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Abstract

Organizations are making substantial investments in information security to reduce the risk presented by vulnerabilities in

their information technology (IT) infrastructure. However, each security technology only addresses specific vulnerabilities and

potentially creates additional vulnerabilities. The objective of this research is to present and evaluate a Genetic Algorithm (GA)-

based approach enabling organizations to choose the minimal-cost security profile providing the maximal vulnerability

coverage. This approach is compared to an enumerative approach for a given test set. The GA-based approach provides

favorable results, eventually leading to improved tools for supporting information security investment decisions.

D 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Information technology (IT) infrastructure has

evolved into a critical strategy-enabling and support-

ing resource for organizations. The IT infrastructure

and information systems, which are so powerful in

creating and disseminating knowledge throughout

organizations, also possess weaknesses or vulnerabil-

ities. These vulnerabilities range from allowing

unauthorized access to the data and information stored

within such systems to the full-scale destruction of an

organization’s infrastructure. Entities such as hackers,

terrorists, disgruntled employees and business com-

petitors are on the lookout for any vulnerability in the

information systems of organizations and may seek to

exploit found weaknesses for psychological, political

or economic advantage. These entities pose a serious

threat to organizational information systems and the
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IT infrastructure upon which the systems reside and

often result in negative financial and other repercus-

sions for the affected organizations.

Organizations attempt to prevent unauthorized

access and other harm to their systems by using

security technologies that address known vulnerabil-

ities in their systems. We refer to the organization’s

collection or portfolio of security technologies used to

protect against vulnerabilities as the security profile.

However, any given security technology addresses

only specific vulnerabilities and could possibly create

additional vulnerabilities. It is worth mentioning that

the security profile can only reduce the risk of a

particular vulnerability from being exploited. How-

ever, for the purposes of this research we assume that if

a known vulnerability is covered by a particular

security technology, the risk of that vulnerability being

exploited is close to zero. Additionally, organizations

also must take into account the cost of using each

security technology. Therefore, it is usually a difficult

decision for organizations to create and manage a

security profile that addresses as much vulnerability as

possible while minimizing the total cost of the profile.

This paper provides an innovative decision-making

approach to selecting the appropriate security tech-

nologies to address the vulnerabilities in the system.

The approach provides insights to management for

managing security risks. This paper demonstrates a

technique that could be incorporated into decision

support software tools that provide recommendations

for choosing the best combination of security solutions

that would minimize the risk for the organization.

To facilitate the above decision, we present and

evaluate a Genetic Algorithm (GA)-based approach

that improves the organization’s ability to choose a

minimal cost security profile providing maximal

vulnerability coverage. We then compare the GA

approach to an enumerative approach of evaluating all

possible security profiles for a given set of test

problems. We perform these evaluations for several

combinations and sizes of matrices of vulnerabilities

and security profiles.

The remainder of the paper is organized as

follows: Section 2 describes relevant background on

GAs and how they have been used to address similar

problems in the past. Section 3 presents our research

definitions of vulnerabilities and security technologies

and the method used to match vulnerabilities to

specific security technologies. Section 4 contains our

model of the problem and Section 5 details the

experimental design. Results are reported in Section

6 and conclusions and future directions are given in

Section 7.

2. Genetic algorithms for multi-objective

optimization problems

The problem of matching vulnerabilities to security

technologies can be characterized as multi-objective

since we are trying to create security profiles to

achieve two objectives: minimize the exposed vulne-

rabilities of an organization and minimize the cost of

the security technologies used to address the vulne-

rabilities. As will be discussed later in this paper, such

multi-objective problems are typically difficult to

solve without the use of heuristics. As an example

of such a heuristic, genetic algorithm has successfully

been used in search, single-objective optimization and

machine learning. A general description of the genetic

algorithm and how it can be designed and imple-

mented for solving single-criterion optimization

problems appears in [5]. Researchers have since

developed techniques for applying GAs to multi-

objective problems. A survey of various GA-based

techniques for solving multi-objective optimization

problems is presented in [3]. The first approach

involved combining multiple objectives into one

objective using addition, multiplication or any other

combination of arithmetical operations. It was argued

that if the combination of objectives is possible, this

is not only one of the simplest approaches but also

one of the most efficient ones [3].

A weighted combination of fitness functions to add

or subtract values during the schedule evaluation of a

resource scheduler, depending on whether or not the

constraints were violated was used in [12]. [7,14] also

use weighted combination of objectives to address

multi-objective problems. Goal programming was

developed in [2,6] where decision makers have to

assign targets or goals that they wish to achieve for

each objective. [10,13] have used goal programming in

conjunction with genetic algorithms to solve multi-

objective problems. These values are incorporated into

the problem as additional constraints and the objective

function tries to minimize the absolute deviations from
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the targets to the objectives. An e-constraint approach

that optimizes one objective function while consider-

ing other objective functions as constraints bound by

some allowable levels of ei was described in [9] and

used in [8].

In this paper, we utilize the weighted sum of

objectives technique, used in [12] to combine the

conflicting objectives of minimizing the security

technology costs of addressing vulnerabilities and

minimizing the number of uncovered vulnerabilities

after implementation of security technologies. The

problem with this approach is that it requires some

information regarding the range of weights [3].

However, in our problem, a good estimate of the

weights of the objectives can be made based on the

type and preferences of the organization. Organiza-

tions such as financial institutions, for which covering

vulnerabilities is critical, will put more emphasis on

maximizing the number of vulnerabilities covered,

while organizations whose security requirements are

not as stringent might wish to minimize the cost of

security while still maintaining an adequate security

profile.

3. Definition of vulnerabilities and securities

Organizational information systems and their

underlying IT infrastructure contain vulnerabilities

that can be exploited by various entities. Organizations

utilize security technologies to reduce the risk of

damage presented by these vulnerabilities. A RAND

report [1] identifies a set of generic vulnerabilities

potentially present in most organizational information

systems and their supporting infrastructures. The

report provides a generic set of vulnerabilities rather

than specific bugs or weaknesses in information

system. By utilizing a generic set of vulnerabilities,

the problem of novel and previously unheard-of threats

can be addressed. For example, a new type of Internet-

based attack can be handled using the generic frame-

work, whereas it would be outside a very specific list

of known vulnerabilities. However, the generic

approach can be easily extended to a more specific

set of vulnerabilities and security technologies. These

vulnerabilities are classified into seven categories.

Organizations can then map their information systems

and infrastructure to these vulnerabilities to provide an

initial assessment of the state of risk to their systems.

This list of vulnerabilities and the variables we used to

represent them in our model is presented in Table 1.

Organizations address the vulnerabilities described

above in several ways, including changing business

processes, employee awareness program and investing

in security technologies. Security technologies reduce

the vulnerabilities, identify attacks and breaches and

react to these attacks and breaches. Each security

technology addresses certain vulnerabilities directly

by design; they reduce certain other vulnerabilities

indirectly as a second order effect. However, security

technologies can also directly or indirectly create

certain other vulnerabilities in the system. We present

the generic security technologies described in [1] and

their variable representation in our model in Table 2.

These generic security technologies are implemented

in the context of the organization’s systems using

actual security technologies. Similar classifications

can be found in a recent NIST report [11].

Table 1

Technology vulnerabilities

Category Vulnerability Representation

Inherent Design/

Architecture

Uniqueness v1
Singularity v2
Centralization v3
Separability v4
Homogeneity v5

Behavioral

Complexity

Sensitivity v6
Predictability v7

Adaptation and

Manipulation

Rigidity v8
Malleability v9
Gullibility v10

Operation/

Configuration

Capacity Limits v11
Lack of

Recoverability

v12

Lack of

Self-awareness

v13

Difficulty of

Management

v14

Complacency/

Co-optability

v15

Indirect/Nonphysical

Exposure

Electronic

Accessibility

v16

Transparency v17
Direct/Physical

Exposure

Physical

Accessibility

v18

Electromagnetic

Susceptibility

v19

Supporting Facilities/

Infrastructures

Dependency v20
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Each of these security technologies addresses

some of these vulnerabilities either fully or partially

and creates some vulnerability either directly or

indirectly. We make a simplifying assumption that if

a technology partially covers a vulnerability or

indirectly creates a vulnerability, the scope is uni-

form. In other words, we do not distinguish how

severe or mild the value of the variable is. The

mapping of these security technologies to vulner-

abilities is presented in Table 3 [1]. The organization

looking to cover its vulnerabilities by investing in

security technologies has two major goals:

(1) Minimize the number of uncovered vulnera-

bilities after implementation of security

technologies.

(2) Minimize the cost of security to cover

vulnerabilities.

Achieving these two objectives is not easy since

the organizations have to constantly make trade-offs

between security costs and allowing some vulnerabi-

lities to be uncovered. Malicious agents can exploit

these uncovered vulnerabilities resulting in damages

to the organization. In the next section, we present the

model used to address this problem.

4. Research model

We now demonstrate that the objective of covering a

given set of vulnerabilities while minimizing security

costs and new vulnerabilities introduced as a result of

Table 2

Generic security technologies

Security Representation

Heterogeneity s1
Static Resource Allocation s2
Dynamic Resource Allocation s3
Redundancy s4
Resilience and Robustness s5
Rapid recovery and Reconstitution s6
Deception s7
Segmentation, Decentralization and Quarantine s8
Immunologic Identification s9
Self-organization and Collective Behavior s10
Personnel Management s11
Centralized Management of Information Resources s12
Threat/Warning Response Structure s13

Table 3

Matching security technologies to vulnerabilities

Security

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13

Vulnerability v1 1 1 1 1 �1

v2 1 1 1 0.5 1 1 1 1

v3 �0.5 0.5 1 1 1 1 �1

v4 �1 1 1 1 �1 1

v5 1 �1 0.5 1 �0.5

v6 �1 �1 0.5 1 �1 1 �1 �1

v7 1 1 1 �1 1 �0.5

v8 �1 �1 1 1 0.5

v9 1 1 1 0.5 0.5

v10 �1 1 0.5

v11 �1 0.5

v12 1 1 0.5 1 1 1 0.5 0.5

v13 1 0.5 0.5

v14 �1 �1 �1 1 �1 1 1 1 �0.5

v15 0.5 �0.5 �1 1 1 �0.5 1 1

v16 1 1 1 1 1 0.5 1

v17 1 1

v18 1 1 1 1 1 1 1 0.5 1

v19 1 1 1 1 1 1 1 0.5

v20 1 1 1 1 1 1 �0.5 0.5

1, Security directly addresses vulnerability; 0.5, security indirectly addresses vulnerability; �0.5, security indirectly creates vulnerability; �1,

security directly creates vulnerability.
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incorporating a security technology is a generalization

of the well-known set-covering problem. Set-covering

is defined in [4] as a finite setX and a familyF of subsets

ofX, such that every element ofX belongs to at least one

subset in F. From an optimization standpoint, the

objective of a set-covering problem is to find the

minimal subset in F such that the selected subset

contains all the elements of X. We can also map the set-

covering problem into graphs. Imagine that each

element of the set X is represented by edges in the

graph and each of the vertices in the graph represents a

subset that contains some edges in the graph; i.e., the

edges are connected to the vertex. The objective of the

set-covering problem is now to find the minimum

number of vertices that cover all the edges in the graph.

The union of the subsets represented by each vertex

gives us the minimal subset that contains all the

elements of set X. It has been shown that the set-

covering problem is NP-complete [4].

The objective of the vulnerability-covering prob-

lem is to maximize the number of vulnerabilities

covered while minimizing the cost of security

technologies. However, the implementation of a

security technology might result in new vulnerabil-

ities. We use the term bresidualQ vulnerabilities to

describe these newly introduced vulnerabilities. The

problem now can be defined such that

If there exists a set of vulnerabilities V and a set of

security technologies S whose subsets cover some

elements in set V, but also result in creating some

subset of residual vulnerability set R, then the

problem is to find the minimal subset of S that covers

all elements in V while having the smallest resulting

subset of R.

Representing the above problem through graphs, let

each unique vulnerability in set V be represented by a

colored edge. Each color represents a unique vulner-

ability. Let each vertex in the graph represent distinct

security technologies from the set S. Each security

technology that covers a vulnerability will have an

edge with that color on the vertex. If a vulnerability is

addressed only by one security technology, it is

represented by a self-edge. The residual set is

represented by unique vulnerability edges that are

created after the covering set is determined.

We now need to ensure that all vulnerabilities are

covered by finding a minimal set of vertices that cover

all unique-color edges. If we assume that any

selection of a subset of S results in the same subset

of set R, our problem is reduced to a set-covering

problem. But if the subset of S results in different

subsets of set R, our problem is more difficult to solve

than the set-covering problem. Therefore, we can

assume that our problem is NP-hard and cannot be

solved in polynomial time. From the algorithm

perspective, the time to find the solution increases

exponentially with the problem size, i.e., if the

number of security technologies increases, the time

to find the solution increases exponentially in the

number of security technologies. A heuristic techni-

que, such as a GA, must be used to search for a good

solution in such situations.

A GA was chosen as the heuristic solution to this

problem for several reasons. First, GAs have been

shown to perform well in similar situations. Second,

and perhaps more importantly, the genetic algorithm

structure is particularly well-suited to the features of

the problem being solved and therefore provides a

very natural representation of the problem.

We map the vulnerabilities, the security technolo-

gies and the residual vulnerabilities into genes or

strings of a GA. Let each vulnerability in the

vulnerability set be represented by a single bit in the

vulnerability gene. Thus, the vulnerability profile of a

firm is represented as,

V ¼ vig8i ¼ 1 . . .mf ð1Þ

where, vi (i=1. . .m) represents individual vulnerability

and can take two values, 0 or 1. The value 0 signifies

that a particular vulnerability is not present in the

organization’s information systems and the value 1

indicates the presence of the vulnerability. In this

research, m is set to 20, as there are 20 generic

vulnerabilities. For example, a vulnerability profile

d00001011011100010101T indicates that the vulner-

abilities: homogeneity, predictability, rigidity, gulli-

bility, capacity limits, lack of recoverability, electronic

accessibility, physical accessibility and dependency

are present.

Every vulnerability has a different significance for

each organization. Some vulnerabilities are more

critical than others and need to be addressed

immediately while others are not that critical. It may

be cost effective for the organization to address a

vulnerability indirectly instead of controlling it
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directly. We assign each vulnerability a weight to

indicate varying significance to different vulnerabil-

ities. The weight for vulnerability vi is represented by

ai 8i=1. . .m. The weights are assigned such that,

X

m

i¼1

ai ¼ 1 ð2Þ

To cover the vulnerabilities, organizations choose a

set of security technologies. Let each security

technology be represented by a single bit in the

security gene or string. Thus, the security of the firm

is represented as

S ¼ sj
�

8j ¼ 1 . . . n
�

ð3Þ

Each individual security technology can take two

values, 1 or 0. Similar to the vulnerability string, a 1

represents the presence of the security technology

represented by that bit and a 0 represents the absence

of that security technology. In this research, n is set to

13, as there are 13 generic security technologies. For

example, the security profile d1000000001001T indi-

cates the implementation of the following security

technologies: heterogeneity, self-organization and

collective behavior and threat/warning response struc-

ture. Each security technology has an associated cost.

We represent these costs as relative to each other. The

cost of any security si is represented by ci 8i=1. . .n.
The costs are assigned such that,

X

n

i¼1

ci ¼ 1 ð4Þ

Once a security technology is chosen, each

technology bit directly reduces one or more vulner-

abilities, indirectly reduces vulnerabilities, indirectly

creates some vulnerability or directly creates some

vulnerability. For 20 vulnerabilities and 13 security

technologies, the matching of the security technolo-

gies and vulnerabilities is presented in Table 3 [1].

Therefore, after a security technology is imple-

mented, we must reassess the vulnerabilities that

the organization’s information systems still possess.

We call this the residual vulnerability portfolio. This

residual vulnerability exists either because of some

uncovered vulnerability, some partially covered

vulnerability or can be directly or indirectly created

by implementation of security technologies.

We represent the residual vulnerability portfolio

by a string with each bit representing the same

vulnerability described by the corresponding bit in

the vulnerability string. Each bit in residual vulner-

ability string also has the same weight as the

corresponding bit in the vulnerability. The residual

vulnerability of the firm is represented as

R ¼ rig 8i ¼ 1 . . .mf ð5Þ

Each bit in the residual vulnerability string can have

three values: 1, 0.5 and 0. The value 1 represents

the presence of the particular vulnerability and the

value 0 represents the absence of that vulnerability.

The value 0.5 represents the presence of a partially

covered vulnerability or an indirectly created vulner-

ability. By partially covered vulnerability, we refer

to the fact that the technology was able to reduce

the spread of vulnerability and limited its damage,

however, the technology failed to address the

underlying cause of vulnerability. Thus, the tech-

nology managed to reduce the risk but did not

eliminate the risk. The coverage of vulnerabilities

by security technologies can be described by a

matrix tij 8i=1,. . .,m and j=1,. . .,n. The sample

matrix of tij is described in Table 3. The residual

vulnerability is determined based on the following

rules (These rules are exhaustive and are not

dependent on the order of rule application.):

(1) If vi=0 or 1 and any tij=1 for 8j/sj=1, then ri=0.

(2) If vi=0 and all tij=0 for 8j/sj=1, then ri=0.

(3) If vi=1 and all tij=0 for 8j/sj=1, then ri=1.

(4) If vi=0 and no tij=1 for 8j/sj=1 and any tij=�1

for 8j/sj=1, then ri=1.

(5) If vi=0 and no tij=1 for 8j/sj=1 and any tij=�0.5

for 8j/sj=1, then ri=0.5.

(6) If vi=1 and no tij=1 for 8j/sj=1 and any tij=0.5

for 8j/sj=1, then ri=0.5.

5. Experimental design

This section describes the specific implementation

of the GA used to search for a good solution to the

model presented above. We also present the details of

the experiments run to demonstrate the approach. The

same problem was then attempted using an enume-
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rative approach to solve test problems of small size for

comparison purposes.

5.1. Specific GA Implementation

Organizations have two major objectives for

managing their information security investments:

(1) Choose a security combination that maximizes

the coverage of vulnerabilities or in other words

minimizes the weighted residual vulnerability.

This objective can be represented as

Min
s

X

m

i¼1

airi ð6Þ

(2) Choose a security combination that minimizes

the costs to the firm. This objective can be

represented as

Min
s

X

n

j¼1

cjsj ð7Þ

The fitness function for learning the security

profiles combines both objective functions into one.

The fitness function for any security combination Sk is

described as

F ¼ a
X

m

i¼1

airi þ b
X

n

j¼1

cjsj ð8Þ

where

a þ b ¼ 1 and a; bV1

a and b are non-negative and represent the

preferences of the organizations. Some organizations

wish to cover as many of the vulnerabilities as

possible. For these organizations, addressing these

vulnerabilities is more important than paying an extra

price for security technologies. This preference can be

implemented by choosing aNb. For other organiza-

tions, the security budget is quite limited so they try to

minimize the cost of security while covering most of

the vulnerabilities. This case can be represented by

choosing abb.

We use a simple GA, similar to [5], including the

operations of selection, crossover and mutation. We

start with a randompopulation of security profiles in the

initial generation. An elitist selection strategy is used to

seed the next generation. The strings are sorted in

descending order of their fitness. A certain percentage

of the best security profiles are automatically copied

(inherited) into the next generation. The remaining

strings in the previous generation are selected for the

next generation using stochastic selection with replace-

ment until the full population size is reached. The

probability of a security profile getting selected is

proportional to the value of its fitness function. This

process is undertaken for pairs of strings. Once a pair of

strings has been selected, a weighted coin is tossed to

determine if they will undergo a single-point crossover

operation. If they are chosen to crossover, the pair of

strings will exchange bits after a preset crossover

position. After the crossover operation is completed,

the population undergoes mutation where each bit in all

security profiles is toggled according to a pre-defined

mutation probability. The above operations are

repeated until the best solution does not improve for a

certain number of generations.

5.2. Simulation experiment design

A set of 25 random vulnerability scenarios was

created for testing the performance of the GA. We

compare the GA approach to an enumerative or

exhaustive search (which we call bBrute ForceQ (BF))

approach to compare the efficiency and efficacy of the

GA approach for problems of small size. We also

examine different sizes of problems (in terms of

numbers of vulnerabilities and security technologies)

to examine the scalability of the GA approach. The

results of these simulation experiments and a discussion

of these results are provided in the next section.

6. Results

For the first set of experiments, we tested 25

random vulnerability combinations and searched for

the optimal security portfolio using both the GA

approach as well as a BF search. We assigned random

weights to each vulnerability and security technology.

We assumed that organizations consider covering the

vulnerabilities and the cost of security to be equal and

assign the same weight to these parameters (a=b). The

results of the first set of experiments are presented in

Table 4.
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From the above results, we can easily see that

the GA-based approach was able to find the best

solution for all but 1 of 25 test cases that we

analyzed. Not only did the GA-based approach give

us the right solution, the execution time (CPU time

for finding the solution) for the algorithm was

much faster than the exhaustive BF approach. The

GA-based approach performed consistently better

than the BF technique. We carried out the analysis

for 20-bit vulnerabilities and 13-bit security pro-

files. These vulnerability and security profiles

matched with the classification of vulnerabilities

and security technologies provided in [1]. Table 5

presents the best security profiles for actual

vulnerabilities for some of the above results.

In the section above, we demonstrated the

effectiveness of the GA-based approach of matching

security technologies and vulnerabilities for a prob-

lem size of 20 vulnerabilities and 13 security

technologies. However, it is much more realistic to

have other possible combinations of vulnerabilities

and security technologies. In this section, we analyze

the performance of the GA-approach based on the

problem size.

Table 4

GA performance

Vulnerability GA solution BF solution GA

fitness

BF

fitness

%

Error

GA

time

(ms)

BF

time

(ms)

GA

faster by

factor of

00001011011100010101 0000000101000 0000000101000 0.1314 0.1314 0.00 220 420 1.91

00110001000010011000 0000000001011 0000000001011 0.1152 0.1152 0.00 240 360 1.50

01111110011101011110 1000000001001 1000000001001 0.1322 0.1322 0.00 180 360 2.00

11111101000100011110 1000000001001 1000000001001 0.1055 0.1055 0.00 150 370 2.47

11101011111010111110 1000000001011 1000000001011 0.1470 0.1470 0.00 160 360 2.25

11001010101001010001 1000000001000 1000000001000 0.1249 0.1249 0.00 160 370 2.31

10001011111101010101 1000000001001 1000000001001 0.1322 0.1322 0.00 140 360 2.57

11010100110111000110 1000010000010 1000010000010 0.0875 0.0875 0.00 190 370 1.95

10001011010010001000 1000000001011 1000000001011 0.1274 0.1274 0.00 160 360 2.25

00111100010011010111 0000000110000 0000000110000 0.0982 0.0982 0.00 150 350 2.33

10111110101000110101 1000000001001 1000000001001 0.1252 0.1252 0.00 160 360 2.25

01111111011010110001 0000000011000 0000000011000 0.1275 0.1275 0.00 170 350 2.06

10111111101100111001 1000000001001 1000000001001 0.1252 0.1252 0.00 160 360 2.25

01101001111000001101 1000000001001 1000000001001 0.1322 0.1322 0.00 160 350 2.19

10100000110011011111 1000000001011 1000000001011 0.1274 0.1274 0.00 140 370 2.64

10000001110100000110 1000010001000 1000010001000 0.0816 0.0816 0.00 190 360 1.89

01000111101101001000 1000000001001 1000000001001 0.1252 0.1252 0.00 170 360 2.12

00110101010000000101 0000010001000 0000010001000 0.0684 0.0684 0.00 160 370 2.31

11100100101000010110 1000000001001 1000000001001 0.1252 0.1252 0.00 150 370 2.47

00010111011111101101 0000000001011 0000000001011 0.1442 0.1442 0.00 180 350 1.94

01001110100100000110 1000010000010 1000010000010 0.0611 0.0611 0.00 170 350 2.06

01000011110111100100 0000000110000 1000010001010 0.0982 0.0966 1.72 170 370 2.18

10111101011111001101 1000000001011 1000000001011 0.1470 0.1470 0.00 150 360 2.40

10001010011111010000 0000000011000 0000000011000 0.1275 0.1275 0.00 150 370 2.47

10001101101011110000 0000000011000 0000000011000 0.1275 0.1275 0.00 160 370 2.31

GA specifications

Population size 100

Elitist/inherited 40%

Population

Crossover rate 0.85

Crossover point Mid-point (fixed)

Mutation rate 0.01

Stopping criteria 50 stable generations

M. Gupta et al. / Decision Support Systems 41 (2006) 592–603 599



Additionally, the population size used in the GA-

based approach also affected the performance of the

algorithm. We analyzed different population sizes

along with the problem size to demonstrate that

relatively small population sizes result in an

effective GA performance. Fig. 1 demonstrates the

accuracy of the GA-based approach compared to

the optimal solution obtained by the BF search of

the security technologies and vulnerabilities. The

error rate as compared with the optimal solution

appears on the y axis and the problem size appears

on the x axis.

From Fig. 1, it can be seen that the GA-based

approach has error levels of less than 5% with

Table 5

Security profiles for selected vulnerabilities

Vulnerability profile Vulnerabilities Security profile Security technologies

00001011011100010101 Homogeneity, Predictability, Rigidity,

Gullibility, Capacity Limits, Lack of

Recoverability, Electronic Accessibility,

Physical Accessibility, Dependency

0000000101000 Segmentation, Decentralization

and Quarantine, Self-organization

and Collective behavior

01111110011101011110 Singularity, Centralization, Separability,

Homogeneity, Sensitivity, Predictability,

Gullibility, Capacity Limits, Lack of

Recoverability, Difficulty of Management,

Electronic Accessibility, Transparency,

Physical Accessibility, Electromagnetic

Susceptibility

1000000001001 Heterogeneity, Self-organization

and Collective behavior, Threat/

Warning Response Structure

10001101101011110000 Uniqueness, Separability, Homogeneity,

Predictability, Rigidity, Gullibility, Lack

of Recoverability, Lack of Self-awareness,

Difficulty of Management, Complacency/

Co-optability

0000000011000 Immunologic Identification,

Self-organization and Collective

behavior

01001110100100000110 Singularity, Homogeneity, Sensitivity,

Predictability, Malleability, Lack of

Recoverability, Physical Accessibility,

Electromagnetic Susceptibility

1000010000010 Heterogeneity, Rapid Recovery

and Reconstitution, Centralized

Management of Information

Resources

Fig. 1. GA accuracy for varying problem sizes.
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optimal population sizes, even with the problem size

of 24 vulnerabilities and 24 security technologies.

The GA-based approach accuracy suffered for larger

problems when, for example, the population size of

20 or 50 security profiles was used for each

generation. However, a population of 50 security

profiles represents only 0.0002% of all the possible

security profiles. We can easily see that GA-based

approach is accurate for population sizes above 100

security profiles. In instances when the GA-based

technique does not provide the optimal solution, the

error is low enough for the solution to be considered

to be a viable solution. It has to be noticed that given

the complex nature of information security technol-

ogies, even the optimal solutions do not guarantee a

complete coverage of all vulnerabilities. However,

such a solution provides an approach to manage the

risk of exposure while keeping the costs under

control. From a management perspective, such an

approach provides insight into viable security sol-

utions and generates an awareness of the exposed

risk that management can further address through

disaster recovery measures.

Nevertheless, the question still remains: Is the

GA-based approach fast enough for larger problems

with a bigger population size? Fig. 2 presents the

performance of the GA-based approach as the

problem size increases. From Fig. 2, it is evident

that the BF approach performs better for smaller

problem sizes. However, the execution time of the

BF approach increases exponentially with the prob-

lem size. For larger problem sizes, the GA-based

approach performs several thousand times faster than

the BF approach. It is also interesting to see that the

execution time for GAs does not increase exponen-

tially with an increase in the population size.

7. Conclusions and future directions

In this research, we presented a GA-based

approach to allow organizations to match their

security technologies against their vulnerabilities.

Matching security technologies and vulnerabilities is

a dual-objective problem: maximizing the vulnerabil-

ities covered and minimizing the security costs. The

problem was reduced to a set-covering problem,

known not to be solvable in polynomial time.

Therefore, a heuristic approach using GAs was used.

We used a weighted average GA approach to

combine the objective functions and find a good

security match to the vulnerabilities while trying to

minimize the security cost. The GA-based approach

was much faster than the BF approach of searching

Fig. 2. GA execution time.
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for the best security–vulnerability combination. The

algorithm scales very well with the problem size

and the execution time increases almost linearly

with the increase in the problem size (search space),

i.e., the increase in the number of vulnerabilities and

security technologies. The GA-based approach also

showed acceptable levels of accuracy in determining

the correct solution.

In future research, this mapping can easily be

extended to match securities to vulnerabilities with

specific implementations of vulnerabilities and

security technologies. Carrying out case studies in

organizations and applying the techniques described

in this paper would truly demonstrate and hope-

fully underscore the practicality and usefulness of

the approach. The implementation of the GA used

here can be refined and extended to improve

performance and scalability of the approach, as

well as compared against other heuristics to further

measure performance. Eventually, we envision this

GA-based approach being incorporated into a

decision support tool for supporting managers in

information security planning and management

activities. Finally, much more research in general

needs to be done to assist organizations in

protecting their informational assets from harm at

an acceptable cost.

Appendix A. Pseudo-code for genetic algorithm

Procedure reproduce

Input: cur_pop: a vector of solution population

mid: the position at which crossover take place

mutate_prob: mutation probability

Output: next_pop: a vector of the same size as the

input pop.

Begin:

sort cur_pop according to the solution fitness in

descending order

inherit a percentage of best performing solutions

to the next_pop

while next_pop.sizebcur_pop.size(), do

copy two solutions, s1, s2, from the cur_pop.

//The chance for each solution getting picked

is proportional to its fitness.

if (crossover_prob)

call crossover(s1, s2, mid)

mutate s1, s2, according to mutate_prob

insert s1, s2 in next_pop

increment next_pop by 2

end loop

End

Procedure crossover

Input:s1, s2: parent strings

mid: the position at which crossover take place

Output: none

Begin:

exchange the bits from 0 to mid between s1 and

s2.

End

Procedure GA

Input:

Output:

Begin:

call Generate_initial_population(pop)

old_best=0;

for ib�0 to max_generation, do

best=Compute_fitness(pop);

if old_best!=best

old_best=best;

ctr=0;

else

ctr++;

if ctrNstable

return best;

end if

end if

next_pop=reproduce(pop);

pop=next_pop;

end loop

End
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