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Abstract

Business-to-business (B2B) exchanges are expected to bring about lower prices for buyers through reverse auctions.

Analysis of such settings for seller pricing behavior often points to mixed-strategy equilibria. In real life, it is plausible that

managers learn this complex ideal behavior over time. We modeled the two-seller game in a synthetic environment, where two

agents use a reinforcement learning (RL) algorithm to change their pricing strategy over time. We find that the agents do indeed

converge towards the theoretical Nash equilibrium. The results are promising enough to consider the use of artificial learning

mechanisms in electronic marketplace transactions.

D 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Online exchanges for business-to-business (or

B2B) transactions have become ubiquitous in indus-

tries ranging from automotive to retailing. The Wall

Street Journal [17] recently mentioned the remarkable

turnaround of the B2B Internet commerce sector, and

that US businesses spent $482 billion in B2B trans-

actions, up 242% from 2 years before. The online

research and consulting firm Jupiter Media Metrix

predicts that $5.4 trillion in goods and services

transacted online among businesses by 2006, while

a more optimistic Gartner Group forecast estimates

worldwide B2B commerce to swell to $5.9 trillion by

the end of 2004. Forrester Research indicates that in

Q3 2001, 49% of organizations that buy more than $1

billion per year reported using an online auction, with

most of them increasing their usage of these venues.

One of the more prominent advantages of B2B

exchanges is lower costs of buyers due to automation of

the procurement process, reverse auctions, interoper-

ability among users, collaborative planning and col-
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laborative design [8]. For example, Ford announced in

July 2001 that it had saved $70 million through

Covisint (the online automotive exchange by the Big

Three automakers) in terms of reduced paperwork and

lower seller prices, which is more than its initial

investment in the exchange [8]. Carrier, the world’s

largest air-conditioning company, realized savings of

over 15% in the cost of components by putting its

requirements to a larger universe of sellers through an

online exchange [7].

As B2B marketplaces evolve, one of the emerging

roles of these marketplaces is seen as a demand

aggregator for the buyers as well as a specialist in

qualifying sellers [21]. Ref. [2] analyzed the competi-

tion between sellers in reverse auctions in a game-

theoretic framework, and established the Nash equi-

libria in several scenarios. It was found that in an

environment where sellers can collectively cater to the

total demand, with the final (i.e. the highest-bidding)

seller catering to a residual, the sellers resort to a

mixed-strategy Nash equilibrium. While price ran-

domization in industrial bids is an accepted norm, it

may be argued that managers in reality do not resort to

advanced game theory calculations to bid for an order.

What is more likely is that managers learn that

strategy over time and finally converge towards the

theoretic equilibrium. This paper tests that assertion

by modeling the sellers’ behavior with artificial

software agents that start bidding randomly, and use

a simple reinforcement learning (RL) algorithm to

blearnQ the ideal strategy over time.

The importance of such learning algorithms is

potentially very large. As electronic marketplaces

proliferate among organizations, transactions such as

bidding for buyer requirements in reverse auctions

become ubiquitous. While arguably simple trans-

actions like those analyzed in this research will make

way for more complex auction mechanisms (for

example, those which limit the number of sellers in

terms of quality, product differentiation, etc.), it is

undeniable that transactions in online marketplaces

are here to stay. Monitoring potentially hundreds (or

even thousands) of such concurrent transactions

individually by human agents will conceivably be

very difficult and time-consuming, if not impossible.

One promising solution might be to look at artificial

agents and whether they can mimic human behavior

in such environments. While our experimental setting

and the particular RL algorithm used might be too

simplistic for real-life scenarios (and is in fact found

inadequate for generalized settings), it nevertheless

shows promise that even complex mixed-strategy

Nash equilibria can be assimilated in artificial agent

behavior through simple reinforcement learning

mechanisms. Successful learning in this environment

should spur further research with more complex

algorithms to handle real world transactions.

The remainder of the paper is organized as follows:

Section 2 presents the background literature surround-

ing the nature of the competition that we use for

testing our learning algorithms. The use of artificial

software agents and reinforcement learning in model-

ing such games is also discussed in Section 2. The

model of the reverse auction for both two and n-

sellers is provided in Section 3. Section 5 states the

research assertions and hypotheses that are tested in

the simulation experiment. Section 4 presents the RL

algorithm deployed in the simulation. Results of the

experiments are provided in Section 5 and the

conclusions and future research directions are dis-

cussed in Section 6.

2. Background literature

2.1. Analysis of the market

The competition among sellers in the environment

mentioned above is different from the traditional

oligopolistic Cournot competition between firms

facing a downward facing demand curve, where both

firms sell at the same price point. It is also distinct

from a capacity-constrained Bertrand model that has

been analyzed extensively in the literature, where a

quantity precommitment and Bertrand competition

yield Cournot outcomes that have equilibrium prices

above marginal cost [11].

The analysis of Ref. [2] also established the nature

of the equilibrium under various assumptions of the

sellers’ cost, capacities and the market demand. It is to

be noted that the two-seller model has been analyzed

by Ref. [13], but the method of analysis in Ref. [2]

provides a way to generalize the results to the n-seller

model, which is what we use in our simulations. The

problem is most interesting when we assume that

there is no combined capacity constraint as such: the
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sellers were supplying to the entire demand before the

birth of the exchange, and continue to do so after it

comes into play. However, it is conceivable that the

firms individually cannot supply to the entire market.

In fact, as shown in Ref. [2], the fear of being stranded

as the highest priced seller who does not supply

anything essentially reduces the competition to

Bertrand, with all sellers supplying at cost. Since the

set of sellers is limited and all are reputed in the

marketplace, the buyers would not mind getting their

orders fulfilled by any one or several of these sellers.

This means that while there is a competition between

the firms to be the low-price bidder, it is not as

extreme as a Bertrand game that results in prices equal

to marginal cost. However, there remains an incentive

to be the low-price bidder and have the bfirst

invitationQ to supply a requirement. We note that in

practice the bidder with the lowest cost is not always

the winning bidder—however, under the assumptions

of the model, with the buyer having no other

preference than price for a homogeneous good, we

make the assumption that a low-price seller is invited

to supply to any residual demand before a high-price

seller.

Let us suppose that there are two buyers who

bought from two sellers (one from each) before the

advent of the exchange.1 What may have prevented

buyers from establishing contact with both the sellers

(and vice versa) are the search costs and the ongoing

cost of establishing relationships within a large

organization. Some of these costs are dedicated account

management teams for buyers, sales force for sellers,

cost of sending individual RFQs to the entire universe

of sellers, etc. [10].2 With the lack of competition, the

sellers could afford to sell the required quantities to the

buyers at their reservation price, which we assume to be

the same for both buyers at r. With the advent of the

exchange, the buyers put forward their requirements to

the exchange, and the sellers can then bid for the total

requirement from both buyers.

Next, we discuss how the above market can be

simulated by the use of intelligent artificial software

agents. The use of simulation allows repeated and

detailed study of the behaviors exhibited by the sellers

in the market under various experimental treatment

conditions. These artificial agents are endowed the

ability to learn from previous actions by the use of a

type of Reinforcement Learning algorithm described

below.

2.2. Artificial software agents and reinforcement

learning

Artificial agents have been used to simulate human

agents or sellers in a number of different settings. For

example, Ref. [15] used artificial software agents to

conduct automated negotiations in an e-commerce

environment. The use of artificial agents is advocated

by Ref. [4] to study systems and structures from the

bbottom upQ, which is especially useful when it is

difficult to obtain a closed form solution to the

problem at hand.

Reinforcement learning is a machine learning

technique that is quite useful in situations where

artificial agents need to blearnQ from previous actions

in order to carry out their functions. RL agents

typically have a goal, receive feedback or input from

the environment, can make a decision or undertake

some action in response to the feedback from the

environment. Additionally, a great deal of uncertainty

is usually incorporated into the RL agent environment.

By incorporating this uncertainty, a more realistic

model of the problem is created [19]. For example, an

RL agent might have a goal to win a simple auction by

making the highest bid (within a specific bound). The

agent would receive as feedback from its environment

indicating whether the agent won the auction with the

bid that was tendered. The bid tendered in the next

round would be adjusted based on the information

received from the previous round. Moreover, in the

earlier rounds of the auction, the RL agent would

operate under much uncertainty as it learns the bidding

behavior of other agents participating in the auction,

just as a human agent would.

RL has been used to examine various competitive

scenarios such as sealed bid k-double auction under

asymmetric and incomplete information dynamics

[16], market entry games [5] and rule learning in

1 The example is just illustrative, and is not crucial to the

analysis. There can in fact be only a single large buyer, whose

requirements cannot be met by one seller; however, the two sellers

together have a combined capacity that is more than the buyer’s

requirement.
2 It has been estimated that in terms of reduction of paperwork

alone, B2B exchanges can bring down costs per purchase order

from $75–$150 to $10–$30 [8].
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repeated games [3]. RL is an appropriate choice for

the application presented in this paper due to the

ability of RL agents to incorporate previous experi-

ence (either reward or no reward) into action. The

model under which the artificial agents operate in this

research is discussed in the next section.

3. The model

The generalized n-seller model derives much of its

intuition from the basic two-seller model, and there-

fore it is instructive to first consider the two-seller

model in detail. We consider the case when both

sellers have equal capacities K that is less than the

respective individual requirements of the buyers, but

their combined capacity is lesser than the total

requirement of both buyers Q (i.e. 2K�QN0). In such

a setting, the lower priced seller is invited first to sell

the required quantity, and after he has supplied his

total capacity K, the other seller can then sell the

residual demand Q�K. Both sellers have a common

fixed marginal cost of production, c.

From the modeling point of view, it is important to

note is that the entire requirement Q is auctioned to

the sellers, and for any unfulfilled demand, a lower

priced bidder is invited before a higher priced bidder

to satisfy the unfulfilled demand. It is readily apparent

that with unlimited capacity, the sellers respond with a

Bertrand competition in prices with the seller or

sellers with the lowest marginal cost outbidding the

others.3 This is not to the advantage of the sellers. Ref.

[11] (and several variants of the original model, such

as Ref. [1]) shows that if sellers could limit capacity,

then a quantity precommitment and Bertrand com-

petition yield Cournot outcomes that have equilibrium

prices above marginal cost. At the other end of the

spectrum, if the total capacity of the sellers is so

limited as to be less than the total demand, it is easy to

see that the sellers can sell their entire capacities at the

buyer’s reservation price.4

It is realistic to think of sellers having limited

capacities so that any one seller cannot meet market

demand. Further, keeping in mind the discussion of

the previous paragraph, we stipulate that the aggre-

gate output of the sellers exceeds total quantity

demanded and that a firm sells all it can produce

only if it is the low-price seller. That is, the lowest

priced seller sells to capacity, but a higher priced

seller only sells to a residual demand. Sellers there-

fore are pulled by two opposing bforcesQ—on one

hand, higher prices fetch higher margins, but on the

other, higher prices bring about increased chances of

being underbid by competition.

The analysis shows that there exists a mixed-

strategy equilibrium of prices where the sellers

randomize between a range of prices. The intuition

behind such an equilibrium is as follows: with two

similar sellers, there cannot be any equilibrium in pure

strategies with the sellers settling on different prices.

Settling on the same price is also ruled out, since the

best response to any price is to set a price that is an

infinitesimal amount e lower than that price. Thus, if

any Nash equilibrium exists, it has to be a mixed-

strategy equilibrium. It can further be shown that the

support of the strategy lies between p1 and r, where r is

the reservation price for the buyer and p1 is given by

p1 ¼
r � cð Þ Q� Kð Þ

K
þ c ð1Þ

An intuitive way of looking at p1 is that below this

price, a seller makes less profit by bwinningQ (supply

to capacity) than by blosingQ and supplying the

residual at the highest possible price r (which is the

best price the seller can supply the residual, since he is

losing anyway).

The equilibrium strategy for either seller can be

expressed in terms of their price randomizing cumu-

lative probability density function F( p):

F pð Þ ¼
p� cð ÞK � r � cð Þ Q� Kð Þ

p� cð Þ 2K � Qð Þ
ð2Þ

This is a continuous probability distribution within

the range ( p1, r), and effectively defines the

symmetric Nash equilibrium strategy of the two

sellers (i.e. the sellers). The sellers randomize their

bids within this interval, such that their randomizing

has a probability distribution given by F( p) in Eq. (2).

3 If seller 1 knows that seller 2 can supply to the entire demand,

he responds by charging seller 2’s marginal price, since the best

response of seller 2 at any higher price is to undercut it by an

infinitesimal amount.
4 Since either seller can sell to capacity, there is no incentive for

either to undercut competition.
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By definition, the Nash equilibrium maximizes the

expected return of the sellers.

The analysis is similar for the n-seller model, where

the highest bidder supplies the residual, and the rest

supply to capacity ((n�1)KbQbnK). The support of

the strategy for the sellers is given by ( p1
n, r), where

pn1 ¼
r � cð Þ Q� n� 1ð ÞKð Þ

K
þ c ð3Þ

and the expression for the distribution function is

given by

Fn pð Þ ¼
p�cð ÞK� Q� n�1ð ÞKð Þ r�cð Þ

p� cð Þ nK � Qð Þ

� � 1
n�1

ð4Þ

While price randomization in industrial bids is an

accepted norm, it might be difficult to accept that

managers go through advanced game theory calcu-

lations (and in any case, the real-life situations are far

more varied than the simplified model scenarios that

make any game theory analysis extremely complex) to

determine their bids. It is conceivable that sellers learn

from their past experiences to bid in a fashion that

maximizes their surplus. It is this assertion that we test

in the remainder of this paper.

4. The algorithm

To test our assertion, we model the competing

sellers as artificial software agents. We examine both

the two-seller and the n-seller cases. Like human

subjects, we propose that these agents bunderstandQ the

following (without resorting to explicit bknowledgeQ

of game theory):

1. There are two opposing forces in the pricing

strategy—a higher price (towards r) means greater

per-unit profit, but also brings about a higher

probability of blosingQ to the competition (in terms

of being the first invited bidder to supply the

demand).

2. It does not make any sense to price below p1, as is

clear from the above analysis.

3. Since there is a need to balance between higher

probability of winning and higher per-unit profit,

there is no a priori reason to rule out any price

between p1 and r, and therefore, there is reason not

to rule out a price-randomizing solution (at least

initially).

Fig. 1 describes the simple RL algorithm that the

agents employ in a two-seller game to determine their

prices. The algorithm is essentially the same for the n-

seller model, except that we use p1
n to determine the

support of prices, and compare the experimental

distribution with Fn( p) rather than F(p).

Stated formally, let us denote the average profit for

subdivision i as of time t as P̄it and the average profit

across generalized n subdivisions as

P¯t ¼

X

n

i¼1

P¯it

 !

n
ð5Þ

In this case, the probability of choosing a price

from subdivision i is given by

Wit ¼
P¯it

nP¯t
¼

X

n

i¼1

P¯it

n
ð6Þ

Note that
Pn

i¼1 wit ¼ 1, as is required of a

probability distribution.

The bsellersQ thus start off initially with a totally

random pricing strategy (i.e. the price distribution is

uniform in its support), with the hope of learning over

time about the ideal nature of the randomization. This

is the same assumption as employed by Ref. [6] in

their experiments and referred to as the binitial

propensitiesQ of the sellers for their pure strategies.

Thus, we attempt to find out whether through a

relatively simple reinforcement learning algorithm, the

sellers can finally converge on the arguably more

sophisticated theoretical equilibrium. The rationale for

the algorithm is as follows: since the sellers a priori

have no reason to believe that some prices are more

likely than others, they start off by selecting any price

in the range ( p1, r) with uniform probability. However,

by subdividing the support and noting in which

subdivision each winning or losing price falls, they

ensure that they are aware of any emerging pattern of

wins and losses. The stipulation of choosing at least 10

prices in each subdivision for either seller is to ensure

that when the sellers start making any judgment

regarding which price ranges should be favored more

over others, they have some amount of experience to
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go by. This process is referred to as the exploration

component of reinforcement learning in Ref. [19]. The

sellers are learning the landscape of the problem space

during this component. The exploitation component of

the reinforcement learning algorithm then comes into

play (Step 5), and each subsequent win with a price

within a subdivision ensuring higher probability to that

subdivision being picked up in the next game. This is

essentially the Law of Effect in action—choices that

have led to good outcomes in the past are more likely

to be repeated in the future [20].

If we denote the average profit of seller j ( j=1, 2)

in division k (k=1,. . .10) in simulation round t as

Cjk(t), then the probability pjk(t+1) of choosing that

division in round t+1 is given by

pjk t þ 1ð Þ ¼

j
jk

tð Þ

X

10

k¼1

j
jk

tð Þ

ð7Þ

The game is then repeated a sufficient number of

times so that the sellers can hopefully learn sufficiently

to converge to the ideal distribution. The experiment

can be repeated with other values of Q, K, c and r.

The algorithm described above finds support in the

work by Ref. [14] for the proof of the existence

theorem. Ref. [14] uses a scenario in which sellers

adjust their strategies to give greater weight to those

pure strategies that are currently best against the

strategies of the remaining sellers [12].

5. Hypothesis testing, results and discussion

5.1. The two-seller simulations

For testing the assertion, we selected various

values of Q, K, c and r. In the two-seller model

Fig. 1. Algorithm for sellers on B2B exchange.

Table 1

Various values of capacity (K) and costs (c) (with Q and r fixed)

Q=100 units, r=$80

K C

65 20

65 40

65 60

80 20

80 40

80 60

51 20

51 40

51 60
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equilibrium, we can see from the expressions of p1
and F( p) that the drivers of interest are the values

(2K�Q) and (r�c). If the combined capacity (2K) is

barely more than the demand (Q), the sellers have

little incentive to lower prices, while if there is a large

amount of overcapacity, the sellers would greatly

reduce prices, since losing would mean catering to a

very small residual demand. The difference (r�c) on
the other hand would determine the range of the

support of prices. We keep Q (the total quantity

demanded) fixed at 100 units and r (the reservation

price) fixed at $80. The values of K chosen reflect the

amount of overcapacity: at K=65, we have moderate

overcapacity, prompting moderate competition; at

K=80, the possibility of supplying only a small

fraction of the demand (i.e. if the seller bids the

higher price, he ends up supplying the residual of only

20 units) should prompt more severe competition; and

finally, for K=51, the competition would be very

limited, since the seller knows that even by bidding a

higher price, he will end up supplying 49 units out of

his total capacity of 51 units. For each of these values

of K, we choose three values of c, the marginal cost,

$20, $40 and $60. Thus, there are a total of nine

simulations that are run for the purposes of this

experiment. The various variable combinations are

summarized in Table 1.

The results are shown in Tables 2–10. For each of

the pairs of values of K and c in Table 1, we calculate

p1 and corresponding subdivision limits, which are

shown in the Bin column. After running the simu-

lation as described above, we find out the number of

times the prices are picked in each subdivision, and

this is given in the Frequency (Oi) column. The

Table 2

Simulation run results with K=65 units, c=$20

Bin Frequency

(Oi)

Th. Cum. Fr. Th. Freq. dist.

(E i)

Chi-sq. Chi-sq. value

( p=0.05)

55.07692308 185 171.0526316 171.0526316 1.137247

57.84615385 156 317.0731707 146.0205392 0.682025

60.61538462 140 443.1818182 126.1086475 1.530186

63.38461538 126 553.1914894 110.0096712 2.324256

66.15384615 93 650 96.80851064 0.149829

68.92307692 76 735.8490566 85.8490566 1.129936

71.69230769 67 812.5 76.6509434 1.215128

74.46153846 59 881.3559322 68.8559322 1.410763

77.23076923 52 943.5483871 62.19245489 1.670398

80 46 1000 56.4516129 1.935041

1000 1000 13.18481 16.92

Table 3

Simulation run results with K=65 units, c=$40

Bin Frequency

(O i)

Th. Cum. Fr. Th. Freq.

dist. (E i)

Chi-sq. Chi-sq. value

( p=0.05)

63.386 190 171.1707859 171 2.071260584

65.232 157 317.1633904 146 0.829923933

67.078 139 443.2503631 126 1.32247027

68.924 111 553.2429816 110 0.009226233

70.77 102 650.0379157 97 0.279898025

72.616 77 735.8760527 86 0.909999532

74.462 72 812.5181359 77 0.281163248

76.308 54 881.3668246 69 3.202436519

78.154 51 943.553319 62 2.01229638

80 47 1000 56 1.580957113

1000 1000 12.49963184 16.92
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theoretical cumulative distribution gives us the theo-

retically expected number of observations in each

subdivision, and this is presented in the Ei column.

We compute the v
2 statistic as

P10
i�1

Oi�Eið Þ2

Ei
, and this

is compared with the corresponding chi-square value

with p=0.05 (16.92). Formally stated, we would reject

the null hypothesis that the data follows the distribu-

tion specified in Eq. (2), if the calculated v
2 exceeded

the corresponding v
2value with a significance level a

of 0.05:

H0: Fn( p)=Fn*( p) where Fn*( p) is the experimentally

generated distribution.

H1: Fn( p)pFn*( p)

The simulation results show that as expected

from the theoretical results, lower prices are

preferred over higher prices. The only slight

discrepancy is seen in the case of K=51 units, but

that result is easily explained within limits of

experimental error. When K=51 units, the winner

gets to sell to capacity at 51 units, while the loser

gets to sell 49 units—which is almost as good as

being the winner. In fact, thanks to the higher price,

the difference between the profits between the

winner and the loser is very small. However, note

that by design, the winner of the auction always

makes slightly more money than the loser. Thus, the

frequency distribution of the theoretical distribution

shows that the frequency by which the prices in the

lowest subdivision gets selected is almost the same

as the frequency by which prices in the highest

subdivision gets selected. The lack of the uniformly

falling frequencies in the experimental results can

therefore be attributed to the randomness in the

process.

Table 4

Simulation run results with K=65 units, c=$60

Bin Frequency

(O i)

Th. Cum. Fr. Th. Freq.

dist. (Ei)

Chi-sq. Chi-sq. value

( p=0.05)

71.69230769 176 171.0526316 171 0.143093117

72.61538462 152 317.0731707 146 0.244855636

73.53846154 133 443.1818182 126 0.376585912

74.46153846 109 553.1914894 110 0.009266784

75.38461538 86 650 97 1.206752397

76.30769231 78 735.8490566 86 0.717628032

77.23076923 75 812.5 77 0.035558781

78.15384615 67 881.3559322 69 0.050024511

79.07692308 68 943.5483871 62 0.052534014

80 56 1000 56 0.351041475

1000 1000 3.187340659 16.92

Table 5

Simulation run results with K=80 units, c=$20

Bin Frequency

(O i)

Th. Cum. Fr. Th. Freq.

dist. (E i)

Chi-sq. Chi-sq. value

( p=0.05)

39.5 310 307.6923077 308 0.017307692

44 201 500 192 0.392892308

48.5 140 631.5789474 132 0.538947368

53 92 727.2727273 96 0.142579904

57.5 77 800 73 0.251022727

62 56 857.1428571 57 0.022857143

66.5 41 903.2258065 46 0.560649309

71 35 941.1764706 38 0.229414137

75.5 28 972.972973 32 0.453302385

80 20 1000 27 1.827027027

1000 1000 4.436 16.92
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We also observe the effect of relative overcapacity

in the results. If we compare the results of when K is 65

units with those of when K is 80 units (for example, the

results in Tables 2 and 5, where the c is same at $20),

the observed frequencies in the lowest three bins is

much higher when K is 80 units, as compared to when

K is 65 units. Correspondingly, the observed frequen-

cies in the other bins are lower when K is 80 units, as

compared to when K is 65 units. In other words, when

there is relatively more overcapacity, sellers have the

risk of losing more by bidding higher, and therefore

end up choosing lower prices with higher frequencies.

The situation is reversed when we compare the results

between K=65 and K=51 (Tables 2–4 and Tables 8–

10). For K=51, the sellers end up choosing the lower

bins with lower frequencies as compared to when

K=65. In fact, if we look at the results for K=51

(Tables 8–10), we see that the sellers hardly discrim-

inate between the lower and higher prices. The sellers

know that even if they end up supplying the residual,

they still sell most of their capacity. Further, the impact

is reduced since he extracts higher per-unit profits as

compared to the winning bidder.

We run a chi-square goodness of fit test with each

of the simulation settings. The dChi-sq.T column in the

tables compute the v
2 statistic, whose sum is shown in

the final row, and this value is compared to the

corresponding chi-square value with p=0.05 which is

shown in the final column. As the results show, the fit

with the theoretical distribution is always very good.

In all the nine cases, we do not reject the null

hypothesis that the experimental frequency distribu-

tion follows the theoretical probability distribution. In

other words, the simulation run results in the agents

Table 6

Simulation run results with K=80 units, c=$40

Bin Frequency

(O i)

Th. Cum. Fr. Th. Freq.

dist. (Ei)

Chi-sq. Chi-sq. value

( p=0.05)

53 312 307.6923077 308 0.060307692

56 190 500 192 0.027692308

59 144 631.5789474 132 1.172547368

62 108 727.2727273 96 1.582579904

65 78 800 73 0.382272727

68 49 857.1428571 57 1.160357143

71 40 903.2258065 46 0.802949309

74 36 941.1764706 38 0.100264137

77 25 972.972973 32 1.452752385

80 18 1000 27 3.015027027

1000 1000 9.75675 16.92

Table 7

Simulation run results with K=80 units, c=$60

Bin Frequency

(O i)

Th. Cum. Fr. Th. Freq.

dist. (E i)

Chi-sq. Chi-sq. value

( p=0.05)

66.5 284 307.6923077 308 1.824307692

68 197 500 192 0.114492308

69.5 140 631.5789474 132 0.538947368

71 99 727.2727273 96 0.114229904

72.5 79 800 73 0.541022727

74 61 857.1428571 57 0.260357143

75.5 48 903.2258065 46 0.079749309

77 36 941.1764706 38 0.100264137

78.5 35 972.972973 32 0.322752385

80 21 1000 27 1.344027027

1000 1000 5.24015 16.92
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learning over time to come very close to the ideal

distribution with every set of values of the parameters

K and c.

It is therefore observed that the artificial software

agents start off selecting their prices uniformly

throughout the interval of ( p1, r), but gradually learn

over time to select lower prices with monotonically

higher probabilities except in the case of K=51. In

fact, the final frequency distributions show that the

learning is dperfectT within margins of statistical error.

The results have interesting ramifications in real-

world scenarios. Managers might not have the luxury

of learning over a large number of observations

themselves as in these simulations, but they can

utilize the borganizational memoryQ (i.e. the experi-

ences of him as well as his predecessors) to effectively

build the learning capability over time. Managers also

have their own intuition, which these artificial agents

lack that might result in accelerated learning towards

equilibrium (and therefore optimal) behavior. If this

learning process is considered to be the analogue of

the process by which managers analyze their past

actions, it becomes easy to understand how a mixed-

strategy equilibrium can develop as an emerging

behavior without the sellers actually resorting to game

theoretic calculations. Of course, real-life competition

would be significantly more complex than these

simple symmetric equilibria, and we wish to explore

these considerations in our future work.

5.2. The n-seller simulations

The success of the algorithm in the two-seller game

is unfortunately not replicated for games with n

sellers. We conducted similar simulations by using

the same sets of values for Q, K, c and r for n=3, 5, 8

Table 8

Simulation run results with K=51 units, c=$20

Bin Frequency

(O i)

Th. Cum. Fr. Th. Freq.

dist. (Ei)

Chi-sq. Chi-sq. value

( p=0.05)

77.88235294 103 103.6585366 104 0.004183644

78.11764706 98 206.4777328 103 0.225878561

78.35294118 101 308.4677419 102 0.009609942

78.58823529 102 409.6385542 101 0.006795955

78.82352941 100 510 100 0.001301726

79.05882353 97 609.561753 100 0.065914653

79.29411765 102 708.3333333 99 0.105523202

79.52941176 101 806.3241107 98 0.092410952

79.76470588 99 903.5433071 97 0.032619704

80 97 1000 96 0.00306026

1000 1000 0.547298599 16.92

Table 9

Simulation run results with K=51 units, c=$40

Bin Frequency

(O i)

Th. Cum. Fr. Th. Freq.

dist. (Ei)

Chi-sq. Chi-sq. value

( p=0.05)

78.58823529 98 103.6585366 104 0.308889527

78.74509804 102 206.4777328 103 0.00652682

78.90196078 98 308.4677419 102 0.156095416

79.05882353 101 409.6385542 101 0.000288392

79.21568627 99 510 100 0.018468592

79.37254902 102 609.561753 100 0.059712172

79.52941176 99 708.3333333 99 0.000528244

79.68627451 101 806.3241107 98 0.092410952

79.84313725 102 903.5433071 97 0.235098455

80 98 1000 96 0.024692913

1000 1000 0.902711485 16.92
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and 10, respectively, and in each of the cases the use

of the naRve RL algorithm led us to reject the null

hypothesis that the experimental data followed the

distribution in Eq. (4). In all these simulations, we

kept K=20 units, c=$20 and r=$80, while Q=50, 95,

150 and 190 for n=3, 5, 8 and 10, respectively. In all

these simulations, there was a general trend to form a

unimodal distribution somewhere near the midpoint of

the range.

These results are not entirely unexpected given the

simplicity of the underlying RL algorithm. As Ref. [6]

conjecture with their results in which some simu-

lations lead to quick convergence while others do not,

these may primarily have to do with the sometimes

complex strategy space in which relatively simple

kinds of learning might be going on. In other words,

while our algorithm was good enough to capture the

interactions between two sellers, it is inadequate to

capture the complexity of interactions between more

than two sellers. It is possible that the solution space

in multi-agent settings has multiple equilibria and the

simple RL algorithm is converging to an undesirable

(or suboptimal) equilibrium.5 In a more general multi-

agent setting, an agent has to not only learn what

effects its actions have, but also learn to align its

actions with those of the other agents. For example,

consider what happens in a five-seller game, when a

certain price yields a relatively bhighQ payoff for a

seller (we will call him Seller 1). The four other sellers

react to that result, and as a result, there is a multitude

of interactions (each individual reaction starts a chain

of reactions from the remaining four sellers and so on,

as opposed to a two-seller model, where there is a

reaction from only one seller) which makes it difficult

for the RL algorithm of Seller 1 to bpin downQ the

exact cause of the increased payoff. It must be noted

that our RL algorithm utilizes just a single parameter,

which can be thought of the strength of the initial

propensities [6] that influences the rate of change of

choice probabilities. Ref. [6] also points to the fact

that in many RL scenarios, sellers who start away

from equilibrium can end up learning bvery different

thingsQ. For games with more sellers, the complexity

of the interactions increases the odds of such results.

Recent research suggests that the problem of

finding an equilibrium with multiple agents interact-

ing is yet to be tackled effectively. As Ref. [9] points

out, bthe issue of what happens when multiple

interacting agents simultaneously adapt, using RL or

other approaches, is largely an open questionQ (p. 1).

It needs to be noted that while the knowledge of game

theory can enable us to analyze the nature of a mixed-

strategy equilibrium, the basic underlying assumption

in such analysis is that of common knowledge, i.e. the

players not only know that all players are rational,

they also know that all the players know that all the

players are rational, and so on, ad infinitum. This

means that every player knows how each of the other

players would behave in every possible contingency.

In case of continuous strategy spaces, this would

essentially mean that the agents have to keep track of

unlimited possible contingent behavior of the other

agents. To look at the problem in another way, with5 We are grateful to an anonymous reviewer in pointing this out.

Table 10

Simulation run results with K=51 units, c=$60

Bin Frequency

(Oi)

Th. Cum. Fr. Th. Freq.

dist. (E i)

Chi-sq. Chi-sq. value

( p=0.05)

79.29411765 102 103.6585366 104 0.026536585

79.37254902 101 206.4777328 103 0.032187325

79.45098039 99 308.4677419 102 0.087657161

79.52941176 101 409.6385542 101 0.000288392

79.60784314 100 510 100 0.001301726

79.68627451 98 609.561753 100 0.024498086

79.76470588 99 708.3333333 99 0.000528244

79.84313725 101 806.3241107 98 0.092410952

79.92156863 100 903.5433071 97 0.079540552

80 99 1000 96 0.06706026

1000 1000 0.412009284 16.92
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two agents, there is only one interaction between

them. The number of interactions between three

players increases to three, and in general, between

n players, the number of interactions is n

2

� �

. In

comparison, our agents indulge in very simple

behavior, with limited look-ahead capability. While

it turned out to be enough in capturing the interaction

between two players, it is perhaps not so unexpected

that the simple algorithms failed to capture the

interactions between more than two players.

Some remedies can be considered to address the

shortcomings of our current algorithm. Advanced RL

algorithms make regular use of multiple parameters

like experimentation and recency [6]. Complex RL

algorithms with greater look-ahead capability can

decide on subsequent courses of action by analyzing

the payoffs of other agents in greater detail. Ref. [18]

notes that the choice of initial propensities can have a

long-term effect on the learning process. In real-life

organizations, managers can conceivably do much

better than choosing equal initial propensities by virtue

of their years of experience. In fact, the initial bin

probabilities can be established from past auctions for

similar items.6 We conclude by noting that currently

our reinforcement is based on the updated average

profit in each interval. The choice of this particular

form of reinforcement was dictated primarily by what

we thought would be a bcommon senseQ approach by

organizations to tackle such transactions. Faster

convergence might result if we choose other reinforce-

ment mechanisms.

While we are currently addressing many of these

issues in our ongoing research, the results of our

simulations with the two-seller model show consid-

erable promise. The distribution of Eq. (2) is

certainly not intuitive, and is vastly different from

the uniform distribution that the agents start off with.

Still, using some common-sense rules of thumb, the

agents finally come to mimic the ideal distribution.

We hope that these results spur the interest of using

automated agents that will enable organizations to

effectively compete the increasing number of elec-

tronic transactions. While one of the main attractions

of B2B exchanges remains in their ability to automate

the processes by which organizations can participate

in electronic transactions with each other, the problem

of overseeing each and every one of them is still very

much an issue. This problem will likely exacerbate in

future as more and more organizations start to utilize

these electronic services. While the algorithms that

need to be used in real-world scenarios will be much

more complex than those presented in this research,

we think that organizations might over time develop

such algorithms of increasing sophistication. At first,

very basic transactions having routine processes

would be entrusted to such learning mechanisms. As

algorithms get more complex, and simultaneously

organizations also gain confidence in such mecha-

nisms, more complex transactions would probably be

entrusted. Organizations might also develop processes

by which unusual procedures set off triggers for either

human intervention or even a complete abort.

One issue of interest to researchers and practi-

tioners alike will be the cost of learning involved.

While the agents did learn the ideal behavior over

repeated simulations, there might be a significant

cost to the organization as their behavior starts as

being completely random, and therefore differs

significantly from the ideal in the initial stages. This

is a luxury that organizations might not have in real

life—in fact, if the costs are high enough, there

might not be any incentive for an organization to

utilize such automated agents. In such situations, the

importance of having experienced managers will be

realized, who can bguideQ these artificial agents to

much better initial bstarting pointsQ that would be

closer to the optimal solution, thus reducing the cost

to the organization.

A related issue is the rate of convergence of the

algorithm towards the theoretical equilibrium. For

example, the number of price bands should affect

convergence. Quite possibly, the time taken towards

convergence would increase linearly with the number

of price bands, and exponentially with the number of

agents. In such an environment, one interesting idea

that we wish to explore in future research is to have an

badaptiveQ number of bands, whereby we start off

initially with a few price bands, and progressively

increase their number to refine the search in the later

stages.7

6 We thank one anonymous reviewer for the suggestion. 7 We are grateful to an anonymous reviewer for this idea.
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6. Conclusions

Our research shows initial promise in the use of

artificial agents to automate transactions in elec-

tronic marketplaces. We successfully replicate the

theoretical results of mixed-strategy equilibrium in

capacity-constrained reverse auctions involving two

similar competitors through the use of artificial

agents that learn their ideal behavior over time by

keeping track of their payoffs. Reinforcement

learning was successfully employed as the learning

mechanism in this simulation. The encouraging

results show promise in the use of artificial learning

mechanisms that will enable organizations to take

part in the increasing number of transactions in

electronic marketplaces. Electronic marketplaces can

be enhanced and even specifically designed to

accommodate artificial agents working on behalf

of managers. Additionally, artificial agents could

certainly be used to assist managers in their

decision making in such scenarios.

In our future research, we intend to apply RL

algorithms of increasing complexity that will hope-

fully learn the idealized seller behavior in an n-seller

model. We also wish to consider more complex

models of competition (e.g. different marginal costs

and capacities of sellers, increasing the number of

buyers and sellers, etc.). Furthermore, the artificial

agents employed in this simulation could be enhanced

to capture a wider range of behaviors exhibited by

managers participating in B2B exchanges.
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