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Abstract. Internet computing technologies, like grid
computing, enable a weak computational device con-
nected to such a grid to be less limited by its inade-
quate local computational, storage, and bandwidth re-
sources. However, such a weak computational device
(PDA, smartcard, sensor, etc.) often cannot avail it-
self of the abundant resources available on the net-
work because its data are sensitive. This motivates the
design of techniques for computational outsourcing in
a privacy-preserving manner, i.e., without revealing to
the remote agents whose computational power is being
used either one’s data or the outcome of the compu-
tation. This paper investigates such secure outsourcing
for widely applicable sequence comparison problems and
gives an efficient protocol for a customer to securely
outsource sequence comparisons to two remote agents.
The local computations done by the customer are lin-
ear in the size of the sequences, and the computational
cost and amount of communication done by the exter-
nal agents are close to the time complexity of the best
known algorithm for solving the problem on a single
machine.
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1 Introduction

Large-scale problems in the physical and life sciences are
being revolutionized by Internet computing technologies,
like grid computing [10], that make possible the massive
cooperative sharing of computational power, bandwidth,
storage, and data. A weak computational device, once
connected to such a grid, is no longer limited by its slow
speed, small amounts of local storage, and limited band-
width: it can avail itself of the abundance of these re-
sources that is available elsewhere on the network. An
impediment to the use of “computational outsourcing” is
that the data in question are often sensitive, e.g., of na-
tional security importance, or proprietary and containing
commercial secrets, or to be kept private for legal require-
ments such as the HIPAA legislation, Gramm-Leach-
Bliley, or similar laws. A prime example of this is DNA
sequence comparisons: they are expensive enough to war-
rant remotely using the computing power available at
powerful remote servers and supercomputers, yet sensi-
tive enough to give pause to anyone concerned that some
unscrupulous person at the remote site may leak the DNA
sequences or the comparison’s outcome, or may subject
the DNA to a battery of unauthorized tests whose out-
come could have such grave consequences as jeopardiz-
ing an individual’s insurability, employability, etc. Tech-
niques for outsourcing expensive computational tasks in
a privacy-preserving manner are therefore an important
research goal. This paper is a step in this direction in that
it gives a protocol for the secure outsourcing of the most
important sequence comparison computation: the “string
editing” problem, i.e., computing the edit distance be-
tween two strings. The edit distance is one of the most
widely used notions of similarity: it is the least-cost set of
insertions, deletions, and substitutions required to trans-
form one string into another. Essentially the same proto-
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2 M.J. Atallah, J. Li: Secure outsourcing of sequence comparisons

col can solve the larger class of comparisons whose stan-
dard dynamic programming solution is similar in struc-
ture to that of string editing. The generalizations of edit
distance that are solved by the same kind of dynamic pro-
gramming recurrence relation as the one for edit distance
cover an even wider domain of applications. We use string
editing here merely as the prototypical solution for this
general class of dynamic programming recurrences.

In various ways and forms, sequence comparisons arise
in many applications other than molecular sequence com-
parison, notably, in text editing, speech recognition, ma-
chine vision, etc. In fact, the dynamic programming so-
lution to this problem was independently discovered by
no fewer than 14 different researchers [27] and is given
a different name by each discipline where it was inde-
pendently discovered (Needleman-Wunsch by biologists,
Wagner-Fischer by computer scientists, etc). For this rea-
son, these problems have been studied rather extensively
in the past and form the object of several papers [16, 17,
21,26,27,29, 32], to list a few). The problems are typic-
ally solved by a serial algorithm in ©(mn) time and space
through dynamic programming (cf., for example, [32]).
When huge sequences are involved, the quadratic time
complexity of the problem quickly becomes prohibitively
expensive, requiring considerable power. Such supercom-
puting power is widely available, but sending the data to
such remote agents is problematic if the sequence data
are sensitive, the outcome of the comparison is to be kept
private, or both. In such cases, one can make a case for
a technology that makes it possible for the customer to
have the problem solved remotely but without revealing
to the remote supercomputing sites either the inputs to
the computation or its outcome.

In other words, we assume that Carol has two private
sequences, A and p, and wants to compute the similar-
ity between these two sequences. Carol only has a weak
computational device that is incapable of performing the
sequence comparison locally. In order to get the result,
Carol has to outsource the computation task to some ex-
ternal entities, the agents. If Carol trusted the agents, she
could send the sequences directly to the external agents
and ask them to compute the similarity on her behalf.
However, if Carol is concerned about privacy, it is not ac-
ceptable to send the sequences to external agents because
this would reveal too much information to these agents
— both the sequences and the result. Our result is a pro-
tocol that computes the similarity of the sequences yet
inherently safeguards the privacy of Carol’s data. Assum-
ing the two external agents do not conspire with each
other against Carol by sharing the data that she sends to
them, they learn nothing about the actual data and ac-
tual result.

The dynamic programming recurrence relation that
subtends the solution to this problem also serves to solve
many other important related problems (either as special
cases or as generalizations that have the same dynamic
programming kind of solution). These include the longest

common subsequence problem and the problem of ap-
proximate matching between a pattern sequence and text
sequence (there is a huge literature of published work for
the notion of approximate pattern matching and its con-
nection to the sequence alignment problem). Any solution
to the general sequence comparison problem could also
be used to solve these related problems. For example, our
protocol can enable a weak PDA to securely outsource the
computation of the Unix command

diff filel file2 | wc

to two agents where the agents learn nothing about filel,
file2, and the result.

We now more precisely state the edit distance prob-
lem, in which the cost of an insertion or deletion or sub-
stitution is a symbol-dependent nonnegative weight, and
the edit distance is then the least-cost set of insertions,
deletions, and substitutions required to transform one
string into another. More formally, if we let \ be a string
of length n, A=XA;... A, and p be a string of length
M, b= 4] - - - [bm, Doth over some alphabet . There are
three types of allowed edit operations to be done on A:
insertion of a symbol, deletion of a symbol, and substitu-
tion of one symbol by another. Each operation has a cost
associated with it, namely, I(a) denotes the cost of in-
serting the symbol a, D(a) denotes the cost of deleting
a, and S(a,b) denotes the cost of substituting a with b.
Each sequence of operations that transforms A into p has
a cost associated with it (which is equal to the sum of
the costs of the operations in it), and the least-cost of
such sequence is the edit distance. The edit path is the ac-
tual sequence of operations that corresponds to the edit
distance. Our outsourcing solution allows arbitrary I(a),
D(b), and S(a,b) values, and we give better solutions for
two special cases: (i) S(a,b) =|a—b| and (ii) unit inser-
tion/deletion cost and S(a,b) =0 if a =b and S(a,b) =
+o0 if a # b (in effect forbidding substitutions).

The rest of paper is organized as follows. We begin
with a brief introduction of previous work in Sect. 2. Then
we describe some building blocks in Sect. 3. In Sect. 4,
we present the secure outsourcing protocol for computing
string edit distance. Section 5 extends the protocol so as
to compute the edit path. Section 6 concludes the paper.

2 Related work

Recently, Atallah et al. [2] developed an efficient protocol
for sequence comparisons in the secure two-party com-
putation framework in which each party has a private
string; the protocol enables two parties to compute the
edit distance of two sequences such that neither party
learns anything about the private sequence of the other
party. They [2] use dynamic programming to compare
sequences, but in an additively split way — each party
maintains a matrix, the summation of two matrices is the
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real matrix implicitly used to compute edit distance. Our
protocol directly builds on their work, but is also quite
different and more difficult in the following ways:

— We can no longer afford to have the customer carry
out quadratic work or communication: whereas in [2]
there was “balance” in that all participants had equal
computational and communication power, in our case
the participant to whom all of the data and answer
belong is asymmetrically weaker and is limited to
a linear amount of computation and communication
(hence cannot directly participate or help in each step
of the quadratic-complexity dynamic programming
solution).

— An even more crucial difference is the special difficulty
this paper’s framework faces in dealing with the costs
table, that is, the table that contains the costs of delet-
ing a symbol, inserting a symbol, and substituting one
symbol for another: there is a quadratic number of ac-
cesses to this table, and the external agents cannot be
allowed to learn which entry of the table is being con-
sulted (because that would leak information about the
inputs), yet the input owner’s help cannot be enlisted
for such table accesses because there is a quadratic
number of them (recall that the owner is limited to lin-
ear work and communication — which is unavoidable).

Secure outsourcing of sequence comparisons adds to
a growing list of problems considered in this framework
(e.g. [4,5,12,14,18,24], and others). We briefly review
these next. In the server-aided secret computation lit-
erature (e.g., [5,12,14,18,24], to list a few), a weak
smartcard performs public-key encryptions by “borrow-
ing” computing power from an untrusted server, without
revealing to that server its private information. These
papers deal primarily with the important problem of
modular exponentiations. The paper by [4] deals primar-
ily with outsourcing of scientific computations.

Boneh et al. [6] recently proposed a new public-key
encryption system with which a mail server can perform
keyword search on encrypted data with the help of the
public-key holder. Ogata and Kurosawa [22] introduced
the notion of oblivious keyword search. In an oblivious
keyword search protocol, Alice has a keyword W and con-
ducts keyword search on Bob’s database; in the end, Alice
obtains a set of data that includes W while Bob learns
nothing about W. Ogata and Kurosawa [22] proposed
a couple of efficient oblivious keyword search protocols.
These keyword search schemes [6, 22] could be viewed as
other special cases of secure outsourcing where the client
outsources the keyword search operations to the server.

In the the privacy homomorphism approach proposed
in [25], the outsourcing agent is used as a permanent re-
pository of data, performing certain operations on it and
maintaining certain predicates, whereas the customer
needs only to decrypt the data from the agent to obtain
the real data; the secure outsourcing framework differs in
that the customer is not interested in keeping data per-

manently with the external agents; instead, the customer
only wants to temporarily use their superior computa-
tional power.

Du and Atallah have developed several models for se-
cure remote database access with approximate match-
ing [8]. One of the models that is related to our work is the
secure storage outsourcing model where a customer who
lacks storage space outsources her database to an exter-
nal agent. The customer needs to query her database from
time to time without revealing to the agent the queries
and the results. Several protocols for other distance met-
rics were given, including Hamming distance and the L;
and Lo distance metrics. All these metrics considered in [8]
were between strings that have the same length — it is in-
deed a limitation of the techniques in [8] that they do not
extend to the present situation where the strings are of dif-
ferent length and insertions and deletions are part of the
definition. This makes the problem substantially different,
as the edit distance algorithm is described by a dynamic
program that computes it, rather than as a simple one-line
mathematical expression to be securely computed.

3 Preliminaries

Giving the full-fledged protocol would make it too long
and rather hard to comprehend. This section aims at
making the later presentation of the protocol much
crisper by presenting some of the ideas and building
blocks for it ahead of time, right after a brief review of the
standard dynamic programming solution to string edit.

3.1 Review of edit distance via dynamic programming

We first briefly review the standard dynamic program-
ming algorithm for computing edit distance. Let M (¢, ),
(0<i<mn, 0<j<m) be the minimum cost of trans-
forming the prefix of A of length ¢ into the prefix of u
of length j, i.e., of transforming A1 ...\; into p1...p;.
Then M(0,0) =0, M(0,5) = >7_; I(1;) for 1 <j <m,
M(i,0) =>"_; D(X\;) for 1 <i<n, and for positive i
and j we have

M(i—1,7=1)+ 5\, 1)

M (i, 5= 1)+ I ()

M(i,j) = min

for all i,7, 1 <i<n and 1< j <m. Hence M(i,7) can
be evaluated row by row or column by column in ©(mn)
time [32]. Observe that, of all entries of the M-matrix,
only the three entries M(i—1,j—1), M(i—1,j), and
M(i,j—1) are involved in the computation of the final
value of M (i, j).

Not only does the above dynamic program for comput-
ing M depend on both A and u, but even if M could be
computed without knowing A and p, the problem remains
that M itselfis too revealing: it reveals not only the overall
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4 M.J. Atallah, J. Li: Secure outsourcing of sequence comparisons

edit distance, but also the edit distance from every pre-
fix of A to every prefix of u. It is required in our problem
that the external agents learn nothing about the actual se-
quences and the results. The M-matrix should therefore
not be known to the agents. It can of course not be stored at
the customer’s site, asit is a requirement that the customer
be limited to O(m + n) time and storage space.

3.2 Framework

We use two noncolluding agents in our protocol. Both
the input sequences (A and p) and the intermediate re-
sults (the M-matrix) are additively split between the two
agents in such a way that neither of the agents learns
anything about the real inputs and results, but the two
agents together can implicitly use the M-matrix with-
out knowing it, that is, obtaining additively split answers
“as if” they knew M. They have to do so without the help
of the customer, as the customer is incapable of quadratic
computation time or storage space. More details on how
this is done are given below.

In the rest of the paper, we use the following nota-
tions. We use C to denote the customer, A; the first agent,
and Aj the second agent. Any items superscripted with ’
are known to A;but not to Az, and those superscripted
with ”/ are known to A but not to A;. In what follows,
we often additively split an item = between the two agents
A; and As, i.e., we assume that A4; has an ' and A,
has an z” such that x = 2’ + z”; we do this splitting for
the purpose of hiding x from either agent. If arithmetic
is modular, then this kind of additive splitting of x hides
it, in an information-theoretic sense, from A; and As. If,
however, arithmetic is not modular, then even when z’
and z” can be negative and are very large compared to
x, the “hiding” of x is valid in a practical but not in an
information-theoretic sense.

3.2.1 Splitting A and p

Let X and p be two sequences over some finite alphabet
¥ ={0,...,0—1}. This could be a known fixed set of
symbols (e.g., in biology ¥ = {A, C, T, G}) or the domain
of a hash function that maps a potentially infinite alpha-
bet into a finite domain. C splits A into \’ and \” such
that A and )\’ are over the same alphabet ¥ and their
sumis A, i.e., \; = A, + A7 mod o for all 1 < i < n. To split
A, C can first generate a random sequence \' of length n,
then set A = \; — Al mod o for all 1 < ¢ <n. Similarly, C
splits pinto p’ and p”’ such that p; = p; + p?/ mod o for all
1 <4 < m. In the edit distance protocol, C sends A" and p’
to A; and sends N and u” to As.

3.2.2 Splitting M

Our edit distance protocol computes the same matrix as
the dynamic programming algorithm in the same order

(e.g., row by row). Like [2], the matrix M in our proto-
col is additively shared between 4; and Ay: A; and As
each hold a matrix M’ and M"”, respectively, the sum of
which is the matrix M, i.e., M = M’ + M"; the protocol
will maintain this property as an invariant through all its
steps. The main challenge in our protocol is that the com-
parands and outcome of each comparison, as well as the
indices of the minimum elements, have to be shared (in
the sense that neither party individually knows them).

3.2.3 Hiding the sequence lengths

Splitting a sequence effectively hides its content but fails
to hide its length. In some situations, even the lengths
of the sequences are sensitive and must be hidden or,
at least, somewhat obfuscated. We now briefly sketch
how to pad the sequences and obtain new, longer se-
quences whose edit distance is the same as that between
the original sentences. Let m and n be the respective new
lengths (with padding); assume that randomly choosing
m from the interval [m, 2m] provides enough obfuscation
of m, and similarly # from the interval [n, 2n].

We introduce a new special symbol “$” to the alpha-
bet 3 such that the cost of insertion and deletion of this
symbolis 0 (i.e., I($) = D($) =0), and the cost of substi-
tution of this symbol is infinity (i.e., S($,a) = S(a,$) =
+o0 for every symbol a in X). The customer appends “$”s
to the end of A and p to turn their respective lengths into
the target values n and m before splitting and sending
them to the agents. This padding has following two prop-
erties: (1) the edit distance between the padded sequences
is the same as the edit distance between the original se-
quences and (2) the agents cannot figure out how many
“$”s were padded into a sequence because of the random
split of the sequence.

To avoid unnecessarily cluttering the exposition, we
assume A and p are already padded with “$7s before
the protocol; thus we assume the lengths of A and p are
still n and m, respectively, and the alphabet X is still
{0,...,0—1}.

3.8 Secure table lookup protocol for split data

Recall that the o x o size cost table S is public, hence
known to both A; and As; we make no assumptions
about the costs in the table (they can be arbitrary, not
necessarily between 0 and o —1). Recall that A; and
As share additively each symbol « from A and (§ from
i, i.e., a=a' +a’ mod o and 8 ="+ 3’ mod o, where
A; has o and ' and Ay has o’ and 3. A; and A,
want to cooperatively look up the value S(a, ) from
the cost table S, but without either of them knowing
which entry of S was accessed and what value was re-
turned by the access (so that value itself must be ad-
ditively split). The protocol below solves this lookup
problem in one round and O(o0?) computation and com-
munication; note that naively using the protocol below
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O(mn) times would result in an O(c?mn) computa-
tion and communication complexity for the overall se-
quence comparison problem, not the O(omn) perform-
ance we claim (and that will be substantiated later in the
paper).

Protocol 1. Secure table lookup protocol

Input A; has o and 8’ and A3 has o/’ and 8” such that
a=a +a”"modoand ="+ (" modo.

Output A; obtains a number a, and A5 obtains a number
b, such that a+b= S(«, ).

The protocol steps are:

1. A; generates a key pair for a homomorphic semantic-
ally secure public-key system and sends the public key
to Ay (any of the existing systems will do, e.g., [19,
23]). In what follows E(-) denotes encryption with
Aj1’s public key and E~1(-) decryption with A;’s pri-
vate key. (Recall that the homomorphic property im-
plies that E(x)* E(y) = E(z+y) and semantic secu-
rity implies that E(x) reveals nothing about z, so that
x =y need not imply E(x) = E(y).)

2. A; generates a o X o size table S with entry S’(i,j)
equal to E(S(i+a’ mod o,j+ (' mod o)) for all 0 <
i,j < o — 1 and sends that table S to A».

3. Aj picks up the (a/’, 3”)th entry from the table re-
ceived in the previous step, which is S’(a”, 8" =
E(S(c, B)). Az then generates a random number b,
then computes 0 = E(S(«, 8)) *x E(—b) = E(S(a, B) —
b), and sends it back to Aj;.

4. A; decrypts the value received from Ay and gets a =
E~Y(E(S(e, B) —b)) = S(a, B) —b.

As required, a+b= S(a, 3), and A; and Az do not
learn anything about the other party from the protocol.
The computation and communication cost of this proto-
col is O(0?). Note that the multiplicative constant im-
plicit in the “O(c?)” notion is fairly large due to the ho-
momorphic encryptions, i.e., this protocol requires O(c?)
homomorphic encryptions for A; and O(1) homomorphic
encryptions for A;. The communication cost of this pro-
tocol is around co?, where cis the length of the homomor-
phic encryption.

4 Edit distance protocol

We now “put the pieces together” and give the over-
all protocol. We begin with the general case of arbitrary
I(a), D(b), S(a,b). Then two special cases are consid-
ered. One is the case of arbitrary I(a) and D(b), but
S(a,b) =|a—b|. The other is the practical case of unit
insertion/deletion cost and forbidden substitutions (i.e.,
S(a,b) is 0 if a=>b and +oo otherwise). For all the
above cases, the cost of computation and communica-
tion by the customer is linear to the size of the input.
The cost of computation and communication by agents
is O(omn) for the general case and O(mn) for the two
special cases.

4.1 The general case: arbitrary I(a), D(b), S(a,b)

In this section, we begin with a preliminary solution that
is not our best but serves as a useful “warmup” to the
more efficient solution that comes later in this section.

4.1.1 A preliminary version of the protocol

Recall that C splits A into A’ and A" and p into p/ and
1", then sends X and p' to Aj, and sends A\ and p” to
As. Ay and A; each maintain a matrix M’ and (respec-
tively) M" such that M = M’ + M". A; and Ay compute
each element M (i, j) in an additively split fashion; this
is done as prescribed in the recursive edit distance for-
mula by A; and Ay updating their respective M’ and M”.
After doing so, A; and A send their respective M'(n, m)
and M" (n,m) back to C. C can then obtain the edit dis-
tance M (n,m) = M'(n,m)+ M"(n,m).

During the computation of each element M(i,7),
S(Ai, 1) has to be computed by A; and Ay in an ad-
ditively split fashion and without the help of C, which
implies that the substitution table S should be known by
both A; and As. Hence, C needs to send the table to both
of the agents during the initialization phase of the proto-
col. The content of the table is not private and need not
be disguised.

Initialization of matrices

M'" and M" should be initialized so that their sum M
has M(0,7) and M (7,0) equal to the values specified in
Sect. 3.1. The M (i, j) entries for nonzero i and j can be
random (they will be computed later, after the initializa-
tion). The following initializes the M’ and M" matrices:

1. C generates two vectors of random numbers a =
(a1,...,a,) and b= (by,... ,by). Then C computes
two vectors ¢ = (¢1,...,¢,) and d = (dy,... ,dn),
where
(a)e; = 22:1 D(\;)—a; for 1 <i<mn,

(b)dy = >7_y () —bj for 1 < j <m.
C sends to A; the vectors b,c and to A the vec-
tors a, d.

2. Ay sets M'(0,j) =0b; for 1 < j <m and sets M'(3,0) =
¢; for 1 <14 <n. All the other entries of M’ are set to 0.

3. Ay sets M"(i,0) = a; for 1 <i<nandsets M"(0,j) =
d; for 1 <j <m. All the other entries of M" are set
to 0.

Note that the above implicitly initializes M (i,7) in the
correct way because it results in

—~ M'(0,0)+M"(0,0)=0;

= M'(0,5)+M"(0,5) =35y I(u) for 1 < j <my

— M'(i,0)+ M"(i,0) = >, _, D(\) for 1 <i <n.
Neither A; nor A, gains any information about A and p
from the initialization of their matrices because the two
vectors they each receive from C look random to them.
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6 M.J. Atallah, J. Li: Secure outsourcing of sequence comparisons

Mimicking a step of the dynamic program

The following protocol describes how an M (i, j) compu-
tation is done by A; and Aj, i.e., how they modify their
respective M'(i,7) and M"(i,j), thus implicitly com-
puting the final M (i, j) without either of them learning
which update was performed.

1. A; and Ay use the secure table lookup protocol with
inputs A; and p; from A; and inputs A} and g from
As. As a result, A; obtains 4" and A, obtains 4" such
that

v 4" = SN+ N mod o, p; 4 pi' mod o)
= S(Ainuj)'

Ajthen forms v’ = M'(i—1, j— 1)+~ and Bob forms
u"=M"(i—1,7—1)+~". Observe that v +u” =
M(i—1,j—1)+ S(\;, 1), which is one of the three
quantities involved in the update step for M (i, j) in
the dynamic program.

2. Ay computes v' = M'(i—1,7)+M'(i,0) — M'(i —
1,0)=M'(i—1,0)+ D(\;) —a; +a;—1, and Az com-
putes v = M"(i —1,)+ M"(5,0) — M"(i —1,0) =
M"(i—1,7)+a;—a;—1. Observe that us +up = M (i —
1,7) + D(\;), which is one of the three quantities in-
volved in the update step for M (7, j) in the dynamic
program.

3. A1 computes w' = M'(i,5—1)+ M'(0,5)— M'(0,
j—1)=M'(i,j—1)+b —bj_1, and Ay computes

w" = M"(i,j—1)+M"(0,57)—M"(0,j—1) = M"(i,j —

1
+I(u;) — b +bj—1. Observe that w' +w"” = M(i,j—
1)+ D(y;), which is one of the three quantities in-
volved in the update step for M (i, j) in the dynamic
program.

4. A; and Ay use the minimum finding protocol for
split data (described in [2]) on their respective vectors
(u',v",w’) and (u”,v",w”). As a result, A; gets an a’
and As gets an " whose sum z’ 4+ 2" is

min(u' +u”, v + 0", w +w")
M(i—1,7—1)+S(\i, 1)

5. Aj sets M'(i, j) equal to ', and Az sets M" (i, j) equal
to 2.

= min

We assume that C communicates with A; and A5 over
secure communication channels. This assumption is com-
mon in the secure multiparty computation literature. In
the context of secure outsourcing, this assumption is also
valid, as secure communication is required to protect C’s
private sequences against eavesdroppers. The communi-
cation between A; and A, should also be over a secure
communication channel. Even though most of the com-
munication between A; and Aj is encrypted using a ho-
momorphic encryption scheme (e.g., see Sect. 3.3), a se-

cure communication channel can prevent replay attacks
or person-in-the-middle attacks.

4.1.2 Performance analysis

The local computations done by C in the above proto-
col consist of splitting A and p and sending the result-
ing shares to the agents and computing and sending the
vectors a, b, ¢, d. These are done in O(m+n) time and
communication.

Each agent mimics mn steps of the dynamic program.
During each step, two agents run the secure table lookup
protocol once and the minimum finding protocol once.
Thus, the communication between A; and Ay for each
such step is O(a?) + O(1). Therefore, the total computa-
tion and communication cost for each agent is O(a?mn).

From a practical perspective, the multiplicative con-
stant in the “O(o?mn)” notion is fairly large. Recall that,
in Sect. 3.3, A; needs O(c?) homomorphic encryptions
and A needs O(1) homomorphic encryptions per exe-
cution of the secure table lookup protocol. The mini-
mum finding protocol [2] requires O(1) homomorphic en-
cryptions and O(1) secure comparisons (also known as
Yao’s millionaire problem [11, 34]; see [15] for the imple-
mentation of Yao’s millionaire protocol) for each agent.
Therefore, the computational load for each agent is at
most O(c?mn) homomorphic encryptions and O(mn) se-
cure comparisons. The communication cost is the one re-
quired for doing the homomorphic encryptions, i.e., it is
O(o?mn).

4.1.3 An improved version of the protocol

A bottleneck in the above protocol is the split computa-
tion of S(\;, 14j): running the secure table lookup protocol
at each step of the dynamic program costs an expensive
O(0?). In this subsection, we present a solution that is
more efficient by a factor of o.

Recall that in the dynamic program, M is constructed
row by row or column by column. We assume, without
loss of generality, that M is computed row by row. We will
compute S(\;, pj) row by row exploiting the fact that all
(A, 1) in row ¢ have the same A;: we will “batch” these
table accesses for row i, as we describe next.

Protocol 2. Batched secure table lookup protocol

Input Ay has X, and p/ = pf, ..., pl,, and Ay has A/ and
w' =py, ..., pr all symbols being over alphabet 2.

Output A; and Ay each obtain a vector 4’ and " of size
m such that 'y]{Jr'yj” =S\, ) for 1 <j<m.

The protocol is:

1. A; generates a key pair for a homomorphic semantic-
ally secure public-key system and sends the public key
to Ag. As before, E(-) denotes encryption with A;’s
public key and E~!(-) decryption with A;’s private
key.
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2. A; generates a o x o table S with S(k,1) equal to
E(S(k+ X, mod o,1)) for all 0 < k,l < o — 1 and sends
that table to As.

3. For each j =1,...,m, the next five substeps are car-
ried out to compute the (v}, ;") pair.

(a) Ag creates a o size vector v equal to the A/th
row of the table S received in the previous step.
Observe that v = E(S(A/ 4+ A, mod 0,1)) =
E(S(\, 1) for0<I<o—1.

(b) Az circularly left-shifts v by p positions, so that
vy becomes E(S(Ai, p +1mod o)) for 0 <1 <o —
1.

(c) Az generates a random number 7/ and then up-
dates v by setting v; = v * E(—7}") = E(S(\i, i +
I mod o) —~;") for 0 <1 <o — 1. Note that the z;th
entry of the resulting v is now E(S(\;, 1) —/')-

(d).A; uses a 1-out-of-o oblivious transfer protocol to
obtain the uj'< th entry of v from Ay without reveal-
ing to Ay which v; he received (see, e.g., [28] for
many detailed oblivious transfer protocols).

(e) A; decrypts the value he obtained from the obliv-
ious transfer of the previous step and gets 7]{ =
S(Nis i) =y’ Observe that v; 4" = S(\;, ), as
required.

Neither A; nor Ay learned anything about which
entry of S was implicitly accessed, or what the value ob-
tained in split fashion was. The communication cost of
the above scheme is O(0?) 4+ O(om). The size of the al-
phabet is much smaller than the length of a sequence
(e.g., in bioinformatics o = 4 whereas a sequence’s length
is huge). Therefore, the dominant term in the complexity
of the above is O(om).

In the preceding protocol, A; computes O(c?) ho-
momorphic encryptions (for the encryption of the cost
table), whereas Ay computes O(m) homomorphic en-
cryptions (one for each ') and O(em) multiplications
(of two encrypted items). Note that a homomorphic en-
cryption requires O(1) modular exponentiations. In add-
ition, A; and As need to perform a l-out-of-o oblivious
transfer protocol m times. Naor and Pinkas [20] have
constructed an efficient 1-out-of-o oblivious transfer that
requires log o exponentiations with O(o) communication
overhead. Thus, the dominant cost in the computation is
O(mlog o) modular exponentiations for each agent. The
communication complexity is still O(mo).

The new outsourcing protocol for sequence compar-
isons is the same as the preliminary protocol in the pre-
vious subsection, except for some modifications in the
first step of the protocol, titled “mimicking a step of the
dynamic program.” Recall that the aim of step 1 is to
produce a u’ with A; and a u” with Ay such that v’ +
u'=M@G—-1,7—1)4+5(N\i, ;). In the improved proto-
col, we first run the above batched lookup protocol for
row ¢ to produce a v for A; and a 7" for As, such that
v+ = S(Ni, pj) for 1 < j <m. Then, during step 1 of
the modified protocol, A; sets v’ = M'(i—1,j— 1)+~

and Ajg sets v’ = M"(i —1,j— 1) +~;’. Note that, at the
end of the new step 1, ' +u" isequalto M (i — 1,7 — 1)+
S(Ai, 1), as required. The computational task for the
customer in this protocol is the same as in the preliminary
version. The computational and communication cost for
the agents in this protocol are ©(omn).

In practice, the dominant overhead in the new out-
sourcing protocol is the O(mn) executions of a 1-out-of-o
oblivious transfer and O(mn) secure comparisons. That
is, each agent is required to perform O(mnlog o) modu-
lar exponentiations and O(mn) secure comparisons. The
communication overhead is O(omn).

4.2 The case S(a,b) =|a—1|

The improvement in this case comes from a more effi-
cient way of computing the split S(\;, 11;) values needed
in step 1 of the protocol. Unlike previous sections of the
paper, each symbol in A and g is split into two numbers
that are not modulo ¢ and can in fact be arbitrary (and
possibly negative) integers. The protocol is otherwise the
same as in Sect. 4.1.

The main difference is in the first step of subprotocol
“mimicking a step of the dynamic program.” Note that

S(Xis ) = [N — 11
= max(A; — 11, i — Ai)

_ (N — )+ (N — ')
- e ((u§- ~N) (=N )

The S(A;, 1) can be computed as follows: A; forms a two-
entry vector v/ = (A} — i, p1; — Aj), Az forms a two-entry
vector v’ = (X — ', — AY'), then A; and Ay use the
split maximum finding protocol (described in [2]) to ob-
tain 7" and 4" such that

v 4" = max(v' +v") = |\ — 5| = S(Ni, )

Then the first step of the dynamic program can be re-
placed by A; setting v’ = M'(i—1,j—1)++/, and Ay
setting v’ = M"(i—1,j—1)+~". As required, v+ u”
equals M(i—1,7—1)+ S(\;, 1). As the communication
cost of step 1 is now O(1), the total communication cost
for the agents is O(mn).

4.8 The case of unit insertion/deletion costs
and forbidden substitutions

The improvement in this case directly follows from a tech-
nique, given in [2], that we now review. Forbidden substi-
tutions means that S(a,b) is +0o unless a = b (in which
case it is zero because it is a “do nothing” operation).
Of course a substitution is useless if its cost is 2 or more
(because one might as well achieve the same effect with
a deletion followed by an insertion). The protocol is then:
1. Fori=o,...,1inturn, C replaces every occurrence of

symbol 7 by the symbol 2i. So the alphabet becomes
effectively {0,2,4,...,20 —2}.
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2. C runs the protocol given in the previous section for
the case of S(a,b) = |a — b|, using a unit cost for every
insertion and every deletion.

The reason it works is that, after the change of alphabet,
S(a,b)is zero if a = b and 2 or more if a # b, i.e., it is as if
S(a,b) =400 if a # b (recall that a substitution is useless
if its cost is 2 or more because one can achieve the same
effect with a deletion followed by an insertion).

5 Computing the edit path

We have so far established that the edit distance can be
computed in linear space and O(omn) time and commu-
nication. This section deals with extending this to com-
puting, also in split form, the edit path, which is a se-
quence of operations that corresponds to the edit distance
(that is, a minimum-cost sequence of operations on A that
turns it into p). We show that the edit path can be com-
puted by the agents in split form in O(mn) space and in
O(omn) time and communication.

5.1 Review: grid graph view of the problem

The interdependencies among the entries of the M-
matrix induce an (n+1) x (m+1) grid directed acyclic
graph (grid DAG for short) associated with the string
editing problem. It is easy to see that in fact the string
editing problem can be viewed as a shortest-path problem
on a grid DAG.

Definition 1. An l; X Iy grid DAG is a directed acyclic
graph whose vertices are the l1ly points of an ly X Iy grid
and such that the only edges from grid point (i,7) are to
grid points (i,j+1), (i+1,7), and (i +1,5+1).

Figure 1 shows an example of a grid DAG and also il-
lustrates our convention of drawing the points such that
point (i, 7) is at the ith row from the top and jth column
from the left. Note that the top-left point is (0, 0) and has
no edge entering it (i.e., is a source) and that the bottom-
right point is (m,n) and has no edge leaving it (i.e., is
a sink).

We now review the correspondence between edit
scripts and grid graphs. We associate an (n+ 1) x (m +
1) grid DAG G with the string editing problem in the
natural way: the (n+1)(m+1) vertices of G are in one-
to-one correspondence with the (n+1)(m+1) entries of
the M-matrix, and the cost of an edge from vertex (k,1)
to vertex (4,7) is equal to I(y;) if k=14 and [ =j—1,
to D(N;) if k=i—1and l=7, to S\, ) if k=i—1
and [ = j — 1. We can restrict our attention to edit paths
that are not wasteful in the sense that they do no ob-
viously inefficient moves such as inserting then deleting
the same symbol, changing a symbol into a new symbol
that they then delete, etc. More formally, the only edit
scripts considered are those that apply at most one edit

source

sink

Fig. 1. Example of a 5 X 7 grid DAG

operation to a given symbol occurrence. Such edit scripts
that transform A into p or vice versa are in one-to-one
correspondence to the weighted paths of G that originate
at the source (which corresponds to M (0,0)) and end on
the sink (which corresponds to M (n,m)). Thus, any com-
plexity bounds we establish for the problem of finding
a shortest (i.e., least-cost) source-to-sink path in an (n+
1) x (m+1) grid DAG G extends naturally to the string
editing problem.

At first glance it looks like “remembering” (in split
form), for every entry M(i,j), which of {M(i—1,j—
1), M(i—1,7),M(i,j—1)} “gaveit its value” would solve
the problem of obtaining the source-to-sink shortest path
we seek. That is, if we use P(4, j) (where P is mnemonic
for “parent”) to denote that element (k,1) € {(i—1,j—
1),(i—1,7),(i,7— 1)} such that the edit path goes from
vertex (k,l) to vertex (i,7) in the (n+1) x (m+1) grid
graph that implicitly describes the problem, then all we
need to do is store matrix P in split fashion as P’ + P”.
However, this does not work because it would reveal the
edit path to both agents: getting that edit path would re-
quire starting at vertex (n,m) and repeatedly following
the parent until vertex (0,0) is reached, which appears
impossible to do without revealing the path to the agents.
To get around this difficulty, we use a different approach
that we develop next.

5.2 Backward version of the protocol

As mentioned above, the protocol of this section is not an
end in itself but will later serve (when used in judicious
conjunction with the protocol of the previous section) to
efficiently compute the edit path.

The protocol we presented works by computing (in
split form) a matrix M such that M(i,j) contains the
length of a shortest path from vertex (0, 0) to vertex (i, )
in the grid graph G. We call this the forward protocol and
henceforth denote the M-matrix as Mg, where the sub-
script F is a mnemonic for “forward.” Let G denote the
reverse of G, i.e., the graph obtained from G by reversing
the direction of every edge (so the horizontal edges in G
are pointing leftwards and the vertical edges are point-
ing upwards — the opposite of the directions shown for G
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in Fig. 1). Clearly, in GE, it is vertex (m,n) that is the
source and (0, 0) that is the sink, and every v-to-w short-
est path in G® corresponds to a similar shortest path in
G but in the backwards direction (i.e., w-to-v); this is why
we use Mp to denote the matrix that is to G what ma-
trix Mp was to graph G (the subscript B is a mnemonic
for “backward”). Therefore, Mp(i, j) denotes the length
of a shortest path in G¥ from the source of G¥ (vertex
(m,n)) to vertex (i,7), which of course is equal to the
length of a shortest path in G from (i, 7) to (m,n). The
edit distance we seck is therefore Mz (0,0) (= Mp(n,m)).
Defined in terms of the two input strings, Mp(i, j) is the
edit distance from the suffix of A of length n—i to the
suffix of p of length m — j. Therefore, computing Mp in
an analogous manner to the computation of Mz now in-
volves filling in its entries by decreasing row and column
order (rather than increasing, as with Mp). The details,
given next, assume that the customer and two agents have
already computed Mp in split fashion (so there is no need
for a second initialization).

Protocol 3. Protocol for computing Mp

1. A; sets Mg(n,m) =0, and Ay sets M (n,m)=0.
Note that Mp(n, m) = 0 as expected.

2. For0<i<n-—1, 4 computes My (i,m) = Mp(n,0)—
Mp(i,0) and Az computes My (i,m) = M (n,0)—
M7i(i,0). Note that Mp(i,m) = Mp(n,0) — Mp(i,0) =
Y hizr D) for0<i<n—1.

3. For0<j<m-—1, A computes Mg(n,j)=Mp(0,m)—

Mp(0,7) and Ay computes M (n,j) = ME(0,m) —

M}(0, 7). Note that Mp(n,j) = Mp(0,m)—Mg(0,j) =

E?:j+1l(lik) for0<j<m-—1.
As

Mp(i+1,5)+D(N) ;
Mp(i,j+1)+ (1)

Mpg(i,j) = min

if Mp(i+1,7), Mp(i,j+1), and Mp(i+1, j+1) have
already been computed, Mp(i,j) can be computed
using similar techniques that compute Mg(i,7): Ay
and As compute S(\;, 1), D(A;), and I(p;) in split
form, and run a minimum finding protocol. Mp’s en-
tries can be filled in row by row or column by column
in decreasing row and column order.

Note that Mg(i,7) + Mp(i, ) is the length of a short-
est source-to-sink path that is constrained to go through
vertez (i,7) and hence might not be the shortest pos-
sible source-to-sink path. However, if the shortest source-
to-sink path goes though vertex (i,7), then Mp(i,j)+
Mpg(i,j) is equal to the length of the shortest path.
We use M¢ to denote Mg+ Mp (where subscript C' is
mnemonic for “constrained”).

The protocol below finds (in split fashion), for each
row ¢ of M¢, the column 6(i) of the minimum entry
of that row, with ties broken in favor of the rightmost
such entry; note that Mq(i,60(i)) is the edit distance

Mp(n,m). Computing (in split fashion) the 6 function is
an implicit description of the edit path:

—If 0(i +1) = 6(i) = j, then the edit path “leaves” row
i through the vertical edge from vertex (i, j) to vertex
(i4+1,7) (the cost of that edge is, of course, the cost of
deleting \;1).

- It 0(i+1) = 0(i) + 6, where ¢ > 0, then the client can
“fill in” in O(¢) time the portion of the edit path from
vertex (4,6(7)) to vertex (i + 1,0(i) 4+ §) (because such
a “thin” edit distance problem on a 2 x ¢ subgrid is
trivially solvable in O(9) time). The cumulative cost of
all such “thin problem solutions” is O(m) because the
sum of all such ds is < m.

5.8 Edit path protocol

The steps of the protocol for computing the edit path are:

1. C, Ay, and Ay conduct the edit distance protocol as
described in Sect. 4 to compute M in split fashion,
ie., Ay gets My and A gets M}, such that Mp =
M+ M.

2. Similarly, A; and Ay conduct the backward version of
the edit distance protocol and compute Mp in split
fashion. As a result, A; gets M and A gets M.

3. Ay computes M} = Mp+ Mp, and Az computes
M[. = M.+ Mp,. Note that M{, + M. equals Mc.

4. For i =0,...,n in turn, the following steps are re-
peated:

(a) A; picks the ith row from M/, denoted as (v, .. .,
v],), and Ay picks the ith row from M, denoted as
(... ,om).

(b)For 0 <j <m, Ay sets vj = (m+1)*v and Ay
sets v} = (m+1)*v] + (m — j); note that v} + v}’ =
(m+1)*Mc(i,j)+ (m—j). Also observe that, if
Me (i, 7) is the rightmost minimum entry in row 4
of Mc, then vj +v/" is now the only minimum entry
among all j € [0..m]; in effect, we have implicitly
broken any tie between multiple minima in row ¢ in
favor of the rightmost one (which has the highest j
and therefore is “favored” by the addition of m —
j). Note, however, that breaking the tie through
this addition of m — j without the prior scaling by
a factor of m + 1 would have been erroneous, as it
would have destroyed the minima information.

(¢) A; and As run the minimum finding protocol for
split data (described in [2]) on their respective
(vf,...,v,)and (vf,...,vr). As aresult, Ay gets
an z/ and As gets and z” whose sum z’ 4+ 2" is
min(vy+vf, ... v, +ol).

(d)A; and Az send z’ and (respectively) 2" to C. C
computes

p; =2 +2” mod (m+1)
=((m+1)Mc(i,0(i)) + (m—0(3))) mod (m+1)
=m—0(i)

and therefore obtains (i) = m — p;.
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5. As mentioned earlier, given 6(0),...,6(m), C can
compute the edit path in O(m) additional time.

5.3.1 Performance analysis

The computation by the client includes initializing the
edit distance protocol (step 1) and computing the edit
path from the 6(i)s (step 5). It can be done in O(m+n)
time and communication.

The agents run the edit distance protocol twice
(steps 1 and 2) and the minimum finding protocol n+ 1
times (step 4). Each edit distance protocol can be done
in O(omn) time and communication, and each minimum
finding protocol needs O(m) time and communication.
Therefore, the total computation and communication
cost for each agent is O(omn). The space complexity for
each agent is O(mn) as the agents need to store M¢ in
split fashion.

From a practical perspective, each edit distance pro-
tocol takes O(mn) executions of a l-out-of-o oblivious
transfer and O(mn) secure comparisons, and each min-
imum finding protocol takes O(m) secure comparisons
and O(m) homomorphic encryptions. Therefore, the
dominant cost for A; and As in the edit path protocol is
the O(mn) executions of the 1-out-of-o oblivious trans-
fer, O(mn) executions of secure comparisons, and O(mn)
executions of homomorphic encryptions.

5.3.2 An alternative solution with O(m +n) space

The space complexity improvement in this solution comes
from the fact that row 7 of M¢ can be computed on the
fly; therefore, there is no need for A; and As to store
MY, and (respectively) M. The protocol is the same as
above, except for the following changes (where we as-
sume, without loss of generality, that n < m —in the other
case simply change every “row by row” into a “column by
column”):

1. Steps 1-3 become “C splits A and p and initializes
MF~”

2. Instep 4(a), A; and Ay compute My row by row from
row 1 to row 4; similarly 4; and As compute Mp row
by row from row n to row 7. Thus A; and As have row
1 of M¢ in split fashion.

Note that the total space complexity for each agent is
O(m+n), and the total computation and communication
cost for each agent is O(emn?), as Mp and Mp need to
be computed for n + 1 times. Restating the results for ar-
bitrary m and n: The agents can compute the edit path
within a time complexity of O(ocmnmin{m,n}) and in
O(m+n) space.

6 Conclusion and future work

We gave efficient protocols that enable a customer to
securely outsource sequence comparisons to two remote

agents such that the agents learn nothing about the cus-
tomer’s two private sequences or the result of the compar-
ison. The local computations done by the customer are
linear in the size of the sequences, and the computational
cost and amount of communication done by the exter-
nal agents are close to the time complexity of the best
known algorithm for solving the problem on a single ma-
chine. Such protocols hold the promise of allowing weak
computational devices to avail themselves of the compu-
tational, storage, and bandwidth resources of powerful
remote servers without having to reveal to those servers
their private data or the outcome of the computation.

Future work includes developing efficient outsourcing
protocols for other computation-intensive problems, such
as image processing problems, other biological compu-
tational problems, etc. Our current secure outsourcing
model requires two noncolluding agents. Future work also
includes designing outsourcing protocols using a single
agent or using n agents such that the protocols are secure
against collusion of up to ¢ agents.

Acknowledgements. We would like to thank the anonymous review-
ers for their helpful comments.
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