.

[287] J. Fridrich and M. Goljan, “Steganalysis of digital images — State of the art,”
Proceedings of the SPIE Security and Watermarking of Multimedia Contents
IV, vol. 4675, San Jose, CA, Jan. 21–24, 2002, pp. 1–13.

[288] ——, “On estimation of secret message length in LSB steganography in spatial
domain,” Proceedings of the SPIE Security, Steganography, and Watermarking
of Multimedia Contents VI, vol. 5306, San Jose, CA, Jan. 19–22, 2004, pp.
23–45.

[289] J. Fridrich, M. Goljan, and D. Soukal, “Higher-order statistical steganalysis
of palette images,” Proceedings of the SPIE Security and Watermarking of
Multimedia Contents V, vol. 5020, Santa Clara, CA, Jan. 21–24, 2003, pp.
179–190.

[290] S. Dumitrescu, X. Wu, and Z. Wang, “Detection of LSB steganography via
sample pair analysis,” IEEE Transactions on Signal Processing, vol. 51, no. 7,
pp. 1995–2007, July 2003.

[291] E. T. Lin and E. J. Delp, “Temporal synchronization in video watermarking,”
IEEE Transactions on Signal Processing: Supplement on Secure Media, vol. 52,
no. 10, pp. 3007–3022, Oct. 2004.

216

[292] S. Bakhtiari, R. Safavi-Naini, and J. Pieprzyk, “Cryptographic hash functions:
A survey,” Department of Computer Science, University of Wollongong, Tech.
Rep. 95-09, July 1995.

[293] D. Delannay and B. Macq, “A method for hiding synchronization marks in
scale and rotation resilient watermarking schemes,” Proceedings of the SPIE
Security and Watermarking of Multimedia Contents IV, vol. 4675, San Jose,
CA, Jan. 21–24, 2002, pp. 548–554.

[294] Secure Hash Standard, National Institute of Standards and Technology Std.
180-1, Apr.17, 1995.

[295] I. L. MacDonald and W. Zucchini, Hidden Markov and Other Models for
Discrete-Valued Time Series. New York, NY: Chapman & Hall, 1997.

[296] J. Fridrich, “Visual hash for oblivious watermarking,” Proceedings of the SPIE
Security and Watermarking of Multimedia Contents II, vol. 3971, San Jose,
CA, Jan. 24–26, 2000, pp. 286–294.

[297] M. Álvarez Rodŕıguez and F. Pérez-González, “Analysis of pilot-based syn-
chronization algorithms for watermarking of still images,” Signal Processing:
Image Communication, vol. 17, no. 8, pp. 611–633, Sept. 2002.

[298] J. Fridrich, M. Goljan, and A. C. Baldoza, “New fragile authentication water-
mark for images,” Proceedings of the IEEE International Conference on Image
Processing 2000, vol. 1, Vancouver, Canada, Sept. 10–13, 2000, pp. 446–449.

[299] M. Yeung and F. Mintzer, “Invisible watermarking for image verification,”
Journal of Electronic Imaging, vol. 7, no. 3, pp. 578–591, July 1998.

[300] C.-S. Lu and H.-Y. M. Liao, “Structural digital signature for image authen-
tication: An incidental distortion resistant scheme,” IEEE Transactions on
Multimedia, vol. 5, no. 2, pp. 161–173, June 2003.

[301] C.-Y. Lin and S.-F. Chang, “A robust image authentication method distin-
guishing JPEG compression from malicious manipulation,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 11, no. 2, pp. 153–168, Feb.
2001.

[302] L. M. Marvel, G. W. Hartwig, Jr., and C. Boncelet, Jr., “Compression-
compatible fragile and semi-fragile tamper detection,” Proceedings of the SPIE
Security and Watermarking of Multimedia Contents II, San Jose, CA, Jan. 24–
26, 2000, pp. 131–139.

[303] J. Dittmann, “Content-fragile watermarking for image authentication,” Pro-
ceedings of the SPIE Security and Watermarking of Multimedia Contents III,
vol. 4314, San Jose, CA, Jan. 22–25, 2001, pp. 175–184.

[304] H. S. Bassali, J. Chhugani, S. Agarwal, A. Aggarwal, and P. Dubey, “Compres-
sion tolerant watermarking for image verification,” Proceedings of the IEEE In-
ternational Conference on Image Processing 2000, vol. 1, Vancouver, Canada,
Sept. 10–13, 2000, pp. 430–433.

217

[305] C. Fei, D. Kundur, and R. Kwong, “Analysis and design of authentication
watermarking,” Proceedings of the SPIE Security, Steganography, and Water-
marking of Multimedia Contents VI, vol. 5306, San Jose, CA, Jan.19–22, 2004,
pp. 760–771.

[306] M. P. Queluz, “Spatial watermark for image content authentication,” Journal
of Electronic Imaging, vol. 11, no. 2, pp. 275–285, Apr. 2002.

[307] J. Fridrich and M. Goljan, “Images with self-correcting capabilities,” Proceed-
ings of the IEEE International Conference on Image Processing 1999, Kobe,
Japan, Oct. 1999.

[308] J. Fridrich, “Image watermarking for tamper detection,” Proceedings of the
IEEE International Conference on Image Processing 1998, vol. 2, Chicago, IL,
Oct. 1998, pp. 404–408.

[309] ——, “Security of fragile authentication watermarks with localization,” Pro-
ceedings of the SPIE Security and Watermarking of Multimedia Contents IV,
vol. 4675, San Jose, CA, Jan. 21–24, 2002, pp. 691–700.

[310] M. Holliman and N. Memon, “Counterfeiting attacks on oblivious block-wise
independent invisible watermarking schemes,” IEEE Transactions on Image
Processing, vol. 9, no. 3, pp. 432–441, Mar. 2000.

[311] J. Tian, “Wavelet-based reversible watermarking for authentication,” Proceed-
ings of the SPIE Security and Watermarking of Multimedia Contents IV, vol.
4675, San Jose, CA, Jan. 21–24, 2002, pp. 679–690.

[312] J. Fridrich, M. Goljan, and R. Du, “Invertible authentication,” Proceedings of
the SPIE Security and Watermarking of Multimedia Contents III, vol. 4314,
San Jose, CA, Jan. 22–25, 2001, pp. 197–208.

[313] M. U. Celik, G. Sharma, A. M. Tekalp, and E. Saber, “Localized lossless
authentication watermark (LAW),” Proceedings of the SPIE Security and Wa-
termarking of Multimedia Contents V, vol. 5020, Santa Clara, CA, Jan. 21–23,
2003, pp. 689–698.

[314] A. M. Alattar, “Reversible watermark using the difference expansion of a gen-
eralized integer transform,” IEEE Transactions on Image Processing, vol. 13,
no. 8, pp. 1147–1156, Aug. 2004.

[315] S. Katzenbeisser and J. Dittmann, “Malicious attacks on media authentication
schemes based on invertible watermarks,” Proceedings of the SPIE Security,
Steganography, and Watermarking of Multimedia Contents VI, vol. 5306, San
Jose, CA, Jan. 19–22, 2004, pp. 838–847.

[316] F. Mintzer and G. Braudaway, “If one watermark is good, are more better?”
Proceedings of the IEEE International Conference on Accoustics, Speech, and
Signal Processing 1999, vol. 4, Phoenix, AZ, May 1999.

[317] Ö. Ekici, B. Sankur, B. Coşkun, U. Naci, and M. Akcay, “Comparative evalu-
ation of semifragile watermarking algorithms,” Journal of Electronic Imaging,
vol. 13, no. 1, pp. 209–216, Jan. 2004.

VITA

218

VITA

Eugene Lin was born in Stillwater, Oklahoma. He received the B.S. Computer

and Electrical Engineering degree in 1994, the M.S. Electrical Engineering degree in

1996, and the Ph.D. Computer Engineering in 2005 at Purdue University.

He was an intern at Lucent Technologies in the summer of 2000. In 2001 and

2002, he was a summer intern at Digimarc Corporation.

He is a student member of the IEEE and a member of Eta Kappa Nu. His

research interests include video watermarking and steganography, as well as video

coding and image processing.

Journal Publications:

• A. M. Alattar, E. T. Lin, and M. U. Celik, “Digital Watermarking of Low

Bit-Rate Advanced Simple Profile MPEG–4 Compressed Video,” IEEE Trans-

actions on Circuits and Systems for Video Technology: Special Issue on Au-

thentication, Copyright Protection, and Information Hiding, vol. 13, no. 8, pp.

787–800, August 2003.

• E. T. Lin, C. I. Podilchuk, T. Kalker, and E. J. Delp, “Streaming video and rate

scalable compression: What are the challenges for watermarking?”, Journal of

Electronic Imaging, vol. 13, no. 1, pp. 198–205, January 2004.

• E. T. Lin and E. J. Delp, “Temporal Synchronization in Video Watermarking,”

IEEE Transactions on Signal Processing: Supplement on Secure Media, vol. 52,

no. 10, pp. 3007–3022, October 2004.

• E. T. Lin, A. M. Eskicioglu, R. L. Lagendijk, and E. J. Delp, “Advances in

Digital Video Content Protection,” Proceedings of the IEEE: Special Issue on

219

Advances in Video Coding and Delivery, vol. 93, no. 1, pp. 171–183, January

2005.

Conference Papers:

• E. T. Lin and E. J. Delp, “A Review of Data Hiding in Digital Images,” Pro-

ceedings of the Image Processing, Image Quality, Image Capture Systems Con-

ference (PICS ’99), Savannah, GA, April 25–28, 1999, pp. 274–278.

• E. T. Lin and E. J. Delp, “A Review of Fragile Image Watermarks,” Proceedings

of the Multimedia and Security Workshop (ACM Multimedia ’99) Multimedia

Contents, Orlando, FL, October 1999, pp. 25–29.

• E. T. Lin, C. I. Podilchuk, and E. J. Delp, “Detection of Image Alterations Using

Semi-Fragile Watermarks,” Proceedings of the SPIE International Conference

on Security and Watermarking of Multimedia Contents II, vol. 3971, San Jose,

CA, January 23–28, 2000, pp. 152–163.

• E. T. Lin, C. I. Podilchuk, A. Jacquin, and E. J. Delp, “A Hybrid Embedded

Video Codec Using Base Layer Information for Enhancement Layer Coding,”

Proceedings of the International Conference on Image Processing 2001, Thes-

saloniki, Greece, October 7–10, 2001.

• E. T. Lin, C. I. Podilchuk, T. Kalker, and E. J. Delp, “Streaming Video and

Rate Scalable Compression: What Are the Challenges for Watermarking?”,

Proceedings of the SPIE International Conference on Security and Watermark-

ing of Multimedia Contents III, vol. 4314, San Jose, CA, January 22–25, 2001,

pp. 116–127.

• E. T. Lin and E. J. Delp, “Temporal Synchronization in Video Watermarking,”

Proceedings of the SPIE International Conference on Security and Watermark-

ing of Multimedia Contents IV, vol. 4675, San Jose, CA, January 20–25, 2002,

pp. 478–490.

220

• E. T. Lin and E. J. Delp, “Temporal Synchronization in Video Watermarking—

Further Studies,” Proceedings of the SPIE International Conference on Security

and Watermarking of Multimedia Contents V, vol. 5020, Santa Clara, CA,

January 20–24, 2003, pp. 493–504.

• A. Alattar, M. U. Celik, and E. T. Lin, “Evaluation of Watermarking Low Bit-

Rate MPEG–4 Bit Streams,” Proceedings of the SPIE International Conference

on Security and Watermarking of Multimedia Contents V, vol. 5020, Santa

Clara, CA, January 20–24, 2003, pp. 440–451.

• A. M. Alattar, E. T. Lin, and M. U. Celik, “Watermarking Low Bit-rate Ad-

vanced Simple Profile MPEG–4 Bitstreams,” Proceedings of the International

Conference on Acoustics, Speech, and Signal Processing 2003, Hong Kong, April

6–10, 2003, vol. 3, pp. 513–516.

• O. Guitart Pla, E. T. Lin, and E. J. Delp, “A Wavelet Watermarking Algorithm

Based on a Tree Structure,” Proceedings of the SPIE International Conference

on Security, Steganography, and Watermarking of Multimedia Contents VI, vol.

5306, San Jose, CA, January 19–22, 2004, pp. 571–580.

• E. T. Lin and E. J. Delp, “Spatial Synchronization Using Watermark Key Struc-

ture,” Proceedings of the SPIE International Conference on Security, Steganog-

raphy, and Watermarking of Multimedia Contents VI, vol. 5306, San Jose, CA,

January 19–22, 2004, pp. 536–547.

• A. Lang, J. Dittmann, E. T. Lin, and E. J. Delp, “Application-Oriented Audio

Watermark Benchmark Service,” to appear in Proceedings of the SPIE Interna-

tional Conference on Security, Steganography, and Watermarking of Multimedia

Contents VII, San Jose, CA, January 17 - 20, 2005.

• H. C. Kim, E. T. Lin, and E. J. Delp, “Further Progress in Watermarking Eval-

uation Testbed (WET),” to appear in Proceedings of the SPIE International

Conference on Security, Steganography, and Watermarking of Multimedia Con-

tents VII, San Jose, CA, January 17 - 20, 2005.

221

• E. T. Lin, Y. Liu, and E. J. Delp, “Detection of Mass Tumors in Mammograms

using SVD Subspace Analysis,” to appear in Proceedings of the SPIE Interna-

tional Conference on Computational Imaging III, San Jose, CA, January 17–18,

2005.

